
Using
Enterprise Developer in

Modern Application
Development

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus . All rights reserved.

MICRO FOCUS, the Micro Focus logo and are trademarks or registered trademarks of Micro
Focus IP Development Limited or its subsidiaries or affiliated companies in the United
States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2017-10-02

ii

Contents

Using Enterprise Developer in Modern Application Development 4
Introduction to Modern Application Development ..4

What is Modern Application Development? ..4
Key Concepts in Modern Application Development ..5
Steps Involved in Modern Application Development .. 6

Agile Methods ... 7
Introduction to Agile Methods ...7
Agile Development Workflow ..7
Agile Development and Micro Focus Development Tools ...9

Continuous Integration .. 11
Introduction to Continuous Integration ... 11
Continuous Integration Workflow ..12
Continuous Integration and Micro Focus Development Tools 13

Continuous Delivery .. 16
Introduction to Continuous Delivery ... 16
Continuous Delivery Workflow ..17
Continuous Delivery and Micro Focus Development Tools 18

Continuous Improvement .. 23
Using Enterprise Developer with Jenkins ..24

Overview of Jenkins .. 24
Terminology ...25
Scenarios for Using Jenkins with Enterprise Developer ... 25
Software Requirements ...26
Installing and Configuring Jenkins .. 26
Advanced Configuration ..27

Configuring Email Reporting .. 27
Use Sources from Source Control ..28
Triggering Builds Automatically .. 28
Creating Environment Variables ...28
Using Agents .. 29

Using Jenkins to Build COBOL Applications ...30
Setting up the Environment .. 30
Making mfant.jar Available to Enable Building ..31
Specifying the Location of Linked Folders ..31

Examples .. 32
Example - Building COBOL Programs ... 32
Example - Integrating Code Analysis ... 32
Example - Running MFUnit Tests ...33

Best Practices When Using Jenkins ... 34
Using Jenkins With Source Control ..34
Specifying any Environment Variables in a Project's Configuration 35
Creating Separate Projects for Building and Testing Your Code 35
Using Pipelines to Build Your Applications ... 35

Troubleshooting ...35
Ant Error "Can't find mfant.jar" When Building COBOL Projects35
COBOL Projects Don't Build ...35
A Build Failure isn't Reported as a Failure ... 36

Contents | 3

Using Enterprise Developer in Modern
Application Development

Development has traditionally been one discrete element in the process of turning users' requirements into
working applications. Modern application development processes enable you to move away from a process
containing a number of (at best) loosely-connected, discrete steps, and instead adopt a process where
each step is handled by a specialized tool, and a combination of these tools and automation result in a
more seamless, repeatable, end-to-end process that enables you to build and deliver the right software at
the right time.

This documentation describes modern application development in general and summarizes the role that
Enterprise Developer and other tools from Micro Focus can play in modern application development. It also
contains information on how you can use Enterprise Developer with the Jenkins CI server in order to
implement many of the steps described in the modern application development process.

Note: It is important to bear in mind that even though this documentation covers all of the modern
application development process, you can gain significant benefits in terms of quality and productivity
by adopting any of the parts of the process in isolation.

Related information

Using Enterprise Developer with Jenkins

Introduction to Modern Application Development
The following sections show how modern application development differs from traditional development,
outline the benefits of the different stages of a modern application development process, and show how
Micro Focus tools can play a key role in your development and deployment processes.

What is Modern Application Development?
For many years the majority of software development followed the waterfall development model. Recently,
alternatives to the waterfall model have been devised and subsequently revised in an attempt to make the
process of software development more able to respond quickly to changing customer needs.

In the last few years, methodologies such as DevOps and DevSecOps have come into being, bringing even
more advantages over older methodologies. In general, modern application development methodologies
enable you to reduce your time to market, reduce the complexity of your projects, and ensure a high-quality
experience for your users.

The information in this section is concerned with modern application methodologies in general rather than
with any specific methodologies. When this document refers to modern application development it is
referring to any development methodology that aims to be more responsive to customer needs by
automating the different parts of the process as well as the transitions between them.

Related reference

Agile Manifesto: Manifesto for Agile Software Development
DevSecOps: What is DevSecOps?
Micro Focus Enterprise DevOps
TechRepublic: Understanding the pros and cons of the Waterfall Model of software development

4 | Using Enterprise Developer in Modern Application Development

http://www.microfocus.com/docs/links.asp?vc=agile
http://www.microfocus.com/docs/links.asp?vc=devsecops_whatis
http://www.microfocus.com/docs/links.asp?vc=mf_ent_devops_home_page
http://www.microfocus.com/docs/links.asp?vc=waterfall_pros_cons

The Agile Admin: What is DevOps?
Wikipedia: Definition of the waterfall model

Key Concepts in Modern Application Development
Any discussion of modern application development methodologies will include reference to a number of key
concepts. The following list provides a very brief summary of the key concepts that are used in this
documentation.

Agile software development
A set of principles guiding the production of software that focusses on the following:

• Iterative, incremental, evolutionary delivery
• Face-to-face communication
• Short feedback loops
• Use of automation to promote a focus on quality

Application release automation (ARA)
The use of tools to automate the steps involved to build software and subsequently deploy
it to production.

Automated testing
The use of tools to control the running of tests and the comparison of the tests' outcomes
with their expected outcomes.

Configuration management (SCM)
The task of tracking and controlling changes made to software as it is developed. Central
to the concept of configuration management is version control, which is the management
of changes to files.

Continuous delivery (CD)
A process whereby every code change results in the building and testing of new software
that can then be deployed to production (if appropriate).

Continuous deployment
A process whereby every code change results in the building and testing of new software
that is then deployed to production.

Continuous improvement
The process of regularly assessing a team's performance in a rollout period, evaluating
what has gone well and what can be improved on.

Continuous integration (CI)
The practice of ensuring that all developers' working copies of code are regularly merged
into a shared trunk, and each code change results in the building and testing of new
software.

Requirements management
The process of gathering and managing the requirements for an application and ensuring
that those requirements are used to effectively drive the efforts of the development team.

Unit testing
The process where the smallest parts of an application that it is possible to test are tested
individually to see if they perform as expected.

You might find some of these terms defined in a number of subtly different ways in different sources. This
documentation uses the terms as they are defined here.

Using Enterprise Developer in Modern Application Development | 5

http://www.microfocus.com/docs/links.asp?vc=devops_whatis
http://www.microfocus.com/docs/links.asp?vc=waterfall_wiki

Steps Involved in Modern Application Development
This section introduces a workflow diagram showing the various steps involved in a modern application
development lifecycle then gives introductory information on each of the diagram's steps.

As said elsewhere, this documentation is concerned with modern application development in general rather
than any specific named instance of modern application development.

The following figure shows the steps involved in the definition of modern application development used by
this documentation.

The diagram shows the five main activities that make up the development process:

• Plan
• Build
• Test
• Release
• Monitor

Note that there are no start and end points to this sequence of activities. Whereas one might expect the
"Release" activity to mark the end of the process, that activity is followed by the "Monitor" activity where
questions are asked about improvements that could be made to the released package as well as to the
development process and how it was executed. The information from the "Monitor" activity is then used as
input to the "Plan" activity, and the development process continues from there.

Outside the five activities are the broader processes that have evolved to optimize the way in which the
individual activities work together. These processes are as follows, and each one is covered in more detail
in this documentation:

• Agile methods
• Continuous integration
• Continuous delivery
• Continuous improvement

Related information

Agile Methods
Continuous Integration

6 | Using Enterprise Developer in Modern Application Development

Continuous Delivery
Continuous Improvement

Agile Methods
The following sections give an overview of Agile methods, present a typical Agile development workflow,
and show the benefits that Micro Focus tools can bring to the Agile development process.

Introduction to Agile Methods
As mentioned in Key Concepts in Modern Application Development, agile software development (often
referred to as "Agile") is a set of principles guiding the production of software that focusses on:

• Iterative, incremental, and evolutionary delivery
• Face-to-face communication
• Short feedback loops
• Automation to promote a focus on quality

These principles are laid out in a document known as the manifesto for Agile software development.

Agile is intended to be very simple and flexible but it can bring significant benefits such as:

• Increased business agility

Agile's iterative approach and short feedback loops shorten development cycles and enable you to
quickly switch priorities based on changing customer requirements and market conditions.

• Delivering the right product

An Agile approach facilitates early and frequent feedback, maximizing the likelihood that the software
delivered is exactly what the customer needs.

A combination of the frequent feedback and iterative approach produces another benefit. At the end of
an iteration, if stakeholder feedback indicates that the software produced in that iteration is not on target
to meet customer requirements, the work done in that iteration can be abandoned and developers can
adopt a different approach in the next iteration. The amount of development time lost in such a case
would be only one iteration, typically two weeks, which is much less than would be wasted if the same
issue arose when following the waterfall model.

• Improved quality

A key principle of Agile is that testing is integrated throughout the lifecycle.

Related information

Key Concepts in Modern Application Development

Related reference

Manifesto for Agile Software Development

Agile Development Workflow
The following diagram summarizes the key steps in an Agile development process:

Using Enterprise Developer in Modern Application Development | 7

http://www.microfocus.com/docs/links.asp?vc=agile

where the numbered steps are as follows:

1. Create a list of requirements from customer feedback.
2. Create a list of requirements based on your internal needs. These can be for anything at all, including

new features, bug fixes, infrastructure and systems work, or technical debt.
3. Combine your customers' requirements and your internal requirements into a product backlog. The

product backlog is a prioritized list of the work that your development team will undertake to add the
different items from your customers' and internal requirements.

4. Use the product backlog to create sprint backlogs, which you use to define and track the work that will
be done by the development team in a series of sprints. Sprints are also often referred to as "iterations".

The length of a sprint is typically between one and four weeks and is usually fixed for the duration of a
project.

During each sprint, developers take items from the sprint backlog, work on them, and complete them by
the end of the sprint.

At the end of each sprint, the items on that sprint's backlog must be completed; not just coded, but
tested, documented, and integrated into a working product that could be deployed (if required).

5. Produce a deliverable product package, if required.

At the end of a sprint you return to the Agile planning stage to create the next sprint backlog.

At the end of the project you return to the requirements gathering stage to create the new product
backlog.

8 | Using Enterprise Developer in Modern Application Development

Agile Development and Micro Focus Development
Tools
The sections Introduction to Agile Methods and Agile Development Workflow introduce the idea of Agile
software development and summarize how Agile development works as a process. This section looks at
the Agile development process and shows how different products available from Micro Focus fit into and
add value to that process.

The diagram below shows the process presented in the topic Agile Development Workflow but has been
updated to indicate which Micro Focus products are appropriate at different parts of the process. Although
this diagram refers to Micro Focus products, the process described does not require the use of Micro Focus
products, so if you are already using a third-party product for one part of the process you can continue to
work with that and use Micro Focus products to integrate with it.

where the numbered steps are as follows:

1. Use Micro Focus Atlas to create a list of requirements from customer feedback.
2. Use Micro Focus Atlas to create a list of requirements based on your internal needs. These can be for

anything at all, including new features, bug fixes, infrastructure or systems work, and technical debt.
3. Use Micro Focus Atlas to combine your customers' requirements and your internal requirements. Once

you have combined the requirements in Atlas you can export them to Micro Focus Rhythm as a product
backlog. The product backlog is a prioritized list of the work that your development team will undertake
to add the different items from your customers' and internal requirements.

4. Use Micro Focus Rhythm to create sprint backlogs, which you use to define and track the work on the
product backlog that will be done by the development team in a series of sprints. Sprints are also often
referred to as "iterations".

Using Enterprise Developer in Modern Application Development | 9

The length of a sprint is typically between one and four weeks and is usually fixed for the duration of a
project.

During each sprint, developers take items from the sprint backlog, work on them, and complete them by
the end of the sprint.

At the end of each sprint, the items on that sprint's backlog must be completed; not just coded, but
tested, documented, and integrated into a working product that could be deployed (if required).

5. Use Enterprise Developer to produce a deliverable product package, if required.

When using Enterprise Developer, developers can use the complete array of analysis, intelligence and
reporting tools provided by Enterprise Analyzer to quickly gain a full understanding of the applications
they are working on. Integration between Rhythm and Enterprise Developer means developers can
easily work on code changes and keep Rhythm's status information up to date at the same time.

For mainframe development, using Enterprise Developer in conjunction with Enterprise Sync (another
product from the Micro Focus Enterprise suite) enables you to replicate your mainframe source code to
a distributed software configuration management platform, greatly increasing the effectiveness of your
parallel application development.

At the end of a sprint you return to the Agile planning stage to create the next sprint backlog.

At the end of the project you return to the requirements gathering stage to create the new product
backlog.

The following list gives a very brief summary of each of the Micro Focus products that play a part in the
Agile development process:

• Atlas

Micro Focus Atlas is an Agile requirements and delivery platform that enables teams to create products
in a much more collaborative and flexible way in comparison to other requirements management tools.

• Enterprise Analyzer

Micro Focus Enterprise Analyzer delivers a wide array of tools and content to enable you to quickly gain
a thorough understanding of your applications, meaning that you reduce the amount of time it takes you
to make your changes and you can have more confidence that your changes have the desired effect
and do not introduce any new issues.

You can also use Enterprise Analyzer to run queries to determine if your code conforms to your in-
house standards. Any code that does not conform to your standards can be flagged as an error
following a commit or during the build process.

• Enterprise Developer

Micro Focus Enterprise Developer provides an integrated development environment (IDE) that
streamlines mainframe COBOL and PL/I development activities. This toolset provides access, flexibility,
and extensibility to modern technologies through fast integration and remote development capability.

The following features of Enterprise Developer make it an invaluable part of the Agile development
process:

• Highly-compatible subsystem support (including CICS, IMS, DB2 and JES) means that you can be
confident that the code you write using Enterprise Developer will run as expected on the mainframe.

• Integration with SCC-compliant source code control systems to enable you to work seamlessly with
your source code.

• Integration into Eclipse provides useful debugging features such as colorization, error flagging, and
intelligent copybook handling to enable you to quickly track down any issues, establish their cause,
and make your edits.

• Reverse Debug and Live Recording are Technology Preview features available on Red Hat Linux x86
platforms that enable you to create a recording of an application's execution then load the recording
into the debugger.

With the recording loaded into the debugger you can monitor everything that influenced the running
of the program (such as all input, disk access, and keyboard strokes) and because the debugger lets

10 | Using Enterprise Developer in Modern Application Development

you move backwards and forwards through the execution path you can easily focus on potential
causes of crashes or other unexpected behavior in the application.

• The Micro Focus Unit Testing Framework, an xUnit-style testing framework, includes much of the
architecture you would expect of an xUnit framework, enabling you to create, compile, run, and
debug unit tests from either the command line or the Enterprise Developer IDE.

• Core dump debugging. When an application crashes you can arrange for its state to be saved to
disk, in a core dump file, which can indicate where the error occurred in the source code, the
contents of memory at the time of the error, and the values of any variables and expressions set at
the time. You can then use the core dump file to help debug the problems.

• Wait for attachment enables you to attach the debugger only when a particular piece of code is
executed.

• Integration with Micro Focus Rhythm means that you can navigate and update your sprint backlog
without even having to leave Eclipse.

• Remote debugging enables you to debug programs that are running on a different computer from the
one on which you are using.

• The Consolidated Tracing Facility (CTF) produces detailed diagnostic information that can be
invaluable in diagnosing problems when you can't easily attach a debugger.

• Enterprise Sync

Micro Focus Enterprise Sync integrates with Enterprise Developer to enable faster and more efficient
parallel development. Replicating your mainframe source code on a distributed platform lets you take
full advantage of the huge range of modern GUI-based tooling that is available to help you to adopt a
modern application development process.

Using Enterprise Sync, changes made to your distributed source control are synchronized automatically
with your mainframe software change management system, keeping your mainframe application source
code as the primary system of record and ensuring the integrity of your software change and
configuration management processes.

• Rhythm

Micro Focus Rhythm is the enterprise-class planning and tracking solution for Agile software projects.

Rhythm has been designed to integrate easily with Atlas and Enterprise Developer, as well as with
third-party issue-tracking, version control and requirements management tools.

Related reference

Micro Focus: Atlas data sheet
Micro Focus: Atlas online help
Micro Focus: Enterprise Analyzer data sheet
Micro Focus: Enterprise Analyzer online help
Micro Focus: Enterprise Developer data sheet
Micro Focus: Enterprise Developer online help
Micro Focus: Enterprise Sync data sheet
Micro Focus: Rhythm data sheet
Micro Focus: Rhythm online help

Continuous Integration
The following sections give an overview of continuous integration, present a typical continuous integration
workflow, and show the benefits that Micro Focus tools can bring to the continuous integration process.

Introduction to Continuous Integration
As mentioned in Key Concepts in Modern Application Development, continuous integration (CI) is a
software development practice whereby developers on a team regularly integrate their working copies of

Using Enterprise Developer in Modern Application Development | 11

http://www.microfocus.com/docs/links.asp?vc=mfatlas_41_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfatlas_docs
http://www.microfocus.com/docs/links.asp?vc=mfent_analyzer_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_analyzer_docs
http://www.microfocus.com/docs/links.asp?vc=mfent_dev_23_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mf_ent_dev_docs_ecl
http://www.microfocus.com/docs/links.asp?vc=mfent_sync_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfrhythm_41_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfrhythm_docs

code to a shared repository. Once a change is integrated to the repository, the application is automatically
rebuilt. Automated tests are run before and after the application is rebuilt, to check that no regressions are
introduced. If any of the automated tests fail, developers can be notified automatically so that they can
provide a fix.

Using continuous integration provides a number of benefits:

• Developers can find problems earlier than they would be able to if builds happened only every day or
every week.

• When a problem does occur, pinpointing the cause of the problem is quicker and easier because only a
small change should have been made since the last working build.

• The time taken to resolve integration issues is reduced because each change is integrated as required.
• There is always a working version of the product that contains the latest changes.

Tools that provide CI functionality are known as CI servers. There are many tools available that can be
used as CI servers, but the following list shows some of the more commonly used:

• Bamboo
• Cruise Control
• Hudson
• Jenkins
• Team Foundation Server

For detailed information on how to use Enterprise Developer with Jenkins, see Using Enterprise Developer
with Jenkins.

Related information

Key Concepts in Modern Application Development
Using Enterprise Developer with Jenkins

Continuous Integration Workflow
The following diagram summarizes the key steps in a continuous integration process. Although the process
comprises a number of different activities with integration provided between each activity, you do not have
to adopt every activity in the process before you can benefit from significant gains in terms of efficiency,
effectiveness, and quality. Instead, you might choose to implement this process one activity at a time,
taking advantage of the benefits provided by each activity as you add and integrate it with the others.

where the numbered steps are as follows:

12 | Using Enterprise Developer in Modern Application Development

1. Developers check out code into their private workspaces. They then make their changes and test them
locally.

2. When done, developers check in their changes into the source control repository.
3. The CI server monitors the source control repository and when it detects a change it triggers a build of

the relevant sources.
4. After a successful build, the CI server performs some or all of the following activities:

• makes deployable artefacts available for testing
• assigns a build label to the version of the code that was just built
• notifies the relevant team members that a successful build occurred
• triggers unit and integration testing
At this point, the changes that were checked in at step 2 have been successfully built and a build label
has been applied to the source code that was used for the build, meaning that the build could be
recreated if necessary.

In the event of a build failure, the CI server sends notifications to the relevant developers who restart the
process from step 1 to make the changes necessary to resolve the build errors.

5. After the unit and integration testing has taken place, the relevant team members are notified of the test
results.

At this point, the changes that were checked in at step 2 have been successfully built and tested, all
with little or no manual intervention.

For information on using Jenkins to perform the CI server tasks in the above list, see Using Enterprise
Developer with Jenkins.
Related information

Using Enterprise Developer with Jenkins

Continuous Integration and Micro Focus Development
Tools
The sections Introduction to Continuous Integration and Continuous Integration Workflow introduce the
idea of continuous integration and summarize how continuous integration works as a process. This section
looks at the continuous integration process and shows how different products available from Micro Focus fit
into and add value to that process.

The diagram below shows the process presented in the topic Continuous Integration Workflow but has
been modified to indicate which Micro Focus products you can use at the different parts of the process.
Although this diagram refers to Micro Focus products, the process described does not require the use of
Micro Focus products, so if you are already using a third-party product for one part of the process you can
continue to work with that and use Micro Focus products to integrate with it.

Using Enterprise Developer in Modern Application Development | 13

where the numbered steps are as follows:

1. Developers use Enterprise Developer to check out code into their private workspaces. They then make
their changes and test them locally using Enterprise Developer's unit testing features.

This diagram illustrates the use of ChangeMan ZMF as the source code control system but you are not
limited to using only that product. Enterprise Developer works with any SCC-compliant source code
control system, so you can work seamlessly in Enterprise Developer with virtually any source code
control system you choose to use regardless of whether it is a Micro Focus product or a third-party
product.

For mainframe development, using Enterprise Developer in conjunction with Enterprise Sync (another
product from the Micro Focus Enterprise suite) enables you to replicate your mainframe source code to
a distributed software configuration management platform, greatly increasing the effectiveness of your
parallel application development.

2. When done, developers check in their changes into the source control repository.
3. The CI server monitors the source control repository and when it detects a change it triggers a build of

the relevant sources. Although the build actions are triggered by the CI server, the build actions
themselves will be performed by Enterprise Developer, typically using Apache Ant or MSBuild scripts.

4. After a successful build, the CI server performs activities such as the following:

• makes deployable artefacts available for testing
• assigns a build label to the version of the code that was just built
• notifies the relevant team members that a successful build occurred
• triggers unit and integration testing to be run under Enterprise Test Server

At this point, the changes that were checked in at step 2 have been successfully built and a build label
has been applied to the source code that was used for the build (so the build could be recreated if
necessary).

In the event of a build failure, the CI server sends notifications to the relevant developers who restart the
process from step 1, using Enterprise Developer to make the changes necessary to resolve the build
errors.

5. After the unit and integration testing has taken place, the relevant team members are notified of the test
results.

At this point, the changes that were checked in at step 2 have been successfully built and tested, all
with little or no manual intervention.

For information on using Jenkins to perform the CI server tasks in the above list, see Using Enterprise
Developer with Jenkins.

The following list gives a very brief summary of each of the Micro Focus products that play a part in the
continuous integration process:

• ChangeMan ZMF

Micro Focus ChangeMan ZMF is a comprehensive, automated change management system for reliably
implementing mainframe software changes from development to testing to production, and treats
change management as a business issue by giving key stakeholders visibility into the release process.
ChangeMan ZMF protects your corporate assets and helps you get more done in less time.

• Enterprise Analyzer

Micro Focus Enterprise Analyzer delivers a wide array of tools and content to enable you to quickly gain
a thorough understanding of your applications, meaning that you reduce the amount of time it takes you
to make your changes and you can have more confidence that your changes have the desired effect
and do not introduce any new issues.

You can also use Enterprise Analyzer to run queries to determine if your code conforms to your in-
house standards. Any code that does not conform to your standards can be flagged as an error
following a commit or during the build process.

14 | Using Enterprise Developer in Modern Application Development

• Enterprise Developer

Micro Focus Enterprise Developer provides an integrated development environment (IDE) that
streamlines mainframe COBOL and PL/I development activities. This toolset provides access, flexibility,
and extensibility to modern technologies through fast integration and remote development capability.

Enterprise Developer includes the following features that make it a great fit for using in your CI process:

• Support for Apache Ant means that you can write scripts to enable your CI server to build and run
your COBOL applications just as easily as you can build and run your COBOL applications from the
Enterprise Developer IDE.

• Integration into an extensible IDE enables you to use a range of third-party functionality to work with
different CI servers.

• Highly-compatible subsystem support (including CICS, IMS, DB2 and JES) means that you can be
confident that the code you write using Enterprise Developer will run as expected on the mainframe.

• Integration with SCC-compliant source code control systems to enable you to work seamlessly with
your source code.

• Integration into Eclipse provides useful debugging features such as colorization, error flagging, and
intelligent copybook handling to enable you to quickly track down any issues, establish their cause,
and make your edits.

• Reverse Debug and Live Recording are Technology Preview features available on Red Hat Linux x86
platforms that enable you to create a recording of an application's execution then load the recording
into the debugger.

With the recording loaded into the debugger you can monitor everything that influenced the running
of the program (such as all input, disk access, and keyboard strokes) and because the debugger lets
you move backwards and forwards through the execution path you can easily focus on potential
causes of crashes or other unexpected behavior in the application.

• The Micro Focus Unit Testing Framework, an xUnit-style testing framework, includes much of the
architecture you would expect of an xUnit framework, enabling you to create, compile, run, and
debug unit tests from either the command line or the Enterprise Developer IDE.

• Core dump debugging. When an application crashes you can arrange for its state to be saved to
disk, in a core dump file, which can indicate where the error occurred in the source code, the
contents of memory at the time of the error, and the values of any variables and expressions set at
the time. You can then use the core dump file to help debug the problems.

• Wait for attachment enables you to attach the debugger only when a particular piece of code is
executed.

• Integration with Micro Focus Rhythm means that you can navigate and update your sprint backlog
without even having to leave Eclipse.

• Remote debugging enables you to debug programs that are running on a different computer from the
one on which you are using.

• The Consolidated Tracing Facility (CTF) produces detailed diagnostic information that can be
invaluable in diagnosing problems when you can't easily attach a debugger.

• Enterprise Sync

Micro Focus Enterprise Sync integrates with Enterprise Developer to enable faster and more efficient
parallel development. Replicating your mainframe source code on a distributed platform lets you take
full advantage of the huge range of modern GUI-based tooling that is available to help you to adopt a
modern application development process.

Using Enterprise Sync, changes made to your distributed source control are synchronized automatically
with your mainframe software change management system, keeping your mainframe application source
code as the primary system of record and ensuring the integrity of your software change and
configuration management processes.

• Enterprise Test Server

Micro Focus Enterprise Test Server is an IBM mainframe application test environment on Windows. It
enables you to confidently test mainframe application change on scalable, low-cost commodity

Using Enterprise Developer in Modern Application Development | 15

hardware, and expands your test capacity to scale to meet the delivery timelines and quality standards
driven by today's business requirements.

An example of a way in which Enterprise Test Server can simplify your testing is the ability to export and
import execution environments. Once you have set up an Enterprise Test Server environment for testing
an application you can export the definition of that environment to an XML file, where the XML definition
includes details of all aspects of the Enterprise Test Server environment such as region definitions,
locations of data files, and settings of environment variables. After exporting the definition you can then
import it to be used during your testing, ensuring that the Enterprise Test Server environment you use in
your testing is exactly the same environment as the one you know to be correct.

Related information

Using Enterprise Developer with Jenkins

Related reference

Micro Focus: Ant User Guide
Micro Focus: ChangeMan ZMF data sheet
Micro Focus: Enterprise Analyzer data sheet
Micro Focus: Enterprise Analyzer online help
Micro Focus: Enterprise Developer data sheet
Micro Focus: Enterprise Developer online help
Micro Focus: Enterprise Sync data sheet
Micro Focus: Enterprise Sync online help
Micro Focus: Enterprise Test Server data sheet
Micro Focus: Enterprise Test Server online help

Continuous Delivery
The following sections give an overview of continuous delivery, present a typical continuous delivery
workflow, and show the benefits that Micro Focus tools can bring to the continuous delivery process.

Introduction to Continuous Delivery
As mentioned in Key Concepts in Modern Application Development, continuous delivery (CD) is a practice
where teams make use of automated processes so that any code changes result in the building and testing
of new software that can then be deployed to production (if appropriate).

Continuous delivery does not mean that every code change is deployed to production. Instead, a
continuous delivery environment typically includes a number of different environments for deployment,
where deployments to some environments happen automatically but deployment to other environments
requires some manual input or approval.

For example, a continuous delivery environment could include deployment environments for development,
testing, staging, and production, where deployment happens automatically for the development and testing
environments, but manual intervention is required to approve deployment to the staging or production
environments.

Using continuous delivery in this way enables you to deliver application changes quickly and more reliably,
leading to improved product quality and user experience.

Note: Continuous delivery is very similar to continuous deployment, with the only difference being the
existence (or lack) of manual validation steps. With continuous delivery a code change results in
automated building and testing followed by at least one manual validation step before the changes are

16 | Using Enterprise Developer in Modern Application Development

http://www.microfocus.com/docs/links.asp?vc=mfmfant_docs
http://www.microfocus.com/docs/links.asp?vc=mfchangeman_zmf_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_analyzer_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_analyzer_docs
http://www.microfocus.com/docs/links.asp?vc=mfent_dev_23_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mf_ent_dev_docs_ecl
http://www.microfocus.com/docs/links.asp?vc=mfent_sync_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_sync_docs
http://www.microfocus.com/docs/links.asp?vc=mfets_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfets_docs

deployed to production, whereas with continuous deployment there are no manual validation steps, so
a code change always results in automated building, testing, and deployment to production.

Related information

Key Concepts in Modern Application Development

Related reference

Continuous Delivery: What is Continuous Delivery?

Continuous Delivery Workflow
The following diagram summarizes the steps involved in a continuous delivery process. Although the
process comprises a number of different activities with integration provided between each activity, you do
not have to adopt every activity in the process before you can benefit from significant gains in terms of
efficiency, effectiveness, and quality. Instead, you might choose to implement this process one activity at a
time, taking advantage of the benefits provided by each activity as you add and integrate it with the others.

Note that because continuous delivery is effectively an extension of the continuous integration process, the
first five steps in this diagram are the same as the steps in the diagram presented in Continuous Integration
Workflow.

Using Enterprise Developer in Modern Application Development | 17

http://www.microfocus.com/docs/links.asp?vc=continuousdelivery

where the numbered steps are as follows:

1. Developers check out code into their private workspaces. They then make their changes and test them
locally.

2. When done, developers check in their changes into the source control repository.
3. The CI server monitors the source control repository and when it detects a change it triggers a build of

the relevant sources.
4. After a successful build, the CI server performs some or all of the following activities:

• makes deployable artefacts available for testing
• assigns a build label to the version of the code that was just built
• notifies the relevant team members that a successful build occurred
• triggers unit and integration testing

At this point, the changes that were checked in at step 2 have been successfully built and a build label
has been applied to the source code that was used for the build, meaning that the build could be
recreated if necessary.

In the event of a build failure, the CI server sends notifications to the relevant developers who restart the
process from step 1 to make the changes necessary to resolve the build errors.

5. After the unit and integration testing has taken place, the relevant team members are notified of the test
results.

At this point, the changes that were checked in at step 2 have been successfully built and tested, all
with little or no manual intervention.

6. After the unit and integration testing has completed successfully, the CI server triggers the running of
more comprehensive, automated acceptance tests.

7. If the acceptance tests all pass, a decision is made whether or not to release.

If the acceptance tests result in failures, the CI server sends notifications to the relevant developers who
restart the process from step 1 to make the changes necessary to resolve the test failures.

8. If the validation decision is to release, release management is triggered. This results in the built
package being released or deployed to the appropriate environment.

If the validation decision is not to release, the relevant team members are notified and development
work continues as normal.

For information on using Jenkins to perform the CI server tasks in the above list, see Using Enterprise
Developer with Jenkins.

Related information

Continuous Integration Workflow
Using Enterprise Developer with Jenkins

Continuous Delivery and Micro Focus Development
Tools
The sections Introduction to Continuous Delivery and Continuous Delivery Workflow introduce the idea of
continuous delivery and summarize how continuous delivery works as a process. This section looks at the
continuous delivery process and shows how different products available from Micro Focus fit into and add
value to that process.

The diagram below shows the process presented in the section Continuous Delivery Workflow but has
been updated to indicate which Micro Focus products are appropriate at different parts of the process.
Although this diagram refers to Micro Focus products, the process described does not require the use of
Micro Focus products, so if you are already using a third-party product for one part of the process you can
continue to work with that and use Micro Focus products to integrate with it.

18 | Using Enterprise Developer in Modern Application Development

Note that because continuous delivery is effectively an extension of the continuous integration process, the
first five steps in this diagram are the same as the steps in the diagram presented in Continuous Integration
and Micro Focus Development Tools.

where the numbered steps are as follows:

1. Developers use Enterprise Developer to check out code into their private workspaces. They then make
their changes and test them locally using Enterprise Developer's unit testing features.

This diagram illustrates the use of ChangeMan ZMF as the source code control system but you are not
limited to using only that product. Enterprise Developer works with any SCC-compliant source code
control system, so you can work seamlessly in Enterprise Developer with virtually any source code
control system you choose to use regardless of whether it is a Micro Focus product or a third-party
product.

For mainframe development, using Enterprise Developer in conjunction with Enterprise Sync (another
product from the Micro Focus Enterprise suite) enables you to replicate your mainframe source code to
a distributed software configuration management platform, greatly increasing the effectiveness of your
parallel application development.

2. When done, developers check in their changes into the source control repository.

Using Enterprise Developer in Modern Application Development | 19

3. The CI server monitors the source control repository and when it detects a change it triggers a build of
the relevant sources. Although the build actions are triggered by the CI server, the build actions
themselves will be performed by Enterprise Developer, typically using Apache Ant or MSBuild scripts.

4. After a successful build, the CI server performs activities such as the following:

• makes deployable artefacts available for testing
• assigns a build label to the version of the code that was just built
• notifies the relevant team members that a successful build occurred
• triggers unit and integration testing to be run under Enterprise Test Server

At this point, the changes that were checked in at step 2 have been successfully built and a build label
has been applied to the source code that was used for the build (so the build could be recreated if
necessary).

In the event of a build failure, the CI server sends notifications to the relevant developers who restart the
process from step 1, using Enterprise Developer to make the changes necessary to resolve the build
errors.

5. After the unit and integration testing has taken place, the relevant team members are notified of the test
results.

At this point, the changes that were checked in at step 2 have been successfully built and tested, all
with little or no manual intervention.

6. After the unit and integration testing has completed successfully, the CI server triggers the running of
more comprehensive, automated acceptance tests using Micro Focus Silk.

For mainframe-hosted applications your testing at this stage should include testing your changes on the
mainframe in addition to the testing done on your Windows workstations.

7. If the acceptance tests all pass, a decision is made whether or not to release.

If the acceptance tests results in failures, the CI server sends notifications to the relevant developers
who restart the process from step 1 to make the changes necessary to resolve the test failures.

8. If the validation decision is to release, use Micro Focus Deployment Automation or Micro Focus Release
Control to release or deploy the built package to the appropriate environment.

If the validation decision is not to release, the relevant team members are notified and development
work continues as normal.

For information on using Jenkins to perform the CI server tasks in the above list, see Using Enterprise
Developer with Jenkins.

The following list gives a very brief summary of each of the Micro Focus products that play a part in the
continuous delivery process:

• ChangeMan ZMF

Micro Focus ChangeMan ZMF is a comprehensive, automated change management system for reliably
implementing mainframe software changes from development to testing to production, and treats
change management as a business issue by giving key stakeholders visibility into the release process.
ChangeMan ZMF protects your corporate assets and helps you get more done in less time.

• Deployment Automation

Micro Focus Deployment Automation simplifies and automates the deployment of your software. It
supports continuous delivery and production deployments by seamlessly enabling deployment pipeline
automation, reducing cycle times, and providing rapid feedback. With Deployment Automation, you will
be able to deliver high-quality, valuable software in an efficient, fast, and reliable manner.

• Enterprise Analyzer

Micro Focus Enterprise Analyzer delivers a wide array of tools and content to enable you to quickly gain
a thorough understanding of your applications, meaning that you reduce the amount of time it takes you
to make your changes and you can have more confidence that your changes have the desired effect
and do not introduce any new issues.

20 | Using Enterprise Developer in Modern Application Development

You can also use Enterprise Analyzer to run queries to determine if your code conforms to your in-
house standards. Any code that does not conform to your standards can be flagged as an error
following a commit or during the build process.

• Enterprise Developer

Micro Focus Enterprise Developer provides an integrated development environment (IDE) that
streamlines mainframe COBOL and PL/I development activities. This toolset provides access, flexibility,
and extensibility to modern technologies through fast integration and remote development capability.

Enterprise Developer includes the following features that make it particularly suitable for using in your
continuous delivery process:

• Support for Apache Ant means that you can write scripts to enable your CI server to build and run
your COBOL applications just as easily as you can build and run your COBOL applications from the
Enterprise Developer IDE.

• Integration into an extensible IDE enables you to use a range of third-party functionality to work with
different CI servers.

• Highly-compatible subsystem support (including CICS, IMS, DB2 and JES) means that you can be
confident that the code you write using Enterprise Developer will run as expected on the mainframe.

• Integration with SCC-compliant source code control systems to enable you to work seamlessly with
your source code.

• Integration into Eclipse provides useful debugging features such as colorization, error flagging, and
intelligent copybook handling to enable you to quickly track down any issues, establish their cause,
and make your edits.

• Reverse Debug and Live Recording are Technology Preview features available on Red Hat Linux x86
platforms that enable you to create a recording of an application's execution then load the recording
into the debugger.

With the recording loaded into the debugger you can monitor everything that influenced the running
of the program (such as all input, disk access, and keyboard strokes) and because the debugger lets
you move backwards and forwards through the execution path you can easily focus on potential
causes of crashes or other unexpected behavior in the application.

• The Micro Focus Unit Testing Framework, an xUnit-style testing framework, includes much of the
architecture you would expect of an xUnit framework, enabling you to create, compile, run, and
debug unit tests from either the command line or the Enterprise Developer IDE.

• Core dump debugging. When an application crashes you can arrange for its state to be saved to
disk, in a core dump file, which can indicate where the error occurred in the source code, the
contents of memory at the time of the error, and the values of any variables and expressions set at
the time. You can then use the core dump file to help debug the problems.

• Wait for attachment enables you to attach the debugger only when a particular piece of code is
executed.

• Integration with Micro Focus Rhythm means that you can navigate and update your sprint backlog
without even having to leave Eclipse.

• Remote debugging enables you to debug programs that are running on a different computer from the
one on which you are using.

• The Consolidated Tracing Facility (CTF) produces detailed diagnostic information that can be
invaluable in diagnosing problems when you can't easily attach a debugger.

• Enterprise Sync

Micro Focus Enterprise Sync integrates with Enterprise Developer to enable faster and more efficient
parallel development. Replicating your mainframe source code on a distributed platform lets you take
full advantage of the huge range of modern GUI-based tooling that is available to help you to adopt a
modern application development process.

Using Enterprise Sync, changes made to your distributed source control are synchronized automatically
with your mainframe software change management system, keeping your mainframe application source
code as the primary system of record and ensuring the integrity of your software change and
configuration management processes.

Using Enterprise Developer in Modern Application Development | 21

• Enterprise Test Server

Micro Focus Enterprise Test Server is an IBM mainframe application test environment on Windows. It
enables you to confidently test mainframe application change on scalable, low-cost commodity
hardware, and expands your test capacity to scale to meet the delivery timelines and quality standards
driven by today's business requirements.

An example of a way in which Enterprise Test Server can simplify your testing is the ability to export and
import execution environments. Once you have set up an Enterprise Test Server environment for testing
an application you can export the definition of that environment to an XML file, where the XML definition
includes details of all aspects of the Enterprise Test Server environment such as region definitions,
locations of data files, and settings of environment variables. After exporting the definition you can then
import it to be used during your testing, ensuring that the Enterprise Test Server environment you use in
your testing is exactly the same environment as the one you know to be correct.

• Release Control

Micro Focus Release Control enables you to plan, control, and automate your release processes from
definition to deployment with a visual release calendar and automated approval process. The
automation and integration features that Release Control offers result in improved visibility and tracking,
and adherence to your compliance and control procedures.

• Silk

Micro Focus Silk Test enables you to maintain rigorous quality standards and accelerate application
testing on any device and platform. Using Silk Test you can standardize validation efforts by testing web,
mobile, rich-client, and enterprise applications with a single, powerful test automation solution.

Micro Focus Silk Central unifies test assets into one planning, tracking, reporting, and execution hub,
enabling you to define quality goals, schedule manual and automated functional and performance tests,
and view results in a centralized dashboard.

Related information

Continuous Integration and Micro Focus Development Tools
Using Enterprise Developer with Jenkins

Related reference

Micro Focus: Ant User Guide
Micro Focus: ChangeMan ZMF data sheet
Micro Focus: Deployment Automation data sheet
Micro Focus: Enterprise Analyzer data sheet
Micro Focus: Enterprise Analyzer online help
Micro Focus: Enterprise Developer data sheet
Micro Focus: Enterprise Developer online help
Micro Focus: Enterprise Sync data sheet
Micro Focus: Enterprise Sync online help
Micro Focus: Enterprise Test Server data sheet
Micro Focus: Enterprise Test Server online help
Micro Focus: Release Control data sheet
Micro Focus: Silk Central data sheet
Micro Focus: Silk Test data sheet

22 | Using Enterprise Developer in Modern Application Development

http://www.microfocus.com/docs/links.asp?vc=mfmfant_docs
http://www.microfocus.com/docs/links.asp?vc=mfchangeman_zmf_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfdeploy_auto_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_analyzer_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_analyzer_docs
http://www.microfocus.com/docs/links.asp?vc=mfent_dev_23_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mf_ent_dev_docs_ecl
http://www.microfocus.com/docs/links.asp?vc=mfent_sync_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfent_sync_docs
http://www.microfocus.com/docs/links.asp?vc=mfets_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfets_docs
http://www.microfocus.com/docs/links.asp?vc=mfrelease_ctrl_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfsilk_central_18_data_sheet
http://www.microfocus.com/docs/links.asp?vc=mfsilk_test_18_data_sheet

Continuous Improvement
Continuous improvement is strongly linked to one of the principles of the Agile manifesto which states that
"At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly". The improvements you want to achieve can be split into two distinct areas:

• Improvements to the software being produced.

The following sources of information could all be used to help you target improvements to your software:

• Test failures. If a particular area of code regularly causes test failures, is there the potential to
redesign that section of the code? Test failures would be flagged by the unit and integration testing
carried out in the continuous integration and continuous delivery processes of the modern
application development process as well as by the acceptance testing carried out in the continuous
delivery process.

• Code coverage. The code coverage capabilities of Enterprise Developer will highlight any areas of
your code that aren't being executed as part of your testing, giving you the opportunity to update
your tests to ensure that every line of code is thoroughly tested.

• Customer feedback. Any feedback that you get from your customers about your software can be fed
into the requirements gathering step of the Agile development process, giving you the opportunity to
assess the feedback and quickly make changes based on it if appropriate. The rapid iterative nature
of Agile development ensures that any changes you do make will quickly be delivered to the
customer.

• Improvements to the process used to produce the software.

A convenient opportunity for a team to have this discussion is the sprint retrospective that is a part of
the Agile development process. There is no fixed format to determine exactly what is discussed at a
sprint retrospective, but in general, variants of the following questions are asked:

• What went well?
• What didn't go well?

The scope of these questions is not limited to code-writing activities but covers the whole development
process, so from requirements gathering to release. For any aspects of operation that are deemed to
have not gone well, solutions can be discussed, and any changes can be implemented for future
sprints. If substantial changes are required, they can be handled in the same way as any other
requirements, with a tool such as Micro Focus Atlas.

As sprints are very short, typically two weeks, any changes that are made to the process will be put into
practice very quickly, and future sprint retrospectives will provide opportunities to discuss if the changes
made had the desired effect or if further changes need to be made.

Related information

Agile Manifesto: Principles Behind the Agile Manifesto

Using Enterprise Developer in Modern Application Development | 23

http://www.microfocus.com/docs/links.asp?vc=agile_princ

Using Enterprise Developer with Jenkins
This section of the documentation contains information that you need to know to in order to use Enterprise
Developer 3.0 in conjunction with Jenkins version 2.60.11. It includes information on what software you
need to install, how to configure Enterprise Developer and Jenkins to get the most from them working
together, and tips and guidance for using Enterprise Developer alongside Jenkins.

General information about using Enterprise Developer in a modern application development process is
included in Introduction to Modern Application Development.

Note: For full details about how to use Jenkins, see the Jenkins user documentation.

Related information

Introduction to Modern Application Development

Related reference

Jenkins user documentation

Overview of Jenkins
Jenkins is a continuous integration (CI) server that supports a wide range of tools and technologies.
Adopting a CI process ensures that all developers' working copies of code are regularly merged into a
shared trunk. Once a change is integrated to the repository, the product is automatically rebuilt and tested.

With Jenkins you can automate a number of day-to-day tasks such as checking out the sources from
source control, building, code analysis, and different levels of testing and deployment.

By setting up Jenkins to run these tasks each time a developer has changed the source code, you can
detect any defects much faster meaning that you maintain your applications' quality and reduce time to
market.

Jenkins is highly configurable, and there are numerous plugins available that provide access to a range of
tools including source control, shell and batch scripts. Jenkins works on multiple platforms, supports Java
and integrates with other corporate systems.

Using Projects and Pipelines

Jenkins supports two methods of specifying commands - simple projects and pipelines.

Earlier versions of Jenkins only provided projects (previously known as jobs) for managing your tasks.
Projects need to be created and configured manually in the UI and, if you need to create multiple projects,
could require more maintenance work. Configuring projects is independent from your code.

More recent versions of Jenkins also support pipelines where all build, test, analysis and deployment tasks
are stored in a single pipeline and saved as a Jenkinsfile. Micro Focus recommends using pipelines as they
are suitable for organizing complex activities running on multiple machines. Storing a pipeline in a file
format also means you can follow common CI best practices and save the pipeline in your source control
code system with the rest of your code as another artefact.

1 The examples in this section of the documentation have been tested with the specified versions of
Enterprise Developer and Jenkins. The concepts described would still apply to earlier or later releases of
the two products, however, some specific releases might require changes to the Jenkins configuration.

24 | Using Enterprise Developer with Jenkins

HTTP://WWW.MICROFOCUS.COM/DOCS/LINKS.ASP?VC=JENKINS_DOCS

For simplicity, the examples in this guide are created using projects and not pipelines. For details about the
pipeline syntax, see the Jenkins user documentation.

Related reference

Jenkins user documentation

Terminology
This documentation uses a number of terms as defined in the Jenkins UI. For a full list of the Jenkins
terms, see the Jenkins user documentation.

Agent A machine which connects to a Jenkins master and executes tasks when directed by the
master.2

Job A deprecated term, synonymous with project.

Master The central, coordinating machine which stores configuration, loads plugins, and renders the
various user interfaces for Jenkins.3

Node A machine which is part of the Jenkins environment and capable of executing pipelines or
projects. Both the master and agents are considered to be nodes.

Pipeline A user-defined model of a continuous delivery pipeline.4

Plugin An extension that provides additional functionality that is not provided by standard Jenkins.

Project A user-configured description of work which Jenkins should perform, such as building a piece of
software.

Related reference

Jenkins user documentation

Scenarios for Using Jenkins with Enterprise Developer
You can integrate Jenkins into your continuous integration environment in a variety of different ways. The
approach that you decide to implement depends on your particular development process.

Using a Master and Agent Machines

The simplest scenario is to install Jenkins on the same machine where you build and test your source
code.

Real-world development and delivery processes typically require a more complex scenario than this,
however, and you often need to ensure that your applications operate as expected on a variety of different
platforms. You can use Jenkins to its full potential in a multiple machine environment where Jenkins is
installed on one machine (master) and controls a number of tasks that execute on various other machines
(agents).

2 Agent machines are also referred to as Slaves.
3 Typically, this is the machine that has Jenkins installed. The actual work specified in a project would then

be performed on one or more agent machines (slaves).
4 The examples in this documentation are created using projects and not pipelines.

Using Enterprise Developer with Jenkins | 25

HTTP://WWW.MICROFOCUS.COM/DOCS/LINKS.ASP?VC=JENKINS_DOCS
HTTP://WWW.MICROFOCUS.COM/DOCS/LINKS.ASP?VC=JENKINS_DOCS

Automating Your Processes

You can use Jenkins to automatically start the next task in your application development process when the
previous one has completed successfully. For example, this is how you can create a sequence of projects:

1. Your projects examine the source code control system and trigger a checkout and build after a
developer commits a change.

2. At the end of a successful build, Jenkins can trigger other projects such as ones that run the MFUnit
tests or copy the executables to another location for additional testing or deployment.

Software Requirements
The examples in this documentation are created with the software versions specified below:

• Jenkins 2.60.1 - see the Jenkins user documentation for information about the software prerequisites. In
a scenario where you have a master and a number of agent machines, Jenkins must be installed on the
master machine. You can obtain Jenkins from the Jenkins download page.

• Enterprise Developer 3.0 for either Eclipse or Visual Studio - see the product's release notes for any
software prerequisites.

In a scenario where you have a master and a number of agent machines, Enterprise Developer must be
installed on each agent machine. You can obtain Enterprise Developer from Micro Focus SupportLine.

• Apache Ant 1.9.4 - this is required if you are working with COBOL applications created with Enterprise
Developer for Eclipse. Download Ant from the Apache Ant Web site.

The rest of this documentation assumes that you have installed and licensed the specified software as
required.

Related reference

Apache Ant Web site
Enterprise Developer 3.0 release notes
Jenkins download page
Jenkins user documentation
Micro Focus SupportLine

Installing and Configuring Jenkins
The following is a brief overview of how to install and configure Jenkins and how to create a project.

Installing and Accessing Jenkins

Jenkins is supported on a variety of platforms. See the Jenkins user documentation for detailed instructions
on how to install and start it on the platform that you will be using it on.

You can access Jenkins from any machine using http://<mymachine>:8080, where <mymachine> is
the name of the machine where Jenkins is installed.

Configuring Jenkins

You can specify general Jenkins options by clicking Manage Jenkins in the Home page of the Jenkins
interface.

Use plugins to extend Jenkins and to enable support for tools or systems - click Manage Plugins. Use this
page to check which plugins are installed and to install or update any as required. Widely-used plugins
include those used for source control systems (such as Git and Subversion). Other plugins you might find
useful include:

26 | Using Enterprise Developer with Jenkins

http://www.microfocus.com/docs/links.asp?vc=ant
https://supportline.microfocus.com/Documentation/books/EnterpriseDeveloper/30/mfenterprisedeveloper-eclipse-30-release-notes.pdf
HTTP://WWW.MICROFOCUS.COM/DOCS/LINKS.ASP?VC=JENKINS_DOWNLOAD
HTTP://WWW.MICROFOCUS.COM/DOCS/LINKS.ASP?VC=JENKINS_DOCS
HTTP://SUPPORT.MICROFOCUS.COM/

• Conditional Buildstep
• Copy Artifact
• JUnit Attachments and xUnit
• Node and Label Parameter
• PowerShell
• SCTMExecutor - works with Micro Focus MFUnit support and Micro Focus Silk Central
• vSphere - if you are using agent machines that are stored in VMWare vSphere
• Warnings Plug-in

Creating a Project

Click New Item in the Home page of Jenkins interface to create a project such as a freestyle project.

Use the project's configuration page (click Configure) to modify various aspects of what it does. Some
aspects that might be appropriate for your build system are:

• Restrict where this project can be run - use this to specify the agents (such as remote machines)
where the work should be performed.

• Source Code Management - enter details of where your project is in source control. There are plugins
available that allow Jenkins to work with most major source control systems.

• Build Triggers - define events that automatically start the execution of the project.
• Build - specify what the project should do such as executing Windows or UNIX commands, or Ant

scripts.
• Post-build Actions - specify the commands that the project should perform upon completion. These

could be emailing reports, compiling build results, or triggering other projects based on the output of the
current one.

Related reference

Jenkins user documentation

Advanced Configuration
The following sections provide guidance on how to specify more advanced configuration details to integrate
Jenkins even more closely with your Enterprise Developer development process.

Configuring Email Reporting
You can configure Jenkins so that it sends reports at the end of a build or a test, for example a report listing
any test failures.

To configure Jenkins to send email notifications:

1. Click Manage Jenkins in the Jenkins Home page.
2. Click Configure System.
3. Specify an SMTP server, any recipients and any other required details such as whether to always to

send an email or to only email about build failures - see the Extended E-mail Notification and E-mail
Notification lists.

To enable email notifications for a project:

1. Navigate to the configuration area of your project.
2. In the Post-build Actions section, click Add post-build action.
3. Add Editable Email Notification and E-mail Notification and specify a recipient email and other

settings as required.

Using Enterprise Developer with Jenkins | 27

HTTP://WWW.MICROFOCUS.COM/DOCS/LINKS.ASP?VC=JENKINS_DOCS

4. For the Editable Email Notification, click Advanced and configure email as well as what triggers it
(such as when a certain failure has occurred).

Use Sources from Source Control
You can configure Jenkins to access the sources you store in a source control system, of which there are
many types. The simplest way to do this is to use a file system watcher which triggers an action when a
change occurs in the source control repository.

To enable Jenkins to access the source control, install a required plugin:

1. In the Jenkins Home page, click Manage Jenkins > Manage Plugins, and then click the Available tab.
2. Locate File system SCM, and then install the required plugin by enabling the check box and clicking

Install.
3. Restart Jenkins (you can select Ctrl+C in the command window that is running Jenkins and then start

Jenkins again).

The following example shows how to configure your project to access the sources from Subversion:

1. Navigate to the project's configuration area.
2. Under Source Code Management, click Subversion.
3. In the Repository URL area, specify the URL path of the source control that you want to work with.
4. Specify the credentials and a local check-out directory as required.
5. Click Apply to save the configuration.

You have now created a source configuration for your project, but you also need to change the Build
Triggers section to tell Jenkins to monitor that location.

Triggering Builds Automatically
Jenkins supports triggers to automatically start running your projects. You can use various events as
triggers - a successful build started by another project, detecting a change in the code following a commit
in the SCM system, or a change as a result of monitoring a URL or a network locations to name a few.

You specify triggers in the Build Triggers section of the project's configuration. For example:

• Build after other projects are built - starts execution after successfully building another project.
• Poll SCM - starts execution after a commit to a source code control system. Alternatively, instead of

building on a source code change, you could specify that the project is to be executed at a scheduled
time.

Creating Environment Variables
There are different ways to specify environment variables in Jenkins. To specify an environment variable
that applies globally, go to the Jenkins configuration pages. You can also specify environment variables that
only apply to individual nodes, or ones that are set as an external step before starting Jenkins.

In a scenario where you have Enterprise Developer installed on multiple platforms on agent machines,
using environment variables for common installation paths can greatly simplify the creation of new projects.

For example, you can have an environment variable for the Enterprise Developer installation directory on
Windows, and another one for the corresponding location on UNIX. Other environment variables could
point to locations such as the installation location of Eclipse, the default source code control system check-
out folder, the workspace directory, or the location of the samples.

To set global environment variables in Jenkins:

1. From the Jenkins Home page, click Manage Jenkins.
2. Click Configure System.

28 | Using Enterprise Developer with Jenkins

3. In the Global properties section, check Environment variables.
4. Click Add and set any environment variables for paths that might be the same across a number of slave

machines.

To set environment variables for a node:

1. In the configuration page of the node, check Environment variables in the Node Properties section.
2. Click Add and specify any environment variables as required.

Related information

Best practices - Environment Variables

Using Agents
You can have Jenkins installed on one machine, known as a master, and use it to run projects that control
your day-to-day development processes on other machines, known as agents. This can be very helpful if
you need to ensure that your applications run correctly on a variety of different test configurations.

Note: An agent can either be a physical or a virtual machine.

The process of setting up agents in Jenkins is as follows:

1. In Jenkins on the master, create a node that defines a connection to the machine you want to use as an
agent. See the example below for instructions.

2. On the agent, open the Jenkins UI. Open the page for the node and follow the link to launch a Jenkins
agent which will establish a connection between Jenkins on the master machine and the agent
machine.

3. In Jenkins on the master, create a project and configure it to execute on the agent.

Example of Creating Agent Machines

The following example shows how to create a connection to an agent machine which is stored in a vSphere
cloud. This requires that you install the vSphere plugin in Jenkins.

Ensure that Jenkins is connected to the vSphere cloud:

1. From the Jenkins Home page, click Manage Jenkins.
2. Click General.
3. Under the Cloud section, click Add new cloud > vSphere cloud.
4. Specify the configuration and login details for connecting to the vSphere host that contains your virtual

machines.

To create a connection to an agent machine, first create a node in Jenkins as follows:

1. Click Manage Jenkins.
2. Click Manage Nodes.

This opens the Nodes page showing the machine that has Jenkins installed as the master.
3. Click New Node.
4. Specify a name for the node and click Permanent Agent, then click OK.
5. Fill in the details as required - for example, specify a Remote root directory if this is needed for

checking out sources on the agent.
6. Click Save.

To configure the agent to connect to the master:

1. On the agent machine, load the Jenkins Home page (http://mastermachine:8080).
2. From the Jenkins Home page, click the node for the machine that appears under the Build Execution

Status box.

Using Enterprise Developer with Jenkins | 29

3. From the Jenkins page for the node, click Launch to start the agent that connects the machine to
Jenkins.

Configure an existing project to execute on the agent as follows:

1. On the master machine, go to the project configuration page.
2. Check Restrict where this project can be run in the General section.
3. In the Label Expression, specify the name of the node that you just created and connected to.
4. Save the project.

Next time you build the project, it will execute on the agent.

Using Jenkins to Build COBOL Applications
The following sections describe aspects of Enterprise Developer's behavior that you need to configure to
enable your Enterprise Developer system to work with Jenkins.

In a Jenkins environment you often use Jenkins installed on a master machine to control processes that
execute on a number of other machines (agents) running different operating systems that also have
Enterprise Developer installed. In such configurations, it is useful to have the same Enterprise Developer
configuration settings on all agents.

Micro Focus recommends that you install Enterprise Developer using the same default settings and
locations on all Windows and UNIX machines where you will execute your build, test, analysis and
deployment tasks. This will make it easier to configure your Jenkins projects.

Setting up the Environment
In most cases, your Jenkins projects execute tasks in a command line environment and not inside the
Enterprise Developer IDE. This means that the COBOL environment is not automatically preconfigured as
it would be if you used the IDE. As a result, when you use Jenkins projects you typically need to manually
set the COBOL environment for your projects.

Note: If you use scripts to build your applications, then the scripts might already include the
commands for setting the COBOL environment. In this case, you do not need to specify the
environment in Jenkins - you only need to configure Jenkins to run the scripts.

To configure the environment for applications created with Enterprise Developer for Eclipse:

1. Ensure Enterprise Developer is installed on the machine you are going to use to build, test or analyze
the COBOL sources.

2. In Jenkins, go to the Build section of your project's configuration.
3. Depending on the platform where your project executes, add either a Windows batch command

(Windows) or a shell (UNIX) build step
4. Specify the following commands in the step, each one on a new line:

a. (Windows) Invoke the Enterprise Developer setupenv.bat file to sets the required environment
variables:

call "product-install-dir\setupenv.bat"

(UNIX) Call the cobsetenv script:

. /opt/MicroFocus/EnterpriseDeveloper/bin/cobsetenv

This sets the following environment variables - COBDIR, PATH, CLASSPATH and
LD_LIBRARY_PATH (or LIBPATH on AIX).

b. Set the JAVA_HOME environment variable:

• Windows:

set JAVA_HOME=JDKInstallDir

30 | Using Enterprise Developer with Jenkins

• UNIX:

export JAVA_HOME=java-install-dir
export PATH=$PATH:java-install-dir/bin

c. Specify the required Ant options:

set ANT_OPTS=-Xmx1024m

Tip: If your projects execute any tasks on agent machines, you can set JAVA_HOME from the
configuration page of the node for that machine.

See the Enterprise Developer product help for more command line options you can specify.

Tip: Optionally, you can create a file that includes all of the required environment variables and
configure your project to use it. To do this, you first need to obtain a list of all environment variables
that are set in Enterprise Developer:

1. From an Enterprise Developer command prompt, execute the following command:

cblpromp.exe -j

This displays a list of the environment variables set for Enterprise Developer in the command
prompt.

2. Save the list to a file on your machine such as env.properties.

Tip: Next, configure your project to use the variables specified in this file:

1. Install the Environment Injector plugin in Jenkins.
2. In the configuration area of your project, navigate to the Build Environment section.
3. Check Prepare an environment for the run.
4. In the Properties File Path section, specify the full path to the env.properties file.

Making mfant.jar Available to Enable Building
Eclipse COBOL project files, .cobolBuild, are Ant scripts that use a number of custom Micro Focus
tasks defined in the mfant.jar file. Each Eclipse project has its own .cobolBuild file which you need
to compile when building the application that they all form.

In order to build such projects with Jenkins, you need to specify the location of the mfant.jar file to
Apache Ant using ant's -lib command line option. You need to specify this in the Build section of the
Jenkins project's configuration:

• On Windows:

call ant -lib "%ProgramFiles(x86)%\Micro Focus\Enterprise Developer\bin
\mfant.jar" -f .cobolBuild

On UNIX:

call ant -lib $COBDIR/lib/mfant.jar -f .cobolBuild

Specifying the Location of Linked Folders
If your COBOL applications developed in Enterprise Developer for Eclipse use linked folders, you need to
specify their location in the Jenkins project's configuration in order for them to be available at build time.

To specify the location of linked folders:

1. Establish the linked folders that your project is using. To do this:

a. Build your application in Enterprise Developer.
b. Check the console log and note the printLocations locations at the start of the console output.

These are the locations of the linked folders.

Using Enterprise Developer with Jenkins | 31

2. When adding the command for building the .cobolBuild file to the Jenkins project configuration,
specify any linked folders using the following syntax:

-Dlinkedfolder.folderName=folderLocation

Examples

Example - Building COBOL Programs
The following example shows how to use Jenkins projects to build COBOL source code.

You are going to use Enterprise Developer and one of the MFUnit Airport samples to see how to use
Jenkins to build a COBOL application. The sample is stored in the \COBOL\AirportMFUnitDemo
subfolder in the location of the Enterprise Developer samples (which is c:\users\Public\Documents
\Micro Focus\Enterprise Developer\Samples\COBOL\AirportMFUnitDemo by default).

Example of Building COBOL Programs with an Eclipse Project

Before you create a Jenkins project, ensure that the following software is installed on the machine where
you will build the sample:

• Enterprise Developer for Eclipse
• Apache Ant

To create a Jenkins project for building the sample:

1. Create a new freestyle project.
2. Configure the project to work with COBOL - see Setting up the Environment.
3. In the Build section of the project's configuration, specify the command that will build your COBOL

project:

cd C:\Users\Public\Documents\Micro Focus\Enterprise Developer\Samples
\Eclipse\cobol\AirportDemo
call ant -f .cobolProj

4. Click Apply and then Save.
5. Click Build to build the project.

See To Build a Project Using Apache Ant in the Enterprise Developer documentation for some useful Ant
options you can use to build your projects.

Related information

Setting up the Environment

Example - Integrating Code Analysis
The following example demonstrates how to configure Jenkins to perform code analysis of COBOL projects
created with Enterprise Developer.

Example with an Eclipse Project

Before you configure Jenkins, you need to do the following:

• Ensure Enterprise Developer for Eclipse and Apache Ant are installed on the machine on which code
analysis will be performed - see Software Requirements. You use Apache Ant to build and analyze
COBOL projects.

32 | Using Enterprise Developer with Jenkins

• Configure your COBOL projects for code analysis in Enterprise Developer. See Performing Code
Analysis when Building a Project in the IDE in the Enterprise Developer documentation for more
information.

To integrate code analysis in Jenkins:

1. Create a freestyle project.
2. Configure the project to work with COBOL - see Setting up the Environment.
3. In the Build section of the project's configuration, specify the command that will perform code analysis

of your COBOL application:

call ant -f .cobolBuild build.and.analyze -DanalysisFailOnError=true

Where .cobolBuild is the Eclipse project file of the application you are going to analyze.

For example, the full set of commands for the Jenkins project might look similar to the following:

rem set the COBOL environment:
call "product-install-dir\SetupEnv.bat"
rem locate the mfant.jar file that includes the definitions of the Micro
Focus Ant tasks for analyzing code, and build and analyze the application
defined by the .cobolBuild project file:
call ant -lib "%ProgramFiles(x86)%\Micro Focus\Enterprise Developer\bin
\mfant.jar" -f .cobolBuild build.and.analyze -DanalysisFailOnError=true

Where:

• product-install-dir is the Enterprise Developer installation directory.

Tip:

• See Performing Code Analysis from the Command Line in the Enterprise Developer
documentation for all available code analysis options.

• You can use various plugins to customize the reports from code analysis. For example, you can
install the free Log Parser Plugin to provide better formatting of the reports.

Related information

Setting up the Environment
Software Requirements

Example - Running MFUnit Tests
The following example demonstrates how you can configure Jenkins to run MFUnit tests against a COBOL
application.

Enterprise Developer for Eclipse must be installed on the machine where you will run the MFUnit tests. You
are going to use one of the samples stored in the \COBOL\AirportMFUnitDemo subfolder in the location
of the Enterprise Developer samples (%PUBLIC%\Documents\Micro Focus\Enterprise
Developer\Samples).

1. Create a Jenkins project.
2. Configure the project to work with COBOL - see Setting up the Environment.
3. In Build section of the project's configuration, enter the following commands to copy the samples files to

the workspace:

• On Windows:

copy "C:\Users\Public\Documents\Micro Focus\Enterprise Developer\Samples
\mfunit*" %WORKSPACE% cd %WORKSPACE%
call examples.bat

• On UNIX:

cp /opt/microfocus/xxxxxxxx cd $WORKSPACE examples.sh

Using Enterprise Developer with Jenkins | 33

4. Build your project.

After the project build completes, there is a blue icon next to the project on the Jenkins Home page
which indicates that the build was successful. This, however, is not correct.

5. Check the project's console output.

In the text output you'll see that some tests failed even though the blue indicator in the previous step
suggests that everything ran successfully:

Micro Focus COBOL - mfurun Utility
Unit Testing Framework for Windows/Native/32

Options : verbose=true,process=separate,junit=true,printfile=true
Fixture filename : MFUTASCI.dll
 Preparing test case : MFUTASCI
 Executing test case : MFUTASCI
 Completed test case : MFUTASCI - Failed
 Generating junit xml : TEST-MFUTASCI.xml
 Generating report : MFUTASCI-report.txt

Test Run Summary
 Overall Result : Failed
 Tests run : 1
 Tests passed : 0
 Tests failed : 1
 Total execution time : 3

Although the tests ran to completion, there were a number of test failures that should have caused this
build to fail.

You now need to enable test reporting.
6. In the project's configuration page, navigate to the Post-Build actions section.
7. Click Add post-build action > Publish Junit test result report.
8. In Test report XMLs, enter *.xml and then save the configuration.
9. Build the project again.

Note that this time the icon indicating status has turned yellow. This indicates that the build ran to
completion but there were some test failures.

Related information

Setting up the Environment

Best Practices When Using Jenkins
This section includes some best practices that you might want to adopt when working with Enterprise
Developer and Jenkins. Although you do not have to adopt the processes described here, Micro Focus
recommends that you do as they are known to be successful in helping to create an efficient and effective
development process.

Using Jenkins With Source Control
Micro Focus recommends that you adopt some common best practices in your commit and build process
such as:

• Deliver small changes of code by checking in your code frequently. This ensures that if build problems
occur, it is easier to pin-point the exact reason for them.

• Do not check in any changes that are not tested or such that contain any errors.
• Do not check in any new changes before fixing the error that caused a Jenkins build failure.

34 | Using Enterprise Developer with Jenkins

Specifying any Environment Variables in a Project's
Configuration
Specifying required environment variables within a Jenkins project's configuration makes the project more
portable between different operating systems and reduces the changes of any external factors causing the
build to fail.

Using this approach might mean that there could be some duplication in projects so choose the best
method depending on how your particular project runs.

Creating Separate Projects for Building and Testing
Your Code
A large benefit of continuous integration is receiving feedback quickly on whether a source code commit
has introduced any failures. As such it can often be better to use separate projects for your build and test
tasks. In this way, if a build fails, Jenkins will not attempt to run any tests and you will receive an error
report much faster.

Using Pipelines to Build Your Applications
When you organize your build, test, code analysis and deployment tasks with Jenkins, Micro Focus
recommends that you use pipelines in preference to projects.

You can save your pipelines as Jenkinsfiles and store them in your source code control system alongside
your code. This means you can use different build instructions in the Jenkinsfile for the different branches
of your code that represent the versions of the application. You only configure Jenkins once to use the
sources from a particular branch in the source code control system and Jenkins will read the instructions in
the pipeline about how to build your application.

Troubleshooting
The following sections describe some issues that you might encounter when using Jenkins with Enterprise
Developer with suggested workarounds.

Ant Error "Can't find mfant.jar" When Building COBOL
Projects
If you receive this error when building any of your COBOL projects the most likely cause is that you have
not specified the location of mfant.jar to Ant.

To resolve this error perform the operation described in Making mfant.jar Available to Enable Building.

Related information

Making mfant.jar Available to Enable Building

COBOL Projects Don't Build
If some of your COBOL projects build successfully but others fail unexpectedly, it suggests that the problem
is with the project (or a project-based configuration in either Enterprise Developer or Jenkins) rather than
with the build system itself.

To investigate what the possible causes might be:

Using Enterprise Developer with Jenkins | 35

• Open the COBOL project inside the IDE supplied with Enterprise Developer and ensure that it builds
correctly.

• Check the Jenkins project's configuration and any of the build steps defined in it.

A Build Failure isn't Reported as a Failure
You can do one of the following to check why failures are not reported:

• Check the Jenkins configuration and the project configuration to ensure that any errors will be reported
correctly. See Configuring Email Reporting.

• Check the project's console log for any error messages.
• Build your application inside the Enterprise Developer IDE and check whether any errors are reported.

Related information

Configuring Email Reporting

36 | Using Enterprise Developer with Jenkins

	Contents
	Using Enterprise Developer in Modern Application Development
	Introduction to Modern Application Development
	What is Modern Application Development?
	Key Concepts in Modern Application Development
	Steps Involved in Modern Application Development

	Agile Methods
	Introduction to Agile Methods
	Agile Development Workflow
	Agile Development and Micro Focus Development Tools

	Continuous Integration
	Introduction to Continuous Integration
	Continuous Integration Workflow
	Continuous Integration and Micro Focus Development Tools

	Continuous Delivery
	Introduction to Continuous Delivery
	Continuous Delivery Workflow
	Continuous Delivery and Micro Focus Development Tools

	Continuous Improvement

	Using Enterprise Developer with Jenkins
	Overview of Jenkins
	Terminology
	Scenarios for Using Jenkins with Enterprise Developer
	Software Requirements
	Installing and Configuring Jenkins
	Advanced Configuration
	Configuring Email Reporting
	Use Sources from Source Control
	Triggering Builds Automatically
	Creating Environment Variables
	Using Agents

	Using Jenkins to Build COBOL Applications
	Setting up the Environment
	Making mfant.jar Available to Enable Building
	Specifying the Location of Linked Folders

	Examples
	Example - Building COBOL Programs
	Example - Integrating Code Analysis
	Example - Running MFUnit Tests

	Best Practices When Using Jenkins
	Using Jenkins With Source Control
	Specifying any Environment Variables in a Project's Configuration
	Creating Separate Projects for Building and Testing Your Code
	Using Pipelines to Build Your Applications

	Troubleshooting
	Ant Error "Can't find mfant.jar" When Building COBOL Projects
	COBOL Projects Don't Build
	A Build Failure isn't Reported as a Failure

