
DevPartner
Understanding DevPartner Studio

Release 9.1.0

Copyright © 2009 Micro Focus (IP) Ltd.
All rights reserved.

Micro Focus (IP) Ltd. has made every effort to ensure that this book is correct and accurate,
but reserves the right to make changes without notice at its sole discretion at any time. The
software described in this document is supplied under a license and may be used or copied
only in accordance with the terms of such license, and in particular any warranty of fitness of
Micro Focus software products for any particular purpose is expressly excluded and in no
event will Micro Focus be liable for any consequential loss.

Animator®, COBOLWorkbench®, EnterpriseLink®, Mainframe Express®, Micro Focus®,
Net Express®, REQL® and Revolve® are registered trademarks, and AAI™, Analyzer™,
Application Quality Workbench™, Application Server™,
Application to Application Interface™, AddPack™, AppTrack™, AssetMiner™,
BoundsChecker™, CARS™, CCI™, DataConnect™, DevPartner™, DevPartnerDB™,
DevPartner Fault Simulator™, DevPartner SecurityChecker™,Dialog System™,
Driver:Studio™, Enterprise Server™, Enterprise View™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Server™, Mainframe Access™, Mainframe Manager™,
Micro Focus COBOL™, Micro Focus Studio™, Micro Focus Server™, Object COBOL™,
OpenESQL™, OptimalAdvisor™, Optimal Trace™,Personal COBOL™,
Professional COBOL™, QACenter™, QADirector™, QALoad™, QARun™,
Quality Maturity Model™, Server Express™, SmartFind™, SmartFind Plus™, SmartFix™,
SoftICE™, SourceConnect™, SupportLine™, TestPartner™, Toolbox™, TrackRecord™,
WebCheck™, WebSync™, and Xilerator™ are trademarks of Micro Focus (IP) Ltd. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user documentation
contained on a CD-ROM, may be copied, photocopied, reproduced, transmitted, transcribed,
or reduced to any electronic medium or machine-readable form without prior written consent
of Micro Focus (IP) Ltd. Contact your Micro Focus representative if you require access to the
modified Apache Software Foundation source files.

Licensees may duplicate the software product user documentation contained on a
CD-ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation, regardless of
whether the documentation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public domain, and
that the Software and Documentation are Commercial Computer Software provided with
RESTRICTED RIGHTS under Federal Acquisition Regulations and agency supplements to
them. Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause
at DFAR 252.227-7013 et. seq. or subparagraphs (c) (1) and (2) of the Commercial Computer
Software Restricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus (IP)
Ltd., 9420 Key West Avenue, Rockville, Maryland 20850. Rights are reserved under copyright
laws of the United States with respect to unpublished portions of the Software.

20090904191831

2 Understanding DevPartner Studio

Table of Contents
Preface . 11
Who Should Read This Manual . 11
What This Manual Covers . 11
Conventions Used In This Manual . 12
For More Information . 12

Chapter 1 · Introducing DevPartner . 15
What is DevPartner Studio? . 15

Error Detection . 15
Static Code Analysis . 16
Coverage Analysis . 16
Memory Analysis . 16
Performance Analysis . 17
In-Depth Performance Analysis . 17
System Comparison . 17

DevPartner and Visual Studio . 18
Menus and Toolbars in Visual Studio . 18
Using DevPartner in Visual Studio . 20
Integrated Online Help . 20

Visual Studio Team System Support . 20
Using Terminal Services and Remote Desktop . 21

Licensing . 21
Running Multiple Sessions Under Terminal Services . 21

DevPartner in the Software Development Cycle . 21

Chapter 2 · Error Detection . 23
What is Error Detection? . 23
Using Error Detection Out of the Box . 23

Ready: Deciding the Scope of Error Detection Analysis . 23
Set: Configuring Options and Settings . 25
Go: Running Your Solution with Error Detection . 25
Analyzing the Data in the Results Pane . 27
Saving Session Files . 30

Deciding When to Use ActiveCheck vs. FinalCheck . 31
Understanding ActiveCheck . 31
Understanding FinalCheck . 32
Comparing ActiveCheck and FinalCheck — An Example . 33

Using the Program Error Detected Dialog Box . 33
Understanding the Actions You Can Take . 34
 Understanding DevPartner Studio 3

Table of Contents
Understanding the Memory and Resource Viewer Dialog Box . 35
Exploring the Memory and Resource Viewer User Interface . 35

Understanding the Suppression and Filtering Dialog Boxes . 36
Suppressing Errors . 36
Filtering Errors . 39

Understanding Call Validation . 41
Enabling Memory Block Checking . 41

Using the Settings Dialog Box . 41
Setting General Properties . 42
Setting Data Collection Properties . 43
Setting API Call Reporting Properties . 43
Setting Call Validation Options . 44
Setting COM Call Reporting Properties . 46
Setting COM Object Tracking Options . 46
Setting Deadlock Analysis Options . 46
Setting Memory Tracking Options . 48
Setting .NET Framework Analysis Options . 50
Setting .NET Framework Call Reporting Properties . 51
Setting Resource Tracking Options . 51
Setting Modules and Files Options . 51
Setting Fonts and Colors Options . 53
Setting Configuration File Management Options . 54

Tracking Windows Messages and Event Logging . 54
Exporting Data to XML . 55

Exporting Data from within Visual Studio . 55
Exporting Data from the Error Detection Standalone Application 55
Exporting Data from the Command Line . 55

Running Error Detection from the Command Line . 56
Command Line Options and Syntax . 56
Running FinalCheck from the Command Line . 57

Submitting Data to Visual Studio Team System . 57
Visual Studio Team System Support in DevPartner Error Detection 58

Chapter 3 · Static Code Analysis . 59
What is Code Review? . 59
Using Code Review Out of the Box . 60

Ready: Deciding How You Want to Run the Review . 60
Set: Selecting Options and Settings . 61
Go: Starting Your Code Review Session . 62
Analyzing the Results and Repairing Violations . 62
Saving Session Files . 65

Setting Options . 66
Configuring General Options . 66
Setting Naming Guidelines Options . 70
Managing Suppressed Rules . 71

Suppressing Rules . 72
Viewing Summary Data . 73
Viewing Code Violations . 74
4 Understanding DevPartner Studio

Table of Contents
Viewing Naming Violations . 76
Analyzing Hungarian Results . 76
Analyzing Naming Guidelines Results . 76

Viewing Collected Metrics . 78
Understanding McCabe Metrics . 79

Viewing Call Graph Data . 81
Understanding Call Graph References . 82
Setting Call Graph Configuration Options . 83

Using the Command Line Interface . 86
Using the Project List File in CRBatch . 87
Understanding the Error File . 89

Exporting Data to XML . 89
Exporting Session Data from within DevPartner . 90
Exporting Session Data from the Command Line . 90
Exporting Session Data from a Batch Process . 91

Understanding Naming Analysis . 91
Understanding the Naming Guidelines Naming Analyzer . 92
Understanding the Hungarian Naming Analyzer . 94

Using the Code Review Rule Manager . 95
Configuring Rules . 96
Configuring Triggers . 98
Configuring Rule Sets . 99
Configure Hungarian Name Sets . 101
Manipulating the Rule List . 102

Creating New Rules Using Regular Expressions . 103
Matching Lines Exceeding 90 Characters . 104
Matching Tabs Used Instead Of Spaces . 105
Matching Instances Where Code Catches System.Exception . 105
Matching Methods Having More Than One Return Point . 106
Enforcing Initialization Of Variables When They Are Defined 106
Matching Instances Of More Than One Statement Per Line . 107
Ensuring Open Braces Are Placed On A Separate Line . 108
Ensuring Loop Counters Are Not Modified Inside the Loop Bodies 108

Submitting Data to Visual Studio Team System . 109
Visual Studio Team System Support in DevPartner Code Review 109

Chapter 4 · Automatic Code Coverage Analysis . 111
What is Coverage Analysis? . 111
Using Coverage Analysis Out of the Box . 111

Ready: Consider What You Want to Analyze . 112
Set: Properties and Options . 112
Go: Collect Coverage Data . 113
Analyze the Data . 113
Saving Session Files . 116

Setting Properties and Options . 117
Solution Properties . 117
Project Properties . 118
Options . 118
Excluding Images . 119
 Understanding DevPartner Studio 5

Table of Contents
About Instrumentation . 119
Collecting Data from Various Types of Applications . 120

Collecting Data From Managed Code . 120
Collecting Data for Unmanaged Code . 121
Collecting Data from Multiple Processes . 122
Collecting Data from Remote Systems . 122
Collecting Data From .NET Web Applications . 123
Collecting Data from Classic Web Script Applications . 125
Web Service Requirements . 125
Deleting Temporary Files from NMSource . 126
Configuring IIS for Data Collection . 126
Configuring Internet Explorer for Coverage Analysis . 127
Collecting Data from a Service . 127
Collecting Data from COM and COM+ Applications . 127

Merging Session Data . 127
Reviewing Merge Data . 128
Merge States . 129
ASP.NET Modules in Merge Files . 130
Merge Settings . 130

Exporting Coverage Data . 131
Controlling Data Collection . 131
Analyzing from the Command Line . 131
Using the Coverage Analysis Viewer . 131

What You Can Do in the Coverage Analysis Viewer . 132
What you Cannot Do in the Coverage Analysis Viewer . 132

Integration with DevPartner Error Detection . 132
Submitting Data to Visual Studio Team System . 132

Chapter 5 · Finding Memory Problems . 133
What is Memory Analysis? . 133
Using Memory Analysis Out of the Box . 134

Ready: Consider What You Want to Analyze . 134
Set: Properties and Options . 135
Go: Collect Memory Analysis Data . 135
Analyze the Memory Analysis Data . 138
Saving Session Files . 143

Memory Problems in Managed Visual Studio Applications . 143
How Memory Analysis Helps You . 144

Setting Properties and Options . 144
Solution Properties . 145
Project Properties . 145
Options . 146

Starting a Memory Analysis Session . 147
Using the Session Control Window in Memory Analysis . 147

Using the Object Reference Graph . 151
Using the Call Graph to Identify Execution Paths . 152
Using the Allocation Trace Graph . 153
Viewing and Editing Source Code . 154

Identifying Memory Problems . 156
6 Understanding DevPartner Studio

Table of Contents
Running a Memory Analysis Session . 157
Locating Memory Leaks . 157

Running a Memory Leaks Analysis Session . 158
Understanding Memory Leaks Analysis Results . 159
Alternate Methods of Solving the Problem . 163

Solving Scalability Problems with Temporary Objects . 164
Examples of Scalability Problems . 164
A Possible Cause: Temporary Objects . 165
Running a Temporary Objects Analysis Session . 165
Identifying Scalability Problems . 166
Analyzing Temporary Object Data . 167
Interpreting Results to Fix Scalability Problems . 169

Using RAM Footprint to Improve Performance . 169
Measuring RAM Footprint . 170
Optimizing Memory Use . 175

Analyzing Web Applications with Memory Analysis . 175
Collecting Server-side Memory Data . 175
Collecting Data from Multiple Processes . 176
Prerequisites for Analyzing Web Applications . 176
Running a Memory Analysis Session on a Web Application . 176
If You Get Unexpected File Save Dialogs or Saved Session Files 177
If You Get a Security Exception . 178

Using Memory Analysis In Your Development Cycle . 178
Submitting Data to Visual Studio Team System . 179

Chapter 6 · Automatic Performance Analysis . 181
What is Performance Analysis? . 181
Using Performance Analysis Out of the Box . 181

Ready: Consider What You Want to Analyze . 182
Set: Properties and Options . 182
Go: Collect Performance Data . 183
Analyze the Data . 183
Saving Session Files . 187

Setting Properties and Options . 187
Solution Properties . 188
Project Properties . 188
Options . 189
Excluding Images . 190

About Instrumentation . 190
Collecting Data from Various Types of Applications . 191

Collecting Data From Managed Code . 191
Collecting Data from Unmanaged Code . 192
Collecting Data from Multiple Processes . 193
Collecting Data from Remote Systems . 193
Collecting Data From .NET Web Applications . 194
Collecting Data from Classic Web Script Applications . 196
Web Application Data Collection Tips . 197
Web Service Requirements . 197
Deleting Temporary Files from NMSource . 197
 Understanding DevPartner Studio 7

Table of Contents
Configuring IIS for Data Collection . 198
Configuring Internet Explorer for Data Collection . 198
Collecting Data from a Service . 199
Collecting Data from COM and COM+ Applications . 199
Collecting Data for Recursive Functions . 199

Analyzing a Call Graph . 199
Child-side Analysis . 201
Parent-side Analysis . 201

Comparing Sessions . 202
Interpreting Session Comparison Results . 203

Exporting Performance Data . 204
Controlling Data Collection . 204
Analyzing from the Command Line . 204
Using the Performance Analysis Viewer . 204

What You Can Do in the Performance Analysis Viewer . 205
What you Cannot Do in the Performance Analysis Viewer . 205

Performance Analysis Tips for .NET Applications . 205
Submitting Data to Visual Studio Team System . 207

Chapter 7 · In-Depth Performance Analysis . 209
What is Performance Expert? . 209

Performance Expert and Performance Analysis . 210
Using Performance Expert Out of the Box . 210

Ready: Consider What You Want to Analyze . 210
Set: Properties and Options . 211
Go: Collect Performance Expert Data . 211
Analyze the Data . 213
Saving Session Files . 223

Setting Properties and Options . 223
Solution Properties . 223
Project Properties . 224
Options . 225

Finding Application Problems with Performance Expert . 225
Accounting for Child Methods . 226
Usage Scenarios . 226

Identifiable Performance Problem . 227
Scaling Problem in an Application . 229
Performance Slow but No Specific Issue . 231

Collecting Data from Web Applications . 231
Managed Code Only . 231
web.config Requirements . 231
Multiple Process Profiling . 232
Single Process Profiling on IIS 6.0 . 232
No Remote Session File for Components Running Under DLLHOST 232
Source Code on Remote Computers . 232
Session Files Saved to Open Solution . 233

Automating Data Collection . 233
Using Command-line Switches . 233
Using an XML Configuration File . 234
8 Understanding DevPartner Studio

Table of Contents
Collecting Data from Distributed Applications . 235
Enabling Remote Data Collection with DPAnalysis.exe . 235
Saving Session Files on Remote Computers . 236
Collecting Data with Terminal Services or Remote Desktop . 236
Remote Profiling and Windows XP Service Pack 2 (SP2) or Later 236
Firewalls and Remote Data Collection . 238

Exporting DevPartner Data to XML Format . 238
Using Performance Expert with Performance Analysis . 238
Performance Expert in the Development Cycle . 239

Software Designers . 239
Software Developers . 240
Quality Assurance Engineers . 240

Submitting Data to Visual Studio Team System . 241

Chapter 8 · System Comparison . 243
What is System Comparison? . 243
Using System Comparison Out of the Box . 244

Ready: Consider What You Want to Compare . 245
Set: Prepare for System Comparison . 245
Go: Make a Change and Create a Snapshot . 246
Analyze Results . 247

The System Comparison Service . 248
Changing Automatic Snapshot Settings . 249

Categories of Differences . 249
Comparing Registry Keys . 253
Comparing Specific Files . 254
Installing Without DevPartner Studio . 256
Running the Comparison Utility from the Command Line . 256
Software Development Kit . 257
System Comparison Snapshot API . 257

Taking a Snapshot . 259
Logging Messages . 259
Reporting Progress . 260

Writing a Plug-in . 260
What is a Plug-in? . 260
Plug-in Sample Step By Step Instructions . 261
Creating and Testing Your Plug-in . 264
Modifying a Deployed Plug-in . 264
Highlights of the Plug-in Schema . 265
About the Redistributable Assemblies . 266

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord 267
What Is DevPartner Studio Enterprise Edition? . 267

The Development Process . 267
The DevPartner Studio EE Solution . 268

Improved Project Control . 268
Higher Software Quality . 268
Improved Productivity . 269
 Understanding DevPartner Studio 9

Table of Contents
Feature Overview . 270
Requirements Management . 270
Merging Coverage Data . 270
Project Activity Tracking . 270
Automatic Notification of Changes . 270
Customizable Workflow . 271
Remote Access via the Web . 271
Central Store of Shared Information . 271

About TrackRecord and DevPartner Studio . 271
DevPartner Studio Interaction with TrackRecord . 272

DevPartner Toolbar Buttons . 272
Defect Submissions . 272

TrackRecord and DevPartner Studio Coverage Analysis . 272

Appendix B · DevPartner Studio Supported Project Types . 275
Supported Project Types . 275
Error Detection Supported Project Types . 275
Code Review Supported Project Types . 278
Coverage Analysis, Performance Analysis, Memory Analysis, and Performance Expert Sup-
ported Project Types . 280

Appendix C · Starting Analysis from the Command Line . 283
Introducing DPAnalysis.exe . 283
Running DPAnalysis.exe from the Command Line . 283
Using DPAnalysis.exe with an XML Configuration File . 285

XML Configuration File Element Reference . 287
Profiling Web Applications with the XML Config File . 297

Collecting Analysis Data from a Remote Computer . 299

Appendix D · Analysis Session Controls . 301
Introducing Session Control Files . 301
Creating a Session Control File Within Visual Studio . 301
Using the Session Control API . 302

Using the Session Control APIs with Managed Applications 303
Using the Session Control APIs with Unmanaged Applications 305
Saving Files through the Session Control API . 305
Interactions and Precedence . 306

Appendix E · Exporting Analysis Data to XML . 307
Introducing DevPartner Data Export . 307
Exporting Analysis Data to XML . 307
Exporting Analysis Data to XML from the Command Line . 308

DevPartner.Analysis.Export.exe Usage Examples . 309

Index . 311
10 Understanding DevPartner Studio

Preface
This manual describes how to get started using your Micro Focus® DevPartner® Studio
software.

Who Should Read This Manual

This manual is intended for new DevPartner Studio users. Chapter 1 presents an overview of
DevPartner Studio concepts; subsequent chapters describe individual DevPartner components.
Each component chapter begins with a brief Ready, Set, Go procedure to get new users up and
running with DevPartner Studio.

Users of previous versions of DevPartner should read the Preface to the DevPartner Installa-
tion Guide to see how this version of DevPartner differs from previous versions.

This manual contains information relevant to all DevPartner Studio products, including the
Professional and Enterprise Editions, and the DevPartner for Visual C++ BoundsChecker
Suite.

Note: The DevPartner for Visual C++ BoundsChecker Suite analyzes unmanaged
code only. The DevPartner memory analysis, static code analysis, and Perfor-
mance Expert features analyze managed code only, and are therefore not
supported in the DevPartner for Visual C++ Bounds-Checker Suite.

This manual assumes that you are familiar with the Windows interface, with Microsoft Visual
Studio, and with software development concepts.

What This Manual Covers

This manual contains the following chapters and appendixes:

� Chapter 1, Introducing DevPartner describes the concepts and components of DevPart-
ner.

� Chapter 2, Error Detection, explains how to use DevPartner to uncover errors in your C
and managed and unmanaged C++ code.

� Chapter 3, Static Code Analysis, explains how DevPartner helps you locate a variety of
errors in Visual Basic and Visual C# code.

� Chapter 4, Automatic Code Coverage Analysis, describes how to use DevPartner to track
how much of your code is covered by your tests.

� Chapter 5, Finding Memory Problems, describes how to use DevPartner to diagnose
application anomalies that can be caused by misuse of memory and objects.
 Understanding DevPartner Studio 11

Preface
� Chapter 6, Automatic Performance Analysis, explains how DevPartner helps you locate
bottlenecks and code in need of optimization.

� Chapter 7, In-Depth Performance Analysis, explains how DevPartner helps you analyze
a variety of full system performance issues.

� Chapter 8, System Comparison, describes how DevPartner helps you identify differences
between computer systems to assist with troubleshooting application development prob-
lems.

� Appendix A, About DevPartner Studio Enterprise Edition and TrackRecord, explains
how to use DevPartner Studio with Micro Focus ASQ enterprise tools.

� Appendix B, DevPartner Studio Supported Project Types, contains tables listing project
types supported by each DevPartner Studio feature.

� Appendix C, Starting Analysis from the Command Line, describes the DPAnaly-
sis.exe command line interface.

� Appendix D, Analysis Session Controls, describes creating a session control file for cov-
erage, memory, performance, and Performance Expert sessions.

� Appendix E, Exporting Analysis Data to XML, describes exporting coverage, perfor-
mance, and Performance Expert data to an XML file.

Conventions Used In This Manual

This book uses the following conventions to present information.

� Screen commands and menu names appear in bold typeface. For example:

Choose Item Browser from the Tools menu.

� File names appear in monospace typeface. For example:

The Understanding DevPartner manual (Understanding DevPartner.pdf)
describes...

� Variables within computer commands and file names (for which you must supply values
appropriate for your installation) appear in italic monospace type. For example:

Enter http://servername/cgi-win/itemview.dll in the Destination field...

For More Information

Refer to the feature-level online help for step-by-step instructions for specific DevPartner
Studio tasks.

View the DevPartner InfoCenter page from the Start > DevPartner menu to learn more about
DevPartner Studio components.

In addition to this manual, the following information is also included in the DevPartner Studio
documentation set:
12 Understanding DevPartner Studio

Preface
� The DevPartner Installation Guide provides What’s New information, a detailed list of
system requirements, and installation instructions.

� The DevPartner Studio Quick Reference provides an at-a-glance summary of DevPartner
features accompanied by quick-start advice.

� The DevPartner Advanced Error Detection Techniques manual provides concepts and
procedures to help you understand the use of DevPartner Error Detection software.

� The Known Issues file contains a list of known issues and technical notes for DevPartner
Studio. The file is available in your installation folder, or you can refer to the
ReadMe.htm file for a link to the Known Issues file on the Web.
 Understanding DevPartner Studio 13

Preface
14 Understanding DevPartner Studio

Chapter 1

Introducing DevPartner
This chapter provides an introduction to DevPartner Studio Professional Edition and DevPart-
ner for Visual C++ BoundsChecker Suite. Use this manual to understand the concepts underly-
ing both DevPartner products.

Note: The DevPartner for Visual C++ BoundsChecker Suite analyzes unmanaged
code only. The DevPartner memory analysis, static code analysis, and Perfor-
mance Expert features analyze managed code only, and are therefore not
supported in the DevPartner for Visual C++ BoundsChecker Suite.

What is DevPartner Studio?

DevPartner Studio provides a variety of programmer productivity features, such as automated
error detection, source code analysis, coverage analysis, memory analysis, performance profil-
ing, system performance analysis, and system comparison.

DevPartner can analyze a broad range of both managed and unmanaged applications written in
a variety of languages. Refer to Appendix B, “DevPartner Studio Supported Project Types” for
a complete list of supported project types and languages.

The following sections summarize the features of DevPartner Studio.

Error Detection

DevPartner Studio provides automated error detection for managed and unmanaged programs.
DevPartner error detection is built on BoundsCheckerTM technology, and is designed to locate
the following hard-to-find errors in your Windows-based applications:

� Memory, resource, and COM interface leaks
� Invalid use of Windows API calls
� Invalid use of memory or pointers
� Memory overrun errors
� Un-initialized memory usage
� Use of dangling pointers
� Errors in .NET finalizers

DevPartner error detection monitors your application from the moment of creation until the
final moments before the process is unloaded from memory. You can monitor all DLL loads
and unloads, static constructors and destructors as well as the normal flow of your application.
You can also tune DevPartner error detection to collect only information necessary to solve a
particular problem by filtering out specific files or portions of your application.

See “Error Detection” on page 23 for more information about DevPartner error detection.
 Understanding DevPartner Studio 15

Chapter 1 · Introducing DevPartner
Static Code Analysis

DevPartner helps developers write compliant Visual Basic and C# code within Visual Studio.
DevPartner identifies programming and naming violations in the .NET Framework, analyzes
method call structures, and tracks overall code complexity.

The DevPartner software detects a variety of coding errors:

� Variable naming inconsistencies
� Violations of coding covenants
� Win32 API validation errors
� Common logic errors
� .NET portability issues
� Structured exception handling errors

Using an extensive and extensible rule set, DevPartner also assists in the porting of legacy
Visual Basic code by identifying constructs that do not work in the .NET environment.

See “Static Code Analysis” on page 59 for more information about DevPartner static code
reviews.

Coverage Analysis

The DevPartner coverage analysis feature allows developers and test engineers to be sure they
are testing all of an application’s code. When you run your tests with coverage analysis,
DevPartner tracks all applications, components, images, methods, functions, modules, and
individual lines of code covered by your tests. When your tests end, DevPartner displays infor-
mation about what code was exercised and what code was not exercised.

DevPartner collects coverage data for managed code applications, including Web and
ASP.NET applications, as well as unmanaged C++ applications. (See Appendix B, “DevPart-
ner Studio Supported Project Types” for a complete list of supported technologies).

You can run the coverage analysis and error detection features simultaneously. Knowing the
percentage of code covered in your tests increases confidence in your error detection results.

See “Automatic Code Coverage Analysis” on page 111 for more information about code
coverage analysis.

Memory Analysis

DevPartner analyzes how memory is allocated by your managed Visual Studio application.
When you run your application under memory analysis, DevPartner shows you the amount of
memory consumed by an object or class, tracks the references that are holding an object in
memory, and identifies the lines of source code within a method that are responsible for
allocating the memory.

More importantly, DevPartner presents memory data in context. This enables you to navigate
chains of object references and calling sequences of the methods in your code. Presenting
memory data in context provides both an in-depth understanding of how your program uses
memory and the critical information you need to optimize memory use.

See “Finding Memory Problems” on page 133 for more information about memory analysis.
16 Understanding DevPartner Studio

Chapter 1 · Introducing DevPartner
Performance Analysis

The DevPartner performance analysis feature analyzes your code for performance bottlenecks.
It pinpoints these bottlenecks to individual lines of source code, and provides method-level
insight into the way your application uses third-party components, the operating system, and,
most importantly, the .NET Framework.

DevPartner supports performance profiling in Microsoft Visual Studio 2005 and Visual Studio
2008. (See Appendix B, “DevPartner Studio Supported Project Types” for a complete list of
supported technologies).

To improve performance of critical parts of your code, use DevPartner performance analysis to
locate performance bottlenecks and to verify improvements you make impact performance.

See “Automatic Performance Analysis” on page 181 for more information about analyzing an
application’s performance.

In-Depth Performance Analysis

The DevPartner Performance Expert feature takes performance profiling a step further than
DevPartner’s performance analysis feature. For managed code Visual Studio applications,
Performance Expert provides a deeper analysis of the following hard-to-solve problems:

� CPU/thread usage
� File/disk I/O
� Network I/O
� Synchronization wait time

Performance Expert analyzes your application at run time and locates the problematic methods
in your code. It then allows you to view details about individual lines in the method, or to
examine parent-child calling relationships to help you determine the best way to fix the
problem. When you decide on an approach, Performance Expert enables you to jump directly
to the problem lines in your source code, so you can quickly fix problems.

See “In-Depth Performance Analysis” on page 209 for more information.

System Comparison

The DevPartner System Comparison utility compares two computer systems, or compares the
current state of a computer with a previous state, allowing you to determine why your applica-
tion:

� Works on one computer but not on another
� Works differently on different computers
� No longer works on a computer on which it previously worked

To compare systems, System Comparison creates XML files, called snapshot files, that
contain information about a computer system, such as its installed products, system files,
drivers, and many other system characteristics. It then compares snapshot files and reports the
differences between them.

Unlike the other DevPartner features, System Comparison is not integrated into the Visual
Studio environment. It runs as a standalone utility to minimize its impact on target systems.
 Understanding DevPartner Studio 17

Chapter 1 · Introducing DevPartner
System Comparison consists of a service that takes nightly snapshots of a system, and the user
interface that enables you to take snapshots manually and to compare snapshots to find differ-
ences. System Comparison also includes a command line interface and a Software Develop-
ment Kit (SDK). The SDK allows software developers to gather additional information for
comparison and to embed snapshot functionality in deployed applications.

See “System Comparison” on page 243 for more information about the System Comparison
utility.

DevPartner and Visual Studio

DevPartner integrates seamlessly into the Visual Studio environment. This integration makes
it easy for you to use the capabilities of the product as you write and debug your applications.
You can perform code analysis frequently as you develop an application without leaving the
development environment.

DevPartner simultaneously supports application development within the Visual Studio 2008
and Visual Studio 2005 environments. This support assists developers as they migrate code
from the older Microsoft environments to the latest .NET Frameworks.

The following tables identify the DevPartner features available in various Visual Studio
environments.

Menus and Toolbars in Visual Studio

DevPartner adds a menu and several toolbars to Visual Studio, and it adds menu commands to
several Visual Studio menus, including context (right-click) menus. Menu commands and
toolbars provide access to session controls, the rules for static code reviews, options, and
instrumentation controls.

Table 1-1. Installed features for DevPartner Studio Professional Edition

Microsoft Visual Studio 2008 Microsoft Visual Studio 2005

Performance Analysis Performance Analysis

Coverage Analysis Coverage Analysis

Error Detection Error Detection

Static Code Analysis Static Code Analysis

Memory Analysis Memory Analysis

Performance Expert Performance Expert

Table 1-2. Installed features for DevPartner for Visual C++ BoundsChecker Suite

Microsoft Visual Studio 2008 Microsoft Visual Studio 2005

Performance Analysis Performance Analysis

Coverage Analysis Coverage Analysis

Error Detection Error Detection
18 Understanding DevPartner Studio

Chapter 1 · Introducing DevPartner
DevPartner adds a toolbar to Visual Studio to provide quick access to DevPartner features. The
following graphic illustrates the DevPartner toolbar in Visual Studio 2008.

Figure 1-1. DevPartner toolbar

DevPartner also places a session control toolbar in the IDE. When the coverage analysis,
memory analysis, performance analysis, and Performance Expert features are active, the
session control toolbar is active.

Figure 1-2. The Session Control toolbar

The Session Control toolbar consists of three icons and a process list.

 Stops data collection and takes a final data snapshot

 Takes a data Snapshot

 Clears data collected to the point at which the Clear action executes

The process list focuses data collection on a single process for applications that use multi-
ple processes.

In addition to menus and toolbars, DevPartner uses the Visual Studio dockable windows and
panes to display the results of analysis sessions. It also uses the Solution Explorer to display
the names of session files. DevPartner also adds pages to Visual Studio Options, Solution
Properties, and Project Properties for configuring DevPartner code analysis operations.

Options
Instrument native code

Code review rules

Code review

Performance expert

Memory analysis

Performance analysis

Error detection with code coverage

Code coverage analysis

Error detection
 Understanding DevPartner Studio 19

Chapter 1 · Introducing DevPartner
Using DevPartner in Visual Studio

The general work flow for using DevPartner within Visual Studio consists of one or more of
these general-purpose tasks:

� Open or create a Solution in Visual Studio
� Set options for code analysis operations
� Enable the analysis you want to perform from the DevPartner menu or toolbar
� Run your application
� View the session results returned by DevPartner

DevPartner gives you wide flexibility in choosing the parts of your application to monitor,
selecting what data to view, and creating filters to eliminate unwanted information.

DevPartner also gives you the option to perform many functions from the command line. This
capability provides a way to use DevPartner functionality in automated batch processing
operations, such as nightly-build smoke tests.

Integrated Online Help

DevPartner provides extensive online help about each of its features. This help should be the
first place you turn for how-to and reference information.

Provided in the same format as the rest of Visual Studio help, the DevPartner online help
appears in the Visual Studio help collection as a separate book. The DevPartner Studio help
collection contains a volume for each DevPartner feature.

Visual Studio Team System Support

Visual Studio Team System is Microsoft's version control, defect tracking, and process
management software for Visual Studio software development projects. DevPartner Studio
supports Microsoft Visual Studio Team System if the Team System client software is installed
and a Team Foundation Server connection is available.

DevPartner Studio supports submission of a Work Item of the type Bug to Visual Studio Team
System. When you submit a bug, DevPartner automatically populates the Work Item form
with selected session data. To submit a bug from DevPartner, the active Team System project
must support a Work Item of the type Bug. DevPartner automatically adds data only to this
type of Work Item.

You can submit a Work Item that includes DevPartner data from any of the following views in
a DevPartner session file:

� A method list or method table in a Coverage, Memory, or Performance Analysis session
file, or in a Performance Expert session file

� The code review Problems or Naming tabs

� A list of errors or leaks in any Error Detection tab, or list of instances in the Error Detec-
tion Modules or .NET Performance tabs
20 Understanding DevPartner Studio

Chapter 1 · Introducing DevPartner
To submit a Team System Work Item from DevPartner, right-click on a method or other item
in a session file and choose Submit Work Item. DevPartner populates the Title and Descrip-
tion or Symptom field. Fill in any other required data and save the Work Item.

Note: If you use the Team Explorer context menus in Visual Studio, DevPartner does
not automatically populate the Work Item with session data.

For more information about submitting data from DevPartner Studio to Team System, see the
Visual Studio Team System sections in the chapters of this guide. Consult the Microsoft Visual
Studio Team System documentation for complete information on how to use Team System to
support your development and project management activities.

Using Terminal Services and Remote Desktop

DevPartner Studio supports Windows Terminal Services. You can use Terminal Services to do
anything you would be able to do using the computer directly, such as:

� Configure DevPartner options on remote systems.
� Enable or disable analysis on remote systems.
� Profile an application that runs on a remote system.

Licensing

A Terminal Services connection requires one DevPartner concurrent license per user display.
A server connected through a Terminal Services connection does not require the DevPartner
Studio Remote Server license.

Running Multiple Sessions Under Terminal Services

Multiple DevPartner sessions can run simultaneously on the Terminal Server. Multiple
sessions can be started by a single user or multiple users. If a single user launches two
instances of the console, both instances share the same workspace settings because DevPartner
stores workspace settings on a per-user basis. If different users launch instances of coverage
analysis, workspace settings can be configured separately for each instance.

Collected data includes activity in the server process from all users on the Terminal Server. To
better focus data collection during a session, eliminate or limit extraneous application activity
that uses the monitored processes or invokes the monitored targets.

DevPartner in the Software Development Cycle

Software development projects consist of several phases, often referred to as the software
development life cycle. Software development life cycles differ among development organiza-
tions, and DevPartner adapts to virtually any development life cycle model.

Tip: Organizations may define the actions between phases as project milestones.
 Understanding DevPartner Studio 21

Chapter 1 · Introducing DevPartner
The following figure depicts the phases in a typical development life cycle.

Figure 1-3. Typical software development life cycle phases

Within each of these phases, DevPartner assists project managers, development leads, devel-
opers, and testers to produce code as free from errors, coding irregularities, performance
bottlenecks, and memory problems as possible.

During the Define and Plan phases, DevPartner Enterprise Edition’s requirement definition
and project-tracking capabilities help ensure clear communication with the entire project team.

During the Develop and Test phases, which are often the most time-consuming and precarious
phases, DevPartner helps developers find and resolve software defects, as well as fine-tune
and test the application under development. Information generated by DevPartner features can
be shared among development team members to foster communication.

During the Test phase, development organizations use internal load testing and scenario-based
testing to verify the operation of features in an application under development. This internal
testing continues until the end of the development life cycle. DevPartner provides many
advantages during this phase of the development cycle. Using an active analysis technology,
DevPartner error detection and performance analysis features can align with QALoad, to
provide supplemental advantages to streamline the application testing process.

Finally, during the Deploy phase, a development team using DevPartner can successfully build
and release its application with a high degree of confidence in the final product release. Inevi-
tably, however, internal or external customers may find problems that even the most sophisti-
cated technologies fail to uncover. Since such problems can adversely affect the end-user
experience, your development team needs to address them when they arise. DevPartner Enter-
prise Edition helps you manage this process with its defect detection, verification, and resolu-
tion capabilities.

As a team grows in size or an application grows in complexity, the additional defect tracking
and integration technologies of the DevPartner Enterprise Edition can further enhance an
organization’s productivity during and after deployment. The DevPartner Enterprise Edition
provides integration between DevPartner and the Micro Focus TrackRecord and Reconcile
applications. See “About DevPartner Studio Enterprise Edition and TrackRecord” on page 267
for more information about using DevPartner in an enterprise environment.
22 Understanding DevPartner Studio

Chapter 2

Error Detection
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with error detection. The second section provides reference
information for an in-depth understanding of DevPartner error detection features.

Refer to the DevPartner online help for additional task-oriented information about error detec-
tion. For information that goes beyond the basics, refer to Advanced Error Detection
Techniques, provided in PDF format with the DevPartner software installation.

What is Error Detection?

DevPartner is a comprehensive debugging solution for C and C++ development. Incorporating
frequent checks with DevPartner error detection into your application development cycle
allows you to produce stable, error-free code. DevPartner automates error-detection and analy-
sis without adding time to the development process. The following features help you identify
elusive bugs that are beyond the reach of traditional debugging and testing techniques:

� Comprehensive error detection
� Flexible debugging environment
� Integration with the Visual Studio debugger
� Integration with Microsoft Visual Studio
� Advanced error analysis
� Open error-detection architecture

Using Error Detection Out of the Box

The following Ready, Set, Go procedure introduces you to using DevPartner error detection.

Analyzing an application with DevPartner Studio does not require elevated system privileges.
The system privileges you use to create and debug your application are sufficient for DevPart-
ner to analyze the application.

Ready: Deciding the Scope of Error Detection Analysis

Consider how you want to run DevPartner error detection on your code, as well as the types of
errors and memory leaks you need to locate.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information about the subject being described in the shaded box, read the additional text
following the box.
 Understanding DevPartner Studio 23

Chapter 2 · Error Detection
Note: DevPartner error detection creates data files for each target application. You
must ensure that you have write access to the folder containing the target
executable before starting error detection.

Refer to “Error Detection Supported Project Types” on page 275 for a comprehensive list of
supported project types for DevPartner error detection.

Deciding How to Run the Session

You can run DevPartner error detection in several ways, depending on the needs of your situa-
tion:

� Run error detection interactively as part of your routine code validation process (daily or
weekly) from inside Microsoft Visual Studio, or using the standalone application.

� All error detection features can be accessed in the Visual Studio environment. You can
configure DevPartner settings, check your program, and review detected errors.

� You can run DevPartner as a standalone application outside of Visual Studio, but
access to the Visual Studio editor to edit your code is unavailable.

� Automate error detection to run from a batch file or the command line using bc.exe.

� When starting DevPartner from the command line, you can set up automated testing
scripts. See “Running Error Detection from the Command Line” on page 56 for more
information.

� Instrument your code with FinalCheck for a thorough validation at major development
milestones (in Visual Studio only).

Deciding the Types of Errors to Locate

Use error detection to locate a wide variety of errors and leaks that may arise in your code and
track down any errors.

� Enable COM object tracking to ensure there are no COM object errors in code.

� Enable Deadlock Analysis to ensure that synchronization objects are used properly, or for
an application that deadlocks occasionally and the cause is no known.

� Extend the memory tracking system to include any custom allocators to ensure they are
implemented without leaks or errors. To describe custom allocators, add descriptive infor-
mation about your allocators to the UserAllocators.dat file. Refer to “Working with
User-Written Allocators” in Advanced Error Detection Techniques.

The following procedure assumes:

� Your solution contains unmanaged source code.
� You are running error detection in A supported Visual Studio release.
24 Understanding DevPartner Studio

Chapter 2 · Error Detection
Set: Configuring Options and Settings

You can customize DevPartner error detection to report specific types of errors, while ignoring
or filtering out any “noise” that you do not care about.

Depending on how you are running DevPartner error detection, there are several menu options
to access the Settings dialog box (see “Using the Settings Dialog Box” on page 41).

By default, error detection finds simple memory leaks, some memory errors, and resource
leaks. Error detection can also find every instance the following types of errors, leaks, and
events if you edit the default configuration.

� API calls and validation errors
� Potential deadlock situations
� COM interface leaks
� Memory allocations and deallocations
� Windows messages and other significant events (see “Tracking Windows Messages and

Event Logging” on page 54)

Additionally, you can configure DevPartner to use FinalCheck. With FinalCheck, error detec-
tion instruments your C or C++ application, allowing it to pinpoint errors to the exact state-
ment where they occur. FinalCheck takes longer to run and uses more resources, but locates
and pinpoints difficult-to-find memory, pointer, and leak errors.

In addition to configuring error detection for specific errors and leaks, the error detection
settings lets you:

� Define error detection parameters
� Change the fonts and colors used in the display
� Save parameters as a configuration file to use again
� Load different configuration files into your current session

Go: Running Your Solution with Error Detection

You are now ready to run your solution under DevPartner error detection.

For this procedure, use the default DevPartner properties and options. No changes to the
settings are required.

1 Open your solution in Visual Studio.

2 Select DevPartner > Start with Error Detection.

3 Exercise the parts of your program that you want to check for errors.
Error detection displays the Program Error Detected dialog box each time it encounters
a severe error (see Figure 2-1). Other errors are not severe enough, or are common
enough, and are recorded and displayed in the Results pane (located in the upper left of
the error detection main window) so you can address them later.
 Understanding DevPartner Studio 25

Chapter 2 · Error Detection
The Program Error Detected dialog box (see “Using the Program Error Detected Dialog Box”
on page 33) displays a description of the error, followed by call stack information, and finally
the code segment where the error was detected (when available). For further explanation about
the error that was detected, click the Explain button.

Figure 2-1. The Program Error Detected dialog box

4 If the Program Error Detected dialog box appears, respond in one of the following ways,
and then continue exercising your program. Skip this step if the Program Error Detected
dialog box does not appear.

� Explain - Provides a more detailed explanation of the error what can be done to
resolve it.

� Suppress - Opens the Suppression dialog box and pre-populate it with this error.
Suppressing an error prevents future occurrences from being acted upon by error
detection. See “Understanding the Suppression and Filtering Dialog Boxes” on page
36.

� Debug - Opens code in the Visual Studio debugger at the line that generated the
error.

� Halt - Stops the program and displays the Results pane.
� Continue - Acknowledges the error and continues. The error displays in the Results

pane for further review after the session completes.

5 Stop your program when you are done checking it.

The program may not have a natural end, so close it when you have collected enough
data. Use one of the following methods to close your program:

� Click Halt on the Program Error Detected dialog box.
� Select Stop Debugging from the Debug menu.
� Stop your application.
26 Understanding DevPartner Studio

Chapter 2 · Error Detection
You have completed running a basic error detection session. Look in the Results pane to
analyze the data from the errors and leaks detected.

Analyzing the Data in the Results Pane

The Results pane, located in the upper left of the main error detection window (see Figure 2-
2), uses a series of tabs for navigating through the various types of information.

Figure 2-2. Error Detection main window

After a session completes, use the Summary tab of the Results pane to begin reviewing the
data (see Figure 2-3).

Source pane

Results pane showing
Errors tab

Details pane
 Understanding DevPartner Studio 27

Chapter 2 · Error Detection
Figure 2-3. Results Pane displaying summary tab

The Summary tab provides an overview of all errors and leaks detected in the current session.
Double-click on an event to navigate to a tab containing more detail about the selected event.

1 Examine the Summary tab of the Results pane for an overview of the errors and leaks
detected.

2 Double-click on an error listed on the Summary pane.

The tab pertaining to the type of error or leak appears. This tab categorizes errors and
makes it easier to focus on recurring errors, so you can diagnose and fix them.

3 Fully-expand a category and select a specific leak, error, or event.

The highest level of the list presents the categories of leaks, errors, and events. Fully-
expanding the category displays the individual errors, leaks, and events detected (see
Figure 2-4 on page 29).
28 Understanding DevPartner Studio

Chapter 2 · Error Detection
Figure 2-4. Errors tab displaying selected error

The Results pane includes the following tabs: Memory Leaks, Other Leaks, Errors, .NET
Performance, Modules, and Transcript (see Figure 2-4 on page 29). From these tabs, you
can perform other actions to categorize or evaluate the data presented:

You can also access source code for a specific error by right-clicking on the specific error in
one of the Results pane tabs, and selecting Edit Source. This opens the source file in the
Source pane at the line of code that generated the error.

� To sort data on these tabs, click a column header (such as Type, Quantity, or Deallocator
in the Other Leaks tab).

� For additional information about an event on a tab, right-click on the event and choose
Explain.

� To view an event in the context of other events in your application, right-click on the event
and choose Locate in Transcript. The Transcript tab provides a chronological list of all
events that occurred within your application

The upper right section of the Error Detection window shows the Details pane. Information
displayed in the Details pane depends on the currently selected event. The error or event is
always described in more detail, but the Details pane can also display call stacks, P/Invoke
use-count graphs, COM use-counts, and more.

4 Examine the Details pane (see Figure 2-2 on page 27).

The top of the Details pane describes the selected error in detail. Below the description is
the current call stack.
 Understanding DevPartner Studio 29

Chapter 2 · Error Detection
The bottom section of the main error detection window is called the Source pane. The Source
pane displays the source file associated with the currently selected call stack. The source code
changes when you select a different call stack in the Details pane.

You have now identified and been placed inside the editor to resolve an error or leak in your
code using error detection.

Saving Session Files

Tip: You can configure error detection to prompt you to save session files by selecting
File > Close using the General settings.

Saving results in a session file lets you:

� Look back at the kinds of leaks and errors you have previously encountered

� Export session data to XML (see “Exporting Data to XML” on page 55). Exporting lets
you share data with others, compare data between sessions, and build a database of trends

� Fix errors discovered in this session at any time.

Session files are saved with a .dpbcl extension. The default location for session files is in the
same folder as your executable.

Steps to save the session file vary based on whether error detection is run in Visual Studio or in
the standalone application.

5 Examine the call stack.

Depending on the type of error, the call stack can show where the error or leak was
detected, or where it was allocated. If more than one call stack is available, you can
switch between them using the drop-down list.

6 Examine the Source pane.

The Source pane displays the code associated with the currently selected call stack, and
highlighting the location where the error or leak was detected or allocated.

7 Review the source code to determine why an error or leak was detected.

8 Right-click in the Source pane and select Edit Source.

The source file opens in the Visual Studio editor, at the same location displayed in the
Source pane.

9 Edit your source code to repair the error, and save your solution.

10 Select File > Save Selected Items As to save your session file.

11 Use the Save File As dialog box to select a location and name for the session file.
30 Understanding DevPartner Studio

Chapter 2 · Error Detection
Saving the Session File from Visual Studio

1 Select File > Save Selected Items As.

2 Use the File Save As dialog box to select a location and name for the session file.

Saving the Session File from the Standalone Application

1 Choose File > Save Session Log As.

2 Use the File Save As dialog box to select a location and name for the session file.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running an error detection session, continue reading the rest of
this chapter for additional information. Refer to the Advanced Error Detection Techniques
guide for more in-depth discussion of advanced topics, or refer to the DevPartner online help
for task-based information.

Deciding When to Use ActiveCheck vs. FinalCheck

DevPartner can analyze Windows applications with both ActiveCheck™ and FinalCheck™
technologies.

Understanding ActiveCheck

ActiveCheck technology refers to the standard operation of checking for errors, leaks, and
events without instrumentation of the source code. Because it does not require code instrumen-
tation, ActiveCheck detects errors without requiring a recompile or relink. ActiveCheck is
enabled in every error detection session.

ActiveCheck can do the following:

� Report API validation errors at run-time
� Report memory and resource leaks when your program terminates
� Isolate errors to the line where the memory or resource is allocated or the error is gener-

ated
� Identify potential deadlocks

DevPartner analyzes the program when using error detection with ActiveCheck. It monitors
API calls, memory allocations and deallocations, windows messages, and other significant
events. t then uses this data to detect errors and to provide a complete trace of program execu-
tion. You can even check programs that do not have source code available.

Because ActiveCheck requires no compilation or relinking overhead, you can use it daily. Use
ActiveCheck throughout the software development cycle to find API validation errors,
deadlocks, resource leaks, and COM interface leaks.
 Understanding DevPartner Studio 31

Chapter 2 · Error Detection
Table 2-1 and Table 2-2 list errors detected by ActiveCheck.

Understanding FinalCheck

FinalCheck is a patented technology that inserts diagnostic logic into your code when
compiled. With FinalCheck, DevPartner can pinpoint errors to the exact statement where they
occur.

Table 2-1. API, COM, and memory errors detected by ActiveCheck

API and COM Errors Memory Errors

• COM interface method failure
• Invalid argument
• Invalid COM interface method argument
• Parameter range error
• Questionable use of thread
• Windows function failed
• Windows function not implemented

• Dynamic memory overrun
• Freed handle is already unlocked
• Handle is already unlocked
• Memory allocation conflict
• Pointer references unlocked memory

block
• Stack memory overrun
• Static memory overrun

Table 2-2. Deadlock-related, .NET, pointer, and leak errors detected by ActiveCheck

Deadlock-related Errors .NET Errors Pointer and Leak Errors

• Deadlock
• Potential deadlock
• Thread deadlocked
• Critical section errors
• Semaphore errors
• Mutex errors
• Event errors
• Handle errors
• Resource usage and

naming errors
• Suspicious or question-

able resource usage
• Windows event errors

• Finalizer errors
• GC.Suppress finalize

not called
• Dispose attributes errors
• Unhandled native excep-

tion passed to managed
code

• Interface leak
• Memory leak
• Resource leak
32 Understanding DevPartner Studio

Chapter 2 · Error Detection
Use FinalCheck for key project milestones and for detecting errors that are difficult to find.
FinalCheck is a superset of ActiveCheck that finds all the errors ActiveCheck finds, plus those
listed in the following table.

Comparing ActiveCheck and FinalCheck — An Example

DevPartner records memory block allocations that use new or malloc and stores the pointer
in a local variable. If the variable value is re-assigned without first either deallocating the
memory block or assigning the pointer to another variable, a leak occurs in the application.

� Using ActiveCheck: DevPartner reports that the block allocated by malloc or new
leaked and points to the line where the memory is allocated. The error is reported when the
application stops.

� Using FinalCheck: DevPartner reports the location where the block is allocated and high-
lights the line where new value is assigned into the last remaining variable referencing the
block. The error is reported when it occurs.

Using the Program Error Detected Dialog Box

DevPartner displays the Program Error Detected dialog box (see Figure 2-1 on page 26) when
it detects a severe error in your application.

The top of the Program Error Detected dialog box describes the error detected. Below the error
description is one or more tabs, each associated with a call stack corresponding to a location
within your application. Review the reported error and the source information to help locate
the source of the problem and correct it.

Table 2-3. Additional errrors detected by FinalCheck

Memory Errors Pointer and Leak Errors

• Reading overflows buffer
• Reading uninitialized memory
• Writing overflows buffer

• Array index out of range
• Assigning pointer out of range
• Expression uses dangling pointer
• Expression uses unrelated pointers
• Function pointer is not a function
• Memory leaked due to free
• Leak due to leak
• Memory leaked due to reassignment
• Memory leaked leaving scope
• Returning pointer to local variable
• Leak due to unwind
• Leak due to module unload
• Leak due to thread ending
 Understanding DevPartner Studio 33

Chapter 2 · Error Detection
Understanding the Actions You Can Take

Explain, Memory and Resource Viewer, Debug, Copy and Suppress buttons appear on the
Program Error Detected dialog box. If you installed DevPartner Studio Enterprise Edition with
TrackRecord integration, you also have a Submit button available.

Explain

Click Explain to obtain detailed explanations of each error, sample code, and a list of possible
solutions to correct the problem.

Memory and Resource Viewer

Click Memory/Resource Viewer to view a detailed accounting of memory and resources that
have not been freed. For more information, see “Understanding the Memory and Resource
Viewer Dialog Box” on page 35, and the Advanced Error Detection Techniques guide.

Submit

Submit is only available if TrackRecord is part of your DevPartner installation. Click Submit
to open a new defect or new task page in TrackRecord.

Copy

Click Copy to transfer the contents of all windows and tabs (except the Source pane) to the
clipboard. You can then paste this information into other applications.

Suppress

Click Suppress to open a dialog box that enables you to suppress the current error. For more
information on how and why to use suppressions, refer to “Understanding the Suppression and
Filtering Dialog Boxes” on page 36, and the Advanced Error Detection Techniques guide.

Debug

Debug appears at the bottom of the dialog box when you are working in Visual Studio, but is
not available in the standalone application. Click Debug to open your code in the Visual
Studio debugger.

Halt

Click Halt to stop the application. This effectively kills the process, and there might be other
means by which you would rather stop your application.

Continue

Click Continue to acknowledge the error, close the dialog box and continue executing the
application. The error is saved to the session file for later reviewing in the Results pane.
34 Understanding DevPartner Studio

Chapter 2 · Error Detection
Understanding the Memory and Resource Viewer Dialog Box

Access the Memory and Resource Viewer by clicking the Memory/Resource Viewer button
in the Program Error Detected dialog box. The Memory and Resource Viewer allows you to
analyze memory and resource allocations that have not been freed.

For example, most memory analysis tools can not determine what happens with memory
during the execution of an application. Leaked memory or resources are only reported after the
application stops. The Memory and Resource Viewer provides a “snapshot” of the memory
and resources, taken at any point in a program’s execution. You can also “mark” the currently
allocated memory blocks or resources, limiting the view of blocks allocated after a program’s
initialization or over the course of a transaction.

These capabilities can be especially useful in situations where:

� 24/7 server applications may never end during regular use
� An application may stop responding from resource exhaustion
� An application may consume large amounts of memory that is automatically cleaned up at

program termination

Figure 2-5. The Memory and Resource Viewer dialog box

Exploring the Memory and Resource Viewer User Interface

To access the Memory and Resource Viewer dialog box, click Memory/Resource Viewer in
the Program Error Detected dialog box.

The Memory and Resource Viewer dialog box is made up of four panes:

� Memory contents pane

Displays the content of memory blocks in a variety of formats. Not available for resources.

Details

Source

Memory contents

Stack
 Understanding DevPartner Studio 35

Chapter 2 · Error Detection
� Details pane

Includes separate Memory, Resources, and Summary tabs. Displays details about each
memory and resource allocation.

� Stack pane

Displays a memory dump and callstack information for entries in the Memory tab;
displays a description and callstack information for entries in the Resources tab.

� Source pane

Displays the source code corresponding to a callstack entry (when it is available).

Saving Memory and Resource Viewer Contents

Click Save to record the current contents of the Memory and Resource Viewer dialog box as a
text file that you can review later.

Setting a Reference Point

Click Mark and Close to set a reference point for recording memory and resource data. This
lets you compare memory and resource allocations before and after the event where you
marked the reference point.

Understanding the Suppression and Filtering Dialog Boxes

DevPartner provides Suppression and Filter dialog boxes, which allow you to reduce the data
collected or displayed. The intent of either method is to limit the data to a manageable subset
for analysis.

For example, you can suppress call validation errors from FindResourceA in Kernel32 or
for all calls in Kernel32. After you make this selection, you can apply it to a variety of differ-
ent selection criteria within your application. DevPartner defaults to the least restrictive option
(see Figure 2-6).

When you apply a suppression or filter, you can also:

� Enter a comment to describe why a given suppression or filter was created.

� Choose to apply the suppression or filter to the current run or future runs.

� Create suppression or filter files as a way to store the suppression or filter instructions for
reuse or to share.

Suppressing Errors

Suppressing errors instructs DevPartner to skip over any future occurrences of those errors.
Suppressed errors are not recorded in the log and are not displayed in the Program Error
Detected dialog box. To suppress an error:

� Click Suppress when the error appears in the Program Error Detected dialog box.

� Right-click on a specific error in one of the panes of the error detection main window, and
select Suppress.
36 Understanding DevPartner Studio

Chapter 2 · Error Detection
Creating and Saving Suppression Files

You can create multiple suppression files, which creates additional suppression libraries for
the DLLs that make up a large application. You can easily reuse or share suppressions among
members of a development team.

When you first open an .EXE in error detection, a default suppression file is created in the
same folder as the .EXE you are checking.

The following sections describe the ways you can create a suppression file in error detection.

From the Suppression Files Dialog Box

To create a suppression file from the Suppression Files dialog box, follow these steps:

1 Access the Suppression Files dialog box.

� Visual Studio: Select DevPartner > Error Detection Rules > Suppressions.
� Standalone: Select Program > Rules > Suppressions.

2 Click Add.

3 Type the name you want to assign to the suppression file in the File Name text box, then
click Open.

4 Click Yes to confirm.

The suppression file you created is added to the Available Suppression Files list in the
top pane of the Suppression Files dialog box.

5 Click OK.

The suppression file has been created, but is empty until you add suppressions (see
“Adding Entries to a Suppression File” on page 38). Added suppressions are not saved
until you close the current error detection session.

From the Suppression Dialog Box

To create a suppression file from the Suppression dialog box, follow these steps:

1 After you complete a session, right-click on a specific error in the Memory Leaks, Other
Leaks, Errors, .NET Performance, or Modules tab, and select Suppress.

2 In the Suppression dialog box, click the browse button (...) to the right of the Location
field. The Add Suppression File dialog box opens.

3 Type the name you want to assign to the suppression file in the File Name text box, then
click Open.

4 Click Yes to confirm.

5 Click OK.

The suppression file contains the instruction to suppress the error that you right-clicked in
Step 1. Any added instructions and suppressions are not saved until you close the current
error detection session.
 Understanding DevPartner Studio 37

Chapter 2 · Error Detection
Adding Entries to a Suppression File

To add an entry to a suppression file, follow these steps:

1 In the Results pane, select a tab: Memory Leaks; Other Leaks; Errors; Modules; or
Transcript.

2 Right-click a specific error, leak, or module within that tab and select Suppress. The Sup-
pression dialog box opens (see Figure 2-6 on page 39).

3 Select the type of suppression to add.

The top pane displays various suppression options. The selections vary depending on the
event you select (whether it is an error, a leak, or a module), and the context in which error
detection encountered it.

4 If needed, type a comment to describe the suppression entry.

Comments can be valuable when you update a suppression file, especially if the suppres-
sion is address-based and a third-party vendor ships a new or updated library.

5 To save this suppression, select the Save Suppression Information check box.

6 To specify the location of the suppression file in which to add this entry, select a file from
the Location drop down menu.

� If you make no selection, the entry is added to the default program suppression file.

� If you have not yet added suppression files to your program, the default program sup-
pression file is the only choice.

� To specify a suppression file in another location, click the browse button (...) (immedi-
ately to the right of the Location drop down menu) and select a different suppression
file.

7 Click OK to continue. The entries you add are not saved until you close the current error
detection session.
38 Understanding DevPartner Studio

Chapter 2 · Error Detection
Figure 2-6. The Suppression dialog box

Filtering Errors

Filtering hides events already recorded in a .dpbcl log file. DevPartner finds these errors but
either hides them from view in the Results pane or displays them with the appearance you
specified under Fonts and Colors. To select errors that you want to filter:

� Right-click on a specific error in one of the panes of the error detection main window, and
select Filter.

� Select a specific error in one of the panes of the error detection main window, and click the
Filter button on the toolbar.

If you remove a filtering instruction, the associated errors are no longer filtered and appear in
the Results pane.

Creating a Filter File

There are two ways to create a filter file.

From the Filter Files Dialog Box

To create a filter file from the Filter Files dialog box, follow these steps:

1 Open the Filter Files dialog box.

2 Click Add.

The Add Filter File dialog box opens.

3 Type the name you want to assign to the filter file in the File Name text box, then click
Open.

4 Click Yes to confirm.

The filter file is added to the Available Filter Files list in the top pane of the Filter Files
dialog box. The filter file is empty and has no effect on your view of program results.
 Understanding DevPartner Studio 39

Chapter 2 · Error Detection
Added filters are not saved until you close the current error detection session.

From the Filter Dialog Box

To create a filter file from the Filter dialog box, follow these steps:

1 After you complete a session, right-click a specific event or error in the Memory Leaks,
Other Leaks, Errors, Modules, or Transcript tab, then select Filter. The Filter dialog
box opens (see Figure 2-6 on page 39).

2 Click the browse button (...) to the right of the Location field.

The Add Filter File dialog box opens.

3 Type the name you want to assign to the filter file in the File Name text box, then click
Open.

4 Click Yes to confirm. The filter file contains the instruction to hide the error or event that
you selected in Step 1. Added filters are not saved until the current error detection session
is closed.

Adding Entries to a Filter File

To add an entry to an existing filter file, follow these steps:

1 In the Results pane, select a tab: Memory Leaks; Other Leaks; Errors; Modules; or
Transcript.

2 Right-click a specific error, leak, or module within that tab and select Filter. The Filter
dialog box appears (see Figure 2-6 on page 39).

3 Select an option.

These options are listed in the top pane of the dialog box. The selections vary depending
on the event you select (whether it is an error, a leak, or a module), and the context in
which error detection encountered it.

4 If needed, type a comment to describe the entry. Comments can be valuable when you
update a filter file, especially if the filter is address-based and a third-party vendor ships a
new or updated library.

5 If you want to save this entry to use again, select the Save Filter Information check box.

6 To specify the location of the filter file in which to save this entry, select a file from the
Location drop down menu.

� If you make no selection, the entry is added to the default program filter file.

� If you have not yet added filter files to your program, the default program filter file is
the only choice.

� To specify a filter file in another location, click the browse button (...) (immediately to
the right of the Location drop down menu) and select a different filter file.

7 Click OK to continue. Added entries are not saved until you close the current error detec-
tion session.
40 Understanding DevPartner Studio

Chapter 2 · Error Detection
Viewing and Hiding Filtered Errors

Use the View Filtered Errors toolbar icon to toggle between viewing and hiding filtered
errors in the Results pane.

Removing Filter Entries

To remove a filter entry you no longer want, select DevPartner > Error Detection Rules >
Filters. Select the filter file containing the entry, and clear its associated check box.

Understanding Call Validation

When you enable Call Validation, DevPartner validates over 5,000 Windows API calls.
DevPartner checks for a large number of events, including (but not limited to) the following:

� Handle and pointer errors
� Flags
� Range checks
� API and method failures
� Invalid structure sizes
� Memory access failures

If you determine that flag checking or range checking generates unwanted errors that do not
apply to the problem you are solving, clear the Flag, range and enumeration arguments
check box. Call Validation continues checking return values and, more importantly, handles,
and pointers passed to or from Windows calls.

Enabling Memory Block Checking

When you enable memory block checking, Call Validation performs a more detailed analysis
of all calls to the C run-time library and a number of other calls. Memory block checking
decreases overall performance, but may be useful when diagnosing hard-to-find errors. By
default, this setting is disabled.

Using the Settings Dialog Box

Tip: Use the configuration file management functions in the Settings dialog box to
save sets of error-checking parameters as configuration files. When you are working
with multiple projects, you can load, edit, and associate these configuration files with
the different projects on which you are working.

The DevPartner settings enable you to:

� Select only the types of data collection needed for a particular problem

� Enable or disable portions of each major type of data collection

� Control what portions of your program are analyzed

� Use the default DevPartner settings to find the most common errors with the minimum
impact on performance
 Understanding DevPartner Studio 41

Chapter 2 · Error Detection
You can access the Settings dialog box in the following ways:

� Standalone: Select Program > Settings

� Visual Studio: Select Tools > Options and then select DevPartner > Error Detection
from the tree view.

The Settings dialog box has a tree view that shows the major settings categories. When you
select a category, the dialog box displays the detailed settings for the category.

The DevPartner standalone application and the integrated Visual Studio version use the same
tree view and settings dialog boxes.

All groups of settings follow the same basic structure. You can enable or disable major types
of data collection by selecting the top-level check box in the dialog box.

There are other settings under each top-level check box that further define how DevPartner
analyzes your application. Change the settings to customize your error detection process.

For example, you can make trade-offs between detecting a broad or narrow range of errors:

� Broad range — Many data types, many related settings selected

� Detects more errors
� Has potential for more false positives
� Reduces performance (due to larger number of errors detected)
� Creates larger log files

� Limited range — Few data types, few related settings selected

� Provides a narrow focus on a particular function
� Detects fewer errors
� Can miss relevant errors
� Has a greater chance of seeing only those errors pertaining to the problem at hand
� Provides faster performance
� Creates smaller log files

Setting General Properties

General properties are the first to display when you access the Program Settings dialog box.

� Log events: Select to enable event logging. (You can also enable event logging from other
parts of DevPartner error detection.)

� Display error and pause: Controls the display of the Program Error Detected dialog box,
which pops up for certain errors, pausing execution of your program.

� Prompt to save program results: When selected, you are prompted to save program
results before you stop the program or close the error detection session.

� Show memory and resource viewer when application exits: When selected, DevPartner
error detection opens the Memory/Resource Viewer dialog box upon stopping the applica-
tion you are testing.

� Source file search path: Specify full paths to the source file(s) you want to include in this
configuration.
42 Understanding DevPartner Studio

Chapter 2 · Error Detection
The following settings are only available in the error detection standalone application:

� Override symbol path: Specify the full path to the symbol file(s) you want to include in
this configuration. Click the ellipsis button (...) to the right of this field to open the Symbol
Path dialog box.

� Working directory: Specify the working folder for the target process.

Note: If an application does not start, the problem might be caused by a working
folder that is read-only. Some applications require write access to the working
folder.

� Command line arguments: Specify any arguments to be passed through the command
line to your application.

Note: If DevPartner error detection fails to correctly start your application, check the
command line arguments. These arguments are especially important for COM
server applications.

Setting Data Collection Properties

The Data Collection program settings control the following parameters for error detection:

� Call parameter encoding depth: Specify the amount of detail gathered on the parameters
of a call. A low value speeds up processing, but does not report deeper levels of detail ref-
erenced by pointers. A higher value reports deeper call details, but slows down processing
and increases the size of the log file.

� Maximum call stack depth on allocation: Specify the maximum depth of the call stack
tracked for every allocation. Because allocations are made frequently and do not often
result in errors, performance might suffer if you select a large value. Also, selecting a
larger value can greatly increase error detection memory usage in the application under
test.

� Maximum call stack depth on error: Specify the maximum depth of the call stack
walked through for reported errors. You can set this value as high as you require without
an adverse effect on performance, as long as you have enough log file space.

� NLB file directory: (This field is required) Select the location where generated NLB
(optimized type library) files are saved. Typically this is the same location as your project,
so that removal of the project and NLB files is simplified. If you specify a location that
does not exist, error detection prompts you to select a valid location when you run your
application. You can also use the Browse button (...) to browse your system and specify
the folder where you want to save generated NLB files. NLB files contain all API descrip-
tion file information required for error detection.

Setting API Call Reporting Properties

Tip: Do select an API function when you know the program makes API calls you do
not need to check. Limiting data collection helps improve performance.

Use API call reporting to record calls that your application makes to system functions, as well
as the parameters and return values. DevPartner error detection records structure information
for return values and parameters based on the Encoding Depth specified under Data Collec-
tion settings.
 Understanding DevPartner Studio 43

Chapter 2 · Error Detection
To enable API call reporting, and make the API check boxes and modules active, select the
Enable API call reporting check box. The following settings control API logging for error
detection:

� Collect window messages: Select to collect windows control messages as part of API log-
ging.

� Collect API method calls and returns: Select to collect the API method calls and returns
for the modules selected in the API module tree view.

� View only modules needed by this application: Select this check box to display only the
API modules needed by your program in the tree view. Clear the check box to expand this
tree view and display all available API modules.

� API Modules Tree View: Displays the API modules associated with the project. Click the
plus (+) symbol next to an item to see the functions it contains. Check boxes next to each
item enable you to select specific modules or functions for API logging.

Tip: Selecting Collect window messages increases log file size. For best results,
select this feature only to debug window message problems.

Enabling call reporting can significantly increase the size of the log file. To minimize log file
size, consider collecting call reporting data only for a selected portion of your application.
Here are some ways to limit the portion to be checked:

� Use the check boxes in the Modules tree view to deselect API modules that do not need to
be checked.

� Use Modules and Files to limit the scope of logging.

� Add API calls that enable or disable event logging to your application. Refer to the com-
ments included in NmApiLib.h. This file, part of the DevPartner installation, defines the
event reporting APIs exported by DevPartner error detection.

� Turn off event logging.

Setting Call Validation Options

When enabled, Call Validation monitors calls from your application to the operating system
libraries and COM method calls. It attempts to validate the parameters passed, and check that
the call returned a value indicating success. The following elements control aspects of Call
Validation for error detection:

� Enable call validation: Select this check box to enable call validation components.

� Enable memory block checking: Select this check box to enable validation of more
extensive memory checking of parameters referring to memory. This feature is inactive
until you select Enable memory tracking under Memory Tracking in the Program Set-
tings tree view.

When you select Enable memory block checking, DevPartner error detection performs
more extensive checking. The results might be more accurate and might catch more bugs.
Sessions with this option enabled take longer to complete.

� Fill output arguments before call: Select this check box to fill output arguments with the
pattern specified in the Memory Tracking settings under Fill on allocation.
44 Understanding DevPartner Studio

Chapter 2 · Error Detection
� COM failure codes: Select this check box to enable checking of any COM method return
values.

Many COM methods in normal use report a “Not Implemented” error. Disabling this
check might significantly reduce the number of errors reported.

� Check for COM "Not Implemented" return code: Select this check box to enable
checking for the HRESULT E_NOTIMPL ("Not Implemented") return code. DevPartner
error detection checks only COM interfaces that are included in DLLs selected under
DLLs to check for API errors (failures or invalid arguments) in this dialog box.

� API failure codes: Select this check box to enable the checking of return values from
APIs residing in the selected DLLs.

� Check invalid argument errors (COM or API): Select one or both of these check boxes
to enable the checking of the arguments (parameters) to APIs in the selected DLLs and/or
COM interfaces that error detection supports.

Tip: To improve performance and reduce the number of errors reported, select these
options only as required. To reduce the number of false call validation errors, select
Handle and Pointer Arguments and clear Flag, Range and Enumeration
Arguments.

� Category: (Handle and pointer arguments or Flag, range and enumeration argu-
ments) Available when you select one or both Check invalid argument errors selections
(COM or API). Select one or both of these check boxes to enable argument checking
based on the type of argument.

� Check statically linked C run-time library APIs: Available when you select API fail-
ure codes or Invalid argument errors: API. Select this check box to enable the checking
of static C run-time calls. If you are not using the static C run-time library, clear this selec-
tion to avoid seeing errors in third-party libraries.

Tip: Disabling DLLs from this list can reduce the number of unwanted errors. It can
also improve performance.

� DLLs to check for API errors (failures or invalid arguments): Available when you
select API failure codes or Invalid argument errors: API. Select this check box to
enable API argument and return value checking in the listed DLLs.

You can use a tool (such as Depends, provided with Visual Studio) to find the DLLs and
APIs within a DLL that your application uses.

Enabling Memory Overwrite Detection on API Calls

Checking for damage to memory blocks caused by API calls (such as strcpy) is not enabled
by default. To enable memory overwrite detection on API calls, follow these steps:

1 Select the Enable memory tracking check box.

2 In the Program Settings tree view, select Call Validation.

3 Select the Enable call validation check box.

4 Select the Enable memory block checking check box.
 Understanding DevPartner Studio 45

Chapter 2 · Error Detection
Setting COM Call Reporting Properties

Use COM call reporting to record calls to COM interfaces as well as the returns for the inter-
faces selected in the All Interfaces tree. DevPartner error detection records parameter values
and the returned HRESULT.

Select only the interfaces you need to check. Decreasing the number of interfaces checked
decreases the size of the log file and improves performance.

To enable COM call reporting, and activate the list of COM interfaces, select the Enable
COM method call reporting on objects that are implemented in the selected modules
check box. Use the following controls to configure COM call reporting:

� Report COM method calls on objects implemented outside of the listed modules:
Select this check box to configure error detection to report the COM method calls and
returns for the interfaces not listed in the All Interfaces tree.

� All Components Tree View: Displays the COM interfaces associated with the project.
Click the plus (+) symbol next to the All Components entry to see a complete list of COM
interfaces. Check boxes next to each item let you select specific interfaces for COM call
reporting.

Setting COM Object Tracking Options

Use COM object tracking to monitor your program for leaked COM objects. Object leaks are
displayed in the Other Leaks tab of the Results pane. When you select an object leak error in
the Other Leaks tab, you can examine the calls to AddRef() and Release() on your
object to try to locate the missing call to Release().

To improve performance, select a subset of All COM Classes. Consider selecting all COM
classes only when running an initial pass of your application, or when making a final QA pass.

To enable COM object tracking, and activate the All COM Classes tree view, select the Enable
COM object tracking check box.

Using the All COM Classes tree view, select the COM classes that you want to monitor. If you
do not see the COM class for your application, click Refresh from Registry to update the list.

Tip: Most vendors name their objects with a common prefix.

Setting Deadlock Analysis Options

Use Deadlock Analysis to monitor multi-threaded applications for deadlocks. This includes
the following types of analysis:

� Monitoring and reporting of deadlocks as they occur in the application.

� Monitoring the usage patterns of the synchronization objects within your application for
potential deadlocks.

To enable Deadlock Analysis, and activate the other Deadlock Analysis controls, select the
Enable deadlock analysis check box.

The following settings control the Deadlock Analysis behavior:
46 Understanding DevPartner Studio

Chapter 2 · Error Detection
� Assume single process: When selected, error detection assumes that all named synchroni-
zation objects used within your application are used only within the process. Clear this
check box to relax some of the deadlock detection rules associated with named synchroni-
zation objects.

� Enable watcher thread: Select this check box to create a watcher thread in your applica-
tion to monitor for localized deadlocks. By default, this feature is disabled to prevent error
detection from interfering with your application.

If your application becomes unresponsive and appears to deadlock, enabling this feature
allows error detection to perform more detailed analysis of your application.

If you write complex DLL_THREAD_ATTACH logic that does not expect to encounter
extra threads in the process, you should not enable this option.

� Generate errors when: Use the following selections to specify when error detection
should report deadlock errors:

� A critical section is re-entered: Select to generate a warning if you attempt to re-
enter a critical section that your thread already owns. Although re-entering a critical
section is not an error, your application must enter and leave the critical section the
same number of times.

� A wait is requested on an owned mutex: Select to generate a warning if you attempt
to wait on a mutex that your thread already owns.

� Number of historical events per resource: Enter the number of call stacks to record
for each synchronization object reported in an error or warning.

The stack information associated with each synchronization object enables you to
determine why a synchronization object is in a given state. This can help you debug
deadlock situations.

Note: Increasing the number of call stacks maintained for each synchronization
object consumes additional memory in your application and has an effect on
application performance.

� Report synchronization API timeouts: Select to report an error when a wait on a
synchronization object times out without the wait being successfully completed.

Enable this option to monitor synchronization object API failures without having to
enable API call reporting for all Windows calls.

You can use the Report wait limits or actual waits exceeding option to enforce a
maximum wait policy within your application.

� Report wait limits or actual waits exceeding (seconds): Active after you select
Report timeouts. Error Detection checks the time-out value passed to synchronization
object wait calls. If the time-out values exceed the limit you specify here, the call is
reported as an error.

Note: Any wait specified as INFINITE is not flagged as an error.

� Synchronization Naming Rules: Select from these object standards:

� Don't warn about resource naming: If selected, error detection does not warn you
about named or unnamed resources encountered in your application.
 Understanding DevPartner Studio 47

Chapter 2 · Error Detection
Tip: If you are performing security audits, consider enabling the Warn about named
resources option to determine if unexpected named resources are visible outside the
process. Named resources are visible outside the process and should have proper
security applied to them to prevent unauthorized use.

� Warn about named resources: Select to generate warnings for each named synchro-
nization resource encountered within your application. You can use this check to
locate named resources that can be manipulated outside of the application.

� Warn about unnamed resources: Select to generate warnings for each unnamed syn-
chronization resource encountered in your application. You can use this check to find
unnamed resources that might need to be named to be used by other processes or to
meet a corporate naming convention.

By default, error detection does not produce warnings for either named or unnamed resources
encountered during program execution.

Setting Memory Tracking Options

When you enable Memory Tracking, DevPartner error detection:

� Monitors all calls in your application that allocate and free memory

� Reports on memory not freed at the end of the application

Additionally, if you have built your application with FinalCheck instrumentation and you
select Enable FinalCheck, error detection:

� Records instances where the last reference to an allocated block of memory goes out of
scope

� Reports memory and pointer errors at the statement level throughout the run

To enable Memory Tracking, and activate all of the memory tracking options, select the
Enable memory tracking check box. You must select the Enable memory tracking check
box before you can enable Memory block checking under the Call Validation settings.

The following settings control the behavior of Memory Tracking:

� Enable leak analysis only: Select this check box to disable everything in Memory Track-
ing, with the exception of monitoring for leaks. Memory Tracking does not look for over-
runs, use of uninitialized memory, or dangling pointers. Call Validation memory block
checking is also disabled because Memory Tracking is not evaluating any memory allo-
cated by system modules.

Some of the COM interface hooks do not get handled completely when this option is
enabled.

� Enable FinalCheck: Select this check box to enable FinalCheck. When selected, error
detection performs additional checks on FinalCheck instrumented modules. When dis-
abled, these checks are not performed.

� Show leaked allocator blocks: Select this check box to enable the reporting of leaks on
blocks that are used for suballocations. Suballocated blocks are normally created by mem-
ory allocation functions such as malloc or new. If you are writing your own memory
allocators, enable this feature to monitor all memory in your application, including buffers
48 Understanding DevPartner Studio

Chapter 2 · Error Detection
that are suballocated into blocks returned from functions such as malloc or new. Dev-
Partner error detection monitors your custom memory allocators only after you list them in
UserAllocators.dat. For more information about UserAllocators.dat, read the
chapter “Working with User-Written Allocators” in the Advanced Error Detection Tech-
niques guide.

� Enforce strict reallocation semantics: Select this check box to enable strict enforcement
of semantics. When error detection enforces strict reallocation semantics, a pointer to
memory that has been reallocated is treated as though it were a dangling pointer, and using
that pointer generates an error. If strict reallocation semantics are not enabled, a reallo-
cated pointer may be used as long as it points to the same memory location as the new
pointer, and no errors are generated. For example:

char *ptrA = (char *) malloc(17);

// ptrA is now validly pointing to 17 bytes of memory.

char *ptrB = (char *) realloc(ptrA, 15);

// ptrB is now validly pointing to 15 bytes of memory.

// With strict semantics, ptrA is now an invalid pointer, regardless
of the value.

// Without strict semantics, ptrA is still valid as long as it equals
ptrB

� Enable Guard Bytes: When enabled, guard bytes are inserted at the end of allocated
memory blocks to detect memory overrun errors. Overruns can cause heap corruption or
stack corruption, that, in turn, can cause random crashes and unexpected data overwrites.

� Pattern: Enter the hexadecimal guard byte pattern. This pattern is used to determine if
allocated memory blocks are overrun.

� Count: Select the number of guard bytes to be used. If you encounter random heap
corruption errors but error detection is not reporting heap-overrun errors, consider
increasing the number of guard bytes. Doing so increases memory usage, but might
detect a hard to find heap corruption error.

� Check heap blocks at runtime: Specify how often the entire heap is checked to see if
guard bytes have been overwritten. DevPartner error detection always checks each block
for overrun when it is freed. There are three options for additional checks:

� On free
� Use adaptive analysis
� On all memory API calls

� Enable fill on allocation: When enabled, the fill pattern specified is applied to memory as
it is allocated.

� Pattern: Specify the hexadecimal fill pattern to be used.

� Check uninitialized memory: When selected, newly allocated memory is initialized with
a known pattern and then checked for that pattern when the memory is referenced.

� Size: Select the minimum number of bytes to check for the fill pattern. To reduce the
number of false error reports, increase this value.
 Understanding DevPartner Studio 49

Chapter 2 · Error Detection
� Enable poison on free: Select this check box to enable poisoning of memory upon freeing
it.

� Pattern: Enter the pattern to be written to the memory location that is being poisoned.

Setting .NET Framework Analysis Options

Use .NET Framework analysis when you develop applications that use a mixture of unman-
aged and managed code and unmanaged resources. Applications that use both managed and
unmanaged code might incur a performance penalty. The data you gather here can help you
evaluate the extent and severity of any such penalty. If you discover problems and lack the
time to fix all of them, this analysis can help you decide which are the most serious.

To enable the .NET Framework analysis controls in this panel, select the Enable .NET analy-
sis check box. Use the following controls to configure .NET Framework analysis:

� Exception monitoring: Select this check box to monitor instances where unmanaged or
legacy code throws exceptions that are not handled, and are passed back to the managed
code.

Note: Exceptions passed from unmanaged to managed code are likely to generate
errors because the necessary handles are no longer in unmanaged code. You
should carefully review any exceptions noted. Possible errors include partially
initialized data structures, memory leaks, resource leaks, and so on.

� Finalizer monitoring: Select this check box to monitor incorrect use of unmanaged
resources, such as failing to call the appropriate dispose method (leaks) or incorrect imple-
mentation of classes that encapsulate unmanaged resources.

� COM interop monitoring: Select this check box to monitor which class IDs are causing
transitions between managed and unmanaged or legacy code. This function also identifies
which interface IDs are used.

You can use COM interop monitoring to determine which methods are being called
frequently. If you find methods called many times, consider porting the object to avoid
transitions. If re-writing is not an option, consider adding a new method that transfers data
in bulk to reduce the number of transitions.

� PInvoke interop monitoring: Select this check box to count the number of times unman-
aged or legacy code is called (broken out by DLLs and, if possible, by APIs). This helps
you determine why your application is going into unmanaged or legacy code.

PInvoke interop monitoring provides a count of the PInvoke calls that your applica-
tion makes. The PInvoke interop monitoring report can be used to monitor managed to
unmanaged transitions. Review the list to determine if excess calls are being made.

� Interop reporting threshold: Assuming x is the value specified in this field: when the
number of times the application makes call_A is greater than or equal to x, add call_A
to the .NET Analysis results. This enables you to filter out calls that happen only a limited
number of times. As you lower this threshold, more calls are included in your results.

The interop reporting threshold allows you to exclude COM transitions from being
reported in the COM interop and PInvoke interop monitoring reports. DevPartner error
detection only reports transitions if the number of transitions is greater than or equal to the
value specified.
50 Understanding DevPartner Studio

Chapter 2 · Error Detection
Setting .NET Framework Call Reporting Properties

Tip: .NET Framework Call Reporting can generate a large amount of data, and cause
system slowdowns. Enable .NET Framework Call Reporting only when necessary to
debug and understand the framework, and even then select only the assemblies you
need to check. Limiting the number of assemblies selected in the All types tree view
decreases the size of the log file and improves performance.

Use .NET Framework Call Reporting to record calls to, and returns from, .NET interfaces.
DevPartner error detection attempts to differentiate between “User Assemblies” and “System
Assemblies” for .NET modules based on where the NLB file for an assembly is found.

To enable .NET Framework Call Reporting, and activate the list of .NET assemblies, select the
Enable .NET method call reporting check box.

The All Types Tree View displays the .NET assemblies associated with the project. Click the
plus (+) symbol next to the All types entry to expand the tree. The tree contains branches for
both .NET User Assemblies and .NET System Assemblies. Check boxes next to each item
enable you to select specific assemblies for .NET Framework call reporting.

Setting Resource Tracking Options

When you enable Resource Tracking, error detection:

� Monitors all calls in your application that allocate and free system resources other than
memory

� Reports resources that have not been freed when your application ends

To enable Resource Tracking, and activate the list of resources, select the Enable resource
tracking check box. When you select a check box in the associated list, error detection tracks
the resources created by that DLL.

You can further refine resource tracking to a particular set of resources by selecting from one
or more resource de-allocation APIs. For example, to exclude all registry related resources,
clear the RegCloseKey check box under the advapi.dll resource.

Setting Modules and Files Options

Use the Modules and Files settings to specify the modules that make up the application.

Excluding modules, or components of modules, does not affect instrumentation. You can only
limit instrumentation by using the Instrumentation Manager.

Tip: You may need to explicitly add a module to this list so that you can then exclude it
from evaluation. DevPartner error detection automatically includes any modules that
are not listed under Modules and Files. When you need to exclude a module that is
not listed, you must first add the module, and then clear its check box to exclude it.

DevPartner error detection automatically evaluates all modules in your program. Use the
Modules and Files settings to:

� Exclude modules from evaluation

� Exclude components within a module from evaluation
 Understanding DevPartner Studio 51

Chapter 2 · Error Detection
� Add modules you want to evaluate

Modules and Files includes the following settings:

� Modules and Files List: Shows the modules being checked.

� To exclude an entire module from checking, clear the check box next to that module.

� To expand a module and view its contents, click the plus symbol to the left of the mod-
ule path.

� To exclude specific items within a module, expand the module then clear the check
box next to the item(s) to be excluded.

After you clear a check box next to a module or an item within a module, it appears on
the list but is not analyzed when you run error detection on your application.

The check box next to a module name appeasrs in yellow if one or more of its
components has been cleared.

Disabling all the modules in the Modules and Files settings does not prevent reporting
of some error types. DevPartner error detection always reports memory overruns
within any module, and other types of events originating from the MFCxxxx.dll
libraries.

� Show leaks and errors only if source code is available: Select this check box to limit
reported leaks and errors to those having source code available. When enabled, this option
might reduce the number of leaks and errors reported. When disabled (the default condi-
tion), all leaks and errors are reported.

� Add module: Click to open the Choose Module to Add dialog box; use this dialog box to
select and add the module.

� Remove module: Click to remove a selected module from the Modules and Files list.
Active only when a module is selected. You cannot remove the main executable.

� System directories: Click to open the System Directories dialog box.

Setting System Directories Options

Use the System Directories dialog box to exclude entire folders that you do not need to check.
For example, a folder may contain modules that generate errors that you have already dealt
with. Excluding folders that you do not need to check can speed up error detection sessions.

DevPartner error detection reports all errors of undetermined origin and all errors that cause
catastrophic failure of your application. Such errors are reported even though they might occur
in modules within an excluded folder.

The following settings are available for the System Directories dialog box.

� Add: Opens the System Directory to Add dialog box. Use this dialog box to select a folder
to add to the list of folders excluded from checking by error detection.

� Remove: Click to remove a selected system folder from the list.

� OK: Click to close the System Directories dialog box and save any changes you have
made.
52 Understanding DevPartner Studio

Chapter 2 · Error Detection
� Cancel: Click to close the System Directories dialog box and discard any changes you
have made.

Directory Icon

The directory icon next to each path name in the System Directories list indicates two different
possible conditions:

� Single Directory: Indicated by a single folder icon. Only the immediate contents of the
selected folder are included.

� Directory and All Sub-directories: Indicated by a three-folder icon. The selected folder
and all sub-folders are included.

To toggle between the two options, click the icon next to the folder name.

Note: In some instances you may find that you need to explicitly add critical third-
party DLLs that are contained in an excluded folder. Explicitly adding these
third-party DLLs might reveal problems you may not otherwise locate. To
explicitly add a DLL, use the Modules and Files settings.

Setting Fonts and Colors Options

Fonts and Colors control the appearance of items that appear in the tabs of the error detection
window. For example, you can increase the font size of the error data you view most
frequently, or decrease font sizes to display more information in a tab.

Use the following controls to define the fonts and colors:

� Show settings for: Lists the different tabs that appear in the Results pane. Select the tab
for which you are changing fonts and colors.

� Use Defaults: Click to discard all current settings and restore the original fonts and colors.

� Displayable items: Select an item from this list to change its font or color properties.

� Font: Select a font to use for the currently selected item under Displayable items.

� Size: Select a font size to use for the currently selected item under Displayable items.

� Item foreground: Shows the foreground color for the current selection in the Displayable
items list. Select a foreground color from this drop-down menu or click Custom to the left
of the menu to define a custom foreground color.

� Item background: Shows the background color for the current selection in the Display-
able items list. Select a foreground color from this drop-down menu or click Custom to
the left of the menu to define a custom background color.

� Bold: When selected, the text for the displayable item appears in a bold font.

� Tab Size: Use this control to specify the indent size for code displayed in the Source Code
pane.

This control is available only when the Show settings for selection is Source Pane and the
Displayable items selection is Main.
 Understanding DevPartner Studio 53

Chapter 2 · Error Detection
� Sample Text Box: A text box at the bottom of the Fonts and Colors window shows how
the current displayable item appears with the combination of fonts and colors selected.

Setting Configuration File Management Options

Use the Configuration File Management settings to manage configuration files. The title bar of
the Program Settings dialog box displays the configuration file currently in use.

When changing a setting in the Program Settings dialog box, an asterisk appears after the
configuration file name until you save the properties, reload the file, or load a different file. If
you load a different file or reload the file without saving, changes to the current file are lost.

Use the following controls to define the configuration file functionality:

� Configuration file name: The full path and name of the configuration file.

� Reload: Loads the current configuration file again, discarding any changes. This returns
you to the last saved version of the current configuration file.

� Load: Opens the Load From dialog box.

� Select Internal User Defaults to load your user default settings.

� If you select Configuration File, the Load Configuration File dialog box appears. Use
this to select a different configuration file to load.

� Save: Saves all active changes in the currently loaded configuration file.

� Save As: Opens the Save Configuration File dialog box. Use this to save the current con-
figuration settings under a different file name.

� Reset: Resets all the program property settings to the default factory settings.

� Save Defaults: Save current settings as user defaults. All new projects use these settings.

� Delete Defaults: Delete the user default configuration settings and revert to factory set-
tings. All new projects use the factory settings.

Tracking Windows Messages and Event Logging

Windows is an event-driven environment in which much of your program executes in response
to Windows messages and other events. DevPartner intercepts events as they occur, and logs
them. You can use these logs to see a complete history of events that led to a problem.

DevPartner logs the following events:

� Windows messages.

These events show how your program reacted to Windows messages.

� API calls and API returns along with argument information. These events define the order
in which procedures are executed in your program.

� Output debug string messages from the program you are checking.

� Error messages.
54 Understanding DevPartner Studio

Chapter 2 · Error Detection
Exporting Data to XML

DevPartner lets you export comprehensive session results data to XML, providing you with a
simple way to port your results data into various report formats, email, an internal Web page,
etc.

Exporting Data from within Visual Studio

Follow these steps when you are using Error Detection from within Visual Studio to export all
data from the currently displayed session file to an XML file:

1 Open an Error Detection session file.

2 Select File > Export DevPartner Data.

The Save As dialog box appears.

3 Choose the location for the exported data file.

4 Click OK.

Exporting Data from the Error Detection Standalone Application

Follow these steps when you are using the Error Detection standalone application to export all
data from the currently displayed session file to an XML file:

1 Open an Error Detection session file.

2 Select File > Export Data.

The Save As dialog box appears.

3 Choose the location for the exported data file.

4 Click OK.

Exporting Data from the Command Line

You can elect to generate an XML file from the session file data when you run error detection
from the command line by passing the proper flags to BC.exe at execution time, or by calling
BC.exe and specifying a pre-existing session file.

DevPartner error detection uses the DPSErrorDetection.xsd schema file located in the
error detection installation folder when generating the XML output. Do not edit this file.

If DevPartner cannot export your session data to XML, it generates an error message describ-
ing the problem it encountered.

Running a Session and Exporting Data

When you specify an executable, error detection runs a session on the executable and then
generates XML output from the results:

BC.exe [/B session.DPbcl] [/X[S|D] xmlfile.xml] target.exe [args]
 Understanding DevPartner Studio 55

Chapter 2 · Error Detection
The S and D flags used with /X allow you to export either Summary or Detail information to
XML.

Note: When you specify an executable, you must still specify an corresponding
session file using the /B flag.

Converting an Existing File

When you specify a session file only (session.DPbcl), error detection converts the speci-
fied session file to XML and saves the output:

BC.exe [/B session.DPbcl] [/X[S|D] xmlfile.xml]

Running Error Detection from the Command Line

You can run DevPartner from a DOS command line, using bc.exe or bc.com.

Note: For legacy support of the 7.x versions, DevPartner error detection allows you
to continue using bc7.com in your script files.

� bc.exe starts the UI for DevPartner standalone.

� bc.com is a small console program that spawns bc.exe and waits for it to complete.

The difference between bc.exe and bc.com is important for batch scripts. Invoking bc.exe
directly starts DevPartner and continues on to the next command without waiting for bc.exe
to complete. If the next step in the script is to check for a result, it is not available.

If you type only bc, the OS chooses bc.com instead of bc.exe.

For more information, refer to Using Error Detection from the Command Line in DevPartner
Advanced Error Detection Techniques.

Command Line Options and Syntax

Brackets [] indicate that a command is optional.

BC.exe [/?]

BC.exe session.DPbcl

BC.exe [/B session.DPbcl] [/C configfile.DPbcc] [/M] [/NOLOGO]
[/X[S|D] xmlfile.xml] [/OUT errorfile.txt] [/S] [/W workingdir]
target.exe [args]

Table 2-4. Command Line options

Option Action

/? Display usage information

session.DPbcl Open an existing session file

/B session.DPbcl Run in batch mode and save the session file to a log file ses-
sion.DPbcl

/C configfile.DPbcc Use the configfile.DPbcc options
56 Understanding DevPartner Studio

Chapter 2 · Error Detection
You must specify the full path to your program executable if it is not located on the current
path (the environment variable listing the locations the system searches in order to find an
executable).

Running FinalCheck from the Command Line

You can also run FinalCheck from the command line. For more information, refer to the
following topics in the Checking a Program with FinalCheck section of the online help.

� Running FinalCheck from the Command Line
� NMCL Options
� NMLINK Options

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the Team Explorer client
is installed and a Team Foundation Server connection is available.

/M Start bc.exe and minimize when running

/NOLOGO Do not show the splash screen when loading bc.exe

/X xmlfile.xml Generate XML output and save to the specified file.
When you specify an executable, error detection runs a ses-
sion on the executable and then generates XML output from
the results.
When you specify a session file only (session.DPbcl), error
detection converts the specified session file to XML and saves
the output.

Note: When you specify an executable, you must still
specify an corresponding session file using the /B
switch.

/XS xmlfile.xml The /X parameter used with the S modifier instructs error
detection to only save Summary data to the xml file. Informa-
tion about the running of the error detection session (Session
data) is always exported.

/XD xmlfile.xml The /X parameter used with the D modifier instructs error
detection to only save Details data to the xml file. Information
about the running of the Error Detection session (Session
data) is always exported.

/OUT errorfile.txt Output any error messages to a text file

/S Run in silent mode. Do not open the Program Error Detected
dialog box on errors.

/W workingdirectory Set the target's working folder

target.exe [args] The executable to launch and its arguments

Table 2-4. Command Line options

Option Action
 Understanding DevPartner Studio 57

Chapter 2 · Error Detection
Visual Studio Team System Support in DevPartner Error Detection

You can submit data as a Work Item of the type Bug for a selected item in the following Error
Detection tabs:

� Errors tab — submit a selected error
� Memory leaks tab — submit a selected leak
� Modules tab — submit a selected instance
� Other leaks tab — submit a selected leak
� .NET Performance tab — submit a selected instance

When you submit a bug, DevPartner populates the Work Item form with data from the tab. For
more information about DevPartner Studio integration with Visual Studio Team System, see
“Visual Studio Team System Support” on page 20.
58 Understanding DevPartner Studio

Chapter 3

Static Code Analysis
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with code review. The second section provides reference infor-
mation for an in-depth understanding of some DevPartner Studio code review functions.

Refer to the DevPartner Studio online help for additional task-oriented information about code
review.

What is Code Review?

DevPartner code review helps developers write best-practices compliant Visual Basic and
Visual C# code in Visual Studio. DevPartner code review identifies programming and naming
violations, analyzes method call structures, and tracks overall code complexity.

Note: The code review feature analyzes managed code only, and is not supported in
the DevPartner for Visual C++ BoundsChecker Suite.

The DevPartner code review feature delivers the following functionality:

� Static code analysis and review

DevPartner code review performs a comprehensive static code analysis of your source
code in Visual Studio, and displays results in the DevPartner Code Review window.

� Automated command-line batch processing

You can execute a batch review of your solution from the command line. You can run
these automated batch reviews in conjunction with a nightly build. You can also save time
by using an automated batch review on large applications while you perform other tasks.

� Data export to XML

DevPartner code review allows you to export session results in XML format, providing
you with a simple way to transform your results data into report formats, e-mail, an inter-
nal Web page, etc. You can export your data to XML from code review after running a
session, from the command line, or as part of an automated batch process.

� Rules management and customization

The Rule Manager lets you configure rules used by code review to enforce code compli-
ance with the standards you set. You can also group rules into sets for use in a review
session, and create your own custom rules.
 Understanding DevPartner Studio 59

Chapter 3 · Static Code Analysis
Using Code Review Out of the Box

The following Ready, Set, Go procedure introduces you to using DevPartner code review.

DevPartner code review creates data files for each target application. You must ensure that you
have write access to the folder containing the target executable before starting code review.

Analyzing an application with DevPartner Studio does not require elevated system privileges.
The system privileges you use to create and debug your application are sufficient for DevPart-
ner to analyze the application.

Ready: Deciding How You Want to Run the Review

DevPartner code review is very flexible, with several different configurations you should
consider for any session.

Refer to “Code Review Supported Project Types” on page 278 for a comprehensive list of
supported project types for code review.

� Deciding What Rules to Enforce — You can use a wide variety of code review rules to
enforce industry best practices in your code. You can also create custom rules and rule sets
using the Rule Manager if you have additional standards to enforce.

� Selecting the Naming Guidelines to Enforce — DevPartner code review can use built-in
naming analyzers to ensure your code follows industry-accepted naming standards.

� Collecting Metrics Data — You can collect metrics data during your review, which dis-
plays code complexity results (complexity, bad fix probability, and understanding level),
based on McCabe Metrics.

� Collecting Call Graph Data — You can collect call graph data (representing all potential
inbound and outbound calls) during your review.

� Excluding Projects in Your Solution — DevPartner code review includes all projects in
your solution by default. If you know there are projects in your solution that you do not
want code review to analyze, you can exclude them.

Note: You must have all selected projects set to output debug information. If a
selected project is not set to output debug information for any available build
configurations, when code review runs you are warned about build errors, and
that project is excluded from future sessions.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information about the subject being described in the shaded box, read the additional text
following the box.

The following procedure assumes:

� You are running a review of a Visual Basic or Visual C# single-developer solution.
� You are running code review in a supported release of Visual Studio.
� All of the projects in your solution compile without errors.
� All projects to be reviewed are set to output debug information.
60 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Set: Selecting Options and Settings

DevPartner code review is flexible and customizable. Use the General options page to custom-
ize code review. To access the General options page, select DevPartner > Options and then
select Code Review from the Options tree view.

Figure 3-1. DevPartner Code Review general options

� Selecting a Rule Set — You can choose a rule set from the Rule Set list prior to running
your review. The Default rule set includes all Medium and High priority rules supplied by
code review, which enables you to enforce common best practices in the industry. Table 3-
2 on page 68 provides a list of the standard rule sets that come with code review.

You can use the Rule Manager (see “Using the Code Review Rule Manager” on page 95)
to create custom rules and rule sets.

� Selecting a Naming Guideline — You can choose a naming guideline from the Naming
Analysis To Use list. The default behavior is for code review to enforce naming guidelines
modeled after the Microsoft .NET naming conventions. However, you can enforce the
Hungarian Notation naming convention instead, or enforce none at all.

� Enabling or Disabling Collection of Metrics Data — Select the Collect Metrics check box
to enable collection of McCabe Metrics data (see “Collecting McCabe Metrics” on page
69). Clear the check box to disable this functionality.

� Enabling or Disabling Collection of Call Graph Data — Select the Collect Call Graph
Data check box to enable collection of static method call data. Clear the check box to dis-
able this functionality.

If you run your review with this function enabled, the Call Graph tab in the Results
window displays a static graphical representation of the inbound and outbound call path
corresponding to the method or property selected from the solution tree in the far left pane.

For this procedure, you can use the default DevPartner properties and options. No changes to
the settings are required.
 Understanding DevPartner Studio 61

Chapter 3 · Static Code Analysis
Call paths are statically generated. This means the graph shows the potential method calls
in the call path, rather than the dynamic method calls made during program execution.

� Excluding Unwanted Projects — A check box next to each project in the Projects To Be
Reviewed text box controls whether that project is analyzed by code review. Clear the
check box associated with any projects you do not want code review to analyze.

Go: Starting Your Code Review Session

The process of DevPartner analyzing your code is referred to as the session. When the review
is completed, the session data is displayed in the Results window, and is saved to a file when
you stop code review.

You have completed running a basic code review session, and the data has been compiled in
the Results window for you to analyze.

Analyzing the Results and Repairing Violations

The Results window is your focus once you have completed running a review of your solution.
The session data is displayed in the Results window, and you use it to begin identifying, locat-
ing, and repairing violations.

1 Open your solution in Visual Studio.

2 Select DevPartner > Perform Code Review.

DevPartner performs a code review on all projects in the solution. The Results window
opens, and a status bar on the Summary pane tracks the progress of the session.

1 Examine the Problems tab of the Results window to see code violations found during the
review.

2 Ensure the Severity column is sorting the violations from highest to lowest priority
(default behavior). Toggle the column between ascending and descending order, if
required, by clicking the column heading.
62 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Figure 3-2. Code Review Results window

Typically, you want to correct the most critical code violations first. The Problems tab is
designed to sort the code violations in order of severity, allowing you to easily select the
highest priority violations first.

There are several tabs available in the Results window that separate the session data into
distinct categories.

� Select the Summary tab to examine a report summarizing the violations of various types
that were discovered during the review (see “Viewing Summary Data” on page 73).

� Select the Problems tab to view the code violations discovered during the review. The
default behavior of the Problems tab is to sort the list of violations from highest severity
to lowest (see “Viewing Code Violations” on page 74).

� Select the Naming tab to view the naming violations discovered during the review. This
list also provides suggestions for repair when applicable, and is empty if the review was
configured to ignore naming (see “Viewing Naming Violations” on page 76).

� Select the Metrics tab to view code complexity results (Complexity, Bad Fix Probability,
and Understanding Level), based on McCabe Metrics (see “Viewing Collected Metrics”
on page 78).

� Select the Call Graph tab for a graphical representation of the method calls (see “Viewing
Call Graph Data” on page 81).

Results tabsCode Review
toolbar

View by list
(shown disabled)

DevPartner
solution tree Details pane
 Understanding DevPartner Studio 63

Chapter 3 · Static Code Analysis
Filtering Results

After running a code review session, the results can include a lot of data, making it difficult to
focus on one area to repair. Use the Code Review solution tree to filter the results by selecting
a project, file, or method. Filtering the data limits what is displayed, allowing you to focus on
the results that are most important to you.

Analyzing Code Violations

By default, the Problems tab has focus in the Results window following a code review. The
Problems tab displays the code violations found in the current solution. An associated Details
pane (see Figure 3-2 on page 63) below the Problems tab provides more explanation,
examples, references to MSDN and other sources explaining the problem, and suggested
repairs (when available) for the selected code violation.

You have now resolved code violations in your solution using code review.

Analyzing Naming Violations

The Naming tab lists naming violations that code review finds during a review. Naming tab
content varies based on the naming analysis type selected on the General options page (see
Figure 3-4 on page 67) prior to the review. An associated Details pane (like the one associated
with the Problems tab in Figure 3-2 on page 63) below the Naming tab provides more expla-
nation, resources, and suggested repairs (when available) for the selected naming violation.

3 Select the first code violation listed on the Problems tab (highest priority). The Details
pane shoes information about the selected code violation. The Trigger and Location
headings tell you why a code violation occurs and where the violation is located.

4 Scroll down and examine the Explanation, code samples (if available), and suggested
Repair for the code violation. Follow any external links to more explanations about the
violation for additional information.

5 Double-click on the code violation listed on the Problems tab.

DevPartner opens a new window containing the Visual Studio editor and your source
code, with focus placed at the line of code where the problem exists.

6 Repair the code violation using the Visual Studio editor.

7 Return to the Problems tab in the code review Results window.

8 Select the Fixed check box to indicate that you corrected the violation.

9 Select the next code violation in the Problems tab, repeating steps 5 through 8 until you
feel you addressed enough code violations for this session.

Note: DevPartner code review attempts to keep track of line numbering changes,
and maintain synchronization between violations and source code. After
enough modifications, the results can lose synchronization with the source
code, and line numbers may change. You can re-run a code review session
after modifying the source code, and continue repairing violations with the
new Problems tab list.
64 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Figure 3-3. Naming tab and Details pane

You have now resolved naming violations in your solution using code review.

Saving Session Files

Saving your session file allows you to refer back to these results. You might want to open a
saved session file for several reasons:

� To export the session data to XML at a later date (see “Exporting Data to XML” on page
89).

� To continue fixing the violations discovered in this session later.

10 Select the Naming tab to identify the naming violations discovered during the session
(see Figure 3-3). All naming violations found during the review are listed in this tab.
When available, a suggestion for proper naming appears beside the violation.

11 Select the first naming violation on the Naming tab.

The Details pane displays data about the selected naming violation (see Figure 3-3). If
selecting Hungarian naming, the Details pane is not available.

12 Examine the detailed explanation and/or suggestion for proper naming (when available).
Follow any external links if you want more information about the violation.

13 Double-click on the naming violation in the Naming tab list to go to the source.

14 Repair the naming violation.

15 Return to the Naming tab in the code review Results window.

16 Select the Fixed check box to indicate you corrected the violation.

17 Select the next naming violation in the Naming tab, repeating steps 11 through 16 until
you feel you addressed enough naming violations for this session.
 Understanding DevPartner Studio 65

Chapter 3 · Static Code Analysis
Code review saves the session file by default when you exit, unless you clear the Always save
review results setting under General options (see “Configuring General Options” on page 66).

DevPartner saves session files as part of the active solution. They appear in the DevPartner
Studio virtual folder in Solution Explorer. DevPartner code review session files take the
.dpmdb extension.

By default, DevPartner physically saves the session files in your project’s output folder.
DevPartner automatically increments the file name based on the contents of the default folder
(for example, MyApp.dpmdb, MyApp1.dpmdb, and so on). If you save session files to a
location other than the default folder, you must manage the file naming.

For projects that do not have an output folder, such as a Visual Studio 2005 Web site project,
DevPartner physically saves the files to the project folder.

Session files generated from the command line are not automatically added to the project’s
solution. Manually add externally generated session files to an open solution in Visual Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running a code review session, continue reading the rest of this
chapter for more information.

Setting Options

Use the many available options to customize code review behavior. Your specific settings are
preserved in a preferences database on your system. DevPartner provides three option pages to
modify code review options:

� General Options
� Naming Guidelines Options
� Suppressed Rules

Configuring General Options

The General options page contains code review settings that you can modify prior to a code
review. To access the General options, from the DevPartner menu select Options, then select
DevPartner > Code Review > General from the tree view.

1 With focus in the Results window, select File > Save Code Review Session As.

2 Enter a name for the session file and click Save.

By default, code review saves the session file as SolutionName.dpmdb in the same
location as your solution.
66 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Figure 3-4. General options page

Selecting Projects To Review

You can choose some or all of the projects in a solution from the Projects to be reviewed list.
The contents are empty if:

� You did not load a C# or Visual Basic solution in Visual Studio.
� You loaded a solution containing only C++ projects.

The Projects to be reviewed list contains the following information.

If you never made selections to the list of projects, DevPartner reviews all projects in the
current solution by default. Once you edit the list of projects, DevPartner saves the state of
included or excluded projects for the next time you work with this solution. The following
caveats apply:

� You must select at least one project in order to review a solution. Otherwise, DevPartner
does not let the code review proceed.

Table 3-1. Projects to be reviewed list

Item Description

Check Box The corresponding project is reviewed when checked

Project The name of the project

Language Visual Studio language associated with the project:
• Visual Basic
• C#
• Web Site

Note: The Web Site language type is only available in Visual
Studio 2005 or later. It pertains to language-independent
projects that use ASP.NET technologies.

Path The path and name of the listed project
 Understanding DevPartner Studio 67

Chapter 3 · Static Code Analysis
� You must have all selected projects set to output debug information. If a selected project is
not set to output debug information for any available build configurations, build errors
occur and that project is excluded from future sessions.

� If you select one or more projects that no longer exist in the solution, DevPartner reviews
the remaining projects.

� If you inadvertently delete all the projects in a solution that you later attempt to review,
DevPartner indicates that the selected projects no longer exist in the solution and suggests
that you make appropriate changes on the General options page.

� You cannot select individual files, classes, or methods within a given project.

Selecting Rule Sets

You can select a rule set from the Rule set list to apply to a code review. The Rule set list
contains all DevPartner-supplied and user-configured rule sets. The selected rule set is
preserved and used each time you run a session on the current solution.

Note: Make sure that you select a valid rule set that contains rules and already
exists in the rules database. Attempting to use a rule set that has been
removed via the Rule Manager, or is empty could invalidate the results.

You can create and customize rules (along with their associated triggers, which cause the rules
to fire when they are violated), and create and manage rule sets, using the Rule Manager (see
“Using the Code Review Rule Manager” on page 95).

Table 3-2. Standard Rule Sets

Rule Set Name Description

All Rules Provides a master rule set which, out of the box:

• Contains all DevPartner rules in the rules database

• Contains any user-configured rules in the rules database
• Ensures a comprehensive code review

Date Formatting Checks for proper formatting and use of date values, in par-
ticular 2-digit year formatted dates

Default Contains high and medium priority rules

Design Time Properties Checks for design time properties and property values of
forms and controls to assist with good user interface design

Internationalization Assists with localization, string handling, and comparison
for the international market

Logic Checks for proper program logic, good .NET Framework
programming practices, error handling, type checking, and
garbage collection

Performance Checks for code that negatively impacts performance

Naming Guidelines Searches for .NET Framework naming discrepancies that
involve two or more identifiers in the source code

Web Applications Checks for good ASP.NET development, HTML tag use,
validation, performance, caching, and state
68 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Selecting a Type of Naming Analysis

Note: You should choose a naming analysis type. Otherwise, DevPartner bypasses
critical analysis functions. Only choose None to temporarily ignore naming
anomalies while concentrating on other programming problems.

Use the Naming analysis to use list to choose the type of naming analysis to apply to a
review. Your choices include:

� Naming Guidelines (default): Patterned after the Visual Studio .NET Framework naming
guidelines.

You must also set options on the Naming Guidelines options page to ensure a more precise
review (see “Setting Naming Guidelines Options” on page 70).

� Hungarian: Patterned after the Hungarian Notation naming convention (see “Understand-
ing the Hungarian Naming Analyzer” on page 94).

You must also choose a valid Hungarian name set. The name set choice does not apply to
the Naming Guidelines naming analysis.

� None: DevPartner bypasses naming analysis, and the Naming tab is empty following the
code review.

Selecting Name Sets

If you perform a Hungarian naming analysis on your source code, make sure that you also
choose a valid Hungarian name set (by default, the Default name set is associated with the
default DevPartner-supplied rule sets).

You can create and manage name sets using the Rule Manager. (see “Using the Code Review
Rule Manager” on page 95).

Collecting McCabe Metrics

When you select Collect metrics, code review collects data that displays code complexity
statistics, including complexity, bad fix probability, and understanding level. These metrics
follow the industry-standard McCabe Metrics (see “Understanding McCabe Metrics” on page
79). The Metrics tab displays an aggregate of all items pertaining to the node selected on the
Code Review solution tree.

Collecting Call Graph Data

When you select the Collect call graph data check box, code review collects information
about all potential inbound and outbound calls to methods or properties, and displays a graph-
ical representation of the results on the Call Graph tab. Individual nodes in the call graph
represent the inbound and/or outbound call path for the selected method or property. The call
graph shows a static representation of the potential method calls in the call path, rather than the
dynamic calls made during program execution.

Generating Batch Files

When you select Always generate a batch file, DevPartner generates a batch file during the
next interactive code review performed in Visual Studio. You can use this batch file to run a
batch review from the command line on the same solution.
 Understanding DevPartner Studio 69

Chapter 3 · Static Code Analysis
Note: If you use the /r option when running reviews in a batch file or from the
command line, you should turn off Always generate a batch file, or backup
and rename your batch file. Otherwise, your batch file is overwritten. See
“Using the Command Line Interface” on page 86

Saving Review Results

When you select the Always save review results check box, DevPartner saves the session file
as SolutionName.dpmdb in the same location as your solution following a code review.
DevPartner displays the saved session file the Visual Studio Solution Explorer.

Prompting for Session File Name

When you select the Prompt for session file name check box, DevPartner prompts you to
specify a location and name for the session file before it begins the review.

Setting Naming Guidelines Options

The Naming Guidelines options page includes choices that ensure a more precise review. To
access the Naming Guidelines options, from the DevPartner menu select Options, then select
DevPartner > Code Review > Naming Guidelines from the tree view.

Selections on this page are disabled until you select the Naming Guidelines naming analyzer
from the Naming analysis to use list on the General options page (Figure 3-4 on page 67).

Figure 3-5. Naming Guidelines options page

Choosing Identifiers to Analyze

In the What to analyze section, select the type of identifiers to include in the analysis:

� All public or protected identifiers (default): DevPartner code review examines public or
protected identifiers and internal protected identifiers. However, this option excludes local
and private identifiers.

� All identifiers regardless of access or scope: DevPartner code review examines all iden-
tifiers, regardless of access or scope.
70 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Choosing a Dictionary

From the Choose dictionary list, select the dictionary database to apply to the naming analy-
sis. DevPartner searches for naming violations based on the selected dictionary. American
English is the default dictionary.

Choosing the Scope of Naming Analysis

In the Include naming analysis for list, select the corresponding check boxes for one or more
identifiers for DevPartner to analyze. By default, all identifiers are selected.

Checking the Variables check box might affect other variable-specific selections on this
options page (such as What to analyze).

Selecting Camel Case or Pascal Case

Select your capitalization preference for DevPartner to use when validating named Variables.
The two options are Camel case and Pascal case. Camel case refers to a variable where the
initial word is lower-case but the secondary word is capitalized, such as integerBonus.
Pascal case refers to a variable where each word in the name is capitalized, such as
IntegerBonus.

This option is disabled if you did not already select Variables from the Include naming
analysis for list. It is also unavailable if you have selected All public or protected identifi-
ers.

Selecting Namespace Options

If you checked the Namespaces check box in the Include naming analysis for field, you can
specify additional namespace options.

� Company name: Enter a string for your company's name.

� Technology name: Enter a string for your company's technology.

DevPartner code review verifies namespaces for appropriate use of capitalization, complete
words, presence of reserved words, use of numbers, etc. DevPartner code review also verifies
that each namespace follows the recommended namespace syntax: CompanyName.Technol-
ogyName[.Feature][.Design]. When you provide a company name and/or technology
name, code review checks that the namespace is constructed using these entries.

Managing Suppressed Rules

The Suppressed Rules options page contains a list of rules that have been suppressed in the
Problems tab (see Figure 3-6). Suppressed rules may be temporarily unsuppressed by select-
ing the check box next to the suppressed rule in the Suppressed Rules options page. To access
the Suppressed Rules options, from the DevPartner menu select Options, then select
DevPartner > Code Review > Suppressed Rules from the tree view.
 Understanding DevPartner Studio 71

Chapter 3 · Static Code Analysis
Figure 3-6. Suppressed Rules options page

Suppressing Rules

Suppressing a rule tells code review not to fire that rule in future sessions. Suppressing a rule
is very different from filtering a code violation:

� When you suppress a rule, it is never fired, no data is collected, and nothing is preserved in
the session file.

� When you filter code violations, the underlying rules still fire, the data is collected and
saved in the session file, but is not displayed.

You can save rule suppressions locally in an individual solution or universally across all
solutions. You must first perform a code review before you can select a rule to suppress.

1 Click the Problems tab on the Results window.

The Problems tab lists the code violations.

2 Select a code violation to suppress its underlying rule.

3 Access the Suppress Rule dialog box in one of two ways:

� Click the Suppress Rule toolbar button.

� Right-click on the highlighted rule line, and select Suppress Rule from the context
menu.

4 Choose the scope where you want to suppress the selected rule:

� Suppress this rule everywhere in this solution: Affects future reviews of the current
solution

� Universally across all solutions: Universal effect on future reviews of all solutions

When you select universal suppression, the preference database clears any solution-based
suppressions for the rule and applies this universal setting across all solutions.
72 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
If you attempt to suppress a rule in the current solution and code review determines that the
rule has already been suppressed in other solutions, the Suppress Rule dialog box prompts you
to apply universal suppression instead. You still can choose to suppress it only in the current
solution.

Viewing Summary Data

The Summary tab consolidates summarized results data in a single location, while details
about each aspect of the session are displayed on the other corresponding tabs. Some items on
the Summary tab are dynamic. As items on the Problems or Naming tabs are marked as
Fixed, the Summary tab dynamically reflects the update. If the review included unusual
exceptions (such as running a review with an empty rule set), the Summary tab reflects that
message in the header section. Scroll down the Summary tab to view each summary table.

Figure 3-7. Summary tab

� The Summary of Problems table lists the categories of rules that were assessed in your
review. It indicates the number of violations discovered and the number you have marked
as fixed. It then breaks down the total number of violations by severity category.

� Summary of Naming Guidelines lists the categories that you originally selected on the
Naming Guidelines options page to be included in the review (Figure 3-5 on page 70). The
table displays a summary of the naming identifiers selected on the Naming Guidelines
options page, and indicates the number of violations found.

This table only appears on the Summary tab if you selected Naming Guidelines on the
General options page prior to the review (Figure 3-4 on page 67). This table is not avail-
able for the Hungarian naming analyzer.
 Understanding DevPartner Studio 73

Chapter 3 · Static Code Analysis
� Summary of Call Graph Data summarizes information about the call graph analysis cap-
tured during the review, including the total number of methods and properties analyzed,
and the number that appear to be uncalled.

This table appears on the Summary tab only if Collect Call Graph Data on the General
options page is selected prior to review (Figure 3-4 on page 67).

� Summary of Counts includes individual statistics gathered about the code review session
itself, including how long it took to run, the number of lines in the solution, the number of
comparisons made, etc.

� Review Settings lists configuration and review-related data. This information is useful for
record keeping and troubleshooting.

� Project List provides information for each project in the solution, including whether each
project had compile errors, or was successfully reviewed.

Viewing Code Violations

By default, the Problems tab has focus in the Results window following a code review. The
Problems tab displays code violations found in the current solution. A Details pane below the
list of code violations provides further explanation, examples, and possible repairs when you
select a specific violation.

Figure 3-8. Problems tab and Details pane

Details Pane

Code Violations
74 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Understanding the Problems Tab

The following table describes the information provided on the Problems tab.

Details Pane

When you select a code violation on the Problems tab, more detailed information appears in
the Details pane (see Figure 3-8 on page 74). The contents are generated from the rules stored
in the code review rules database (system-supplied and user-configured). The following table
lists the information provided in the Details pane.

Tip: Each code violation can include additional hyperlinks for Trigger, Original Source
Line, and Location.

Table 3-3. Contents of Problems tab

Column Description

Fixed Status of the code violation
The checkbox is checked when fixed

Suppressed Status of the rule suppression
Suppressed, or blank for not suppressed

Rule Number assigned to that code violation

Title Title of the rule

Severity Severity level (High, Medium, Low, Warning)

Project Project where the violation exists

File File where the violation exists

Method Method where the violation exists

Class Class of the fired rule

Type Rule type

Table 3-4. Contents of Details pane

Heading Description

Rule title (shown in red) Title of the rule

Trigger Name of the trigger; appears as a hyperlink to the original
source line (see “Configuring Triggers” on page 98)

Original Source Line Line of code that caused the rule to fire

Location Origin of the code violation

Explanation Code violation description

Repair Recommendation to fix the problem

Notes Additional comments, such as external links to Microsoft
MSDN knowledge base articles
 Understanding DevPartner Studio 75

Chapter 3 · Static Code Analysis
Viewing Naming Violations

The Naming tab lists naming violations that code review finds during a review. The appear-
ance of the Naming tab varies depending on the type of naming analysis you selected on the
General options page prior to the review (Figure 3-4 on page 67). See “Understanding Naming
Analysis” on page 91 for more information about each naming analyzer.

The Naming tab displays results from one or the other, but not from both naming analyzers. If
None was selected, the Naming tab is empty following a code review.

Analyzing Hungarian Results

Figure 3-9 shows how the Naming tab appears when the Hungarian naming analyzer is
selected on the General options page (Figure 3-4 on page 67).

Figure 3-9. Naming Tab for Hungarian Naming Analysis

Analyzing Naming Guidelines Results

Figure 3-10 shows a two-panel representation of the naming results when the Naming Guide-
lines naming analyzer is selected on the General options page (Figure 3-4 on page 67). Notice
the Naming tab in the upper panel and the Naming Details pane in the lower panel. Naming
Guidelines analysis also enables the View by list above the Naming tab.
76 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Figure 3-10. Naming tab for Naming Guidelines Naming Analysis

The following table lists the information provided on the Naming tab, regardless of the
naming analyzer selected.

Details
Pane

Naming
Violations

Table 3-5. Contents of Naming tab

Column Description

Fixed Status of the naming violation
Select this check box when a violation is fixed.

Name User-defined name for the data type

Suggested Suggested names vary, depending on which naming analyzer is
selected (see “Understanding Naming Analysis” on page 91)
• If code review cannot suggest a name based on Hungarian naming

conventions, Unknown appears in this column.
• If code review cannot suggest a name based on Naming Guidelines,

asterisks appear in this column. An explanation also appears on the
Naming Details pane (Figure 3-10 on page 77).

Access Category of access within the current solution

Type Type of identifier

Method Method where the data type is declared

Class Class where the data type is declared

Namespace Namespace where the data type is declared

File File where the data type is declared

Project Project where the data type is declared
 Understanding DevPartner Studio 77

Chapter 3 · Static Code Analysis
Understanding the Naming Details Pane

If you selected Naming Guidelines and made additional choices on the Naming Guidelines
options page (Figure 3-5 on page 70), a Details pane appears below the Naming tab, providing
additional details about the selected naming violation.

The Details pane is only available for the Naming Guidelines naming analyzer.

Viewing Collected Metrics

The Metrics tab (Figure 3-11) displays code complexity results (complexity, bad fix probabil-
ity, and understanding level), based on McCabe Metrics (see “Understanding McCabe
Metrics” on page 79).

Table 3-6. Contents of Naming Details pane

Item Description

Current name Corresponds to the item selected in the upper panel

Scope Indicates the scope of the identifier

Original Source Line Displays the source line that pertains to the selected naming
violation in the upper panel

Recommendations Suggests one or more suitable names, based on the Naming
Guidelines naming analyzer (see “Understanding the Naming
Guidelines Naming Analyzer” on page 92)

Explanation Provides an explanation for why this violation was flagged as a
problem.
If code review cannot suggest a better name, an explanation
appears in this pane. DevPartner code review also shows a
series of asterisks in the Suggested column of the upper
panel of the Naming tab.

Notes Optionally includes a hyperlink to the Naming Guidelines
knowledge base in the .NET Framework General Reference
78 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Figure 3-11. Metrics tab

The Metrics tab only displays data if you selected the Collect metrics check box on the
General options page prior to the review (Figure 3-4 on page 67). Table 3-7 lists the informa-
tion provided on the Metrics tab.

Understanding McCabe Metrics

When you collect McCabe Metrics, the Metrics tab displays code complexity statistics,
including: complexity, bad fix probability, and understanding level. These metrics follow the
industry-standard McCabe Metrics. The Metrics tab displays an aggregate of all items pertain-
ing to the node selected on the Code Review Solution Tree.

Table 3-7. Contents of Metrics tab

Heading Description

Method Method name where the code complexity issue originated

File File name where the issue originated

Project Project where the issue originated

Complexity Degree of complexity regarding a particular component; this metric is
related to McCabe Cyclomatic Complexity

Bad Fix % Likelihood that a new bug occurs in the code when trying to fix a
known bug

Understanding How straightforward the code logic is to decipher and maintain

Lines of Code Total lines of code within the selected component; breakdown of indi-
vidual line counts appear on the Summary tab
 Understanding DevPartner Studio 79

Chapter 3 · Static Code Analysis
Complexity

Complexity (also called Cyclomatic Complexity or McCabe's complexity) represents an
industry standard established as part of McCabe Metrics. Complexity is a broad measure of
soundness and confidence for a program. This measure provides a single ordinal number that
can be compared to the complexity of other programs. It is often used in concert with other
software metrics. As one of the more widely accepted software metrics, it is intended to be
independent of language and language format. The complexity number denotes a stronger
measure of a program's structural complexity than counting the number of lines of code.

Complexity measures the degree of complexity in a module's decision structures by measuring
the number of linearly-independent paths through a program module. Each component is
analyzed individually and then all possible decision points are calculated, e.g., If-Then-Else
and Select Case statements. With Select Case, each case is a separate decision point.

McCabe Metrics defines Cyclomatic Complexity for each module as

e - n + 2

where:

e: is the number of edges in the control flow graph

n: is the number of nodes in the control flow graph

Cyclomatic complexity represents the minimum number of paths that should be tested. The
more complex the code, the more intense the testing effort is for that component.

Bad Fix Probability

Bad fix probability represents the likelihood of inadvertently inserting a new bug while
attempting to fix a known one. Bad fix probability looks at a procedure and assesses the odds
of introducing a new bug. Well-written code would typically generate a lower bad fix proba-
bility percent. Derived from McCabe Metrics, bad fix probability correlates with the under-
standing level and complexity results.

Understanding Level

Similar to complexity and bad fix probability, understanding level evaluates how easily a
developer can interpret and maintain the code. Understanding level evaluates code as follows:

Table 3-8. Understanding Level Metric

Range Understanding Level

Less than 5 Simple

Between 5 and 10 Simple to moderate

Between 11 and 20 Moderate

Between 21 and 30 Moderate to high

Between 31 and 50 High

Between 51 and 94 High to untestable

Greater than 94 Untestable
80 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Correlating All Metrics

The following table shows how all three metrics correlate with each other.

Viewing Call Graph Data

The Call Graph tab displays a static view of inbound and outbound call path corresponding to
the method or property selected from the Code Review solution tree (see Figure 3-12 on page
81).

Figure 3-12. Call Graph tab showing example of Call Graph representation

Call paths are statically generated. This means that the graph shows the potential method calls
in the call path, rather than the dynamic calls made during program execution.

Table 3-9. Correlation of McCabe Metrics

Code Complexity Range
Bad Fix Probability
Percent

Understanding Level
Interpretation

Less than 5 1% Simple

Between 5 and 10 5% Simple to moderate

Between 11 and 20 10% Moderate

Between 21 and 30 20% Moderate to high

Between 31 and 50 30% High

Between 51 and 94 40% High to untestable

Greater than 94 60% Untestable
 Understanding DevPartner Studio 81

Chapter 3 · Static Code Analysis
The Call Graph tab is empty if:

� You did not select the Collect call graph data check box on the General options page
(Figure 3-4 on page 67) prior to the code review. Call graph data was not collected during
the review. To perform call graph analysis and collect call graph data, select this option
and then perform another code review.

� You selected the check box, but did not select a method or property on the Code Review
solution tree (see Figure 3-2 on page 63). Data was collected but no call graph appears
until you select a method or property node on the Code Review solution tree.

Understanding Call Graph References

The Call Graph tab shows potential inbound/outbound call references in a call path by tracing
the call hierarchy for the selected method or property. The display area shows the potential
entry and exit points for each method or property. The call references start at the root node
with all calls performed in reference to the root node. The call references continue until control
returns to the root node, or the call is completed from the root node. The following types of
call references appear in the display area:

Root Node

The root node refers to the method or property selected to be the starting point of the call
graph. All other nodes either call into the root node or are called by it. The root node (Figure 3-
13) appears as a light yellow rectangle with a wide blue border, which distinguishes it from all
other nodes in the display area.

Figure 3-13. Example of Root Node

Inbound Calls

Inbound refers to methods or properties that directly or indirectly call into the root node. The
inbound calls (Figure 3-14) are shown as light blue rectangular nodes, which differentiates
them from the root node.

Outbound Calls

Outbound refers to methods or properties that are directly or indirectly called by the root node.
As with the inbound calls, the outbound calls (Figure 3-14) appear as light blue rectangular
nodes. They are connected by a series of arrows, pointing away from the root, to show the
potential direction of the call path.

Figure 3-14. Example of Inbound or Outbound Call Node
82 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Uncalled References

Uncalled refers to a method or property that is defined in the code but never referenced within
the files that form an application component. The Call Graph tab identifies uncalled methods
on a node using either the label Uncalled or the symbol (!).

Figure 3-15. Two examples of Uncalled Identification

Recursive and Circular Call References

The Call Graph tab can graphically show instances of recursive or circular call references that
exist in the selected path of execution.

� Recursive: Method or property that calls itself in the path of execution.

A calls B;
B calls B

Figure 3-16. Example of Recursive Call graph

� Circular: Method or property that indirectly calls back into a previously called method or
property in the path of execution.

A calls B;
B calls C;
C calls back to A

Figure 3-17. Example of Circular Call graph

Setting Call Graph Configuration Options

DevPartner code review provides four ways to configure how a call graph appears in the Call
Graph tab. Access these options either from the Call Graph toolbar or by right-clicking on the
background area of the Call Graph tab.

with label

with icon
 Understanding DevPartner Studio 83

Chapter 3 · Static Code Analysis
Number of Levels

Choose the number of levels to be displayed on the Call Graph tab. The call graph shows a
specified number of levels of methods or properties that call into (inbound) and are called
from (outbound) the root node. You can choose between one and six levels (six, default). The
following example shows two levels selected. The plus signs (+) on the nodes to the right of
the call graph indicate that more levels of call references are available for viewing.

Figure 3-18. Two-level configuration

Node Style

You can choose the node style that is applied to the Call Graph tab. All call graph node styles
show the class name, as well as the method or property name. Some node styles also include
icons indicating the access type of the class, method, or property: public, private, internal, or
protected. These are standard Solution Tree icons. Other icons, representing uncalled methods
and properties, only appear in the call graph.

The following table shows examples of the various node styles.

Some examples show root node and others use standard node (inbound or outbound). See
“Understanding Call Graph References” on page 82 for more information on how nodes are
differentiated.

2 1

21(part of level 1)

Table 3-10. Node Styles

Node Style Description
Uncalled
Representation Examples

Single label Shows the class name,
then a period, followed
by the method or prop-
erty name, but without
icons

The designation -
Uncalled appends
the method or prop-
erty name. Inbound/out-

bound

Top and bottom
labels

Shows the class name
appearing on the first
line and the method or
property name appear-
ing on the next, but with-
out icons

The designation -
Uncalled appends
the method or prop-
erty name on the
second line.

Inbound/out-
bound
84 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Scaling

Choose the relative size of the call graph on the Call Graph tab. Two scaling options are
available:

� To fit in available space (default)

This selection lets you scale the call graph so that all the nodes fit within the display area.
By default, scroll bars are not available with this choice. If you reconfigure the call graph
using the other options, the contents resize without the inclusion of scroll bars.

� By percent of full size

This selection lets you enlarge or shrink the contents in the display area by one of these
fixed percentage values: 100%, 80%, 75%, 66%, or 50%. This choice allows you to zoom
into sections of a large or complicated call sequence. Moreover, when the contents are
redrawn, the selected method or property (root node) is clearly visible in the display area.
Scroll bars are also available.

Layout

Choose how the call graph nodes appear on the Call Graph tab. Choices include:

� Horizontal

The nodes appear in a left-to-right orientation in the display area. The methods or proper-
ties calling into the selected node (also called the root node) are located to its left. The
methods or properties that the selected node calls into branch to the right.

One image and label Shows a standard
method or property icon,
plus the class name,
then a period, followed
by the method or prop-
erty name, all on the
same line

The corresponding
icon includes an
exclamation point
icon (!). Root

One image and two
labels

Shows an icon for the
method or property,
along with the class
name on the first line
and the method or prop-
erty name on the second
line

The corresponding
icon includes an
exclamation point
icon (!). Root

Two images and two
labels

Shows an upper-level
icon for the class fol-
lowed by the class
name, and a lower-level
icon for the method or
class, followed by its
name

The explanation
point icon (!) icon
appears between
the data type icon
and the name. Root

Table 3-10. Node Styles

Node Style Description
Uncalled
Representation Examples
 Understanding DevPartner Studio 85

Chapter 3 · Static Code Analysis
� Vertical

The nodes appear in a top-to-bottom orientation in the display area. The methods or
properties calling into the selected root node are located above the root node. The methods
or properties that the selected node calls into are located below it.

Using the Command Line Interface

You can run a batch script from the command line interface (using CRBatch.exe) to review
large solutions with many managed projects, or as an overnight or automated build process.
The command line interface streamlines the code review process by bypassing user interac-
tion.

Note: If the solution file is set to read-only, Visual Studio interrupts the batch review
with an error message.

When you select Always generate a batch file on the General options page, code review
generates a batch file during the next interactive code review performed in Visual Studio. You
can use this batch file to run the batch review on the same solution.

Note: If you use the /r option, you should disable Always generate a batch file, or
backup and rename your batch file. Otherwise, your batch file is overwritten.

The command line interface generates an HTML-formatted summary file (CR_solution-
name.htm) in the solution folder after a review completes. This file is identical in content to
the session file generated interactively.

You can script a batch procedure that reviews your solution, and then:

� Emails the generated summary and session files to another location

� Saves the summary file to a local intranet for later viewing from that location, or from an
external Internet Web site

� Calls CRExport.exe to export the data to XML for even more formatting and display
options (see “Exporting Data to XML” on page 89)

If code review cannot execute a batch review, it creates an error file, CR_solution-
name.err. If the batch file fails on an attempted export to XML, it creates an error file
CREXPORT_sessionfiledatabasename.err. Both error log files are created in the same
path as the session file.

Syntax and Options

Run a code review session from the command line or batch file using the following command
line syntax and options:

CRBatch.exe [/?] /f filename [/v] [/r] [/vs version] [/l XML filename]

Table 3-11. Command Line options

Option Definition

/? Displays the list of command line options for CRBatch.exe
86 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Using the Project List File in CRBatch

When running code review from the command line, you can choose some or all of the projects
in a solution to process. Projects to be processed are read from a project list XML file.

Code Review generates this file if a code review is first run against the solution in Visual
Studio. The list is based on projects selected for the solution in the Projects to be reviewed
table of the Code Review General Options page.

When the project list file is generated, it is named CR_[solutionname].xml (where
[solution name] is the name of the solution). This file is stored in the solution folder. Once
created, a project list XML file can be used in the Code Review command line interface.

If you do not wish to run a code review in Visual Studio to create the project list XML file for
command line use, you can create your own project list XML file. The following shows
project list XML file structure.

/f filename Identifies the configuration file to use in the review (mandatory)

/v or
/verbose

Instructs the command line interface to report errors in a message box
and to set the exit code used by the batch procedures (optional, although
useful when physically debugging configuration files)

/r or
/results

Instructs the command line to examine the results of the review for coding
problems and naming violations, and return a specific error code if either
or both error types were found (optional)

/vs "9.0" or
/vs "8.0"

Indicates the Visual Studio .NET Framework version where the batch
review executes:
9.0 (2008) or 8.0 (2005)

/l XML path/file
name

Performs Code Review only on the projects that are listed in the specified
XML file.
You can select individual projects in a solution to be included in the code
review. Use the Code Review options to select the projects. See “Using
the Project List file in CRBatch” for more information.
Selecting projects within a solution creates an XML file containing the list
of selected projects. Specify that XML file using the /l parameter to only
process the projects in the list for a code review. The /l parameter is not
required, but if used, the XML path/file name must follow. If the /l parame-
ter is used and the XML path/file name is not specified or can not be
found, an error displays (or is logged) and the code review will not run.
See “Understanding the Error File” for more information on logged errors.

Table 3-11. Command Line options

Option Definition
 Understanding DevPartner Studio 87

Chapter 3 · Static Code Analysis
<CRProjectList CRVersion="9.1.0">

 <!-- DevPartner CodeReview Project file-->

 <Projects>

 <Include IncludeType="Include">

 <Project>Project A</Project>

 <Project>Project B</Project>

 </Include>

 </Projects>

</CRProjectList>

If creating your own project list XML file, the file name must have a .XML extension to be
used in CRBatch.

The project list can be inclusive or exclusive. By default, the project list XML file created by
running a code review in Visual Studio is inclusive, as shown above. To make the list exclu-
sive, replace the Include specifier value with Exclude as shown in the following:

<CRProjectList CRVersion="9.1.0">

 <!-- DevPartner CodeReview Project file-->

 <Projects>

 <Include IncludeType="Exclude">

 <Project>Project C</Project>

 <Project>Project D</Project>

 <Project>Project E</Project>

 </Include>

 </Projects>

</CRProjectList>

Using the Project List XML file When Running Code Review From the
Command Line

The following shows an example of the CRBatch command that uses a project list XML file.
The file name must proceed the /l parameter in the command syntax.

CRBatch /F
"c:\VS.NET2008\WindowsApplication2\CR_WindowsApplication2.CRB" /vs
"9.0" /l
"c:\VS.NET2008\WindowsApplication2\CR_WindowsApplication2.xml"

Any CRBatch command that includes the /l parameter can also be used in a batch file.
88 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Understanding the Error File

The following error codes are returned to a calling batch process when the command line
interface exits.

If a batch-generated review encounters a build error or compile errors exist in the solution
being reviewed, the batch review stops without generating a session or summary file. An error
message is appended to the error file.

Error 11 is returned for unexpected runtime errors. The error details (error message and stack-
trace) are written to the .ERR file.

Exporting Data to XML

DevPartner code review allows you to export session results data to XML, providing you with
a simple way to port your results data into report formats, e-mail, an internal Web page, etc.
You can export your data to XML:

� From code review, after running a code review session
� From the command line, using a saved session file
� In an automated batch process, using a saved session file

The DPCRExport.xsd schema file, located in the CodeReview installation folder, describes
the contents and XML format for exported data.

Table 3-12. Command line error codes

Error Number Message

0 Successful

1 No configuration file specified

2 Configuration file does not exist

3 No solution file was specified

4 Solution file does not exist

5 CRBatch initialization error

6 Invalid command line argument

7 Create Visual Studio process failed

8 License check failed

9 Visual Studio exited with an error

10 Visual Studio version number incorrect

11 Unexpected error

12 Coding problems found

13 Naming violations found

14 Coding problems and naming violations found

70 Attempt to create error file (.ERR) failed
 Understanding DevPartner Studio 89

Chapter 3 · Static Code Analysis
Exporting Session Data from within DevPartner

After completing a code review, you can export all data from the current session file to an
XML file. Select Export DevPartner Data from the File menu and provide a name for the
export file. By default the file is saved in the same location as the solution, but the file does not
appear in the solution explorer.

You must maintain focus in the code review session window to export code review data.

This process always exports all session data, including inbound methods from the call graph
data. To be more selective about what categories of data you export to XML, use the command
line.

If code review cannot export your session data to XML, it generates an error message describ-
ing the problem it encountered.

Exporting Session Data from the Command Line

DevPartner code review includes a command line utility, CRExport.exe, that exports the
results of a code review session to an XML file. To export session data you must specify the
session file and the output file using the mandatory command line arguments. For example:

CRExport.exe /f C:\MyResults\WebApp1.DPMDB /e C:\MyXML\WebAppData

Optional command line arguments also let you specify the categories of data to export from
the session database file.

If you call CRExport.exe without passing it any of the optional arguments, it exports all
session data, including inbound methods. This behavior is equivalent to passing
CRExport.exe the /a i arguments, or initiating the data export from within DevPartner.

If the export utility cannot create the export file, it generates an error log file,
CREXPORT_sessionfiledatabasename.err, in the same path as the session file.

Syntax and Options

Export your session data to XML via the command line or batch file using the following
command line syntax and options:

CRExport.exe [/?] /f sessionfile /e xml_exportfile [/a | /a i | /p |
/m | /n | /s | /c | /c i]

Table 3-13. Command line options

Option Definition

/? Displays the list of command line options for CRExport.exe

/f sessionfile Identifies the session database to use for this export (mandatory)

/e xml_exportfile Identifies the XML file to receive the exported data (mandatory)

/a Exports all data for the specified session, including the outbound
methods for call graph data, but Inbound methods are not exported

/a i Exports all data for the specified session, including inbound and out-
bound methods for call graph data
90 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Exporting Session Data from a Batch Process

You can use CRExport.exe along with CRBatch.exe as a single batch process to conduct a
code review, and then export the session data to XML. This feature is especially useful when
you already run a code review via batch process:

� As part of a nightly build process
� On very large applications
� To automate your quality control testing

Understanding Naming Analysis

The code review feature incorporates two kinds of naming analysis capabilities:

� Naming Guidelines

The naming analyzer supports the .NET Framework. See “Understanding the Naming
Guidelines Naming Analyzer” on page 92.

/p Exports the problems data for the specified session

/m Exports the metrics data for the specified session

/n Exports the naming analysis data for the specified session

/s Exports the code size data for the specified session

/c Exports the outbound, or called, methods in the call graph data for
the specified session

/c i Exports the call graph data, including inbound and outbound meth-
ods, for the specified session

Table 3-13. Command line options

Option Definition
 Understanding DevPartner Studio 91

Chapter 3 · Static Code Analysis
� Hungarian

The Hungarian naming analyzer is a legacy naming analyzer in code review. See “Under-
standing the Hungarian Naming Analyzer” on page 94.

You can also choose None from the Naming analysis to use list on the General options
page (Figure 3-4 on page 67) to bypass naming analysis altogether.

Understanding the Naming Guidelines Naming Analyzer

The Naming Guidelines naming analyzer is patterned after the Visual Studio .NET Framework
naming guidelines. These naming guidelines ensure that consistent, predictable, and manage-
able naming practices are applied to .NET Framework types in a managed class library.

Choose Naming Guidelines from the Naming analysis to use list on the General options
page (Figure 3-4 on page 67), plus make additional selections on the Naming Guidelines
options page (Figure 3-5 on page 70) to ensure a more precise review.

The Naming Guidelines naming analyzer examines the following:

� Parameters
� Classes
� Namespaces
� Methods
� Delegates
� Enums
� Structs
� Interfaces
� Variables

The naming analyzer looks for naming violations in the source code related to capitalization,
case sensitivity, abbreviations and acronyms, and syntax for namespaces and other .NET
Framework identifiers.

The following sections describe guidelines that the Naming Guidelines naming analyzer
follows.

Capitalization

When it finds a naming violation, code review attempts to suggest a more appropriate name on
the Naming tab using the capitalization style that you selected on the Naming Guidelines
options page — Camel or Pascal.

Table 3-14. Capitalization styles used in Naming Guidelines Naming Analyzer

Capitalization
Style

First Concatenated
Word

Subsequent
Concatenated Words

Examples of
Suggested
Names

Camel case Not initial-capped Initial-capped redColor

Pascal case Initial-capped Initial-capped RedColor
92 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Case Sensitivity

DevPartner code review discourages using case sensitivity to differentiate identifiers in the
source code. Case insensitivity is strongly encouraged because it supports interoperation
between case-sensitive and case-insensitive programming languages and also reduces confu-
sion between two similarly-named identifiers. Developers should avoid names that vary only
by case. Rather, they should use names that are functional in either case-sensitive or case-
insensitive programming languages.

Abbreviations and Acronyms

DevPartner code review supports the use of generally accepted abbreviations and acronyms.
DevPartner code review determines proper naming based on:

� The number of letters for the abbreviation or acronym
� The position of the abbreviation or acronym in the identifier name

Namespace Syntax

DevPartner code review supports the .NET Framework naming convention for namespaces.
The namespace name starts with the company name, followed by the technology name, and
optionally ends with the feature and/or design name. Here is an example of the syntax:

CompanyName.TechnologyName[.Feature][.Design]

By default, code review recommends Pascal case for namespaces (see “Selecting Camel Case
or Pascal Case” on page 71). The period character (.) separates each logical concatenated
word. Enter the namespace information in the Namespace options field on the Naming
Guidelines options page (Figure 3-5 on page 70) prior to the review.

Syntax for Other .NET Framework Identifiers

DevPartner code review checks for properly named .NET Framework identifiers in the source
code. Here are some examples of what code review looks for:

� Numeric characters

DevPartner code review checks whether numbers are part of the identifier name. While
code review does not remove the numeric characters, it does flag the name as a violation.

� Underscore characters

DevPartner code review looks for instances of the underscore character (_) in the identifier
name. The underscore character is discouraged in the Naming Guidelines naming
analyzer. DevPartner code review removes the underscore character except in the follow-
ing cases:

� If the underscore is a leading character (i.e., _redColor)
� If it is used in a method name
� If its removal introduces another naming violation

� Casing for constants

DevPartner code review follows Pascal or Camel casing for constants (depending on the
case selection you made on the Naming Guidelines options page), rather than all upper-
case. For example, code review would change the constant HTTP_PORT in:
 Understanding DevPartner Studio 93

Chapter 3 · Static Code Analysis
private const int HTTP_PORT = 80

� To httpPort based on Pascal

� To httpPort based on Camel

� Delegate

If a delegate identifier name includes the word delegate (regardless of case) along with
one or more identifiable words, code review removes the word delegate as long as it does
not introduce another violation. For example, the name, MyDelegateWord, would be
renamed as MyWord.

Understanding the Hungarian Naming Analyzer

DevPartner code review includes the Hungarian naming analyzer, patterned after the Hungar-
ian Notation naming convention.

With Hungarian naming, variable names include specific character(s) that identify a particular
scope-level or data-type prefix for the variable in question. For example, the data-type prefix
int signifies an integer, such as integer variable Port; and the scope-level prefix g_ signi-
fies global, as in g_intPort.

DevPartner code review uses the Hungarian naming analyzer in a code review when the
Hungarian option is selected from the Naming analysis to use list on the General options
page (Figure 3-4 on page 67). DevPartner code review also uses the currently selected name
set. When you start a code review, the naming analyzer evaluates scope-level prefixes and
data-type prefixes for every variable in the code. If applicable, code review makes recommen-
dations consistent with the name set (Default preferred) and displays the naming results on the
Naming tab (Figure 3-9 on page 76) following the code review.

The Hungarian naming analyzer does not evaluate parameter names.

The following tables list examples of scope-level and data-type prefix combinations that are
evaluated in the Hungarian naming analyzer, as specified in the current name set.

Table 3-15. Scope prefix

Scope Prefix

Global g_

Member m_

Local ““

Table 3-16. Data Type prefix

Data Type Prefix

string str

int int

int i
94 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
The qualifiers on a variable declaration determine the scope, such as the boundaries where the
variable exists. For example, code review considers a variable with public status as having a
global scope because it is accessible outside the class.

The default name set contains scope prefixes that you can edit using the Rule Manager. You
can also customize variable and object names, based on Hungarian Notation, using the Rule
Manager.

Constructing a Hungarian Naming Suggestion

The Hungarian naming analyzer makes a more appropriate suggestion when it encounters one
or more of the following anomalies in your source code:

� It finds an incorrect or missing scope prefix (e.g., m_ for global, instead of g_)

� It finds an incorrect or missing data type prefix (e.g., Short, instead of intShort for
integer type)

� You selected the Warn if the first letter after the prefix is not capitalized check box (on
the New Rule Set or Edit Rule Set dialog box in the Rule Manager) to apply to the Hun-
garian name set, but the first letter of the variable name after the prefix is not capitalized.

The naming analyzer combines the following: Scope Level Prefix + Data Type Prefix. If you
have not specified a scope-level prefix in the Hungarian name set, the suggested name would
begin with the data type prefix.

DevPartner code review displays Unknown on the Naming tab, rather than attempt to suggest
a name if code review cannot recognize the data type for a variable because:

� The data type does not exist in the current Hungarian name set

� You have selected the Warn if unknown objects are found check box on the New Rule
Set or Edit Rule Set dialog box in the Rule Manager to apply to the name set

See “Using the Code Review Rule Manager” on page 95 for more information on managing
name sets.

Using the Code Review Rule Manager

DevPartner code review contains an extensible rules database that is based on the Microsoft
Visual Studio programming standards. The rules database is maintained and stored in the Rule
Manager standalone application. With Rule Manager, you can configure rules, triggers, and
rule sets. You can also configure Hungarian name sets that the Hungarian naming analyzer
uses during a code review. The Rule Manager stores any modifications you make to the code
review rules database. These modifications become immediately available when you config-
ure and perform your next code review.

boolean bool

bool bln

Table 3-16. Data Type prefix

Data Type Prefix
 Understanding DevPartner Studio 95

Chapter 3 · Static Code Analysis
Access Rule Manager by selecting Micro Focus > DevPartner Studio > Utilities > Code
Review Rule Manager from the Start menu.

Configuring Rules

Use the Rule Manager to create, edit, and delete rules. You can also add HTML links to the
rule descriptions to provide more information for developers trying to resolve violations.

Creating Rules

Use the New Rule dialog box to create and configure a new rule. To create a new rule,
complete the following steps:

1 Select Rule > New Rule.

The New Rule dialog box opens with the General tab displayed by default. The title bar
shows the pre-assigned rule number. The status bar shows the current Owner and Last Edit
details (see Figure 3-19).

Until you create a Trigger and Expression for the rule, it does not fire.

Figure 3-19. New Rule dialog box

2 Set up the new rule using the following tabs (in this order):

a General — to enter general rule properties

b Description — to enter details about the rule

c Preview — to review current entries

d Triggers — to configure up to five triggers for the rule

e Expression Builder — to build trigger expression(s) for each trigger

3 Click the Description tab and add a description for the rule.
96 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Use the Description tab to provide HTML links that direct developers to external
resources to help resolve coding issues. These links appear in the lower panel (Description
pane) of the Problems tab following a code review session.

4 Click the Triggers tab, and add a trigger for your rule.

See “Configuring Triggers” on page 98 for more information on creating a trigger.

5 Select the Expression Builder tab to build a trigger expression.

You can build an expression for each trigger you just configured on the Triggers tab. For
more information on building trigger expressions, refer to the Rule Manager online help.

Editing Rules

Use the Edit Rule dialog box to modify existing rule properties. The Edit Rule dialog box
contains all the same fields as the New Rule dialog box (see Figure 3-19 on page 96). To edit
an existing rule, complete the following steps:

1 Select Rule > Edit Rule.

The Edit Rule dialog box opens with the General tab displayed by default. The title bar
shows the rule number and title. The status bar shows the current Owner and Last Edit
details.

2 Modify the existing rule using the following tabs (in this order):

a General — to modify existing rule properties

b Description — to modify details about the rule

c Preview — to review current entries

d Triggers — to modify settings for the existing triggers

e Expression Builder — to modify trigger expression(s) for each trigger

Deleting Rules

You can only delete user-configured rules that reside in All Rules, not any DevPartner-
supplied rules. When you delete a user-defined rule from All Rules, the Rule Manager
automatically deletes it from any other rule sets where it also resides.

Editing a DevPartner-supplied rule removes it from system ownership but does not change it
to user-defined status. You cannot delete it from All Rules.

To delete a rule, complete the following steps:

1 Select All Rules from the Rule Set list.

The rules in All Rules appear in the Rule List pane.
 Understanding DevPartner Studio 97

Chapter 3 · Static Code Analysis
Figure 3-20. Rules List pane

2 Select one or more user-defined rules in the Rule List pane.

3 Select Rule > Delete Selected Rules from Rules Database.

The Rule Manager deletes the selected rule(s) from the All Rules rule set. This action
cannot be undone.

Delete Selected Rules from Rule Database is only enabled in the Rule menu once you
have selected All Rules from the Rule Set list.

Configuring Triggers

Select the Triggers tab to configure up to five triggers that fire a rule.

Although some DevPartner-supplied rules use macros, you cannot edit or configure a trigger
for any rules that are macro-based.

If no triggers are associated with the rule you are configuring, the Existing Triggers list box is
the only visible field and appears empty. In addition, the Add button becomes available so that
you can add a new trigger to the setup.

If one or more triggers already appear in Existing Triggers, the other fields applicable to the
trigger's Type are displayed, and required fields appear with an asterisk. The Add and Delete
buttons are available for setup.

Adding a Trigger

Complete the following steps to add a trigger:

1 Click the Add button to add a new trigger.

The Rule Manager displays a default name, New Trigger n, in the Trigger Name field. For
example, if this is your first trigger, the name is New Trigger 1.

When you reach the five trigger limit, the Add button on this pane automatically disables.

2 Enter or change the trigger name.

Do not use left [or right] brackets, such as in [CheckString]. If you type in bracket
characters, the Rule Manager ignores these keystrokes. Brackets delimit multiple triggers
in a trigger expression within the Expression field on the Expression Builder pane. An
attempt to manually insert brackets invalidates a trigger expression.
98 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
3 Select a trigger type from the Type list.

The trigger type selection determines the remaining parameters for the trigger being
configured (see Table 3-17).

4 Configure all the required fields for the selected trigger type.

Depending on the Type selected, supply different parameters for your trigger. For more
information on configuring your specific trigger type, see the Rule Manager online help.

5 Add a regular expression for your rule to the Regular Expression text box (see “Creating
New Rules Using Regular Expressions” on page 103).

Deleting a Trigger

To delete a trigger listed in Existing Triggers, complete the following steps:

1 Select the trigger and click Delete.

A confirmation message appears.

2 Click Yes to confirm or No to abort this action.

You cannot delete a trigger if it is already being used in a trigger expression.

Configuring Rule Sets

Rule sets are collections of rules you can use in a code review session. DevPartner code review
includes a selection of pre-configured rules sets. You might find you want to work with
custom rule sets, and you can use the Rule Manager to create, edit, or delete rule sets.

Creating Rule Sets

The Rule Manager includes a master rule set called All Rules. However, you can create
additional rule sets tailored to your project-specific requirements. To create a new rule set,
complete the following steps:

1 Select File > New Rule Set.

The New Rule Set dialog box appears.

2 Enter a rule set name in the Rule Set Name field (up to thirty characters).

3 Enter a brief description for the new rule set in the Description field (optional).

Table 3-17. Trigger types

Type Function

Code Detects problems in the actual source code

Web Form Page Ensures compliance with HTML and/or ASP.NET tag construction

Design Time Property Isolates the trigger firings to specific Visual Studio .NET properties

Web.config Ensures compliance with elements in ASP.NET Web.config files
 Understanding DevPartner Studio 99

Chapter 3 · Static Code Analysis
4 Select a Hungarian name set from the Use Set list in the Hungarian Name Sets section of
the dialog box.

Name sets in the Rule Manager only support the Hungarian naming analyzer, patterned
after the Hungarian naming convention. They do not support the Naming Guidelines
naming analyzer, patterned after the Visual Studio .NET naming guidelines.

5 Choose how you prefer Hungarian naming violations to appear on the Naming tab:

� If you select Warn if unknown objects are found, code review specifies a naming
violation as Unknown if it cannot make a suggestion.

� If you select Warn if the first letter after the prefix is not capitalized, code review
makes a suggestion.

6 Click OK.

The Rule Manager validates the new rule set.

7 Populate the rule set with rules by:

� Creating new rules (see “Creating Rules” on page 96).

� Opening an existing rule set in order to select, copy, and paste rules into the new rule
set.

Editing Rule Sets

To edit the properties of a rule set, complete the following steps:

1 Select an existing rule set from the Rule Set list.

2 Select File > Rule Set Properties.

The Edit Rule Set dialog box appears. The Edit Rule Set dialog box has the same available
fields as the New Rule Set dialog box.

3 Enter a rule set name in the Rule Set Name field (up to thirty characters).

4 Enter a brief description for the new rule set in the Description field (optional).

5 Select a Hungarian name set from the Use Set list in the Hungarian Name Sets section of
the dialog.

Name sets in the Rule Manager only support the Hungarian naming analyzer, patterned
after the Hungarian naming convention. They do not support the Naming Guidelines
naming analyzer, patterned after the Visual Studio .NET naming guidelines.

6 Choose how you prefer Hungarian naming violations to appear on the Naming tab:

� If you select Warn if unknown objects are found, code review specifies a naming
violation as Unknown if it cannot make a suggestion.

� If you select Warn if the first letter after the prefix is not capitalized, code review
makes a suggestion.

7 Click OK. The Rule Manager validates the changes to the rule set properties.
100 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Deleting Rule Sets

To delete an existing rule set, complete the following steps:

1 Select a rule set from the Rule Set list. You can delete user-defined rule sets, but not Dev-
Partner-supplied rule sets.

2 Select File > Delete Rule Set. The Delete Rule Set dialog box appears.

3 Click Delete. This action cannot be undone.

Configure Hungarian Name Sets

Use the Rule Manager to create, edit, duplicate, or delete Hungarian Name Sets used by the
Hungarian Naming Analyzer during a code review session. To access the Hungarian Name
Sets dialog box, select File > Hungarian Name Sets.

Creating a Hungarian Name Set

Complete the following steps to create a new Hungarian Name Set:

1 Click New. The New Hungarian Name Set dialog box appears.

2 Replace Untitled in the uppermost field with a unique name for the name set.

3 Click Create. After you click Create, the Add, Edit, and Delete buttons are enabled.

4 Select the applicable language to apply to this new name set. Once you select the lan-
guage, the Rule Manager verifies the new name.

Editing a Hungarian Name Set

Complete the following steps to edit an existing Hungarian name set:

1 Select a name set on the Hungarian Name Sets dialog box.

2 Click Edit. The Edit Hungarian Name Set dialog box appears.

3 Edit the language, variables, and objects associated with the name set as you see fit. You
cannot edit the name of a Hungarian name set.

Duplicating a Hungarian Name Set

You can duplicate a Hungarian name set. This lets you create a new name set using an existing
name set as a template. To duplicate a Hungarian name set, complete the following steps:

1 Select a name set on the Hungarian Name Sets dialog box.

2 Click Duplicate. The Duplicate Hungarian Name Set dialog box appears.

3 Replace Copy of <name> in the uppermost field with a unique name.

4 Click Create.

After you click Create, the Add, Edit, and Delete buttons are enabled. Rule Manager
verifies the name set.
 Understanding DevPartner Studio 101

Chapter 3 · Static Code Analysis
Deleting a Name Set

You can only delete a user-defined Hungarian Name Set that is not currently in use by a rule
set.

To delete a Hungarian Name Set, complete the following steps:

1 Select File > Hungarian Name Sets.

The Hungarian Name Set dialog box appears.

2 Select the name set to delete.

The Rule Manager highlights all the variables and objects associated with that Hungarian
name set within each tabbed pane, and disables the Add, Edit, and Duplicate buttons.

3 Click Delete.

The Delete Hungarian Name Set dialog box appears.

4 Click OK to delete the selected name set.

The Hungarian Name Sets dialog box appears. This action cannot be undone.

5 Click OK.

Manipulating the Rule List

There are two ways you can manipulate the rules displayed in the Rule List:

Filter the Rule List View

Use the Filter pane, located on the left side of the Rule Manager window below the Rule Set
list, to filter contents appearing in the Rule List pane (see Figure 3-20 on page 98).

1 Select a rule set from the Rule Set list.

The Rule Manager automatically lists all rules in the database when you select All Rules
in Set. Select an individual rule set to filter selections.

2 Click the Filter tab.

3 Select (or clear) at least one item from each group at Filter options.

You can select the group check box or click + to expand and make individual choices from
within the group.

You must pick at least one item from each group. If you do not, then a mouse pointer
directs you to the area needing attention. The groups include:

� Type — Rules coincide with programming technologies.

� Severity — Choices include High, Medium, or Low, and Warning. Use Warning to
call attention to a particular coding problem.

� Language — Only languages that apply to the selected rule set appears.
102 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
� Owner — DevPartner-supplied rules reference the identifier DevPartner. All other
rules become the ownership of the individual who created the rule. The Rule Manager
only displays owners that apply to the selected rule set.

4 Click Apply to filter the current view.

Find a Specific Rule

Use the Find tab, located on the left side of the Rule Manager window below the Rule Set list,
to search for one or more rules.

1 Select a rule set to search in from the Rule Set list.

If you choose All Rules in Set, all rules in the rules database appear.

2 Click the Find tab to display search options.

3 Select a criteria from the Search Rule Set For list. You can also select recent search
strings from the Contains list.

4 Enter a string at Contains to define the specific search condition.

5 Click Find.

To perform a subsequent search, choose either of the Search In options:

� All rules in set — To initiate a new search

� Current results — To continue searching within the current results

You can optionally change search criteria, noted above, and then click Find again.

Creating New Rules Using Regular Expressions

You can create your own rules in code review and use them to identify many suspect coding
practices. DevPartner code review rules make extensive use of regular expressions, which
provides a robust and versatile method for searching text.

Regular expressions are widely used, well-documented, and can be written to match patterns
in HTML, Visual Basic, and Visual C# syntax. DevPartner code review uses the same regular
expression engine as Microsoft Visual Studio and supports the same syntax.

DevPartner code review makes it easier to use regular expressions in its rules by limiting the
scope of any given rule to certain parts of the code. For example, a rule can apply to the entire
file, just methods, or only While blocks. Since rules can specify a scope, the regular expres-
sions can focus on a targeted part of the code.

DevPartner code review also assists the regular expression search by removing comments
from a code block. Removing comments before executing the review reduces false positives.

The following sections provide examples of actual code review rules and explain the regular
expressions that drive them.

To learn more about how to write regular expressions for your code review rules, refer to the
following resources:
 Understanding DevPartner Studio 103

Chapter 3 · Static Code Analysis
� Forta, Ben. Teach Yourself Regular Expressions in 10 Minutes. Indiana: Sams Publish-
ing, 2004.

� Friedl, Jeffrey E.F. Mastering Regular Expressions. 2nd ed. California: O'Reilly,
2002.

� Goyvaerts, Jan. Regex Tutorial, Examples and Reference.
1 Feb. 2006 <http://www.regular-expressions.info>.

� Microsoft Corporation. .NET Framework Regular Expressions. 2006. <http://
msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpguide/html/cpconcomregularexpressions.asp>

Matching Lines Exceeding 90 Characters

Best practice coding standards recommend that a line of code should not exceed 90 characters.
A code review rule enforces this standard by searching for lines that exceed 90 characters. The
following regular expression ensures lines do not exceed 90 characters in length:

(?-s).{91,}

This regular expression first sets the Single Line option to False, causing the expression to
evaluate all characters up to, but not including, the newline character (\n) as a single line. This
evaluation treats each line of code, from its beginning to the newline (\n) character, as a
distinct and different line.

Next, the rule incorporates the most elementary aspect of regular expressions — matching
single characters. This rule uses the period (.) metacharacter to match any single character on
the line.

The rule follows the period (.) with a repeating match metacharacter {91,}. Repeating match
metacharacters specify that a match must repeat a certain number of times, or within a certain
range of instances. In this rule, it specifies the expression is true only if any single character is
matched 91 or more times; the second value in the range is left empty, because the rule only
cares if the number of matches exceeds 90 characters. Table 3-18 describes the basic repeating
match metacharacters.

Table 3-18. Repeating match metacharacters

Character Meaning

+ Matches one or more instances of the preceding character

* Matches zero or more instances of the preceding character

? Matches zero or one instance of the preceding character

{n}
{2,6}
{n,}

Matches an exact number of instances of the preceding character where n
represents the number of required repetitions
These braces are also used to designate a range of repetition, such as from
two to six times, by including the upper and lower limit separated by a comma.
Omitting the upper limit matches against a minimum number of instances
without an upper bound
104 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Matching Tabs Used Instead Of Spaces

Best practice coding standards recommend that spaces be used instead of tabs. The number of
spaces represented by a tab can differ between editors, and this difference can cause the source
code to have a different appearance in each editor. To enforce a consistent appearance of the
source, spaces should be used. The following regular expression is used in a code review rule
that searches for the use of tabs inside of methods:

(?s)\t.*

This regular expression sets the Single Line option to True, causing the expression to evaluate
every character on every line up to and including newline characters (\n), as part of a single
line.

Next, the rule specifies a match against the tab character by using a metacharacter (\t).
Without further change, the regular expression would find every occurrence of a tab character
in the method. Instances where multiple tabs are used in a method, such as for indenting lines,
would fire the rule for each tab in that method. That is not the intended behavior of the rule.

This rule should evaluate to true if at least one tab is used in the method, but not every time it
encounters a tab in the method. To accomplish this result, the rule needs the period (.)
metacharacter followed by a repeating match metacharacter specifying zero or more instances.
Table 3-18 on page 104 shows the repeating match metacharacter to use is the asterisk (*).
Adding these last two metacharacters specifies that the rule must evaluate to true the first time
it encounters a tab character, and then capture every following character in the method.

Matching Instances Where Code Catches System.Exception

Avoid catching System.Exception to handle your errors because it does not catch errors
at a fine enough level of detail to allow for the proper differentiation of error types. Error
handling code blocks should intercept and handle errors at the finest granularity as possible,
since doing so can make a program more robust and less likely to crash. The following regular
expression is used in a code review rule designed to find instances in the code where Visual
Basic syntax is used to catch System.Exception:

Catch\s\w+\sAs\s(System\.)?Exception

The first part of this expression locates any instance of the literal word Catch in the code.
Since the rule should not match instances where Catch is the first part of a longer word, the
literal text is followed by the metacharacter for whitespace (\s).

Visual Basic syntax uses the word Catch followed by a variable name (used to hold the
exception object). The variable is followed by more whitespace, and the literal word As.

The rule needs regular expression functionality to locate a legal variable name, followed by
more whitespace, and the word As. The metacharacter \w, paired with the repeating match
metacharacter +, locates one or more instance of any alphanumeric character (upper or lower
case) or the underscore character. Adding \sAs\s finishes the search for a legal variable
name followed by whitespace and the word As.

So far, the regular expression locates the following code:

Catch MyExceptionObject As
 Understanding DevPartner Studio 105

Chapter 3 · Static Code Analysis
This regular expression would successfully locate all code that is catching exceptions.
However, the rule should only match against code that catches System.Exception. The
regular expression requires further refinement.

To ensure that the regular expression only matches instances where the code catches
System.Exception, it searches for the literal words System and Exception separated
by a period. Since the period is a metacharacter, the rule needs to specify a match on a literal
period by preceding it with the backslash, removing its special character status.

If the rule now has System\.Exception as part of the regular expression, there is still a
problem. It is acceptable syntax for the catch of System.Exception to leave off the
System. and only use the term Exception. One last modification to the regular expression
makes the matching of System. optional. Wrapping System\. in parenthesis makes it a
subexpression, which can be followed by the ? metacharacter to specify zero or one match.

Matching Methods Having More Than One Return Point

Best practice coding standards recommend that methods have only one return point. Having
more then one return point could cause code to be hard to understand. The following regular
expression is used in a code review rule that locates instances where a method has more than
one return point. Most of the pieces making up this expression have been used in previous
rules, but there are a couple of new things to examine.

(?s)(\breturn\b.*){2,}

First the rule sets the Single Line option to true, using (?s), to focus on the entire method. To
consider the method as a whole, the rule needs to evaluate every character on every line, up to
and including newline characters (\n), as part of a single line.

Another part of the expression used in earlier rules is the repeating match metacharacter at the
end. This expression uses {2,} to modify the preceding subexpression (contained in paren-
thesis), requiring that there must be two or more matches within the method.

The subexpression, (\breturn\b.*), is the part of the regular expression doing most of
the work. It is written as a subexpression to allow the whole block to be modified by the
repeating match metacharacter. The metacharacter \b is a word boundary. By surrounding the
literal text return with the word boundary metacharacters, the regular expression looks for
instances of the word standing alone, not as part of a larger word.

Note: The previous example followed the literal text Catch by the whitespace
metacharacter \s to ensure it would only find instances where Catch was a
whole word. This is a good example of flexible regular expressions. That rule
could have used the word boundary metacharacter \b, but did not.

The final .* within the subexpression searches for a match of zero or more instances of any
character. The rule is now complete, and searches entire methods for two or more instances of
the word return, followed by zero or more characters.

Enforcing Initialization Of Variables When They Are Defined

As a best practice, to keep code concise and easy to understand, variables should always be
initialized when they are defined. The following regular expression is from a code review rule
that locates instances where a variable is defined, but not initialized:

(?-s)\bDim\b(?!.*=)(?!.*\bnew\b)
106 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Since the rule needs to evaluate each line of code by itself, the first thing it does is set the
Single Line option to false.

Next, the regular expression is going to look for the word Dim. It wraps the literal text Dim
with word boundary metacharacters \b to ensure it only considers whole words.

The subexpression implements the concept of looking ahead or behind. The ability for regular
expressions to look ahead or behind gives them additional flexibility.

Looking ahead or behind means that a subexpression in the regular expression is searching for
a match. Instead of matching and returning the specified text itself, like a simple string match
would, the subexpression only verifies that the match exists. Finding a match causes the
subexpression to evaluate to true, which then allows the rest of the regular expression to
succeed or fail according to its other qualifiers. This kind of looking ahead and behind is
referred to as a positive look ahead or positive look behind, because the subexpression evalu-
ates to true when it finds text that matches.

The syntax for the positive look ahead and positive look behind is:

� Positive look ahead (?=subexpression)
� Positive look behind (?<=subexpression)

Similarly, negative look ahead and negative look behind work by searching for text that does
not match the subexpression specified in the statement.

The syntax for the negative look ahead and negative look behind is:

� Negative look ahead (?!subexpression)
� Negative look behind (?<!subexpression)

The regular expression for this rule needs to use the negative look ahead construct to detect
when there is not an equal sign (=) to the right of the Dim keyword, with or without a space
preceding it. The subexpression (?!.*=) handles that negative look ahead.

The last part of the expression, (?!.*\bnew\b), uses another negative look ahead to evalu-
ate to true if the word new does not exist to the right of the Dim keyword, with or without a
preceding space.

The complete rule now has a regular expression that evaluates to true whenever it encounters a
line of code where the word Dim is not followed by an equal sign (=) or the word new.

Matching Instances Of More Than One Statement Per Line

In order to increase readability and maintainability of code, only one statement should ever be
placed on a single line (with the exception of loop syntax). The following regular expression is
from a code review rule that locates instances where a line contains more than one statement:

(?<!for.*);.*;

It might appear that the easiest way to detect more than one statement on a given line would be
to determine if any line contains more than one semicolon. In fact, this search is the essence of
the regular expression in this rule, but it needs to also take into account the possibility of a
semicolon being associated with the for keyword.
 Understanding DevPartner Studio 107

Chapter 3 · Static Code Analysis
To exclude any instances where the keyword for is associated with a semicolon, the rule uses
the negative look behind construct (?<!for.*) to look back on any line where it encounters
a semicolon, making sure the word for is not there. The remaining part of this regular expres-
sion (;.*;) searches for a semicolon followed by any number of other characters, and then
another semicolon.

Ensuring Open Braces Are Placed On A Separate Line

Best practice coding standards recommend that open braces should be placed at the beginning
of their own separate line following the statement that begins the block. The following regular
expression is from a code review rule that locates instances where open braces are not placed
on their own separate line:

(?m)^\s*\w+(?=.*?\{).*?$

There are several new concepts at work in this expression. The rule first sets the Multi Line
option to true with (?m). This setting changes the behavior of two other metacharacters —
Line Beginning (^) and Line End ($). By enabling the multi-line option, ^ and $ capture the
beginning and end of each line rather than the entire string being searched.

Once multi-line mode is enabled, the regular expression searches for the beginning of the line
(^), followed by one or more whitespace characters (\s*), and one or more word characters
(\w+). This sets up the basis that the regular expression uses. If it finds one or more word
characters, there should be no open braces on the line.

The positive look ahead subexpression (?=.*?\{) searches through each line looking for
any character followed by an open brace. The backslash before the open brace removes its
metacharacter status. Once the rule determines that a line contains a character followed by an
open brace, and the open brace is not on a line by itself, .*? at the end of the regular expres-
sion allows it to capture the remaining text right to the end of the line (matched by the $
metacharacter).

Ensuring Loop Counters Are Not Modified Inside the Loop Bodies

Changing the loop counter inside the body of the loop could cause unpredictable results, and
makes code harder to understand. The following regular expression is from a code review rule
that locates any instance where a loop counter is modified inside of the loop body:

(?s)\bfor\b\s*\(\s*\w+\s+(?<VARNAME>\w+).*\).*\b\k<VARNAME>\b\s*=

This regular expression is extremely long because it has to do a lot of work to enforce the rule.
To identify and store the loop counter variable name, the regular expression must first capture
the for keyword, left parenthesis, and loop counter type.

The first half of the regular expression is gathering required information. It locates a line with
the for keyword, followed by any number of whitespace characters, a left parenthesis, more
whitespace characters, one or more word characters, more whitespace, and finally uses a
subexpression to capture the variable name.

The subexpression (?<VARNAME>\w+) captures the name of the loop counter and store it in
the variable, VARNAME.

This construct can use any variable name, as long as the name does not contain any punctua-
tion and does not begin with a number.
108 Understanding DevPartner Studio

Chapter 3 · Static Code Analysis
Once it has captured the name of the loop counter, the last part of the regular expression
captures any remaining characters and the right parenthesis. It then begins searching through
the loop body for an instance of the loop counter, followed by an equal sign, using the follow-
ing construct:

.*\b\k<VARNAME>\b\s*=

This part of the expression is the essence of the rule. Prior to reaching this point, the regular
expression has determined the name of the loop counter and has placed the scope of its search
within the loop body. This final part of the expression now matches all characters up to the
value of VARNAME (the loop counter), and then looks for an equal sign following the counter.

The fact that the loop counter is followed by an equal sign indicates it is being set to some
value, or modified. Since the counter should never be modified inside of the loop body, the
rule has found a violation.

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the Team Explorer client
is installed and a Team Foundation Server connection is available.

Visual Studio Team System Support in DevPartner Code Review

You can submit data to Visual Studio Team System as a Work Item of the type Bug for an
item selected in any of the following tabs in a code review session file:

� Problems tab (see “Viewing Code Violations” on page 74)

� Naming tab (see “Viewing Naming Violations” on page 76)

When you submit a bug, DevPartner populates the Work Item form with data from the tab.
For more information about DevPartner Studio integration with Visual Studio Team System,
see “Visual Studio Team System Support” on page 20.
 Understanding DevPartner Studio 109

Chapter 3 · Static Code Analysis
110 Understanding DevPartner Studio

Chapter 4

Automatic Code Coverage Analysis
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with coverage analysis. The second section provides reference
information for an in-depth understanding of DevPartner Studio’s coverage analysis feature.

Refer to the DevPartner Studio online help for additional task-oriented information about
coverage analysis.

What is Coverage Analysis?

DevPartner Studio’s coverage analysis feature allows developers and test engineers to be sure
that they are testing all of an application’s code. When you run your tests with coverage analy-
sis, DevPartner tracks all components, images, methods, functions, modules, and individual
lines of code covered by your tests. When your tests end, DevPartner displays information
showing you what code was exercised and what code was not exercised.

DevPartner can collect coverage data for managed applications, including Web and ASP.NET
applications, as well as unmanaged (native) C++ applications.

Using Coverage Analysis Out of the Box

The following Ready, Set, Go procedure introduces you to using DevPartner to analyze code
coverage.

Analyzing an application with DevPartner Studio does not require elevated system privileges.
The system privileges you use to create and debug your application are sufficient for DevPart-
ner to analyze the application.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information about the subject being described in the shaded box, read the additional text
following the box.
 Understanding DevPartner Studio 111

Chapter 4 · Automatic Code Coverage Analysis
Ready: Consider What You Want to Analyze

Before using code coverage, consider what you want to analyze.

See“DevPartner Studio Supported Project Types” on page 275 for a comprehensive list of
supported project types for DevPartner coverage analysis.

When analyzing your applications, decide what data you are interested in collecting before
beginning your coverage session. In some cases, there are steps you need to take before begin-
ning a session. For example, some set-up would be required if:

� there are modules you want to omit from the coverage analysis

� if there are unmanaged modules that you would like analyzed

� if you want to include code run on a remote server

For this procedure, all managed, local code in your application is analyzed.

Set: Properties and Options

Once you have decided what code you want included in the coverage analysis, you can set
several properties and options to focus your data collection.

Using Solution Properties and Project Properties, you can choose whether your analysis
session data should include information for .NET assemblies and COM that runs outside your
application. Using DevPartner options, you can change display options, exclude parts of your
application from analysis, or create a session control file to manage data collection. See
“Setting Properties and Options” on page 117 for more information.

The following procedure assumes:

� You are working in a supported release of Visual Studio.

� You are testing a single-process, managed application.

� You can build and run your application.

� Your solution includes a startup project.

For this procedure, you can use the default DevPartner properties and options. No additional
set-up is required.
112 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
Go: Collect Coverage Data

After considering what you want to analyze and setting the appropriate properties and options,
you are ready to collect coverage data.

Note: If a security exception message displays when attempting to collect data for a
managed application, see page 120 for information about changing your
security policy.

You can analyze coverage in conjunction with the DevPartner error detection feature.
Knowing how much of your code was covered by your tests helps you gauge the comprehen-
siveness of your error detection data. See “Integration with DevPartner Error Detection” on
page 132 for more information about running a session with both error detection and coverage
analysis.

Analyze the Data

When you take a snapshot or exit your application, DevPartner displays the session file in
Visual Studio, as shown in Figure 4-1 on page 114. The session window consists of:

� The filter pane, which lists the source files and images in your application and shows the
lines covered in each as a percentage of the total lines in the file.

� The session data pane, which contains three tabs and two coverage meters that display
data for the item selected in the filter pane.

1 From Visual Studio, open the solution associated with your application.

2 Select DevPartner > Start with Coverage Analysis to begin a coverage analysis ses-
sion.

During a session, the Session Control Toolbar options are active.

DevPartner session controls let you focus your coverage analysis on any phase of your
application. You can use the session controls to stop data collection, take a snapshot of
the data currently collected and then continue recording, or clear data collected but not
yet saved in a snapshot.

3 Run the code you want to analyze.

4 Click the Snapshot icon . (Click twice if necessary to bring focus to the session win-
dow.) When you take a snapshot, DevPartner creates a file containing the collected data,
called a session file, and displays the session file data.

5 Return to your application and continue running your tests.

6 When you are finished running your tests, exit your application. The final session file
displays in Visual Studio.
 Understanding DevPartner Studio 113

Chapter 4 · Automatic Code Coverage Analysis
� The coverage meters, displayed above the tabs in the session data pane, summarize the
line and function coverage for the item selected in the filter pane.

Figure 4-1. Coverage Analysis Session window

Using the Filter Pane and the Session Data Pane

In addition to listing files and images in your application, the filter pane also included a set of
filters you can use to help you focus on the data that is most significant to you.

To begin evaluating your data, start by using a filter to reduce the amount of data displayed,
and then examine the Method List to find methods that were least covered by your tests.

Viewing Source Code

The Source tab displays the source code for the item selected in the filter pane. Use the
Source tab to help you identify the functionality that requires more test coverage.

Filter Pane

Session Data
Pane

1 In the Filter pane, click on the Methods Less Than 20% Covered filter. This reduces the
displayed data and help you focus on methods that were least exercised.

2 Examine the data on the Method List tab to discover how much of each method was ade-
quately covered by your tests.

If there are aspects of your application that were inadequately covered, you can revise
your tests to cover more of your application’s functionality.
114 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
Figure 4-2. The Source Code tab

Note: To present source code data for managed applications, DevPartner requires
program database file (PDB) information.

On the Source tab, you can right-click on a line to view the context menu, from which you can
go to the previous unexecuted line, the next unexecuted line, choose the columns to display, or
choose another source file to view.

Viewing Session Summary Data

The Session Summary tab displays a synopsis of the coverage analysis session.

You can display the code for a specific method in a source file by double-clicking on the
method in the Method List.

3 On the Method List tab, double-click a method with a low value in the % Covered col-
umn. The source code for that method is displayed on the Source tab, as shown in Figure
4-2

The Source tab indicates coverage data for each line of code. DevPartner highlights the
lines that were executed (green by default), not executed (purple by default), and lines
that cannot be executed, such as comments (gray by default).

The Count column displays the number of times the line was executed.
 Understanding DevPartner Studio 115

Chapter 4 · Automatic Code Coverage Analysis
Figure 4-3. The Session Summary tab
.

Saving Session Files

When you have finished reviewing coverage data you can save the session file. If you have
created more than one session file, you can merge the coverage data from multiple session
files.

DevPartner saves session files as part of the active solution. They appear in the DevPartner
Studio virtual folder in Solution Explorer. Coverage session files take the .dpcov extension.

4 Click on the Session Summary tab.

The Session Summary includes contextual information about the session, such as the date
and time of the session, the processor speed and operating system, and so on. This infor-
mation can be useful when viewing an older session file, particularly one that was created
by someone else.

The summary also includes coverage data from the filter pane and the Method List tab,
showing data for both the files and the methods that were analyzed.

5 Scroll through the tab to view the session summary data.

1 Close the session file window in Visual Studio to save the session file. When prompted,
accept the default file name and location. By default, the file is saved in the project’s out-
put folder.

2 If there are multiple coverage session files for this solution, you might be prompted to
merge the files, or the merge might occur automatically, depending on the Merge setting
in your solution properties. Refer to “Solution Properties” on page 117 for information
about the Automatically Merge Session Files property.
116 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
By default, DevPartner physically saves the session files in your project's output folder.
DevPartner automatically increments the file name based on the contents of the default folder
(for example, MyApp.dpcov, MyApp1.dpcov, and so on). If you save session files to a
location other than the default folder, you must manage the file naming and numbering.

For projects that do not have an output folder, such as a Visual Studio 2005 Web site project,
DevPartner physically saves the files to the project folder.

Session files generated from the command line are not automatically added to the project's
solution. You can manually add externally generated session files to an open solution in Visual
Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running a coverage analysis session, continue reading the rest of
this chapter for additional information, or refer to the DevPartner online help for task-based
information.

Setting Properties and Options

Before beginning a coverage analysis session, it is often useful to fine-tune data collection to
include or omit certain types of information. Use Solution Properties, Project Properties, and
DevPartner options to better focus your analysis session.

Solution Properties

To view coverage properties available at the solution level, select the solution in the Solution
Explorer and press F4 to view the Properties window.

Figure 4-4. Solution properties

The following solution properties affect coverage analysis:

� Automatically Merge Session Files - Controls merge behavior for coverage analysis ses-
sions (described in “Merging Session Data” on page 127).

� Collect from .NET - Visible only for managed code applications. Set this property to false
if you do not want DevPartner to collect information for .NET assemblies.
 Understanding DevPartner Studio 117

Chapter 4 · Automatic Code Coverage Analysis
This property affects only coverage analysis and performance analysis sessions. Memory
analysis and Performance Expert always collect data from managed applications, even
when this value is set to false.

The Collect from .NET property is not available with DevPartner for Visual C++ Bound-
schecker Suite.

� Startup project - The solution must include a startup project. If the solution contains mul-
tiple startup projects, DevPartner prompts you to choose a startup project for the session.

Project Properties

To review project level properties, select a project in the Solution Explorer and review the
properties that can be set for projects within the solution.

Figure 4-5. Project properties

The following project properties affect coverage analysis:

� Collect COM Information - DevPartner collects method level data based on DLL
exports and COM interfaces. Select False if you do not want DevPartner to collect infor-
mation for COM that runs outside your application.

� Instrument Inline Functions - DevPartner always collects coverage data for inline func-
tions in managed applications.

� For unmanaged code, set this property to True to instrument inline functions. Inline func-
tions are not instrumented by default if inline optimizations are enabled.

All properties persist unless you explicitly change them.

Options

To review DevPartner option settings for coverage analysis sessions, choose DevPartner >
Options > Analysis.

� The Display option allows you to set the precision, scale, and units used when displaying
your data.
118 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
� The Exclusions option allows you to omit one or more images from data collection. Refer
to “Excluding Images” for more information on excluding images.

� The Session Control File option allows you to create a set of rules and actions to control
the data that DevPartner collects as your application or module runs. Refer to “Analysis
Session Controls” on page 301 for more information about session control files.

Other Visual Studio options, such as the Environment > Fonts and Colors options, also
affect DevPartner features.

Excluding Images

When you run an application under coverage analysis, DevPartner collects data for all source
and system images. However, you can use Exclusions to omit one or more images from analy-
sis.

While viewing Analysis Options (DevPartner > Options > Analysis) select Exclusions -
Coverage.

From the Show list at the top of the page, select one of the following:

� Global exclusions
� Local exclusions in current user folder
� Local exclusions in executable foldery

The Local exclusions in current user directory and Local exclusions in executable direc-
tory options are available only when a solution is open and the executable folder differs from
the current working folder.

Click Insert to add an image to the exclusion list. Type a name, or browse to the image you
want to exclude. Allowable file types for exclusion are .exe, .dll, .ocx, and .netmodule.
Use the Files of type list to limit the types of files displayed.

If you choose a .NET module (.netmodule), only the unmanaged parts of the module are
excluded.

To remove an image from the list of exclusions, select the item and click Delete.

To save a copy of the exclusion list (nmexclud.txt) to another location, click Save To.
Global exclusions are saved in nmexclud.txt in the \Analysis sub-folder in the DevPart-
ner installation folder. Local exclusions are saved in nmexclud.txt for the application in the
current working folder or in the application executable folder.

Exclusions do not apply to files compiled with Native C/C++ Instrumentation. For example, if
you attempt to exclude an instrumented unmanaged C/C++ image, DevPartner still collects
information for that file, although no system call information is collected. If you wish to
exclude an unmanaged C/C++ image from data collection, do not instrument that image.

About Instrumentation

When you run a managed application, DevPartner inserts hooks into the byte code for each
assembly as it is loaded by the compiler, a process called instrumentation. This code contains
instructions that DevPartner uses to collect coverage data while your application is running.
 Understanding DevPartner Studio 119

Chapter 4 · Automatic Code Coverage Analysis
DevPartner instrumentation does not change the actual files on disk; it only modifies the in-
memory representation of files as they execute.

Unlike managed code, which DevPartner instruments at runtime, you must instrument unman-
aged C/C++ code when you compile it. To instrument unmanaged code, DevPartner inserts
hooks directly into your source code. DevPartner provides an Instrumentation Manager in
which you specify the type of instrumentation to be used and specify any projects in the
solution to exclude from instrumentation. (Refer to “Collecting Data for Unmanaged Code” on
page 121 for more information about the Instrumentation Manager.) When you rebuild the
unmanaged project, the hooks are inserted. To remove the hooks, turn off instrumentation by
deselecting the Native C/C++ Instrumentation option from the DevPartner menu, and rebuild
the project.

Collecting Data from Various Types of Applications

This section provides information about using DevPartner coverage analysis to collect data
from different types of applications.

DevPartner supports all Visual Studio managed code languages, as well as unmanaged C/C++.
DevPartner can also collect coverage data for JScript and VBScript Web applications when
using Internet Explorer (IE) or Internet Information Services (IIS).

Refer to “DevPartner Studio Supported Project Types” on page 275 for a complete list of
languages and project types supported in each version of Visual Studio.

Collecting Data From Managed Code

Many applications developed in Visual Studio are managed applications, such as C#, Visual
Basic, and managed C++ applications.

When attempting to collect data for a managed application, a security exception message
displays if your security policy prevents DevPartner instrumentation of your code. By default,
assemblies must have the SkipVerification permission to be profiled. If you remove
this permission from the permission set of the policy under which the code executes, or add
imperative security declarations to the assembly that cause this permission to be revoked, the
assembly can not be profiled.

To remedy this condition, enable secure profiling in one of two ways.

� Set the following global environment variable and retry profiling the application:

NM_NO_FAST_INSTR=1

This solution allows you to work around this issue, although it does exact a slight perfor-
mance penalty.

� Change the policy for the assembly using the .NET Framework Configuration tool MMC
snap-in, or by temporarily removing any imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help for more informa-
tion on security policy in Visual Studio.
120 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
Collecting Data for Unmanaged Code

When you build your unmanaged C++ application for coverage profiling with Native C/C++
Instrumentation, DevPartner works with the compiler to add instructions to your application
image to collect coverage data at run time.

To instrument unmanaged code:

1 Open the solution that contains the unmanaged C/C++ project for which you want to col-
lect data and choose DevPartner > Native C/C++ Instrumentation Manager.

2 Select the Instrument the projects checked below when I build my solution check box
and select a type of instrumentation. The type of instrumentation you choose must match
the type of analysis you subsequently run.

3 Select the projects to be instrumented. By default, DevPartner instruments all unmanaged
code in the solution. Deselect modules to be omitted.

4 Click OK and rebuild the solution. DevPartner instruments the unmanaged C/C++
projects you selected. Select Start with Coverage Analysis to begin the analysis session.

DevPartner saves the project selections you make in the Instrumentation Manager with the
solution. Once you use the Instrumentation Manager to configure instrumentation, you can
turn instrumentation on and off with the Native C/C++ Instrumentation option from the
DevPartner menu or the Native C/C++ Instrumentation button on the DevPartner
toolbar. Use the Instrumentation Manager only to change settings.

To remove instrumentation from your application at a later time, deselect the Native C/C++
Instrumentation option from the DevPartner menu. The next time you start a coverage analy-
sis session or rebuild the solution, Visual Studio rebuilds the solution without instrumentation.

Note: If your application calls unmanaged Visual Studio components, you must
compile these components with DevPartner instrumentation for coverage
analysis in Visual Studio. See the DevPartner Studio online help in Visual
Studio for more information.
 Understanding DevPartner Studio 121

Chapter 4 · Automatic Code Coverage Analysis
Mixed-mode C++ Files

With unmanaged (native) C++, you can compile your application as managed code with the /
clr option, but mark sections of your code with #pragma (native). The compiler generates
native code for any methods defined in the #pragma section. DevPartner does not support
mixed-mode C++ files. When profiling a program that includes a C++ file with both managed
and unmanaged (native) sections, DevPartner collects coverage data only for the managed
code portions, not the native code portions from #pragma. To collect data for unmanaged
C++ code, place the unmanaged code in a separate file and instrument it, as described in
“Collecting Data for Unmanaged Code” on page 121.

Collecting Data from Multiple Processes

Applications may run more than one process. For example, when you profile an ASP.NET
application you may see the browser process (iexplore), the IIS process (inetinfo), and
the ASP worker process (aspnet_wp or w3wp).

When you run a multi-process application under coverage analysis, the DevPartner Session
Control toolbar displays the active processes in the process selection list.

Figure 4-6. Session Control toolbar with the Process Selection list

Use the process selection list to focus data collection. When you take a snapshot, DevPartner
creates a session file with data for the process selected in the process selection list.

Collecting Data from Remote Systems

You can use DevPartner to enable coverage data collection for application components
running on a remote system. For example, you might want to collect coverage data for both
client and server portions of a client/server application. With DevPartner, you can collect
coverage data for client and server processes as you run the client application.

To collect data simultaneously from a client system and a remote system, install DevPartner on
the client and install DevPartner and the DevPartner Remote Server license on the remote
system. See the DevPartner Installation Guide and the Distributed License Management
Licensing Guide for more information about the Remote Server license.

A server connected through a Terminal Services connection does not require the DevPartner
Remote Server license. See “Using Terminal Services and Remote Desktop” on page 21 for
information on Terminal Services.

On the remote system, select the relevant projects and review the DevPartner properties to
ensure that they match options set on the client system. DevPartner restarts server processes,
such as IIS, after you change options. This restart is necessary for changes to take effect.

Be sure to specify instrumentation if you are analyzing an unmanaged C++ application. If your
application calls unmanaged C++ components, you must instrument those components if you
want to collect data from them. See “Collecting Data for Unmanaged Code” on page 121.
122 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
Correlated Data

When using IE and IIS as browser and Web server, or using COM to make inter-process calls,
DevPartner automatically recognizes a client/server relationship between the processes. To
preserve the relationship between the methods of DCOM objects or the relationship between
HTTP client and server (IE and IIS), DevPartner correlates the data from those sessions. It
then combines the correlated data with the client session data into a single session file.

The correlated session file contains the coverage data for both the client and server portions of
your application. The correlated session file appears in Visual Studio, like any other session
file, with _co appended to the file name, as in appname_CO.dpcov.

You can use DevPartner > Correlate > Coverage Files to combine data from different
session files when there is no COM-based relationship or client/server relationship between IE
and IIS. You can also use the NMCORRELATE command line utility to manually combine data.

Collecting Data From .NET Web Applications

If you develop Web Forms, XML Web Services, or ASP.NET applications, you can use
DevPartner to collect coverage data for both client and server portions of your application.
You can configure DevPartner to collect data for IIS and ASP.NET running on the local
computer or on a remote server.

If the Web application calls unmanaged (native) C++ components, you must instrument them
using the DevPartner commands in Visual Studio. To collect data for native C++ components
called by your application, you must instrument and rebuild the objects with Native C/C++
Instrumentation, as described in “Collecting Data for Unmanaged Code” on page 121. Instru-
ment for coverage analysis. DevPartner collects data for only one analysis type in a session.

Note: DevPartner session files are saved with the current solution. Opening a Web
project from IIS directly, as opposed to opening the project through Visual
Studio, may cause a different solution file to be used. DevPartner session files
created in the first solution would not be visible in the second solution.

Prerequisites

For DevPartner coverage analysis to successfully profile an ASP.NET application, the follow-
ing two conditions must be met:

� The project must include a web.config file.

� The web.config file must include a compilation element with the debug attribute set to
true. For example:

<compilation debug=”true”/>

DevPartner can also collect data for in-process or out of process components called by your
application.

Analyze ASP.NET Applications without Debugging

For optimum results, run coverage analysis without debugging.
 Understanding DevPartner Studio 123

Chapter 4 · Automatic Code Coverage Analysis
Figure 4-7. Start Without Debugging option

Only one script debugger can be active at one time. If you debug a Web application with
debugging, both Visual Studio and DevPartner attempt to load a script debugger. A message
displays indicating that the script debugger failed to attach to IE. The session continues
without interruption despite the error message.

To avoid the error message, you can either disable script debugging in iexplore or run
coverage analysis without debugging.

Unexpected File Save Dialogs or Saved Session Files

Under certain circumstances, you may see an unexpected File Save dialog box after quitting an
ASP.NET application, or find that unexpected session files have been saved if you have
configured DevPartner to automatically save session files.

When running coverage analysis on an ASP.NET application, DevPartner collects data for IE
as the primary profiled process. DevPartner also saves session data for secondary processes,
such as an ASP.NET worker process (w3wp or aspnet_wp). When the primary process
stops, DevPartner stops data collection and generates a final correlated session file that
contains both client data (for IE) and server data (for IIS and ASP.NET) worker processes. You
can also take a snapshot of the server process alone by selecting the process in the Session
Control toolbar.

In most cases the client and server processes are terminated by user action. However, the
ASP.NET worker process can also shut down automatically during profiling. This can occur if
you have edited the processModel Attributes section of the machine.config file
on the system on which the process runs in one of the following ways:

� Changed the value of the requestLimit or requestQueueLimit attribute from
“Infinite” to a value low enough to cause the process to be shut down during the session

� Changed the value of the timeout or idleTimeout attribute from Infinite to a value
low enough to cause the process to be shut down during the session

� Changed the value of the memoryLimit attribute to a percentage low enough to cause
the process to recycle during the session

When the process is shut down, DevPartner takes a final snapshot and generates a session file.
DevPartner handles the session file in one of the following ways:

� If the ASP.NET worker process is the selected process in the Session Control toolbar,
DevPartner opens the session file in Visual Studio and adds it to the solution. This action
is repeated for each instance of the ASP.NET worker process that is spawned and termi-
nated.

� If the ASP.NET worker process is not the selected process, the session file is cached.
When the IE client process stops, or when a snapshot of the IE process is taken, DevPart-
ner creates a session file for IE, and a correlated session file that includes data for IE, IIS,
and all instances of the ASP.NET worker process spawned and terminated up to that point.
124 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
When the analysis session has ended, DevPartner continues to display the File Save dialog box
or automatically save session files for instances of the ASP.NET worker process that are
spawned and terminated.

To avoid generation of extra session files due to frequent termination of the ASP.NET worker
process, you can edit the machine.config file and set the limiting attribute to a value high
enough to prevent premature termination of the process.

Note: Always make a backup copy before editing the machine.config file.

Collecting Data from Classic Web Script Applications

When you run a classic Web script application with DevPartner coverage analysis enabled,
DevPartner gathers data for HTML files and JScript and VBScript source files. If the scripting
languages invoke in-process or out-of-process components, such as COM objects, DevPartner
can collect data for these as well.

Instrumentation for the scripting languages occurs at run-time, just as it does for managed
.NET languages. However you do need to instrument any unmanaged code components, such
as COM objects, that you want monitored.

The following procedure is unique to classic Web script applications. To collect data for Web
Forms, XML Web services, and ASP.NET applications you develop in Visual Studio, run the
application just as you would run any other managed application.

To collect data for a classic Web script application, choose Start > Programs > Micro Focus
> DevPartner Studio > Utilities > Web Script Coverage.

IE starts with DevPartner Coverage Analysis loaded. In addition to IE, a Session Control
toolbar appears, which you can use to control data collection.

In the DevPartner-enabled instance of IE, open the HTML page or Web application for which
you want to collect coverage data and exercise the application. Optionally, use the Session
Control toolbar to focus data collection as the application executes.

Exit IE or, if using the Session Controls, execute a Stop action. The Save Session dialog box
displays and the session file is automatically saved.

Web Service Requirements

For DevPartner coverage analysis to detect a Web service, the service must meet at least one of
the following requirements:

� The Web service must be derived from the System.Web.Services.WebService
base class.

� The Web service must contain the WebService attribute.

For DevPartner coverage analysis to detect a Web method, the method must contain the
WebMethod attribute.
 Understanding DevPartner Studio 125

Chapter 4 · Automatic Code Coverage Analysis
Deleting Temporary Files from NMSource

While analyzing scripts for coverage under IE or IIS, DevPartner creates an NMSource folder
to hold temporary copies of the script source. This source is displayed in the Source tab of the
Session window when you are analyzing session data.

Because this source may be needed at any time, DevPartner does not delete files from
NMSource. The size of this folder can grow quickly, particularly when you are analyzing
server programs under IIS.

You should regularly review the source files in the NMSource folder and delete any related to
projects that are no longer active. NMSource is located in the \Program files\Internet
Explorer folder.

Configuring IIS for Data Collection

To collect coverage data for IIS/ASP.NET applications running on a remote server, set the
following configuration options.

Note: If IIS runs on a remote server, you must install DevPartner (and a Remote
Server license) on that system and set the options described below on the
remote system.

Script Debugging

You can set the following options in the Default Web Site Properties, or in the WebApplication
Properties for a specific application, of the IIS manager. The following options apply to IIS 5.0
or 6.0.

On the Home Directory or Directory tab, click Configuration. On the Application Debug-
ging tab, set the Debugging Flags to:

� Enable ASP server-side script debugging

� Enable ASP client-side script debugging

Host Process Settings

If your Web application runs in the dllhost process, you may need to change the Application
Protection options to enable DevPartner to collect coverage analysis data. You can set these
options in the Default Web Site Properties, or in the WebApplication Properties for a specific
application, of the IIS manager. The following options apply to IIS 5.0 or 6.0.

On the Home Directory or Directory tab, in the Application Settings section, set the Applica-
tion Protection to one of the following:

� Low (IIS Process) Your application runs in the inetinfo process. DevPartner restarts IIS
when you enable data collection and collects data from this process as your application
runs.

� High (Isolated) Your application runs as a separate instance of dllhost. DevPartner rec-
ognizes the new process and collects data as your application runs.

When you have finished collecting data, restart IIS to remove DevPartner data collection from
the process.
126 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
Configuring Internet Explorer for Coverage Analysis

To collect coverage analysis data from IE, select Tools > Internet Options. On the Advanced
tab, set Disable script debugging (Internet Explorer) to OFF and set Disable script debug-
ging (Other) to OFF.

Collecting Data from a Service

To run a coverage analysis session for a service, use DPAnalysis.exe. With DPAnaly-
sis.exe, you can run sessions directly from the command line or through an XML configura-
tion file.

Collecting Data from COM and COM+ Applications

You can collect data for an application that makes calls to COM or DCOM components with
DevPartner.

If you profile an application that uses a mix of unmanaged COM and .NET objects (COM+),
DevPartner collects line-level data for .NET portions of the application. DevPartner collects
line-level data for unmanaged code components if they have been instrumented with DevPart-
ner Native C/C++ Instrumentation. DevPartner can also collect line-level data for your unman-
aged COM objects, if you first instrument them for coverage data collection. You can do this
by building the project with instrumentation for coverage analysis in Visual Studio.

If profiling a C++ object, or any unmanaged code component that has not been instrumented,
DevPartner collects only method-level data based on COM interfaces and DLL exports.

Merging Session Data

When testing an application using DevPartner, it is unlikely all application code is tested in
one session. It is important to be able to gather coverage data collected in several sessions and
analyze your total coverage statistics. To accumulate coverage data, merge the session files.
Merging is the process of accumulating data from multiple sessions into a single file.

Files that contain merged session data are called merge files (.dpmrg). DevPartner can associ-
ate many merge files with a single project. DevPartner saves merge files as part of the active
solution. They appear in the DevPartner Studio virtual folder in Solution Explorer.

You cannot merge correlated session files or Web Script session files produced from running
IE. You can merge server-side session files from IIS.

To create a merge file, select DevPartner > Merge Coverage Files to create a new merge file
or add data to an existing merge file. Merge files can also be created automatically, as
described in “Merge Settings” on page 130.

When you merge session data, DevPartner:

� Maintains a record of all the images and methods that were loaded in any of the contribut-
ing session or merge files.
 Understanding DevPartner Studio 127

Chapter 4 · Automatic Code Coverage Analysis
� Compares percent covered values and returns the superset of the data. For example, if you
merge a session with 30% methods covered and a session with 20% methods covered, you
may have not reached 50% coverage. There are likely parts of the code that were executed
in both sessions.

� Uses data from the session or merge file that ran the latest image to determine if the meth-
ods and images are new, changed, or removed. DevPartner uses the time stamps of the
images to determine the latest image.

� Calculates percent volatility values for each source and image. Percent volatility repre-
sents the percent of methods that changed in your code between sessions. It demonstrates
your code stability.

� Maintains information about the files involved in the merge, when the merge occurred,
and who performed the merge.

Reviewing Merge Data

DevPartner displays merge data in the Merge Data window. The Merge Data window
contains the filter and Merge Data panes. The Merge Data pane contains the Method List,
Source, Merge History, and Merge Summary tabs.

Figure 4-8. Merge Data window

� The Method List tab uses the State column in merge files. DevPartner uses the State col-
umn to distinguish methods that are new, changed, or removed between sessions.

� The Merge History tab displays a graphical representation of the progression of the
% Lines Covered, % Methods Covered, and % Volatility values for the current merge
file.

� % Lines Covered is the percentage of lines in your source code that were executed.

� % Methods Covered is the percentage of methods in your source code that were
called.

Filter Pane Coverage meters

Method List tab
Source tab
Merge History tab
Merge Summary tab
128 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
� % Volatility is the percentage of methods whose source code has changed since the
last merge.

If you have performed less than five merges in a merge file, DevPartner displays the
Merge History tab as a bar chart. If you have performed five or more merges in a merge
file, DevPartner displays the Merge History tab as a line chart.

Hold your cursor over a point on the graph to see specific data for that merge.

To show or hide a bar or line, choose or clear the check box in the key

� The Merge Summary tab displays summary information about the sessions and merge
files that were merged into the file. It also contains information about each of the instru-
mented images used during the sessions, including the Percent Volatility for each image.

Note that if the source files have changed, merging coverage session files affects the synchro-
nization of the method data that appears on the Method List tab and the line data that appears
on the Source tab.

Merge States

If you change your code, DevPartner tracks those changes and adjusts the coverage data
accordingly. It uses merge states to distinguish between changed, new, and removed methods
and images. DevPartner displays information about these states in the State column on the
Method List.

Methods

A method’s state can be new, changed, removed, or unchanged. The State column indicates
new and changed methods; a blank entry in the State column indicates that the method has not
changed.

Removed methods display in the Removed Methods filter. They are not used to calculate
coverage statistics.

DevPartner does not distinguish between major and minor code changes. For example, when
you make a change to a method that changes the number of lines in the method (for example,
add or remove a comment), DevPartner marks the method as Changed. When you merge
sessions that used executable files with different optimization options, DevPartner interprets
this difference as a change and might mark some methods as Changed.

Images

Images can be loaded in one session and not in another. When an image is not loaded,
DevPartner cannot determine what methods are in the image, or compare the image and its
methods to find changes in relation to another session.

An image’s state can be new, activated, or inactive. Activated images are images that were
present in another session in the merge file and have been reloaded. An inactive state can
result from several conditions.

� DevPartner marks an image as inactive if the image has been removed.

Tip: To quickly determine the last session file you merged, examine the Merge History
on the merge file Merge Summary tab.
 Understanding DevPartner Studio 129

Chapter 4 · Automatic Code Coverage Analysis
� DevPartner marks an unmanaged code image as inactive any time it is not loaded. For
example, if your application uses an unmanaged DLL but you do not load it during a ses-
sion, when you merge that session with an earlier session that did load the DLL, DevPart-
ner marks it as inactive. To obtain a complete coverage picture for an application that
includes both unmanaged and managed code projects, make sure you run the unmanaged
code portions of the application in the final coverage session you add to the merge file.

� DevPartner marks an unmanaged code image as inactive if the image was excluded from
coverage data collection using the Exclude option, described on page 119.

� In managed applications, DevPartner marks an assembly as inactive only if the assembly
(and all references to it) are removed from the application.

Inactive images are displayed in the Inactive Source filter in the filter pane. They are not used
to calculate coverage statistics. DevPartner displays a value of 0% for the Inactive Source
filter. When the Inactive Source filter is expanded, DevPartner shows coverage values for the
individual inactive images. These values reflect coverage data for the sessions in which the
images were active.

ASP.NET Modules in Merge Files

When you run a coverage session, DevPartner uses a repeatable algorithm to generate names
for .aspx files compiled into an assembly. Because the algorithm is repeatable, DevPartner
assigns the same name each time the assembly is registered. This feature provides a consistent
name for each assembly, allowing you to accurately track changes for the assembly.

This naming operation takes place only when you run a coverage session. The default Visual
Studio behavior remains unchanged when you build or rebuild a project that includes an
.aspx file. Visual Studio assigns a randomly generated eight-character name to each .aspx
file. When you edit the .aspx file and rebuild the assembly, Visual Studio assigns a new
random eight-character name.

Merge Settings

When you generate session files, you control the default merge behavior by setting the merge
property for the solution.

To set the merge property, select the solution in the Visual Studio Solution Explorer and
display the Visual Studio Properties window. Choose a property under Automatically Merge
Session Files in the DevPartner Coverage, Memory and Performance Analysis properties.

� If you want to selectively accumulate coverage data and be prompted to merge sessions
you did not merge, use the Ask me if I would like to merge it setting.

� If you want to selectively accumulate coverage data and not be prompted about sessions
you did not merge, use Close without prompting.

� If you want to accumulate coverage data in a merge file automatically for every session,
use Merge it automatically.
130 Understanding DevPartner Studio

Chapter 4 · Automatic Code Coverage Analysis
Exporting Coverage Data

You can export coverage data in XML format or in CSV format. Exporting data in XML or
CSV format facilitates using your own or third-party software to analyze the data, integrate the
data with data produced by other tools, and archive the data in a data warehouse.

� You can export DevPartner coverage session files (with the .dpcov extension) and
merged coverage files (with the .dpmrg extension) to XML format. When a saved cover-
age session file is open, the Export DevPartner Data command is available on the File
menu. Refer to “Exporting Analysis Data to XML” on page 307 for information about
exporting in XML format.

You can also export data from the command line, as described in “Exporting Analysis
Data to XML” on page 307.

� You can export Method List data to a comma-delimited (CSV) text file. Click the Method
List tab, display the columns you want to export, right-click in the Method List and
choose Export Method List from the context menu. You can open the comma-delimited
text file in Microsoft Excel or another spreadsheet application.

Controlling Data Collection

DevPartner gives you three ways to control when coverage data is collected during the use of
your application:

� You can use the session control toolbar to interactively control data collection as your pro-
gram runs.

� You can use a session control file to assign session control actions to specific methods in
your application modules.

� You can use the Session Control API to control data collection in your program.

Using the session control toolbar or Session Control API allows you to control data collection
anywhere within a method. Using a session control file allows you to control collection only at
the entrance to or exit from a method.

Using a session control file and using the Session Control API are described in “Analysis
Session Controls” on page 301.

Analyzing from the Command Line

To automate data collection or run analysis sessions from the command line, use DPAnaly-
sis.exe, the DevPartner command-line executable. For information on using DPAnaly-
sis.exe, refer to “Starting Analysis from the Command Line” on page 283.

Using the Coverage Analysis Viewer

DevPartner Studio provides a lightweight Coverage Analysis Viewer for analyzing coverage
session files independently of Visual Studio. To launch the viewer, do any of the following:
 Understanding DevPartner Studio 131

Chapter 4 · Automatic Code Coverage Analysis
� On the Start menu, select Programs > Micro Focus > DevPartner Studio > Coverage
Analysis Viewer.

� Double-click a .dpcov session file in Windows Explorer.

� Run a coverage analysis session using DPAnalysis.exe on the command line. DevPart-
ner displays the session data in the Coverage Analysis Viewer.

What You Can Do in the Coverage Analysis Viewer

With a session file open, you can view, sort, save, or print coverage session data. In addition,
you can:

� View the source code for a method
� Sort the data on the Method List tab
� Export the contents of the file as XML
� Export the contents of the Method List in CSV format

What you Cannot Do in the Coverage Analysis Viewer
� Instrument an unmanaged application for coverage analysis
� Start a coverage session
� Add files to a Visual Studio solution

Session files generated outside of Visual Studio are not automatically added to the project's
solution. You can manually add externally generated session files to an open solution in Visual
Studio.

Integration with DevPartner Error Detection

You can use DevPartner error detection with coverage analysis to collect coverage data and
check for errors during the same session when you run your managed application or unman-
aged C/C++ application. You must instrument unmanaged C/C++ applications for Error
Detection and Coverage with the Native C/C++ Instrumentation Manager before collecting
data.

See “Error Detection” on page 23 for more information about error detection with DevPartner.

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the Team Explorer client
is installed and a Team Foundation Server connection is available. Refer to “Visual Studio
Team System Support” on page 20 for general information about Team System support.

In a coverage analysis session file, you can submit data for a method selected in the Method
List tab in a DevPartner coverage analysis session file as a Work Item to Visual Studio Team
System.

When you submit a Bug, DevPartner populates the Work Item form with data from the visible
columns in the Methods List tab. To change the method data you submit in the Work Item,
change the columns displayed in the Method List.
132 Understanding DevPartner Studio

Chapter 5

Finding Memory Problems
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with memory analysis. The second section provides reference
information for an in-depth understanding of how to use DevPartner memory analysis.

Refer to the DevPartner online help for additional task-oriented information about memory
analysis.

What is Memory Analysis?

The DevPartner memory analysis feature enables you to analyze memory allocation in your
managed Visual Studio application.

DevPartner memory analysis presents memory data in context, enabling you to navigate
chains of object references and calling sequences of the methods in your code. This provides
an in-depth view of how your program uses memory and the critical information that you need
to optimize memory use.

When you run your application under memory analysis, DevPartner shows you the amount of
memory used by an object or class, tracks the references that hold an object in memory, and
identifies the lines of source code within a method that are responsible for allocating the
memory.

DevPartner memory analysis includes three analysis types: Memory Leaks, Temporary
Objects, and RAM Footprint. You can perform all three types of memory analysis in a single
memory analysis session.

Each analysis type contains a real-time graph, a dynamically updated class list, and several
session controls that enable you to control data collection and other memory-related events,
such as forcing a garbage collection on the active process and creating a detailed view of the
heap.

Note: The DevPartner memory analysis feature analyzes managed code only, and is
therefore not supported in the DevPartner for Visual C++ Bounds-Checker
Suite.

Because memory analysis is integrated into Visual Studio, you can use it to test applications as
you develop them. You can also run memory analysis sessions from the command line, or as
part of an automated test scenario, by using the DevPartner command-line executable
DPAnalysis.exe with traditional command-line switches or an XML configuration file. For
information, see “Starting Analysis from the Command Line” on page 283.
 Understanding DevPartner Studio 133

Chapter 5 · Finding Memory Problems
Using Memory Analysis Out of the Box

The following Ready, Set, Go procedure introduces you to using one of the three DevPartner
Studio memory analysis features: Memory Leaks analysis.

Analyzing an application with DevPartner Studio does not require elevated system privileges.
The system privileges you use to create and debug your application are sufficient for DevPart-
ner to analyze the application.

Ready: Consider What You Want to Analyze

Does your application performance slow down over time or when you perform certain opera-
tions? Does your application perform poorly under load conditions or when other applications
are running? If you see any of these symptoms in your application you may be experiencing
memory-related issues.

DevPartner memory analysis collects data only from managed applications. In order to collect
memory analysis data for your application, the solution must contain at least one managed
code project (for example, C#, Visual Basic, or managed C++). It must also include a startup
project. If the solution includes multiple startup projects, DevPartner prompts you to choose a
startup project for the session.

See “DevPartner Studio Supported Project Types” on page 275 for a comprehensive list of
supported project types for DevPartner memory analysis.

The amount of memory consumed by your application has a major impact on how well the
application performs. The larger the amount of memory allocated, the more likely the applica-
tion runs slowly and scale poorly.

Leaked memory — the allocation of memory that is not reclaimed — can bloat your applica-
tion’s RAM footprint. Automatic garbage collection relieves you of the responsibility to
explicitly free the objects that you create, so memory is not “leaked” in the classic C++ sense,
but it is still possible to retain references to objects that the program never uses.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information about the subject described in a shaded box, read the additional text fol-
lowing the box.

The following procedure assumes:

� You are working in a supported release of Visual Studio.

� You are testing a single-process, managed application.

� You can build and run your application.

� Your solution contains at least one managed code project.

� Your solution includes a startup project.
134 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
As long as a reference to an object exists, the referenced object is considered to be a live
object by the garbage collector; a live object cannot be collected. This condition, like leaked
memory in C++, is undesirable. Such references can be difficult to track down and that is
where memory analysis helps you.

This procedure assumes a single process application, but you can use DevPartner Studio to
analyze complex, multi-process applications. Refer to “Collecting Data from Multiple
Processes” on page 176 for additional information on how to profile multi-process applica-
tions.

Set: Properties and Options

There are a minimal set of configuration settings specific to memory analysis sessions.

If you find that your application slows down too much while running memory analysis, you
may be able to improve performance by excluding system objects from the analysis. See
“Setting Properties and Options” on page 144 for details on changing the Track System
Objects setting and other memory analysis settings.

Go: Collect Memory Analysis Data

Before starting a Memory Leaks analysis, it is useful to understand the workflow of the analy-
sis.

Clicking Start/Stop marks the beginning and end of a tracking period for new memory alloca-
tions, excluding all other memory allocations by the application.

When you click View Memory Leaks some or all objects that were allocated during the track-
ing period are done with their tasks and are ready to be garbage collected.

Memory analysis analyzes all of the allocations collected during the tracking period and
identifies leaks as objects that still have live references and cannot be collected.

View Memory Leaks forces a garbage collection and creates a session file to display these
leaked objects in several graphic and list views. In the scenario depicted in Figure 5-1,
Memory Leaks Analysis workflow timeline, on page 136, the Memory Leaks session file
would contain two leaked objects B and C that survived garbage collection. From the data,
decide which leaked objects are expected and which ones are real leaks.

Garbage collection can be a system garbage collection or user-initiated by selecting either the
Garbage Collection icon or the View Memory Leaks icon.

For this procedure, you can use the default DevPartner properties and options. No
additional set-up is required.
 Understanding DevPartner Studio 135

Chapter 5 · Finding Memory Problems
Figure 5-1. Memory Leaks Analysis workflow timeline

You are now ready to perform a Memory Leaks analysis.

Figure 5-2. Memory Analysis Session Control window

1 In Visual Studio, open the solution associated with your application.

2 Choose DevPartner > Start Without Debugging with Memory Analysis. Wait for
the application to start and for the DevPartner Memory Analysis window to display the
Session Control Window.

Start
memory
analysis

Timeline

Start
tracking
period

Garbage
collection
(optional)

Stop
tracking
period

View
Memory
Leaks

Application
end

X
Y

A
B

Memory Allocations
X - not tracked, not garbage collected (expected)
Y - not tracked, garbage collected
A - tracked, garbage collected
B - tracked, not garbage collected (expected)

C

Start/Stop Tracking

View Memory Leaks

Garbage Collection

Pause display

Real-time Graph

Top 20 Class List

Process List

Memory Leaks tab
136 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Patterns that appear in the session control window graph as you exercise the application
provide the initial diagnosis of how the application is using memory. Different memory
problems show characteristic patterns, so the real-time graph provides importants clue about
the existence and nature of a problem. This helps determine the type of memory analysis to
perform.

For example, a steadily rising pattern that does not return to baseline or respond as expected to
garbage collection may indicate leaked memory.

For in-depth information on other characteristic patterns in the real-time graph, see “Using the
Session Control Window in Memory Analysis” on page 147.

For a complex application, the number of classes displayed in the list may be large. Right-
click in the list and choose Show Top 20 Classes with Source from the context menu to limit
the class list to your application’s source code methods.

3 Click the Memory Leaks tab.

4 Warm up the application by exercising the features that you plan to test. Warming up
the application eliminates initialization allocations from the tracking period.

5 Click Start/Stop to start tracking new memory allocations and exclude previous
memory allocations.

6 Exercise the application feature that you are collecting data from and run it through a
complete cycle, but do not stop the application.

For this procedure, limit the tracking period to exercising a single feature within your
application. This reduces the complexity of the session data and improves performance.
 Understanding DevPartner Studio 137

Chapter 5 · Finding Memory Problems
Analyze the Memory Analysis Data

The Memory Leaks analysis session file records all objects allocated during the tracking
period that had an active reference at the time you clicked View Memory Leaks. Use the
session file to examine objects, methods, and critical execution paths to help determine why
objects are still in memory.

Memory Leaks analysis helps identify unneeded objects in the context of the application and
to find the best point in the reference chain to remove the references that keep these objects in
memory.

7 Click Force Garbage Collection to issue a garbage collection on the active pro-
cess.

Figure 5-3. Session Control Window after garbage collection

8 Examine the list in the lower half of the Session Control window. The list shows infor-
mation about the classes that contain objects with active references after the garbage
collection.

9 Click Start/Stop to stop the tracking period and exclude new memory allocations.
If your application is active in the background, the values contained in the list may
change, but the tracked instances do not increase.

10 Click View Memory Leaks to force another garbage collection and create a Memory
Leaks analysis session file.

11 Close the application.

Memory analysis automatically creates a second file, a Temporary Objects analysis
session file, which is in focus in Visual Studio.

12 Click the Leak...Analysis Snap.dpmem tab to bring the Memory Leaks snapshot ses-
sion file into focus.
138 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Figure 5-4. DevPartner Memory Analysis - Memory Leaks Analysis summary

Refer to “Using the Object Reference Graph” on page 151 for in-depth information on
working with memory analysis session files.

Details for Objects that
refer to the most leaked
memory

Details for Methods that
allocate the most leaked
memory

The DevPartner Memory Analysis - Memory leaks analysis summary contains bar
charts for Objects that refer to the most leaked memory and Methods that allocate
the most leaked memory.

The remainder of this procedure guides you through inspecting details in both summa-
ries.

1 Click Show Complete Details below Objects that refer to the most leaked memory.
 Understanding DevPartner Studio 139

Chapter 5 · Finding Memory Problems
Figure 5-5. DevPartner Memory Analysis - memory leaks object reference details

If you need more information or deeper program understanding, use the tabbed views to
examine object references, identify the execution paths that allocated the memory, and locate
the lines responsible for source code.

List of referring objects

Navigation Frame

Object Reference Graph

Source Tab

Allocation Trace Graph
Tab

Return to summary

2 Examine the DevPartner Memory Analysis - Memory Leaks view that displays a list of
referring objects sorted by Leaked size (byte). The Referring object responsible for
the most leaked memory appears at the top of the list.

The tabs at the bottom of the window display an Object Reference Graph, Allocation
Trace Graph, and a Source window.

3 Choose the Object Reference Graph tab and then select a referring object in the list at
the top.

When you select a referring object from the list, the Object Reference Graph
highlights the selected object.

4 In the Object Reference Graph, hover the mouse over an object node to get informa-
tion about the leaked memory associated with that object.

5 Drag the navigation frame in the overview pane to focus on various parts of the
Object Reference Graph.

6 Right-click a Referring object in the list and choose View leaked objects referenced
by this object. The default sort order is Referenced size (bytes), which highlights the
amount of memory that could be freed if the object was collected.

You should understand why the objects are still referenced and at this stage, you can
decide where in the code you want to break the references (if needed).
140 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
� The Object Reference graph provides a graphical representation of objects and the related
object references. The display depicts each object with related information such as mem-
ory used by itself and its children, or the percentage of memory used by the object.

� The Allocation Trace graph provides a graphical representation of the execution paths in
your code. This gives you the context of where the object was allocated.

� The Source window displays the related source code for each object.

Consider the expensive object references and decide whether or not the application can be
optimized by managing the object references differently.

Figure 5-6. DevPartner Memory Analysis - Allocation Trace graph

For an in-depth example, see “Objects that Refer to the Most Leaked Memory” on page 161.
For various techniques to access source code, see “Navigating the Source Tab” on page 154.

After identifying source code that correlates to an object reference, memory management
beyond the object level to the inter-relationships between objects and object references can be
seen. From here, begin making decisions on whether or not the object references can be
managed differently to improve application performance.

Object reference management changes could involve using smaller objects, weak references,
different sequencing of object references, or limiting the number of layers of abstraction.

Execution Path

Navigation Frame

Return to previous

Allocation Trace Graph tab

7 When you decide that you want to make changes, select the Allocation Trace Graph
tab to see the execution paths that created the object and allocated the memory.

8 Choose the Source tab and select an object in the Object List. Notice the source code
reference change for each object that you select.

9 Right-click an object in the list and choose Edit source to display the related source
code line in the Visual Studio editor.

There is no editable source code available for system objects.

10 Close the Visual Studio editor.
 Understanding DevPartner Studio 141

Chapter 5 · Finding Memory Problems
For Web applications, awareness of a client-server relationship may allow you to capitalize on
a garbage collection on the server when scalability is a focus.

Figure 5-7. DevPartner Memory Analysis - method list Call graph

For an in depth example, see “Methods that Allocate the Most Leaked Memory” on page 163.

Critical execution path

Source tab

Navigation Frame

Expand or collapse
calling sequences

Method List

Return to Summary

11 Select the DevPartner Memory Analysis - Memory leaks analysis session file tab
and click to return to the Summary page.

In addition to the Objects that refer to the most leaked memory, you can analyze the
Methods that allocated the most leaked memory.

12 From the Summary page, choose Show Complete Details for Methods that allocate the
most leaked memory.

The Method List displays source methods that allocated the most leaked memory.

13 Select a method in the Method List to display the Call Graph.

14 In the Call Graph window, hover the mouse over a method node or the line between
method nodes. Compare leaked size contributed by the method node and its children.

The critical execution path is highlighted with a bold, gold-colored line.

15 Use the + and - controls to expand and collapse the calling sequences to various levels
for method nodes.

16 In the list above, right-click on a method name and select View Source from the con-
text menu.

17 In the list, right-click on a method name and choose View Summary.
142 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Saving Session Files

When you have finished reviewing memory analysis data you can save the session files.

DevPartner saves session files as part of the active solution. They appear in the DevPartner
Studio virtual folder in Solution Explorer. Memory analysis session files take the .dpmem
extension.

By default, DevPartner physically saves the session files in your project's output folder.
DevPartner automatically increments the file name based on the contents of the default folder
(for example, MyApp-TemporaryObjectSnap1.dpmem, MyApp-
LeakAnalysisSnap1.dpmem, and so on). If you save session files to a location other than
the default folder, you must manage the file naming and numbering.

For projects that do not have an output folder, such as a Visual Studio 2005 Web site project,
DevPartner physically saves the files to the project folder.

Session files generated from the command line utility are not automatically added to the
project's solution. You can manually add externally generated session files to an open solution
in Visual Studio.

The remainder of this chapter provides reference information and an in depth exploration of
each DevPartner memory analysis feature: Memory Leaks, Temporary Objects, and RAM
Footprint.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running a memory analysis session, continue reading the rest of
this chapter for additional information, or refer to the DevPartner online help for task-based
information.

Memory Problems in Managed Visual Studio Applications

Managed Visual Studio applications benefit from a sophisticated memory management
environment with garbage collection. Unlike unmanaged (native) C++, in which you explicitly
free the memory that you allocate, the garbage collector frees memory once the object for
which it was allocated is no longer in use, or more accurately, no longer “reachable” by the
application.

Because of the built-in memory management in managed code projects, many developers
assume that managed languages relieve them of the headaches traditionally associated with
memory management. However, memory allocation and use in managed Visual Studio
programs can still cause performance bottlenecks and resource depletion.

Does your application exhibit any of the following symptoms?

1 Close both session file windows in Visual Studio. DevPartner prompts you to save the
session file.

2 Click Ok to save the file with the default file name and location.
 Understanding DevPartner Studio 143

Chapter 5 · Finding Memory Problems
� Performance slows down over time
� Runs slowly, or slows down noticeably when you perform certain operations
� Performs poorly under load conditions
� Performs poorly when other applications are running

Any of these symptoms indicate that your application has a performance problem. Refer to the
following lists of questions to better understand if the problem is related to memory use.

� Several application classes must load before the program executes a particular function
and each application class uses memory.

� Does your program load classes that are only related to performing current tasks?
� How many instances of a particular class does your application create and are all

instances needed?

� Object allocation also incurs memory use which may lead to performance problems.

� Do you know if your program allocates too many objects, or allocates them effi-
ciently?

� Does the garbage collector clear the objects that your program allocates?
� Are the objects being collected as expected, or do the objects remain in memory long

past their usefulness?

How Memory Analysis Helps You

The DevPartner memory analysis feature provides a comprehensive view of memory use in
your managed application. DevPartner provides three different types of memory analysis to
help you isolate different kinds of memory-related problems. Regardless of which type of
analysis you use, all types include the following features:

� Real-time graph — DevPartner presents a live view of memory use in your application
while it runs. This view appears in the Session Control Window. You can see how much
memory is being used by your application code (profiled code), system and other applica-
tion code (excluded code), and how memory consumption compares to the memory
reserved for the managed heap.

� Dynamic list of classes — DevPartner updates the list of profiled classes in real time
while your application runs. This shows you the number of objects allocated and number
of bytes used by each class, as your application runs.

� Detailed heap views — You can capture a snapshot of a detailed view of the managed
heap at any time during program execution. DevPartner stores this data in a session file
that you can then use to analyze memory problems in depth. DevPartner provides multiple
ways to drill down into the session data, so you can see how your application uses memory
and ultimately identify the methods or lines of code responsible for the most memory use.

Setting Properties and Options

Before beginning a memory analysis session, it is often useful to fine-tune data collection to
include or omit certain types of information. Use Solution Properties, Project Properties, and
DevPartner options to better focus your analysis session.
144 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Solution Properties

To view properties that affect memory analysis at the solution level, select the solution in the
Solution Explorer and press F4 to view the Properties Window.

Figure 5-8. Solution properties

The following Solution properties may affect memory analysis:

� Collect from .NET - Running your managed application with memory analysis overrides
this property if it is set to False. Memory analysis always collects data from managed
applications.

� Startup project - If your solution includes multiple projects, you can change the startup
project. The Project properties for the startup project govern data collection for all
projects active in the session.

Note that your solution must include a startup project. If the solution contains multiple startup
projects, DevPartner prompts you to choose a startup project for the session before analysis
begins.

Only projects for which the Action in the Common Properties > Startup Projects page of
the solution properties is set to Start are included in the prompt dialog. If the desired startup
project does not appear in the prompt, open the solution properties page and set the Action for
the project to Start. If you choose a new startup project for a subsequent session, review the
properties for the new startup project to ensure the data collection options are correct.

Project Properties

To review project level properties, select a project in the Solution Explorer and review the
properties that can be set for projects within the solution.
 Understanding DevPartner Studio 145

Chapter 5 · Finding Memory Problems
Changes that you make here affect coverage analysis, memory analysis, performance analysis,
and Performance Expert.

Figure 5-9. Project properties

The following project-level property affects memory analysis:

� Track System Object - Set this property to False to ignore system or third-party object
allocations when tracking allocated objects in memory analysis sessions.
The default state, True, enables you to see memory allocations made by system or other
non-profiled resources

Options

To review DevPartner option settings for memory analysis sessions, choose DevPartner >
Options > Analysis.

Figure 5-10. Analysis Options

� Precision - Choices are one, two, three, or four decimal places

� Units - Choices are Bytes, Kilobytes, or Megabytes
146 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
� The Session Control File option allows you to create a set of rules and actions to control
the data that DevPartner collects as your application or module runs. Refer to “Creating a
Session Control File Within Visual Studio” on page 301 for more information about ses-
sion control files.

Other Visual Studio options, such as the Environment > Fonts and Colors options, also
affect DevPartner features.

Starting a Memory Analysis Session

You may choose to run a memory analysis session with or without debugging. From the
DevPartner menu, the only option is to start a memory analysis session without debugging.
After you open a project or solution, the selection to the right of the memory analysis icon
allows you to start the session with or without debugging.

Figure 5-11. Memory Analysis Icon with option to start with or without debugging

Start Without Debugging with Memory Analysis is the default setting for memory analysis
due to ease of understanding analysis results, and improved performance. You may instrument
your code with break points and Start with Memory Analysis with debugging to isolate the
performance of specific sections in your code.

An alternative to setting break points to isolate sections of your code is to use either the
SessionControl.txt file or the Session Control API to perform memory analysis actions
while your program runs. Refer to “Creating a Session Control File Within Visual Studio” on
page 301 for more information about session control files.

Using the Session Control Window in Memory Analysis

When you start a new memory analysis session, DevPartner opens the Session Control
Window. Each tab in the Session Control Window corresponds to one of the types of memory
problems you can analyze: Memory Leaks, Temporary Objects, and RAM Footprint. Each tab
contains a view of the real-time graph, the dynamically updated class list, and several session
controls that enable you to control data collection and other memory-related events, such as
garbage collection. The data shown in the class list and the session controls available differ
slightly, depending on the tab selected.
 Understanding DevPartner Studio 147

Chapter 5 · Finding Memory Problems
Figure 5-12. DevPartner Memory Analysis Session Control window

Patterns in the Real-time Graph

Observe the real-time graph when you start a session. The pattern that appears in the graph as
you exercise your application shows initial diagnosis of how your application is using
memory. Different memory problems show characteristic patterns, so the real-time graph
provides the first clue as to the existence of a problem and the nature of the problem. This
helps determine what kind of memory analysis to perform.

� A steadily rising pattern that does not return to baseline or respond as expected to garbage
collection may indicate leaked memory. Run Memory Leaks analysis.

� A pattern that does return to baseline but is characterized by periodic spikes in memory
use indicates that your application is creating lots of objects as it runs. Run Temporary
Objects analysis.

� If your application consistently consumes nearly all the reserved system memory in the
managed heap, and the amount is large relative to the anticipated resources of your target
users’ systems, you may want to reduce the overall memory footprint of your application.
Run RAM Footprint.

Dynamic Class List

The class list shows the 20 profiled classes that consume the most memory. The list is updated
dynamically as your application runs under memory analysis. Use the class list to observe
which classes are associated with increases in memory consumption or increases in object
creation. Because the list is updated in real time, you may be able to spot potential problem
areas as you exercise your application.
148 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
The following columns are available in the class list. Columns that indicate data is displayed in
units present data in bytes, kilobytes, or megabytes, depending on the options that you set in
DevPartner Analysis Display Options.

� To change the sort order of the class list, select a column heading in the Top 20 Classes by
list.

� To limit the class list to classes for which source code is available, right-click anywhere in
the list and choose Show Top 20 Classes with Source from the context menu.

When you display the class list with the Show Top 20 Classes with Source option, array
classes appear in the list if the array element type is in the source code.

Tracked objects are objects allocated after the user clicks Start Tracking and before the user
toggles the selection to Stop Tracking.

DevPartner Memory Analysis Session Control Window

The Session Control window provides a number of ways to interactively control data collec-
tion and display.

Table 5-1. Column Headings In the Dynamic Class List for Memory Analysis

Columns Data Displayed

Class names Name of the class

Namespace Namespace of the class

Instance count Number of objects of this class currently in memory

Size (units) Amount of memory used by instances of this class.
Default sort for Temporary Object and RAM Footprint analysis.

Tracked instance count
(Visible in Memory Leaks
analysis only)

Number of tracked objects of this class currently in memory.
Default sort in Memory Leaks analysis.

Tracked size (units)
(Visible in Memory Leaks
analysis only)

Amount of memory used by all of the tracked objects of this
class that are currently in memory.

Table 5-2. Memory Analysis Session Control window features

Session Control Function

Process Use the list of processes at the upper right of the tabbed area to
choose a process to monitor. New processes (that are configured
to be profiled) are added to the list as they begin to execute. The
default selection is the start process.

Start/Stop Tracking

(Memory Leaks only)

Starts or stops tracking memory allocations (toggle). When you
click this button, the graph changes color to indicate the portion
tracked.
 Understanding DevPartner Studio 149

Chapter 5 · Finding Memory Problems
View Session Results

As your application runs, you can capture a snapshot of memory use by clicking the appropri-
ate View... button. This creates a session file that contains memory usage data. You can create
as many session files as you need during a given run of your application. Capturing a snapshot
does not stop data collection.

Unsaved session files open automatically in Visual Studio after they are created and all session
files become part of the active solution when saved. They appear in the DevPartner Studio
virtual folder in the Solution Explorer pane.

Session files first appear in the form of a Results Summary. Use the Results Summary to drill
into the session data and locate problem areas in source code.

Session File Integration

When your application execution stops, DevPartner displays the results of the memory analy-
sis sessions in a Session window in Visual Studio. DevPartner stores the collected data in a
memory analysis session file, with a .dpmem extension.

DevPartner automatically adds the session files to the DevPartner Studio folder that you can
view in the Solution Explorer for the active solution. To review an existing memory analysis
session file, double-click the file in Solution Explorer.

Clear All Memory

(Temporary Objects
only)

Clears all memory data collected to this point. Does not affect gar-
bage collection.

Force Garbage Col-
lection

Forces a garbage collection on the active process.

Pause Display Pauses the display (toggle) but does not stop data collection. When
Pause is clicked again, the graph display begins redrawing the cur-
rent memory use activity.

Table 5-3. Snapshot commands for Memory Analysis View Session Results

Snapshot Command Function

View Memory Leaks Forces a garbage collection on the active process and opens a
session file that displays detailed memory leaks data.

View Temporary
Objects

Creates a session file that displays detailed temporary objects
data. Does not force a garbage collection on the active process.

View RAM Footprint Forces a garbage collection and opens a session file displaying
detailed RAM footprint data.

Table 5-2. Memory Analysis Session Control window features

Session Control Function
150 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
From the Session window, you can analyze results within the development environment. Drill
down into the data to examine object references or the call relationships of the methods that
allocated the objects, jump to the source code for a particular method, and open the source
code for any method for editing in Visual Studio.

Using the Object Reference Graph

When analyzing objects that remain in memory, you want to understand what prevents them
from being collected by the garbage collector. The Object Reference graph shows the
complete chain of objects between the selected object and the garbage collection root or roots
that are keeping the selected object alive.

The Object Reference graph does not show all referring objects, but those referring objects
that point to a garbage collection root. For reasons of completeness, the graph also occasion-
ally shows objects in the object reference path even if they are not on the shortest path to a
garbage collection root.

Figure 5-13. Memory Analysis Object Reference graph

The Object Reference graph automatically redraws when you select an object in the Object
List.

The Object Reference graph consists of two frames:

� The left frame presents an overview pane of the Object Reference graph. The overview
pane contains a navigation frame that allows you to quickly locate and view different parts
of a large graph.

� The right frame presents the object reference relationships for the object you selected in
the Object List.
 Understanding DevPartner Studio 151

Chapter 5 · Finding Memory Problems
The node highlighted in yellow represents the selected object. Numeric data on the node
indicates leaked size or referenced size, depending on context. Object reference paths are
indicated by lines with arrows indicating the order of reference. Labels on the connecting lines
indicate the member variable that holds the reference.

Using the Call Graph to Identify Execution Paths

The Call graph consists of two frames:

� The left frame shows an overview pane of the Call graph that is useful to navigate a large
graph. As you move the navigation frame in the overview, the view in the right frame
changes dynamically.

� The right frame shows the Call graph. Methods are shown as nodes. Links between nodes
represent calling relationships. Expand nodes to view the order of program execution.

Figure 5-14. Memory Analysis Call graph

Call graphs are read left to right. The first node initially shown in the Call graph is the base
node. This represents the method selected in the Method List. Nodes to the left of the selected
node are called parent nodes. Nodes to the right of a node are called child nodes.

The upper half of the node shows the node name, which is the name of the function or method
being displayed by the node. The bottom half shows the node value, which is a percentage
value associated with the node. This value is the percentage of memory the node is using of the
total memory being used by the node (and all of its child nodes).

The smaller rectangles on the left and right sides of the nodes are called links. They represent
either a method call or invocation. The percentages on the lines tying nodes together are called
link values and show a percentage value associated with the link. The link value shows the
percentage of memory that child (and its children) are using of the total memory being used by
its parent node.

Nodes that have no associated parent/child nodes are called “dead end nodes”. They represent
the end of a path of execution, either at the start or end of an order of method calls.
152 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
To show the Method name list and associated Call graph for temporary objects, click Show
Complete Details from the Entry points that allocate the most memory graph or the
Methods that use the most memory graph.

Once the Method name list and associated Call graph appears, you can display Call graphs for
the methods in the Method name list by selecting a method in the Method name list. To view
the source code for a method, select the node representing a method and click the Source tab
at the bottom of the Call graph window.

Critical Paths

When you display a Call graph, DevPartner computes the critical path for the selected method
and all of its children. The critical path is the sequence of child method calls that resulted in
the largest cumulative memory allocation. The critical path is highlighted with a bold, gold-
colored line.

Using the Allocation Trace Graph

DevPartner displays the method calls that allocated memory in the Allocation Trace graph.
The Allocation Trace graph is available in RAM Footprint and Memory Leaks session files. It
is visible in any view that includes an object list.

Figure 5-15. Memory Analysis Allocation Trace graph

To display the Object List and associated Allocation Trace graph, do one of the following:

� Click Show Complete Details under the Objects that refer to the most leaked memory
(Memory Leaks) or Objects that refer to the most allocated memory (RAM Footprint)
graph in a memory analysis Results Summary.

� Drill down from the Methods that allocate the most leaked memory (Memory Leaks) or
the Methods that allocate the most memory (RAM Footprint) view in a Memory Analy-
sis Results Summary.

To view the Allocation Trace graph for an object, do one of the following:
 Understanding DevPartner Studio 153

Chapter 5 · Finding Memory Problems
� Select the object in the Object List and click the Allocation Trace graph tab at the bottom
of the session file window.

� Right-click an object in the Object List and choose View Allocation Trace graph from the
context menu.

DevPartner redraws the Allocation Trace graph for the selected object.

To view and edit the source code for any node in the Allocation Trace graph, right-click on the
node and choose Edit Source from the context menu. DevPartner opens your source code for
editing, at the selected method.

Viewing and Editing Source Code

Selecting the Source tab displays source code for the profiled application.

A Source tab view can be accessed from many points in the DevPartner memory analysis
session windows, either by context menus, or by simply clicking the Source tab at the bottom
of the session window. In addition to source code, the Source tab includes data about the
individual lines of source code. The data available on the Source tab varies, based on the type
of memory analysis performed and your data column display choices.

In addition to viewing data about your source code, you can jump directly to the source code in
the Visual Studio editor by choosing Edit Source from one of the DevPartner memory analy-
sis context menus. DevPartner opens the source file for editing at the line that corresponds to
the object node, method node, or line of code in the Source tab from which you executed the
Edit Source command.

Note: If the source code does not display or contains unintelligible characters,
DevPartner may not have been able to determine the encoding of the source
file. If you know the encoding, right-click in the source pane and choose
Encoding... from the context menu. Select the correct encoding in the dialog
and click OK to display the source file. From this context menu, you can also
change to a different source file.

The Source tab consists of a view of application source code and includes data columns that
contain information about the source methods used by your application. The data columns
available are tailored to the context in which the Source tab appears. Different sets of data
columns are available in Memory Leaks analysis, Temporary Objects analysis, and RAM
Footprint analysis sessions.

Navigating the Source Tab

You can jump to the relevant line of source code on the Source tab from any object or method
(for which you have source code) in the session window.

� From any Memory Leaks, RAM Footprint, or Temporary Objects results summary, click
Show Complete Details to drill down into the session data

� In the session window, click the Source tab (at the bottom of the window)
154 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Viewing Source Code

Use the following techniques to view the related source code in memory analysis.

Editing Source Code

Use the following techniques to edit related source code in memory analysis.

Customizing the Source Tab Data Columns

� Right-click on a column heading and use Choose Columns to change the data columns
displayed in the Source tab. Source tab columns are not sortable.

Changing the Source File

� Right-click on the title bar of the Source tab window and use Choose Another Source
File… to select a different source file. This creates a new mapping for the source file. It
does not affect any other source paths.

Table 5-4. Viewing source code

View or Graph Viewing Source Code

Object View Select an object in the Object List and click the
Source tab.

Object Reference Graph or Alloca-
tion Trace Graph

Right-click an object node and choose View
Source on the context menu.

Method View Select a method in the Method List and click the
Source tab.

Call Graph Right-click a method node in the Call graph and
choose View Source on the context menu

Table 5-5. Editing source code

Graph or List Editing Source Code

Object Reference graph or Allocation
Trace graph

Right-click an object node and choose Edit Source
on the context menu. DevPartner opens the source
file in Visual Studio for editing

Call graph, Object list, or Method list Right-click a method in the Object List, Method
List, or a node in the Call graph and choose Edit
Source on the context menu. DevPartner opens
the source file in Visual Studio for editing.
 Understanding DevPartner Studio 155

Chapter 5 · Finding Memory Problems
Identifying Memory Problems

Consider the following scenario:

When your Quality Assurance team reports the first test results for your new managed applica-
tion, you are pleased to learn that it does what it is supposed to do. But in later tests, QA runs
longer test cycles and reports that the longer the application runs, performance slows down.

That is not what you want to hear. How do you know what part of your application to examine
first? When you find the problem, how do you correct it?

To find problems in your application, run the application under DevPartner memory analysis.
You do not have to wait until you suspect a memory problem to use DevPartner. Make testing
your application’s memory use with DevPartner a routine part of the development process.

DevPartner helps you quickly learn how your application uses memory resources, revealing
current or potential problem areas.

After you start a memory analysis session without debugging, use the Session Control
Window to observe how your program uses memory.

The real-time graph presents a visual representation of memory use. The class list updates
dynamically to show the classes that use the most memory as your program runs. Right-click
the class list to switch between the Top 20 classes and the Top 20 classes with source.

The Session Control buttons in the user interface allow you to take a snapshot of the managed
heap for detailed analysis.

When you run a memory analysis session, you can choose to examine one of three important
potential problem areas:

� Memory leaks
� Temporary object creation
� Overall RAM footprint

First choose the appropriate memory analysis feature for the symptom that your application
exhibits. You eventually want to run your application under all three types of memory analy-
sis. Even if you do not find a problem, the thorough analysis enhances your understanding of
how your program uses memory resources.

Table 5-6. Symptoms and Analysis tools

Symptom Analysis Tool

Performance degrades over time; recovers on restart.
Performance improves after restarting the application,
but degrades again.

Memory Leaks

Scalability problems; temporary performance degrada-
tion.

Temporary Objects
Memory Leaks

Sluggish performance, does not improve after restarting
the application.

RAM Footprint
Temporary Objects
156 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Running a Memory Analysis Session

The first thing you notice when running any memory analysis session is the real-time graph on
the Session Control window. The real-time graph provides a visual representation of how your
application uses memory resources. Observe the pattern the graph takes as you exercise your
application. Different memory usage scenarios create characteristic patterns, so the real-time
graph provides the first clue to the existence and nature of a memory problem.

Tip: Pay careful attention to the shape of the real-time graph as you run your
application. You can often diagnose a memory problem immediately by observing and
learning from the pattern of the graph.

Figure 5-16. Memory Analysis Session Control window real-time graph

For example, if the graph shows a rising pattern that never returns to baseline, as in Figure 5-
16, your application is probably leaking memory. You may suspect that the progressive
slowdown of your application that your QA team noticed is consistent with a memory leak, but
the real-time graph confirms that diagnosis.

If the graph returns to the baseline, but you see periodic spikes in memory use, your applica-
tion is creating large numbers of objects as it runs. Granted, the allocated memory is being
freed, but such an application may not scale well under load.

If your application slows down in response to an increase in users or inputs, the slowdown
could indicate a scalability issue. Again, the real-time graph indicates the nature of the
problem, enabling you to immediately point your diagnostic efforts in the right direction.

Even in the absence of a suggestive pattern, the real-time graph provides important informa-
tion. For example, if your application consistently consumes nearly all of the memory
allocated for the managed heap, and that amount is large relative to the anticipated resources
of your target users’ systems, you may want to reduce the overall memory footprint of your
application. The next sections in this chapter provide detailed information about such cases
and their implications for application performance.

Locating Memory Leaks

The amount of memory consumed by your application has a major impact on how well the
application performs. The larger the amount of memory allocated, the more likely it is that the
application runs slowly and scale poorly.

Leaked memory—the allocation of memory that is not reclaimed—can bloat your applica-
tion’s RAM footprint. Automatic garbage collection relieves you of the responsibility to
explicitly free the objects that you create, so memory is not “leaked” in the classic C++ sense,
but it is still possible to retain references to objects that the program never uses.
 Understanding DevPartner Studio 157

Chapter 5 · Finding Memory Problems
As long as a reference to an object exists, the referenced object is considered to be a live
object by the garbage collector; a live object cannot be collected. This condition, like leaked
memory in C++, is undesirable. Such references can be difficult to track down and that is
where memory analysis helps you.

Consider Memory Leaks analysis.

Running a Memory Leaks Analysis Session

The Ready, Set, Go section “Using Memory Analysis Out of the Box” on page 134 also
includes a procedure for using the Memory Leaks feature. The following is a quick summary
of that process.

Isolating Memory Leaks with the Memory Leaks Feature

1 Start your application under memory analysis. Use the Memory Leaks tab in the Session
Control window.

2 Exercise the relevant features of your program to force any startup initialization to com-
plete. The application warm-up also excludes initialization memory allocations from your
analysis.

3 Click Start/Stop to begin tracking only newly allocated objects.

4 Exercise the feature of your program that you wish to test.

5 Click Force garbage collection to force a garbage collection on the active process.

6 Click Start/Stop again to end the tracking period and to exclude any new memory alloca-
tions.

7 Check the Tracked instance count and Tracked size columns in the Class List. If you
see that objects have been allocated but not collected, click View Memory Leaks to cap-
ture a view of the managed heap that shows the tracked objects that remain after garbage
collection.

View Memory Leaks appears only after you click Start/Stop tracking for the first time.

DevPartner displays a snapshot of the state of the managed heap. The data is displayed as a
Memory Leaks Results Summary. From the results summary page, you can drill into the
memory use data, identify the problem, and locate the method(s) responsible in the source
code.

Note: To enable DevPartner to properly identify most garbage collection roots in
Memory Leaks or RAM Footprint sessions, Start Without Debugging with
Memory Analysis. If you attempt to collect Memory Leaks or RAM Footprint
data for an application started under Start with Memory Analysis (with
debugging), all garbage collection roots appears as “unidentified GC
roots” in the session data.
158 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Understanding Memory Leaks Analysis Results

DevPartner Memory Leaks analysis defines a memory leak as any object that is allocated on
the managed heap during a specified period of time, and has not been freed when you collect
memory data. Memory Leaks analysis helps to reveal where your application holds memory
that should be freed. Use this information to determine how to change your code so this
memory frees.

To uncover memory leaks, run your application under the DevPartner Memory Leaks analysis
feature and exercise the application in a way that should free previously allocated objects.

If memory use consistently rises and does not decrease (or does not decrease as you would
expect it to) in response to garbage collection, your application could be leaking memory.

For example, see Figure 5-17. The real-time graph in this figure shows a rise in memory use
that did not return to baseline after garbage collection. If you look at the Tracked instance
count column for the classes that belong to your application, you notice that garbage collection
is not collecting some tracked objects. Look for the number of uncollected instances in the
Tracked instance count column in the Session Control window.

Figure 5-17. Session Control window data display

Once DevPartner alerts you to a possible leak, use the Memory Leaks Results Summary
(session file) that DevPartner creates to locate the source of the leak so you can fix it. The
Memory Leaks analysis results summary gives you the following ways to drill down into your
data:

� Objects that Refer to the Most Leaked Memory
� Methods with the Most Leaked Memory
 Understanding DevPartner Studio 159

Chapter 5 · Finding Memory Problems
Each chart shows the top five objects or methods that are associated with leaked memory. To
see more information about the top five objects or methods, click Show Complete Details for
that chart.

Figure 5-18. Results Summary appears when you click View Memory Leaks

The starting point you choose depends on the problem that you want to solve and your
preferred approach to the problem. For example:

� If you notice that a limited set of specific objects are being leaked, you can use the
Objects that refer to the most leaked memory graph to quickly see which objects hold
references to the leaked objects.

� If you are familiar with the source code for the allocating method and can tell by examin-
ing the source code whether the leaked object should have been cleared, you may want to
start with the Methods that allocate the most leaked memory chart.

From both the objects and methods charts, you can quickly switch to a view that shows
another aspect of your data.

When viewing complete details for Objects that refer to the most leaked memory, you can
select these views:

� Object Reference Graph
� Allocation Trace Graph
� Source

When viewing complete details for Methods that allocate to the most leaked memory, you
can select these views:

� Call Graph
� Source

The following example uses Objects that refer to the most leaked memory as a starting
point.
160 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Objects that Refer to the Most Leaked Memory

The following example shows a case where a limited set of objects causes leaked memory. The
example also presents other possible approaches for problem diagnosis.

The garbage collector cannot clear an object as long as there is at least one existing reference
to that object. When your application runs, it creates objects. Some objects are needed for as
long as the program runs. These are permanent, or long-lived objects. However, most objects
should become eligible for garbage collection once they are no longer referenced by another
object.

Figure 5-19. Objects that refer to the most leaked memory

The chart in Figure 5-19 shows the top five objects that hold references to the most leaked
memory. These objects prevent the leaked objects from being freed. Referring objects that
account for the biggest memory hit appear at the top of the chart. The data indicates that a
particular set of objects is responsible for the leaked memory. Use this chart as the starting
point to drill into session data and locate the source of the memory leaks.

Clicking Show Complete Details (below the bar graph; see Figure 5-20 on page 161) opens a
detailed display for objects that refer to leaked memory.

The top panel of this display lists all of the objects that refer to leaked memory, as displayed in
the chart in Figure 5-20. This list includes the top five objects displayed in the original bar
graph and other objects that refer to smaller amounts of leaked memory.

Figure 5-20. List of objects that refer to the most leaked memory

The default setting is to sort the objects by the Leaked size (total size of the leaked objects
referred to by the selected object) column. You can also sort the list by any of the other
columns to help you see patterns in the data. If you right-click an item in the list and choose
View leaked objects referenced by this object, you see the objects that were actually leaked.
 Understanding DevPartner Studio 161

Chapter 5 · Finding Memory Problems
Figure 5-21. The Object Reference graph shows why an object is still in memory

Select a referring object that you want to examine. It is important to be able to quickly under-
stand the sequence of references that keep these objects in memory. Click the Object Refer-
ence graph tab to view the reference graph. The Object Reference graph shows why the
garbage collector did not clear the selected object. The display shows the chain of objects
between the selected object and the garbage collection root(s) that are keeping the object alive.

Scroll down the list of objects to evaluate the other objects. Some object reference graphs are
quite simple, while others may be quite complex. You may find evidence that indicates condi-
tions such as many references to small objects or a few references to large objects. The goal is
to use this graph to determine the point in the chain of referring objects where it is most
efficient to eliminate the leak.

The chain of referring objects shown in the Object Reference graph can range greatly in
complexity. In many cases, there are multiple referrers and the graph becomes very complex.
Drag the navigation frame in the overview pane or click on a node to change the nodes
displayed in the detail pane. If an analysis presents you with a complex graph, simplify the
view by right-clicking a node and selecting Show Fewer Referrers. You can also drag nodes
within the graph for easier viewing.

The labels such as elements on the connecting arrows represent the referring data member in
the next class in the graph. Bracketed numbers identify arrays. If you know your code well, the
labels speed up the process of identifying potential problem areas.

You can also right-click a node and select Edit Source to open the related source code within
Visual Studio, or view the related source code by selecting the Source tab. DevPartner
highlights the line in the method that allocated the object in the graph.

To increase program understanding, you can view the source for each node in the graph
sequentially and see the events that led to the allocation of the memory that leaked. DevPartner
offers alternate ways to view these program events. For example, the Allocation Trace graph
shows who called each method that allocated the selected object.

You can go directly from the object in the list to the source code. In real-world problem
solving, you should drill down using an appropriate method for the problem that you are trying
to solve or that corresponds to the way you think about your code.
162 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Alternate Methods of Solving the Problem

The preceding example focused on use of the object reference path to locate the source of a
leak. There are other ways to approach the memory leak source. For example:

� Look at the Allocation Trace graph to determine who called the method that allocated the
object. From there go to the source code.

� Go directly to the source code from the list of objects.

Remember that DevPartner presents different views of your data on the DevPartner Memory
Analysis - Memory leaks analysis summary. The first example used Objects with the Most
Leaked Memory. However, depending on the complexity of the data, or on your own prefer-
ences, you could examine a problem from any of the following graphs on the DevPartner
Memory Analysis - Memory leaks analysis summary.

Methods that Allocate the Most Leaked Memory

The following graph, which appears in the lower half of the DevPartner Memory Analysis -
Memory leaks analysis summary, shows the top five methods that allocated objects that were
leaked. When you click Show Complete Details, DevPartner provides a list of all methods
that leaked objects, with access to a Call graph view and to the source code for the method, if
available.

Figure 5-22. Methods that allocate the most leaked memory

Select a method in the Method list to see the objects that were allocated from the method that
were leaked. You can also view the source code for the method which shows the lines that
allocated the leaked objects along with statistics about the number and size of objects leaked
on the line.
 Understanding DevPartner Studio 163

Chapter 5 · Finding Memory Problems
Figure 5-23. Details for methods that allocate the most leaked memory

For example, to drill into to the data:

� Right-click a method in the Method list.

� From the selected method, go to a list of the objects allocated by the method or to a Call
graph for the method.

� From an object in the Object list, view a list of referenced objects, an Object Reference
graph, or an Allocation Trace graph.

� From a method, or a node in a Call graph or Allocation Trace graph, view source code
with object allocation data for individual lines.

� From a method or object in a list, or a node in a Call graph, Object Reference graph, or
Allocation Trace graph, or a line of source code; choose Edit Source to open the source to
the appropriate line for editing.

Solving Scalability Problems with Temporary Objects

When performing memory analysis with DevPartner, you can use Temporary Objects analysis
to diagnose and correct scalability problems.

Examples of Scalability Problems

Scalability problems surface when an application runs well until users work with the applica-
tion more intensively. For a client-server application, this might happen when the number of
users increases. For a standalone application, this might happen after numerous text manipula-
tions or mathematical computations. These can be labeled as scalability problems. As the scale
of the work done by the application increases, performance degrades.
164 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
A Possible Cause: Temporary Objects

One possible cause of scalability problems is the creation of too many temporary objects. In
this case, object creation becomes a performance bottleneck—a problem that requires correc-
tion.

Creating and using objects is important within managed Visual Studio programs. Unfortu-
nately, some coding techniques have the side-effect of creating many objects.

Part of the problem is the creation of objects such as those created with the String class. It
takes processing cycles to create objects and later destroy these objects. If you can reduce the
number of objects created, you can generally expect better performance.

Object Life Span

DevPartner tracks the objects allocated by your code and categorizes them based on how long
it takes for them to be collected. There are three categories:

� Short-lived — collected at the first garbage collection after the object was allocated (gen-
eration 0)

� Medium-lived — collected at the second garbage collection after allocation (generation 1)

� Long-lived — survives across many (or all) garbage collections during the run of the pro-
gram (generation 2)

Note: The Microsoft .NET Framework garbage collector supports three generations,
designated 0, 1, and 2. Objects allocated since the last run of the garbage
collector are in generation 0. Objects that survive one garbage collection after
allocation become generation 1 objects. Generation 1 objects that survive one
or more additional garbage collections become generation 2 objects.

DevPartner combines short- and medium-lived object allocations in a temporary objects
category.

Medium-lived objects have the greatest impact on performance, and cause the garbage collec-
tor to work harder than necessary. Individual short-lived objects have less impact on garbage
collection, although there is still a performance penalty for calling the object’s constructor.
However, creating large numbers of short-lived objects may cause bottlenecks and memory
shortages.

If you believe that your code has scalability issues, use DevPartner to monitor memory used
by your code as it executes. If the real-time graph in the Session Control window shows an up-
and-down, wavelike pattern—which suggests that your application is creating many tempo-
rary objects—you can use DevPartner to analyze the application for temporary object creation.

DevPartner categorizes the results of temporary object analysis by entry points and by
methods. Regardless of which technique that you use to drill into the data, DevPartner helps
you see how much memory the temporary objects consume and identify the specific lines of
code that allocate the temporary objects.

Running a Temporary Objects Analysis Session

Use the following procedure to analyze your application for problems caused by temporary
object creation:
 Understanding DevPartner Studio 165

Chapter 5 · Finding Memory Problems
1 Start your application under memory analysis. Use the Temporary Objects tab in the Ses-
sion Control window.

2 Exercise your application, then do one of the following to see the parts of your program
that have allocated the most temporary objects:

a Click View Temporary Objects when you observe a system garbage collection (the
falling pattern) in the Session Control window.

b Click the Force Garbage Collection icon, then immediately click View Temporary
Objects.

c Quit the program. DevPartner forces a garbage collection and creates a temporary
objects session file.

Note: If you are running your application in the debugger, do not use the debugger to
stop your application. DevPartner does not produce a session file in response
to this action. Stop the application normally to generate a session file.

3 To examine the temporary object allocation behavior for a specific part of your applica-
tion, click Clear all memory to clear the collected temporary object allocation data.
Afterwards exercise the relevant part of your application, force a garbage collection, and
click View Temporary Objects.

DevPartner always creates a temporary objects session file when you quit an application
running under memory analysis. DevPartner also creates a temporary objects session file
in response to the snapshot action executed in a session control file or the Session Control
API.

DevPartner displays a snapshot of the state of the managed heap. The data is displayed as a
Temporary Objects Results Summary. From the results summary page you can drill into the
object creation data, identify the problem, and locate the method(s) responsible in the source
code.

Identifying Scalability Problems

DevPartner enables you to locate potential trouble spots and then drill down into your applica-
tion’s use of temporary objects to identify problems and improve the overall quality of your
code.

Real-time Graph

The real-time graph provides a high level view that enables you to identify problematic areas.

If your application is creating large numbers of short- and medium-lived objects, you see a
peak in profiled memory in the real time graph which diminishes when the garbage collector
runs. If you exercise the feature again after garbage collection, you see another peak which is
caused by creating a new group of temporary objects.
166 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Figure 5-24. Real-time graph suggesting excessive temporary object creation

The classes responsible for the most objects appear in the list of profiled classes which are
sorted by the Size column. This highlights the classes whose objects consume the most tempo-
rary memory. Also notice the Instance Count which shows how many object instances were
created for each class.

Figure 5-24 shows a real-time graph that suggests excessive temporary object creation. Spikes
in the graph show where your application is creating lots of objects. Excessive object creation
can create major performance or scalability issues in a managed application and especially in
server applications. Even if scalability is not an issue, methods that allocate many short-lived
objects often indicate easy-to-fix performance problems.

Viewing Temporary Objects

Click View Temporary Objects to collect data at a specific point in your application.
DevPartner displays a Temporary object analysis page that categorizes the data by entry
points and by methods that create the most temporary objects.

An entry point is a profiled method that is called by excluded (that is, system or third-party)
code. When your application runs, monitoring begins with the first call to a profiled, or user-
code, method. (User-code methods are methods in your application source code.) This is
called an entry point. All calls made to other user-code methods from that point are considered
to be part of the entry point.

Methods that are called only by other user-code methods are not entry points. However, such
methods could be responsible for large amounts of temporary memory use. The second chart
on the Results Summary highlights methods that allocate lots of temporary memory, but are
not necessarily entry point methods. Thus, if a child method called by an entry point is the
major memory allocator in your application, you can locate that method in Methods that use
the most memory without having to follow the Call graph for the entry point method that
called it.

From the Results Summary view you can drill into the data in order to understand how much
memory the objects allocated by these methods are consuming, and to identify the lines of
code that are creating the short- and medium-lived objects.

Analyzing Temporary Object Data

Clicking Show Complete Details that is below either chart opens a detailed view of all the
entry points, or all the methods in your application that allocated temporary memory. In
addition to the complete list of methods, the view includes a Call graph and a Source tab.

The available data columns in the Method List provide more extensive data about your appli-
cation’s methods than those in the list of profiled classes on the Session Control window.
 Understanding DevPartner Studio 167

Chapter 5 · Finding Memory Problems
Call Graph

Click on an entry point in the entry points list or a method in the method list to view a Call
graph for the method. The Call graph shows the selected method and its child methods, and
highlights the critical path with a bold, gold-colored line. The critical path is the sequence of
child method calls that resulted in the largest cumulative memory allocation for the selected
method.

Methods appear as nodes in the Call graph. Each node can display data about memory
allocated by the method. In addition, the links between nodes can display data about memory
allocated by that branch of the graph. The data is expressed as percentages of memory
allocated.

� Nodes - The percentage of memory allocated by the method that is attributable to the body
of the method itself.

� Links - The percentage of memory allocated by the method that is attributed to child
methods that are executed in that branch.

This is how DevPartner shows you not only which methods are responsible for the temporary
objects your application creates, but exactly where in the paths of execution the allocations
occur.

Figure 5-25. A Call graph for an entry point method shows the critical path

Right-click on any node in the Call graph to:

� Redraw the Call graph for the selected node
� View source code for the selected node
� Edit source code for the selected node

Drag the Navigation Frame in
Overview Pane

Click to expand or collapse
parent/child branches

Critical path
highlighted

Hover mouse to view additional data
for a method node or a link value

Use the context menu to redraw
graph with a new base node
168 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Source View

When you view the source code for an entry point or method in the Entry points that allocate
the most memory or the Methods that use the most memory method lists, DevPartner opens
the Source tab view to the selected method. In addition to the source code, DevPartner
provides detailed information about the memory allocated by individual lines in your applica-
tion code. The information includes how often the line executed; the number of short-,
medium-, and long-lived objects, including or excluding child objects, allocated on the line;
and the accumulated sizes (memory load) of these objects.

Interpreting Results to Fix Scalability Problems

The following list suggests some of the possible ways to interpret memory analysis results to
fix memory-related scalability problems.

� Look at the Temporary Objects analysis page to determine if an entry point or non-entry
point method consumes the most temporary memory.

� If the largest consumer of temporary objects is an entry point, drill down using the Entry
points that allocate the most memory view to determine which methods in the entry
point’s execution path require the most temporary space and should be modified or called
less often.

� If the largest consumer is a non-entry point method, drill down using the Methods that
use the most memory view to determine which parts of your code to modify.

� Compare the number of short- and medium-lived objects, as well as the amount of tempo-
rary space they consume. Use this information to determine which parts of your code to
modify.

� If both short- and medium-lived objects consume similar amounts of temporary space, you
can run a performance analysis to find out how much time the constructor uses to create
the temporary object.

� Use the Call graph to understand the relationship between methods that allocate temporary
memory. Examine characteristics of different methods: percentages of memory consumed;
actual bytes used; and numbers of temporary objects created. Use this information to iden-
tify which method to modify.

� Use the Source tab to identify specific lines in your code that allocate temporary objects.
Examine the kind and sizes of objects created, and how often the line is executed. Use this
information to identify more efficient ways to use objects.

Using RAM Footprint to Improve Performance

Some managed applications consume hundreds of megabytes of RAM while they are running.
This chapter examines some specific memory problems in this chapter: memory leaks, which
can cause your application to consume more and more memory as it runs until it eventually
exhausts the heap, and periodic spikes in memory use caused by excessive temporary object
creation, which can lead to scalability issues. These problems adversely impact your applica-
tion’s memory use. These problems also contribute to your application’s memory footprint.
Your application may be well-behaved with respect to these errors—but performance may still
seem slow, especially when run in various end-user environments.
 Understanding DevPartner Studio 169

Chapter 5 · Finding Memory Problems
One possible cause of sluggish performance is that your application may use excessive
amounts of memory as it runs. What is excessive? That depends on the environment—
hardware and software—in which your application is used. You may have a good idea of the
end user environment, but the environment can change. For example, the end user may run
several other applications at the same time as they run yours which competes for memory
resources. Nor can you force hardware upgrades on your users every time you release a new
version of your application. All of this makes a strong argument for keeping your application’s
memory footprint small.

More specifically, the memory use addressed here is the RAM footprint, not just overall
memory use. The biggest effect to application performance—and your end-users’ perception
of your application—is to force the application to rely on the operating system’s virtual
memory system. Paging managed objects into virtual memory greatly decreases application
performance.

What can you do to optimize your application’s use of RAM resources? DevPartner provides
RAM Footprint analysis as part of its memory analysis capability. Run RAM Footprint analy-
sis regularly as you develop your application. The way your application uses RAM resources
is most likely a result of application design and architecture. It is much easier to re-design a
feature early in the development process than to wait until the application is ready for beta
release.

Measuring RAM Footprint

DevPartner helps you focus your performance tuning effort on the areas that have the greatest
impact on RAM consumption. When you run your application under RAM Footprint analysis,
DevPartner enables you to:

Tip: See the DevPartner Studio online help for procedures related to measuring a
RAM Footprint.

� View the real-time graph of your application’s RAM consumption, and view the real-time
list of profiled classes associated with the most bytes of memory.

� Take snapshots of the managed heap which you use to examine the objects responsible for
the most memory use.

To measure RAM footprint:

1 Start your application under memory analysis. Use the RAM Footprint tab in the Session
Control window.

2 Exercise your application to get it into a steady state for which you wish to examine mem-
ory use.

3 Click View RAM Footprint to see a detailed snapshot of the managed heap at that point
in time.

4 Remember that the garbage collector only runs when available memory is exhausted, so
the memory graph may not accurately represent the amount of memory in use at a given
time. When your program is in an idle steady state, click Force garbage collection to
force the garbage collector to run and update the memory graph.
170 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
DevPartner displays a snapshot of the state of the managed heap. The data is displayed as a
RAM Footprint Results Summary. From the results summary page you can drill into the
session data and locate the objects and methods responsible for the most memory use.

To enable DevPartner to properly identify most garbage collection roots in Memory Leaks or
RAM Footprint sessions, Start Without Debugging with Memory Analysis. If you attempt
to collect Memory Leaks or RAM Footprint data for an application started under Start with
Memory Analysis (with debugging), all garbage collection roots appears as “unidentified
GC roots” in the session data.

Use the RAM Footprint analysis page to gain an in-depth understanding of how your applica-
tion uses memory. The RAM Footprint Results Summary gives you the following ways to
examine and drill down into your data:

� Object Distribution
� Objects that refer to the most allocated memory
� Methods that allocate the most memory

Which you use first depends on the data presented and, to some extent, on the way you tend to
think about your application.

Object Distribution

DevPartner presents the distribution of objects in memory as a pie chart so you can immedi-
ately see the proportion of memory used by your application (Profiled objects) relative to that
used by system code (System objects).

Interpreting the Object Distribution chart:

Figure 5-26. DevPartner Memory Analysis Object Distribution chart

� If your application (Profiled objects) is the largest wedge in the pie, and memory use is
moderate to high relative to expected resources in the target deployment environment, you
should determine which parts of your application allocate the most memory. To do this,
use the Objects that refer to the most allocated memory or the Methods that allocate
the most memory chart to drill down into the data. Ultimately, you want to locate in
source code those parts of the application that you can change or restructure to use less
memory.
 Understanding DevPartner Studio 171

Chapter 5 · Finding Memory Problems
� If the Profiled Objects part of the pie chart is small, your application is not the main allo-
cator of memory. This is a good thing. But if the application still seems sluggish or if over-
all memory use is high, you may want to investigate how your application is using
unmanaged code or system resources. Unmanaged code can pin objects in memory. Visual
Studio applications often spend a great deal of time in the .NET Framework; you may find
that you can call .NET Framework methods more efficiently, or less often.

Drill into the RAM footprint data by using either of the following two analysis paths:

� Objects that refer to the most allocated memory
� Methods that allocate the most memory

Objects that refer to the most allocated memory

Objects that refer to the most allocated memory shows the objects that held references to
live objects at the time the session file was generated. The size displayed is the total of all
objects referenced from this instance.

� Click Show Complete Details to drill into the data for these objects.

Objects that refer to the most allocated memory enables you to focus on instances of
objects that are responsible for the largest amounts of memory. Organizing the data by
instances of objects that hold references to allocated memory highlights large objects, that is,
the objects for which a maximum amount of memory would be reclaimed if the object could
be garbage collected.

While an individual object might be small, it becomes much larger, i.e., a large object, when
you include the memory consumed by the objects to which it refers. When the garbage collec-
tor runs, it cannot collect objects that are referenced by other objects. Thus an object that refers
to many other objects may account for a considerable amount of memory. If you can collect
such an object, you can also collect any other objects to which it holds a unique reference.
Such large objects are obvious targets when you are trying to reduce an application’s RAM
footprint.

The Objects that refer to the most allocated memory view includes a list of live object
instances with data about each object’s impact on memory at the time the session file was
created. It also includes a tabbed window in which you can view an Object Reference graph,
Allocation Trace graph, and Source view.

This view helps you identify the largest objects in memory. Referenced Size data includes
memory attributable to all child objects for which the object is the only parent. Considered
singly, objects tend to be small. However, an object with several child objects, each of which
may also have child objects, plus per-object overhead for parent and child objects, may
actually consume a large amount of memory.

DevPartner uses the Object Reference path to roll up the bytes associated with child objects
and attributes them to the parent object. The advantage of this view is that the view lets you
focus on those objects that provide the biggest benefit if you can change the way they are
allocated.

Once you zero in on the objects that consumed the largest amount of memory, you may
immediately see changes that you could make to reduce memory consumption. However, you
may want to investigate further to understand the implications of freeing or changing the way
the application uses a particular object.
172 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
� Double-click the selected object in the instance list, or use the context menu to view the
live objects referenced by the selected object.

Live Objects Referenced by <object name>

The Live objects referenced by object view shows you all of the live objects which are refer-
enced in memory that are referenced by the selected parent object. In other words, these child
objects could also be collected if the parent object could be collected.

All Objects Referenced by <object name>

The All objects referenced by object view displays an instance list of the objects referenced
by an object selected in the Live Objects Referenced by object window.

Like its parent windows, the data presented in All Objects Referenced by object is organized
by instances of objects that hold references to allocated memory. This view enables you to
further examine the chain of references that are keeping objects in memory. In the All Objects
Referenced by object window, you can examine the entire chain of objects referenced by any
of the child objects in Live Objects Referenced by object.

You can continue to drill down from any object and view all the objects to which it holds a
reference through the entire sequence of object references.

The Object Reference and Allocation Trace Graphs

All of the Object views discussed above include an Object Reference Graph and an Alloca-
tion Trace Graph.

The Object Reference Graph shows live objects in memory at the time that the session file
was created. A live object is an object on which methods can be invoked. When the garbage
collector runs, the collector identifies the objects that have valid references. A valid reference
means that an object is reachable from the application's garbage collection roots. Reachable
objects are marked as live objects and cannot be collected. The Object Reference Graph
shows these object references and helps to explain why the objects are still in memory.

Figure 5-27. The Object Reference graph

Methods in your application allocate objects and the memory that the objects use. It is useful
to know the sequence of method calls that allocated memory. The Allocation Trace Graph
shows the method calls that allocated an object.
 Understanding DevPartner Studio 173

Chapter 5 · Finding Memory Problems
Figure 5-28. Allocation Trace graph

Methods that Allocate the Most Memory

The Methods that allocate the most memory view displays a Method List showing the
source methods that allocated the most live memory for the application. This view displays
methods that allocate the most memory in the managed heap, but cannot be freed by garbage
collection while the application is in its current state.

The Live size including children (%) column indicates the percentage of memory used by
the method (and its child methods) relative to total allocated memory in the managed heap at
the time the session file was created. The display focuses attention on the most memory inten-
sive methods.

In addition to a view of the source code, this view also includes a Call graph which shows the
execution path responsible for the memory allocation. See “Call Graph” on page 168 for more
information.

Live Objects Allocated by This <method name>

The Live objects allocated by this <method name> view displays a list of the live object
instances allocated by the method that you selected in the Methods that allocate the most
memory view. In this case the view is limited to live objects allocated by the methods that
were selected in the previous window. This enables you to drill down from the methods in
your application that were the largest allocators of live memory. From here, examine the
objects that were not available for garbage collection when the RAM footprint snapshot was
taken.

The list of allocated objects includes objects created by non-profiled (system) methods that are
called by the user-code method selected in the Methods That Allocate the Most Memory
view. For example, if your method uses methods in the WinForms library, objects allocated by
those methods appear in the list of allocated objects.

In order to understand how your application allocates objects, drill down to examine all of the
objects referenced by any live object allocated by the method under study. The All objects
referenced from this instance view is identical to the view described under “All Objects
Referenced by <object name>” on page 173.

Through an entire sequence of object references, continue to drill down from any object and
view all the objects to which it holds a reference.
174 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
Optimizing Memory Use

Once you understand how your application uses memory, you can begin to optimize memory
use. Objects are typically the largest memory consumers, so start your analysis with them.

Your application probably creates several objects as it runs. To optimize performance, do you
simply reduce the number of objects created? How do you know where to focus your perfor-
mance tuning efforts?

Fortunately, DevPartner does much of the cost/benefit calculating for you. Remember that
individual objects may be small, but when you consider objects with their children, some
objects are much larger than others. DevPartner uses the concept of large object to alert you to
those objects which, with their child objects, are large consumers of memory. Focusing your
tuning efforts on these object allocations promises the most rapid route to a reduced RAM
footprint.

Be aware of medium-lived objects. Medium-lived objects survived the first garbage collection
to move to generation 1; they are collected during the second garbage collection after the
transaction completes. This is the new amount of memory your transaction requires. If you
could reduce the number of objects allocated, you could probably improve performance.

Look at live objects at several points as your application executes. Have you allocated objects
that are unneeded for the remainder of the transaction? Could you share any live objects
between multiple transactions? Have you allocated any objects that the application does not
need until a later time? If the answer is yes to any of these questions and you can change how
your application allocates objects, you can probably reduce the RAM footprint and improve
performance.

Analyzing Web Applications with Memory Analysis

With DevPartner Studio, you can analyze memory use in managed Web applications devel-
oped in Visual Studio, including applications that use Web Forms, XML Web services, and
ASP.NET. To collect server-side data, DevPartner Studio must be installed on the server
system.

If the server application runs on a remote computer, install DevPartner Studio and the
DevPartner Studio Remote Server license on the remote system to collect the server data. See
the DevPartner Studio Installation Guide and the Distributed Licensing Management Installa-
tion Guide for more information. To configure data collection on the server, use the DevPart-
ner memory analysis properties in Visual Studio.

Note: DevPartner session files are saved with the current solution. Opening a Web
project from IIS directly, as opposed to opening the project through Visual
Studio, may cause a different solution file to be used. DevPartner session files
created in the first solution would not be visible in the second solution

Collecting Server-side Memory Data

You may want to collect memory analysis data for parts of a Web or client/server application.
With DevPartner, you can collect memory data for managed code in any process as you run
the client application.
 Understanding DevPartner Studio 175

Chapter 5 · Finding Memory Problems
To collect remote process data, install DevPartner Studio on the client and DevPartner Studio
and the DevPartner Remote Server license on the remote computer. Use this configuration to
collect data for a distributed application as it is actually deployed. See the DevPartner Studio
Installation Guide and the Distributed Licensing Management License Installation Guide for
more information.

Collecting Data from Multiple Processes

Web or client/server applications may run more than one process, but DevPartner collects
memory analysis data for only managed applications. For example, when you profile an
ASP.NET application, DevPartner does not collect data for the browser process (iexplore).
However, DevPartner collects data for managed code that runs in the aspnet_wp or w3wp
processes.

When you run such applications under memory analysis, the memory analysis session control
window in Visual Studio displays the server and surrogate processes in the process selection
list. Use the process list to focus data collection.

See “Starting Analysis from the Command Line” on page 283 for information on using
DPAnalysis.exe and an XML Configuration file to profile multi-process applications.

Prerequisites for Analyzing Web Applications

For DevPartner memory analysis to successfully profile an ASP.NET application, the follow-
ing two conditions must be met:

� The project must include a web.config file.

� The project must be configured for debugging. To do this, the web.config file must
include a compilation element with the debug attribute set to true. For example:
<compilation debug=”true” />

Running a Memory Analysis Session on a Web Application

Follow these steps to analyze memory use in a Web application:

1 In Visual Studio, open the Solution that contains the project for the application.

2 Review the DevPartner Coverage, Memory and Performance properties for the
projects within the solution.

3 Select the project in the Solution Explorer.

4 To display the Properties Window, select View > Properties Window.

Note: Logging off or rebooting the system changes the analysis option only if you
are connected to a Terminal Server through a Terminal Services Client or to
any system through Remote Desktop.

If you reboot or start up slower computers with memory analysis enabled, the
Service Control Manager may report unresponsiveness when starting SMTP,
FTP, and WWWP services. You can safely ignore these messages. All of the
services start successfully. Lack of response is reported because DevPartner
instruments IIS when memory analysis is enabled and these services depend
on IIS.
176 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
5 If the server components do not run on the local computer, use the DevPartner data collec-
tion properties to set up remote data collection options.

6 Depending on the type of data you wish to collect, and the version of IIS on the server, you
may need to make configuration changes to IIS.

Tip: See the online help for information about configuration changes for IIS.

7 In Visual Studio, choose DevPartner > Start Without Debugging with Memory Analy-
sis, or click Start with Memory Analysis on the DevPartner toolbar.

Use the memory analysis session control window to select which of the following types of
analysis to perform:

� Memory Leaks
� Temporary Objects
� RAM Footprint

For further guidance on selecting the type of analysis to perform, see “Identifying
Memory Problems” on page 156.

8 In the Session Control window, select a server process for which you want to collect data.
Exercise the application from the client and click View... to take snapshots of the managed
heap as desired. You can select another server process in the same session and take addi-
tional snapshots if desired.

9 DevPartner collects memory data for the ASP.NET or IIS process as you exercise the cli-
ent. No data is collected for the Internet Explorer (client) process.

10 Use the Session Control buttons on the memory analysis Session Control window to con-
trol data collection. As an alternative, you can use a session control file or the Session
Control API to automate data collection.

If You Get Unexpected File Save Dialogs or Saved Session Files

Under certain circumstances, you may see an unexpected File Save dialog box after quitting an
ASP.NET application, or find that unexpected session files have been saved if you have
configured DevPartner to automatically save session files.

In memory analysis sessions, DevPartner does not collect data for Internet Explorer. (DevPart-
ner collects memory analysis data only for managed code.) Thus, the ASP.NET worker
process (w3wp or aspnet_wp) becomes the primary profiled process when running memory
analysis on an ASP.NET application. DevPartner stops data collection and generates a final
session file whenever the primary profiled process ends. In most cases, this occurs in response
to a user action. However, the ASP.NET worker process can also shut down automatically
during profiling if you have edited the process Model Attributes section of the
machine.config file on the system on which the process runs in one of the following ways:

� Changed the value of the requestLimit or requestQueueLimit attribute from “Infi-
nite” to a value low enough to cause the process to be shut down during the session

� Changed the value of the timeout or idleTimeout attribute from “Infinite” to a value
low enough to cause the process to be shut down during the session

� Changed the value of the memoryLimit attribute to a percentage low enough to cause the
process to recycle during the session
 Understanding DevPartner Studio 177

Chapter 5 · Finding Memory Problems
When the process is shut down, DevPartner takes a final snapshot, generates a session file, and
ends the session. If IE (the client process started by the user) is still active, the IE process can
spawn new instances of the ASP.NET worker process. Each of these ASP.NET worker
processes generates a session file when it terminates, resulting in a saved session file, or a File
Save dialog. However, this session data is not part of the original memory analysis session,
and is usually of little value.

To remedy this situation, you can edit the machine.config file and set the limiting attribute
to a value high enough to prevent premature termination of the process.

Note: Always make a backup copy before editing the machine.config file.

DevPartner continues to collect analysis data whenever the ASP.NET worker process runs and
terminates until you explicitly disable analysis under DevPartner Coverage, Memory, and
Performance Analysis in the Visual Studio properties window.

If You Get a Security Exception

When attempting to collect data for a managed application, a security exception message
displays if your security policy prevents DevPartner instrumentation of your code. By default,
assemblies must have the SkipVerification permission to be profiled. If you remove
this permission from the permission set of the policy under which the code executes, or add
imperative security declarations to the assembly that cause this permission to be revoked, the
assembly can not be profiled.

To remedy this condition, enable secure profiling in one of two ways.

� Set the following global environment variable and retry profiling the application:

NM_NO_FAST_INSTR=1

This solution allows you to work around this issue, although it does exact a slight perfor-
mance penalty.

� Change the policy for the assembly using the .NET Framework Configuration tool MMC
snap-in, or by temporarily removing any imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help for more informa-
tion on security policy in Visual Studio.

Using Memory Analysis In Your Development Cycle

You do not have to wait until you suspect that you have problem to begin testing. If you run
DevPartner memory analysis early and often, and know what to look for when you analyze
your application, you can correct problems early, at a point when problems are both easier to
identify and require less risk to fix.

Memory problems in managed applications are often the result of larger design and architec-
ture decisions, rather than simple coding errors. For example, one source of memory loss is an
object that is not collected because of an out-dated reference to it that is not freed. This can be
the result of revisions made in another part of the code. The later these problems are identified
in the development cycle, the more difficult and expensive they are to fix.
178 Understanding DevPartner Studio

Chapter 5 · Finding Memory Problems
As a result, memory analysis is valuable as part of a continuous testing program throughout
the development cycle. Using memory analysis during unit testing provides an understanding
of how the individual modules handle memory. Once you identify and fix areas that need
improvement, retest to verify the fix. Then, as you integrate the modules into your application,
repeat your memory testing again to ensure that new memory problems do not appear.

Submitting Data to Visual Studio Team System

You can submit data for a method selected in any method list view in a DevPartner memory
analysis session file as a Work Item to Visual Studio Team System. Valid work items include
a selected method on the following analysis types:

� Memory Leaks - methods that allocate the most leaked memory

� RAM Footprint - methods that allocate the most memory

� Temporary Objects - methods that use the most memory and entry points that allocate the
most memory.

When you submit a bug, DevPartner populates the Work Item form with data from the visible
columns in the view. To change the method data you submit in the Work Item, right-click any
column header and select Choose Columns... from the context menu.

For more information about DevPartner Studio integration with Visual Studio Team System,
“Visual Studio Team System Support” on page 20.
 Understanding DevPartner Studio 179

Chapter 5 · Finding Memory Problems
180 Understanding DevPartner Studio

Chapter 6

Automatic Performance Analysis
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with performance analysis. The second section provides refer-
ence information for an in-depth understanding of DevPartner Studio’s performance analysis
feature.

See the DevPartner Studio online help for more task information about performance analysis.

What is Performance Analysis?

DevPartner Studio’s performance analysis feature allows you to find bottlenecks that slow
down the performance of your application, regardless of whether the bottleneck is in your
code, in third party components, or in the operating system.

DevPartner performance analysis:

� analyzes performance as your components are really used, even if the components are on
distributed systems.

� allows you to target data collection on a specific phase of your application, so you can
focus your performance tuning efforts.

� can distinguish between time spent in threads of your application and time spent in threads
of other running applications, so you get accurate, reproducible results that are indepen-
dent of outside influences.

Using Performance Analysis Out of the Box

The following Ready, Set, Go procedure introduces you to using DevPartner to analyze code
performance.

Note: Analyzing an application with DevPartner Studio does not require elevated
system privileges. The system privileges you use to create and debug your
application are sufficient for DevPartner to analyze the application.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information about the subject being described in the shaded box, read the additional text
following the box.
 Understanding DevPartner Studio 181

Chapter 6 · Automatic Performance Analysis
Ready: Consider What You Want to Analyze

Before using performance analysis, consider what you want to analyze.

Note: Refer to “DevPartner Studio Supported Project Types” on page 275 for a
comprehensive list of supported project types for DevPartner performance
analysis.

When analyzing your applications, decide what data you are interested in collecting before
beginning your performance session. In some cases, there are steps you need to take before
beginning a session. For example, some set-up would be required if:

� there are modules you want to omit from the performance analysis

� there are unmanaged modules that you would like analyzed

� you want to include code run on a remote server

For this procedure, all managed, local code in your application is analyzed.

Set: Properties and Options

Once you have decided what code you want to analyze, you can set several properties and
options to focus your data collection.

Using Solution Properties and Project Properties, you can choose whether your analysis
session data should include information for .NET assemblies, COM that runs outside your
application, time spent in threads of other running applications, line-level or method-level
analysis, and so on. Using DevPartner options, you can change display options, exclude parts
of your application from analysis, or create a session control file to manage data collection.
Refer to “Setting Properties and Options” on page 187 if you would like more information
about customizing your settings.

The following procedure assumes:

� You are testing a single-process, managed application.

� You can build and run your application.

� Your solution includes a startup project.

For this procedure, you can use the default DevPartner properties and options. No additional
set-up is required.
182 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Go: Collect Performance Data

After considering what you want to analyze and setting the appropriate properties and options,
you are ready to collect performance data.

Note: If a security exception message displays when you attempt to collect data for
a managed application, refer to page 191 for information about changing your
security policy.

You can analyze performance with or without debugging. Generally, run performance analysis
without debugging as results from non-debug sessions are easier to interpret. If you run your
application in the debugger, some timing values might be larger than expected, especially if
breakpoints were hit during the session.

Analyze the Data

When you take a snapshot or exit your application, DevPartner displays the session file in
Visual Studio, as shown in Figure 6-1. The session window consists of:

� The filter pane, which lists the source files and images in your application. The filter pane
shows the time spent in each file as a percentage of the time spent in the session. The filter
pane also provides a set of filters you can use to focus on the most significant data.

� The session data pane, which contains the Method List, Source, and Session Summary
tabs. The session data pane displays data for the file or filter selected in the filter pane.

1 From Visual Studio, open the solution associated with your application.

2 Select DevPartner > Start without Debugging with Performance Analysis to begin a
performance analysis session.

During a session, the Session Control Toolbar options are active.

DevPartner session controls let you focus your performance analysis on any phase of
your application. You can use the session controls to stop data collection, take a snapshot
of the data currently collected and then continue recording, or clear data that has been
collected but not yet saved in a snapshot.

3 Run the code you want to analyze.

4 Click the Snapshot icon . (Click twice if necessary to bring focus to the session win-
dow.) When you take a snapshot, DevPartner creates a file containing the collected data,
called a session file, and displays the session file data.

5 Return to your application and continue running your tests.

6 When you are finished running your tests, exit your application. The final session file
displays in Visual Studio.
 Understanding DevPartner Studio 183

Chapter 6 · Automatic Performance Analysis
Figure 6-1. Performance Analysis Session window

Using the Filter Pane and the Session Data Pane

To begin evaluating your data, start by using a filter and examining the Method List to find
methods that occupied a significant percentage of your program’s processing time.

Viewing a Call Graph

Some performance issues become apparent only when seen in the context of the calls made
between parent and child methods. In these cases, examining a Call graph can be helpful. A
Call graph is a graphical representation of the calling relationships of your application’s
methods.

Filter
pane

Session
data
pane

1 In the Filter pane, click on the Top 20 Source Methods filter. This reduces the displayed
data and help you focus on your source methods.

Knowing the time spent in system files is useful when assessing performance, but using
this filter to eliminate system files from the display can help you focus your performance
tuning efforts.

2 Examine the data on the Method List tab. The Method List tab displays information
about the amount of time spent in each method.

Scanning the Method List for methods with high values in one or more of the columns
helps target specific areas for performance improvement.

3 On the Method List tab, look at the % in Method column, which shows the time spent
in the method as a percentage of the time spent in the session. (By default, the data is
sorted in descending order by the % in Method column. If not, click the column header.)

4 Look at the % with Children column, which shows time spent in the method and its
child methods as a percentage of the time spent in the session.

5 Look at the Average column, which shows the average execution time of the method.

Examine the values in these columns helps determine which areas of your code to target for
improvement.
184 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Figure 6-2. The Call graph

You can access the Call graph from the context menu in the Method List, Source tab, or from
the Call Graph icon .

Viewing Source Code

The Source tab displays the source code for the selected file or method. Use the Source tab to
help you identify the lines of code that might be causing performance problems.

6 Right-click on a method in the Method List and choose Go to Call Graph on the context
menu. The method’s Call graph displays, with the critical path highlighted in your default
system color.

Tip: The following steps are an introduction to using Call graphs. More information
about Call graphs is presented in “Analyzing a Call Graph” on page 199.

7 Click the plus/minus icons at the edges of any node to expand or collapse the view of par-
ent (left) or child (right) nodes. Compare the percentage figure shown in a node with the
percentage shown on the lines to child nodes to follow the path(s) that might be causing
performance problems.

8 Hover the mouse-pointer over a node or over the percentage value on a link between
method nodes to view a more detailed description.

9 Identify a method that is a target for potential performance improvement. Right click and
select Go to Method Source from the context menu. (If you select a system method, the
source is not available.)

The method’s source code is displayed on the Source tab in the session window, but the
call graph still has focus.

10 Close the Call graph to begin working with the source code.
 Understanding DevPartner Studio 185

Chapter 6 · Automatic Performance Analysis
Figure 6-3. The Source tab

Comparing Sessions

After locating and correcting performance problems, you can run another performance session
and compare the session files from before and after your changes. DevPartner displays a
comparison window showing the differences between the sessions. For more information
about comparing sessions, refer to “Comparing Sessions” on page 202.

Viewing Session Summary Data

The Session Summary tab displays a synopsis of the performance analysis session.

.

Figure 6-4. The Session Summary tab

11 The source code for the selected method is displayed on the Source tab, as shown in Fig-
ure 6-3. The Source tab shows performance session data about each executed code line.

DevPartner highlights the slowest line in each method. Determine if there is an opportu-
nity for performance improvement and modify the code accordingly.
186 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Saving Session Files

When you have finished reviewing performance data you can save the session file.

DevPartner saves session files as part of the active solution. They appear in the DevPartner
Studio virtual folder in Solution Explorer. Performance analysis session files take the
.dpprf extension.

By default, DevPartner physically saves the session files in your project's output folder.
DevPartner automatically increments the file name based on the contents of the default folder
(for example, MyApp.dpprf, MyApp1.dpprf, and so on). If you save session files to a
location other than the default folder, you must manage the file naming and numbering.

For projects that do not have an output folder, such as a Visual Studio 2005 Web site project,
DevPartner physically saves the files to the project folder.

Session files generated from the command line are not automatically added to the project's
solution. You can manually add externally generated session files to an open solution in Visual
Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running a performance analysis session, continue reading the
rest of this chapter for additional information, or refer to the DevPartner online help for task-
based information.

Setting Properties and Options

Before beginning a performance analysis session, it is often useful to fine-tune data collection
to include or omit certain types of information. Use Solution Properties, Project Properties,
and DevPartner Options to better focus your analysis session.

12 Click on the Session Summary tab.

The Session Summary includes contextual information about the session, such as the date
and time of the session, the processor speed and operating system, and so on. This infor-
mation can be useful when viewing an older session file, particularly one that was created
by someone else.

The summary also includes performance data from the filter pane and the Method List
tab, showing data for both the files and the methods that were analyzed.

13 Scroll through the tab to view the session summary data.

1 Close the session file window in Visual Studio. DevPartner prompts you to save the ses-
sion file.

2 Click Ok to accept the default file name and location.
 Understanding DevPartner Studio 187

Chapter 6 · Automatic Performance Analysis
Solution Properties

To view performance properties available at the solution level, select the solution in the
Solution Explorer and press F4 to view the Properties window.

Figure 6-5. Solution properties

The following solution property affects performance analysis:

� Collect from .NET - Visible only for managed code applications. Set this property to false
if you do not want DevPartner to collect information for .NET assemblies.

This property affects only coverage analysis and performance analysis sessions. Memory
analysis and Performance Expert always collect data from managed applications, even
when this value is set to false.

The Collect from .NET property is not available with DevPartner for Visual C++ Bound-
schecker Suite.

� Startup project - Your solution must include a startup project. If the solution contains
multiple startup projects, before analysis begins DevPartner prompts you to choose a star-
tup project for the session.

Project Properties

To review project level properties, select a project in the Solution Explorer and review the
properties that can be set for projects within the solution.

Figure 6-6. Project properties

The following project properties affect performance analysis:
188 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
� Collect COM Information - DevPartner collects method level data based on DLL
exports and COM interfaces. Select False if you do not want DevPartner to collect infor-
mation for COM that runs outside your application.

� Exclude Others - Excludes time spent in threads of other running applications. The
resulting session data includes only time spent in threads of your application.

While collecting performance information, DevPartner monitors context switching and
tracks how much of the CPU time is spent working in threads outside of the application.
After collecting the timing data, DevPartner subtracts the time spent in other threads from
the clock time to determine exactly how much time was spent in your application.

Select True to enable this feature; select False to disable it.

� Instrument Inline Functions - Set this property to True to instrument inline functions.
(Instrumentation is described in “About Instrumentation” on page 190.) Inline functions
are not instrumented by default if inline optimizations are enabled.

When working with managed C++ applications, DevPartner does not collect data for
functions explicitly inlined with the __forceinline keyword, even if you choose
True for the Instrument Inline Functions property.

� Instrumentation Level - Choose Method or Line. (Instrumentation is described in
“About Instrumentation” on page 190.)

� Method: Method-level instrumentation allows your performance analysis session to
run faster, but provides only method-level data.

� Line: Line-level instrumentation enables you to drill down to specific lines in your
source code. When working with .NET applications, if you choose Line as your
Instrumentation Level and install a JIT-compiled assembly in the global assembly
cache (GAC), DevPartner performance analysis cannot provide line-level data about
the assembly. DevPartner is unable to instrument the JIT-compiled assembly. To col-
lect line-level data, do not pre-JIT assemblies when running performance analysis.

All property settings persist unless you explicitly change them.

Options

To review DevPartner option settings for performance analysis sessions, choose DevPartner
> Options > Analysis.

� The Display option allows you to set the precision, scale, and units used when displaying
your data.

� The Exclusions option allows you to omit one or more images from data collection. Refer
to “Excluding Images” on page 190 for more information on exclusions.

� The Session Control File option allows you to create a set of rules and actions to control
the data that DevPartner collects as your application or module runs. Refer to “Analysis
Session Controls” on page 301 for more information about session control files.

Other Visual Studio options, such as the Environment > Fonts and Colors options, also
affect DevPartner features.
 Understanding DevPartner Studio 189

Chapter 6 · Automatic Performance Analysis
Excluding Images

When you run an application under performance analysis, DevPartner collects data for all
source and system images. However, you can use the Exclusions option to omit one or more
images from analysis.

While viewing Analysis Options (DevPartner > Options > Analysis) select Exclusions -
Performance.

From the Show list at the top of the page, select one of the following:

� Global exclusions
� Local exclusions in current user folder
� Local exclusions in executable folder

The Local exclusions in current user directory and Local exclusions in executable direc-
tory options are available only when a solution is open and the executable folder differs from
the current working folder.

Click Insert to add an image to the exclusion list. Type a name, or browse to the image you
want to exclude. Allowable file types for exclusion are .exe, .dll, .ocx, and .netmodule.
Use the Files of type list to limit the types of files displayed.

If you choose a .NET module (.netmodule), only the unmanaged parts of the module are
excluded.

To remove an image from the list of exclusions, select the item and click Delete.

Select the Exclude system images check-box to exclude uninstrumented system DLLs from
DevPartner performance profiling.

Global exclusions are saved in nmexclud.txt in the \Analysis sub-folder in the DevPart-
ner installation folder. Local exclusions are saved in nmexclud.txt in the application
executable folder or in the current working folder. To save a copy of the exclusion list
(nmexclud.txt) to another location, click Save To.

Note: To fully monitor a running application, DevPartner always profiles a few
specific Win32 APIs. As a result, certain system DLLs cannot be excluded
individually and always appear in the System Images list of the session file,
unless you select Exclude system images to exclude all system images.

Exclusions do not apply to files compiled with Native C/C++ Instrumentation. For example,
if you attempt to exclude an instrumented unmanaged C/C++ image, DevPartner still collects
information for that file, although no system call information is collected. If you wish to
exclude an unmanaged C/C++ image from data collection, do not instrument that image.

About Instrumentation

When you run a managed application, DevPartner inserts hooks into the byte code for each
assembly as it is loaded by the compiler, a process called instrumentation. This code contains
instructions that DevPartner uses to collect performance data while your application is
running. DevPartner instrumentation does not change the actual files on disk; it only modifies
the in-memory representation of files as they execute.
190 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Unlike managed code, which DevPartner instruments at runtime, you must instrument unman-
aged C/C++ code when compiling. To instrument unmanaged code, DevPartner inserts hooks
directly into your source code. Use the Instrumentation Manager in which you specify the type
of instrumentation to be used and specify any projects in the solution to exclude from instru-
mentation. (Refer to “Collecting Data from Unmanaged Code” on page 192 for more informa-
tion about the Instrumentation Manager.) When you rebuild the unmanaged project, the hooks
are inserted. To remove the hooks, turn off instrumentation by deselecting the Native C/C++
Instrumentation option from the DevPartner menu, and rebuild the project.

Collecting Data from Various Types of Applications

This section provides information about using DevPartner performance analysis to collect data
from different types of applications.

DevPartner supports all Visual Studio managed code languages, as well as unmanaged C/C++.
DevPartner can also collect performance data for JScript and VBScript Web applications when
using Internet Explorer or IIS.

Refer to Appendix B, “DevPartner Studio Supported Project Types” for a complete list of
languages and project types supported in each version of Visual Studio.

Collecting Data From Managed Code

Many applications developed in Visual Studio are managed applications, such as C#, Visual
Basic, and managed C++ applications.

DevPartner requires PDB (program database file) information to collect detailed information
about your managed application source code. If no source data appears on the Source tab or
source files do not appear in the Filter pane make sure .pdb files are being generated.

Managed application files for which no PDB information is available appear in the System
folder in the Filter pane.

When attempting to collect data for a managed application, a security exception message
appears if your security policy prevents DevPartner instrumentation of your code. By default,
assemblies must have the SkipVerification permission to be profiled. If you remove this
permission from the permission set of the policy under which the code executes, or add imper-
ative security declarations to the assembly that cause this permission to be revoked, the assem-
bly can not be profiled.

To remedy this condition, enable secure profiling in one of two ways.

� Set the following global environment variable and retry profiling the application:

NM_NO_FAST_INSTR=1

This solution allows you to work around this issue, although it does exact a slight perfor-
mance penalty.

� Change the policy for the assembly using the .NET Framework Configuration tool MMC
snap-in, or by temporarily removing any imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help for more informa-
tion on security policy in Visual Studio.
 Understanding DevPartner Studio 191

Chapter 6 · Automatic Performance Analysis
Collecting Data from Unmanaged Code

When you build your unmanaged C++ application for performance profiling with Native C/
C++ Instrumentation, DevPartner works with the compiler to add instructions to your appli-
cation image to collect performance data at run time. For example, DevPartner is called each
time a method is entered and each time a method is exited. DevPartner uses this information to
determine the execution time of the method.

To instrument unmanaged code, open the solution containing the unmanaged C/C++ project
for which data is to be collected and choose DevPartner > Native C/C++ Instrumentation
Manager.

Figure 6-7. The Instrumentation Manager

Select the Instrument the projects checked below when I build my solution check box and
select a type of instrumentation. The type of instrumentation you choose must match the type
of analysis you subsequently run.

Select the projects to be instrumented. By default, DevPartner instruments all unmanaged code
in the solution. Deselect modules to be omitted.

Click OK and rebuild the solution. DevPartner instruments the selected unmanaged C/C++
projects. Click Start with Performance Analysis on the DevPartner toolbar to begin the
analysis session.

DevPartner saves project selections in the Native C/C++ Instrumentation Manager with the
solution. Once you use the Instrumentation Manager to configure instrumentation, you can
turn instrumentation on and off with the Native C/C++ Instrumentation option from the
DevPartner menu or the Native C/C++ Instrumentation button on the DevPartner toolbar.
Use the Native C/C++ Instrumentation Manager only to change settings.

To remove instrumentation from your application , deselect the Native C/C++ Instrumenta-
tion option from the DevPartner menu. The next time you start a performance analysis session
or rebuild the solution, Visual Studio rebuilds the solution without instrumentation.
192 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Note: If your application calls Visual Studio components, you must compile these
components with DevPartner instrumentation for performance analysis in
Visual Studio. See the DevPartner Studio online help in Visual Studio for more
information.

Mixed-mode C++ Files

With unmanaged (native) C++, you can compile your application as managed code with the /
clr option, but mark sections of your code with #pragma (native). The compiler generates
native code for any methods defined in the #pragma section. DevPartner does not support
mixed-mode C++ files. When profiling a program that includes a C++ file with both managed
and unmanaged (native) sections, DevPartner collects coverage data only for the managed
code portions, not the native code portions from #pragma. To collect data for unmanaged
C++ code, place the unmanaged code in a separate file and instrument it, “Collecting Data
from Unmanaged Code” on page 192.

Collecting Data from Multiple Processes

An application may run more than one process. For example, when you profile an ASP.NET
application you may see the browser process (iexplore), the IIS process (inetinfo), and
the ASP worker process (aspnet_wp or w3wp).

When you run a multi-process application under performance analysis, the DevPartner
Session Control toolbar displays the active processes in the process selection list.

Figure 6-8. Session Control Toolbar with the Process Selection List

Use the process selection list to focus data collection. When you take a snapshot, DevPartner
creates a session file with data for the process selected in the process selection list.

Collecting Data from Remote Systems

You can collect performance data for application components running on remote systems. For
example, you might want to collect performance data for both client and server portions of a
client/server application. With DevPartner, you can collect performance data for client and
server processes as you run the client application.

To collect data simultaneously from a client system and a remote system, install DevPartner on
the client and install DevPartner and the DevPartner Remote Server license on the remote
system. See the DevPartner Studio Installation Guide and the Distributed License Manage-
ment Licensing Guide for more information about the Remote Server license.

A server connected through a Terminal Services connection does not require the DevPartner
Remote Server license. See “Using Terminal Services and Remote Desktop” on page 21 for
information on Terminal Services.

On the remote system, select the relevant projects and review the DevPartner properties to
ensure that they match the options set on the client system. DevPartner restarts server
processes, such as IIS, after you change options. This restart is necessary for changes to take
effect.
 Understanding DevPartner Studio 193

Chapter 6 · Automatic Performance Analysis
Be sure to specify instrumentation if you are analyzing an unmanaged C++ application. If your
application calls unmanaged C++ components, you must instrument those components if you
want to collect data from them, as described in “Collecting Data from Unmanaged Code” on
page 192.

Correlating Data

When you use Internet Explorer (IE) and Internet Information Server (IIS) as browser and
Web server, or you use COM to make inter-process calls, DevPartner automatically recognizes
a client/server relationship between the processes. To preserve the relationship between the
methods of DCOM objects or the relationship between HTTP client and server (IE and IIS),
DevPartner automatically correlates the data from those sessions. It then combines the corre-
lated data with the client session data into a single session file.

The correlated session file contains the performance data for both the client and server
portions of your application. The correlated session file appears in Visual Studio, like any
other session file, with _co appended to the file name, as in appname_CO.dpprf.

When you view a correlated session file in the Call graph, you can follow a COM call stack
from the calling method to the called method. DevPartner scales the server-side data to match
the clock speed of the client system.

You can use DevPartner > Correlate > Performance Files to manually combine data from
different session files when there is no COM-based relationship or client/server relationship
between IE and IIS. You can also use the NMCORRELATE command line utility to manually
combine data, as described in “Starting Analysis from the Command Line” on page 283.

Collecting Data From .NET Web Applications

If you develop Web Forms, XML Web Services, or ASP.NET applications, you can use
DevPartner to collect performance data for both client and server portions of your application.
You can configure DevPartner to collect data for IIS and ASP.NET running on a local or
remote computer.

To collect data for unmanaged C++ components called by your application, you must instru-
ment and rebuild the objects with Native C/C++ Instrumentation, as described in “Collect-
ing Data from Unmanaged Code” on page 192. If your Web application calls C++
components, you must instrument them using the DevPartner commands in Visual Studio. Be
sure to instrument for performance analysis. DevPartner collects data for only one analysis
type in a session.

Note: DevPartner session files are saved with the current solution. Opening a Web
project from IIS directly, as opposed to opening the project through Visual
Studio, may cause a different solution file to be used. DevPartner session files
created in the first solution would not be visible in the second solution.

Prerequisites

For DevPartner performance analysis to successfully profile an ASP.NET application, the
following two conditions must be met:

� The project must include a web.config file.
194 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
� The web.config file must include a compilation element with the debug attribute set to
true. For example:

<compilation debug=”true”/>

DevPartner can also collect data for in-process or out of process components called by your
application.

Analyze ASP.NET Applications without Debugging

For optimum results, run performance analysis without debugging.

Figure 6-9. Start without debugging option

Only one script debugger can be active at one time. If you debug a Web application with
debugging, both Visual Studio and DevPartner attempt to load a script debugger. A message
displays indicating that the script debugger failed to attach to IE. The session continues
without interruption despite the error message.

To avoid the error message, you can either disable script debugging in iexplore or run
performance analysis without debugging.

Unexpected File Save Dialogs or Saved Session Files

Under certain circumstances, you may see an unexpected File Save dialog box after quitting an
ASP.NET application, or find that unexpected session files have been saved if you have
configured DevPartner to automatically save session files.

When you run performance analysis on an ASP.NET application, DevPartner collects data for
Internet Explorer as the primary profiled process. DevPartner also saves session data for
secondary processes, such as an ASP.NET worker process (w3wp or aspnet_wp). When
the primary process terminates, DevPartner stops data collection and generates a final corre-
lated session file that contains both client data (for IE) and server data (for IIS and ASP.NET)
worker processes. You can also take a snapshot of the server process alone by selecting the
process in the Session Control toolbar.

In most cases the client and server processes are terminated by user action. However, the
ASP.NET worker process can also shut down automatically during profiling. This can occur if
you have edited the processModel Attributes section of the machine.config file on the
system on which the process runs in one of the following ways:

� Changed the value of the requestLimit or requestQueueLimit attribute from
“Infinite” to a value low enough to cause the process to be shut down during the session

� Changed the value of the timeout or idleTimeout attribute from Infinite to a value
low enough to cause the process to be shut down during the session

� Changed the value of the memoryLimit attribute to a percentage low enough to cause
the process to recycle during the session
 Understanding DevPartner Studio 195

Chapter 6 · Automatic Performance Analysis
When the process is shut down, DevPartner takes a final snapshot and generates a session file.
DevPartner handles the session file in one of the following ways:

� If the ASP.NET worker process is the selected process in the Session Control toolbar,
DevPartner opens the session file in Visual Studio and adds it to the solution. This action
is repeated for each instance of the ASP.NET worker process that is spawned and termi-
nated.

� If the ASP.NET worker process is not the selected process, the session file is cached.
When the IE client process is terminated, or when a snapshot of the IE process is taken,
DevPartner creates a session file for IE, and a correlated session file that includes data for
IE, IIS, and all instances of the ASP.NET worker process spawned and terminated up to
that point.

When the analysis session has ended, DevPartner continues to display the File Save dialog box
or automatically save session files for instances of the ASP.NET worker process that are
spawned and terminated.

To avoid generation of extra session files due to frequent termination of the ASP.NET worker
process, you can edit the machine.config file and set the limiting attribute to a value high
enough to prevent premature termination of the process.

Note: Always make a backup copy before editing the machine.config file.

Collecting Data from Classic Web Script Applications

When you run a classic Web script application with DevPartner performance analysis enabled,
DevPartner gathers data for HTML files and JScript and VBScript source files. If the scripting
languages invoke in-process or out-of-process components, such as COM objects, DevPartner
can collect data for these as well.

Instrumentation for the scripting languages occurs at run-time, just as it does for managed
.NET languages. However you do need to instrument any unmanaged components, such as
COM objects, that you want monitored.

Note: The following procedure is unique to classic Web script applications. To collect
data for Web Forms, XML Web services, and ASP.NET applications you
develop in Visual Studio, run the application just as you would run any other
.NET application.

To collect data for a classic Web script application, choose Start > Programs > Micro Focus
> DevPartner Studio > Utilities > Web Script Performance.

Internet Explorer (IE) opens with DevPartner Performance Analysis loaded. In addition to IE,
a Session Control toolbar appears, which you can use to control data collection.

In the DevPartner-enabled instance of IE, open the HTML page or Web application for which
you want to collect performance data and exercise the application. Optionally, use the Session
Control toolbar to focus data collection as the application executes.

Exit Internet Explorer or, if using the Session Controls, execute a Stop action. The Save
Session dialog box appears and the session file is saved.
196 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Web Application Data Collection Tips

Before you begin collecting data for analysis:

� Warm up the application by exercising it for several minutes. Be sure to include the parts
of the application in which you are interested.

� Execute the Clear session control action to discard data collected to that point. This elim-
inates data collection for the many one-time initializations that take place when you
launch the application.

� Exercise the modules you are analyzing.

� Click Snapshot on the Session Control toolbar. This provides performance data for a rep-
resentative sample of your code.

� Allow time for HTML pages to completely load. When testing manually, wait for the page
to load. When creating scripts for automated testing, build in wait time so pages can load
completely. Executing code on a page before the page is fully loaded may skew your pro-
filing data.

� Be aware of caching. A Web application may return a page from the cache instead of run-
ning your application code. If your test uses the same input data repeatedly, caching skews
results. If you do not want to measure the effects of the cache, you can turn caching off by
editing the machine.config file and commenting out the line that reads:

<add name=”OutputCache” type=”System.Web.Caching.Output-
CacheModule”/>

Note: Always make a backup copy before editing the machine.config file.

Web Service Requirements

For DevPartner performance analysis to detect a Web service, the service must meet at least
one of the following requirements:

� The Web service must be derived from the System.Web.Services.WebService base
class.

� The Web service must contain the WebService attribute.

For DevPartner performance analysis to detect a Web method, the method must contain the
WebMethod attribute.

Deleting Temporary Files from NMSource

While analyzing scripts for performance under IE or IIS, DevPartner creates an NMSource
folder to hold temporary copies of the script source. This source is displayed in the Source tab
of the Session window when you are analyzing session data.

Because this source may be needed at any time, DevPartner does not delete files from
NMSource. The size of this folder can grow quickly, particularly when you are analyzing
server programs under IIS.
 Understanding DevPartner Studio 197

Chapter 6 · Automatic Performance Analysis
You should regularly review the source files in the NMSource folder and delete any related to
projects that are no longer active. NMSource is located in the \Program files\Internet
Explorer folder.

Configuring IIS for Data Collection

To collect performance data for IIS/ASP.NET applications running on the local computer or on
a remote server, set the following configuration options.

If IIS runs on the local system, set the options described below on the local system. If IIS runs
on a remote server, you must install DevPartner (and a Remote Server license) on that system
and set the options described below on the remote system.

Script Debugging

You can set the following options in the Default Web Site Properties, or in the WebApplication
Properties for a specific application, of the Internet Information Services manager. The follow-
ing options apply to IIS 5.0 or 6.0.

On the Home Directory or Directory tab, click Configuration. On the Application Debug-
ging tab, set the Debugging Flags to:

� Enable ASP server-side script debugging
� Enable ASP client-side script debugging

Host Process Settings

If your Web application runs in the dllhost process, you may need to change the Application
Protection options to enable DevPartner to collect performance analysis data. You can set
these options in the Default Web Site Properties, or in the WebApplication Properties for a
specific application, of the Internet Information Services manager. The following options
apply to IIS 5.0 or 6.0.

On the Home Directory or Directory tab, in the Application Settings section, set the Applica-
tion Protection to one of the following:

� Low (IIS Process): Your application runs in the inetinfo process. DevPartner restarts
IIS when you enable data collection and collects data from this process as your application
runs.

� High (Isolated): Your application runs as a separate instance of dllhost. DevPartner
recognizes the new process and collects data as your application runs.

When you have finished collecting data, restart IIS to remove DevPartner data collection from
the process.

Configuring Internet Explorer for Data Collection

To collect performance analysis data from Internet Explorer, select
Tools > Internet Options... On the Advanced tab, set Disable script debugging (Internet
Explorer) to OFF and set Disable script debugging (Other) to Off.
198 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
Collecting Data from a Service

To run a performance analysis session for a service, use DPAnalysis.exe. With DPAnaly-
sis.exe, you can run sessions directly from the command line or through an XML configura-
tion file. Refer to“Starting Analysis from the Command Line” on page 283 for information on
DPAnalysis.exe.

Collecting Data from COM and COM+ Applications

You can collect data for an application that makes calls to COM or DCOM components with
DevPartner.

If you profile an application that uses a mix of unmanaged COM and .NET objects (COM+),
DevPartner collects line-level data for .NET portions of the application. DevPartner collects
line-level data for unmanaged code components if they have been instrumented with DevPart-
ner native C/C++ instrumentation. DevPartner can also collect line-level data for your Visual
Basic COM objects, if you first instrument them for performance data collection. You can do
this by building the project with instrumentation for performance analysis.

If you profile a C++ object, or any unmanaged code component that has not been instru-
mented, DevPartner collects only method-level data based on COM interfaces and DLL
exports.

Collecting Data for Recursive Functions

A literal profile of an application that uses recursion contains double counts of recursive
functions. DevPartner eliminates this duplication by detecting when it is already timing a
function. It stops timing for the first function call and starts a new accumulation for the second
call. Refer to the DevPartner Studio online help if you would like an in-depth description of
how DevPartner handles collecting data for recursive functions.

Analyzing a Call Graph

A Call graph is a graphical representation of of the calling relationships of your application’s
methods. Use of call graphs was introduced in the Ready, Set, Go procedure earlier in this
chapter. This section provides additional details about using the Call graph.

To view a Call graph from a session file, either click the Show Call Graph button or select a
method from the Method List tab, right-click and select Go to Call Graph. A separate Call
graph window appears.

DevPartner displays Call graphs showing the chain of calls leading up to a particular method
call, and the methods that are subsequently called by that method.

The nodes are displayed sequentially from left to right in the order in which they were called.
The first node initially shown in the Call graph is the base node. This represents the selected
method or object. Nodes to the left of a node are called “parent nodes.” Nodes to the right of a
node are called “child nodes.”
 Understanding DevPartner Studio 199

Chapter 6 · Automatic Performance Analysis
Figure 6-10. Call graph

The Call graph consists of two frames:

� The left frame shows an overview of the Call graph. This is useful to see the entire Call
graph if the Call graph has too many nodes to be shown in the right frame without scroll-
ing. As you expand or collapse nodes in the right frame, the overview automatically
refreshes to display the current view. Alternatively, move the navigation frame around in
the overview to change the portion of the graph displayed in the right frame. You can close
the overview by right-clicking anywhere in the right frame and deselecting the Show
Overview option.

� The right frame shows the base method node and all the methods either called by it or that
call it. Use the expand/collapse boxes to show or hide the nodes to the right or left of the
selected node.

The percentage value shown in each node represents the percentage of time the node is
using. The value shown on the lines to each child node represent the time that child path is
using, as a percentage of the total time being used by its parent node.

Critical Paths

When you display a Call graph, DevPartner computes the critical path for the selected method
and all of its children. The critical path is the sequence of method calls that accounted for the
largest percentage of time attributable to the method and all of its child methods.

Navigating the Call Graph

You can drag the nodes to different locations on the window and the Call graph lines are
automatically redrawn for you. This is useful if the screen is cluttered with too many methods
or if you want to reduce the amount of screen taken up by the initial display of the base, parent,
and child nodes.

Move navigation
frame in overview
pane to navigate

Click to expand or
collapse parent/
child branches

Base node
highlighted
and outlined

Critical path
node(s)
highlighted

Critical path
highlighted for
parent methods

Hover mouse to view
additional data for a method
node or a link value

Critical path
highlighted for
child methods
200 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
By default, only the child nodes are shown in expanded form. The parent(s) of the base node
are not shown. Click on the plus icon on the left side of the base node to display the parent
node for the base node. To display the full path, expand the left icon for each parent node until
you reach the first method executed by the program (typically named Program Start).

You can select nodes either individually or in a group. To select multiple nodes, select one
node, then while pressing the Ctrl or Shift key, select the other nodes you want. You can then
drag them as a group.

Viewing Source Code

To view the source code for the base node, right-click on the base node and select the Go to
Method option on the context menu. You can only view the source code for the base node.

Child-side Analysis

Analyze the child (right) side of the Call graph to understand what to optimize.

Expand the child nodes to analyze whether the base method or a child method is responsible
for the most time.

� If the base node has several parallel branches, look for branches that have the largest val-
ues on the link to the first child method. Optimizing branches with higher values is likely
to provide more benefit in terms of performance.

� If the base method itself shows a high value, consider optimizing the base method.

� If a child branch is a large contributor to the time spent by the base method, look for child
nodes on that branch with high percentage values.

Parent-side Analysis

Analyze the parent (left) side of the Call graph to determine if the base node branch is worth
optimizing, or number of times the base node is called can be reduced or eliminated.

Expand the parent nodes to the left of the base node. In particular, examine the base node’s
contribution to the time spent in its parent branches. This helps determine if optimizing the
base node or its child methods is worthwhile. If the base method is a large contributor to
several parents, or to an important parent in terms of overall program execution, it is probably
worth considering as a target for optimization.

Values on the links between the base node and its parents are independent, not additive. Each
percentage value represents the base node’s contribution to the time spent by that parent.

� If the base node has several parents, and one or more values on the links to the base node
is high, the base node may be a candidate for optimization.

� If the values on the links to the parents are very small, optimizing the base node branch
has little impact on parent method performance.

� To determine if the base node is the best choice to optimize, view a new Call graph with
the parent selected as the base node. This shows the importance of the original base node
to the parent node’s performance, relative to other children of that parent method.
 Understanding DevPartner Studio 201

Chapter 6 · Automatic Performance Analysis
When analyzing either the parent or child side of the Call graph, you can right-click a node and
use the context menu to view the source code for the method to see if you can determine why
it is using so much time.

Comparing Sessions

To fine tune a program's performance, you first need to locate where execution spends the
most time so you can make adjustments to the costliest code fragments. Then you want to
compare how those adjustments affect performance.

DevPartner gives you the ability to compare the results of one performance session with those
of another so you can see the impact of optimizations you make on individual methods and on
application performance as a whole.

Figure 6-11. Comparing performance sessions

You invoke session comparison by toggling the Compare command with a session window
open. The Compare command is available:

� As a tool bar button

� As a menu item on a performance session window context menu

When you first invoke the Compare command, you are prompted to choose a session file to
be the basis session. DevPartner defaults to tracking the currently active session as the current
session. Once you choose a basis session, the session window transforms to include a frame
that you can place over any method in the method list. The frame displays a comparison
between the basis and current session versions of that method.

Before and after graphs for
key Method List columns

Browse to select a
new basis session

Total clock time difference
between sessions

Place cursor over a method in the
Method List to view performance
comparison details

Place cursor over column in the
“before and after” graphs to view
details for methods in a ToolTip
202 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
When choosing sessions for comparison, try to ensure that the sessions compared were run in
as near an identical fashion as possible. For example, do not compare a session started in the
debugger with one run outside the debugger. To create more exact comparisons, consider using
the session control file or the Session Control API to control data collection.

The upper right of the comparison window displays the overall time difference between the
current session and the basis session. The graphic to left of the time display indicates whether
the current session took more or less time than the basis session. This is useful for a quick
comparison of sessions in which the application was exercised identically.

The comparison shows the current value, basis value, difference, and percent difference
between the two versions of the chosen method. You can use DevPartner performance filters to
alter the views of your session data.

At the top of the session window, four bar charts show a graphical view of the same informa-
tion for the top methods in the current session.

You can copy the information in the session comparison data box by invoking the Copy
Comparison command from the context menu within the Method List. This command copies
the data onto the clipboard.

When you finish comparing, press Esc, or click the Compare icon.

Interpreting Session Comparison Results

A session comparison shows the current value, basis value, difference, and % difference
between a method in the current session and the same method in the basis session. DevPartner
uses color to help you see at a glance whether the value in the current session is larger or
smaller than that in the basis session. When the values for difference and percent difference
are dark blue, the values for the current session were better (faster) than those of the basis
session. Light blue means that the performance values were slower in the current session.

Once you have determined what results your code changes accomplished between sessions for
any given method, search other methods in the session to uncover any side effects of your
initial code changes. Even though an individual method's performance improved, the larger
program's performance may have degraded. In performance tuning, no tool can substitute for
thorough knowledge of the structure of your code.

When examining session comparison results, be aware of the following:

� A percentage is a ratio of two numbers. Percentages are additive only when computed rel-
ative to the same total value.

� If one percentage value decreases, all other percentage values must increase. In a complex
program this may be difficult to notice, since the percentage increase must be averaged
across all the other methods in the program.

� To interpret a subprogram’s timing, you must understand that subprogram’s role in the
enclosing program.

� Performance measurements have no meaning outside the context of the program that pro-
duced them. It is not possible to generalize about the effects of program changes without
understanding the program’s operation.

Once you are satisfied with the changes to the costliest method in your program, you can turn
your attention to other expensive methods.
 Understanding DevPartner Studio 203

Chapter 6 · Automatic Performance Analysis
Exporting Performance Data

You can export performance data in XML format or in CSV format. Exporting data in XML or
CSV format facilitates use of your own or third-party software to analyze the data, integrate
the data with data produced by other tools, and archive the data in a data warehouse.

� You can export DevPartner performance session files (with the .dpprf extension) to
XML format. When a saved performance session file is open, the Export DevPartner
Data command is available on the File menu. Refer to “Exporting Analysis Data to XML”
on page 307 for information about exporting in XML format.

You can also export data from the command line, as described in “Exporting Analysis
Data to XML from the Command Line” on page 308.

� You can export Method List data to a comma-delimited CSV text file. Click the Method
List tab to make it active, display the columns you want to export, right-click in the
Method List and choose Export Method List from the context menu. You can open the
comma-delimited text file in Microsoft Excel or another spreadsheet application.

Controlling Data Collection

DevPartner gives you three ways to control when performance data is collected during the use
of your application:

� You can use the session control toolbar to interactively control data collection as your pro-
gram runs.

� You can use a session control file to assign session control actions to specific methods in
your application modules.

� You can use the Session Control API to control data collection in your program.

Using the session control toolbar or Session Control API allows you to control data collection
anywhere within a method. Using a session control file allows you to control collection only at
the entrance to or exit from a method.

Using a session control file and using the Session Control API is described in “Analysis
Session Controls” on page 301.

Analyzing from the Command Line

To automate data collection or run analysis sessions from the command line, use DPAnaly-
sis.exe, the DevPartner command-line executable. For information on using DPAnaly-
sis.exe, refer to “Starting Analysis from the Command Line” on page 283.

Using the Performance Analysis Viewer

DevPartner Studio provides a lightweight Performance Analysis Viewer for analyzing perfor-
mance session files independently of Visual Studio. To launch the viewer, do any of the
following:
204 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
� On the Start menu, select Programs > Micro Focus > DevPartner Studio > Perfor-
mance Analysis Viewer.

� Double-click a .dpprf session file in Windows Explorer.

� Run a performance analysis session using DPAnalysis.exe on the command line. Dev-
Partner displays the session data in the Performance Analysis Viewer.

What You Can Do in the Performance Analysis Viewer

With a session file open, you can view, sort, save, or print performance session data. In
addition, you can:

� View the source code for a method
� Sort the data on the Method List tab
� View the Call graph for a method
� Compare session data
� Export the contents of the file as XML
� Export the contents of the Method List in CSV format

What you Cannot Do in the Performance Analysis Viewer
� Instrument an unmanaged application for performance
� Start a performance session
� Add files to a Visual Studio solution

Session files generated from the command line are not automatically added to the project's
solution. You can manually add externally generated session files to an open solution in Visual
Studio.

Performance Analysis Tips for .NET Applications

The following are strategies you can use to make the performance analysis process more
productive.

� Analyze source code

Use the Top 20 Source Methods filter to isolate application hotspots.

To avoid collecting data for all system (non-source) files, check Exclude system images
on the DevPartner Exclusions - Performance options page. Once you optimize your
source code, turn off this option so you can examine how your application uses system
code, especially the .NET Framework.

Use the Call graph to examine the most expensive methods to understand the costs associ-
ated with child methods called.

Compare the effect of different algorithms or logic changes by running multiple perfor-
mance sessions.

� Understand Framework costs

Use % with Children on the Method List or Source tab to see how much time you are
spending in the .NET Framework.
 Understanding DevPartner Studio 205

Chapter 6 · Automatic Performance Analysis
Drill into the .NET Framework by examining child methods in the Call graph to under-
stand which calls are expensive and why.

Rework the application to do less work or to call the .NET Framework less often.

� Understand start-up costs

Use the Clear session control before collecting performance data. The .NET Framework
performs many one-time initializations. To prevent these from skewing performance
results, warm up the application by exercising all the features you want to profile, then
Clear the data. Next, run a test that exercises the same features to get a more accurate
performance picture.

� Understand what you want to measure

Consider how your application behaves before you begin collecting performance data. For
example, if you are profiling a Web service or ASP.NET application, think about how Web
caching affects results. If your test run inputs the same data repeatedly, your application
fetches pages from the cache, skewing the performance data. In such a case, you could
take pains to insure variable input data, or simpler, edit the machine.config file to turn
off caching while you test. Comment out the line that reads:

<add name=”OutputCache” type=System.Web.Caching.Output-
CacheModule”/>

� Measure performance of mixed-mode applications

You may choose to write parts of a .NET application in unmanaged C/C++. DevPartner
allows you to collect performance data for both managed and unmanaged portions of an
application in a single run, provided the unmanaged code is in a separate file and you
instrument the code before collecting data. Thus, you can compare the effectiveness of
unmanaged and managed code in the context of the total application by comparing perfor-
mance sessions.

� Collect complete data for distributed applications

Tip: Use the process list on the Session Control toolbar to take performance
snapshots of each process in a distributed multi-process application.

When you analyze performance for a Web application, a multi-tier client/server applica-
tion, or an application that uses Web services, include all remote application components
in the analysis. Use a DevPartner installation to configure performance data collection on
remote systems. If your application uses unmanaged C/C++ components, instrument the
components for performance analysis before collecting data. Recommendations regarding
start-up costs, .NET Framework costs, and awareness of application behavior apply
equally to collecting data for server-side components.

� Understand the limitations of micro-profiling

Once you identify a bottleneck in your application, you may find it convenient to create a
smaller sample of code that duplicates the problem area in the main application. You
improve performance in that sample by iterative performance comparisons and then move
the code back in to the main application. Is your application going to be faster? Maybe.
But you cannot know until you rerun your original performance tests.
206 Understanding DevPartner Studio

Chapter 6 · Automatic Performance Analysis
� Simulate actual running conditions

Application memory footprint, multi-threading, thread priorities, process security,
network latency, server load, and other contingencies can affect the way your code runs in
ways that performance testing of a single component may not reveal. You have not
measured application performance until you have simulated as closely as possible the
conditions under which your application is going to be used.

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the Team Explorer client
is installed and a Team Foundation Server connection is available. Refer to “Visual Studio
Team System Support” on page 20 for general information about Team System support.

In a performance analysis session file, you can submit data for a method selected in the
Method List tab in a DevPartner performance analysis session file as a Work Item to Visual
Studio Team System.

When you submit a bug, DevPartner populates the Work Item form with data from the visible
columns in the Methods List tab. To change the method data you submit in the Work Item,
change the columns displayed in the Method List.
 Understanding DevPartner Studio 207

Chapter 6 · Automatic Performance Analysis
208 Understanding DevPartner Studio

Chapter 7

In-Depth Performance Analysis
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with Performance Expert. The second section provides refer-
ence information for an in-depth understanding of the DevPartner Studio Performance Expert
component.

Refer to the DevPartner Studio online help for additional task-oriented information about
Performance Expert.

What is Performance Expert?

DevPartner Studio contains many features designed to assist application development, includ-
ing a performance analyzer that helps you locate bottlenecks in your code. Performance Expert
takes performance analysis a step further for managed Visual Studio applications by providing
deeper analysis of the following hard-to-solve problems:

� CPU/thread usage

� File/disk I/O

� Network I/O

� Synchronization wait time

Note: Performance Expert analyzes managed code only, and is therefore not
supported in the DevPartner for Visual C++ BoundsChecker Suite.

Performance Expert analyzes your application at run-time and locates the problem methods in
your code. It then allows you to view details about individual lines in the method, or to
examine parent-child calling relationships to help you determine the best way to fix the
problem. When you decide on an approach, Performance Expert enables you to jump directly
to the relevant lines in your source code, so you can quickly fix problems.

Because Performance Expert is integrated into Visual Studio, you can use it to test applications
as you develop them. You can also run Performance Expert sessions from the command line,
or as part of an automated test scenario, by using the DevPartner command-line executable
DPAnalysis.exe with traditional command-line switches or an XML configuration file. For
information, see “Starting Analysis from the Command Line” on page 283.

Performance Expert is designed for use by software designers, software developers, and
quality assurance (QA) engineers. It can also be used by development management staff to
identify problems in an ongoing project.
 Understanding DevPartner Studio 209

Chapter 7 · In-Depth Performance Analysis
Performance Expert and Performance Analysis

Think of Performance Analysis as a complement to traditional performance profiling. First,
run your application with performance analysis to get a baseline view of performance. Next,
run an identical session with Performance Expert to better understand the nature of difficult
problems, especially problems that involve disk or network I/O, or synchronization issues.
When you have fixed the problem, run the application again with performance analysis and
use the performance analysis Session Comparison feature to verify the improvement. For
information on comparing performance analysis sessions, see “Comparing Sessions” on page
202. For more information on using Performance Expert in conjunction with performance
analysis, see “Using Performance Expert with Performance Analysis” on page 238.

Using Performance Expert Out of the Box

The following Ready, Set, Go procedure introduces you to using Performance Expert.

Analyzing an application with Performance Expert does not require elevated system privi-
leges. The system privileges you use to create and debug your application are sufficient for
Performance Expert to analyze the application.

Ready: Consider What You Want to Analyze

When determining the type of application being analyzed. think about what steps, if any, you
need to take before beginning a Performance Expert session.

Performance Expert collects data only from managed applications. To collect Performance
Expert data for your application, the solution must contain at least one managed code project
(for example, C#, Visual Basic, or managed C++). It must also include a startup project. If the
solution includes multiple startup projects, DevPartner prompts you to choose a startup project
for the session.

See “DevPartner Studio Supported Project Types” on page 275 for a comprehensive list of
supported project types for DevPartner memory analysis.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information about the subject described in a shaded box, read the additional text follow-
ing the box.

The following procedure assumes:

� You are testing a single process, managed application.

� You can build and run your application.

� Your solution contains at least one managed code project.

� Your solution includes a startup project.
210 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Performance Expert monitors a single process when run from Visual Studio, or when run with
DPAnalysis.exe using traditional command-line switches. Although you can collect
Performance Expert data from more than one process or service in a session by using
DPAnalysis.exe with an XML configuration file, it is usually best to target a single process
in a Performance Expert session. If your application runs in more than one process, rerun the
application, targeting the second process. For more information about using DPAnaly-
sis.exe, see “Automating Data Collection” on page 233.

You can use Performance Expert to improve performance of any managed Visual Studio appli-
cation, including:

� ASP.NET Web applications
� ASP.NET Web services applications
� .NET Remoting server applications
� Windows Forms client applications
� Serviced components, e.g. COM+

Decide what data you are interested in collecting before beginning your Performance Expert
session. Think about how your application performs. Does it slow down when you use certain
features? If so, exercise that feature when you run your application with Performance Expert.
Has traditional performance analysis indicated that excessive time is being spent in methods
that read or write data, or access network resources? Performance Expert can provide
additional information about disk and network I/O, so target that feature in a Performance
Expert session.

If your application includes a local client process and a remote server process, are you inter-
ested in data from both processes? If so, you must first install DevPartner Studio and a
DevPartner Remote Server license on the remote computer to collect the server data. Before
collecting server-side data, be aware that some IIS setup might be required.

Set: Properties and Options

Once you have decided what code you want included in the Performance Expert session, you
can set several properties and options to focus your data collection.

Using Solution Properties or Project Properties, you can choose a startup project for the
session or exclude certain projects from the session, if your solution contains multiple
projects. Using DevPartner options, you can change display options or create a Session
Control file to manage data collection. Setting up your analysis session is described in “Setting
Properties and Options” on page 223.

Go: Collect Performance Expert Data

After considering what you want to analyze and setting the appropriate properties and options,
you are ready to collect Performance Expert data.

DevPartner supports the Visual Studio launch model. When you click the Performance Expert
icon or choose Start without debugging with Performance Expert on the DevPartner
menu, DevPartner rebuilds the solution, launches the startup project for your application, and
begins to collect Performance Expert data.

For this procedure, you can use the default DevPartner properties and options. No additional
set-up is required.
 Understanding DevPartner Studio 211

Chapter 7 · In-Depth Performance Analysis
Figure 7-1. Controlling Data Collection with the Performance Expert window

Using the Performance Expert Window

Using the Real-Time Graph

The Performance Expert real-time graph presents the last 30 seconds of activity as you run
your application. The graph always draws a line reflecting CPU use. If your application does
disk or network reads or writes, the graph includes separate lines for disk I/O and network I/O.

Use the real-time graph to monitor application activity. If you see something interesting, for
example, a spike in activity in the graph, you can use the Snapshot button to take a snapshot
of activity to that point. Conversely, if nothing of interest has happened, use the Clear button to
clear data collected to that point.

Using Clear and Snapshot

The Clear and Snapshot buttons are located above the real-time graph, at the upper left of the
Performance Expert window. Use these session controls to perform the following actions:

� Clear - Clears data collected to that point, or since the last clear action. Use Clear to focus
data collection and minimize the size of the session results file.

� Snapshot - Creates a session results file that contains data collected up to that point, or
since the last clear action. Data collection continues. You can take multiple snapshots as
your application runs.

1 In the Performance Expert window, click the Clear session control at the upper left to
clear startup and initialization data and focus data collection on the problem feature.

2 Exercise the slow portion of your application.

3 Watch the Performance Expert window as you exercise your application. The graph
displays a line for CPU process time, and if present, lines for disk and network activity. A
spike in any of these lines may indicate a potential trouble spot.

4 If you see something interesting, click the Snapshot session control. DevPartner gener-
ates a Performance Expert session file and displays it in Visual Studio.

Snapshot

Clear

Coverage meter

Real-time graph
212 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Using the Coverage Meter

The Coverage Meter is located below the real-time graph, at the lower left of the session
control window. The coverage meter displays the percentage of your application methods that
have been executed up to that point in the session. Use the coverage meter to ensure that you
have tested all of your code under the Performance Expert. You can also use the coverage
meter in conjunction with the session control actions to help focus data collection on certain
parts of your application.

Note: Generally, run Performance Expert sessions without debugging. Results from
non-debug sessions are easier to interpret and do not include the processing
overhead caused by the debugger. If you run your application in the debugger,
some timing values might be larger than expected, especially if breakpoints
were hit during the session. Expect tracing and other debug-only functionality
to figure highly in such session files.

Analyze the Data

When you take a data snapshot, or when you finish collecting data and quit your application,
DevPartner produces a Performance Expert session file. The initial view of the data DevPart-
ner has collected for your application appears in the form of a results summary.

Figure 7-2. The Performance Expert Results Summary

The results summary contains two bar graphs, reflecting two ways to analyze the data to solve
application problems:

5 When you finish collecting data, close your application.

When you close your application, DevPartner generates a final Performance Expert
session file. If you want to capture all the session data in a single session file, it is not
necessary to use the Snapshot session control. Simply close the application.
 Understanding DevPartner Studio 213

Chapter 7 · In-Depth Performance Analysis
Tip: An entry point method is a source code method that was not called by another
source code method, i.e., an entry point into source code execution.

� Paths that use the most CPU displays entry point methods for the top paths, or chains of
method calls, that consumed the most CPU cycles in the session. Path analysis enables you
to quickly identify the most expensive paths of method execution. You can:

� Fix the child methods responsible for poor performance

� Modify other methods in the calling sequence so they call the expensive child meth-
ods less often

� Individual methods that use the most CPU displays the top methods in terms of CPU
cycles consumed. Method analysis enables you to quickly identify individual problem
methods so you can fix them.

Notice the icons at the ends of the bars in Figure 7-2 on page 213. These icons indicate that a
method caused disk or network activity.

Deciding Where to Start

To begin evaluating the session data, compare the two bar graphs on the results summary.

� Is the top path in the Paths that use the most CPU chart significantly longer than the
other paths in the chart?

� Does the top method in the Individual methods that use the most CPU chart stand out
from the other methods in the chart?

� Does the time value for a method seem excessive for what the method does?

� Does the same method appear as expensive on both charts?

If the answer is yes to any of these questions, investigate that method.

Before you analyze the data, learn to navigate the data views that you can access from the
results summary.

1 In the results summary, click on the top path in the Paths that use the most CPU chart.
The Path analysis window opens.

Notice that the Path analysis window includes Call Graph and Call Tree tabs, and
below, Source and Call Stacks tabs.

2 Click Back to Summary to return to the results summary.

3 In the results summary, click the top method in the Individual methods that use the
most CPU chart. The Methods window opens.

Notice that the Methods window includes a list of the methods executed in the session,
and below, Source and Call Stacks tabs.

4 Click Back to Summary to return to the results summary.
214 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Analyzing Paths that Use the Most CPU

If you drill down from the Paths that used the most CPU graph, you can view Call graph and
Call tree presentations of the session data. The Call graph shows the child methods called by
the entry point method, with the relative contributions of each to the time spent in the path.
The Call tree presents a tree view of the same data but adds additional data about each method
in the form of user-configurable data columns.

If you choose to examine a method in the Individual methods that use the most CPU graph,
DevPartner presents a Methods table with user-configurable data columns to assist your
troubleshooting. To switch between the Path analysis and Methods table views, click Back
to Summary in any details view.

The calculation of the Performance Expert session data differs between the Paths that use the
most CPU and the Individual methods that use the most CPU views. In the Individual
methods that use the most CPU view, DevPartner excludes measurements for source code
child methods in computing data for CPU time, disk or network I/O, and synchronization lock
wait time. Excluding source code child methods focuses attention on methods that, in
themselves, consume large amounts of CPU time. In contrast, DevPartner includes the impact
of source code child methods to their parent methods in the Paths that use the most CPU
view in order to highlight the most expensive paths of execution.

All computations in both views include time or throughput attributable to system or .NET
Framework methods called by your source code methods. Managed applications typically
spend significant time executing .NET Framework code. Performance Expert charges the
system data to the lines in your source code that made the calls in order to focus attention on
how your code interacts with the .NET Framework, that is, on the parts of the application that
you can modify.

In this procedure, Path analysis is used forst to analyze the relative contribution of child
methods called in the most expensive paths of execution.

5 In the results summary, click on a method in the Paths that used the most CPU chart to
drill down to the Path analysis view. If the Call graph is not visible, click the Call
Graph tab, at the left.

DevPartner highlights the critical or most expensive path of execution. Start your
troubleshooting here.
 Understanding DevPartner Studio 215

Chapter 7 · In-Depth Performance Analysis
Figure 7-3. Identifying Expensive Execution Paths in the Path Analysis window

The Call graph helps you quickly locate expensive methods in the calling sequence so you can
focus your tuning efforts. In addition to showing the impact of child methods, the nodes in the
Call graph provide insight into what your methods do. For more information on using the Call
graph, see “The Call Graph” on page 229.

Back to Summary

Most expensive path

Call Graph tab

Call Tree tab

Source tab

Call Stacks tab

Slowest child
methods in all called
paths

In the Call graph:

6 To investigate a path, click the plus sign on a node to expand the path to the right.

7 Click on any method to see the list of the slowest child methods it called, regardless of
path. This list exposes slow methods that may not be part of the critical path.

8 To determine the relative contributions of different paths spawned by the same method,
compare the percentage values on the lines that connect the selected method to each of its
child paths. Investigate the most expensive (highest percentage) paths first.

9 Hover over the horizontal bar at the bottom of each node with the mouse pointer to see
the percentage of time spent in the method versus the time spent executing child meth-
ods. For an example, see Figure 7-4 on page 217.

If most of the time is attributable to child methods, continue to investigate the path. If
most of the time was local to the method, focus your efforts on that method.
216 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Figure 7-4. Assessing the Impact of child methods

Tip: The term “user children” refers to your own application source code methods, as
opposed to system code or .NET Framework methods also called by your application
code.

The Call tree provides information similar to the Call graph, but in the form of a tree view. The
most expensive paths are indicated by position in the sort order of the table. The default sort
column is CPU time including user children.

As you saw above, the Call graph provides information about the relative contribution of child
methods to their parent methods. In contrast, the Call tree offers more detailed data about what
the methods in your application actually do. This data is presented in the form of sortable,
user-configurable data columns. You can add these data columns to the Call tree view by right-
clicking in any column header and selecting Choose Columns... from the context menu.
Before adding data columns, you can preview the data they contain in the Properties window
in Visual Studio. To display the Properties window, choose View > Properties Window.

10 Does a node you plan to investigate contain one or more of the following icons?

 Indicates disk activity

 Indicates network activity

 Indicates synchronization wait time

11 If so, hover over the icon with the mouse pointer to view the magnitude of the activity. If
you think that the magnitude of the activity merits further investigation, switch to the
Call Tree tab for more diagnostic help.

12 To view the Call Tree, click the Call Tree tab on the left side of the session file window.
 Understanding DevPartner Studio 217

Chapter 7 · In-Depth Performance Analysis
Figure 7-5. Viewing Method data in the Properties window

Both the Call graph and the Call tree windows include a Source tab and Call Stacks tab in the
lower part of the window.

The Source tab enables you to view source code for your application's methods, with metrics
that indicate the expense of the lines that were executed during the session. Use it to view
expensive lines of code in context, and to quickly locate lines that would be good candidates
for improvement. The Source tab includes a metric selector, as shown in Figure 7-6 on page
219. The default metric in the Path analysis view is CPU time including user children.
Additional metrics, including disk I/O, network I/O, and wait time, may be available depend-
ing on what the method does. Selecting a new metric in the selector updates the source pane so
you can locate the most expensive line for that metric in your source code.

In the Call tree:

13 To determine the relative contributions of different paths spawned by the same method,
compare the values in the CPU time including user children column for each of the
child paths. When sorted by this column (the default sort), the most expensive paths
appear at the top of the tree view.

14 Use the Call tree in conjunction with the Call graph. For example, if an expensive node in
the Call graph includes the network I/O icon, switch to the Call Tree and add the net-
work-related data columns to the view.

To add data columns to the Call tree view, right-click any column header and select
Choose Columns... from the context menu.

These data columns show you the number of network reads or writes, how much time
was spent reading or writing data across the network, the amount of data read or written,
and the number of read or write errors.

If the node in the Call graph included the disk I/O or wait time icon, add those data
columns to the Call tree view. In this way, you can quickly pinpoint the reason the
problem node is so expensive.
218 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Figure 7-6. Locating the most expensive lines in the Source tab

The Call Stacks tab enables you to view different instances or usages of the expensive
methods of your application. Each call stack is unique. In some cases you may see call stacks
that contain the same sequence of method calls. However, some of the calls were made from
different lines in at least one method.

Notice that as you select different methods in the Call graph or Call tree, the Source tab scrolls
to the most expensive line in each method. Similarly, the Call Stack tab updates when you
select a different method

For example, in Figure 7-6 on page 219, a child method is selected in the Call tree. If you plan
to address the performance issue by fixing the child method itself, look at the Source tab. On
the Source tab, you would see that the most expensive line in the method is highlighted. If the
method did disk I/O or network I/O, or had significant wait time, use the metric selector to

Use the Source tab in conjunction with the Call graph and Call tree.

15 Select a method of interest in the Call Tree tab. (If you have returned to the Call Graph
tab, you can select a method node.) Select the Source tab. Notice that the most expensive
line (measured by CPU time including user children) is highlighted in dark red. Scroll
through the Source pane and notice that other expensive lines are highlighted in blue.

16 Did the method you selected have disk, network, or wait time activity? To quickly locate
such methods in the Call tree, look for methods with high values in those data columns.
(In the Call graph, look for the disk, network, or wait time icon in the method node.)

17 Expand the metric selector (see Figure 7-6 on page 219) at the upper left of the Source
tab. If the selected method include disk I/O, network I/O, or wait time, the metric appears
in the list. Select a new metric and scroll the source display to locate the most expensive
line for that metric. An expensive method may present multiple opportunities for
improvement.

18 Locate the line you want to fix in the Source tab. Double-click the line to open the source
file in Visual Studio for editing.

Most expensive
line

Other significant
lines

Metric selector

Selected method
in Call Tree
 Understanding DevPartner Studio 219

Chapter 7 · In-Depth Performance Analysis
locate the most expensive lines for the selected metric. Once you decide what you want to fix,
double-click the source line to edit it in Visual Studio.

On the other hand, if you plan to address the performance issue by changing the way your
application calls the child method, switch to the the Call Stacks tab.

On the Call Stacks tab, you can examine all the calling sequences or paths that called the
method you selected in the Call tree. In Figure 7-7 on page 221, note that the stack selector
shows the percentage of time attributable to each call stack, so you can quickly locate the most
expensive execution path. When you select a call stack, DevPartner shows all of the methods
that make up the stack, with the number of the line in each method that called the next method
on the stack. Selecting any method in the call stack updates the source pane to highlight the
line that called the next child method. Double-click the calling source line to edit it in Visual
Studio.

Even if you plan to fix a slow child method rather than change the way it is called, examine the
Call Stacks tab for the method. It is a good idea to understand all the ways your application
uses a method before you change it. Performance Expert makes it easy to do so.

Use the Call Stacks tab in conjunction with the Call Graph or Call Tree. The Call Stacks
tab shows you all of the paths that called the selected method, so you can evaluate changes to
the method in the context of all the ways the method is used in your application. Use the Call
Stacks tab to quickly locate the most expensive instances (usages) of any method.

19 Select a method of interest in the Call Tree tab. (If you have returned to the Call Graph
tab, you can select a method there.) Select the Call Stacks tab. Notice that DevPartner
highlights the line that called the selected method.

20 Expand the stack selector at the upper left of the Call Stacks tab. Use the stack selector to
locate the most expensive usages of the method.

21 Locate the line you want to fix in the Call Stacks tab. Double-click the line to open the
source file in Visual Studio for editing.

22 If you cannot directly fix an expensive method, modify your code to call the method less
often, or not at all.
220 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Figure 7-7. Identifying the most expensive calling paths that used the method

Analyzing Individual Methods that Use the Most CPU

As well as drilling into the session data from the Paths that use the most CPU bar chart on
the results summary, Performance Expert data is analyzed by using the Individual methods
that use the most CPU bar chart. For example, if the top method in this chart is consuming
more time than it should, you can click the method in the chart to examine it immediately.

Clicking the method opens a Methods table that lists the methods that executed when you ran
your application.

Figure 7-8. Analyzing the impact of individual methods

Calling line

Methods
on stack

Stack
selector

Selected method

Most expensive line
for selected metric

Call Stacks tab

Metric selector
 Understanding DevPartner Studio 221

Chapter 7 · In-Depth Performance Analysis
By default, the Methods table is sorted by CPU time without user children. This metric
focuses on the performance of the method itself. In contrast, the Paths that use the most CPU
views include user, or source code, child methods in the calculation.

Although the percent of time calculation in the Individual methods that use the most CPU
and Methods tables excludes time spent in source code child methods, it includes time spent in
system child methods. You have probably noticed that managed applications spend a good
deal of time in the .NET Framework. Including system children in the calculation focuses
attention on methods in your source code that exhibit problems in the way they interact with
system code, which can be especially critical in managed applications.

23 To access the Individual methods that use the most CPU views, click Back to Sum-
mary.

24 In the results summary, click on a method in the Individual methods that use the most
CPU chart to drill down to the Methods table.

DevPartner highlights the most expensive individual methods in your application. By
default, methods are sorted by CPU time spent in the method, without user children, but
including system calls.

25 To customize the column selection in the Methods table, right-click any column header
and select Choose Columns... from the context menu.

Use the data columns to determine the most expensive aspects of method performance.

Use the Source tab in conjunction with the Methods table. When you select a method, the
Source tab guides you directly to the most expensive line in the method and displays the
relative cost of other lines. The most expensive line appears in dark red. Other lines that
contribute to time spent in the method appear in light blue.

26 Use the metric selector on the Source tab to locate the most expensive lines for each
available metric. A problem method may present multiple opportunities for improve-
ment.

Use the Call Stacks tab in conjunction with the Methods table. The Call Stacks tab shows
you all of the paths that called the selected method, so you can evaluate changes to the
method in the context of all the ways the method is used in your application. Use the Call
Stacks tab to quickly locate the most expensive instances (usages) of any method.

27 Locate the line you want to fix in the Source tab or in the Call Stacks tab. Double-click
the slow line and open the source in Visual Studio for editing.

28 If you cannot directly fix an expensive method, modify your code to call the method less
often, or not at all.
222 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Saving Session Files

When you finish reviewing the Performance Expert data you can save the session file or
discard it.

DevPartner saves session files as part of the active solution. They appear in the DevPartner
Studio virtual folder in Solution Explorer. Performance Expert session files take the .dppxp
extension.

By default, DevPartner physically saves the session files in your project's output folder.
DevPartner automatically increments the file name based on the contents of the default folder
(for example, MyApp.dppxp, MyApp1.dppxp, and so on). If you save session files to a
location other than the default folder, you must manage the file naming.

For projects that do not have an output folder, such as a Visual Studio 2005 Web site project,
DevPartner physically saves the files to the project folder.

Session files generated outside of Visual Studio are not automatically added to the project's
solution. You can manually add externally generated session files to an open solution in Visual
Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running a performance analysis session, continue reading the
rest of this chapter for additional information, or refer to the DevPartner online help for task-
based information.

Setting Properties and Options

Before beginning a Performance Expert session, it is often useful to fine-tune data collection
to include or omit certain types of information. Use Solution Properties, Project Properties,
and DevPartner options to better focus your analysis session.

Solution Properties

To view properties that affect Performance Expert at the solution level, select the solution in
the Solution Explorer and press F4 to view the Properties window.

1 Select the unsaved session file in Visual Studio. Choose File > Save <filename>.dppxp.

2 If you close the session file window in Visual Studio before saving the session, DevPart-
ner prompts you to save the open session file.
 Understanding DevPartner Studio 223

Chapter 7 · In-Depth Performance Analysis
Figure 7-9. Solution properties

The following Solution properties may affect Performance Expert:

� Collect from .NET - Running your managed application with Performance Expert over-
rides this property if it is set to False. Performance Expert always collects data from man-
aged applications.

� Startup project - If your solution includes multiple projects, you can change the startup
project. The Project properties for the startup project govern data collection for all
projects active in the session.

Note that your solution must include a startup project. If the solution contains multiple startup
projects, DevPartner prompts you to choose a startup project for the session before analysis
begins.

Only projects for which the Action in the Common Properties > Startup Projects page of
the solution properties is set to Start are included in the prompt dialog. If the desired startup
project does not appear in the prompt, open the solution properties page and set the Action for
the project to Start. If you choose a new startup project for a subsequent session, review the
properties for the new startup project to ensure the data collection options are correct.

Project Properties

To review project level properties, select a project in the Solution Explorer and review the
properties that can be set for projects within the solution.

Figure 7-10. Project properties for Performance Expert

The following project-level property affects Performance Expert:

� Include Project in Session - To exclude a project from Performance Expert data collec-
tion, select No.
224 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Options

To review DevPartner option settings for Performance Expert sessions, choose DevPartner >
Options > Analysis.

� The Display option allows you to set the precision, scale, and units used when displaying
your data.

� The Session Control File option allows you to create a set of rules and actions to control
the data that DevPartner collects as your application or module runs. Refer to “Creating a
Session Control File Within Visual Studio” on page 301 for more information about ses-
sion control files.

Other Visual Studio options, such as the Environment > Fonts and Colors options, also
affect DevPartner features.

Finding Application Problems with Performance Expert

Performance Expert helps you identify problems in managed Visual Studio applications in the
following critical areas:

� CPU/thread use (including wait and synchronization issues)
� File and disk I/O
� Network I/O
� Synchronization wait time

When run from Visual Studio, Performance Expert analyzes a single process at a time. It
reports data for any managed threads executing in the selected process. To analyze an
additional process, select the second process and rerun Performance Expert. Performance
Expert can also analyze a distributed application that spans multiple computers. For informa-
tion about remote data collection, see “Collecting Data from Distributed Applications” on
page 235.

DevPartner supports the Visual Studio launch model. When you click the Performance Expert
icon or choose Start without debugging with Performance Expert on the DevPartner
menu, DevPartner immediately launches the startup project for your application and begins to
collect Performance Expert data.

In order to collect Performance Expert data for your application, the solution must contain at
least one managed code project (for example, C#, Visual Basic, or managed C++). It must also
include a startup project. For more information, see “Setting Properties and Options” on page
223

If You Get a Security Exception

If you see a security exception message when you attempt to collect data for a managed appli-
cation, it means that your security policy prevented DevPartner instrumentation of your code.
By default, assemblies must have the SkipVerification permission to be profiled. If you
remove this permission from the permission set of the policy under which the code executes,
or add imperative security declarations to the assembly that cause this permission to be
revoked, the assembly can not be profiled.

To remedy this condition, enable secure profiling in one of two ways.
 Understanding DevPartner Studio 225

Chapter 7 · In-Depth Performance Analysis
� Set the following global environment variable and retry profiling the application:

NM_NO_FAST_INSTR=1

This solution allows you to work around this issue, although it does exact a slight perfor-
mance penalty.

� Change the policy for the assembly using the .NET Framework Configuration tool MMC
snap-in, or by temporarily removing any imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help for more informa-
tion on security policy in Visual Studio.

Accounting for Child Methods

The calculation of the Performance Expert session data differs between the Paths that uses
the most CPU and the Individual methods that use the most CPU views. DevPartner
excludes measurements for source code child methods in computing data for CPU time, disk
or network I/O, and synchronization lock wait time in the Individual method analysis views. In
contrast, DevPartner includes the impact of source code child methods to their parent methods
in the Path analysis views.

All computations in both views include time or throughput attributable to system or .NET
Framework methods called by your source code methods. Managed applications typically
spend a lot of time executing Framework code. Performance Expert charges the system data to
the lines in your source code that made the calls in order to focus attention on how your code
interacts with the Framework, that is, on the parts of the application that you can modify.

For more tips on collecting and analyzing the session data, see “Usage Scenarios” below.

Usage Scenarios

The typical methodology for resolving performance issues consists of the following steps.

1 Locate the slowest line in a problem method and optimize it.

2 If you cannot optimize the line, remove it or execute it less often.

In the simplest cases, you may be able to locate the slowest line in a method (e.g., by using
Performance Analysis) and either optimize it or call it less often. However, in real world appli-
cation development, many problems have more complex causes. You may be able to identify
the slowest method, only to find that a combination of lines within the method is slowing
execution. In such a case, additional targeted data can help you analyze the problem quickly.

For example, if the slowest part of your application does a lot of network I/O, the following
metrics would likely help you understand the nature of the problem:

� Total number of network reads and writes
� Number of bytes read or written
� Number of read or write errors
� Elapsed time for read or write operations
226 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
If your application did a lot of disk I/O, you would want to see metrics that reflected read/write
volume and the efficiency of those operations. Performance Expert reports exactly this kind of
data.

You can use Performance Expert to analyze CPU and thread performance, disk I/O, network I/
O, and synchronization wait time. The following examples illustrates ways in which you can
use Performance Expert to improve application performance.

Identifiable Performance Problem

Scenario: Usability testers have reported that specific operations in your application are too
slow. As a developer, you want to locate the parts of your source code that are responsible for
the slow operations taking so long to complete and fix them.

Assume that the slowest part of your application has run under Performance Expert as
described in “Go: Collect Performance Expert Data” on page 211. When you examine the
session file, you immediately see the method that took the longest time to execute at the top of
the Individual methods that use the most CPU graph. However, in a complex application, a
single slow method may affect performance less than a sequence of moderately slow methods.
The slowest calling sequences appear in the Paths that use the most CPU graph. Do some
methods appear in both graphs? If so, these methods definitely deserve scrutiny.

You also notice that some of the methods in the graphs are marked with icons that indicate disk
I/O or network I/O activity in the method. These indicators tell you something about the kind
of processing done by these methods.

 Disk activity

 Network activity

At the bottom of the results summary, Performance Expert displays the Total elapsed time
and Total execution time. If the execution time is very small relative to elapsed time, and you
have exercised the application in such a way that you are reasonably sure the difference is not
simply due to waiting on user input, check to see if some methods in your application are
spending more time waiting for locks than they should.

Assume that you first decide to examine the top method in the Individual methods that use
the most CPU graph. Many factors can affect CPU utilization: processor-intensive computa-
tions, disk I/O, network I/O, or inefficiently used synchronization objects. Similarly, you know
that wait time can have multiple causes: the resource your method is waiting for could be
shared within the same process, or with an external process. But how do you quickly deter-
mine what is going on in your application?

Click the top method in the Individual methods that use the most CPU graph to open the
Methods detail view for the method. Notice the data in the columns in the Methods table.
This information should help you determine what the method is doing. If the method was
marked with the disk activity icon in the graph, right-click in the table and use the Choose
Columns... dialog box to add all of the disk-related columns to the table. You might find that
the method is producing read or write errors, or is using a large amount of time to write small
amounts of data, and is being executed many times.

The Source tab in the lower half of the Methods window shows you the source code for any
method you select in the table. When you click on a method in the table, the source automati-
cally scrolls to the line that consumed the most CPU time and indicates the time attributable to
that line. The view also indicates graphically other lines that used CPU time.
 Understanding DevPartner Studio 227

Chapter 7 · In-Depth Performance Analysis
Figure 7-11. Locating problem lines in the Source tab

If the method performed disk or network I/O, or had wait time, expanding the metric selector
at the upper left lists those selections, so you can immediately locate the most significant line
in the method for that metric. For example, Choose Disk activity from the drop-down list to
immediately go to the line that transferred the most bytes, and to see relative disk activity for
other lines in the method. If the method involves Wait time, check that view too. Notice which
lines are associated with long wait times. In each view, DevPartner selects the most expensive
line by default. Comparing these views of the lines in the method shows you where to focus
your efforts much more quickly than traditional debugging techniques.

When you have located an appropriate line to fix, double-click on it to jump to that line in your
source code in Visual Studio.

If a way to fix the problem is not obvious, click the Call Stacks tab to see all the ways the
method was used as your application executed. Is the problem method called by more than one
path? If so, examine the call stacks that are responsible for the most time in the method.

Figure 7-12. Finding the most expensive call stack

Tip: Performance Expert records a unique parent branch if any method (or calling line
in the same method) in the call stack is different.

Look first at the parent path responsible for the highest percentage of calls. Try to modify your
code to eliminate the calls, or call less frequently. The Call Stacks tab includes a view of your
source code. When you select a method in the stack, the source automatically scrolls to the line
where the call to the next method in the stack was made. A double-click opens the line in
Visual Studio, so you can quickly modify the calling sequence if necessary. Once you have
made the changes to your code, run the application again with Performance Expert to verify
the improvement.

Metric
selector

Choose the most
expensive call stack
228 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Scaling Problem in an Application

Scenario: Your new Web application runs fine when you test it on your computer. But when you
allow additional users to access the application, it is too slow. You have a looming deadline.
How do you quickly determine what is wrong?

You can collect Performance Expert data while stressing your application with a load-testing
tool. To do so, start and stop your application with a command line tool or script. DevPartner
provides a command line utility called DPAnalysis.exe for this purpose. For information on
running a Performance Expert session from a command line, see “Automating Data Collec-
tion” on page 233. For example, you could do something like the following:

1 Start the application under Performance Expert with DPAnalysis.exe.

2 Run the load-testing application.

3 Stop the application.

4 Examine the Performance Expert session data.

Assume that when you look at the session file, no single method in the Individual methods
that use the most CPU graph stands out as the likely culprit. It is a complex application, and
it is probable that several methods contribute to the sluggish performance. Start analysis with
the Paths that use the most CPU graph in the results summary. This graph shows a list of
methods, but in this case each method represents an entry point. An entry point method is not
called by another source code method. In other words, it is an entry point into the execution of
code that you wrote. Most important, it marks the beginning of an execution path that you can
change, either by modifying the methods, or the way they are called. The entry point method
that corresponds to the most expensive path of execution in your application appears at the top
of the graph. Click on the method to open the Path analysis view.

The Call Graph

When you open the Call graph from the Results Summary, DevPartner places the most expen-
sive paths at the top of the Call graph, and highlights the most expensive child path whenever
a path branches. As you examine the data, investigate the most expensive child paths first. To
investigate a path, expand the nodes to the right.

Tip: The percentages on lines connecting a method to the child methods it called are
additive; those on lines connecting the chain of methods in a single path are not.

To determine the relative contributions of different paths spawned by the same method,
compare the percentage values on the lines that connect the selected method to each of its
child paths. The value on each link represents the percent of time in the parent method attribut-
able to child methods called in that path. Thus, in Figure 7-13 on page 230, the method
Form.Main called Form.CtoF, Form.ParseOption, and Form.FtoC. The value on
the line that links Form.Main to Form.CtoF is 98.1%, while the remaining 1.9% is spread
among the other called paths. This means that the path Form.Main calls Form.CtoF
accounted for 98.1% of the CPU time spent in Form.Main that was attributable to the execu-
tion of child methods. Start your troubleshooting with this path.
 Understanding DevPartner Studio 229

Chapter 7 · In-Depth Performance Analysis
Figure 7-13. Understanding the impact of child methods

As you investigate the called path, notice the horizontal bar at the bottom of each node. The
bar shows the relative percentages of time in the method due to the method body compared to
the child methods it called. Hover over the bar with the mouse to see the actual percentages.
Use this bar to guide your tuning efforts. For example, if 4% of time is spent in the method
body, and 96% of time is attributable to child methods, continue to investigate the most expen-
sive called paths to locate the child methods that are affecting performance. Fix those methods
or change your code so they can be called less often. If, on the other hand, 96% of the time was
spent in the method body, focus your efforts there.

Also notice whether an expensive node contains the disk activity, network activity, or wait
time icons. Hover over the icon with the mouse to view the magnitude of the activity. If a node
contains one or more of these icons, consider switching to the Call tree view and adding the
appropriate data columns for more help in diagnosing the problem.

The Call Tree

The default sort of the Call tree table is by CPU time including user children. To gain an idea
of where the bulk of the time is being spent, scan the values in the other columns. Doing so
determines whether wait time, disk or network I/O, or CPU-intensive processing is the major
factor. If you need more detail, you can add additional columns, such as disk or network reads,
writes, and errors, to the display.

Figure 7-14. Displaying additional data for the selected method in the call tree
230 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
For example, if an expensive method in the Call graph shows network I/0, select it, switch
to the Call tree, and add all of the network-related data columns to the table. To add columns,
right-click in the Call tree table and select Choose columns... from the context menu. See the
Performance Expert online help for a full explanation of the data reported in each column.

Tip: The term “user” in “user children” or “user methods” refers to your source code
methods.

Whether you are using the Call graph or Call tree, the session file window includes the Source
and Call Stacks tabs. These tabs function as they do in the Methods table, except that the data
is calculated to include data attributable to user, or source code, child methods. Use the Source
tab to immediately locate the most expensive line in any method you select in the Call graph or
Call tree. Use the Call Stacks tab to see the relative impact of other paths that called the
method and to locate the line that called the selected method in the stack. Double-click a line
of code in either the Source or Call Stacks tab to jump to that line in Visual Studio for editing.

Performance Slow but No Specific Issue

Suppose your application is generally sluggish, but you cannot identify a specific issue.
Performance tuning is an iterative process. You can still use the techniques described above to
try to improve performance.

� Run the application under Performance Expert.

� Go through the Paths that use the most CPU and try to optimize the most expensive
branches for each critical path.

� Go down the list of Individual methods that use the most CPU in the same way and try
to optimize the top methods in the list.

� Retest to verify improvement.

Collecting Data from Web Applications

You can collect Performance Expert data for any managed application, including Web applica-
tions. When you run a Web application with Performance Expert, be aware of the following.

Managed Code Only

Unlike some other DevPartner features, Performance Expert collects data for managed appli-
cations exclusively. Therefore if your application uses Internet Explorer as the client, do not
expect to see Internet Explorer data in the session file. DevPartner displays server-side data for
your ASP.NET or Web service application.

web.config Requirements

For Performance Expert to successfully profile an ASP.NET application, the following two
conditions must be met:

� The project must include a web.config file.

� The project must be configured for debugging. To do this, the web.config file must
include a compilation element with the debug attribute set to true. For example:
 Understanding DevPartner Studio 231

Chapter 7 · In-Depth Performance Analysis
<compilation debug=”true” />

Multiple Process Profiling

When run from the Visual Studio IDE or from the command line using the DevPartner
command line switches, Performance Expert collects data for a single process or service per
session. If your application runs in more than one process, or if you need to collect data for a
service, such as IIS, as well as the process your target application runs in, you can use
DPAnalysis.exe (a command line executable version of DevPartner analysis tools) and
target an XML configuration file to manage the session. For more information see “Using
DPAnalysis.exe with an XML Configuration File” on page 285.

Note: Although you can collect data (in separate session files) from two or more
processes or services simultaneously by using DPAnalysis.exe with an XML
configuration file, Performance Expert is generally best run on a single
process at a time. Data collection overhead for multiple processes can affect
interaction of the processes, as well as slowing the applications and inflating
elapsed time values. If you collect Performance Expert data for multiple
processes simultaneously, large timing values for disk I/O, network I/O, or
synchronization wait time may reflect inflation by profiling overhead. Rerun the
session targeting a single process to confirm that the timing values are large
enough to merit investigation.

Single Process Profiling on IIS 6.0

On IIS 6.0, Performance Expert collects data for only one worker process. On IIS there is one
worker process per application pool. Therefore, if you run a Web service and a Web service
client on your system, and both execute in the same application pool, Performance Expert
gathers data for both, even if you started the service under Performance Expert and started the
client in a separate instance of Visual Studio without Performance Expert. If you change the
application so the client executes in a different application pool, Performance Expert gathers
data only for the application (in this case, the service) started with Performance Expert.

No Remote Session File for Components Running Under DLLHOST

When running Performance Expert for a process that interacts with dllhost.exe on a
remote system, a final session file is not generated on the remote system when dllhost.exe
terminates.

Source Code on Remote Computers

DevPartner Studio assumes that the source file exists on the same computer as the open
session file.

� If a File > Open dialog box appears when you attempt to view the source code, use it to
browse to the correct location on the remote computer.

� If you have collected data for a remote ASP.NET application, you may need to look up the
value of the Local Path entry in the Virtual Directory tab of the IIS settings for the target
Web site in order to browse to the source file.
232 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Session Files Saved to Open Solution

DevPartner session files are saved with the current solution. Opening a Web project from IIS
directly, as opposed to opening the project through Visual Studio, may cause a different
solution file to be used. DevPartner session files created in the first solution would not be
visible in the second solution.

Automating Data Collection

Performance Expert supports command line execution through an executable called DPAnal-
ysis.exe. This file is located in your \Program Files\Micro Focus\DevPartner
Studio\Analysis\ folder.

Note: For installs on 64-bit versions of Windows, DevPartner Studio is located at:
\Program Files (x86)\Micro Focus\DevPartner Studio\Analysis\.

You can run an application under Performance Expert from a command prompt, or create
batch files to automate data collection. You can launch the Performance Expert session in two
ways:

� Specify the target and arguments in standard MS-DOS command line syntax

� Specify an XML configuration file that contains the targets and arguments for the session

Using Command-line Switches

In the example in the section “Scaling Problem in an Application” on page 229. Quality Assur-
ance engineers monitor scalability (or any other aspects of the application) on a daily basis by
setting up an automated test (or suite of tests) to be run on the application every night. To
automate the tests, set up a batch file to

1 Start the application under Performance Expert

2 Start the load-testing application and any other tests you want to run

3 Stop the application when the tests are complete

DevPartner automatically generates the session log file when the application exits.

The command line syntax to launch the session is:

DPAnalysis.exe /Exp /E /O /W /H [/P or /S] target {target arguments}

/Exp sets analysis type to Performance Expert

/E enables data collection for the specified process/service

/O specifies the session file output folder and/or name

/W specifies the working folder for the process

/H specifies the host computer on which the target runs

/P or /S specifies that the target is a process or a service; use only one
 Understanding DevPartner Studio 233

Chapter 7 · In-Depth Performance Analysis
There is one restriction on the order in which the switches must appear: The /P or /S switch
must occur last. Everything that follows either switch is interpreted as an argument to the
process or service.

Using an XML Configuration File

To use an XML configuration file, the command line is even simpler.

dpanalyis.exe /C [path]configuration_file.xml.

The configuration file contains the necessary parameters for any type of DevPartner analysis,
including some options that are not available using command line switches. For example, if
you want to exclude application components from a Performance Expert session, you must use
the ExcludeImages element in the configuration file.

Figure 7-15. Specifying session details in the XML configuration file

To collect data for a process that runs on a remote computer, you must specify a folder and file
name. Use the SESSION_FILENAME and SESSION_DIR elements in the Analysis options
in the configuration file.

For detailed information about using the configuration file to manage data collection, see
“Using DPAnalysis.exe with an XML Configuration File” on page 285.

QA engineers scan the session log file the following morning. If performance numbers deteri-
orate, QA sends the session log to the appropriate developers. This way, QA tracks the health
of the application throughout the development cycle. If a problem appears, the development
team has the session log file to use in quickly determining the nature of the problem. In
addition, the development team knows that the problem was caused by a code change from the
previous day, greatly reducing the amount of code it has to review to fix the problem.
234 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
For detailed information on using DPAnalysis.exe, see Appendix C, “Starting Analysis
from the Command Line”.

Collecting Data from Distributed Applications

DevPartner can collect Performance Expert data from distributed application components that
run on remote systems, provided the remote systems are properly licensed for remote data
collection. Before you launch a remote session, be aware that a Performance Expert session
monitors a single process per run when run from Visual Studio or with DPAnalysis.exe
from the command line using traditional command line syntax. Although the XML configura-
tion file allows you to target more than one process or service in a single run of the application,
it is usually best to target a single process in a Performance Expert session. If your application
runs in multiple processes, simply rerun the application targeting the second process. Driving
the application with a script or batch file ensures that you exercise the application identically
in both sessions. For an overview, see “Automating Data Collection” on page 233.

If necessary, you can collect the data (in a separate session file) for the second process or
service in a single run of the application if you use DPAnalysis.exe with the XML configu-
ration file option. Although you can collect data from two or more processes or services simul-
taneously, be aware that data collection overhead for multiple processes can affect interaction
of the processes, as well as slowing the applications and inflating elapsed time values. If you
collect Performance Expert data for multiple processes simultaneously, large timing values for
disk I/O, network I/O, or synchronization wait time may reflect inflation by profiling
overhead. Rerun the session targeting a single process to confirm that the timing values are
large enough to merit investigation.

Enabling Remote Data Collection with DPAnalysis.exe

DPAnalysis.exe cannot be used to spawn remote processes. It can only be used to enable
data collection for processes on remote computers. For example, with the following command
line:

DPAnalysis.exe /host remotemachine /p c:\MyDir\target.exe

DPAnalysis.exe sets up profiling for target.exe but does not attempt to start it on the
remote computer. Profiling begins when target.exe starts on the remote computer by
whatever means.

This is not the case for remote services, which can be started remotely. For example:

DPAnalysis.exe /host remotemachine /s servicename

This command enables profiling and attempts to start servicename on remotemachine

Optionally, you can use the XML configuration file to specify the parameters in the command
line examples above. For detailed information about DPAnalysis.exe, see Appendix C,
“Starting Analysis from the Command Line”.
 Understanding DevPartner Studio 235

Chapter 7 · In-Depth Performance Analysis
Saving Session Files on Remote Computers

Session files for all four types of analysis (coverage, memory, performance, and Performance
Expert) are saved on the remote computer in remote profiling scenarios. A folder and session
file name must be provided on the command line or in the XML configuration file for remote
processes or services. The folder specified must already exist on the remote computer. If no
folder or file name is provided, a Save As dialog box appears on the remote computer.

Viewing the session file

Copy the session file to a computer with DevPartner Studio installed, such as the computer
where the profiling was initiated and the client file is saved.

On the command line or in the XML configuration file, specify a mapped drive on the remote
computer to save the session files to another computer with DevPartner Studio installed, such
as the computer where the profiling was initiated.

Collecting Data with Terminal Services or Remote Desktop

DevPartner Studio supports Windows Terminal Services. See “Using Terminal Services and
Remote Desktop” on page 21 for more on using DevPartner Studio with Terminal Services.

Remote Profiling and Windows XP Service Pack 2 (SP2) or Later

Windows XP SP 2 increased security levels for remote applications. The new security settings
can prevent DevPartner from collecting data on some server-side application components
when profiled from Visual Studio. To collect data from application components on a remote
computer, modify the security settings on all Windows XP SP2 or later operating systems
(both the remote computer and the client computer where profiling is initiated) in the session.

The procedures that follow describe three ways to alter these security settings to allow remote
profiling.

Add DevPartner Control Service to the Windows Firewall Exclusion List

If the Windows Firewall service is enabled, add the DevPartner Control Service to the
Firewall's exclusion list. Follow these steps:

1 From the Start menu, select Control Panel.

2 From the Control Panel, select Windows Firewall, then select the Exceptions tab.

3 On the Exceptions tab, click Add Program.

4 In the Add a Program dialog box, click Browse, then navigate to NCS.exe. The default
location for this executable is:

C:\Program Files\Micro Focus\DevPartner Studio\Analysis\NCS.exe

Note: For installs on 64-bit versions of Windows, this executable is located at:
\Program Files (x86)\Micro Focus\DevPartner Studio\Analy-
sis\NCS.exe.

5 Click Open in the Browse dialog box to select NCS.exe, then click OK to close the Add
a Program dialog box.
236 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
6 On the General tab of the Windows Firewall control panel, clear the Don't allow excep-
tions check box.

Modify Security Settings on Both Remote (Server) and Local (Client)
Computers

Follow these steps to modify the security settings:

1 In the Control Panel, open Administrative Tools > Local Security Policy > Local Poli-
cies > Security Options.

2 Open the Properties page for DCOM: Machine Access Restrictions in Security
Descriptor Definition Language (SDDL) syntax.

3 Select Edit Security.

4 Add an Anonymous Logon user, if one does not already exist.

5 Give the Anonymous Logon user both Local and Remote access.

If Visual Studio is running when the settings are changed, you must restart Visual Studio for
the new settings to take effect.

Relax COM Security on the Client Computer

To relax COM security, follow these steps on the client computer where profiling is initiated:

1 From the Start menu, select Control Panel.

2 From the Control Panel, select Administrative Tools; from the Administrative Tools
window, open Component Services.

3 In the Component Services window, navigate to My Computer, right-click on My Com-
puter and select Properties.

4 On My Computer Properties, select the COM Security tab.

5 Under Launch and Activation Permissions on the COM Security tab, click Edit Limits
and make these changes:

6 Click Add and enter NETWORK.

7 Make sure that the Allow check box is selected for Local Launch, Remote Launch,
Local Activation, and Remote Activation.

8 Under Launch and Activation Permissions on the COM Security tab, click Edit
Default and make these changes:

9 Click Add and enter NETWORK.

10 Make sure that the Allow check box is selected for Local Launch, Remote Launch,
Local Activation, and Remote Activation.
 Understanding DevPartner Studio 237

Chapter 7 · In-Depth Performance Analysis
Firewalls and Remote Data Collection

To collect session data from remote computers, DevPartner connects to a previously installed
service whenever DevPartner runs, either within Visual Studio or via DPAnalysis.exe. This
service listens for interprocess communication traffic at the internet address 0.0.0.0 port
18441. This service connection may trigger some firewall alarms. You can configure your
firewall to trust this address to discontinue these alarms. If your firewall is set to maximum
security levels, it may prevent DevPartner remote data collection. Reconfigure your firewall to
enable data exchange at the address 0.0.0.0 port 18441.

Exporting DevPartner Data to XML Format

You can export Performance Expert data to an XML format. Exporting data in XML format
allows you to more easily use your own or third-party software to analyze the data, integrate
the data with data produced by other tools, and archive the data in a data warehouse.

You can export Performance Expert session files (with the .dppxp extension) to XML format.
When a saved Performance Expert session file is open, the Export DevPartner Data
command is available on the File menu.

You can also export XML data from the command line, as described in “Exporting Analysis
Data to XML” on page 307.

In the DevPartner Studio installation folder, the file DevPartnerPerformanceEx-
pertxx.xsd describes the XML schema that is used by Performance Expert to export session
files.

Using Performance Expert with Performance Analysis

Performance tuning is an iterative process. Use Performance Expert in conjunction with
DevPartner Studio Performance Analysis. First, run your application with performance analy-
sis and save the session file to capture a baseline view of performance. Then use Performance
Expert to troubleshoot difficult problems, especially problems that involve disk or network I/
O, or synchronization issues. When you have fixed a problem, run the application in a perfor-
mance analysis session and use the performance analysis Session Comparison feature to verify
the improvement. For example:

1 Run your application with performance analysis.

2 Notice the methods that appear to be slowing performance.

3 If a way to fix the problem methods is not immediately obvious, run an identical session
with Performance Expert.

4 Check to see if the problem methods appear in the Paths that use the most CPU or the
Individual methods that use the most CPU graphs.

5 Click the method in the Paths that use the most CPU graph to open the Call graph. The
Call graph shows the method in context and indicates whether the method itself or its child
methods are responsible for the performance issue.

6 Notice whether the problem method is marked with the disk, network, or wait time icons.
238 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
If, for example, the method indicates network activity, switch to the Call Tree tab and use
the context menu to add the network-related data columns to the view. The additional data
can help you determine whether the problem is due to read activity, write activity, or to
read or write errors. If you drilled into the data from the Individual methods that use the
most CPU graph, you can add the data columns to the Methods table.

7 Use the Call Stacks tab to see how many ways the problem method was called, and which
call stack was the most expensive.

8 Use the Source tab to locate the offending lines of code and jump to the source file to edit
in Visual Studio.

Once you have fixed the problem, run the application in a second performance analysis
session. Using the previous performance analysis session file as a baseline, compare the
sessions with the performance analysis Session Compare feature to verify the improvement.

Performance Expert and performance analysis are complementary, but there are differences in
the way they compute timing data. If you run a performance analysis session that includes
system images and a Performance Expert session on the same application, you may notice that
the performance analysis Top 20 Source Methods and the Performance Expert Individual
methods that use the most CPU do not contain exactly the same methods, or that the
methods do not appear in the same order.

In a performance analysis session, the percent of time spent in a method (% in Method
column) is computed without user or system child methods. In a Performance Expert session,
the percent of time spent in the methods that appear in the Individual methods that use the
most CPU and Methods tables includes time spent in system children.

If you have done any performance profiling, you may have noticed that managed applications
spend a lot of time executing methods in the .NET Framework. Including system children in
the Performance Expert results focuses attention less on methods that take a long time to
execute in themselves, and more on methods in your source code that exhibit problems in the
way they interact with system code. You cannot do anything about time spent in system code
once it begins to execute, but you can change how and when your code calls system code.
Performance Expert helps you quickly identify these problem areas.

You cannot compare a performance analysis session file directly to a Performance Expert
session file. You can only compare performance analysis session files.

Performance Expert in the Development Cycle

Use Performance Expert throughout the software development cycle. Many members of the
engineering team can benefit from using Performance Expert at several points in the software
project life cycle.

Software Designers

Software designers must often develop prototypes that meet specific requirements, for
example, in response time or scalability. Before producing the final design, the designer must
identify the operations and, if possible, the methods, that are preventing the prototype from
meeting the performance requirements. Ideally, the designer would like to be able to identify a
few methods that, if fixed, would give a dramatic performance boost.
 Understanding DevPartner Studio 239

Chapter 7 · In-Depth Performance Analysis
Software designers can use Performance Expert during the design and prototype phase to
improve the speed and efficiency of their code. As the design progresses, regular testing helps
to ensure that the prototype code meets minimal performance requirements. When the proto-
type is handed off to the development team, developers can feel comfortable reusing sections
of the prototype, knowing that it has been tested for several critical performance issues.

Software Developers

Software developers should use Performance Expert frequently during development. Consider
running Performance Expert in addition to unit tests prior to code check-ins. Just as the unit
tests ensure that the component does what it is supposed to do without breaking other compo-
nents, Performance Expert provides early warning of potential performance issues before the
component is fully integrated into the application and therefore more difficult to fix.

The software development team builds the application based on the designer’s prototype and
specification. As soon as the application (or application components) can be tested and run,
developers can integrate Performance Expert into their automated testing routines in order to
identify potential CPU usage, file I/O, or network I/O issues as they are coding and debugging.
Developers can review the Performance Expert session log each morning to see if the previous
day’s coding has introduced any new performance issues and address issues immediately.
When coding is complete, the development team submits the final Performance Expert session
log to document that performance goals have been met.

Quality Assurance Engineers

Quality Assurance teams can use Performance Expert to continuously monitor application
performance. QA can easily integrate Performance Expert into automated test suites to obtain
a daily reading of application performance in critical areas. When problems appear, QA teams
can send the session log to the development team or attach the log to a bug report in a defect
tracking system such as TrackRecord.

Designated engineers can review critical metrics in the session log files on a daily basis. If the
session log suggests a problem, the QA engineer can send the log file to the responsible devel-
oper so the problem can be addressed immediately.

Thus, all members of the software development team can benefit from running Performance
Expert, from the design phase to final quality assurance testing. There is even a benefit for
product management. At each critical milestone, Performance Expert session logs, coupled
with before-and-after performance analysis session files, can be used to document that the
product meets performance expectations.
240 Understanding DevPartner Studio

Chapter 7 · In-Depth Performance Analysis
Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the Team Explorer client
is installed and a Team Foundation Server connection is available.

You can submit method-level data from a Performance Expert session file as a Visual Studio
Team System Work Item of the type bug. The Submit Work Item command is available on
the context menu for a method selected in the following Performance Expert views:

� The Methods table in the Methods detail view

� The Call tree in the Path analysis view

When you submit a bug, DevPartner populates the Work Item form with data from the visible
columns in the Methods table or Call Tree view. To change the method data you submit in the
Work Item, change the columns displayed in the method view.

For more information about DevPartner Studio integration with Visual Studio Team System,
see “Visual Studio Team System Support” on page 20.
 Understanding DevPartner Studio 241

Chapter 7 · In-Depth Performance Analysis
242 Understanding DevPartner Studio

Chapter 8

System Comparison
This chapter contains two sections. The first section provides a quick-start procedure to get
first-time users up and running with System Comparison. The second section provides refer-
ence information for an in-depth understanding of DevPartner’s System Comparison feature.

Refer to the System Comparison online help for additional task-oriented information about
comparing systems.

What is System Comparison?

System Comparison compares two computer systems, or compares the current state of a
computer with a previous state, allowing you to determine why your application:

� Works on one computer but not on another
� Works differently on different computers
� No longer works on a computer on which it previously worked

To compare systems, System Comparison creates XML files, called snapshot files, that
contain information about a computer system, such as its installed products, system files,
drivers, and many other system characteristics. It then compares snapshot files and reports the
differences between them.

Unlike other DevPartner components, System Comparison is not integrated into the Visual
Studio environment. It runs as a standalone utility to minimize its impact on target systems.

System Comparison consists of:

� a service, which takes nightly snapshots of a system,

� a user interface, which enables you to take snapshots manually and to compare snapshots
to find differences

� a command line interface

� a Software Development Kit (SDK). The SDK allows software developers to gather addi-
tional comparison information and to embed snapshot functionality in deployed applica-
tions.
 Understanding DevPartner Studio 243

Chapter 8 · System Comparison
Figure 8-1. The System Comparison user interface

Using System Comparison Out of the Box

The following Ready, Set, Go procedure introduces you to using System Comparison.

Analyzing a system with System Comparison does not require elevated system privileges. The
system privileges you use to create files and work with applications on your system are suffi-
cient for DevPartner to analyze the system.

In the following procedure, make a minor change to your computer, then compare your
computer’s current state with its previous state.

To get up and running quickly, follow the steps presented in shaded boxes. If you would like
more information, read the additional text following the box.
244 Understanding DevPartner Studio

Chapter 8 · System Comparison
Ready: Consider What You Want to Compare

Before running a system comparison, understand the goal of the comparison.

Identifying exactly what you want to compare helps ensures that you set up the comparison
appropriately. For example, your goal might be one of the following, some of which might
include additional set-up steps:

� To check how installation or removal of a product impacts computer services, settings,
registry keys, or files. (Checking registry key or files requires the additional set-up of
modifying an XML file.)

� To determine if system changes may have caused a product to stop working on a system
on which it previously worked.

� To determine the extent of the impact of product changes (for example, any impact on
automated tests).

� To check that a new development system has all of the tools that were available on a previ-
ous development system.

� To determine why a product does not work, or works differently, on a certain system.

� To troubleshoot a product after it has been deployed to an end-user site.

Set: Prepare for System Comparison

Once you have decided on the goal of the comparison, you might have to perform some set-up
tasks.

Some examples of situations that require set-up tasks include the following:

� If you want to compare registry keys or specific files, set-up tasks would include modify-
ing the RegistrySections.xml or FileSections.xml files, as described on page
253 and page 254

� If you want to compare data that is not gathered by default, set-up tasks would include
writing a custom plug-in, as described on page 260. Categories of data gathered by default
are described in Table 8-1 on page 250.

The following procedure assumes:

� You have installed System Comparison.

� The System Comparison service is running and has taken a snapshot.

When System Comparison is installed, the service is started automatically and takes its
first snapshot within a few minutes of starting. The service is listed as DevPartner
Differ in your system’s Services list.

� You can compare different states of one computer.

For this procedure, you can use the default System Comparison options. No additional set-up
is required.
 Understanding DevPartner Studio 245

Chapter 8 · System Comparison
� If you want to compare two systems, set-up tasks would include installing System Com-
parison on the second computer, taking a snapshot, and making that snapshot file available
for comparison, as described on page page 256.

Go: Make a Change and Create a Snapshot

You are now ready to begin a system comparison. In this procedure you change your computer
and compare its current state with its previous state.

Figure 8-2. List of Snapshot files

To demonstrate how system differences are reported, make some changes to your computer
system before creating a snapshot.

1 Navigate to the Control Panel > Administrative Tools > Services window, and stop or
start several services that do not impact your work environment. For example, you might
stop the Automatic Updates service. (Take note of the services you modify so you can
restart them later.)

2 From the Start menu, select Programs > Micro Focus > DevPartner System Compari-
son.

3 In the System Comparison window, click Compare this computer’s current state to a
prior state.

A list of snapshot files displays. The System Comparison service (described on page 248)
automatically takes a daily snapshot of the state of the computer, and the dates and times
of these files are listed.

Note: There may likely already be at least one file in the list. If there are no files
listed, check that the System Comparison service is running. The service is
identified as DevPartner Differ in the services list.

4 From the list, select the date and time of the snapshot to use as the basis of the compari-
son and click Compare.

System Comparison displays a Results window. The content of the Results window is
described in Analyze Results.
246 Understanding DevPartner Studio

Chapter 8 · System Comparison
Analyze Results

When System Comparison compares two snapshots, it displays the differences between them
and all items in a results window, as shown in Figure 8-3. The Results window from this
Ready, Set, Go procedure might contain far less information than the results shown in the
figure.

Figure 8-3. Results window

The upper left pane lists the categories that were compared and the number of differences
found in each category. The first category with a non-zero number of differences is selected
when the window initially opens.

The bottom left pane displays a description of the selected category.

The right pane displays the details of the differences found in the selected category.

1 Click on several categories to display their descriptions.

2 Click on the Services category to display differences in the Difference details pane.

In the Difference details pane, the name of the item appears in the first column. The
second and third columns list the information from the snapshots, with the name of the
computer and full timestamp of the comparison shown in the header row.

Items not in that snapshot are listed as "[missing]." Items on a computer are indicated by
a check mark or the word "installed."

3 The two columns at the bottom of the details pane list the actual data from the first and
second snapshots for the selected item.

Categories of
differences

Descriptions
of categories

Difference
details
 Understanding DevPartner Studio 247

Chapter 8 · System Comparison
The Results window shows differences and lists all items that are the same in both snapshots,
depending on which option you display in the Show list.

Note that System Comparison considers version numbers when evaluating differences. It
considers components with different version numbers to be different components. If a compo-
nent exists in two snapshots but the version number of the component is different, the compo-
nent is listed as missing.

To compare the current state with a different previous state, select a different snapshot from
the Difference details for current state compared to: list in the results window.

This concludes the Ready, Set, Go section of this chapter. Now that you have a basic under-
standing of the mechanics of running a system comparison, continue reading the rest of this
chapter for additional information, or refer to the System Comparison online help for task-
based information.

The System Comparison Service

The System Comparison service, named DevPartner Differ, automatically takes a
snapshot of the state of your computer at 2:10 a.m. daily if the computer is running. If the
computer is powered off, it takes the snapshot five minutes after the next start-up. When you
install System Comparison, it takes a snapshot a few minutes after the System Comparison
service starts.

The nightly snapshot service collects snapshots for 21 nights, then begins deleting the oldest
ones. You can change the number of retained snapshots by modifying the value in the System
Comparison utility’s settings file, as described in “Changing the Number of Retained
Snapshots” on page 249. The size of snapshot files varies depending on the amount of data
collected. A typical file size is less than one megabyte.

The System Comparison service runs at minimum priority, but it does consume some system
resources for several minutes while it runs. If you prefer, you can set the System Comparison
service startup type to manual, but you lose automatic snapshot creation.

4 Near the bottom of the screen is the link Search the Internet for more information on
this item. Click the link to launch an Internet search for items related to the currently
selected difference (for example, "windows system environment variables").

5 In the upper right corner of the Difference details pane, click on the Show list. Use these
options to filter the differences shown.

6 When you are done reviewing differences, click the back button located in the upper
right corner of the window, to return to the main System Comparison window.

When you have finished experimenting with System Comparison, remember to restart the
services you stopped earlier.
248 Understanding DevPartner Studio

Chapter 8 · System Comparison
Changing Automatic Snapshot Settings

Both the timing of the automatic snapshot taken by the System Comparison service and the
number of snapshots retained are determined by the values in the System Comparison utility
settings file. The settings file (Compuware.Diff.Settings.xml) is located in the Program
Files\Micro Focus\DevPartner Studio\System Comparison\bin folder.

For installs on 64-bit versions of Windows, the settings file is located at: \Program Files
(x86)\Micro Focus\DevPartner Studio\System Comparison\bin.

Changing the Number of Retained Snapshots

System Comparison retains 21 automatic snapshot files by default, after which the oldest files
are deleted. To change the number of retained snapshot files, modify the SnapshotsTo-
Keep key in the settings file. For example, the following key would change the number of
retained snapshots to 30:

<add key="SnapshotsToKeep" value="30" />

Changing the Snapshot Hour and Minute

The System Comparison service takes an automatic snapshot of your computer at 2:10 a.m.
daily. (If the computer is powered off, it takes the snapshot five minutes after the next start-
up.) To change this default time, specify an alternate time in the Settings file using the
SnapshotHour0To23 and SnapshotMinute0To59 keys. For example, the following keys
would change the automatic snapshot time to 3:42 a.m.

<add key="SnapshotHour0To23" value="3" />

<add key="SnapshotMinute0To59" value="42" />

Valid settings for the hour are 0 to 23. Valid settings for the minute are 0 to 59.

You must restart the service for the new settings to take effect. If an automatic snapshot has
already been taken for the day, the new setting takes effect the next day. System Comparison
takes only one automatic snapshot per day.

Categories of Differences

When taking a snapshot, the System Comparison utility records the existence, version, and
status of the items listed in the following table.

You can add additional categories to customize data acquisition by writing a System Compari-
son Plug-in, as described in “Writing a Plug-in” on page 260.
 Understanding DevPartner Studio 249

Chapter 8 · System Comparison
Table 8-1. Categories of Differences

Category Differences Detected

System Info • Operating system
• .NET Framework
• Global Assembly Cache
• The Java Runtime
• System Environment variables
• File system case sensitivity

System Files • Operating system files in Windows\System32
• Windows File Protection Cache in Windows\System32\dll-
cache - This folder contains operating system files that are used to
maintain Windows if an operating system file is damaged. If a file is
damaged or missing, it is automatically replaced from this folder
without any intervention.

• Side-by-side assemblies in Windows\WinSxS

Installed Products The products detected. If the version number is available, it is shown.
The information is read from the Add/Remove Programs section of
the registry.

Services Differences in the installed services:
• Service status (Running, Stopped, etc.)
• Account used by the service
• Service type
• Services depended on

Startup Items Startup differences. This information is read from the following:
• The Win.ini file found in the Windows folder.
• The following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run

• If possible, version information is included from the program file.
250 Understanding DevPartner Studio

Chapter 8 · System Comparison
IE/Outlook Com-
ponents

Internet Explorer and Outlook differences:
• Active Setup shows updated or missing Outlook / Internet Explorer

components extracted from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\Installed Components

• Browser Helper objects extracted from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Explorer\Browser Helper
Objects

• MIME mappings (mapping between MIME type and which applica-
tion handles the MIME) extracted from the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\MimeFeature objects.

• Internet Explorer extensions extracted from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet
Explorer\Extensions

• Internet settings extracted from the registry key
HKEY_CURRENT_USER\Software\Microsoft\Windows\Cur-
rentVersion\InternetSettings

IIS Differences in your Microsoft IIS installation, as available from the IIS
metabase, including differences in all installed Web applications and
their settings, such as:
• Web server differences
• SMTP server differences
• FTP server differences

SQL Server Differences in your Microsoft SQL installation:
• Microsoft SQL settings from the registry.
• Data about Microsoft SQL services and related services.
• Settings in the syscurconfigs and sysconfigures tables in

the master database for all installed instances. The System Com-
parison utility attempts to connect to SQL Server using integrated
security. If SQL Server is not running, differences in the master
database are not collected.

Note: For master database differences to be collected, the account
under which you are running must have sufficient privilege to access
these two tables.

Drivers Differences of all Drivers found:
• Installed drivers
• Status of drivers

Table 8-1. Categories of Differences

Category Differences Detected
 Understanding DevPartner Studio 251

Chapter 8 · System Comparison
Registry Differences in specific sections of the registry. By default, no registry
sections are collected, but differences in the following registry sec-
tions can be collected:
HKEY_CLASSES_ROOT

HKEY_LOCAL_MACHINE

You can customize the sections of the registry to collect by editing the
RegistrySections.xml file, found in the Program
Files\Micro Focus\DevPartner Studio\System Compari-
son\data folder.

Note: For installs on 64-bit versions of Windows, the file is
located at: \Program Files (x86)\Micro Focus
\DevPartner Studio\System Comparison
\data.

You must have sufficient privilege to collect registry key data.

Files Differences in the contents of folders and file properties from specific
paths. By default, no files are included in the collection. You can cus-
tomize the paths to collect by editing the FileSections.xml file,
found in the Program Files\Micro Focus\DevPartner Stu-
dio\System Comparison\data folder.

Note: For installs on 64-bit versions of Windows, the file is
located at: \Program Files (x86)\Micro Focus
\DevPartner Studio\System Comparison
\data.

.NET Security Pol-
icy

Determines security policy differences on two separate system con-
figurations, or security policy changes in time on the same computer.
• Enterprise
• Machine
• User

Hardware • System (Manufacturer, Model, Number of Processors, and System
Type)

• Memory (in MegaBytes)
• Detailed information per processor (Description, Clock Speed,

Role, and Status)

User Environment Differences in user environments that may affect program runs.
These are dependent on which user took the snapshot.
• Environment Variables
• Accessibility Settings
• International Settings

Windows Update Differences on the state of the Windows Update service. This infor-
mation may be useful to determine if a suspected update may have
changed underlying components.

Table 8-1. Categories of Differences

Category Differences Detected
252 Understanding DevPartner Studio

Chapter 8 · System Comparison
Comparing Registry Keys

Registry settings are often of interest when comparing systems, but since a system might have
thousands of registry keys it is useful to narrow the scope of keys to be compared. The file
RegistrySections.xml, located in the data folder of your installation path (Program
Files\Micro Focus\DevPartner Studio\System Comparison\data by default)
specifies the sections of the registry to be compared.

For installs on 64-bit versions of Windows, the file is located at: \Program Files
(x86)\Micro Focus\DevPartner Studio\System Comparison\data.

By default, no registry keys are included in your snapshots.

Note: If using this file with the System Comparison utility's Snapshot Application
Program Interface (API), this file must be in a \data folder one level above the
application's executable file. For example, if the executable is in
...\App\bin\MyApp.exe then this file must be ...App\data\RegistrySec-
tions.xml.

You can compare registry entries in HKEY_LOCAL_MACHINE and HKEY_CLASSES_ROOT.
Comparing other registry keys is not supported.

You can specify as many sections as you need.

You must have sufficient privilege to collect registry key data.

Syntax

<Section categoryName="XXX">YYY</Section>

Parameters

Example

The following is a sample RegistrySections.xml file.

<RegistrySections>
<LocalMachine>
<!-- This is an example that would collect all registry keys under RPC
-->

XXX A category name displayed in the user interface. This attribute is optional.
When not specified the registry key is used as the category name.

YYY A registry key from which to start collecting recursively. The key does not spec-
ify the prefix HKEY_LOCAL_MACHINE or HKEY_CLASSES_ROOT. For example,
to collect all of KEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc use the
following:
<Section categoryName="Microsoft RPC">SOFT-
WARE\Microsoft\Rpc</Section>

To collect all of LOCAL_MACHINE or CLASSES_ROOT keys you can specify the
special character '\'. For example, <Section categoryName="All">\</
Section>. Be aware, though, that collecting all registry keys is time consum-
ing.
For keys of type REG_BINARY, only the first 20 bytes of each key are collected.
 Understanding DevPartner Studio 253

Chapter 8 · System Comparison
<Section categoryName="Microsoft RPC">SOFTWARE\Microsoft\Rpc</
Section>

</LocalMachine>
<ClassesRoot>
<!-- This is an example that would collect everything under Class-
esRoot, which would be many megabytes of data -->

<Section categoryName="All">\</Section>
<Section categoryName="Shell Extensions">*\shellex</Section>

</ClassesRoot>
</RegistrySections>

Comparing Specific Files

By default, differences in individual files are not collected. Comparing specific files is often of
interest when comparing systems, but it is useful to narrow the scope of files to be compared.
Use the file FileSections.xml, located in the data folder of your installation path
(Program Files\Micro Focus\DevPartner Studio\System Comparison\data by
default) to specify files to be compared.

For installs on 64-bit versions of Windows, the file is located at: \Program Files
(x86)\Micro Focus\DevPartner Studio\System Comparison\data.

Required: If using this file with the System Comparison utility's Snapshot Application
Program Interface (API), this file must be in a \data folder one level above
the application's executable file. For example, if the executable is in
...\App\bin\MyApp.exe then this file must be ...App\data\FileSec-
tions.xml.

Each category of file to be included in the comparison is specified in a separate section of
FileSections.xml. You can specify as many sections as necessary.

Syntax

<Section [categoryName="XXX"] [filterPattern="{*,?}"]
[attributes="{yes,no}"] [programAttributes="{yes,no}"] [recurseSubDi-
rectories="{yes,no}"]>YYY</Section>
254 Understanding DevPartner Studio

Chapter 8 · System Comparison
Parameters

Example

The following is an example FileSections.xml file.

-->
- <FileSections>
- <!-- These are examples of file sections: -->

<Section categoryName="My Product">c:\somedir\somesubdir</Section>

categoryName An optional attribute. XXX is a name that displays as a
sub-category. When this attribute is not present the
category name is the folder path by default.

filterPattern An optional attribute. It specifies a file filter using the
wildcard characters * (zero or more characters) and ?
(exactly one character). When this attribute is not
present, it is equivalent to filter=”*.*”

attributes An optional XML attribute. When not present, it is
equivalent to attributes=”yes”. If this attribute is
equal to “yes”, the utility collects the following:
flag read only
encrypted
file length
modified date
The Company and Product attributes are not collected,
nor are boolean file attributes such as read-only or
debug, unless they are set.

programAttributes An optional attribute. When not present, it is equivalent
to programAttributes=”yes”. If this attribute is
equal to “yes” and the file name extension is any of
“.exe”, “.dll”, “.ocx”, “*.cpl” , the utility collects
the following program version information:
version
language
Setting programAttributes to “no” is useful, for exam-
ple, in a Quality Assurance environment where one
wants to verify if any files have been deleted or added
during the installation of a product but you expect that
some files properties (like program version) to change
at each installation.

recurseSubDirectories An optional XML attribute. When this attribute is not
present, it is equivalent to recurseSubDirecto-
ries=”yes” If this attribute is equal to “yes”, the utility
collects file information for all folders recursively.

YYY The path from which to start collecting file information
recursively.
 Understanding DevPartner Studio 255

Chapter 8 · System Comparison
<Section categoryName="My bat files" attributes="yes" filter-
Pattern="*.bat" programAttributes="no" recurseSubDirec-
tories="no">c:\diff</Section>

<Section categoryName="My Test Files" attributes="yes" programAt-
tributes="yes" recurseSubDirectories="yes">D:\test</Section>

</FileSections>

Installing Without DevPartner Studio

System Comparison installs separately from DevPartner Studio. This is useful when compar-
ing two different computers to see why an application behaves differently on different
systems. When comparing systems to find an discrepancy between them, it is important to
minimize the changes made to those systems. Installing System Comparison alone, without
the overhead of Visual Studio or the rest of the DevPartner features, makes it easier to focus on
important differences between the systems being compared.

To install System Comparison, from the DevPartner Studio installation set-up screen select
Install DevPartner System Comparison and follow the installation procedure.

System Comparison is included in the DevPartner license agreement, therefore using System
Comparison consumes a DevPartner license. Refer to the DevPartner Studio Installation
Guide for a detailed discussion of license issues, but note the following:

� If you have a node-locked (single-seat) license or a concurrent license, using System
Comparison consumes one license while it is performing a comparison. Starting the Com-
parison service and taking snapshots with the service does not consume a license.

� If you are running DevPartner Studio under a 14-day evaluation period, the 14 days begins
when you use the System Comparison user interface to perform a comparison. It does not
begin when the Comparison service is installed, started, and takes a snapshot.

Running the Comparison Utility from the Command Line

You can automate data collection and comparison using the two command line interfaces,
CommandLine.exe and CommandLineDiff.exe.

� Compuware.Diff.CommandLine.exe takes a snapshot of the current condition of your
computer system. By default, it stores the snapshot in the last folder used to store snap-
shots, but you can specify an alternate folder as a parameter to the command line.

Examples:

C:\Program Files\Micro Focus\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLine.exe

C:\Program Files\Micro Focus\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLine.exe c:\MySnaps

For installs on 64-bit versions of Windows, the default installation folder is located at:
\Program Files (x86)\Micro Focus\DevPartner Studio\System Compari-
son\.
256 Understanding DevPartner Studio

Chapter 8 · System Comparison
� Compuware.Diff.CommandLineDiff.exe compares the values in two existing snap-
shot files and writes the resulting differences to an output file.

If running on WIndows 7 or Windows Vista, ensure that you have sufficient privileges to
write to the output folder.

Required parameters are computers (it is a placeholder) and the names of the files to
be compared. Optionally, you can specify the folder in which the output file is written.

Examples:

C:\Program Files\Micro Focus\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLineDiff.exe computers
SnapFile1 SnapFile2

C:\Program Files\Micro Focus\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLineDiff.exe computers
SnapFile1 SnapFile2 C:\MyResults

The output file is an XML file that can be read programmatically to check the results
of the comparison. You cannot open this output file with the System Comparison
utility’s user interface.

The command line programs are located in the System Comparison utility’s \bin folder
(\Program Files\Micro Focus\DevPartner Studio\System Comparison\bin by
default).

Software Development Kit

System Comparison includes a Software Development Kit (SDK) that provides functionality
for software developers, including:

� The ability to use the Snapshot Application Program Interface (API) to embed function
calls in an application to trigger a snapshot after the application is deployed.

The Snapshot API enables an application developer to control snapshot capability from
within a deployed application. Should problems occur after the application is deployed,
embedded API calls can trigger a snapshot that can assist with diagnosing the problem.

� The ability to write a System Comparison Plug-in to specify additional information to be
gathered during a snapshot.

The categories of information gathered by the System Comparison utility (described in
Table 8-1 on page 250) are sufficient for most comparisons. If you require additional
information to adequately compare systems, you can customize the System Comparison
utility by writing a data acquisition plug-in.

The API and plug-in functionality are described in the following sections.

System Comparison Snapshot API

The System Comparison Snapshot API enables you to control snapshot capability from within
a deployed application. When using the Snapshot API, you can specify:
 Understanding DevPartner Studio 257

Chapter 8 · System Comparison
� where the snapshot is stored

� what to do with messages or errors

� how progress status is to be reported

� where plug-ins are located, if custom plug-ins are used

Snapshot API information is located in two folder under the System Comparison installation
folder:

� The System Comparison\redistributable folder contains the assemblies custom-
ers are licensed to include in their application’s installation.

The Snapshot API assemblies may be redistributed in accordance with the Micro Focus
Software License Agreement terms and conditions. Licensing software is not required to
take a snapshot. To be viewed and compared, the snapshot must be sent to a licensed
DevPartner system.

� The \System Comparison\sdk\SnapshotAPI folder contains a sample application
(SampleSnapshotAPI.cs) showing use of the API in an application.

Review SampleSnapshotAPI.cs for an understanding of how the API can be used.

The Snapshot API is accessible from VB.NET, C#, and managed C++ and can be used with
applications built with .NET Framework 1.1 and 2.0.

The following describes the classes and methods implemented for the Snapshot API, as illus-
trated in the SampleSnapshotAPI.cs application.

Note: If using the Snapshot API, your application’s path must include a \data folder
one level above the application's executable file. The RegistrySections.xml
and FileSections.xml files must reside in the \data folder, even if those
files are not being used. For example, if your executable is in
...\App\bin\MyApp.exe, then ...App\data\RegistrySections.xml and
...App\data\FileSections.xml must exist.
258 Understanding DevPartner Studio

Chapter 8 · System Comparison
Taking a Snapshot

Compuware.Diff.Collector implements the class SnapshotAPI. You can use the
class SnapshotAPI to take a snapshot.

The SnapshotAPI class implements three methods:

The following example illustrates the most fundamental snapshot functionality:

using (SnapshotAPI snapshoter = new SnapshotAPI(null, null, null))
{
string snapFile = snapshoter.TakeSnapshot (userSnapshotDirectory);}

This would take a snapshot but would not be very useful in a production setting, as errors,
messages, and progress would not be tracked.

Logging Messages

You can control reporting of errors and messages returned during the snapshot process using
Compuware.Diff.LoggableInterface. In your application, create a logging mechanism
to implement this interface to direct the messages to an appropriate output device. The sample
application, for example, implements a ConsoleLogger class that logs messages to the
console.

Public SnapshotAPI
(ILoggable logger,
IProgressStatus progressStatusInter-
estedParty,
String pluginsSubDirectoryName)

Logger: An instance of a class responsible for
handling events and errors. Optionally, pass null,
but implementing a logger is recommended as it
eases troubleshooting.
progressStatusInterestedParty: An instance of
a class responsible for handling progress status
messages. It may be important in your application
to provide feedback to the user, since the snap-
shot operation may be lengthy. Optionally, pass
null.
pluiginsSubDirectoryName: The name of a sub-
folder of your executable's folder that contains
data acquisition assemblies. If you do not have
any plug-ins, you can specify an empty existing
folder or pass null.

public string TakeSnapshot
(String snapshotDirectory)

Takes the snapshot and stores it in the specified
folder.

public int GetNumberSteps () Provides the total number of steps the progress
status object receives. You can then design your
progress status accordingly. (See page 260 for
information on the ProgressStatus inter-
face.)

public void Dispose () The snapshot object is a disposable object.
 Understanding DevPartner Studio 259

Chapter 8 · System Comparison
This interface consists of two methods:

Reporting Progress

You can report and display the progress of the snapshot by implementing the Compu-
ware.Diff.ProgressStatus interface. This interface consists of three methods:

Writing a Plug-in

The categories of information gathered by the System Comparison utility (described in
Table 8-1 on page 250) are sufficient for most comparisons. If you require additional informa-
tion to adequately compare systems, you can customize the System Comparison utility by
writing a data acquisition plug-in. This section defines a data acquisition plug-in, demonstrates
how plug-ins work using supplied samples, and explains how you can create your own data
acquisition plug-in.

Required: Existing plug-ins created with versions of DevPartner Studio earlier than 9.0
must be rebuilt before they can be used in DevPartner Studio 9.0

What is a Plug-in?

A plug-in is a .Net assembly that contains one or more types that implement the interface
Compuware.Diff.PluginInterface.IPluggableDataExtractor. A plug-in
defines a high level category of data to be gathered for comparisons. A plug-in extracts data
and hands it to its caller in an XML format by adding XML elements to a base element in a
hierarchical manner.

Plug-ins reside in bin/plugins in the product installation folder. Every .NET assembly in
that folder is loaded by the Comparison service and every type that implements the interface
IPluggableDataExtractor is instantiated and placed in the list of plug-ins to call
when data is extracted.

void Log(string message) Call this method to log a normal status message.

void LogError(string
message)

Call this method to log an error message.

void OneStep () The method to call back to notify the interested
party to increment the progress display by one
step.

void MultiSteps (int nbrSteps
)

The method to call back to notify the interested
party to increment the progress display by sev-
eral steps.

void UpdateStatus (String new-
Status)

The method to call back to notify the interested
party to process a new status.
The newStatus string represents the new sta-
tus, which would typically be displayed as part
of a progress status UI element.
260 Understanding DevPartner Studio

Chapter 8 · System Comparison
To familiarize you with the mechanics of writing a plug-in, System Comparison includes two
sample files:

� A sample plug-in, SamplePlugin.cs, which demonstrates the structure of a simple
plug-in. This sample does not collect significant data, but always shows a timestamp dif-
ference in the second data point of the first sub-category. For details about the methods
implemented in a plug-in, refer to the file IPluggableDataExtractor.cs in
\SDK\Plugin.

� A program to exercise the sample plug-in, TestDriver.cs, which you can use to
become familiar with the mechanics of the sample plug-in. You can then use it to exercise
your customized plug-ins. Once your plug-ins are retrieving the information you expect,
you can then place them in the System Comparison bin/plugins folder to exercise them
with the System Comparison user interface or command line interface.

Plug-in Sample Step By Step Instructions

To become familiar with the use of plug-ins, use the TestDriver.cs and SamplePlu-
gin.cs sample files. Both files are located in the \sdk\Plugin folder (C:\Program
Files\Micro Focus\DevPartner Studio\System Comparison\sdk\Plugin by
default).

Note: For installs on 64-bit versions of Windows, the default folder is located at:
\Program Files (x86)\Micro Focus\DevPartner Studio\System
Comparison\sdk\Plugin.

Tip: Plug-ins can be created with any currently supported version of Visual Studio.
Use the version of Visual Studio that matches the version of .NET Framework
containing features you want to use.

To build and test the sample files:

1 Create a solution using Visual Studio.

2 In this solution, add two C# projects:

� ClassLibrary1 (type class library): This project is used to develop your plug-in.

� ConsoleApplication1 (type console): This project is used to debug the plug-in.
 Understanding DevPartner Studio 261

Chapter 8 · System Comparison
3 In the ClassLibrary1 project:

a Add SamplePlugin.cs (located in C:\Program Files\Micro Focus\Dev-
Partner Studio\System Comparison\sdk\Plugin by default).

For installs on 64-bit versions of Windows, the default folder is located at: \Program
Files (x86)\Micro Focus\DevPartner Studio\System Comparison\.

b Add a reference to the following assemblies (from the redistributable folder, C:\Pro-
gram Files\Micro Focus\DevPartner Studio\System Compari-
son\redistributable by default):

Compuware.Diff.PluginInterface.dll

Compuware.Diff.LoggabcomputerleInterface.dll

Compuware.Diff.CollectorSchema.dll

4 In the ConsoleApplication1 project:

a Delete Class1.cs from the solution explorer, if it exists.

b Add the TestDriver.cs file to the project (located in C:\Program Files\Micro
Focus\DevPartner Studio\System Comparison\sdk\Plugin by default).

c Add reference to the following assemblies (from the redistributable folder):

Compuware.Diff.PluginInterface.dll

Compuware.Diff.LoggableInterface.dll

Compuware.Diff.CollectorSchema.dll

d Add a reference to ClassLibrary1.
262 Understanding DevPartner Studio

Chapter 8 · System Comparison
e Set this project as the Startup project.

5 Build and run the solution. You can run in debug mode and step through the sample to
understand the basic functioning of a plug-in. An XML output file containing the sample
plug-in data generates. The file is called pluginOutput.xml and is in the folder from
which you ran the test driver.

-<testPlugin>

- <c n="Sample Data Extractor Plug-in">
- <c n="sampleSubCategory1">
<s n="data1">data1 actual value</s>
<s n="data2">data2 actual value 4/3/2006 10:42:34 AM</s>
</c>
- <c n="sampleSubCategory2">
<s n="data1">data1 actual value</s>
<s n="data2">data2 actual value</s>
</c>
</c>

</testPlugin>

After exercising the sample plug-in with TestDriver you can use it with the System
Comparison utility’s user interface or command line interface:

1 Copy ClassLibrary1.dll to the plugin subfolder.

2 Use the System Comparison user interface or command line interface to take a snapshot,
then take a second snapshot.

3 Compare the two snapshots. Since the SamplePlugin collects timestamp data, the two
snapshots shows this difference.

Figure 8-4. Results window for the sample plug-in
 Understanding DevPartner Studio 263

Chapter 8 · System Comparison
Creating and Testing Your Plug-in

Once you are familiar with the mechanics of plug-ins you can begin to design your customized
plug-in to gather data that interests you.

When designing your plug-in, pay particular attention to the hierarchy of data collected. Be
sure that the hierarchy is designed to provide insight into the values in which you are inter-
ested. When a non-matching value is found in a data hierarchy, the rest of the data in that
hierarchy is not compared. (Refer to “Modifying a Deployed Plug-in” on page 264 for infor-
mation about changing the data hierarchy in subsequent versions of a plug-in.)

You can exercise your plug-in with TestDriver to simplify troubleshooting. Once you are
satisfied with the plug-in output, you can test it with the System Comparison command line
interface:

1 Copy your plug-in to the product installation plugins folder. (You do not have to copy
the TestDriver.exe file, which was used only to test your plug-in.)

2 Run the command line program (<product dir>\bin\Compuware.Diff.Command-
Line.exe) on two computers that have differences in the area your plug-in is collecting.

3 Compare the two snapshots with the System Comparison user interface. You should see
your differences.

4 Restart the System Comparison service so it includes the data specified by your plug-in
when it creates snapshots.

Review the DifferEvent.log in your temporary folder (see the temp environment variable
for the exact location) to troubleshoot any problems that occur. An event is logged if your
plug-in is found and instantiated. Subsequent errors that occur during load, unload, or get data
calls also generate events in the log.

Also, any error you log via the ILoggable traceLogger parameter of the IPlugga-
bleDataExtractor.GetData call writes to this file. See IPluggableExtractor.cs.

Modifying a Deployed Plug-in

After deploying a plug-in, you may decide to modify the data being collected. When older
snapshot files are compared with snapshots created with the new version of your plug-in, the
data collected does not match. The System Comparison utility identifies the mismatch as a
difference, which could lead to confusion.

You can control how a mismatch is handled through use of major and minor version numbers.
When the major version number of a plug-in differs between snapshots, the System Compari-
son utility reports that the "Plug-in schemas are incompatible." If the minor version numbers
differ, the System Comparison utility identifies the status of the new data as being "unknown"
in the old snapshot.

If you change a plug-in to delete data or change the hierarchy of data collected, changing the
major version number is recommended. If you change the plug-in to add data, changing the
minor version is generally sufficient.

To become familiar with this mechanism, you can experiment with changing the version
number in the SamplePlugin, which is initially set to 1.0:
264 Understanding DevPartner Studio

Chapter 8 · System Comparison
public PluginSchemaVersion PluginVersion
{
get { return new PluginSchemaVersion(1, 0);}
}

Note: If you need to replace or remove a plug-in, you first need to stop the System
Comparison service and exit the System Comparison user interface to prevent
the file from been locked by the operating system.

Highlights of the Plug-in Schema

To familiarize yourself with the plug-in schema, you can check any snapshot. A snapshot
contains data from the plug-in. For details, refer to the file diff-plugin-schema.xsd in
\sdk\Plugin. The following is an annotated sample XML fragment showing some of the
elements and attributes you can use.

<c Outermost Category node is for your plug-in.

n="MyApplication" The name of your plug-in. This text appears in the list of catego-
ries (on left in UI).

descrip="text" This text is shown in the bottom left of the UI when your cate-
gory is selected.

schema="1"> Set this to "1". Change it when new versions of your plug-in are
incompatible with prior releases.

<c All nested categories are shown in the main window of the UI.

n="MyCategory" This is the name shown in the main window of the UI, and used
for comparison.

missing="text" Optional. This is the text you want shown when this category is
missing from the other snapshot. It can be version information
or something simple, like "installed".

error="text"> Optional. If your plug-in gets an error while fetching data for this
category, you can include it here and it displays in the UI.

<s All data is string data.

n="MyData" This is the name shown in the main window of the UI, and used
for comparison.

search="t1 t2" Optional. Search terms for the "search" link in the UI. These are
passed to Google.

error="text"> Optional. If your plug-in gets an error while fetching data, you
can include it here and it displays in the UI.

Actual Data Value This is your data from the registry or some other setting.

</s>

</c>

</c>
 Understanding DevPartner Studio 265

Chapter 8 · System Comparison
About the Redistributable Assemblies

The current version of Compuware.Diff.PluginInterface.dll, Compu-
ware.Diff.LoggableInterface.dll and Compuware.Diff.Collector-
Schema.dll is 1.0.0.0. Customized plug-ins continue to work with future versions of the
System Comparison utility as long as the version number of these assemblies does not change.
If major modifications are made to the assemblies, the version number increments and you
must rebuild your plug-ins against the new assemblies.
266 Understanding DevPartner Studio

Appendix A
About DevPartner Studio Enterprise Edition
and TrackRecord
What Is DevPartner Studio Enterprise Edition?

DevPartner Studio Enterprise Edition (EE) can increase a manager’s ability to predict when
projects reach goals, such as a specified quality level or a deployment status. It gives project
managers the concrete project details they need to keep software projects on schedule, and
development team members the tools they need to accomplish their goals.

DevPartner Studio EE combines the features of several existing software solutions, and
integrates them to provide a new class of functionality. In addition to the DevPartner features
described in this manual, the Enterprise Edition also includes the following components:

DevPartner Studio EE provides multiple ways to capture, manipulate, view, and track project
data, including:

� Milestone-related summaries that provide a way to interpret and understand critical-path
project data

� Customizable work flow for tracking data in a way that fits a company’s development pro-
cess

� Remote access to project information via a World Wide Web interface
� Email notification of changes to crucial project information

The Development Process

Each software development group establishes its own process, which is the set of steps that the
group uses to get from the idea and design stage of a project to the implementation and deliv-
ery stage. DevPartner Studio EE fits in with a team’s current process, and provides features to
assist the fine-tuning of internal development procedures.

Examples of process include:

� Written requirements
� Systematic change control
� Technical reviews
� Quality assurance planning
� Implementation planning
� Automated source code control
� Estimation updates at major milestones

Projects that use no process often suffer from:

TrackRecord Advanced change request management, task management, and work-
flow support for development teams

Reconcile Practical requirements management for software development teams
 Understanding DevPartner Studio 267

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
� Application redesigns and rewrites during testing
� Integration problems
� Defect corrections late in the development life cycle at great cost
� Expansion of requirements—also called “thrashing”

Projects that use a well-managed process display a high degree of certainty about the status of
the project in relation to its plan. Process also improves development team morale. In one 50-
company survey, 60% of developers who rated morale as good or excellent worked for firms
that emphasized process, as compared to 20% whose firms were the least process oriented.

DevPartner Studio EE adapts to a company’s existing software development process, and
provides tools to help teams enhance that process if they so choose. It provides a way to
formalize a team’s work flow, to make people answerable to that work flow, and to audit the
entire process. Combining customizable work flow with automatic error detection improves
software quality and streamlines the development process.

The DevPartner Studio EE Solution

DevPartner Studio EE provides solutions to problems commonly facing software development
teams:

� Improved project control
� Higher software quality through enhanced code reliability
� Improved productivity

Improved Project Control

Keeping projects under control involves the ability to determine easily:

� What tasks has the team completed?
� What tasks remain uncompleted?
� How volatile is the application’s code?
� How thoroughly tested is the application?
� How reliable is the application?

Dynamic Tracking of Project Information

DevPartner Studio EE excels at tracking dynamic project information using TrackRecord.

Numerous tools exist to plan software projects. These tools help determine resource alloca-
tion, schedules, critical-path tasks, and other vital information. Before DevPartner Studio EE,
approved project plans became static data points. During real projects, schedules slip,
programmers get pulled off projects to deal with escalated problems in other projects, and
delivery conditions change. Project planning tools alone cannot easily help to deal with chang-
ing conditions, but the DevPartner Studio EE connection between Microsoft Project and
TrackRecord allows dynamic recalculation of schedules.

Higher Software Quality

Developers and testing engineers use DevPartner throughout the software development cycle.
268 Understanding DevPartner Studio

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
Finding Problems Before Users Do

DevPartner Studio EE differs from other software project enhancement tools by encouraging a
proactive and systematic approach to finding and fixing program anomalies, from outright
bugs to code bottlenecks. The early location of a program’s problems contributes to high
quality in the final product. DevPartner Studio EE’s debugging features assist developers,
individually and collectively, throughout the development cycle. DevPartner saves time for
programmers by making errors easier to find and repair, and easy report creation increases the
likelihood that developers enter defect and feature reports.

Finding errors is just the start of a process. Errors need to be discovered, recorded, reproduced,
and assigned a priority for repair. TrackRecord streamlines much of this process, which frees
developers to be more productive while guaranteeing that problems do not get lost or forgotten
in a hectic schedule.

Improved Productivity

As project milestones — crucial dates such as code freeze and deployment dates—approach,
dynamic displays of project data, such as number of defects outstanding, code volatility, and
team-wide code coverage statistics, help everyone on the team assess their progress toward
goals.

Every DevPartner Studio EE user can create a unique view of the information in a project
database.

� Managers can get a big-picture view of a project, can track whether crucial tests are being
run, and can control quality more tightly

� Developers can create lists of tasks needing immediate attention, rank tasks according to
priority, perform error checks and performance tests on their code, and focus their daily
activities

� Testers can track bugs and the status of known problems, merge data generated by cover-
age runs, execute test plans, and organize daily activity

� Writers can track when specifications get published, when features get implemented, and
when user interface changes get made

� Support coordinators can quickly locate information, such as known defects and configu-
rations tested, to help customers resolve problems

In this way, individual users become more productive by quickly retrieving just the informa-
tion they need. Views such as the Milestone Summary provide a context for the display of this
information.

Every software development project is different, and every company has different needs.
Different parts of a single company need different information about ongoing projects.
DevPartner Studio EE satisfies these requirements by offering flexibility in the design of
projects, particularly in the types of information that get tracked.

Although DevPartner Studio EE provides numerous pre-built views of database information,
every DevPartner Studio EE user has unique requirements for the storage and display of
project information. DevPartner Studio EE provides the flexibility to allow companies to
customize reports, forms, workflow, projects, and information types to fit their needs.
 Understanding DevPartner Studio 269

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
Feature Overview

DevPartner Studio EE provides the tools for accumulating and sharing software development
project information. DevPartner Studio EE provides a rich set of features to facilitate the
process of keeping track of a project under development.

Requirements Management

The crucial first step in any application development project is capturing the right set of end-
user requirements. Next, those requirements must be effectively communicated to the develop-
ment and testing teams. Reconcile provides a way to capture, organize, and distribute project
requirements.

Using the familiar Microsoft Word as its editor, Reconcile provides a way to gather and refine
requirements. Then, development teams can use the Reconcile Project Explorer to navigate
requirement relationships. Reconcile requirements can be synchronized with QADirector to
automatically create test procedures, and to correlate test results with test plans.

Reconcile integration with TrackRecord makes possible the association of defects and issues
with project requirements. In this way, Reconcile and TrackRecord allow every development
team member to stay up-to-date on project objectives.

Merging Coverage Data

The DevPartner Studio EE coverage feature generates information about the amount of a
component’s code that has been exercised or tested. Since developers often work on different
components, this individual coverage data does not tell a complete story about an application
project. Each developer’s local coverage report may need to be merged with other coverage
results to obtain a complete picture of how much of the total project’s code has been exercised.

DevPartner Studio EE allows the merging of sets of coverage data based on builds, configura-
tions, users, or other criteria.

Project Activity Tracking

Tracking the various tasks and components of a software project helps to deal with the
problem of complexity. As team members work on a specific task, new tasks needing attention
at a future date often emerge. DevPartner Studio EE provides a way to record and track those
tasks so that they are not lost. Combining the work of individual developers requires attention
to detail, coordination, and accurate recording of problems that requires consideration at a
later date.

Tracking the level of testing being done, the number of faults being discovered, and the
amount of coverage activity taking place can help a project manager anticipate and avoid
problems. Two-way communication between DevPartner Studio EE and Microsoft Project can
even automate schedule changes.

Automatic Notification of Changes

Timeliness promotes productivity. For example, prompt notification of:

� Newly-found high priority bugs helps managers reallocate resources to deal with shifting
task priorities
270 Understanding DevPartner Studio

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
� Newly-assigned tasks helps developers schedule their time more efficiently

While dynamic Outline reports provide the primary method for notifying users about changes
to project data, the DevPartner Studio EE AutoAlert feature provides another way to notify
one or more individuals when a tracked event occurs. AutoAlert lets you define flexible crite-
ria for notifying remote or infrequent users of changes that might be of interest to them.

Each user who receives automatic mail notification sets up the notification criteria by creating
special DevPartner Studio EE mail queries. AutoAlert monitors the DevPartner Studio EE
database, periodically checking to see if any new items match the mail queries.

Whenever an item is entered or changed so that it matches one of the mail queries, DevPartner
Studio EE automatically sends an e-mail message to the owner of the e-mail query. By using
the TrackRecord software’s flexible query engine, AutoAlert makes it possible for you to
receive mail notification based on almost any criteria.

Customizable Workflow

Every software development team needs a way to make sure that certain tasks get completed,
often in a specific order. Quality Assurance cannot test a repaired defect, for example, until the
fix gets logged as integrated with the rest of the application under development. DevPartner
Studio EE allows, but does not require, setting up a workflow that works in this manner.

DevPartner Studio EE provides a mechanism to implement an ordered workflow. Teams can
design this workflow to restrict who can move an item of project data from one stage in the
workflow life cycle to another. The workflow and its enforcement policies can require certain
information under specified conditions. These policies provide a way to make team members
accountable to the process the project uses.

Remote Access via the Web

When members of a development team work at remote locations, they can still have access to
project data. The DevPartner Studio EE WebServer provides remote access via standard Web
connections to allow users to view, enter, and change crucial project data.

Central Store of Shared Information

DevPartner Studio EE provides a robust client-server-based repository for sharing informa-
tion. This repository uses an object-oriented database that is programmatically accessible
through ActiveX (formerly OLE automation) interfaces. The repository provides the underly-
ing infrastructure to enable groups to work together while each member works separately.

An extensible and flexible database structure, based on information types, forms the core of
DevPartner Studio EE’s repository, and provides its power.

About TrackRecord and DevPartner Studio

TrackRecord is part of the DevPartner Studio Enterprise Edition suite of software develop-
ment tools. These applications automatically generate and store information about the detec-
tion, diagnosis, and resolution of software problems.
 Understanding DevPartner Studio 271

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
Developers can use TrackRecord to capture this information, along with other project informa-
tion, such as milestone dates, to help resolve problems quickly and consistently.

Note: Integration of TrackRecord and DevPartner Studio is version dependent. You
might need to upgrade your DevPartner or TrackRecord software if you
purchased the tools at separate times.

DevPartner Studio Interaction with TrackRecord

DevPartner Studio provides toolbar buttons and menu selections that allow the submission of
defects to TrackRecord databases.

DevPartner Toolbar Buttons

The DevPartner toolbar buttons let you enter DevPartner defects. Clicking these buttons opens
a defect form, allowing you to key information into the DevPartner database.

Defect Submissions

Submitting a DevPartner defect starts with highlighting an item from a DevPartner Studio
debug display.

Entering a Defect from DevPartner

Complete the following steps to enter a defect from DevPartner:

1 Choose Submit Defect from a DevPartner menu or toolbar.

Alternatively, choose a Submit Defect button from a DevPartner feature toolbar.

TrackRecord opens either a blank Defect form, or a form with some fields prefilled with
relevant data.

2 Enter other needed information into the defect report.

3 Click Save and Close.

TrackRecord and DevPartner Studio Coverage Analysis

DevPartner coverage users can merge session files that accumulate within their private work
space. These merged sessions indicate how much testing that developer’s code has received
over time.
272 Understanding DevPartner Studio

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
With DevPartner and TrackRecord, coverage sessions can be merged and filtered across users
and environments. Merging coverage sessions from all the developers working on an applica-
tion lets a manager or test coordinator determine how much of an application’s total code base
has been exercised by test programs.

Refer to the coverage documentation and online help for information about how to use
DevPartner coverage.

Merging coverage sessions has two steps: creating a coverage merge set, and merging the
sessions. Developer choose what coverage sessions should be merged and what sessions
should be excluded. Criteria for identifying sessions to merge can include the following.

� Application component
� Date
� Memory
� Milestone
� Operating System
� Person
� Project

You can match one of these selections to a specific value, to any value, or to any value except
one you specify.

Creating Criteria for Merge Coverage Operation

To create criteria for a merge coverage operation, complete the following steps:

1 In TrackRecord, select Merge Coverage Sessions from the Tools menu.

2 Select a target from the left-most list box.

3 Select a match criteria from the right-most list box.

4 If you selected “is equal to” in the previous step, select a value from the bottom list box.

For example, if you selected “Operating System is equal to” in the two top lists, you would
select a value, such as “Windows 2008,” from the lower list.

5 Click Add.

6 Click Next to view the sessions that met your criteria.

Merging Coverage Sessions

To merge coverage sessions, complete the following procedure:

1 Click the check box next to a session to toggle it on or off.

When selected, that session is merged with the other files selected. If not selected, that
session is not merged with the other selected files.

2 Click Merge.

The DevPartner coverage main dialog box opens and displays a bar graph and statistics
about the amount of lines and functions exercised by your unit tests.
 Understanding DevPartner Studio 273

Appendix A · About DevPartner Studio Enterprise Edition and TrackRecord
274 Understanding DevPartner Studio

Appendix B
DevPartner Studio Supported Project Types
This chapter contains tables listing project types supported by each DevPartner Studio feature
listed above.

Supported Project Types

DevPartner Studio works in many software development environments which include Visual
Studio integrated development environments, managed and unmanaged project types, and
programming languages.

The following pages describe supported IDEs, project types, and languages for each respective
DevPartner Studio feature.

Error Detection Supported Project Types

Application projects build into an x86 executable. DevPartner error detection supports the
following project types

Table B-1 Supported Visual Studio version and language reference

Integrated Development
Environment

Managed or
Unmanaged Language

Visual Studio 2008 (VS2008) Managed Visual Basic
Visual C++
Visual C#

Unmanaged Visual C++

Visual Studio 2005 (VS2005) Managed Visual Basic
Visual C++
Visual C#
Visual J#

Unmanaged Visual C++
 Understanding DevPartner Studio 275

Appendix B · DevPartner Studio Supported Project Types
Table B-2 Error Detection Support for Managed Project Types

Visual Studio
Version(s) Application Project Types

Supported
Languages

VS2008 MFC Application
MFC DLL
Win32 Console Application
Win32 Project
Win32 Smart Device Project (see note)

C++

Crystal Reports Application
Test Project
Windows Control Library
Windows Application
Windows Forms Application
Windows Forms Control Library

WPF Application1

WPF User Control Library1

WPF Custom Control Library1

WPF Browser Application1

C#, VB

Console Application
Windows Service

C++, C#, VB

1 XAML generated code; .NET Framework 3.0 or later
2 VS 2008 SP1 or later

VS2005 MFC Application
MFC DLL
MFC Active X Control
MFC ISAPI Extension DLL
Win32 Console Application
Win32 Project
Win32 Smart Device Project (see note)
Windows Forms Control Library

C++

Calculator Starter Kit J#

Crystal Reports Application
Windows Control Library
Windows Application

C#, J#, VB

Console Application
Windows Service

C++, C#, J#,
VB

MFC - Microsoft Foundation Class
276 Understanding DevPartner Studio

Appendix B · DevPartner Studio Supported Project Types
Note: Win32 Smart Device project types (Smart Device project types where the
Solution Platform is set to Win32) must be running on the development
computer, not an emulator, for DevPartner error detection to support them.

Hosted projects are built into an x86 DLL, and need to be hosted in an application if you want
to test them. DevPartner error detection supports the following project types only when hosted
within another executable:

Table B-3 Supported when the project is hosted within another executable

Visual Studio
Version(s)

Supported Project Types When Hosted
Within Another Executable

Supported
Languages

VS2008 ATL Project
ATL Server Project
ATL Smart Device Project
Extended Stored Procedure DLL
MFC Active X Control
MFC DLL
MFC ISAPI Extension DLL
MFC Smart Device ActiveX Control
MFC Smart Device Application
MFC Smart Device DLL
Windows Forms Control Library

C++

Web Control Library C#, VB

Class Library
Windows Control Library

C++, C#, VB

VS2005 ATL Project
ATL Server Project
ATL Smart Device Project
Extended Stored Procedure DLL
MFC Active X Control
MFC DLL
MFC ISAPI Extension DLL
MFC Smart Device ActiveX Control
MFC Smart Device Application
MFC Smart Device DLL
Windows Forms Control Library

C++

Web Control Library C#, J#,
VB

Class Library
Windows Control Library

C++, C#, J#,
VB

ATL - Active Template Library
MFC - Microsoft Foundation Class
 Understanding DevPartner Studio 277

Appendix B · DevPartner Studio Supported Project Types
Code Review Supported Project Types

The following table lists project types supported by DevPartner Studio code review.

Table B-4 Code Review Support for Managed Project Types

Visual Studio
Version(s) Managed Project Type

Supported
Languages

VS2008 ASP.NET Web Application
ASP.NET Web Service
ASP.NET Web Site

ASP.NET AJAX Server Control1

ASP.NET AJAX Server Control Extender1

ASP.NET Server Control1

Class Library
Console Application
Crystal Reports Application
Mobile Web Application

Test Project2

Empty Workflow Project2

Sequential Workflow Console Application2

Sequential Workflow Library2

State Machine Workflow Console Application2

State Machine Workflow Library2

Workflow Activity Library2

Web Control Library
Windows Application
Windows Control Library
Windows Service

WPF Application3

WPF User Control Library3

WPF Custom Control Library3

WPF Browser Application3

WCF Service Application

C#, VB

1 As an ASP .NET Web Application
2 As a standard VB or C# application
3 XAML generated code; .NET Framework 3.0 or later
278 Understanding DevPartner Studio

Appendix B · DevPartner Studio Supported Project Types
VS2005 ASP.NET Web Application
ASP.NET Web Service
ASP.NET Web Site
Class Library
Console Application
Crystal Reports Application
Mobile Web Application
Web Control Library
Windows Application
Windows Control Library
Windows Service

C#, VB

Table B-4 Code Review Support for Managed Project Types

Visual Studio
Version(s) Managed Project Type

Supported
Languages
 Understanding DevPartner Studio 279

Appendix B · DevPartner Studio Supported Project Types
Coverage Analysis, Performance Analysis, Memory Analysis, and
Performance Expert Supported Project Types

The following table lists DevPartner Studio analysis supported projects.

Table B-5 Coverage Analysis, Performance Analysis, Memory Analysis, and Performance
Expert supported project types

Visual Studio
Version(s) Project Type

Supported
Languages

VS2008 ATL Project
ATL Server Project
ATL Server Web Service
ASP.NET Web Service
CLR Console Application
CLR Empty Project
Shared Add-in
MFC ActiveX Control
MFC Application
MFC DLL
Win32 Console Application
Win32 Project

C++

ASP.NET Web Site

ASP.NET AJAX Server Control1, 4

ASP.NET AJAX Server Control Extender1

ASP.NET Server Control1

ASP.NET Web Application
ASP.NET Web Service Application
Console Application
Crystal Reports Application
Reports Application
SQL Server Project

WPF Application2

WPF Browser Application2

WPF Custom Control Library2

WPF User Control Library2

WCF Service Application3

Test Project3

C#, VB
280 Understanding DevPartner Studio

Appendix B · DevPartner Studio Supported Project Types
VS2008 (cont.) Empty Workflow Project3

Sequential Workflow Console Application3

Sequential Workflow Library3

State Machine Workflow Console Application3

State Machine Workflow Library3

Workflow Activity Library3

Visual Studio Add-in
Visual Studio Integration Package
Web Control Library
Windows Application
Windows Control Library

C#, VB

Class Library
Windows Forms Application
Windows Forms Control Library
Windows Service

C++, C#, VB

Windows Forms
Windows Forms Control Library
Syndication Service Library
WPF application
Class Library
Console Application
Windows Service
WCF Service Library
WPF User Control Library

COBOL for
.NET (Micro
Focus Studio
Enterprise Edi-
tion)5

1 JavaScript, Asynchronous XML
2 XAML generated code; .NET Framework 3.0 or later
3 As a standard VB or C# application
4 Coverage Analysis and Performance Analysis only
5 Visual Studio 2008 Service Pack 2 or later
MFC - Microsoft Foundation Class

Table B-5 Coverage Analysis, Performance Analysis, Memory Analysis, and Performance
Expert supported project types

Visual Studio
Version(s) Project Type

Supported
Languages
 Understanding DevPartner Studio 281

Appendix B · DevPartner Studio Supported Project Types
Note: DevPartner Studio coverage analysis and performance analysis support
VBScript and JScript in both classic ASP and client-side Web script.

VS2005 ATL Project
ATL Server Project
ATL Server Web Service
ASP.NET Web Service
CLR Console Application
CLR Empty Project
Shared Add-in
MFC ActiveX Control
MFC Application
MFC DLL
Win32 Console Application
Win32 Project

C++

ASP.NET Web Application
ASP.NET Web Service Application
SQL Server Project

C#, VB

ASP.NET Web Site
Console Application
Crystal Reports Application
Visual Studio Add-in
Visual Studio Integration Package
Web Control Library
Windows Application
Windows Control Library

C#, J#, VB

Class Library
Windows Forms Application
Windows Forms Control Library
Windows Service

C++, C#, J#,
VB

ATL - Active Template Library
MFC - Microsoft Foundation Class

Table B-5 Coverage Analysis, Performance Analysis, Memory Analysis, and Performance
Expert supported project types

Visual Studio
Version(s) Project Type

Supported
Languages
282 Understanding DevPartner Studio

Appendix C
Starting Analysis from the Command Line
This appendix contains information about the DPAnalysis.exe command line tool which
works for Coverage Analysis, Memory Analysis, Performance Analysis, and Performance
Expert.

Introducing DPAnalysis.exe

In addition to collecting analysis data while running your program in Visual Studio, you can
use DPAnalysis.exe to collect profiling information without launching Visual Studio.
DPAnalysis.exe collects application data in conjunction with option switches or by point-
ing to an XML configuration file.

Running DPAnalysis.exe from the Command Line

You can use DPAnalysis.exe from the command line, using switches or an XML configura-
tion file to direct the analysis session. The following command line example launches a perfor-
mance analysis session for the application target.exe and saves the session file (.dpprf)
to the c:\output folder:

DPAnalysis.exe /perf /output c:\output\target.dpprf /p target.exe

Using DPAnalysis.exe from the command line, you can enable data collection and spawn a
single process or service. To spawn more than one process with DPAnalysis.exe, see
“Using DPAnalysis.exe with an XML Configuration File” on page 285.

DPAnalysis.exe does not instrument unmanaged code. To collect performance or coverage
analysis data for an unmanaged application, you must first instrument the application. See
“Collecting Data for Unmanaged Code” on page 121 for coverage analysis and “Collecting
Data from Unmanaged Code” on page 192 for performance analysis.

Use the following syntax and switches to run the four DevPartner Studioanalysis components
from the command line.

DPAnalysis.exe [/Perf|/Cov|/Mem|/Exp] [/E|/D|/R]
[/O outputfilename] [/W workingdirectory] [/PROJ_DIR]
[/H hostmachine] [/NOWAIT] [/NO_UI_MSG] [/N] [/F]
[/NO_QUANTUM /NM_METHOD_GRANULARITY /EXCLUDE_SYSTEM_DLLS
/NM_ALLOW_INLINING /NO_OLEHOOKS
/NM_TRACK_SYSTEM_OBJECTS] {/P|/S} target.exe [target arguments]
 Understanding DevPartner Studio 283

Appendix C · Starting Analysis from the Command Line
Analysis Type Switches

Sets the run-time analysis type. The default is performance analysis.

Data Collection Switches

Enables or disables data collection for a given target, but does not launch the target. These
switches are optional.

Other Switches

These switches are optional.

/Cov[erage] Sets analysis type to Coverage Analysis

/Exp[ert] Sets analysis type to Performance Expert

/Mem[ory] Sets analysis type to Memory Analysis

/Perf[ormance] Sets analysis type to Performance Analysis

/E[nable] Enables data collection for the specified process or service.

/D[isable] Disables data collection for the specified process or service.

/R[epeat] Profiling occurs any time you run the specified process until
you use the /D switch to disable profiling.

/O[utput] Specify the session file output folder or folder and name.

/W[orkingDir] Specify the working folder for the target process or service.

/PROJ_DIR Specify the folder of the DevPartner Studio project, used to locate
playlists, etc.

/H[ost] Specify target's host computer.

/NOWAIT If you use /NOWAIT with multiple targets in a batch file, DPAnaly-
sis.exe launches process2 immediately after process1 starts.
For example:

DPAnalysis.exe /Exp /NOWAIT /P
c:\temp\process1.exe
DPAnalysis.exe /Exp /NOWAIT /P
c:\temp\process2.exe

If you omit the optional /NOWAIT switch, DPAnalysis.exe waits
until process1 exits to start process2 (default behavior).

/NO_UI_MSG Set this switch to "true" to suppress UI error messages. The default
is “false”.

/N[ewconsole] Run the process in its own command window.
If using DPAnalysis.exe to analyze a console application requir-
ing keyboard input, you must use the /NewConsole switch to
open a console window to accept the input.
284 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
Quoted Paths and the /O[utput] Switch

If you use a quoted path as the parameter for the output (/o) switch and you do not include the
file name, you must end the path in one of the following ways:

Analysis Options

These switches are optional.

Target Switch

Required. Pick only one. Identifies target to follow as either a process or service. All
arguments that follow the target name or path are arguments to the target.

Using DPAnalysis.exe with an XML Configuration File

To manage analysis sessions with an XML configuration file, run DPAnalysis.exe from the
command line with the /config switch and a properly structured XML configuration file as
its target. For example:

DPAnalysis.exe /config c:\temp\configuration_file.xml

/F[orce] Forces coverage analysis or performance analysis profiling of
unmanaged code applications that have not been instrumented
with Native C/C++ Instrumentation.

/o “c:\test directory” End with a quote.

/o “c:\test directory\.” End with a back slash followed by a period.

/o “c:\test directory/” End with a forward slash.

/NO_QUANTUM Disables excluding time spent on other threads.

/NM_METHOD_GRANULARITY Sets data collection granularity to method-level.
Line-level is default (performance analysis only).

/EXCLUDE_SYSTEM_DLLS Excludes data collection for system dlls (perfor-
mance analysis only).

/NM_ALLOW_INLINING Enable run-time instrumentation of inline meth-
ods.

/NO_OLEHOOKS Disable collection of COM.

/NM_TRACK_SYSTEM_OBJECTS Track system object allocation (memory analysis
only).

/P[rocess] Specify a target process (followed by arguments to process).

/S[ervice] Specify a target service (followed by arguments to service).

/C[onfig] Specify the configuration file and path.
 Understanding DevPartner Studio 285

Appendix C · Starting Analysis from the Command Line
By using a configuration file, you can profile and manage multiple processes or services. The
ability to profile multiple processes can be especially useful for analyzing Web applications.

Starting a session with DPAnalysis.exe launches a Session Control toolbar for each profiled
process on the system where you invoked DPAnalysis.exe. Use the appropriate instance of
the toolbar to execute session control actions for each process.

The following is a sample configuration file:

<?xml version=”1.0” ?>

<ProductConfiguration xmlns=”http://www.microfocus.com/products”>

 <RuntimeAnalysis Type=”Performance”

 MaximumSessionDuration=”1000” NoUIMsg="true" />

 <Targets RunInParallel=”true”>

 <Process CollectData=”true” Spawn=”true”

 NoWaitForCompletion=”true”>

 <AnalysisOptions NO_QUANTUM=”1” NM_METHOD_GRANULARITY=”1”

 SESSION_DIR=”c:\temp” />

 <Path>ClientApp.exe</Path>

 <Arguments>/arg1 /agr2 /arg3</Arguments>

 <WorkingDirectory>c:\temp</WorkingDirectory>

 <ExcludeImages>

 <Image>ClassLibrary1.dll</Image>

 <Image>ClassLibrary2.dll</Image>

 </ExcludeImages>

 </Process>

 <Service CollectData=”true” Start=”true”

 RestartIfRunning=”true”

 RestartAtEndOfRun=”true”>

 <AnalysisOptions NM_METHOD_GRANULARITY=”0”

 EXCLUDE_SYSTEM_DLLS=”1” />

 <Name>IISadmin</Name>

 <Host>remotemachine</Host>

 </Service>

 </Targets>
286 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
</ProductConfiguration>

XML Configuration File Element Reference

The following information describes the elements of an XML Configuration file.

Runtime Analysis Element

<RuntimeAnalysis Type = “type of analysis”
MaximumSessionDuration = “number of seconds”
NoUIMsg = "allow or suppress UI error messages" />

Attributes

None.

Type

Required. Possible choices are: Performance, Coverage, Memory, or Expert. These
choices specify the analysis types for all targets listed.

MaximumSessionDuration

Optional. If omitted, no default used. If specified, DPAnalysis.exe limits a session run to
this number of seconds. For example, if you specify:
MaximiumSessionDuration=”60” and then begin profiling a service (with
RestartAtEndOfRun=”true” for the service), after 60 seconds, DPAnalysis.exe
stops the service and then restarts the service.

NoUIMsg

Optional. If omitted, “false” is used by default. If set to “true”, DPAnalysis.exe suppresses
all UI error messages that may appear during the duration of the session. Setting this to “true”
is useful when sessions are run unattended or when running a large number of consecutive
tests.

Element Information

Remarks

Defines the type of analysis and maximum session time.

Example

The following example shows a construction using RuntimeAnalysis following a
ProductConfiguration tag. In this example, the Type attribute specifies a performance
analysis with a maximum duration of 1000 seconds and suppression of UI error messages.

<?xml version=”1.0” ?>
<ProductConfiguration xmlns=”http://www.microfocus.com/products”>

Number of occurrences One

Parent elements ProductConfiguration

Contents None
 Understanding DevPartner Studio 287

Appendix C · Starting Analysis from the Command Line
<RuntimeAnalysis Type=”Performance” MaximumSessionDuration=”1000”
NoUIMsg="true" />

Targets Element

<Targets RunInParallel=”true or false”>

 ...

 </Targets>

Attributes

RunInParallel: Optional. Specify true or false. Defaults to true if omitted. If you specify
more than one target, defines how the targets are run. When RunInParallel is true,
DPAnalysis.exe starts the target processes and services one right after the other; multiple
targets run at the same time (parallel). Otherwise, DPAnalysis.exe starts target N + 1 only
after process N has started and stopped; targets run one at a time (serial).

Element Information

Remarks

Required. Begins a block of one or more <Process> or <Service> entries. Target processes
and services are started in the order they are listed in the configuration file.

Example

The following example shows a construction using Targets to specify analysis of one
<Service> and two <Process> elements. Note that RunInParallel is true so that, for
this example, the targets would run in parallel.

<Targets RunInParallel=”true”>

 <Service CollectData=”true” Start=”true”>

 <AnalysisOptions NM_METHOD_GRANULARITY=”0”

 EXCLUDE_SYSTEM_DLLS=”1” />

 <Name>ServiceApp</Name>

 <Host>remotemachine</Host>

 </Service>

 <Process CollectData=”true” Spawn=”true”

 NoWaitForCompletion=”true”>

 <AnalysisOptions NO_QUANTUM=”1”

 NM_METHOD_GRANULARITY=”1”

Number of occurrences One

Parent elements RuntimeAnalysis

Contents Process, Service
288 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
 SESSION_DIR=”c:\MyDir” />

 <Path>ClientApp.exe</Path>

 <WorkingDirectory>c:\temp</WorkingDirectory>

 </Process>

 <Process CollectData=”true” Spawn=”true”

 NoWaitForCompletion=”true”>

 <AnalysisOptions NO_QUANTUM=”1”

 NM_METHOD_GRANULARITY=”1”

 SESSION_DIR=”c:\MyDir” />

 <Path>TestApp02.exe</Path>

 <WorkingDirectory>c:\temp</WorkingDirectory>

 </Process>

</Targets>

Process Element

<Process

CollectData = “true or false”

Spawn = “true or false”

NoWaitForCompletion = “true or false”

NewConsole = “true or false”

RepeatInjection = “true or false”

>

...

</Process>

Attributes

Profiling occurs any time you run the specified process until you use the /D switch to disable
profiling.

CollectData: Optional. Specify true or false. Defaults to true if omitted. Specifies whether
profiling are enabled for the target process.

Spawn: Optional. Specify true or false. Defaults to true if omitted. Specifies if DPAnaly-
sis.exe spawns the specified target. Do not set to true for aspnet_wp.exe or w3wp.exe.
DevPartner cannot spawn the ASP.NET worker process directly. Launch the ASP.NET worker
process by opening the target Web page.
 Understanding DevPartner Studio 289

Appendix C · Starting Analysis from the Command Line
NoWaitForCompletion: Optional. Specify true or false. Defaults to false if omitted. The
default is to wait until the process has completed. If set to true, causes DPAnalysis.exe to
wait only until the target has started executing. DPAnalysis.exe does not wait for processes
on remote computers (using the Host element). The MaximumSessionDuration
attribute in the RuntimeAnalysis element overrides NoWaitForCompletion.

NewConsole: Optional. Specify true or false. Defaults to false if omitted. Causes DPAnaly-
sis.exe to run the target in its own console window. The default is to use the same console
that you typed the DPAnalysis.exe command line in. If you use DPAnalysis.exe to
analyze a console application that requires keyboard input, you must use the /NewConsole
switch to open a console window to accept the input.

RepeatInjection: Optional. Specify true or false. Defaults to false if omitted. Causes
DPAnalysis.exe to profile the target in every time it runs until you explicitly specify false.

Element Information

Remarks

Specifies a target executable.

Example

The following example shows a construction using Process and includes AnalysisOp-
tions, Path, Arguments, and WorkingDirectory tags.

<Targets RunInParallel=”true”>

<Process CollectData=”true” Spawn=”true”

 NoWaitForCompletion=”true” NewConsole=”true”>

 <AnalysisOptions NO_QUANTUM=”1” NM_METHOD_GRANULARITY=”1”

 SESSION_DIR=”c:\MyDir” />

 <Path>ClientApp.exe</Path>

 <Arguments>/arg1 /agr2 /arg3</Arguments>

 <WorkingDirectory>c:\temp</WorkingDirectory>

</Process>

</Targets>

Analysis Options Element

Attributes that work with AnalysisOptions vary depending on the type of analysis session
you run. Refer to the table at the end of this description. DPAnalysis.exe ignores attributes
mismatched with the type of analysis.

Number of occurrences One or more

Parent elements Target

Contents AnalysisOptions, Path, Arguments, WorkingDirec-
tory, ExcludeImages
290 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
<AnalysisOptions

SESSION_DIR = “c:\MyDir”

SESSION_FILENAME = “myfile.dpcov”

NM_METHOD_GRANULARITY = “1”

EXCLUDE_SYSTEM_DLLS = “1”

NM_ALLOW_INLINING = “1”

NO_OLEHOOKS = “1”

NM_TRACK_SYSTEM_OBJECTS = “1”

NO_QUANTUM = “1”

FORCE_PROFILING = “1”

/>

Attributes

SESSION_DIR: Optional. Use with coverage analysis, memory analysis, performance analy-
sis, and Performance Expert. Specify a folder for saving the session file generated by the
profiled target. Without this attribute, the resulting session file is saved to the user's My
Documents or Documents folder. If both SESSION_DIR and SESSION_FILENAME are
absent, DPAnalysis.exe prompts you for the save location at the end of the session.

SESSION_FILENAME: Optional. Use with coverage analysis, memory analysis, perfor-
mance analysis, and Performance Expert. Specify a session name for the session file generated
for this target. Without this attribute, DPAnalysis.exe creates a unique name by combining
the target's image name with a number (for example, iexplore1.dpprf). If you specify a
name but no folder, the file is saved in the user's My Documents folder. If both
SESSION_FILENAME and SESSION_DIR are absent, DPAnalysis.exe prompts you for
the save location at the end of the session.

NM_METHOD_GRANULARITY: Optional. Use with performance analysis to set data
collection granularity to method-level (line-level is default). Specify a value of 1 to set the
attribute. Omitting the attribute disables it.

EXCLUDE_SYSTEM_DLLS: Optional. Use with performance analysis to exclude system
images. Specify a value of 1 to set the attribute. Omitting the attribute disables it.

NM_ALLOW_INLINING: Optional. Use with coverage analysis and performance analysis to
specify level of analysis detail. Enables run-time instrumentation of inline methods. Equiva-
lent to the Instrument Inline Functions property. Specify a value of 1 to instrument inline
functions. Omit the attribute to disable it.

NO_OLEHOOKS: Optional. Use with performance analysis to activate tracking of system
objects. Specify a value of 1 to set the attribute. Omitting the attribute disables it.

NM_TRACK_SYSTEM_OBJECTS: Optional. Use with memory analysis to ignore system
or third-party object allocations when tracking allocated objects. Specify a value of 1 to set the
attribute. Omitting the attribute disables it. The default state (disabled) enables you to see
memory allocations made when your application uses system or other non-profiled resources.
 Understanding DevPartner Studio 291

Appendix C · Starting Analysis from the Command Line
NO_QUANTUM: Optional. Use with performance analysis and Performance Expert to
exclude time spent in threads of other running applications. Specify a value of 1 to set the
attribute. Omitting the attribute disables it.

FORCE_PROFILING: Optional. Use with coverage analysis and performance analysis to
force profiling of applications written without managed code or Native C/C++ Instrumenta-
tion. Specify a value of 1 to set the attribute. Omitting the attribute disables it.

Element Information

Remarks

Optional. Defines runtime attributes for the specified target process or service. Attributes
correspond to coverage analysis, memory analysis, and performance analysis properties acces-
sible from the Properties window in Visual Studio.

Example

The following example shows a construction using AnalysisOptions within a Service.

<Service CollectData=”true”>

 <AnalysisOptions NM_METHOD_GRANULARITY=”1”

 EXCLUDE_SYSTEM_DLLS=”1” NM_ALLOW_INLINING=”1”

 NO_OLEHOOKS=”1”>

</Service>

Path Element

<Path> c:\MyDir\target.exe </Path>

Attribute Coverage Memory
Performanc
e

Performance
Expert

NM_METHOD_GRANULARITY X

EXCLUDE_SYSTEM_DLLS X

NM_ALLOW_INLINING X X

NO_OLEHOOKS X

NM_TRACK_SYSTEM_OBJECTS X

NO_QUANTUM X X

FORCE_PROFILING X X

Number of occurrences One or none per Process or Service

Parent elements Process, Service

Contents None
292 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
Attributes

None.

Element Information

Remarks

Required. Specify a fully qualified or relative path to the executable. You can specify the
executable name without the path if the executable exists in the current folder.

Example

The following example shows a construction using Path within a Process element.

<Process CollectData=”true”>

 <Path>ClientApp.exe</Path>

</Process>

Arguments Element

<Arguments>/arg1 /arg2 /arg3</Arguments>

Attributes

None.

Element Information

Remarks

Optional. No default if omitted. Arguments to be passed to the target process or service.

Example

The following example shows a construction using Arguments within a Process element.

<Process CollectData=”true”>

 <Arguments>/arg1 /agr2 /arg3</Arguments>

</Process>

Number of occurrences One

Parent elements Process

Contents Path to the executable

Number of occurrences Zero or one per Process or Service

Parent elements Process, Service

Contents None
 Understanding DevPartner Studio 293

Appendix C · Starting Analysis from the Command Line
Working Directory Element

<WorkingDirectory> c:\MyWorkingDir </WorkingDirectory>

Attributes

None.

Element Information

Remarks

Optional. No default if omitted. Set the working folder of the target process or service.

Example

The following example shows a construction using WorkingDirectory nested within a
parent Process element.

<Process CollectData=”true”>

 <WorkingDirectory>c:\temp</WorkingDirectory>

</Process>

Exclude Images Element

<ExcludeImages>

<Image>ClassLibrary1.dll</Image>

<Image>ClassLibrary2.dll</Image>

</ExcludeImages>

Attributes

None

Element Information

Remarks

Optional. No default if omitted. Provide a list of at least one image (no maximum) which, if
loaded by the target process or service, is not profiled.

Number of occurrences One per Process or Service element

Parent elements Process, Service

Contents Path to the target folder

Number of occurrences Zero or one per process or service

Parent elements Process, Service

Contents Image
294 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
Example

The following example shows a construction using ExcludeImages. within a Process
element. Note the Image elements contained within ExcludeImages.

<Process CollectData=”true”>

 <ExcludeImages>

 <Image>ClassLibrary1.dll</Image>

 <Image>ClassLibrary2.dll</Image>

 </ExcludeImages>

</Process>

Service Element

<Service>

CollectData = “true or false”

Start = “true or false”

RestartIfRunning = “true or false”

RestartAtEndOfRun = “true or false”

RepeatInjection = “true or false”

>

...

</Service>

Attributes

CollectData: Optional. Specify true or false. Defaults to true if omitted. Specifies whether
profiling is enabled for the target service.

Start: Optional. Specify true or false. Defaults to true if omitted. Specifies if DPAnaly-
sis.exe starts the specified target. If set to false, profiling is enabled for this target but it is
not started; profiling begins the next time the service is started (by whatever means).

RestartIfRunning: Optional. Specify true or false. Defaults to false if omitted. When you set
RestartIfRunning to true, DPAnalysis.exe attempts to restart the specified service if
it is running on the host computer.

RestartAtEndOfRun: Optional. Specify true or false. Defaults to false if omitted. When you
specify true, DPAnalysis.exe attempts to restart the service (generating a session file) at
the end of the run.

RepeatInjection: Optional. Specify true or false. Defaults to false if omitted. Causes
DPAnalysis.exe to profile the target every time it runs until you explicitly specify false.
 Understanding DevPartner Studio 295

Appendix C · Starting Analysis from the Command Line
Element Information

Remarks

Specifies a target service.

Example

The following example shows a construction using Service within a Targets element.

<Targets RunInParallel=”true”>

 <Service CollectData=”true” Start=”true”

 RestartIfRunning=”true” RestartAtEndOfRun=”true”>

 <Name>ServiceApp</Name>

 </Service>

</Targets>

Name Element

<Name>MyServiceName</Name>

Attributes

None

Element Information

Remarks

Required. The name of the service as registered with the service control manager. This is the
same name you would use with a NET START command.

Example

The following example shows a construction using Name within a Service.

<Service CollectData=”true”>

 <Name>ServiceApp</Name>

Number of occurrences The configuration file must contain at least one Pro-
cess or one Service element.

Parent elements Targets

Contents AnalysisOptions, Path, Arguments, Working Direc-
tory, ExcludeImages, Name, Host

Number of occurrences One

Parent elements Service

Contents Service name
296 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
</Service>

Host Element

<Host>hostmachine</Host>

Attributes

None.

Element Information

Remarks

Optional. No default if omitted. Set the host computer of the target process or service.

Example

The following example shows a construction using Host within a Service. Note that the
example includes the required Name element.

<Service CollectData=”true”>

 <Name>ServiceApp</Name>

 <Host>remotemachine</Host>

</Service>

Profiling Web Applications with the XML Config File

In general, there are three processes of interest for Web profiling: the browser; the Web server;
and the ASP.NET worker process. All three entries can be contained in a single configuration
file. Specify the browser and the ASP.NET worker process within <Process> elements;
specify the Web server within a <Service> element where a <Name> element identifies the
service name. For IIS, this is iisadmin.

For example:

<?xml version=”1.0” ?>

<ProductConfiguration xmlns=”http://www.microfocus.com/products”>

 <RuntimeAnalysis Type=”Expert”/>

 <Targets>

 <Process CollectData=”true”>

 <AnalysisOptions

 SESSION_DIR=”z:\SessionFiles”/>

Number of occurrences For each Process or Service, zero or one

Parent elements Process, Service

Contents Name of the host computer
 Understanding DevPartner Studio 297

Appendix C · Starting Analysis from the Command Line
 <Path>aspnet_wp.exe</Path>

 <Host>remotemachine</Host>

 </Process>

 <Service CollectData=”true” Start=”true”

 RestartIfRunning=”true”

 RestartAtEndOfRun=”true”>

 <AnalysisOptions

 SESSION_DIR=”z:\SessionFiles”/>

 <Name>iisadmin</Name>

 <Host>remotemachine</Host>

 </Service>

 <Process CollectData=”true” Spawn=”true”>

 <AnalysisOptions

 SESSION_DIR=”c:\SessionFiles”/>

 <Path>iexplore.exe</Path>

 <Arguments>

 http://remotemachine/WebApplication/

 StartPage.aspx

 </Arguments>

 </Process>

 </Targets>

</ProductConfiguration>

The configuration file above:

� Enables data collection for the ASP.NET worker process on remotemachine.

� Enables data collection for inetinfo.exe (iisadmin) on the remote computer and
restarts it so profiling can begin.

� Opens a local browser to the local computer directed at a Web page on the remote com-
puter. This causes aspnet_wp.exe to be spawned on the remote computer and profiling
for it begins.

When the browser is closed on the local computer, IIS on the remote computer is restarted on
the remote computer (killing aspnet_wp) and session files are saved to the respective save
folders. If you wish, you can use an existing mapped drive on the remote computer to save the
session files to the computer where profiling was initiated, as shown by the z:\ drive in the
<Process> and <Service> elements in the example.
298 Understanding DevPartner Studio

Appendix C · Starting Analysis from the Command Line
Sample Configuration Files

DevPartner Studio includes sample, read-only configuration files. Use them as models to
construct custom configuration files.

Sample.Process.Config.xml
Sample.Service.Config.xml
Sample.WebApp.Config.xml
Sample.DCOM.Config.xml
Sample.ClassicASP_IIS_High_Isolation.Config.xml
Sample.ClassicASP_IIS_Low_Isolation.Config.xml
Sample.Multi_Process.Config.xml

The default installation places the files in this folder:

<install drive>:\Program Files\Micro Focus\DevPartner Studio\Analy-
sis\SampleConfigs\

For installs on 64-bit versions of Windows, the default location is \Program Files
(x86)\Micro Focus\DevPartner Studio\Analysis\SampleConfigs\

DPAnalysis.exe does not instrument unmanaged code. To collect performance or coverage
analysis data for an unmanaged application, you must first instrument the application. See
“Collecting Data for Unmanaged Code” on page 121 for coverage analysis and “Collecting
Data from Unmanaged Code” on page 192 for performance analysis.

Collecting Analysis Data from a Remote Computer

If you use DPAnalysis.exe to collect data for an application that executes on a remote
computer, be aware of the following considerations:

� When using DPAnalysis.exe to run an application on a remote system, use the com-
mand line or XML configuration file to specify a folder and file name in order to save the
session file.

� You can specify any folder to which you have write permission, including an existing
mapped folder to the local (client) computer on which profiling was initiated.

� If you do not specify the folder and file name, the File Save dialog box appears on the
remote computer. You must have physical access, a Terminal Services connection, or a
Remote Desktop connection to the computer in order to use the dialog. The File Save dia-
log box default save location is the My Documents or Documents folder of the active
user account.
 Understanding DevPartner Studio 299

Appendix C · Starting Analysis from the Command Line
300 Understanding DevPartner Studio

Appendix D
Analysis Session Controls
This appendix contains information about session control files and the Session Control API,
which can be used with DevPartner coverage analysis, memory analysis, performance analy-
sis, and Performance Expert.

Introducing Session Control Files

Use the Session Control File options to create a set of rules and actions to control the data
DevPartner collects as your application runs. DevPartner stores these rules and actions in a
session control file (SessionControl.txt) in your application's solution folder.

A session control file includes data collection actions for selected methods so you can:

� Specify data collection actions at the entry to or exit from methods.

� Retain the session control file from session to session.

� Create entries in the session control file that affect coverage analysis, memory analysis,
performance analysis, and Performance Expert sessions.

Creating a Session Control File Within Visual Studio

From supported releases of Visual Studio, you can create the file through the DevPartner >
Options menu, as described below. Refer to “Using the Session Control API” on page 302 for
information on creating a session control file with a text editor.

To create a session control file:

1 Choose DevPartner > Options.

2 In Options, choose DevPartner > Analysis > Session Control File. The first time you set
session control file options, you access an empty session control (SessionCon-
trol.txt) file.

3 Click Add.

4 In the Module text box, choose or browse to locate the module for which you want to col-
lect data. The module instrumentation status appears.

All managed code modules display a “not instrumented” status. Only unmanaged (native)
C++ modules that have been built with native C/C++ instrumentation show an “instru-
mented” status.

5 From the Methods list, choose a method for which you want to record data.
 Understanding DevPartner Studio 301

Appendix D · Analysis Session Controls
If you are choosing methods from a .NET module (.netmodule), the Method List
displays methods in namespace.classname.method format. DevPartner Studio
supports a maximum of 512 characters for the qualified method name in the session
control file. Names longer than 512 characters are ignored and no session control action
occurs for that method.

6 Choose when you want the session control action to start.

7 Choose one of the following actions that you want to apply:

� Stop recording (take final snapshot)
� Take snapshot
� Clear all recorded data
� Start tracking (Memory leak analysis)
� Stop tracking (Memory leak analysis)
� Run GC (Memory analysis)

8 Click OK.

9 Repeat steps 3 through 8 until you have chosen all the methods you want to include.

10 Click OK to close and save the session control file.

If you have a solution open in Visual Studio, DevPartner saves the session control file in the
solution folder.

Note: DevPartner searches for the SessionControl.txt file in the solution folder
that contains the application executable you are profiling. If DevPartner does
not find the file in the solution folder, it looks in the output folder where your
application executable is built. If you place your SessionControl.txt file in
another location, DevPartner is not able to recognize the session control
commands.

Entries in the session control file affect analysis sessions in coverage analysis, memory analy-
sis, performance analysis, and Performance Expert.

Using the Session Control API

Call the Session Control API from anywhere in your source code to control data collection for
any Visual Studio application. Using the session control text file allows DevPartner session
control actions only on entry to and exit from methods.
302 Understanding DevPartner Studio

Appendix D · Analysis Session Controls
DevPartner Session Control API functions

Note: Make sure SaveNow is the last API function call used in your code. It stops
data collection for the process, therefore all subsequent API calls are ignored.

The Snap Session Control API call produces a temporary objects session file in memory
analysis sessions. In order to capture memory size data for objects allocated since the last
garbage collection, insert the RunGC API call before the Snap API call.

Location of API

The files below contain the session control API functions for use with managed and unman-
aged code, respectively. All are installed in the \Analysis folder of your DevPartner Studio
installation.

Using the Session Control APIs with Managed Applications

To use the session control API functions in managed code Visual Studio applications, you
must reference DevPartner.Analysis.SessionControl.dll in your project.

This gives you access to the session control APIs in the DevPartner namespace. You can insert
calls to the API at appropriate points in your code using the syntax shown below.

Clear

DevPartner.Analysis.SessionControl.Clear()

Snap

Clear Clears the data collected up to this point. Data
collection continues. Returns NMStatusSuc-
cess if data was successfully cleared or
NMStatusFailure if data was not cleared.

Snap Takes a snapshot of the data being recorded.
Returns NMStatusSuccess if the snapshot
was successfully saved or NMStatusFail-
ure if snapshot was not saved.

SaveNow Takes a snapshot and stops data collection.
Takes the filename for the method, if provided.
Returns NMStatusSuccess or NMStatus-
Failure.

StartTrackingForLeakAnalysis Starts tracking allocated objects.
(Memory Leak analysis only)

StopTrackingForLeakAnalysis Stops tracking allocated objects.
(Memory Leak analysis only)

RunGC Runs the system garbage collector. (Memory
analysis)

Managed code Visual Studio
applications

DevPartner.Analysis.SessionControl.dll

Unmanaged (native) code C/
C++ or C++ applications

NmTxApi.h
 Understanding DevPartner Studio 303

Appendix D · Analysis Session Controls
DevPartner.Analysis.SessionControl.Snap(<your session file
name>.dpxxx)

Where dpxxx is the extension for your analysis type: dpcov, dpmem, dpprf, or dppxp.

SaveNow

DevPartner.Analysis.SessionControl.SaveNow(<your session file
name>.dpxxx)

Where dpxxx is the extension for your analysis type: dpcov, dpmem, dpprf, or dppxp.

StartTrackingForLeakAnalysis

DevPartner.Analysis.SessionControl.StartTrackingForLeakAnalysis()

StopTrackingForLeakAnalysis

DevPartner.Analysis.SessionControl.StopTrackingForLeakAnalysis()

RunGC

DevPartner.Analysis.SessionControl.RunGC()

Valid input for the Snap and SaveNow API functions includes:

� A file name

� A fully qualified path to a folder, terminated with a “\” (backslash)

� A fully qualified path including a file name

� Nothing (Null)

For information on how DevPartner treats the file and path information, see “Saving Files
through the Session Control API” on page 305.

If You Get a Security Exception

If you get a security exception when using the session control APIs to profile a managed code
application, it means that your security policy is preventing normal DevPartner instrumenta-
tion of your code at runtime. To remedy this, you must enable secure profiling.

Set the following global environment variable:

NM_NO_FAST_INSTR=1

Retry profiling the application.

By default, assemblies need to have the SkipVerification permission in order to be
profiled. If you remove this permission from the permission set of the policy under which the
code executes, or add imperative security declarations to the assembly that cause this permis-
sion to be revoked, you can not profile it. The solution described above allows you to work
around this issue, although it does exact a slight performance penalty. If you choose not to
implement the solution described above, you can also enable profiling of such assemblies with
DevPartner Studio by either changing the policy for the assembly using the .NET Framework
Configuration tool MMC snap-in, or by temporarily removing any imperative security decla-
rations in the assembly.
304 Understanding DevPartner Studio

Appendix D · Analysis Session Controls
See the .NET Framework Developers Guide in the Visual Studio on-line help for more infor-
mation on security policy in Visual Studio.

Using the Session Control APIs with Unmanaged Applications

You can use the Session Control API to control coverage analysis and performance analysis
sessions for unmanaged C/C++.

Unmanaged (Native) C/C++ Projects

Before you can collect coverage data for your native C/C++ application, you must rebuild
your solution (or native C/C++ projects) with Native C/C++ Instrumentation.

To use the Session Control API functions in native C/C++:

1 Include NmTxApi.h in a file to which you want to add Session Control API calls. Add
TxInterf.lib to the link library list.

2 Insert calls to the Session Control API functions at appropriate points in your code. See
“Session Control API Syntax for Unmanaged Projects” on page 305.

3 Rebuild the solution or single native C/C++ projects with Native C/C++ Instrumentation.

Unmanaged (Native) C++ Projects

Before you can collect coverage data for your native C++ application, you must rebuild your
project with instrumentation in Visual Studio.

Session Control API Syntax for Unmanaged Projects

Refer to the information below for Session Control API syntax for unmanaged projects.

Saving Files through the Session Control API

When you use the Session Control API to take data snapshots or create final session files, you
can specify the session file name and folder in the API call.

File names and folders specified in Session Control API calls override file names and folders
specified by other means, for example, the /output switch on the command line or the
SESSION_FILENAME or SESSION_DIR attributes in the XML configuration file.

� If you specify a file name and folder in the session control Snap or SaveNow API call,
DevPartner saves the file. Any file with the same name in the folder is overwritten.

Clear Clear()

Snap Snap(“<your session file name>.dpxxx”)

Where dpxxx is the extension for your analysis type: .dpcov, or
.dpprf.

SaveNow SaveNow(“<your session file name>.dpxxx”)

Where dpxxx is the extension for your analysis type: .dpcov, or
.dpprf.
 Understanding DevPartner Studio 305

Appendix D · Analysis Session Controls
� If specifying only a folder, DevPartner saves the session under a unique file name based
on the name of the target process. DevPartner automatically increments the file name to
avoid overwriting existing files.

� If specifying only a file name, DevPartner saves the session under the specified name and
determines the destination folder by the means you used to start the application. If the
application is started from Visual Studio, the file is saved to the current project's solution
folder. If you started the application from the command line with DPAnalysis.exe, the
file is saved to the Documents folder (My Documents folder in Windows XP) of the
active user account. If a file with the same name exists in the folder, it is overwritten.

� If not specifying a file name nor a folder, DevPartner saves using a unique file name and
determines the destination folder by the means you used to start the application, as above.
DevPartner automatically increments the file name to avoid overwriting files.

Note: If your project does not have an output folder, for example, a Visual Studio
2005 Web site project, DevPartner saves the files to the project folder.

Note the following when specifying paths:

� DevPartner evaluates path information based on the current working folder of the filing
process. In some cases, the working folder can change as the application executes.

� To ensure that you can easily locate your session files, it is a good practice to specify the
complete path.

� On the local computer, DevPartner creates the complete path if it does not already exist. If
you are collecting data on a remote computer, you must specify an existing folder.

� If you intend to specify a path, but no file name, be sure to terminate the path with a “\”
(backslash). DevPartner treats characters following the final backslash as a file name.

� If the path contains invalid data, DevPartner saves the file as if no folder was specified.

Interactions and Precedence

File names and folders specified in Session Control API calls override file names and folders
specified by any other means.

Recommendation: Set the file name and folder in either the API call or the command line, but
not both.

For example: If you specify only a folder (or a file name) in the Session Control API, but
specify a file name (or a folder) in the DPAnalysis.exe command line or in the XML
configuration file, DevPartner combines the information to name and save the file. In this
example, if you intended to let DevPartner create unique file names, you would have defeated
your purpose.

Recommendation: To simplify file management, specify both snapshots and the final session
file with API calls.

For example: If you do not specify a final snapshot (SaveNow) through the Session Control
API, DevPartner takes a final snapshot when the process terminates. If you started the applica-
tion with DPAnalysis.exe, DevPartner saves the final session file according to the options
specified on the command line or in the XML configuration file. If you started the application
from Visual Studio, DevPartner displays the unsaved session data.
306 Understanding DevPartner Studio

Appendix E
Exporting Analysis Data to XML
This appendix contains information about exporting analysis data to XML, which can be used
with DevPartner coverage analysis, performance analysis, and Performance Expert.

Introducing DevPartner Data Export

DevPartner allows you to export saved session files from coverage analysis, performance
analysis, and Performance Expert data to XML. You can export the XML data from Visual
Studio or from the command line.

You can analyze the exported XML data using your own or third-party software. For example:

� Use Export DevPartner Data on a development build server or QA server where unit
tests, functional tests, or regression tests are staged. Analyze the exported XML data to
monitor daily progress.

� Use Export DevPartner Data to collect data for longer-term analysis. You can accumu-
late the XML data in a database or data warehouse in order to:

� Integrate the data with development and QA methodologies, tools and infrastructure

� Run custom analytics on the data

� Archive the data for historical or auditing purposes

Exporting Analysis Data to XML

From within Visual Studio, you can export saved Coverage Analysis (*.dpcov), Coverage
Analysis merge (*.dpmrg), Performance Analysis (*.dpprf), and Performance Expert
(*.dppxp) data to XML format.

To export to XML in Visual Studio:

1 Open a saved session file (see above).

2 Choose File > Export DevPartner Data.

By default, DevPartner saves the XML file in the folder where the session file is saved and
appends an .xml extension to the saved session file name. For example,
Chart1.dpcov.xml.

The file DevPartnerPerformanceCoveragexx.xsd defines the XML Schema that
DevPartner uses to export coverage analysis and performance analysis data. The file
DevPartnerPerformanceExpertxx.xsd defines the XML Schema that DevPartner uses
 Understanding DevPartner Studio 307

Appendix E · Exporting Analysis Data to XML
to export Performance Expert data. Both schemas are located in C:\Program Files\Micro
Focus\DevPartner Studio\Analysis.

For installs on 64-bit versions of Windows, DevPartner Studio is located at: \Program
Files (x86)\Micro Focus\DevPartner Studio\Analysis\.

Exporting Analysis Data to XML from the Command Line

As an alternative to using Visual Studio, you can use DevPartner.Analysis.DataEx-
port.exe from a command line to export coverage analysis, coverage analysis merge, perfor-
mance analysis, and Performance Expert data to XML.

The utility is located in C:\Program Files\Micro Focus\DevPartner
Studio\Analysis.

For installs on 64-bit versions of Windows, DevPartner Studio is located at: \Program
Files (x86)\Micro Focus\DevPartner Studio\Analysis.

Usage

DevPartner.Analysis.DataExport.exe [sessionfilename | pathtodirectory
] { options }

Options

/out[put]=<String> Specify the local or remote output folder for exported XML
files. Creates the folder if it does not exist.

/r[ecurse] Search subfolders for DevPartner session files.

/f[ile-
name]=<String>

Specify the name of the XML output file. Appends .xml to the
name specified.

/showAll Shows all performance and coverage session file data avail-
able in a performance or coverage session file.
For example, if you export a performance session file with this
option, the resulting XML file contains both performance and
coverage data fields.
This option is not available for Performance Expert session
files.

/w[ait] Wait for input before closing console window.

/nologo Do not display the logo or copyright notice.

/help or /? Display help in the console window.

/summary Export Performance Expert summary data which includes a
default maximum of the top ten callpaths and the top ten
methods that use the most CPU resources. Use the
/maxpaths and /maxmethods options to override the max-
imums.
The summary data displays by default.

/method Export Performance Expert method data.
308 Understanding DevPartner Studio

Appendix E · Exporting Analysis Data to XML
You can use an equal sign, a colon, or a space to separate an option from the value or values
you specify.

DevPartner.Analysis.Export.exe Usage Examples

The following examples show some of the ways you can use DevPartner.Analy-
sis.DataExport.exe.

Example 1: Export a coverage analysis session file to an XML file in the same folder.

DevPartner.Analysis.DataExport.exe
“c:\WindowsApplication1\WindowsApplication1.dpcov”

Output is saved to:

c:\windowsApplication1\WindowsApplication1.dpcov.xml

Example 2: Export a performance analysis session file saved in one location to another folder.

DevPartner.Analysis.DataExport.exe
“c:\WindowsApplication1\WindowsApplication1.dpprf”
/output=”c:\temp”

Output is saved to:

c:\temp\WindowsApplication1.dpprf.xml

Example 3: Export multiple Performance Expert session files saved in the same folder.

This example assumes two Performance Expert session files saved in the
same folder: WindowsApplication1.dppxp and WindowsApplication2.dppxp.

DevPartner.Analysis.DataExport.exe “c:\WindowsApplication1*.dppxp”

Output is saved to:

c:\WindowsApplication1\WindowsApplication1.dppxp.xml
c:\WindowsApplication1\WindowsApplication2.dppxp.xml

Example 4: Export multiple Coverage Analysis, Performance Analysis, and Performance
Expert session files saved in the same folder.

This example assumes three session files saved in the same folder:

WindowsApplication1.dpprf; WindowsApplication2.dpcov; and
WindowsApplication3.dppxp

DevPartner.Analysis.DataExport.exe “c:\WindowsApplication1”

/calltree Export Performance Expert call tree data.

/maxpaths=<integer> Used only with Performance Expert. Exports the specified
number of the top call paths that use the most CPU
resources.

/maxmethods=<inte-
ger>

Used only with Performance Expert. Exports the specified
number of the top methods that use the most CPU resources.
 Understanding DevPartner Studio 309

Appendix E · Exporting Analysis Data to XML
Output is saved to these three files:

c:\WindowsApplication1\WindowsApplication1.dpprf.xml
c:\WindowsApplication1\WindowsApplication2.dpcov.xml
c:\WindowsApplication1\WindowsApplication3.dppxp.xml

Example 5: Export a Performance Expert summary and change the default output from the top
ten methods to the top twenty methods that use the most CPU resources.

DevPartner.Analysis.DataExport.exe
“c:WindowsApplication1WindowsApplication1.dppxp”
/summary /maxmethods=20

Output is saved to:

c:WindowsApplication1WindowsApplication1.dppxp.xml
310 Understanding DevPartner Studio

Index
Symbols
.dpmem file extension

memory analysis 150
.NET Framework analysis

error detection 50
.NET Framework call reporting

error detection 51
.NET Framework methods

coverage analysis 117, 188
performance analysis 190
Performance Expert 215

A
allocating memory

leaks from methods 163
allocation trace graph

memory analysis 141, 153, 162
analysis option element

XML configuration file 290
analysis session controls 301
analysis sessions

using the session control API 302
analyzing memory leaks

memory analysis 138
API

session control 303
system comparison 257

API call reporting, error detection 43
arguments element

XML configuration file 293
ASP.NET application

coverage analysis 123
memory profiling 176
performance analysis 194

ASP.NET modules in merge files 130
AutoAlert 271
automating data collection

Performance Expert 233

B
batch mode 283

bc.com 56
bc.exe 56
code review 86
DevPartner.Analysis.DataExport.exe 308
DPAnalysis.exe 283
error detection 56
Performance Expert 233

C
C++ 6.0

session control API 305
C/C++ project

session control API 305
calculation

Performance Expert data 215
Call Graph

code review 82
memory analysis 152, 168, 169
performance analysis 199
Performance Expert 215, 229

Call Stacks tab, Performance Expert 228, 231
Call Tree, Performance Expert 215, 230
call validation

error detection 41, 44
child methods

performance analysis 201
Performance Expert 215

Choose Columns dialog, Performance Expert 227
class list

memory analysis 144
classes profiled 144
code complexity

code review 78
code review

analyzing results 62
bad fix probability 79
batch mode 86
Call Graph 82
311 Understanding DevPartner Studio

 Index
code complexity 78
code violations 74
collecting call graph data 60, 61
collecting metrics 78
collecting metrics data 60, 61
command line 86
excluding projects 60, 62
exporting data 89
filtering results 64
general options 66
getting started 60
Hungarian naming 94
metrics analysis 79
naming analysis 70, 91
naming guidelines, summary 73
naming violations 76
project types, supported 278
quick start 60
ready‚ set‚ go procedure 60
repairing violations 62
results window 63
Rule Manager 95
rules database 95
saving session files 65
selecting a rule set 61
selecting naming guidelines 60, 61
starting the session 62
summary of naming guidelines 73
summary of problems 73

collecting data
analysis, remote machines 299
coverage analysis 120
memory analysis 135
multiple processes, memory 176
Performance Expert 212

COM and DCOM
collecting coverage data 127
collecting performance data 199

COM call reporting
error detection 46

COM object tracking
error detection 46

combining coverage session files 123
command line

code review 86
DPAnalysis.exe 283
error detection 56
Performance Expert 229, 233
system comparison 256
XML export, analysis data 308

comparing sessions‚ performance 202

configuring IIS
coverage analysis 126

controlling analysis sessions
session control file 301

correlating data
coverage analysis 123
performance 194

coverage analysis
and Visual Studio Team System 132
classic Web script application 125
collecting from COM and DCOM 127
COM information property 118
configuring IE 127
correlated data 123
deleting temporary files 126
excluding images 119
exporting a CSV file 131
getting started 111
instrument unmanaged code 121
Instrumentation Manager 121
integration with error detection 132
managed project types, supported 280
merge property 117
merging session data 127
mixed code 122, 193
multiple processes 122
NMSource 126
project types, supported 280
properties and options 117
quick start 111
ready‚ set‚ go procedure 111
remote systems 122
saving session files 116
security exception 120
session file names 117
session summary tab 115
source tab 115
startup project 118
unexpected file save dialog 124
volatility 128
Web applications 123
Web service 125
XML export 307

CPU/thread use 225
CRBatch.exe 86

using project selection file 87
CRExport.exe 90
critical path

in performance analysis 200
memory analysis 153, 168
Performance Expert 216, 231
312 Understanding DevPartner Studio

Index
CSV file
exporting from coverage 131
exporting performance data 204

D
data

collecting coverage analysis 120
collecting memory analysis 135
collecting performance analysis 191
collecting Performance Expert 212
combining performance 194

data calculation
Performance Expert 215

data collection
automating Performance Expert 233

data columns
adding to Performance Expert views 227

data export (XML)
code review 89
coverage, performance, Performance

Expert 307
error detection 55

deadlock analysis
error detection 46

debugger
memory analysis 147
Performance Expert 213

deleting temporary files
performance analysis 197

development cycle
memory analysis 178
Performance Expert 239

DevPartner
and terminal services 21
and Visual Studio 18
and Visual Studio Team System 20
installed features 18
instrumentation model 190
overview 15
software development cycle 21
toolbar 19
Visual C++ BoundsChecker Suite 11

DevPartner.Analysis.DataExport.exe 307
differ service 248
differences found by system comparison 249
disk I/O 225
displaying data‚ options for 189
distributed applications

memory analysis 175
Performance Expert 235

DPAnalysis.exe 283
analysis switches 284
command line 283
command line, analysis 283
sample XML configuration file 299
XML configuration file 285

dynamic class list
memory analysis 148

E
E-mail notification 271
error detection

.NET Framework analysis 50

.NET Framework call reporting 51
ActiveCheck 31
API call reporting 43
batch mode 56
call validation 41, 44
COM call reporting 46
COM object tracking 46
command line 56
configuration file management 54
data collection properties 43
deadlock analysis 46
deciding analysis scope 23
deciding error types 24
event logging 54
filter file 39
filtering errors 39
FinalCheck 32
fonts and colors 53
getting started 23
hiding filtered errors 41
leak errors 33
Locate in Transcript 29
managed project types 276
memory and resource viewer 35
memory block checking 41
memory errors 33
memory leak 35
memory overwrite detection 45
memory tracking 48
modules and files 51
pointer errors 33
program error detected 33
project types, supported 275
properties and options 41
quick start 23
ready‚ set‚ go procedure 23
resource leaks 35
 Understanding DevPartner Studio 313

 Index
resource tracking 51
results, interpreting 27
running 25
saving session files 30
settings 41
suppressing errors 36
suppression files 37
suppression libraries 37
system directories 52
viewing filtered errors 41
Visual Studio Team System 57
windows messages 54

event logging
error detection 54

example
exporting session files to XML 309

exclude images element
XML configuration file 294

excluding images
coverage 119

excluding time, performance property 189
exporting data

code review 89
coverage, performance, Performance

Expert 307
CSV file from coverage 131
error detection 55

exporting to XML
examples 309

F
file element reference

XML configuration file 287
file I/O 225
file save dialog, unexpected 124
file save dialog‚ unexpected 195
filter file

error detection 39
filtering errors

error detection 39
FinalCheck 32
Framework methods

coverage analysis 117, 188
performance analysis 190
Performance Expert 215

G
garbage collection

managed code 159
memory analysis 138
object life span 165

getting started
code review 60
coverage analysis 111
error detection 23
memory analysis 134
performance analysis 181
Performance Expert 210
system comparison 244

H
host element

XML configuration file 297
Hungarian naming, code review 94

I
identify execution paths 152
identifying

memory problems 156
IE

configuring for coverage analysis 127
configuring for performance analysis 198

IIS
configuring for coverage analysis 126
configuring for performance analysis 198

installing the system comparison utility 256
instrument inline functions, performance
property 189
instrument unmanaged code

coverage analysis 121
instrumentation

coverage analysis 119
performance analysis 190

instrumentation level property‚ performance 189
Instrumentation Manager

coverage analysis 121
performance analysis 192

instrumenting code
performance analysis 192
314 Understanding DevPartner Studio

Index
L
language reference

Visual Studio 275
launch model

Visual Studio 225
live view

memory analysis 144
long-lived object 165

M
machine.config file, editing 125
managed code

garbage collection 159
memory problems 143

managed project
language reference 275
using the session control API 303

managed project, supported
code review 278
coverage, performance analysis 280
error detection 276

McCabe metrics, collecting 78
measuring code changes 128
measuring RAM footprint 170
medium-lived objects 165
memory analysis

.dpmem file extension 150
allocation trace graph 141, 153, 162
analyzing collected data 138
ASP.NET application 176
Call Graph 152, 168, 169
class list 144
collecting data 135
critical path 153
defining memory leaks 159
development cycle 178
distributed applications 175
dynamic class list 148
features, benefits 144
force garbage collection 138
garbage collection 134, 157, 159
getting started 134
identifying scalability problems 166
interpreting real-time graph 167
interpreting results 159
introduction 133
leak analysis results 159
leaked memory graph 163
locating memory leaks 157

managing object references 141
memory leak definition 134
memory problems 134
memory related symptoms 143
multiple process data collection 176
navigating source tab 154
navigation frame 152
object distribution 171
object leaked memory graph 161
object life span 165
object reference 158, 172
object reference graph 141, 151
optimizing memory use 175
potential problem areas 156
project types, supported 282
properties and options 144
quick start 134
RAM footprint 170
ready‚ set‚ go procedure 134
real-time graph 144, 166
real-time graph patterns 148, 157
running a session 157
saving session files 143
scalability problem results 169
session control window 136, 147
session file 144
session file integration 150
source code view 141
source view 169
starting a session 147
temporary objects 164, 167
tools, symptoms 156
track system object 144
tracking leaks 136
viewing managed heap 144
viewing source code 154
Web applications 175
what is memory analysis? 133

memory and resource viewer
error detection 35

memory block checking
error detection 41

memory errors
error detection 33

memory leak
objects, methods 159
results summary 163

memory leaks
error detection 35

memory overwrite detection
error detection 45
 Understanding DevPartner Studio 315

 Index
memory problems
alternate approach 163
identifying 156
managed code, Visual Studio 143
symptoms 143

memory tracking
error detection 48

merge property, coverage analysis 117
merging session data with ASP.NET 130
merging session data, coverage 127
method

allocate most leaked memory 163
most leaked memory 159

mixed code
coverage analysis 122, 193

multiple processes
coverage analysis 122
memory analysis 176
performance analysis 193
Performance Expert 232, 235

N
name element

XML configuration file 296
naming analysis, code review 91
navigation frame

memory analysis 152
network I/O 225, 226
nmexclud.txt 119
NMSource 126, 197

O
object reference

memory analysis 135, 158
most allocated memory 172
most leaked memory 161

object reference graph
memory analysis 141, 151

object reference management
memory analysis 141

object sequencing for performance 141
options and properties 66

code review 66
coverage analysis 117
error detection 41
memory analysis 144
performance analysis 187

Performance Expert 223

P
parent methods

performance analysis 201
Performance Expert 215

path element
XML configuration file 292

performance
optimizing memory use 175

performance analysis 187
call graph 199
collecting COM data 199
COM project property 189
comparing sessions 202
configuring IE 198
correlating data 194
critical path in call graph 200
display options 189
exclude others property 189
excluding images 190
exporting in CSV format 204
getting started 181
IIS‚ configuring 198
instrument inline functions 189
instrumentation level property 189
instrumenting code 192
managed project types, supported 280
multiple processes 193
NMSource 197
overview 181
project types, supported 280
quick start 181
ready‚ set‚ go procedure 181
recursive functions 199
remote systems 193
results 184
saving session files 187
security exception 191
session data 184
session summary tab 186
unexpected file save dialog 195
Web applications 194
Web script applications 196
XML export 307

Performance Expert
.NET Framework methods 215
automating data collection 233
batch mode 233
Call Graph 215, 229
316 Understanding DevPartner Studio

Index
Call Stacks tab 228, 231
Call Tree 215
collecting data 212
command line 229, 233
data calculation 215
debugger 213
development cycle 239
distributed applications 235
DPAnalysis.exe 229, 233
exporting data to XML 238
multiple processes 232, 235
options and properties 223
path analysis vs. method analysis 215
project types, supported 282
properties and options 223
quick start 210
ready, set, go procedure 210
real-time graph 212
results summary 213
session controls 212
session files 223
session window 212
settings 223
solution properties 223
source code 227
source code on remote systems 232
startup project 224
system methods 215
troubleshooting 231, 236
usage scenarios 226
Web applications 231
XML configuration file 234
XML export 307
XML schema 238

plug-in‚ system comparison 260
process element

XML configuration file 289
profiled classes

memory analysis 144
program error detected, error detection 33
project types, supported

code review 278
coverage, performance analysis 280
error detection 275
memory analysis 282
Performance Expert 282

properties and options
code review 66
coverage analysis 117
error detection 41
memory analysis 144
performance analysis 187

Performance Expert 223

Q
quick start

code review 60
coverage analysis 111
error detection 23
performance analysis 181
Performance Expert 210
system comparison 244

R
RAM footprint

allocation trace graph 153
interpreting data 170

ready, set, go procedure
coverage analysis 111
performance analysis 181
Performance Expert 210

ready‚ set‚ go procedure
memory analysis 134

real-time graph
interpreting memory 157
Performance Expert 212

real-time graph patterns
memory analysis 148

Reconcile 270
recursive functions in performance analysis 199
registry keys‚ finding with system
comparison 253
remote desktop 21
remote machines

collecting analysis data 299
remote systems

coverage analysis 122
memory analysis 175
performance analysis 193
Performance Expert 235

resource leaks
error detection 35

resource tracking
error detection 51

results
code review 62
coverage analysis 113
error detection 27
memory analysis, memory leak 159
 Understanding DevPartner Studio 317

 Index
memory analysis, real-time graph 167
memory analysis, scalability 169
performance analysis 184
Performance Expert 213
system comparison 247

Rule Manager, code review 95
runtime analysis element

XML configuration file 287

S
SamplePlugin.cs 261
saving session files

code review 65
coverage analysis 116
error detection 30
memory analysis 143
performance analysis 187
Performance Expert 223

scalability problem
interpreting results, fixing 169
memory analysis 166
solving memory issues 164

SDK
system comparison 257

security exception
coverage analysis 120
memory analysis 178
performance analysis 191
Performance Expert 225

service element
XML configuration file 295

session control API
analysis sessions 302
interactions and precedence 306
managed applications 303
saving session files 305
unmanaged applications 305

session control file
introducing 301
user interface, creating 301

session controls
coverage analysis 113
memory analysis 147
performance analysis 183
Performance Expert 212

session data
merging 127
performance analysis 184

session file integration
memory analysis 150

session files
comparing performance 202
memory analysis 144
naming, performance analysis 187
Performance Expert 223
saving, memory analysis 143
session control API 305

sessioncontrol.txt 301
settings

coverage analysis 117
error detection 41
memory analysis 144
performance analysis 187
Performance Expert 223

short-lived object 165
skipverification

security exception solution 178
snapshot API 257
snapshots

changing number kept 249
changing time 249

solution properties
coverage analysis 117
memory analysis 144
performance analysis 188
Performance Expert 223

solving memory problems
alternate approach 163

source code, viewing
code review 64
coverage analysis 115
memory analysis 154
on remote systems, Performance Expert 232
performance analysis 185
Performance Expert 227

source file
coverage analysis, changing 129
memory analysis, changing 155

source tab
memory analysis 154

source view
memory analysis 169

startup project
coverage analysis 118
memory analysis 134
performance analysis 188
Performance Expert 224

summary tab
coverage analysis 115

supported project types 275
suppressing errors

error detection 36
318 Understanding DevPartner Studio

Index
switches
DPAnalysis.exe 284

synchronization wait time 225
syntax

session control API 305
system comparison

analyzing results 247
categories of differences 249
changing settings 249
command line 256
finding files 254
gathering different data 260
getting started 244
installing 256
overview 243
plug-in 260
quick start 244
ready‚ set‚ go procedure 244
registry keys 253
SamplePlugin.cs 261
SDK 257
service 248
snapshot API 257

system methods
coverage analysis 117, 188
performance analysis 190
Performance Expert 215

T
target element

XML configuration file 288
temporary files

deleting‚ performance 197
temporary objects

analysis summary 169
memory analysis 164, 165, 167

terminal services 21
toolbar‚ DevPartner 19
track system object

memory analysis 144
tracking memory leaks

memory analysis 136
TrackRecord

integration with DevPartner 272
merging coverage sessions 272
submitting sessions 272
toolbar buttons 272

U
unmanaged applications

session control API 305
unmanaged project

language reference 275
using XML exported analysis data 307
utilities, command line

bc.com 56
bc.exe 56
CRBatch.exe 86
CRExport.exe 90
DPanalysis.exe 283
DPAnalysis.exe, options 284
XML export, analysis data 308

V
violations, code

code review 74
violations, naming

code review 76
Visual Studio

language reference 275
launch model 225
managing memory problems 143

Visual Studio integration 18
Visual Studio Team System

overview of support 20
submitting coverage data 132

volatility, shown with coverage analysis 128

W
wait time 225
weak references 141
Web applications

coverage analysis 123
memory analysis 175
performance analysis 194
Performance Expert 231
project types, supported 275

Web script applications
coverage analysis 125
performance analysis 196

Web service
coverage analysis 125
performance analysis 197
 Understanding DevPartner Studio 319

 Index
web.config
coverage analysis requirements 123
performance analysis requirements 194
Performance Expert requirements 231

windows messages
error detection 54

working directory element
XML configuration file 294

X
XML

command line project list file 88
exporting code review data 89

XML configuration file
DPAnalysis.exe 285
file element reference 287
Performance Expert 234
sample files, location 299

XML schema
coverage, performance location 307
Performance Expert 238

XML schema file 307
320 Understanding DevPartner Studio

	Table of Contents
	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	For More Information

	Introducing DevPartner
	What is DevPartner Studio?
	Error Detection
	Static Code Analysis
	Coverage Analysis
	Memory Analysis
	Performance Analysis
	In-Depth Performance Analysis
	System Comparison

	DevPartner and Visual Studio
	Menus and Toolbars in Visual Studio
	Using DevPartner in Visual Studio
	Integrated Online Help

	Visual Studio Team System Support
	Using Terminal Services and Remote Desktop
	Licensing
	Running Multiple Sessions Under Terminal Services

	DevPartner in the Software Development Cycle

	Error Detection
	What is Error Detection?
	Using Error Detection Out of the Box
	Ready: Deciding the Scope of Error Detection Analysis
	Set: Configuring Options and Settings
	Go: Running Your Solution with Error Detection
	Analyzing the Data in the Results Pane
	Saving Session Files

	Deciding When to Use ActiveCheck vs. FinalCheck
	Understanding ActiveCheck
	Understanding FinalCheck
	Comparing ActiveCheck and FinalCheck - An Example

	Using the Program Error Detected Dialog Box
	Understanding the Actions You Can Take

	Understanding the Memory and Resource Viewer Dialog Box
	Exploring the Memory and Resource Viewer User Interface

	Understanding the Suppression and Filtering Dialog Boxes
	Suppressing Errors
	Filtering Errors

	Understanding Call Validation
	Enabling Memory Block Checking

	Using the Settings Dialog Box
	Setting General Properties
	Setting Data Collection Properties
	Setting API Call Reporting Properties
	Setting Call Validation Options
	Setting COM Call Reporting Properties
	Setting COM Object Tracking Options
	Setting Deadlock Analysis Options
	Setting Memory Tracking Options
	Setting .NET Framework Analysis Options
	Setting .NET Framework Call Reporting Properties
	Setting Resource Tracking Options
	Setting Modules and Files Options
	Setting Fonts and Colors Options
	Setting Configuration File Management Options

	Tracking Windows Messages and Event Logging
	Exporting Data to XML
	Exporting Data from within Visual Studio
	Exporting Data from the Error Detection Standalone Application
	Exporting Data from the Command Line

	Running Error Detection from the Command Line
	Command Line Options and Syntax
	Running FinalCheck from the Command Line

	Submitting Data to Visual Studio Team System
	Visual Studio Team System Support in DevPartner Error Detection

	Static Code Analysis
	What is Code Review?
	Using Code Review Out of the Box
	Ready: Deciding How You Want to Run the Review
	Set: Selecting Options and Settings
	Go: Starting Your Code Review Session
	Analyzing the Results and Repairing Violations
	Saving Session Files

	Setting Options
	Configuring General Options
	Setting Naming Guidelines Options
	Managing Suppressed Rules

	Suppressing Rules
	Viewing Summary Data
	Viewing Code Violations
	Viewing Naming Violations
	Analyzing Hungarian Results
	Analyzing Naming Guidelines Results

	Viewing Collected Metrics
	Understanding McCabe Metrics

	Viewing Call Graph Data
	Understanding Call Graph References
	Setting Call Graph Configuration Options

	Using the Command Line Interface
	Using the Project List File in CRBatch
	Understanding the Error File

	Exporting Data to XML
	Exporting Session Data from within DevPartner
	Exporting Session Data from the Command Line
	Exporting Session Data from a Batch Process

	Understanding Naming Analysis
	Understanding the Naming Guidelines Naming Analyzer
	Understanding the Hungarian Naming Analyzer

	Using the Code Review Rule Manager
	Configuring Rules
	Configuring Triggers
	Configuring Rule Sets
	Configure Hungarian Name Sets
	Manipulating the Rule List

	Creating New Rules Using Regular Expressions
	Matching Lines Exceeding 90 Characters
	Matching Tabs Used Instead Of Spaces
	Matching Instances Where Code Catches System.Exception
	Matching Methods Having More Than One Return Point
	Enforcing Initialization Of Variables When They Are Defined
	Matching Instances Of More Than One Statement Per Line
	Ensuring Open Braces Are Placed On A Separate Line
	Ensuring Loop Counters Are Not Modified Inside the Loop Bodies

	Submitting Data to Visual Studio Team System
	Visual Studio Team System Support in DevPartner Code Review

	Automatic Code Coverage Analysis
	What is Coverage Analysis?
	Using Coverage Analysis Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Coverage Data
	Analyze the Data
	Saving Session Files

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options
	Excluding Images

	About Instrumentation
	Collecting Data from Various Types of Applications
	Collecting Data From Managed Code
	Collecting Data for Unmanaged Code
	Collecting Data from Multiple Processes
	Collecting Data from Remote Systems
	Collecting Data From .NET Web Applications
	Collecting Data from Classic Web Script Applications
	Web Service Requirements
	Deleting Temporary Files from NMSource
	Configuring IIS for Data Collection
	Configuring Internet Explorer for Coverage Analysis
	Collecting Data from a Service
	Collecting Data from COM and COM+ Applications

	Merging Session Data
	Reviewing Merge Data
	Merge States
	ASP.NET Modules in Merge Files
	Merge Settings

	Exporting Coverage Data
	Controlling Data Collection
	Analyzing from the Command Line
	Using the Coverage Analysis Viewer
	What You Can Do in the Coverage Analysis Viewer
	What you Cannot Do in the Coverage Analysis Viewer

	Integration with DevPartner Error Detection
	Submitting Data to Visual Studio Team System

	Finding Memory Problems
	What is Memory Analysis?
	Using Memory Analysis Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Memory Analysis Data
	Analyze the Memory Analysis Data
	Saving Session Files

	Memory Problems in Managed Visual Studio Applications
	How Memory Analysis Helps You

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options

	Starting a Memory Analysis Session
	Using the Session Control Window in Memory Analysis
	Using the Object Reference Graph
	Using the Call Graph to Identify Execution Paths
	Using the Allocation Trace Graph
	Viewing and Editing Source Code

	Identifying Memory Problems
	Running a Memory Analysis Session
	Locating Memory Leaks
	Running a Memory Leaks Analysis Session
	Understanding Memory Leaks Analysis Results
	Alternate Methods of Solving the Problem

	Solving Scalability Problems with Temporary Objects
	Examples of Scalability Problems
	A Possible Cause: Temporary Objects
	Running a Temporary Objects Analysis Session
	Identifying Scalability Problems
	Analyzing Temporary Object Data
	Interpreting Results to Fix Scalability Problems

	Using RAM Footprint to Improve Performance
	Measuring RAM Footprint
	Optimizing Memory Use

	Analyzing Web Applications with Memory Analysis
	Collecting Server-side Memory Data
	Collecting Data from Multiple Processes
	Prerequisites for Analyzing Web Applications
	Running a Memory Analysis Session on a Web Application
	If You Get Unexpected File Save Dialogs or Saved Session Files
	If You Get a Security Exception

	Using Memory Analysis In Your Development Cycle
	Submitting Data to Visual Studio Team System

	Automatic Performance Analysis
	What is Performance Analysis?
	Using Performance Analysis Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Performance Data
	Analyze the Data
	Saving Session Files

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options
	Excluding Images

	About Instrumentation
	Collecting Data from Various Types of Applications
	Collecting Data From Managed Code
	Collecting Data from Unmanaged Code
	Collecting Data from Multiple Processes
	Collecting Data from Remote Systems
	Collecting Data From .NET Web Applications
	Collecting Data from Classic Web Script Applications
	Web Application Data Collection Tips
	Web Service Requirements
	Deleting Temporary Files from NMSource
	Configuring IIS for Data Collection
	Configuring Internet Explorer for Data Collection
	Collecting Data from a Service
	Collecting Data from COM and COM+ Applications
	Collecting Data for Recursive Functions

	Analyzing a Call Graph
	Child-side Analysis
	Parent-side Analysis

	Comparing Sessions
	Interpreting Session Comparison Results

	Exporting Performance Data
	Controlling Data Collection
	Analyzing from the Command Line
	Using the Performance Analysis Viewer
	What You Can Do in the Performance Analysis Viewer
	What you Cannot Do in the Performance Analysis Viewer

	Performance Analysis Tips for .NET Applications
	Submitting Data to Visual Studio Team System

	In-Depth Performance Analysis
	What is Performance Expert?
	Performance Expert and Performance Analysis

	Using Performance Expert Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Performance Expert Data
	Analyze the Data
	Saving Session Files

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options

	Finding Application Problems with Performance Expert
	Accounting for Child Methods
	Usage Scenarios
	Identifiable Performance Problem
	Scaling Problem in an Application
	Performance Slow but No Specific Issue

	Collecting Data from Web Applications
	Managed Code Only
	web.config Requirements
	Multiple Process Profiling
	Single Process Profiling on IIS 6.0
	No Remote Session File for Components Running Under DLLHOST
	Source Code on Remote Computers
	Session Files Saved to Open Solution

	Automating Data Collection
	Using Command-line Switches
	Using an XML Configuration File

	Collecting Data from Distributed Applications
	Enabling Remote Data Collection with DPAnalysis.exe
	Saving Session Files on Remote Computers
	Collecting Data with Terminal Services or Remote Desktop
	Remote Profiling and Windows XP Service Pack 2 (SP2) or Later
	Firewalls and Remote Data Collection

	Exporting DevPartner Data to XML Format
	Using Performance Expert with Performance Analysis
	Performance Expert in the Development Cycle
	Software Designers
	Software Developers
	Quality Assurance Engineers

	Submitting Data to Visual Studio Team System

	System Comparison
	What is System Comparison?
	Using System Comparison Out of the Box
	Ready: Consider What You Want to Compare
	Set: Prepare for System Comparison
	Go: Make a Change and Create a Snapshot
	Analyze Results

	The System Comparison Service
	Changing Automatic Snapshot Settings

	Categories of Differences
	Comparing Registry Keys
	Comparing Specific Files
	Installing Without DevPartner Studio
	Running the Comparison Utility from the Command Line
	Software Development Kit
	System Comparison Snapshot API
	Taking a Snapshot
	Logging Messages
	Reporting Progress

	Writing a Plug-in
	What is a Plug-in?
	Plug-in Sample Step By Step Instructions
	Creating and Testing Your Plug-in
	Modifying a Deployed Plug-in
	Highlights of the Plug-in Schema
	About the Redistributable Assemblies

	About DevPartner Studio Enterprise Edition and TrackRecord
	What Is DevPartner Studio Enterprise Edition?
	The Development Process

	The DevPartner Studio EE Solution
	Improved Project Control
	Higher Software Quality
	Improved Productivity

	Feature Overview
	Requirements Management
	Merging Coverage Data
	Project Activity Tracking
	Automatic Notification of Changes
	Customizable Workflow
	Remote Access via the Web
	Central Store of Shared Information

	About TrackRecord and DevPartner Studio
	DevPartner Studio Interaction with TrackRecord
	DevPartner Toolbar Buttons
	Defect Submissions

	TrackRecord and DevPartner Studio Coverage Analysis

	DevPartner Studio Supported Project Types
	Supported Project Types
	Error Detection Supported Project Types
	Code Review Supported Project Types
	Coverage Analysis, Performance Analysis, Memory Analysis, and Performance Expert Supported Project Types

	Starting Analysis from the Command Line
	Introducing DPAnalysis.exe
	Running DPAnalysis.exe from the Command Line
	Using DPAnalysis.exe with an XML Configuration File
	XML Configuration File Element Reference
	Profiling Web Applications with the XML Config File

	Collecting Analysis Data from a Remote Computer

	Analysis Session Controls
	Introducing Session Control Files
	Creating a Session Control File Within Visual Studio
	Using the Session Control API
	Using the Session Control APIs with Managed Applications
	Using the Session Control APIs with Unmanaged Applications
	Saving Files through the Session Control API
	Interactions and Precedence

	Exporting Analysis Data to XML
	Introducing DevPartner Data Export
	Exporting Analysis Data to XML
	Exporting Analysis Data to XML from the Command Line
	DevPartner.Analysis.Export.exe Usage Examples

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

