
Micro Focus
OpenFusion CORBA Services

Version 5.0.1

Notification Service Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2009-2016. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2016-04-15

Contents
Preface .. vii
About the Notification Service Guide...vii

Intended Audience...vii
Organisation ...vii
Conventions..vii

Contacting Micro Focus ..viii
Further Information and Product Support ...viii
Information We Need ... ix
Contact information ... ix

Introduction .. 1

Part I Notification Service
Description.. 5

OMG Standard Features ... 5
OpenFusion Enhancements... 6
Concepts and Architecture.. 6

Dependencies on Other Services ... 7
The Basic Concept .. 7
The Architecture ... 8
The Details .. 11

Structured Events... 11
Event Communication Models... 12
Event Channel.. 12
Admin Objects ... 13
Proxies.. 13
Queues ... 14
Quality of Service ... 15
Filtering .. 16
Sequencing.. 17
Persistence .. 19
Federation ... 20

Using the Service... 23
Introduction ... 23

Import Statements ... 23
Compiling and Running Clients.. 24

Compiling Client Applications.. 24
Running Client Applications .. 24

Initialising the ORB... 24
Starting the Notification Service ... 24
Configuring the Notification Service... 25
Starting Clients .. 25

Creating Clients .. 25
Creating a Supplier ... 25

Connecting to the Server ... 25
Creating Events.. 29
Sending Events .. 30

Creating a Consumer... 31
Connecting to the Server ... 31
Receiving Events .. 34
Suspending and Resuming Connections ... 35
OpenFusion CORBA Services Not i f icat ion Service Guide iii

Removing Inactive Proxies..35
Proxy Push Consumers ..36
Proxy Push Suppliers ...36
Alternative Method..36

Using Quality of Service Properties ..37
Creating an Event Channel with QoS..37
Managing QoS ..38

Adding New QoS to a Channel ..38
Accessing the QoS ..38
Validating Event QoS ...39

Using Filters ...39
Filter Objects..39

Creating a Filter Object..40
Adding a Filter Object to an Admin Object ..40
Listing Filter Objects..40
Removing Filter Objects ...41

Event Filters ...41
Constructing Constraints ..41
Managing Constraints ..42

Writing Constraint Expressions..43
Extended TCL Grammar ...43
Basic Elements ...43
Operators ..44
Constraint Examples..46

Using Persistence ..46

API Definitions ..47
OMG Standard API Definitions ...47

Event Channel Factory Interface..49
Event Channel Interface...50
Administration Interfaces ...51
Filter Interfaces ..51

Supplemental Information...53
Quality of Service Properties ...53

Standard OMG Properties ...53
OpenFusion QoS Extensions..58

Memory Management Properties ...62
Administrative Properties ...64

Errors and Exceptions ..65
Errors..65
Exceptions ...65

Implementation Limit Exception ..66

Part II Configuration and Management
Notification Service Configuration ...69

Common Properties ...69
NotificationSingleton Configuration ..69

Persistence Properties..69
CORBA Properties..70
Messaging Loggers ..72
Instrumentation Properties ...80
General Properties...88
Messaging..88
iv OpenFusion CORBA Services Not i f icat ion Service Guide

ProcessSingleton Configuration ... 92

Notification Service Manager... 95
Using the Notification Service Manager .. 95

The Notification Service Manager .. 95
Notification Service Hierarchy... 96
Notification Service Details .. 97

Setting up an Event Channel .. 97
Creating an Event Channel... 97
Setting Properties on an Event Channel ... 97
Admin Property Settings.. 98
QoS Property Settings... 98

Setting up a Supplier or Consumer Admin .. 98
QoS Settings.. 99

Admin Filters.. 100
Filter Settings .. 100

Setting Proxy Instances ... 103
QoS Settings.. 104
Creating a New Proxy Object.. 104
Proxy Filters .. 104

Testing Event Delivery ... 105
Creating the Test Clients.. 105
Configuring the Test Clients ... 105
Destroying Proxy Objects... 109

ChannelConfigurator Tool.. 111
ChannelConfiguratorObject Configuration ... 111
Using the ChannelConfigurator Tool ... 112

Saving a Channel Configuration .. 113
Running from the Command Line .. 113

Index... 115
OpenFusion CORBA Services Not i f icat ion Service Guide v

vi OpenFusion CORBA Services Not i f icat ion Service Guide

Preface
About the Notification Service Guide

The Notification Service Guide is included with the OpenFusion CORBA
Services’ Documentation Set. The Notification Service Guide explains
how to use the OpenFusion Notification Service, as well as associated
extensions to the service.

The Notification Service Guide is intended to be used with the System
Guide and other OpenFusion CORBA Services documents included with the
product distribution; refer to the Product Guide for a complete list of
OpenFusion documents.

Intended Audience
The Notification Service Guide is intended to be used by users and
developers who wish to integrate the OpenFusion CORBA Services into
products which comply with OMG or J2EE standards for object services.
Readers who use this guide should have a good understanding of the
relevant programming languages (such as Java, IDL) and of the relevant
underlying technologies (J2EE, CORBA).

Organisation
The Notification Service Guide is organised into two main sections. The
first section describes the OpenFusion Notification Service, and provides:

• a high level description and list of main features

• explanation of the component’s architecture and concepts

• how to use specific features

• detailed explanations of the main interfaces and how to use them

• other information which is needed to use the component

The second section, “Configuration and Management”, provides information
on configuring and managing the OpenFusion Notification Service’s
components using the OpenFusion Administration Manager. Detailed
descriptions of properties specific to the component are included. This
section should be read in conjunction with the System Guide.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Notification Service Guide.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows systems only.

Information applies to Unix based systems (e.g. Solaris) only.

C language specific

C++ language specific

Java language specific

i
WIN

UNIX

C
C++
Java
OpenFusion CORBA Services Not i f icat ion Service Guide vii

Hypertext links are shown as blue.

Items shown as cross-references, such as “Contact information”’, act as
hypertext links; click on the reference to go to the item.

Courier fonts indicate programming code and file names.

Extended code fragments are shown in shaded boxes
:

Italics and Italic Bold indicate new terms or emphasise an item.

Bold indicates user related actions, e.g. File | Save from a menu.

Steps in a task are numbered:

1 One of several steps required to complete a task.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

• The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

• The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

• The Micro Focus YouTube channel for videos related to your product.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);
viii OpenFusion CORBA Services Not i f icat ion Service Guide

http://www.microfocus.com

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. You can find this by either logging into your order via
the Electronic Product Distribution email or via the invoice with the order.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check in particular:

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp
OpenFusion CORBA Services Not i f icat ion Service Guide ix

http://www.microfocus.com
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

x OpenFusion CORBA Services Not i f icat ion Service Guide

Introduction
The OpenFusion Notification Service is one of a range of services and
interfaces included with the OpenFusion CORBA Services product range.

The Notification Service component of the OpenFusion Notification Service
product can be used stand-alone or with other OpenFusion CORBA Services
interfaces and services. It is standards based, compliant with recognised
industry standards and specifications, and supports portability and
interoperability.
OpenFusion CORBA Services Not i f icat ion Service Guide 1

2 OpenFusion CORBA Services Not i f icat ion Service Guide

Part I
Notification Service

In this part
This part contains the following:

Description page 5

Using the Service page 23

API Definitions page 47

Supplemental Information page 53

Description
The OMG Notification Service is a greatly enhanced extension of the OMG
Event Service and is backwards compatible with it. Both of these services
enable data, referred to as events, to be sent and received between
distributed software objects in a decoupled fashion via an event channel. This
decoupling enables events to be transmitted more efficiently and flexibly than
when events are sent directly between objects (that is, tightly coupled).

Some of the benefits of using these services include:

• Ease of maintenance when adding or removing suppliers and consumers
of events in a system

• More efficient use of network bandwidth between the suppliers and
consumers

• Performance increasingly improves over tight coupling as the number of
suppliers and consumers increases (through the use of concurrency)

• The OMG Notification Service provides additional benefits, including:

• The ability to control the flow of events in order to maximise performance

• The provision of, and ability to control, event reliability within the service

• The management of the events and how their flow through the service is
buffered or queued

The OpenFusion implementation of the Notification Service provides the
majority of the features and benefits provided in the OMG Notification Service
Specification, which includes those features which are most used. The
OpenFusion Notification Service also provides additional benefits for improved
administration of the service plus improved flexibility and control over the
flow, buffering and reliability of events sent through the service.

The OpenFusion Notification Service is widely used in the
telecommunications, finance, transport/travel and energy industries for
applications ranging from propagating alarms on equipment, providing share
dealing services, to booking hotels and planes.

OMG Standard Features
The OpenFusion Notification Service includes the standard OMG features,
such as:

• Decoupling the event transmission from suppliers to consumers by using
event channels and proxies. The events may be structured (containing
details about the event), or sequences of events (events sent in batches
for improved performance)

• Avoidance of poor performance due to polling by using the push style
event transmission model for event notification

• Enabling clients to receive only those events they are specifically
interested in by using filters attached to the client’s proxy

• The provision of filters and the Extended Trader Constraint Language for
controlling or limiting events being sent through the service in order to
improve performance, flexibility and manageability of event transmission
OpenFusion CORBA Services Not i f icat ion Service Guide 5

• Enabling reliability, e.g. guaranteed event delivery, queues (event flow
buffers) and events to be managed at the channel, proxy or event level
through the use of Quality of Service (QoS) settings

• Enabling certain types of events to be transmitted in batches in order to
increase performance

• Additional administrative operations

OpenFusion Enhancements
The OpenFusion Notification Service provides many enhancements over the
standard OMG specification. These enhancements include:

• Provision of external graphical user interfaces, as part of the OpenFusion
Graphical Tools, for run-time administration of the service

• Rich administrative interface

• An extensive Quality of Service framework incorporating additional
settings for improved controllability, performance tuning and flexibility

• Provisions for improved performance and scalability, such as:

• Multi-threading

• Ability to federate channels (connect event channels together)

• Provision of persistence for events, channels and connections to
commercial databases through the use of optimized stored procedures

• Automatic service activation on demand

• Support for custom Java filters which may perform substantially better
than the standard OMG constraint filter

• Ability to federate channels across multiple platforms and interoperate
with native notification services

Limitations

This version of the OpenFusion Notification Service does not support the
OMG-defined pull model since the pull model is rarely used. Removing this
model has enabled the OpenFusion Notification Service to be smaller and
have better performance.

Concepts and Architecture
Although the OpenFusion Notification Service is generally compliant with
the OMG Notification Service specification, it has many additional features
and enhancements.

The OMG Notification Service is an extension of the OMG Event Service and
is backwards compatible with it. However, this release of the OpenFusion
Notification Service only supports the semantics specified for Notification
Service clients, since a vast majority of users only use this client type.
6 OpenFusion CORBA Services Not i f icat ion Service Guide

Dependencies on Other Services
The Notification Service does not require other services in order to run.
However, the Notification Service IDL includes IDL from these services:

• Notification Service inherits from the Event Service.

• Time Service definitions are used to support start time and timeout
values.

The Time Service can be used to provide a central source of time within a
distributed system when a client wishes to time-stamp events. The Timer
Event Service can be used to generate events at timed intervals.

The Basic Concept
There are many situations when an object needs to receive notification that
an event has been generated or produced by another object, such as when
an alarm control panel of a security system needs to know if a remote alarm
has been activated. The object may also need to know details about the
event itself so that it can take appropriate action. Using the security system
example, the alarm panel may need to know which alarm was activated, its
location, the reason for the alarm (break-in, fire, etc.) in order to provide
appropriate information to security officers.

Obviously, the objects producing and using the event need to be connected
to each other in some fashion so that communication of the event can
occur. A simple solution would be to connect the objects together directly:
notification of an event occurrence and information about it being
communicated directly between the two objects. Importantly, these objects
would then be tightly coupled to each other: changes effecting the
communication of the event by one object will directly affect the other
object.

Tight coupling performs well when one object is connected to only one other
object. If, however, many objects are connected to many others, especially
when the number of objects changes, then maintainability, performance
and scalability become serious issues. For example, each time an event
producer object (such as a new alarm) is added, then all event user, or
consumer, objects (such as the alarm panels in the building, at the security
firm, in the police or fire stations) will need to be changed, too. In software
terms, code for all consumer objects (the consumers) will need to be
altered, re-compiled, tested, etc., whenever supplier objects (the suppliers)
are added.

Also, communication between tightly coupled objects is synchronous, that is
before the supplier can send an event, the consumer must be ready to
receive it. If a supplier is connected to several consumers, then it must wait
for the slowest consumer to receive (or consume) the event before it can
proceed.

Decoupling suppliers and consumers through an intermediary can overcome
these issues. If new suppliers or consumers are added to the system, then
only the intermediary needs to be altered, not each consumer or supplier,
respectively. Further, the intermediary can provide event buffers, or queues
and multi-threading capabilities in order to enable asynchronous
communication: events can be sent and received without waiting for the
slowest “member of the pack”.

An intermediary can therefore take over the task of communicating events
between suppliers and consumers: it can provide a service for them, who
become its clients.
OpenFusion CORBA Services Not i f icat ion Service Guide 7

The Event Service was the first service that the OMG specified for the
decoupled, asynchronous communication of events between event producer
and consumer client objects. By decoupling the objects, through the use of
an event channel and proxies, the Event Service provided improved
maintainability, performance and scalability over systems which rely on
tightly coupled objects.

Like the Event Service, the Notification Service provides decoupled,
asynchronous communication between supplier and consumer client
objects. However, the Notification Service provides additional features, such
as Quality of Service and filtering, to dramatically improve reliability and
help control event transmission.

The Architecture
The Notification Service can be looked at from two perspectives:

1 from the journey that an event takes from supplier to consumer, that is,
its transmission path

2 how the Notification Service components are conceptually connected and
created

Event Transmission

A supplier generates events.

1 The supplier sends the events to a proxy representing the consumer, the
consumer proxy. If needed, the event can be translated to a type that is
expected by the consumer.

2 Unwanted events can be filtered out before transmission to the next
stage of the journey, the supplier admin object.

3 Numerous consumer proxies can be connected to a single supplier admin
object: filtering and quality of service settings can be applied by the
admin object to all of the events being supplied by the proxies, as a
group, before they are sent to the event channel.

4 The event channel transmits the events, which have not been filtered
out, to a consumer admin object. The consumer admin object then
forwards those events to its individual supplier proxies: additional
filtering and quality of service adjustments can be by defined the admin
object prior to forwarding.

5 Each supplier proxy sends their events to their respective event
consumers (one proxy per consumer). Final filtering and quality of
service settings can be applied at the proxy for each event before it is
sent on to the consumer.
8 OpenFusion CORBA Services Not i f icat ion Service Guide

Figure 1, “Basic OpenFusion Implementation”, shows that only the push model of
event transmission is used in the OpenFusion implementation of the basic
architecture.

Figure 1 Basic OpenFusion Implementation

Component Connection and Creation

The components of the service are organised hierarchically. The main
component is the event channel. Event channels are created by the
service’s event channel factory: multiple event channels can be created by
the event channel factory for operation within the service.

Admin objects are created by event channels; proxies are created from the
admin objects. Finally, each proxy is connected to a client supplier object or
client consumer object.

Each object within the hierarchy is given a unique identifier when it is
created. The combination of the hierarchical organisation and the unique
identifiers enables all components to be found or referenced from any other
component in the hierarchy.

Main Components and Features

The main components of the OpenFusion Notification Service are:

• Event channels, admin objects, proxies, filter objects, and queues

The types of event are:

• Structured events (the OpenFusion Notification Service does not support
Event Style events or typed events, although they may be supported in
future releases)

The transmission model used by the OpenFusion Notification Service is the
push model.

Note:

The OMG-defined pull model is rarely used and was removed from the
OpenFusion Notification Service in order to reduce size and complexity as
well as improving performance. This version of the OpenFusion Notification
Service does not support the pull model.

Figure 2, “Main Components”, shows the service’s main components, including
filters, queues, and translation.

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Supplier
Proxy

Proxy Push
Consumer

Event
Consumer

Push
Supplier

Event
Consumer

i

OpenFusion CORBA Services Not i f icat ion Service Guide 9

Figure 2 Main Components

Features

The Notification Service provides various management, reliability and
performance enhancing operations and features, including:

• Standard OMG features:

• Quality of Service (QoS), for providing and controlling reliability, queue
management and event management

• Sequencing, enabling events to be sent in batches in order to enhance
performance

• OpenFusion enhancements:

• Quality of Service extensions, additional QoS properties for improving
controllability and flexibility of event transmission

• Federation, where event channels can be connected or federated
together for performance, reliability and flexibility

• Transparent fail-over, which takes advantage of ORB vendor features
(when provided) for keeping the service operating when a server host
fails; enables another host to transparently, without loss of events,
support the service

• Persistence, which enables events and connections to be made
persistent

• Event storage plugins, enables database storage of persistent events,
including the use of JDBC and stored procedures

• Administration tools, including Graphical User Interfaces (as part of the
OpenFusion product) and additional programming interfaces (as part
of the service itself)

These components, event types, transmission models, methods and
features will be described in detail below.
10 OpenFusion CORBA Services Not i f icat ion Service Guide

The Details

Structured Events
Untyped events encapsulate basic data types transmitted and received by
client objects. Structured events are untyped events with attached headers
containing id, QoS and filtering information.

A structured event consists of two main parts:

• An event header containing identification and Quality of Service
information and

• An event body containing information used to filter the event, plus the
event itself, an Any

Figure 3 Structured Event

Event Header

The event header contains a fixed header and variable header.

The fixed header holds information identifying the particular event and
includes:

• An event domain (domain_name) - the domain of a particular vertical
industry where the event type is defined, such as telecommunications,
finance, transportation, etc.

• An event type (type_name) - the type of particular event within the
domain, for example StockQuote within the finance domain

• An event name (event_name) - a unique name for the particular event
instance being transmitted

The variable header contains QoS property settings for a specific event.
These settings consist of a sequence of zero or more name-value pairs. The
name component of the pair is a string variable which identifies a particular
QoS property; the value component is an Any which contains the value of
the QoS property.

domain_name

event_name

type_name

name1

...

value1

name2 value2

namen valuen

name1

...

value1

name2 value2

namen valuen

remainder_of_body Remaining body

Variable header

Fixed header

Filterable body fields

Event header

Event body
OpenFusion CORBA Services Not i f icat ion Service Guide 11

For example, a name could be set to the QoS property EventReliability with
its corresponding value set to 1 (a short defined as persistent). Refer to
“Quality of Service” for a list of available QoS properties.

Event Body

The event body contains a filterable body and a remaining body.

The filterable body contains another sequence of zero or more name-value
pairs. These pairs, predictably, are used for filtering the event. Each name-
value pair consists of the name of a property (a string variable) and its
value (an Any).

The filterable body is intended to be used for filterable properties which
have been defined within an application domain. In order to filter the event,
a client constructs filter constraints which are applied, using the Notification
Service’s filters, to the properties contained in the structured event’s
filterable body. (See “Filtering”.)

The remaining body (remainder_of_body) contains the actual event data,
which is an Any. As with the original Event Service, this part of the
structured event can contain any data that a user wants to send along with
the event.

Event Communication Models
The OpenFusion Notification Service uses the push communication model,
whereby suppliers actively send or push events to the event channel and
consumers passively receive them.

Event Channel
The event channel (also referred to as the notification channel in the
Notification Service) is the component which provides the loosely-coupled
communication between client objects. It is the event channel which
handles supplier registration and the broadcasting of events to consumers.

The Notification Service allows any number of event channels to be active
concurrently.

Notification Service event channels, unlike those of the Event Service,
possess Quality of Service (QoS) properties and event filtering. QoS and
filters set on a channel affect all relevant events which pass through it.
Further, QoS and filter settings are inherited by any admin object created
by the event channel.

Client objects can set various QoS and administrative properties on the
event channel when it is created. For example, some of the properties that
can be set include the maximum number of events the channel will buffer at
a time, as well as the maximum number of consumers and suppliers that
can connect to the channel.

Event channels are created by an event channel factory. The channels, in
turn, create admin objects, which in turn create proxies. This creation
process forms a channel - admin - proxy hierarchy.

Note that when a new channel is created, indeed when any object in the
hierarchy is created, it is given a unique numeric identifier. This identifier
enables objects within the hierarchy to find (that is, find a reference to)
their ‘parent’ or ‘child’ objects. This ability enables objects to administer
other objects within their hierarchy. Clients are therefore able to discover all
objects that comprise the hierarchy, starting from any object within the
channel.
12 OpenFusion CORBA Services Not i f icat ion Service Guide

Admin Objects
Admin objects perform various administrative and management functions,
such as creating proxies and acting as a mechanism for separating proxies
into controllable groups

Admin objects are associated with either suppliers or consumers (supplier
admin objects or consumer admin objects).

Note that supplier admin objects create consumer proxies and vice versa
(remembering that suppliers connect to consumer proxies, consumers
connect to supplier proxies). The Notification Service’s admin objects can
create, in addition to Notification Style proxies, Event Service style proxies.

Event channels may have multiple admin objects. This enables proxies to be
logically grouped and to optimise the handling of clients which have
identical requirements.

Admin objects manage or administer the proxies that they have created (as
a group):

• QoS properties are assigned to an admin object’s proxies at the time the
proxy is created, although the QoS properties for these proxies can be
changed for each individual proxy as required

• An admin object’s filter properties (by assigning a filter object to it) affect
all the proxies connected to it, even though each proxy may have its
own, additional filter objects

Proxies
Proxies connect supplier and consumer client objects to the event channel
of the Notification Service. Importantly, proxies represent or stand-in for a
client. For example, a supplier behaves as if it is connected to an actual
consumer, however it is actually connected to a proxy for the consumer, a
consumer proxy (also called proxy consumer: both forms are used in the
OMG specification). Suppliers connect to consumer proxies; consumers
connect to supplier proxies.

Individual proxy types are specific to:

• The type of event being transmitted

• Whether the events are being sent singly or in batches when used with
structured events (referred to as sequenced structured events)

For example, a structured push supplier proxy connects a structured event
consumer to the event channel and uses the push model to receive events.

Each proxy has its own QoS object plus zero or more filter objects: this
enables QoS properties and filter properties to be set at the individual proxy
level. Note, however, that the QoS and filter object settings for the proxy’s
admin object also affect the events that the proxy receives or transmits. For
example, a proxy consumer (connected to a suppler) may allow Event A to
be sent, but its admin object may still filter it out.

Suspension, Resumption and Disconnection

Push-model event suppliers can temporarily suspend event communication.
The event channel buffers the events while a consumer connection is
suspended: these events are transmitted when the client resumes its
connection (subject to the QoS discard policy when the maximum number
of events per consumer QoS policy is exceeded).

i

OpenFusion CORBA Services Not i f icat ion Service Guide 13

Figure 4 illustrates the four states a proxy can have during creation,
suspension, resumption and disconnection.

Figure 4 Proxy States

For proxy push suppliers, the suspended state indicates that the Notification
Service will suspend the pushing of events onto the consumer. While
suspended, events will be queued at the proxy for later delivery.

A proxy is a communication end point and disconnecting it implies that the
proxy object is destroyed. After being disconnected, the proxy can no
longer be used to send or receive events.

A push consumer can also disconnect a proxy by raising the Disconnected
exception in the push operation.

It is the client’s responsibility to disconnect (and destroy) the proxy when
the client terminates since the service has no means of knowing that the
client no longer exists. Accordingly, the client should call its associated
proxy’s disconnect method. For example, if the client is a push supplier
connected to a ProxyPushConsumer (suppliers connect to consumer
proxies, consumers connect to supplier proxies), then the
disconnect_push_consumer() method for its ProxyPushConsumer object
should be called prior to termination.

Queues
Queues are buffers for storing events until consumers are ready to receive
the events. Queues free suppliers from the need to wait for consumers to
consume their events before continuing.

Each event channel has a master event queue and each supplier proxy has
a proxy queue (see Figure 5).

Incoming events enter the master event queue: if event reliability is set to
persistent, the event will be written to persistent storage before the event is
sent on. The behaviour of the master event queue is affected by the event
channel’s order and discard QoS policies. The queue’s maximum length is
set by the MaxQueueLength property.

Events are then dispatched into proxy queues. Each proxy queue has its
own order and discard policies for the proxy object it is connected to, i.e.

not
connected connected

suspended

destroyed

disconnected

suspend

resume

connect

create

disconnect

disconnect

disconnect
14 OpenFusion CORBA Services Not i f icat ion Service Guide

each proxy queue may have different policies than the others. The
maximum queue size for a proxy queue is limited by the
MaxEventsPerConsumer QoS property.

The proxy queues potentially contain very different sets of events,
depending on filtering, ordering, queue size and the “speed” of the
consumer. When an event is delivered, it is removed from the master
queue.

The proxy queue keeps track of the events which have been delivered. If
the Notification Service fails for any reason (e.g. host crash, lost
connection, etc.), then the contents of the master queue will be recovered,
provided that the events have been set as persistent beforehand. Note that
when recovery takes place only those events which have not yet been
delivered to a consumer will be allowed to re-enter the proxy queue.

Figure 5 Event Queues

Quality of Service
1 There is no direct communication between suppliers and consumers when

using the Notification Service (a decoupled communication model).
Consequently, when an event is sent from a supplier to a consumer,
there are three points where the event is (conceptually) transmitted:

a When the event is delivered by the supplier to the event channel

b When it is forwarded by the channel

c When the event is delivered by the channel to the consumer

An application may wish to set QoS at each of these points. Accordingly, the
Notification Service enables each channel, connection and message (the
transmission points) to possess relevant, configurable QoS settings. These
settings cover the delivery guarantee, aging characteristics and
prioritisation for the transmitted events.

Standard OMG Properties

Quality of Service settings are defined as properties; each property has an
associated value. A particular property may have a range of values that
indicate different requirements or delivery characteristics to support a wide

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Proxy
Consumer

Supplier
Proxy

Proxy
Consumer

Event
Consumer

Supplier

Supplier
Event

Consumer

Proxy
Queue

Proxy
Queue

Master
Event
Queue
OpenFusion CORBA Services Not i f icat ion Service Guide 15

variety of application needs: precise QoS requirements, at any particular
level, can be expressed as a set of properties.

Quality of Service properties cover three main areas: reliability, queue
management and event management. Note that not all QoS properties can
be applied at all levels of the Notification Service.

Detailed descriptions of these properties are given in the “Standard OMG
Properties” section of the “Supplemental Information” chapter.

OpenFusion QoS Extensions

The OpenFusion Notification Service supports the QoS properties described
in the OMG specification which are listed above. Further, the OpenFusion
Notification Service supports a comprehensive, extensible QoS framework
that allows clients to configure the run-time behaviour of event channels,
admin and proxy objects: in other words, their QoS properties can be set at
run-time.

The OpenFusion Notification Service’s QoS also:

• Enforces portability, especially with regard to reliability

• Supports ORB vendor features

• Addresses the Event Service’s deficiencies

• Provides additional queuing policies

The extended OpenFusion Notification Service QoS properties are listed and
described in “OpenFusion QoS Extensions” in the “Supplemental Information”
chapter.

The QoS framework supports logical grouping, whereby a channel treats its
admin objects as a group and an admin object treats its proxies as a group.

A group is a collection of objects that have been created by a particular
factory, the group object. For example, a channel, the group object (or
group for short) groups the admin objects it has created; an admin object is
the group object for its proxies.

The value of a QoS property that has been applied to a group automatically
becomes the default value for all new objects created by that group. Note
that existing objects, those previously created by the group object, are not
affected. Also note that a client may override existing QoS group properties
for any object within the group.

Filtering
Filtering allows the transmission of events to be selectively stopped or
filtered out. Filtering is performed using filter objects which are attached to
admin and proxy objects (see Figure 2, “Main Components”). A single filter
object can be added to more than one of these objects at a time: for
example a single filter can be used by several proxies, or by a proxy and an
admin. However, this can lead to unmanageable deployment situations (see
warning note shown immediately below).

Filter objects should be destroyed when the objects that use them are
destroyed, otherwise they will become a source of leakage. However, care
must be taken when destroying filter objects that are used by multiple
objects in order to avoid inadvertently destroying a filter which is still in
use.

Filter objects use a constraint language to describe which events should be
filtered, i.e. they constrain which events are allowed and may be referred to
as forward filters since they forward filtered events. Also, all constraints
16 OpenFusion CORBA Services Not i f icat ion Service Guide

added to a filter are assigned a unique identifier which enables constraints
to be modified or deleted at run-time.

Constraint Language

Any conformant implementation of the Notification Service specification
must support the Extended Trader Constraint Language (Extended TCL), an
extension of the constraint language used for the Trading Service.

The Extended TCL grammar fixes a few problems with the basic Trader
Constraint Language, while adding suitable constructs for filtering events.

This grammar is intuitive for programmers because it mimics how data
structures are normally accessed and is based on the Java style dot
notation.

For example, a simple query string could be:

$type_name == ’Alarm’ and $Priority > 4

which forwards events of type Alarm which have a priority greater than
four.

A description of the Extended TCL grammar and how to use filter
constraints with the Notification Service is given under “Writing Constraint
Expressions”.

Sequencing
The Notification Service supports the transmission of sequences of
Structured Events (event sequencing for short). Event sequencing is a
process or technique whereby one or more events are transmitted at a time
as a single IIOP package. Event sequencing boosts the event transmission
performance of the service: sending an IIOP package with one event and
sending an IIOP package with 100 events takes approximately the same
amount of time.

There are separate sequence clients and proxies which are used for
transmitting sequences of Structured Events (see Figure 6).

Event sequencing uses the MaximumBatchSize and PacingInterval QoS
properties. These properties can only be applied on the consumer side:

• MaximumBatchSize - The maximum number of events that a consumer
wishes to receive at a time. Consumers should always set this QoS since
the default value is one.

• PacingInterval - The maximum time the consumer is willing to wait for
the batch to fill. At the end of the pacing interface, the Notification
Service will deliver whatever events it has. The default value is zero
(indefinite wait).

The Notification Service will wait at least until one event is available before
delivering any events to the consumer. If no events are available, the
Notification Service will therefore wait longer than the pacing interval.
OpenFusion CORBA Services Not i f icat ion Service Guide 17

Figure 6 Sequencing Architecture

All events delivered by all connected suppliers will be included in the event
sequences arriving on the consumer side.

Event sequencing does not influence the order of events transmitted
through the channel (notice the order of the events as received by the
consumers in Figure 6). However, ordering can be controlled by using QoS
properties and filters.

Auto-sequencing

Auto-sequencing provides a significant performance improvement for
structured proxies without changing how the proxies function externally.
When auto-sequencing is used, a proxy uses internal batching to send
multiple structured events in one CORBA call: this provides the performance
increase usually associated with a sequence proxy. Externally, however, a
structured proxy push supplier still sends structured events individually to
the consumer and a structured proxy push consumer still receives
structured events individually from the supplier.

Auto-sequence functionality is used exclusively by structured proxies, not
by the sequence proxies described in the previous section.

There are characteristics of auto-sequencing which make it unsuitable for
some situations:

• A failure of the service can result in a loss of a number of events up to the
maximum batch size.

• If a supplier process terminates (by invoking System.exit() or returning
from its main() method, for example), events up to the maximum batch
size may be lost. To avoid this situation in a controlled shutdown,
suppliers should call disconnect() before the process ends. This will
cause any pending events to be delivered to the channel.

• Exceptions cannot be sent back to a caller. For example, a structured
proxy push supplier will not be able to report to the event channel when
it has failed to push events onto a structured consumer.

Auto-sequencing should not be used if persistence or error detection are
important issues.

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Sequence
Proxy Push

Supplier

Sequence
Proxy Push
Consumer

Sequence
Proxy Push

Supplier

Sequence
Proxy Push
Consumer

Sequence
Push

Supplier

Sequence
Push

Consumer

Consumer
Admin
Object

Structured
Proxy Push

Supplier

Structured
Push

Consumer

Sequence
Push

Consumer

Filter

{a,b,c}

{d,e,f}

a,d,e,b,c,f

d,b

{a,e}
{c,f}

{a,d,e}
{b,c,f}

Sequence
Push

Supplier

i

18 OpenFusion CORBA Services Not i f icat ion Service Guide

Two QoS properties, AutoSequenceBatchSize and
AutoSequenceTimeout, are used to control auto-sequence functionality.

By default, auto-sequence functionality is switched off in an OpenFusion
installation. If it is required, it should be switched on using the appropriate
QoS settings (as described in “AutoSequenceBatchSize”).

Persistence
The OpenFusion implementation of the Notification Service provides the
ability to make events and connections persistent.

The OpenFusion Framework and by association the OpenFusion Notification
Service, provides the facility to add components as plugin modules for
supporting different application requirements. The event persistence is
enabled and managed through:

• Event database plugins which connect the service to a selected database,
such as Oracle and

• Additional QoS properties which are provided in the Notification Service

Features

The persistence feature of the OpenFusion Notification Service provides
improved reliability by enabling the use of a recovery strategy.

Requirements

There are a number of factors to be aware of when using persistence:

• Event reliability can only be set to persistent if the connection reliability is
also set to persistent

• The client must be a persistent CORBA object

• Its proxy must only be connected once

• The proxy is disconnected when the OBJECT_NOT_EXIST ORB system
exception is thrown

• The proxy must be suspended when the client object is passivated

• QoS properties must be set for:

• Maximum queue size(s)

• Reconnect interval

A persistent client is a persistent CORBA object. A persistent object can be
activated and passivated several times, but in terms of the ORB (and thus
the Notification Service) it is the same object.

When a server with persistent client objects is re-started (or the object is
otherwise activated), the client must not create a new proxy since it will
continue to use the proxy that was used prior to passivation.

The Notification Service will retry persistent clients until it encounters an
OBJECT_NOT_EXIST system exception. This exception is normally raised
when the object is de-registered from the BOA or POA.

Persistent clients should use a number of QoS properties to control
resources. The discard policy and maximum queue size should be used for
consumers to limit the number of events that are queued on their behalf.

The reconnect interval can be set to reduce the frequency at which the
Notification Service retries an unavailable object.
OpenFusion CORBA Services Not i f icat ion Service Guide 19

Push consumers can also suspend these proxies prior to passivation in order
to avoid interaction while the object is unavailable.

Passivating Persistent Clients

Persistent clients are automatically re-connected when they re-register with
the ORB. A persistent client would normally save the proxy IOR when it
connects to the Notification Service the first time.

When a persistent client is passivated, the ORB will raise standard
NO_IMPLEMENT system exceptions when the Notification Service attempts to
deliver or retrieve events, or do event type callbacks.

Figure 7 Passivating Persistent Clients

When the persistent client is later activated, the ORB will rebind the
connection between the Notification Service and the client. This happens
automatically and the client should not connect to a new proxy.

The client normally loads the proxy IOR from file or, for example, the
Naming Service upon restart. The proxy is needed for later connection
manipulation (suspend, resume), filter administration and ultimately
disconnecting.

If a client de-registers from the ORB, the ORB will raise an
OBJECT_NOT_EXIST exception when the Notification Service tries to interact
with the client. This will disconnect the client.

Federation
Federation is a method of connecting separate Notification Service instances
and their event channels together (see Figure 8, “Federation of Channels
Architecture”).

Federation effectively creates a composite system partitioned into any
number of subsystems. Partitioning an event system into multiple “event
subsystems” can have a number of advantages:

• Performance:

• Enabling multiple hosts to be used for utilising increased CPU resources

• Providing fan-out to consumers on the local machine

Sending events to a channel that in turn forwards them to a number of
consumers can result in great performance improvements. As an
example, if the consumers are all on the same machine the events can be
sent using one network invocation and a series of local invocations.

O RBO RB

Pro xy
Pe rsiste nt

c lie nt

O RBO RB

Pro xy
Pe rsiste nt

c lie nt

N
O
_
I
M
P
L
E
M
E
N
T

Passivated

Pro xy
IO R

O RBO RB

Pro xy
Pe rsiste nt

c lie nt

Pro xy
IO R

O
R

B
re

bi
nd

Sa
m

e

20 OpenFusion CORBA Services Not i f icat ion Service Guide

• Reliability:

• Avoiding single points of failure

By having multiple event channels it is possible to avoid single points of
failure. Although parts of the system may no longer receive events if an
event channel fails, this does not necessarily have to affect other
consumers.

• Flexibility:

• Makes it easy to move event subsystems

• Can use filtering to control fan-in and fan-out

Grouping suppliers and consumers into logical units can simplify system
configuration and improve flexibility. For instance, instead of changing all
consumers in a group to use a new channel, only the suppliers that
provide events to the group would need to be altered.

Referring to Figure 8, the fact that a consumer proxy is a supplier and a
proxy supplier is a consumer allows channels to be federated without using
special clients that forward events from one channel to another. The
inheritance structure described allows a proxy supplier to be connected
directly to a proxy consumer.

Figure 8 Federation of Channels Architecture

Local Channel

The local channel concept (Figure 9) provides failure support for dumb
clients which assume that the Notification Service is always available.

Local channel protection is only intended to recover from node failures and
not process failures.

Suppliers and consumers may always create a proxy, connect and just start
sending or receiving events: connection reliability would be set to best
effort on the client side of the channel.

The federation connections would be persistent to ensure they are re-
established after a node crash. It is possible to use a separate Notification
Service as the intermediator, or use direct connections.

Direction of event flow

Channel

Proxy
Supplier

Supplier

Proxy
Consumer

Proxy
Consumer

Supplier

Consumer

Proxy
Supplier

Proxy
Supplier

Notification Service 1 Channel

Proxy
Supplier

Proxy
Consumer

Proxy
Supplier

Notification Service 2

Channel

Proxy
Supplier

Proxy
Consumer

Proxy
Supplier

Notification Service 3

Consumer

Consumer

Consumer

Consumer
OpenFusion CORBA Services Not i f icat ion Service Guide 21

Referring to Figure 9, if Host C becomes unavailable, the proxy supplier on
Host A (or Host B) will queue all incoming events until the receiving
Notification Service becomes available again.

In order to be certain that the consumer doesn’t lose events, it may be
necessary to make the consumer persistent. This would avoid a situation
where the proxy consumer starts receiving persistent events before the
consumer has connected.

Figure 9 Local Host

Pro xy
c on sum e r

Pro xy
c on su m e r

Local N otification Service

Host A

Client Process

Su p p lie rSup p lie r

Notification Service

Local N otification Service

Host C

Client Process

C o n sum erC o nsum e r

Pro xy
su p p lie r

Pro xy
sup p lie r......

Pro xy
c o n su m e r

Pro xy
c o n su m e r

Pro xy
sup p lie r

Pro xy
su p p lie r......

Pro xy
c o n sum e r

Pro xy
c on sum e r

Pro xy
su p p lie r

Pro xy
sup p lie r......

Host B
22 OpenFusion CORBA Services Not i f icat ion Service Guide

Using the Service
Introduction

The main tasks which are performed when using the Notification Service
include:

• Initialising the ORB and the Notification Service

• Creating event suppliers, which requires

• Connecting to the Notification Service event channel

• Creating events

• Sending events

• Creating event consumers, which requires

• Connecting to the Notification Service event channel

• Receiving events

• Setting QoS properties

• Creating and applying event filters

This section describes how the specific features of the Notification Service
can be used to achieve the tasks listed above. The section is organised into
a sequence of topics which

• Give general instructions for compiling and running Notification Service
clients

• Describe basic aspects of creating Notification Service clients

• Describe advanced features of Notification Service clients such as QoS and
event filtering

Each topic uses examples to illustrate how the tasks can be accomplished.
Additional examples, complete with source code and descriptions of how to
compile and run them, are supplied separately as part of the OpenFusion
product distribution.

Note

• All of the example code used in this section requires that the OpenFusion
Notification Service is installed and running.

• There is little or no error-checking in the examples shown here. Code to
deal with exceptions has generally been omitted for the sake of clarity
and brevity. These exceptions must of course be properly caught and
handled in a working system.

Import Statements
The following packages are required to be imported into classes which are
Notification Service clients. This list is not exhaustive: additional packages
may be required depending on the specific features of the client.

Standard Notification Service Features

The following packages support OMG standard Notification Service features
org.omg.CosNotification.*
org.omg.CosNotifyComm.*

i

OpenFusion CORBA Services Not i f icat ion Service Guide 23

org.omg.CosNotifyFilter.*
org.omg.CosNotifyChannelAdmin.*
org.omg.CosTypedNotifyComm.*
org.omg.CosTypedNotifyChannelAdmin.*

OpenFusion Extensions

The following package is needed when using the OpenFusion Notification
Service extensions:

com.prismt.cos.CosNotification.NotificationExtensions.*

Compiling and Running Clients
This section describes the general principles to follow when compiling and
running Notification Service clients.

Compiling Client Applications
Clients written for the OpenFusion Notification Service must be compiled
with a supported Java compiler. See the OpenFusion release notes for
supported Java versions.

For further instructions, consult the documentation supplied with your Java
compiler. The are no specific compiler options needed in order to compile
Notification Service clients.

Running Client Applications
Before running any Notification Service client applications, the Notification
Service must be running on one of the supported ORBs.

Initialising the ORB
The appropriate ORB daemon should be running before the Notification
Service is started. Full instructions for how to run your ORB will be given in
your ORB documentation.

The OpenFusion Product Guide lists supported ORBs and their start-up/
run commands.

Starting the Notification Service
1 Ensure your PATH contains the bin directory of the JDK and the bin

directory of the OpenFusion distribution. The UNIX scripts (or Windows
.bat files) that start the Notification Service are located in the bin
directory.

2 Ensure the appropriate ORB daemon is running (see above).

3 Start the Notification Service from a command prompt using the following
command:

The same command can be used at either a UNIX or Windows command
prompt.

Alternatively, start the OpenFusion Administration Manager and use the GUI
tools to start and configure the Notification Service. The System Guide

% server -start NotificationService
24 OpenFusion CORBA Services Not i f icat ion Service Guide

gives details of using the Administration Manager and other options for
running OpenFusion services.

Configuring the Notification Service
The OpenFusion Notification Service can be installed and run “out of the
box” with no additional configuration. It is strongly recommended, however,
that you configure the service to optimise performance and reliability for
your specific environment. The section “Notification Service Configuration”
describes every configurable service property. All properties can be set
programatically, or see the System Guide for details of how to set
properties through the GUI Administration Manager.

All of the example code given in this section can be run using the default
(out of the box) Notification Service configuration.

Starting Clients
Once the Notification service is running and suitably configured, client
applications can be started.

The Notification Service must be running before any clients are started,
otherwise clients will be unable to create or resolve event channels and thus
unable to function.

Also note that in most cases consumers should be started before suppliers
are started, otherwise events may be lost as suppliers begin pushing them
onto the event channel before there is a consumer available to receive
them.

Creating Clients
Notification Service clients include both suppliers and consumers. This
section provides a simple example of each, showing how the key features
that every client must possess can be implemented. Advanced client
features, such as filtering and setting QoS, are covered in subsequent
sections.

Creating a Supplier
The first task a Notification Service supplier must perform is to locate the
Notification Service server instance and connect to it. Connections are made
to an event channel, via proxy and admin objects.

Connecting to the Server
1 Obtain an object reference to the event channel factory.

Event channels are created by the Notification Service’s event channel
factory. Before an event channel can be created, an object reference to
the factory must be obtained. The ORB’s
resolve_initial_references method is passed the name
NotificationService and this is used to resolve initial references to
locate the object:

i

org.omg.CORBA.Object object = null;
org.omg.CORBA.ORB orb = null;

try
OpenFusion CORBA Services Not i f icat ion Service Guide 25

At this point, the type of the object referenced by object is an undefined
of type org.omg.CORBA.Object. The narrow method of the
EventChannelFactoryHelper helper class is used to narrow the
returned object reference to a specific EventChannelFactory object.

2 Create an event channel or obtain a reference to an existing channel.

New event channels can be created once the reference to the factory has
been obtained (step 1). The example below uses the factory object’s
create_channel method to create a new channel with default Quality of
Service settings.

Further details of setting QoS properties when the channel is created are
given in “Creating an Event Channel with QoS”.

Managing Event Channels

Once the event channel has been created, the supplier may need to perform
other actions upon it. To this end, the following example shows how the
supplier might obtain a reference to a specific event channel.

First, the get_all_channels operation returns a sequence of channel
identifiers:

Next, the get_event_channel operation is used to obtain an
EventChannel object from an identifier:

{
 object = orb.resolve_initial_references (“NotificationService”);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve Notification Service”);
 System.exit (1);
}

EventChannelFactory factory = null;

factory = EventChannelFactoryHelper.narrow (object);

Property[] qos = new Property[0];
Property[] adm = new Property[0];
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();
EventChannel channel = null;

try
{
 channel = factory.create_channel (qos, adm, id);
}
catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

int ids[] = factory.get_all_channels ();

Vector vector = new Vector ();

for (int i = 0; i < ids.length; i++)
{
 try
 {
 vector.addElement (factory.get_event_channel (ids[i]));
 }
 catch (ChannelNotFound ex) {} // ignore
}

EventChannel all[] = new EventChannel [vector.size ()];
for (int i = 0; i < all.length; i++)
{
 all[i] = (EventChannel) vector.elementAt (i);
}

26 OpenFusion CORBA Services Not i f icat ion Service Guide

The event channel objects are collected in a vector in order to account for
the situation when other interactions are happening with the event channel
factory at the same time. This strategy illustrates general practice when
dealing with distributed systems.

Destroying an Event Channel

The supplier might also be responsible for destroying the event channel
once it is no longer needed.

Event channels are destroyed using the destroy operation:

All administration objects and all proxy objects created by the
administration objects are destroyed along with the channel. Also, all
suppliers and consumers connected to this channel are disconnected and
any events which have yet to be delivered are discarded. Note that the
object reference to a channel is invalidated when it is destroyed.

3 Get the SupplierAdmin object reference.

Supplier administration objects in the Notification Service are created
using the new_for_suppliers operation. This operation takes a filter
operator in parameter and a unique identifier out parameter and returns
a newly created administration object:

The InterFilterGroupOperator object specifies how filters attached to
an administration object are combined with filters attached to the proxies
created by the administration object. The Notification Service supports
the following settings for the filter operator:

a AND: Both an administration filter and a proxy filter must pass an event
in order for the event to be forwarded.

b OR: The event is forwarded when either an administration filter or a
proxy filter passes an event.

Managing Administration Objects

Administration objects are managed via an array in a similar manner to
the event channels described in Step 2. The following code shows how to
create a list of all SupplierAdmin objects in an event channel:

4 Obtain a structured push consumer proxy object.

channel.destroy ();

InterFilterGroupOperator sop = InterFilterGroupOperator.AND_OP;

org.omg.CORBA.IntHolder sid = new org.omg.CORBA.IntHolder ();

SupplierAdmin sadm = channel.new_for_suppliers (sop, sid);

int ids[] = channel.get_all_supplieradmins ();
Vector vector = new Vector ();

for (int i = 0; i < ids.length; i++)
{
 try
 {
 vector.addElement (channel.get_supplieradmin (ids[i]));
 }
 catch (AdminNotFound ex) {} // ignore
}

SupplierAdmin all[] = new SupplierAdmin [vector.size ()];
for (int i = 0; i < all.length; i++)
{
 all[i] = (SupplierAdmin) vector.elementAt (i);
}

OpenFusion CORBA Services Not i f icat ion Service Guide 27

The supplier admin object supports operations for creating proxy
consumers. In the example code below, the SupplierAdmin object admin,
obtained in Step 3, is used to produce proxy consumers (in other words,
proxies which represent consumers). The example shows the creation of
three types of consumer.

First, create holders which will hold the IDs of the proxies for each of the
three types:

The client types which will be used are then specified and saved to
ClientType variables:

The ProxyPushConsumer variables for each of the three types are
declared. This is followed by the declaration of three ProxyConsumer
variables:

The supplier admin object’s obtain_notification_push_consumer
method is called to obtain a reference to the correct proxy object. For
each proxy, the identity and type parameters are passed. The return for
this call is always a ProxyConsumer:

The final stage uses helper classes to cast the objects into their correctly
typed proxies:

Managing Proxies

The administration interfaces support a number of operations for
managing the created proxies. The following code:

a Obtains the unique identifier, the channel and the filter operation

b Lists the total number of proxies

c Examines whether or not the proxy with identifier 42 exists for a
SupplierAdmin object called admin

org.omg.CORBA.IntHolder anyID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder strID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder seqID = new org.omg.CORBA.IntHolder ();

ClientType anyType = ClientType.ANY_EVENT;
ClientType strType = ClientType.STRUCTURED_EVENT;
ClientType seqType = ClientType.SEQUENCE_EVENT;

ProxyPushConsumer anyProxy;
StructuredProxyPushConsumer strProxy;
SequenceProxyPushConsumer seqProxy;

ProxyConsumer pc1 = null;
ProxyConsumer pc2 = null;
ProxyConsumer pc3 = null;

try
{
 pc1 = admin.obtain_notification_push_consumer (anyType, anyID);
 pc2 = admin.obtain_notification_push_consumer (strType, strID);
 pc3 = admin.obtain_notification_push_consumer (seqType, seqID);
}
catch (AdminLimitExceeded ex)
{
 System.err.println (“Admin limit exceeded!”);
 System.exit (1);
}

anyProxy = ProxyPushConsumerHelper.narrow (pc1);
strProxy = StructuredProxyPushConsumerHelper.narrow (pc2);
seqProxy = SequenceProxyPushConsumerHelper.narrow (pc3);

int id = admin.MyID ();
EventChannel ec = admin.MyChannel ();
InterFilterGroupOperator op = admin.MyOperator ();
28 OpenFusion CORBA Services Not i f icat ion Service Guide

5 Connect to the proxy.

To connect to a proxy use the connect_structured_push_supplier
method.

In the following code, strProxy is the reference to the structured push
consumer proxy obtained in step 4. The
connect_structured_push_supplier method is used to connect a
structured push supplier object to it.

6 Disconnect from the proxy.

To disconnect the supplier from the proxy consumer, use the
disconnect_structured_push_consumer method:

The proxy object is invalidated and cannot be used when it has been
disconnected.

Further options for proxy management can be found in “Removing Inactive
Proxies”.

Creating Events
Structured events consist of header and body components. The header
consists of properties added to the event as an array. The body consists of
data in the form of a CORBA Any. These components are created using the
methods illustrated in the following example:

int[] pushProxies = admin.push_consumers ();

int total = pushProxies.length;

System.out.println (“Total proxies: “ + total);

try
{
 ProxyConsumer proxy = admin.get_proxy_consumer (42);
 System.out.println (“Proxy with id 42 exists!”);
}
catch (ProxyNotFound ex)
{
 System.out.println (“Proxy with id 42 doesn’t exist!”);
}

try
{
 strProxy.connect_structured_push_supplier
 (
 StructuredPushSupplierHelper.narrow
 (ObjectAdapter.getObject (this))
);
}
catch (org.omg.CosEventChannelAdmin.AlreadyConnected ex)
{
 System.err.println (“Already connected!”);
 // Handle exception
 return;
}

strProxy.disconnect_structured_push_consumer ();

i

StructuredEvent event = new StructuredEvent ();

Property qos[] = new Property [2];
qos[0] = new Property ();
qos[0].name = Priority.value;
qos[0].value = orb.create_any ();
qos[0].value.insert_short ((short) 4);
qos[1] = new Property ();
qos[1].name = Timeout.value;
OpenFusion CORBA Services Not i f icat ion Service Guide 29

This example creates a structured event with the following components:

• QoS settings priority (short) and timeout (unsigned long) in the
variable header

• Filterable properties packets (long) and username (string) in the
filterable body

• Domain name Telecom (string)

• Type name Info (string)

• Some data (long)

Sending Events
Events in the Notification Service are transmitted by client objects
implementing one of the following Supplier interfaces:

• PushSupplier

• StructuredPushSupplier

• SequencePushSupplier

A supplier can begin sending events as soon as it has obtained a proxy of
the corresponding type and has connected to it. The event supplier typically
obtains its events from some external source or produces events when
some external event has occurred. See “Creating Events” on page 29 for an
example of how to create a structured event.

A typical event supplier must perform each of the steps listed below.

1 Resolve an event channel factory. Code for this is given in “Connecting to
the Server”, step 1 on page 25.

2 Obtain a reference to an event channel. Code for this is given in
“Connecting to the Server”, step 2 on page 26.

3 Obtain a reference to a supplier admin object. Code for this is given in
“Connecting to the Server”, step 3 on page 27.

4 Obtain a reference to a proxy consumer object. Code for this is given in
“Connecting to the Server”, step 4 on page 27.

5 Connect to the proxy consumer. Code for this operation is given in
“Connecting to the Server”, step 5 on page 29.

qos[1].value = orb.create_any ();
qos[1].value.insert_ulonglong ((long) 4*10*1000*1000); // 4 seconds

Property filterable[] = new Property [2];
filterable[0] = new Property ();
filterable[0].name = “packets”;
filterable[0].value = orb.create_any ();
filterable[0].value.insert_long (2000);
filterable[1] = new Property ();
filterable[1].name = “username”;
filterable[1].value = orb.create_any ();
filterable[1].value.insert_string (“client 1”);

EventType type = new EventType (“Telecom”, “Info”);
FixedEventHeader fixed = new FixedEventHeader (type, “event”);

org.omg.CORBA.Any data = orb.create_any ();
data.insert_long (42);

event.header = new EventHeader (fixed, qos);
event.filterable_data = filterable;
event.remainder_of_body = data;
30 OpenFusion CORBA Services Not i f icat ion Service Guide

6 After the supplier has established a connection to the proxy consumer, it
can begin pushing events onto the event channel.

The following code uses an infinite loop to send a continuous stream of
simple events. (This is suitable for test purposes; in reality, events would
normally be sent when created by some triggering mechanism.)

In this example, the data of the structured event is obtained by invoking the
obtain_data method, which gets the data from an external source. The
proxy’s push_structured_event method is used to push the event onto
the event channel.

Creating a Consumer
The first task a Notification Service consumer must perform is locate the
Notification Service and connect to it. Connections are made to an event
channel, via proxy and admin objects.

Connecting to the Server
1 Obtain an object reference to the event channel factory. The method is

identical to that used in suppliers, as described in “Creating a Supplier”:

2 Create an event channel or obtain a reference to an existing channel. The
method is identical to that used in suppliers, as described in “Creating a
Supplier”:

while (true)
{
 org.omg.CORBA.Any data = orb.create_any ();
 obtain_data (data); // obtain data from external source

 StructuredEvent event = new StructuredEvent ();

 EventType etype = new EventType (“example”, “test”);
 FixedEventHeader fixed = new FixedEventHeader (etype, “event”);

 Property variable[] = new Property[0];

 event.header = new EventHeader (fixed, variable);
 event.filterable_data = new Property[0];
 event.remainder_of_body = data;

 try
 {
 proxy.push_structured_event (event);
 }
 catch (org.omg.CosEventComm.Disconnected ex) {}
}

org.omg.CORBA.Object object = null;
org.omg.CORBA.ORB orb = null;

try
{
 object = orb.resolve_initial_references (“NotificationService”);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve Notification Service”);
 System.exit (1);
}

EventChannelFactory factory = null;

factory = EventChannelFactoryHelper.narrow (object);

org.omg.CORBA.IntHolder cid = new org.omg.CORBA.IntHolder ();
OpenFusion CORBA Services Not i f icat ion Service Guide 31

3 Get the ConsumerAdmin object reference.

Consumer administration objects in the Notification Service are created
using the new_for_consumers operation. This operation takes a filter
operator in parameter and a unique identifier out3...== parameter and
returns a newly created administration object:

The InterFilterGroupOperator object specifies how filters attached to
an administration object are combined with filters attached to the proxies
created by the administration object. The Notification Service supports
the following settings for the filter operator:

a AND: Both an administration filter and a proxy filter must pass an event
in order for the event to be forwarded.

b OR: The event is forwarded when either an administration filter or a
proxy filter passes an event.

Managing Administration Objects

Administration objects are managed via an array in the same manner as
suppliers manage admin objects. The following code shows how to create
a list of all ConsumerAdmin objects in an event channel:

4 Obtain a structured push supplier proxy object.

The consumer admin object supports operations for creating proxy
suppliers. In the example code below, the ConsumerAdmin object admin,
obtained in step 3, is used to produce proxy suppliers (in other words,
proxies which represent suppliers). The example shows the creation of
three types of supplier.

First, create holders which will hold the IDs of the proxies for each of the
three types:

Property[] qos = new Property[0];
Property[] adm = new Property[0];
EventChannel channel = null;
try
{
 channel = factory.create_channel (qos, adm, cid);
}
catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

InterFilterGroupOperator cop = InterFilterGroupOperator.AND_OP;

org.omg.CORBA.IntHolder cid = new org.omg.CORBA.IntHolder ();

ConsumerAdmin cadm = channel.new_for_consumers (cop, cid);

int ids[] = channel.get_all_consumeradmins ();
Vector vector = new Vector ();

for (int i = 0; i < ids.length; i++)
{
 try
 {
 vector.addElement (channel.get_consumeradmin (ids[i]));
 }
 catch (AdminNotFound ex) {} // ignore
}

ConsumerAdmin all[] = new ConsumerAdmin [vector.size ()];
for (int i = 0; i < all.length; i++)
{
 all[i] = (ConsumerAdmin) vector.elementAt (i);
}

org.omg.CORBA.IntHolder anyID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder strID = new org.omg.CORBA.IntHolder ();
32 OpenFusion CORBA Services Not i f icat ion Service Guide

The client types which will be used are then specified and saved to
ClientType variables:

The ProxyPushSupplier variables for each of the three types are
declared. This is followed by the declaration of three ProxySupplier
variables:

To initially obtain a reference to the correct proxy object, the call
obtain_notification_push_supplier is made on the consumer
admin object. For each proxy, the parameters for identity and type are
passed. The return for this call is always a ProxySupplier:

The final stage uses helper classes to cast the objects into their correctly
typed proxies:

Managing Proxies

The administration interfaces support a number of operations for
managing the created proxies. The following code:

a Obtains the unique identifier, the channel and the filter operation.

b Lists the total number of proxies.

c Examines whether or not the proxy with identifier 42 exists for a
ConsumerAdmin object called admin.

org.omg.CORBA.IntHolder seqID = new org.omg.CORBA.IntHolder ();

ClientType anyType = ClientType.ANY_EVENT;
ClientType strType = ClientType.STRUCTURED_EVENT;
ClientType seqType = ClientType.SEQUENCE_EVENT;

ProxyPushSupplier anyProxy;
StructuredProxyPushSupplier strProxy;
SequenceProxyPushSupplier seqProxy;

ProxySupplier ps1 = null;
ProxySupplier ps2 = null;
ProxySupplier ps3 = null;

try
{
 ps1 = admin.obtain_notification_push_supplier (anyType, anyID);
 ps2 = admin.obtain_notification_push_supplier (strType, strID);
 ps3 = admin.obtain_notification_push_supplier (seqType, seqID);
}
catch (AdminLimitExceeded ex)
{
 System.err.println (“Admin limit exceeded!”);
 System.exit (1);
}

anyProxy = ProxyPushSupplierHelper.narrow (ps1);
strProxy = StructuredProxyPushSupplierHelper.narrow (ps2);
seqProxy = SequenceProxyPushSupplierHelper.narrow (ps3);

int id = admin.MyID ();
EventChannel ec = admin.MyChannel ();
InterFilterGroupOperator op = admin.MyOperator ();

int[] pushProxies = admin.push_suppliers ();

int total = pushProxies.length;

System.out.println (“Total proxies: “ + total);

try
{
 ProxySupplier proxy = admin.get_proxy_supplier (42);
 System.out.println (“Proxy with id 42 exists!”);
}
catch (ProxyNotFound ex)
OpenFusion CORBA Services Not i f icat ion Service Guide 33

5 Connect to the proxy.

Use the connect_structured_push_consumer method to connect to a
proxy.

In the following code, proxy is the reference to structured push
consumer proxy obtained in Step 4. The
connect_structured_push_consumer method is used to connect a
structured push consumer object to it.

6 Disconnect from the proxy.

To disconnect the consumer from the proxy supplier, use the
disconnect_structured_push_supplier method, as follows:

The proxy object is invalidated and cannot be used when it has been
disconnected.

Further options for proxy management can be found in “Removing Inactive
Proxies”.

Receiving Events
Events in the Notification Service can be received by client objects
implementing one of the following Consumer interfaces.

• PushConsumer

• StructuredPushConsumer

• SequencePushConsumer

Push consumers receive events by implementing a push operation that
corresponds to the consumer type. Note that responsive push consumers
should return from the push operation as quickly as possible. One way to
achieve this would be to provide event processing within a separate thread.

The following code shows a simple implementation of the push operation
used by structured push consumers:

{
 System.out.println (“Proxy with id 42 doesn’t exist!”);
}

try
{
 strProxy.connect_structured_push_consumer
 (
 StructuredPushConsumerHelper.narrow
 (ObjectAdapter.getObject (this))
);
}
catch (org.omg.CosEventChannelAdmin.AlreadyConnected ex)
{
 System.err.println (“Already connected!”);
 // Handle exception
 return;
}
catch (org.omg.CosEventChannelAdmin.TypeError ex)
{
 System.err.println (“Type error!”);
 // Handle exception
 return;
}

strProxy.disconnect_structured_push_supplier ();

i

public void push_structured_event (StructuredEvent event)
{
 org.omg.CORBA.Any data = event.remainder_of_body;
34 OpenFusion CORBA Services Not i f icat ion Service Guide

The extract_long method extracts the data from the incoming event. In
this example, we assume that the data is an integer value. If the supplier
had formed the event in a different way, putting a string in the event body,
for example, a different extraction method would be required.

Suspending and Resuming Connections
Event consumers of the push type can temporarily suspend event
communication. To prevent event loss when a consumer connection is
suspended, the event channel buffers the events sent by the supplier. When
the connection is re-established, event transmission to the consumer
resumes with potentially no loss of events.

In practice, the event loss on reconnection is controlled by Quality of
Service properties. The MaxEventsPerConsumer QoS property determines
how many events will be held for a disconnected consumer. See “Quality of
Service Properties” for a description of the MaxEventsPerConsumer property.

To suspend a connection, the client should call the proxy’s
suspend_connection operation as shown in the following example:

To resume a suspended connection, the client should call the proxy’s
resume_connection method as shown in the following example:

Removing Inactive Proxies
A common requirement in the Notification Service is to remove inactive
supplier and consumer proxies when they are no longer needed (because
they are connected to suppliers or consumers that no longer exist).

This section gives guidance on how this is handled for different types of
proxy.

 int value = data.extract_long ();
 System.out.println (“Received event: “ + value);
}

try
{
 strProxy.suspend_connection ();
}
catch (ConnectionAlreadyInactive ex)
{
 System.err.println (“Already suspended!”);
 // handle exception
}
catch (NotConnected ex)
{
 System.err.println (“Not connected!”);
 // handle exception
}

try
{
 strProxy.resume_connection ();
}
catch (ConnectionAlreadyActive ex)
{
 System.err.println (“Already resumed!”);
 // handle exception
}
catch (NotConnected ex)
{
 System.err.println (“Not connected!”);
 // handle exception
}

OpenFusion CORBA Services Not i f icat ion Service Guide 35

Proxy Push Consumers
When the proxy has been idle for a specified period of time, the proxy is
disconnected. The amount of idle time required before disconnection should
be specified with the MaxInactivityInterval Quality of Service property.

Proxy Push Suppliers
The way that proxy push suppliers are handled depends on the setting of
the ConnectionReliability Quality of Service property.

With Connection Reliability Set to Best Effort

If the ConnectionReliability QoS on the proxy is set to BestEffort, the
Notification Service will always destroy a proxy push supplier when it fails to
deliver an event to its attached consumer.

With Connection Reliability Set to Persistent

If the ConnectionReliability QoS is set to Persistent, the Notification Service
will keep resending events until an OBJECT_NOT_EXIST system exception is
encountered. The conditions that raise this exception are ORB-specific. Most
ORBs raise the exception only when the object no longer exists; in this
case, the proxy can be safely removed. The following ORBs throw
OBJECT_NOT_EXIST correctly:

• JacORB 2.3

• JacORB 3.0

• JacORB 3.7

However, a number of ORBs raise the exception if the object is merely
inactive, in which case it is not always safe to remove the proxy. The
following ORBs have this behaviour:

• VisiBroker 7.0

• VisiBroker 8.0

• VisiBroker 8.5

When OBJECT_NOT_EXIST cannot be used reliably, the
MaxReconnectAttempts and ReconnectInterval QoS properties can be
used. MaxReconnectAttempts defines the maximum number of times the
Notification Service will attempt to reconnect to a failed push consumer.
The Notification Service disconnects the client (as though the disconnect
operation had been invoked on the proxy) if the client is still unavailable
after the maximum number of attempts have been made.
ReconnectInterval determines the interval the Notification Service will
wait between reconnect attempts.

Alternative Method
To determine whether a given proxies (of any type) is inactive, the
ConnectedClient QoS property can be used. This property is set on all
proxies and gives the object reference of the connected client. Use
get_qos() on the proxy to obtain the property array and loop through the
array to locate the ConnectedClient property (see “Accessing the QoS” for
an example of this). The value of the ConnectedClient property contains
the object reference of the client associated with that proxy. From this, it is
possible to determine if the client exists and whether the proxy can
therefore be safely destroyed.
36 OpenFusion CORBA Services Not i f icat ion Service Guide

Using Quality of Service Properties
Quality of Service settings may be applied to event channels, admin objects
and proxy objects on either the supplier or the consumer side. The following
example demonstrates how to apply QoS to an event channel.

Creating an Event Channel with QoS
QoS properties and administrative properties are applied to an event
channel when it is created by passing an array of properties as a parameter
of the create_channel operation. The following example illustrates this.
The example code given here can be part of a either a supplier or a
consumer.

1 Create an array to hold the QoS properties. In this example, the array is
sized to hold two properties.

2 Add the QoS properties to the array. Each array element holds a property
name and a property value. The following code adds the
EventReliability property to the array and sets its value to persistent.

Similarly, the following code adds the ConnectionReliability property
to the array and sets its value to persistent.

3 Repeat the above steps to create an array of administrative properties.
Although the procedure is the same as for QoS properties, a separate
array is required as the create_channel method takes two separate
array parameters. The following code creates an array of one element
and populates it with the MaxQueueLength property, setting the
property’s value to 100.

4 Use the event channel factory’s create_channel operation to create the
channel, passing the Qos and administrative property arrays as
parameters, as illustrated by the following code:

The Notification Service throws exceptions with detailed information when
the code attempts to set illegal QoS or administrative properties.

Property[] qosProp = new Property[2];

qosProp[0] = new Property ();
qosProp[0].name = EventReliability.value;
qosProp[0].value = orb.create_any ();
qosProp[0].value.insert_short (org.omg.CosNotification.Persistent.value);

qosProp[1] = new Property ();
qosProp[1].name = ConnectionReliability.value;
qosProp[1].value = orb.create_any ();
qosProp[1].value.insert_short (org.omg.CosNotification.Persistent.value);

Property[] admProp = new Property[1];
admProp[0] = new Property ();
admProp[0].name = MaxQueueLength.value;
admProp[0].value = orb.create_any ();
admProp[0].value.insert_long (100);

org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();
EventChannel channel = null;

try
{
 channel = factory.create_channel (qosProp, admProp, id);
}
catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

i

OpenFusion CORBA Services Not i f icat ion Service Guide 37

Managing QoS
QoS and administrative properties do not have to be set when the event
channel is created. Properties can be altered programatically at any time
and new properties can be added to the channel.

Adding New QoS to a Channel
Adding a new QoS or administrative property to an existing channel
requires the channel’s set_qos or set_admin operations. These operations
take an array of properties as a parameter. The array of properties is
constructed exactly as in “Creating an Event Channel with QoS”.

The following code illustrates how to use set_qos to add the
MaximumBatchSize QoS property:

The following code illustrates how to use set_admin to add the
MaxQueueLength administrative property:

Accessing the QoS
The QoS and administrative settings for a channel can be accessed using
the channel’s get_qos and get_admin operations. The following code
illustrates a way of simply listing the current value of each property:

Property newQoS[] = new Property[1];

newQoS[0] = new Property ();
newQoS[0].name = MaximumBatchSize.value;
newQoS[0].value = orb.create_any ();
newQoS[0].value.insert_long (100);

try
{
 channel.set_qos (newQoS);
}
catch (UnsupportedQoS ex) {}

Property newAdm[] = new Property[1];
newAdm[0] = new Property ();
newAdm[0].name = MaxQueueLength.value;
newAdm[0].value = orb.create_any ();
newAdm[0].value.insert_long (10);

try
{
 channel.set_admin (newAdm);
}
catch (UnsupportedAdmin ex) {}

Property qosP[] = channel.get_qos ();
Property admP[] = channel.get_admin ();

for (int i = 0; i < qosP.length; i++)
{
 System.out.println (“Name : “ + qosP[i].name);
 System.out.println (“Value: “ + qosP[i].value);
}

for (int i = 0; i < admP.length; i++)
{
 System.out.println (“Name : “ + admP[i].name);
 System.out.println (“Value: “ + admP[i].value);
}

38 OpenFusion CORBA Services Not i f icat ion Service Guide

Validating Event QoS
Supplier and consumer proxies provide an operation for validating the QoS
setting of an event. The operation is validate_event_qos and is defined
in the ProxyConsumer and ProxySupplier interfaces.

It is good practice for all suppliers that use QoS settings in the header of a
structured event to use this operation to validate the settings before
sending an event.

Using Filters
Filters can be attached to both admin objects and proxies on both the
supplier and the consumer side. Filters that are attached to admin objects
apply to all the proxies created by that admin object.

An object with attached filters will only forward an event when one or more
of the filters passes the event.

Filter Objects
Filters are objects in their own right and must be treated as distinct from
the admin or proxy objects they are attached to. An individual filter object
can be used by more than one admin or proxy object.

There are two important points to keep in mind when managing filters:

• A filter exists independently of the proxies that is associated with: if an
associated proxy is destroyed or the proxy’s reference to the filter is
removed, then the filter will still exist. Accordingly, it is recommended
that the filter’s reference is stored so that it can still be referenced or
destroyed after its associated proxies are removed.

• A filter should be destroyed only after all proxies referencing the filter
have removed their references to it, otherwise the proxies may contain
hanging references (which may subsequently throw an exception).

Take care to avoid leaving references to non-existent filters or creating
orphaned filter objects which have no references to them.

Property[] qos = new Property[2];
NamedPropertyRangeSeqHolder available;

qos[0] = new Property ();
qos[0].name = Priority.value;
qos[0].value = orb.create_any ();
qos[0].value.insert_short ((short) 4);
qos[1] = new Property ();
qos[1].name = Timeout.value;
qos[1].value = orb.create_any ();
qos[1].value.insert_ulonglong ((long) 4*10*1000*1000); // 4 seconds

available = new NamedPropertyRangeSeqHolder ();

try
{
 proxy.validate_event_qos (qos, available);
}
catch (UnsupportedQoS ex)
{
 System.err.println (“Unsupported QoS settings!”);
 // Handle exception.
}

OpenFusion CORBA Services Not i f icat ion Service Guide 39

Creating a Filter Object
The recommended way to create a filter is by using the event channel’s
filter factory, as this creates the filter in the same process as the admin and
proxy objects which will use it.

1 Obtain a reference to a filter factory by invoking the channel’s
default_filter_factory object, as in the following code:

2 Use the factory’s create_filter operation to create the filter object.

The create_filter operation takes the name of the filter grammar as a
parameter. Currently, the only grammar supported by the Notification
Service is Extended TCL, so the string EXTENDED_TCL must be passed to
the create_filter operation. The following code illustrates this.

Adding a Filter Object to an Admin Object
Use the admin object’s add_filter operation to add a filter to the object,
as follows:

Listing Filter Objects
The following example shows how to obtain a list of filters attached to an
admin object and then use that list to perform management operations on
each item in the list (in this case, to verify that the correct filter grammar is
being used).

FilterFactory filterFactory = channel.default_filter_factory ();

Filter filter = null;
String grammar = “EXTENDED_TCL”;

try
{
 filter = filterFactory.create_filter (grammar);
}
catch (InvalidGrammar ex)
{
 System.err.println (“Grammar “ + grammar + “ is invalid!”);
 // Handle exception
}

int id = admin.add_filter (filter);

int[] all = admin.get_all_filters ();
Vector vector = new Vector ();

for (int i = 0; i < all.length; i++)
{
 try
 {
 Filter f = admin.get_filter (all[i]);
 vector.addElement (f);
 }
 catch (FilterNotFound ex) {}
}

for (int i = 0; i < vector.size(); i++)
{
 Filter f = (Filter) vector.elementAt (i);
 if (! f.constraint_grammar().equals (“EXTENDED_TCL”))
 {
 System.err.println (“Filter has unknown grammar!”);
 // Handle exception
 }
}

40 OpenFusion CORBA Services Not i f icat ion Service Guide

Removing Filter Objects
To remove a single, specified filter from an admin object, use the following:

To remove all filters from an admin object, use the following:

Note that neither of these operations destroys the filter object, they simply
remove references to the object.

Event Filters
The filter object itself will not carry out any filtering activities. To create a
working event filter, filter constraints must be added to the object. A filter
can be composed of one or more constraints.

OR semantics are applied between multiple constraints and between
multiple filters. If any one constraint in any filter matches the event, the
proxy or administration object will forward the event.

Either AND or OR semantics may be applied between administration object
filters and proxy object filters. For OR semantics, an event will be forwarded
if it matches either the administration object filters or the proxy object
filters. For AND semantics, both must match.

A constraint must be explicitly associated with one or more event types. A
constraint will only be evaluated if the event type matches one or more of
the event types associated with the constraint. To optimise performance, if
no constraints attached to a particular filter match an event’s event type the
filter will not be invoked at all.

Certain constraints are only applicable to certain types of event. For
example, “alarm” events may have “Origin” and “Category” fields in the
filterable body while other event types may not. Constraints which filter on
Origin and Category fields will only be applicable to “alarm” events.

Constructing Constraints
The following example creates a filter constraint which will pass only events
of type Alarm from the Telecom domain which have a priority greater than
5.

1 Create an EventType array and add the type and domain which will be
filtered:

The wildcard character, *, can be used in the domain or event type fields
if the constraint is to match all event types or domains, as shown in the
following code:

2 The expression which will filter on priority greater than 5 is a string
written using Extended TCL grammar:

try
{
 admin.remove_filter (id);
}
catch (FilterNotFound ex) {} // somebody else removed it!

admin.remove_all_filters ();

EventType types[] = new EventType[1];
types[0] = new EventType (“Telecom”, “Alarm”);

EventType types1[] = new EventType[1];
types1[0] = new EventType (“*”, “*”);

String expr = “$Priority > 5”;
OpenFusion CORBA Services Not i f icat ion Service Guide 41

Extended TCL is described in “Extended TCL Grammar” on page 43.

3 Create a ConstraintExp array to hold the filter constraints created in
Steps 1 and 2:

4 Use the filter object’s add_constraints operation to attach the
constraint to the filter. Each filter object can consist of multiple constraint
expressions.

Managing Constraints
Each constraint added to a filter is assigned a unique identifier (unique
within the scope of that filter object). This provides a means to access
specific constraints at run time, allowing them to be modified or deleted.

A filter’s modify_constraints operation is used to both modify and delete
constraints. The following code demonstrates this. In the example,
constraints with identifiers 1, 2, 3, and 5 are deleted and the constraints
with identifiers 4 and 6 are modified.

The modify_constraints operation can throw an InvalidConstraint
exception when one of the modified constraints contains invalid syntax.

ConstraintExp exp[] = new ConstraintExp[1];
exp[0] = new ConstraintExp (types, expr);

try
{
 ConstraintInfo info[] = filter.add_constraints (exp);
 int id = info[0].constraint_id;
 System.out.println (“Added constraint has id “ + id);
}
catch (InvalidConstraint ex)
{
 System.err.print (“The constraint with the expression “);
 System.err.print (ex.constr.constraint_expr);
 System.err.println (“ is invalid!”);
 // Handle exception.
}

int del_list[] = { 1, 2, 3, 5 };
EventType etypes1[] = new EventType[1];
ConstraintExp cexp[] = new ConstraintExp[2];
ConstraintInfo modify_list[] = new ConstraintInfo[2];

etypes1[0] = new EventType (“Telecom”, “Powerfailure”);
cexp[0] = new ConstraintExp (etypes1, “$.voltage < 210”);
modify_list[0] = new ConstraintInfo (cexp[0], 4);

EventType etypes2[] = new EventType[1];
etypes2[0] = new EventType (“Telecom”, “Alarm”);
cexp[1] = new ConstraintExp (etypes2, “$Priority == 3”);
modify_list[1] = new ConstraintInfo (cexp[0], 6);

try
{
 filter.modify_constraints (del_list, modify_list);
}
catch (InvalidConstraint ex)
{
 System.err.print (“The constraint with the expression “);
 System.err.print (ex.constr.constraint_expr);
 System.err.println (“ is invalid!”);
 // Handle exception.
}
catch (ConstraintNotFound ex)
{
 System.err.println (“Constraint with id “ + ex.id + “ not found!”);
 // Handle exception.
}

42 OpenFusion CORBA Services Not i f icat ion Service Guide

Also, the ConstraintNotFound exception is thrown when any of the unique
identifiers specified in either of the input sequences cannot be found.

Filters also have a remove_all_constraints operation, which removes
every constraint added to the filter.

Writing Constraint Expressions
This section describes the syntax and conventions of Extended TCL
grammar, which is used for creating filtering constraint expressions.

The following points should be noted if filter performance is an issue:

• Filtering simple data types is faster than filtering complex data types.

• The filter parser uses the DynAny interface to process complex data types:
this is relatively slow and should be avoided if possible.

• More complex constraint expressions take longer to process.

Extended TCL Grammar
Extended TCL is based on Java-style ‘dot’ notation and syntax. A typical
constraint is constructed as follows:

$.header.fixed_header.event_type.type_name == ’Info’

Keywords are case sensitive in TCL.

The elements used in this expression are individually explained in the
following sections.

Basic Elements
$ Token

The $ token is used to denote the current event. For example, the
expression $domain_name refers to the value of the current event’s
domain_name variable, as in the following constraint expression:

$domain_name == ’Telecom’

The $ token may refer to either a variable of type Any or a variable of type
StructuredEvent, depending on whether Event Service style or
Notification Service style event communication is used.

‘dot’ Operator

The dot operator is used to access an element within a structure. For
example, the expression event_type.type_name refers to the value of the
type_name element within the event_type structure. The expression
$.remainder_of_body refers to a field called remainder_of_body within
the current event.

A full example of a constraint using this operator is:
$.header.fixed_header.event_type.type_name == ’Info’

Literals

The following literal expressions are allowed within a constraint.

• Integers: sequences of digits with optional leading + or -
$.header.variable_header(Priority) == 3

• Floats: sequences of digits with a decimal point and optional exponent
notation
$.remainder_of_body == 10.5
OpenFusion CORBA Services Not i f icat ion Service Guide 43

• Strings: strings of one or more characters enclosed by single quotation
marks: ’ ’. To include a single quotation mark in a string, prefix it with a
backslash character: \’. To include a backslash, use a double backslash:
\\.
$.filterable_data(username) == ’joe’

Runtime Variables

Runtime variables are used as shorthand for common components within a
structured event. For example, the expression
$.header.fixed_header.event_type.type_name can be shortened to
$type_name. Note that there is no dot between the $ and the variable
name in a shortened runtime variable expression.

Runtime variables can be used for any component in the fixed header,
variable header, or filterable body of an event. If the runtime variable
cannot be found, the expression which uses it defaults to $.runtime. This
allows generic filters, which can be used for different types of event, to be
written.

There is a special runtime variable, $curtime, which refers to the current
time. Its type is UtcT from the TimeBase module.

Operators
Comparative Functions

The following comparative operations can be used:

The result of applying a comparative function is a boolean value (true or
false).

Example 1
$.Cost < 5

If the value of the Cost property is less than 5, the expression evaluates
to true.

Example 2
‘UK’ in $.Country_Name

If the Country_Name property, which consists of a sequence of strings,
includes the string “UK”, then the expression evaluates to true.

Boolean Operators

TCL supports the standard boolean operators and, or, and not. Boolean
expressions evaluate to a weakly-typed long. This allows complex
expressions which evaluate whether a number of boolean expressions are
satisfied. For example:

== equality

!= inequality

> greater than

>= greater than or equal

< less than

<= less than or equal

~ substring match

in element in sequence
44 OpenFusion CORBA Services Not i f icat ion Service Guide

$type_name == ‘COUNTRY’ and ((‘UK’ in $.Country_Name) +
(‘France’ in $.Country_Name) +
(‘Germany’ in $.Country_Name) +
(‘Italy’ in $.Country_Name) +
(‘Spain’ in $.Country_Name)) > 2

Special Operators

• The bracket operator, [], is used when the component is an array. For
example, $[3] refers to the fourth element in an event which contains an
array.

• A member called _length is available when the component is an array or
sequence. For example, the expression $._length > 3 evaluates to
true for all events that are either arrays or sequences of length four or
more.

• The parenthesis operator, (), is used to reference, by name, a particular
value within a component that is a list of name-value pairs. For example,
$.header.variable_header (Priority) == 3 evaluates to true if
the Priority QoS in the variable header of a structured event equals 3.

• The _type_id member which refers to the unscoped IDL type name. For
example, when a component is an IDL struct called MyEvent, the
_type_id field is MyEvent.

• The _repos_id member which refers to the RepositoryId. For example,
when a component is an IDL struct called MyEvent, the _repos_id field
is IDL:module/MyEvent:1.0.

• The default operator is used when a component is a union, in order to
examine whether the union has an active default member or not. For
example, the expression default $ evaluates to true when the event is
a union with an active default member.

• The exists operator is used to determine whether a field exists within a
component or not. For example, exists $.packets evaluates to true if
the event has a field called packets.

Mathematical Operators

TCL supports the following mathematical operators:
+ - * /

Operator Precedence

TCL has the following operator precedence (highest to lowest):
() exist unary-minus
not
* /
+ - ~
in
== != < <= > >=
and
or

Parentheses, (), can be used to over-ride operator precedence.
OpenFusion CORBA Services Not i f icat ion Service Guide 45

Constraint Examples
The following examples show constraints that can be used to filter out
events based on the values of the event’s properties.

These examples assume that structured events of the type created in the
example in “Creating Events” are being sent.

In each case, the example will pass events for which the constraint
expression evaluates to true.

• events that have a priority equal to 3:
$.header.variable_header(Priority) == 3

• events that have a data value of 42:
$.remainder_of_body == 42

• events that have exactly three QoS settings:
$.header.variable_header._length == 3

• events with data type long:
$.remainder_of_body._type_id == ’long’

• events that time out in less than or equal to three seconds:
$.header.variable_header(timeout) <=
$curtime + (3*10*1000*1000)

• events which are in the Telecom domain and have the Info event type:
$.header.fixed_header.event_type.domain_name == ’Telecom’
and $.header.fixed_header.event_type.type_name == ’Info’

The expression can be simplified using runtime variables (page 44) to
give:
$domain_name == ’Telecom’ and $type_name == ’Info’

• all events that do not belong to the Telecom domain:
not $domain_name == ’Telecom’

• events that have more than 200 packets or a username called joe:
$.filterable_data(packets) > 200 or
$.filterable_data(username) == ’joe’

Using Persistence
The Notification Service supports persistent storage via JDBC access to a
relational database. Oracle, Sybase, Informix, and hsqldb are supported on
both Unix and Windows platforms. Microsoft SQL Server is supported on
Windows.

For detailed information on how to configure persistent storage, see the
OpenFusion CORBA Services System Guide.
46 OpenFusion CORBA Services Not i f icat ion Service Guide

API Definitions
This section describes selected interfaces and related aspects of the service:
the complete IDL API is provided elsewhere as part of the product distribution.

The OMG IDL for version 5 of the OpenFusion Notification Service is the
same in as in previous versions, however features which are not supported
in version 5 throw a NO_IMPLEMENT system exception.

OMG Standard API Definitions
The CosNotification module contains common data types and interfaces
used throughout the Notification Service. The interfaces in this module are
summarized in Table 1.

The CosNotifyComm module contains the client interfaces for the
Notification Service. These are the interfaces from which different types of
suppliers and consumers need to inherit in order to connect to and
communicate with the Notification Service. Note that clients that support
interfaces from the CosEventComm module can also be connected to the
Notification Service. The Notification Service client interfaces are
summarized in Table 2.

Table 1 CosNotification Interfaces

Interface Purpose

AdminPropertiesAdmin A base interface for the EventChannel interface
which supports operations for setting and getting
various administrative properties on an event
channel object.

QoSAdmin A base interface for the EventChannel interface,
both administration interfaces, and all of the different
proxy interfaces. It supports operations for setting
and getting various QoS properties on an event
channel and proxy objects. There is also an operation
for negotiating the QoS supported by the Notification
Service.

Table 2 CosNotifyComm Interfaces

Interface Purpose

PushConsumer An interface for untyped push consumers. The
Notification Service version of this interface
supports the PushConsumer interface from the
Event Service as well as the NotifyPublish
interface.

PushSupplier An interface for untyped push suppliers. The
Notification Service version of this interface
supports the PushSupplier interface from the
Event Service as well as the NotifySubscribe
interface.

SequencePushConsumer An interface for sequence style push consumers.
OpenFusion CORBA Services Not i f icat ion Service Guide 47

The CosNotifyFilter module contains data types and interfaces used for
filtering. The Notification Service supports normal forward filters and
so-called mapping filters that can manipulate the priority or timeout values
associated with events. The filter interfaces are summarized in Table 3.

The CosNotifyChannelAdmin module contains the server interfaces for the
Notification Service. In particular, there are interfaces for the channel,
administration objects and proxy objects. Most of these interfaces extend
the corresponding interfaces from the CosEventChannelAdmin module in
order to make the Notification Service backwards compatible with the Event
Service. The interfaces in this module are summarized in Table 4.

SequencePushSupplier An interface for sequence style push suppliers. It
supports operations for receiving batches of
structured events.

StructuredPushConsumer An interface for structured push consumers.

StructuredPushSupplier An interface for structured push suppliers. It
supports an operation for receiving a structured
event.

Table 3 CosNotifyFilter Interfaces

Interface Purpose

Filter Interface for a filter. The filter supports match
operations for the three different event types as well
as operations for managing filter constraints.

FilterAdmin Interface for filter administrators. This is a base
interface for the administration interface and all the
proxy interfaces. It supports operations for the
management of filter objects.

FilterFactory Interface for a filter factory. This interface supports
operations for creating filter and mapping filter
objects.

Table 4 CosNotifyChannelAdmin Interfaces

Interface Purpose

ConsumerAdmin An interface for consumer administration
objects. The Notification Service version of
this interface supports the ConsumerAdmin
interface from the Event Service as well as the
QoSAdmin, NotifySubscribe and
FilterAdmin interfaces.

EventChannel An interface for the event channel. The
Notification Service version of this interface
supports the EventChannel interface from
the Event Service as well as the QoSAdmin
and AdminPropertiesAdmin interfaces.

EventChannelFactory An interface for the event channel factory. The
factory supports creation and collection
management of event channel objects.

ProxyConsumer A common base interface for proxy
consumers. It extends the QoSAdmin and
FilterAdmin interfaces to ensure that all
proxy consumers support QoS and filter
management.

Table 2 CosNotifyComm Interfaces (Continued)

Interface Purpose
48 OpenFusion CORBA Services Not i f icat ion Service Guide

Event Channel Factory Interface
The CosNotifyChannelAdmin::EventChannelFactory provides
functionality for creating new event channels and for getting and listing
channels already created by means of the following operations:

• create_channel - Creates a new event channel with default Quality of
Service and administrative settings. The new channel has a unique
identifier.

• get_all_channels - Returns an array of unique identifiers for all
channels created by the factory.

• get_event_channel - Obtains an EventChannel object for a given
identifier.

ProxyPushConsumer An interface for untyped proxy push
consumers. The Notification Service version of
this interface is derived from the Event
Service ProxyPushConsumer and
ProxyConsumer interfaces.

ProxyPushSupplier An interface for untyped proxy push suppliers.
The Notification Service version of this
interface is derived from the Event Service
ProxyPushSupplier and
ProxySupplier interfaces.

ProxySupplier A common base interface for proxy suppliers.
It extends the QoSAdmin and FilterAdmin
interfaces to ensure that all proxy suppliers
support QoS and filter management.

SequenceProxyPushConsumer An interface for sequence proxy push
consumers. It supports operations for
retrieving sequences of structured events.

SequenceProxyPushSupplier An interface for sequence proxy push
suppliers.

StructuredProxyPushConsumer An interface for structured proxy push
consumers. It supports an operation for
sending a structured event.

StructuredProxyPushSupplier An interface for structured proxy push
suppliers.

SupplierAdmin An interface for supplier administration
objects. The Notification Service version of
this interface supports the SupplierAdmin
interface from the Event Service as well as the
QoSAdmin, NotifyPublish and
FilterAdmin interfaces.

Table 4 CosNotifyChannelAdmin Interfaces (Continued)

Interface Purpose
OpenFusion CORBA Services Not i f icat ion Service Guide 49

Event Channel Interface
The CosNotifyChannelAdmin::EventChannel interface extends the
corresponding interface from the Event Service as well as the QoSAdmin
and AdminPropertiesAdmin interfaces. In summary, the event channel
provides the following operations:

• default_consumer_admin - This operation returns the default consumer
administration object. This object has the unique identification number
zero.

• default_filter_factory - This operation returns the default filter
factory.

• default_supplier_admin - This operation returns the default supplier
administration object. This object has the unique identification number
zero.

• MyFactory - This operation returns the factory object that created this
event channel object.

• for_consumers - Event Service style operation for obtaining a
ConsumerAdmin object. This operation provides backward compatibility
with the Event Service and the administration object obtained with this
operation does not have a unique identifier.

• for_suppliers - Event Service style operation for obtaining a
SupplierAdmin object. This operation provides backward compatibility
with the Event Service and the administration object obtained with this
operation does not have a unique identifier.

• new_for_consumers - Preferred way to obtain a ConsumerAdmin object
with a unique identifier assigned to it.

• new_for_suppliers - Preferred way to obtain a SupplierAdmin object
with a unique identifier assigned to it.

• get_consumeradmin - Obtains a ConsumerAdmin object for a given
identifier. Note that administration objects created with for_consumers
cannot be retrieved with this operation.

• get_supplieradmin - Obtains a SupplierAdmin object for a given
identifier. Note that administration objects created with for_suppliers
cannot be retrieved with this operation.

• get_all_consumeradmins - Returns a list of unique identifiers for all
ConsumerAdmin objects created by this event channel, i.e. by using the
new_for_consumers operation.

• get_all_supplieradmins - Returns a list of unique identifiers for all
SupplierAdmin objects created by this event channel, i.e. by using the
new_for_suppliers operation.

• destroy - Destroys an event channel.

• set_qos - Modifies the quality of service settings of an event channel.

• get_qos - Returns the quality of service settings of an event channel.

• set_admin - Modifies the administrative settings of an event channel.

• get_admin - Returns the administrative settings of an event channel.

The first six of these operations are not described further in this guide as
they are either simple get operations or else part of the Event Service.
50 OpenFusion CORBA Services Not i f icat ion Service Guide

Administration Interfaces
The administration objects, CosNotifyChannelAdmin::ConsumerAdmin
and CosNotifyChannelAdmin::SupplierAdmin, are used by both event
suppliers and event consumers and serve two distinct purposes:

• Creating and managing the various proxy objects.

• Grouping proxies. Both QoS settings and filters set on an administration
object are shared by all proxies created by that administration object.

The ConsumerAdmin interface supports additional mapping filter objects
that can be used by a client to supersede the priority and timeout QoS
settings that an event supplier has defined. This is a useful feature since
consumers may have a different view of the relative importance of an
event’s timeout value from that of the supplier.

The most important functionality of administration objects is to create
proxies. Both of the administration interfaces support equivalent operations
for creating proxies.

The ConsumerAdmin interface operations are listed below. Note that the
SupplierAdmin interface operations are the same, except that consumer
proxies are created instead of supplier proxies:

• obtain_push_supplier - Event Service style operation for creating a
push proxy. Proxies created with this operation are not assigned a unique
identifier.

• obtain_notification_push_supplier - Preferred way to create a push
proxy. This operation can create Any type, structured type or
sequence type proxies, all of which are assigned a unique identifier.

Filter Interfaces
Filters are objects which can be attached to administration objects and
proxy objects. The preferred way to create a filter is by using the filter
factory because filters created in this manner are then in the same process
as the administration and proxy objects using them. Filter interfaces are
defined in the CosNotifyFilter::Filter.

The operations for defining filters are located in the FilterAdmin interface.
These operations are summarised below:

• add_filter - Attaches a filter to an administration or proxy object. This
newly added filter enters the list of filters which are evaluated when the
object decides whether or not to forward an event.

• remove_filter - Removes a filter, with a given identifier, from an
administration or proxy object.

• get_filter - Obtains a filter object for a given identifier.

• get_all_filters - Returns a list of the unique identifiers for all filters
attached to this administration or proxy object.

• remove_all_filters: Removes all filters attached to this administration
or proxy object.
OpenFusion CORBA Services Not i f icat ion Service Guide 51

52 OpenFusion CORBA Services Not i f icat ion Service Guide

Supplemental Information
Quality of Service Properties

The standard OMG, OpenFusion extended QoS properties, and
Administrative Properties are described in detail below.

Standard OMG Properties
Table 5 lists each of the standard OMG QoS properties, including their
associated data types or possible values The four right-hand columns
indicate the level (of the channel hierarchy) to which the QoS property may
be applied. For example, the EventReliability QoS may be applied only
at the event channel level or to (structured) events, but not to admin or
proxy objects.

1 This QoS property has no meaning when set per supplier admin or per proxy
consumer.
2 At the proxy level, this property only applies to sequence style proxies.

Detailed descriptions of these properties are given below.

EventReliability

The EventReliability QoS property controls whether events are
delivered using a persistent or a best effort strategy. Setting this property
to Persistent means that the channel will store events persistently and
events are guaranteed to be delivered even when the Notification Service or
any of its clients crashes. The default value is BestEffort, which means
that the Notification Service may lose events during a crash. However,
persistent events will be re-delivered to their proxy queues after the crash

Table 5 Standard Quality of Service Properties

Property Channel Admin Proxy Event

ConnectionReliability
(BestEffort/Persistent)

× × ×

DiscardPolicy1 (Any, FIFO,
Priority, Deadline, LIFO)

× × ×

EventReliability
(BestEffort/Persistent)

× ×

MaxEventsPerConsumer1 (long) × × ×
MaximumBatchSize2 (long) × × ×

OrderPolicy (Any, FIFO,
Priority, Deadline)

× × ×

PacingInterval2 (TimeT) × × ×

Priority (short) × × × ×

StartTime (UtcT) ×

StartTimeSupported (boolean) × × ×

StopTime (UtcT) ×

StopTimeSupported (boolean) × × ×

Timeout (TimeT) × × × ×
OpenFusion CORBA Services Not i f icat ion Service Guide 53

(proxy queues ignore events that have already been delivered to the
connected consumer).

The persistence of events is managed by the event database plugin. The
Notification Service supports different plugin modules to support different
application requirements. Please consult the System Guide for details on
configuring the persistent plugin.

ConnectionReliability

The ConnectionReliability QoS property controls whether connections
are handled using a persistent or a best effort strategy.

Note that setting event reliability to persistent and connection reliability to
best effort is a combination that has no meaning and is not supported. The
default value is BestEffort, which means that connections will be lost
when the Notification Service fails to deliver or receive events from a client.

All clients should also be implemented as persistent objects when the
ConnectionReliability QoS property is to be set to Persistent. The
reason for this is that client objects need to assume the same identity when
recovered after a crash. This is the only way that the Notification Service
can logically reconnect to the client. The Notification Service will never be
able to reconnect to a transient client object.

The Notification Service will keep retrying persistent client objects until an
OBJECT_NOT_EXIST system exception is encountered. This exception is
raised by an object activator when the client object no longer exists. The
MaxReconnectAttempts QoS property, described later, may be used to
limit the durability of persistent clients.

Priority

The Priority QoS property defines the relative priority of an event: the
higher the number, the higher the priority. It is normally set in the variable
header of a structured event. The priority may also be set on a per-channel,
per-admin or per-proxy basis. Applying the priority to an event channel
object means that all events that pass through the channel will receive that
priority unless another value is set in the variable header. The default
priority of an event is zero. The event priority QoS applies only when the
OrderPolicy and DiscardPolicy QoS properties have a value of
PriorityOrder.

StartTime

The StartTime QoS property can only be set in the header of a structured
event. It defines the point in time after which the Notification Service is
allowed to deliver the event. The start time is an absolute value, where the
units are 100 nanoseconds since base time. Base time is defined as
00:00:00 local time, October 15, 1582.

Proxy objects may be configured to ignore event start times by setting the
StartTimeSupport QoS property to FALSE.

StopTime

The StopTime QoS property can only be set in the header of a structured
event. It defines the absolute timeout of an event. The Notification Service
deletes this event from all queues when timeout occurs. An event that
expires from a proxy queue is treated as though it had never been received
by the Notification Service. The unit is 100 nanoseconds since base time,
where base time is defined as 00:00:00 local time, October 15, 1582.

i

54 OpenFusion CORBA Services Not i f icat ion Service Guide

The event stop time QoS is always applicable. It may be further used when
the OrderPolicy and DiscardPolicy QoS properties have a value of
DeadlineOrder.

The timeout may also be set on a per-channel, per-admin or per-proxy
basis. Applying the timeout to an event channel object means that all
events that pass through the channel will receive the said timeout value
unless a value is set in the variable header.

StartTimeSupported

The StartTimeSupported QoS property controls whether or not event
headers with a start time setting will be processed. The default value for the
StartTimeSupported QoS is TRUE. This QoS can be applied at different
levels, for example one proxy object may have start time values supported
whereas another proxy has the start times disabled. It is possible to use the
StartTimeSupported QoS to allow certain privileged consumers to receive
events immediately.

StopTimeSupported

The StopTimeSupported QoS property controls whether or not event
headers with a stop time setting will be processed. The default value for the
StopTimeSupported QoS is TRUE. This QoS applies to both events with a
StopTimeSupported QoS value and events with a Timeout QoS value. It is
possible to use the StopTimeSupported QoS to allow certain consumers to
receive all events, such as for data collection purposes.

Timeout

The Timeout QoS property defines a relative timeout for an event. It is
normally set in the variable header of a structured event. The Notification
Service deletes this event from all queues when this timeout occurs. A
consumer views an expired event in the same way as it does an event that
was never delivered to the Notification Service.

The unit for the Timeout QoS is 100 nanoseconds and the default value is
zero, which means that no timeout is applied. A value in the range of
1-9999 is not supported, i.e. the smallest value for the event timeout is one
millisecond. The lowest value is used when both the Timeout and the
StopTime QoS are defined for an event.

The event timeout QoS is always applicable. It can be used further when the
OrderPolicy and DiscardPolicy QoS properties have a value of
DeadlineOrder.

The timeout may also be set on a per-channel, per-admin or per-proxy
basis. Applying the timeout to an event channel object means that all
events that pass through the channel will receive the said timeout value
unless a value is set in the variable header.

MaxEventsPerConsumer

The MaxEventsPerConsumer QoS property defines the maximum number
of events that a proxy will queue on behalf of the connected consumer. This
setting can be used to prevent a single consumer from exhausting the
master queue. The default queue size for MaxEventsPerConsumer is
unlimited (its property value is set to zero).

The MaxEventsPerConsumer QoS property applies to the proxy queues.
QoS properties may be fine grained or coarse grained so each proxy queue
may have different maximum queue length, or all proxies that are created
OpenFusion CORBA Services Not i f icat ion Service Guide 55

by one consumer administration object may have the same maximum
queue lengths.

The MaxEventsPerConsumer QoS property is typically used when the
incoming event rate exceeds the capabilities of the Notification Service for
extended periods of time. It is also used when the proxy queue represents
periodic updates that will be available in the shape of a new event at a later
time. Limiting the queue size also reduces the resources required by the
Notification Service.

OrderPolicy

The OrderPolicy QoS property defines the order in which events are
delivered. The default value is PriorityOrder, which means that events
are delivered according to their priority. The Notification Service applies a
FifoOrder policy for delivering events with the same priority. The other
settings for this QoS are DeadlineOrder and AnyOrder. The
DeadlineOrder policy means that events with the shortest timeout value
will be delivered first.

OrderPolicy has no meaning when applied to supplier admins or proxy
consumers. Attempting to set this QoS on a supplier admin or proxy
consumer will have no effect (but will produce a warning in the service log).

MaximumBatchSize

The MaximumBatchSize QoS property controls the maximum number of
events a sequenced event consumer will receive for each event delivery.
The default value is one, i.e. a sequence type consumer will receive one
event at a time. A sequence consumer would normally always increase this
value since having a batch size of one defeats the performance advantage
of using sequencing.

PacingInterval

The PacingInterval QoS property defines the maximum time a sequence
type client will wait between subsequent event deliveries. A value set to
zero means that the consumer is willing to wait until such time as
MaximumBatchSize events are available. The unit for this QoS is 100
nanoseconds and the default value is zero. A value in the range 1-9999 is
not supported, i.e. the smallest value for the pacing interval is one
millisecond. Note that the consumer will always wait until at least one event
is available.

DiscardPolicy

The DiscardPolicy QoS property defines the order in which events are
discarded from event queues. The following values determine the order that
events are discarded.

• AnyOrder - any event may be discarded when the queue becomes full.

• FifoOrder - the first event received will be the first discarded.

• PriorityOrder - events will be discarded in priority order such that the
lower priority events will be discarded before the higher priority events.
The order in which events of the same priority are discarded is
determined by the PriorityDiscardPolicy setting.

• DeadlineOrder - events will be discarded in the order of the shortest
expiry deadline will be discarded first.

The default value for DiscardPolicy is AnyOrder.
56 OpenFusion CORBA Services Not i f icat ion Service Guide

The discard policy is not used by the master queue when the
RejectNewEvents administrative property is set to TRUE.

Events are discarded from the master queue when the value of the
MaxQueueLength administrative property is reached. An event that is
discarded from the master queue will never reach any consumer and
appears to the consumer as though the event was never delivered to the
event channel.

Events are discarded from proxy queues once the value of the
MaxEventsPerConsumer QoS is reached. The other settings for this QoS
are PriorityOrder, DeadlineOrder, FifoOrder, and LifoOrder.

Events spend relatively little time in the event channel before being
delivered to the proxy suppliers due to the Notification Service’s
architecture. In order It is better to use MaxEventsPerConsumers on the
proxy suppliers rather than MaxQueueLength on the event channel in order
to effectively apply a discard order.

In general, it is not common for sufficient events to accumulate in the
channel to reach MaxQueueLength, but setting MaxQueueLength is still
useful (when used in conjunction with MaxEventsPerConsumers) to impose
an overall limit on the number of events within the service.

The Notification Service is able to optimise queues when they:

• Use the same order and discard policies

• When the order policy is the same and the discard policy is set to
AnyOrder

The service must maintain separate orderings when different order and
discard policies are used.
OpenFusion CORBA Services Not i f icat ion Service Guide 57

OpenFusion QoS Extensions
Table 6 lists the QoS properties provided in the OpenFusion Notification
Service to extend the OMG Notification Service standard QoS properties.

1This QoS property applies only to proxy push suppliers.
2This QoS property is read only.
3This QoS property applies only to proxy push consumers.

Detailed descriptions of these properties are given below.

MaxReconnectAttempts

The MaxReconnectAttempts QoS property defines the maximum number
of times the Notification Service will attempt to reconnect to a failed push
consumer. The Notification Service disconnects the client as though the
disconnect operation had been invoked on the proxy when the client is still
unavailable after the maximum number of attempts have been made.

Theoretically, the absolute timeout value for push consumers is the product
of the MaxReconnectAttempts property value and the
ReconnectInterval property value. However, the actual time taken for
the entire timeout period can take longer than the absolute timeout value:

1 The ReconnectInterval property is the interval of time the Notification
Service will wait before making another connection attempt. This interval
is measured from the time that it becomes aware that a connection
attempt failed (e.g. by receiving an exception from the ORB).

2 The absolute timeout value cannot account for the length of time taken
from when a client disconnection occurs until the time that the
Notification Service becomes aware of the disconnection. Normally, this is
not an issue, but under certain circumstances (such as when the orb

Table 6 Extended Quality of Service Properties

Property Channel Admin Proxy Event

MaxReconnectAttempts1(long) × × ×

ReconnectInterval2 (TimeT) × × ×

ConnectedClient2 (Object) ×

MaxInactivityInterval3(TimeT) × × ×

AutoSequenceBatchSize (long) × × ×

AutoSequenceTimeout
(ulonglong)

× × ×

DisconnectCallback × × ×

MaxMemoryUsage ×

MaxMemoryUsagePolicy ×

MemoryCheckInterval ×

MemoryEscalationExponent ×

MemoryMaxRecoveryAttempts ×

MemoryTargetMargin ×

PropagateQoS × ×

DiscardedEvents ×

DiscardedEventCount ×

i

58 OpenFusion CORBA Services Not i f icat ion Service Guide

daemon is not running on particular ORBs) the effect of this delay can be
dramatic.

For example, if an ORB takes 20 seconds to pass an exception indicating
client disconnection, then the ReconnectInterval will effectively be
increased by 20 seconds. Assuming that the ReconnectInterval is set
to 1 second and the number MaxReconnectAttempts is set to 120, then
the actual absolute timeout will be 120 * (20+1) = 2520 seconds = 42
minutes, instead of the expected 120 seconds (2 minutes).

ReconnectInterval

The ReconnectInterval QoS property defines the interval of time that the
Notification Service will wait before retrying persistent push consumers that
are unavailable. This interval is measured from the time that it determines
that a connection attempt failed (see “MaxReconnectAttempts” above).

This QoS property has no meaning when ConnectionReliability is set to
BestEffort. Also note that this QoS has no meaning for push suppliers.

The Notification Service waits for the reconnect interval before resuming
event reception or delivery after event communication has failed. The unit
for this QoS is 100 nanoseconds and the default value is one second, i.e.
10,000,000 nanoseconds. A value in the range 1-9999 is not supported, i.e.
the smallest value for the reconnect interval is one millisecond.

The Notification Service considers an event consumer or supplier to be
unavailable when the operation that retrieves or delivers events raises a
system exception. The only system exception is the OBJECT_NOT_EXIST
exception and this is handled differently to other system exceptions by the
Notification Service, i.e. the proxy object is disconnected when a client
raises this exception.

ConnectedClient

The ConnectedClient QoS property is a read-only property that applies
only to proxy objects. The value associated with this QoS is the object
reference of the client associated with the proxy. For example, the
ConnectedClient QoS property contains a structured push consumer
object for structured push supplier proxies.

MaxInactivityInterval

The MaxInactivityInterval QoS property is the connection timeout for
push suppliers. This is a relative timeout value and is reset whenever a
supplier calls push on its consumer regardless of whether the operator is
successful or not; in other words, the timeout is reset when the proxy
detects any activity from its client.

When the proxy has been idle for the maximum inactivity interval, then the
Notification Service disconnects the client as though the disconnect
operation had been invoked on the proxy.

The unit for MaxInactivityInterval is 100 nanoseconds. The default
value is 0 (zero), which disables this QoS and allows idle push suppliers to
never timeout. The minimum supported timeout value (other than the zero
default value) is one millisecond, i.e. values of 10000 or greater.

AutoSequenceBatchSize

The maximum batch size that will be sent by a structured proxy (consumer
or supplier) when auto-sequencing is being used. When the proxy has
received this number of events, they will be sent as a single batch. If the
AutoSequenceTimeout interval is exceeded while the proxy is waiting for
OpenFusion CORBA Services Not i f icat ion Service Guide 59

sufficient events to complete a batch, the batch will be sent even if it is
incomplete.

The default value is 0 events, which disables auto-sequencing. To enable
auto-sequencing, set this QoS to greater than 0 and set
AutoSequenceTimeout to a value greater than equal to 10.See “Auto-
sequencing” for more information about auto-sequencing.

AutoSequenceTimeout

This is the maximum amount of time that will be allowed to elapse before
an auto-sequence batch is sent. If this interval elapses before the batch
reaches the required size (specified by the AutoSequenceBatchSize
property), the incomplete batch is sent regardless.

The unit for this property is milliseconds. The default value is 0 milliseconds,
which disables auto-sequencing. To enable auto-sequencing, set this QoS to
a value greater or equal to 10 and set AutoSequenceBatchSize to 1 or
greater. See “Auto-sequencing” for more information about auto-sequencing.

DisconnectCallback

This property affects all proxies. If set to true (the default) then when a
proxy's disconnect method is called, then the disconnect method on its
connected client will also be called. This behaviour is in accordance with the
behaviour specified in the OMG Notification Service Specification v1.3.

If set to false, then a proxy's connected client will not have its disconnect
operation invoked when that of the proxy is invoked. This behaviour is in
accordance with the behaviour specified in the OMG Notification Service
Specification v1.0.

MaxMemoryUsage

Affects the memory size of event channels. MaxMemoryUsage is similar in
purpose to the property MaxQueueLength, except that the size of memory
is controlled, rather than the number of events. MaxMemoryUsage takes a
value of type ulonglong. The units for this property are bytes. When this
value is exceeded then attempts will be made to limit memory usage
according to the current usage policy. The current usage policy is controlled
using the MaxMemoryUsagePolicy property.

MaxMemoryUsagePolicy

Affects event channels. MaxMemoryUsagePolicy is the policy by which
memory usage is controlled when MaxMemoryUsage is exceeded. It can
take one of three values:

• PurgeEvents - If this value is set, then MaxMemoryUsage is treated as a
soft limit. Whenever an event is received that pushes memory usage
above the MaxMemoryUsage level, that event will be added to the internal
queue of the appropriate event channel as normal. Then, in a manner
that mirrors discard behaviour, the event at the back of the queue will
have its data purged from memory. If the event is set to best effort
delivery, then it is effectively discarded and the memory it used will be
available for recovery by the garbage collector. However, in the case of a
persistent event a place holder will remain in memory so that the data
can be reloaded from its persistent store, when required. Therefore, in
the case of a persistent event, not all of the memory used will freed and
the total memory usage will continue to increase. Nonetheless, the rate
of increase will be greatly reduced making this an appropriate policy for
dealing with bursts of event delivery.
60 OpenFusion CORBA Services Not i f icat ion Service Guide

• Note that if events contain very small amounts of data then very little
memory will be recovered by purging them, as it is the event data that is
purged from memory. PurgeEvents will produce better results with
larger event sizes.

• DiscardEvents - If this value is set, then MaxMemoryUsage is treated as
a limit. Whenever an event is received that takes memory usage above
MaxMemoryUsage, an event is discarded according to the current discard
policy. Note that since events vary in size, the memory usage may still
grow since the new event may be larger than that which is discarded.

• RejectEvents - If this value is set, then MaxMemoryUsage is treated as a
hard limit. Whenever an event is received that takes memory usage
above MaxMemoryUsage, an org.omg.CORBA.IMP_LIMIT exception is
thrown.

The default value of this property is PurgeEvents.

PropagateQoS

Controls how changes to a QoS on an event channel are propagated to
admins and proxies.

When PropagateQoS is set to false (the default), changes made to a QoS
after it has been set on a channel will not affect the QoS settings on an
admin or proxy. When it is set to true, changes made to the QoS on the
channel will carry through to the admins and proxies, even over-riding any
QoS that has been set individually on the admin or proxy.

For example, the Timeout QoS is set to 10000 on the event channel. This
setting is applied to all admins and proxies created on that channel. If
Timeout is then changed to 20000 on the channel while PropagateQoS is
set to false, the admins and proxies retain their setting of 10000. Any new
admins and proxies, however, will take on the new value of 20000.

If Timeout is changed to 20000 on the channel while PropagateQoS is set
to true, the admins and proxies also take on the new setting of 20000.

DiscardedEvents

The DiscardedEvents QoS property provides a mechanism for detecting
when a proxy supplier has discarded one or more events: proxy suppliers
can set this property to true in order to indicate that at least one event has
been discarded.

Setting this property to false indicates that no events have been discarded.
The DiscardedEvents property can be re-set (to the false value) either by
using the supplier proxy’s set_qos() method or by using the Notification
Service Manager’s GUI.

Clients are not allowed to set DiscardedEvent to true: attempts by a client
to do so will be ignored by the QoS (note that the server will not throw an
exception if an attempt is made). The DiscardedEvents property value is
a type boolean.

DiscardedEventCount

The DiscardedEventCount is complimentary to the DiscardedEvents
QoS property. The DiscardedEventCount property value is a long type (a
CORBA ulonglong) showing the total number of events which have been
discarded. The value cannot be reset: attempts to modify the value will be
ignored.
OpenFusion CORBA Services Not i f icat ion Service Guide 61

Memory Management Properties
Each event channel has a memory manager. The manager periodically
monitors and controls the channel’s memory usage. The QoS properties
described below are used to set the memory management control
parameters and behaviour. Generally, the memory manager keeps memory
usage at or below a maximum memory usage level. If this level is
exceeded, then it will attempt to return the memory usage to a level at or
below the desired maximum. Please note that if it may not be possible,
under extreme situations, for the system to be kept under the desired
maximum memory level.

MemoryCheckInterval

The memory manager checks memory usage at discrete intervals. The
MemoryCheckInterval property value sets the interval, in milliseconds,
between checks. The default value is 5000 milliseconds (five seconds). The
property value type is a CORBA ulonglong (Java long).

A value of 0 milliseconds will cause the memory manager to halt the
checking of memory usage. Setting the MemoryCheckInterval to a value
greater than 0 will cause memory checking to be resumed.

MemoryEscalationExponent

Memory recovery is attempted whenever memory usage exceeds the
MaxMemoryUsage property value. The memory manager instructs channel
components to release memory in this situation, using appropriate
methods.

If the component fails to free a sufficient amount of memory using its
chosen method, then the manager make another attempt to recover
memory by directing the component to free memory by using a more
severe method. The manager successively directs a more severe memory
recover method each time the component fails to release sufficient
memory.

The MemoryEscalationExponent property controls the rate of increase of
the level of the memory recover method used. The rate of increase is
applied exponentially using:
n ^ EXPONENT

where
n is the current attempt number (the first attempt is 1, second is 2, etc)
EXPONENT is the exponential value.

The MemoryEscalationExponent property sets the value of the
EXPONENT.

For example, if MemoryEscalationExponent is set to 2, the escalation
levels will be increased as follows:

The default value is two (2). The property value type is a CORBA long (Java
int).

MemoryMaxRecoveryAttempts

The memory manager can repeatedly direct channel components to free
memory whenever the maximum allowed memory usage is reached, as

first attempt 1^2 = 2
second attempt 2^2 = 4
third attempt 3^2 = 8
62 OpenFusion CORBA Services Not i f icat ion Service Guide

described above under MemoryEscalationExponent: the severity of the
memory recovery method increases on each attempt.

However, overall system performance can degrade after the severity level
increases beyond a sufficiently high level. There will not be any benefits if
memory recovery efforts increase or continue when this situation occurs.
The MemoryMaxRecoveryAttempts property is provided to stop memory
recovery efforts when extreme memory usage situations are reached: CPU
resources, which are being used to recover memory, can be returned to the
system for processing events. (The term extreme in this context indicates a
situation where, for example, supplier clients are sending such high
numbers of events that the physical limits of the service and system are
breached. If extreme conditions are reached more than occasionally, then
additional Notification Service resources should be provided, such as
providing additional CPUs, federating Notification Service servers across
CPUs or hosts, etc. for the number of clients being served.)

This property helps to tune the system for the best balance between
performance and memory usage control, as well as protecting the system
from dangerous or pointless severity escalation during extreme conditions.

The MemoryMaxRecoveryAttempts is disabled if it is set to zero (0), in
other words, memory recovery attempts will not be stopped. The default
value is ten (10), in other words, memory recover will be escalated up to
ten times. The property value type is a CORBA long (Java int).

MemoryTargetMargin

The memory manager attempts to maintain memory usage at or below
level set by the MaxMemoryUsage value. When this level is exceeded, the
manager directs components to free memory in order to return the memory
usage to a level at or below the MaxMemoryUsage value.

If usage level is simply returned to the MaxMemoryUsage level, but no
lower, then it is likely that the maximum will be quickly exceeded again,
requiring the manager to release memory again, reducing performance.

The MemoryTargetMargin property provides a margin below the
MaxMemoryUsage value, in bytes, which the memory usage should be freed
to when memory is released by the manager. This can prevent calls being
immediately made on the manager to release memory and thereby giving
the system some breathing space.

No memory margin is provided when the MemoryTargetMargin property
value is set to zero (0). The default value is 204800 bytes (200K). The
property value type is a CORBA ulonglong (Java long).
OpenFusion CORBA Services Not i f icat ion Service Guide 63

Administrative Properties
Administrative properties refer to property settings that may be applied
only to event channel objects. These properties are usually set when an
event channel is first created. These settings are typically static in nature
although they may be changed during the lifetime of the channel object.
The standard administrative properties are described below.

MaxQueueLength

The MaxQueueLength administrative property defines the maximum size of
the master queue for an event channel. The value of the MaxQueueLength
property should normally be greater than any value of a
MaxEventsPerConsumer QoS property.

This prevents any badly-behaved consumer (for example a consumer that
consumes events very slowly or a consumer that remains suspended for an
extended period of time) from causing events to be rejected from the
master queue. The maximum possible size of the master queue is the
accumulative size of all proxy queues.

Normally, the size of the master queue is smaller than the accumulative
size of all proxy queues because there is typically an overlap in the events
received by different consumers.

MaxConsumers

The MaxConsumers administrative property defines the maximum number
of consumers that can be concurrently connected to an event channel. The
consumers are counted as all the proxy suppliers of all the consumer
administration objects managed by the event channel.

MaxSuppliers

The MaxSuppliers administrative property defines the maximum number
of suppliers that can be connected concurrently to an event channel. The
suppliers are counted as all the proxy consumers of all the supplier
administration objects managed by the event channel.

RejectNewEvents

The RejectNewEvents administrative property indicates whether events
should be rejected or discarded, according to the DiscardPolicy setting,
when the MaxQueueLength for the master queue is exceeded. The
RejectNewEvents property can have the following values:

• TRUE - New events received by the event channel are rejected when the
MaxQueueLength is exceeded. A push supplier encounters an IMP_LIMIT
system exception when it attempts to deliver an event to the channel.

• FALSE - New events received by the event channel are discarded
according to the DiscardPolicy QoS setting when the maximum queue
length is exhausted. Push suppliers can keep delivering events to the
channel, but this may cause some events to be discarded.

The RejectNewEvents administrative property, when set to true,
guarantees that the Notification Service will never drop any events.
64 OpenFusion CORBA Services Not i f icat ion Service Guide

Errors and Exceptions

Errors
The Notification Service improves on the Event Service by providing QoS
settings that define how to deal with most runtime errors. Events are stored
persistently when the EventReliability QoS setting is set to persistent
and the service fails. All persistent events are recovered and re-delivered to
all registered clients once the Notification Service is restarted after the
service has crashed.

Also, the Notification Service keeps trying its connections when the
ConnectionReliability QoS setting is set to persistent until it
encounters an OBJECT_NOT_EXISTS exception. The Notification Service just
starts delivering all queued events when a client crashes but is later
restored with the same object reference as it had when first connecting to
the Notification Service.

How events are removed from the internal queues of the Notification
Service is defined by the DiscardPolicy QoS setting. Events are discarded
when either the MaxQueueLength or MaxEventsPerConsumer values are
exceeded. Note that the service keeps storing un-delivered events until the
system resources are exhausted when there is no limit on the queue length.

Exceptions
The Notification Service supports a number of exceptions which are
summarised in Table 7.

Table 7 Notification Service Exceptions

Exception Description

AdminLimitExceeded Indicates that the limit for the number of
concurrently connected proxies has been
exceeded.

AdminNotFound Indicates that the administration object with the
specified unique identifier was not found in an
event channel.

AlreadyConnected Indicates that a consumer or supplier was
already connected.

CallbackNotFound Indicates that a callback object with the
specified unique identifier was not found in a
filter.

ChannelNotFound Indicates that the channel with the specified
unique identifier was not found in an event
channel factory.

ConnectionAlreadyActive Indicates that a connection was already active
and an attempt was made to resume it.

ConnectionAlreadyInactive Indicates that a connection was already inactive
when an attempt was made to suspend it.

ConstraintNotFound Indicates that a constraint with the specified
unique identifier was not found in a filter.

Disconnected Indicates that a disconnected client is trying to
send or receive the event.

DuplicateConstraintID Indicates that a sequence of constraints contain
duplicate unique constraint identifiers.

FilterNotFound Indicates that the filter object with the specified
unique identifier was not found in an
administration or proxy object.
OpenFusion CORBA Services Not i f icat ion Service Guide 65

Implementation Limit Exception
The CORBA specification provides a general exception,
org.omg.CORBA.IMP_LIMIT, for indicating when a limit has been reached
or exceeded. This exception is raised by the Notification Service,
specifically, when an event is pushed to a proxy push consumer and either:

1 The value of the QoS property MaxQueueLength has been reached and
the QoS property RejectNewEvents is set to true.

2 Any resource, such as threads or memory, which is insufficient,
exhausted, or unavailable.

The org.omg.CORBA.IMP_LIMIT exception includes important information
in its exception message. For example, in the case of sequence proxy push
consumers, the exception message contains the number of events that
were accepted by the Notification Service (from the sequence) before the
exception was raised. This information is important, since it can be used to
ensure that the same events are not unnecessarily supplied more than once
to the Notification Service. In addition to the number of events accepted,
the message also contains other information, such as the limit exceeded
and the length of the supplied sequence.

The org.omg.CORBA.IMP_LIMIT exception stores the number of accepted
events in the last three hexadecimal digits of its minor code provided that
the length of the supplied sequence is less than or equal to 0xFFF (4096):
the number may be extracted from the minor code by subtracting the base
PrismTech minor code of 0x50540000 from its value.

This feature can be used to avoid the overhead of string manipulation which
is otherwise needed to obtain the information from the exception message.

InvalidConstraint Indicates that a constraint set on a filter object
was invalid.

InvalidEventType Indicates that an event type is not supported or
is invalid.This exception is not thrown by the
OpenFusion Notification Service.

InvalidGrammar The grammar specified was not
EXTENDED_TCL, SQL92, or the name of a valid
Filter class name.

InvalidValue Indicates that a constraint value is invalid, e.g.
when a priority value is not of type short or
when a timeout value is not of type TimeT.

ProxyNotFound Indicates that the proxy object with the
specified unique identifier was not found in an
administration object.

TypeError Indicates a type error.

UnsupportedAdmin Indicates that an administrative setting on an
event channel was not supported.

UnsupportedFilterableData Indicates that an event contains data which
could not be processed by a filter object. This
exception is normally not propagated back to
clients.

UnsupportedQoS Indicates that a quality of service setting on an
event channel, administration or proxy object
was not supported.

Table 7 Notification Service Exceptions (Continued)

Exception Description

i

66 OpenFusion CORBA Services Not i f icat ion Service Guide

Part II
Configuration and

Management

In this part
This part contains the following:

Notification Service Configuration page 69

Notification Service Manager page 95

ChannelConfigurator Tool page 111

Notification Service
Configuration
This section describes the configuration of the Notification Service Singleton
properties. These properties appear in the Administration Manager, a
graphical user interface (GUI) based administration tool included with the
OpenFusion Graphical Tools. In addition to using the Administration Manager
to set the Singleton properties, the properties can also be set programatically.

Details for configuring Persistence, Logging, CORBA, Java and System
properties for the Notification Service are described in the System Guide.

Common Properties
Instances of some common properties are used by a number of different
OpenFusion CORBA Services interfaces and services. Settings for these
property instances appear in the Administration Manager’s Object Hierarchy
for the service’s Singleton node. This small group of properties are included
in this section in order to facilitate configuration of the service while using
the Administration Manager. These properties include:

• IOR Name Service Entry

• IOR URL

• IOR File Name

• Resolve Name

• IOR Name Service

NotificationSingleton Configuration
The Notification Singleton exists as a single object within a given instance of
the Notification Service providing the core service functionality

Persistence Properties
Enable Write Ahead Log

When the write-ahead log is enabled, information that is normally written to
the underlying database is written to a log file instead. When the log file
reaches a specific size (defined by the Write Ahead Log Maximum Size
property), the database is updated and the log file is reused. The location of
the log file is defined by the Write Ahead Log Directory property.

The write-ahead log may increase performance when persistent events are
required, particularly when events are being delivered quickly (when
consumers are available and responding quickly).

The write-ahead log is enabled when this property is set TRUE (checked).

Property Name DB.WAL

Property Type FIXED
OpenFusion CORBA Services Not i f icat ion Service Guide 69

Write Ahead Log Directory

The directory used to contain write-ahead log files. This directory must be
local to the host running the service. The default location is:
<INSTALL>/domains/<domain>/<node>/NotificationService/data

where <INSTALL> is the OpenFusion installation path. See the System
Guide for details of the domains directory structure.

Write Ahead Log Maximum Size

The maximum number of entries that can be stored in the write-ahead log
before flushing (writing to the underlying database) takes place.

Database Plugin Class

This property is used when a database plugin is available to OpenFusion to
enhance the event persistence mechanism. Leave this field blank when the
plugin is not available.

CORBA Properties
The General properties are useful for setting the start-up parameters of a
Notification Service Singleton object. These properties are all static and
mainly read -write. All these properties are optional, but can only be set
prior to starting the Notification Service Singleton.

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name DB.WAL.Dir

Property Type FIXED

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

Property Name DB.WAL.MaxSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name DB.Plugin

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
70 OpenFusion CORBA Services Not i f icat ion Service Guide

IOR Name Service Entry

The Naming Service entry for the Singleton.

IOR URL

The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator (URL)
format. This information is used when a client attempts to resolve a
reference to the Service. Some examples are:

http://www.microfocus.com/of/servers/NotificationService.ior
corbaloc::server.microfocus.com/NotificationService

OpenFusion supports URLs in Corbaloc, Corbaname, file, FTP and HTTP URL
formats, although some ORBs do not support all of these mechanisms.
Consult your ORB documentation for specific details.

IOR File Name

The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:

<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See the System
Guide for details of the domains directory structure.

IOR Name Service

The name of the Naming Service which will be used to resolve the Singleton
object.

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Server

Property Type FIXED
OpenFusion CORBA Services Not i f icat ion Service Guide 71

Resolve Name

The ORB Service resolution name used to resolve calls to the Singleton.

Messaging Loggers
Service Log File Location

The location of the service log file. Each individual component logger (the
scheduler logger, the transaction manager logger, and so on) writes to the
same service log file. By default, this is the same log file used at the Service
level.

The default location of the service log file is:
<INSTALL>/domains/OpenFusion/localhost/NotificationService/

log/NotificationService.log

Service Log File Format

The format for entries in the service log file. The default format is:
%{priority} [%{category}] %{time:yyyy-MM-dd' 'HH:mm:ss.SSS}%{message}\

n%{throwable}

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name logkit/targets/file/filename

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO
72 OpenFusion CORBA Services Not i f icat ion Service Guide

The same format is used by each component logger. This format overrides
the format specified in the Log Pattern property at the Service level.

Set All Loggers To

Each component of the Notification Service (the scheduler, the transaction
manager, and so on) has its own individual logger. For convenience, every
component logger can be set to the same level using this property. Options
are:

• Set all to Disable

• Set all to Error

• Set all to Warning

• Set all to Information

• Set all to Debug

• Set Individually

The default level is Set Individually.

For fine-grained control over logging, set this property to Set Individually.
This allows each individual logger to be configured using the individual
properties on this tab (described below).

Scheduler Logger Level

The logger level for the scheduler. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logkit/targets/file/format

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name GlobalSetting

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/scheduler

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
OpenFusion CORBA Services Not i f icat ion Service Guide 73

Role Manager Logger Level

The logger level for the role manager. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

JTO Logger Level

The logger level for JTO. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logcategory/rolemanager

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/jto

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
74 OpenFusion CORBA Services Not i f icat ion Service Guide

Messenger Logger Level

The logger level for the messenger. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

ORB Logger Level

The logger level for the ORB. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logcategory/messenger

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/orb

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
OpenFusion CORBA Services Not i f icat ion Service Guide 75

Transaction Manager Logger Level

The logger level for the transaction manager. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Blobstore Logger Level

The logger level for the blobstore. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logcategory/transactionmanager

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/blobstore

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
76 OpenFusion CORBA Services Not i f icat ion Service Guide

State Factory Logger Level

The logger level for the state factory. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

State Machine Factory Logger Level

The logger level for the state machine factory. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logcategory/statefactory

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/statemachinefactory

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
OpenFusion CORBA Services Not i f icat ion Service Guide 77

Thread Pool Logger Level

The logger level for the thread pool. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Notification Service Logger Level

The logger level for the event channel factory (which is the root object of
the Notification Service). Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logcategory/threadpool

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/ecfc

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
78 OpenFusion CORBA Services Not i f icat ion Service Guide

Component Manager Logger Level

The logger level for the component manager. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Lock Set Factory Logger Level

The logger level for the lock set factory. Options are:

• Disable (0)

• Error (1)

• Warning (2)

• Information (3)

• Debug (4)

The default level is Warning.

Property Name logcategory/ecm

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/locksetfactory

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
OpenFusion CORBA Services Not i f icat ion Service Guide 79

Instrumentation Properties
The interfaces for setting the instrumentation properties, as well as the
datatypes for values returned by the Process.getValue() method of the
CORBA Process interface, are given below.

For information on managing instrumentation, including how to obtain the
associated property values using the Process.getValue() method, please
refer to the System Guide.

Events Received

This property monitors the total number of all push events received by the
Notification Service during execution of the service. In other words, the
count of events sent by push suppliers via proxy push consumers.

Number of Proxy Push Consumers

This property monitors the current number of structured proxy push
consumers in existence on the service.

Number of Structured Proxy Push Consumers

This property monitors the current number of structured proxy push
consumers in existence on the service.

Property Name EventsReceived

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ProxyPushConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StructuredProxyPushConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
80 OpenFusion CORBA Services Not i f icat ion Service Guide

Number of Sequence Proxy Push Consumers

This property monitors the current number of sequence proxy push
consumers in existence on the service.

Events Delivered

This property monitors the total number of all push events delivered by the
Notification Service during execution of the service. In other words, the
count of events received by push consumers via proxy push suppliers.

Number of Consumer Admins

This property monitors the current number of consumer admins in existence
on the service.

Current Total of Events in Channels

This property monitors the total number of events in channels.

Property Name SequenceProxyPushConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name EventsDelivered

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ConsumerAdmins

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name CurrentEvents

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
OpenFusion CORBA Services Not i f icat ion Service Guide 81

Current Total of Events Awaiting Delivery

This property monitors the total number of events awaiting delivery. This
count gives the current load on the Service.

This figure is calculated as follows:

Events in queues + (Events in channel * Number of proxies)

Where:

• Events in queues is the number of events in the queues of all proxy
suppliers (events which the proxy suppliers have yet to send to their
consumer clients).

• Events in channel is the number of events in the channel (events which
are waiting to be sent to proxy suppliers). This is the count returned by
the Current Total of Events in Channel property.

• Number of Proxies is the number of proxy suppliers.

Number of Proxy Push Suppliers

This property monitors the current number of proxy push supplier objects in
existence on the service.

Number of Structured Proxy Push Suppliers

This property monitors the current number of structured proxy push
supplier objects in existence on the service.

Property Name EventsAwaitingDelivery

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ProxyPushSuppliers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StructuredProxyPushSuppliers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
82 OpenFusion CORBA Services Not i f icat ion Service Guide

Number of Sequence Proxy Push Suppliers

This property monitors the current number of sequence proxy push supplier
objects in existence on the service.

Reconnecting Consumers

This property monitors the current number of unavailable push consumer
objects in existence on the service.

Number of Supplier Admins

This property monitors the current number of Supplier Admin objects in
existence on the service.

Number of Event Channels

This property monitors the current number of Event Channel objects in
existence on the service.

Property Name SequenceProxyPushSuppliers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ReconnectingConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name SupplierAdmins

Property Type DYNAMC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name Channels

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
OpenFusion CORBA Services Not i f icat ion Service Guide 83

Number of Custom Filters Created

The number of custom filters that have been created using the filter factory
since the service was last started.

Number of Attached Filters

The number of filters attached to the admins and proxies.

Number of Filters Added

The number of times a filter has been added to an admin or proxy.

Number of Standard Filters Destroyed

The number of standard filters (that were created using the filter factory)
that have been destroyed since the service was last started.

Number of Standard Filters Created

The number of standard filters that have been created using the filter
factory since the service was last started.

Property Name CustomFiltersCreated

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name AttachedFilters

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name FiltersAdded

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StandardFiltersDestroyed

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StandardFiltersCreated

Property Type DYNAMIC

Data Type COUNTER
84 OpenFusion CORBA Services Not i f icat ion Service Guide

Number of Events Rejected by Filters

The number of events rejected by filters.

Number of Filters Removed

The number of times a filter has been removed from an admin or proxy.

Number of Buffered Events

The total number of event buffered in the sequence proxy push suppliers.

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name EventsFiltered

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name FiltersRemoved

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name BufferedEvents

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
OpenFusion CORBA Services Not i f icat ion Service Guide 85

Number of Events Received

The running total of events received from suppliers.

Minimum Threadpool Size

The minimum number of threads in the thread pool.

Number of Free Threads in the Threadpool

The number of free threads in the thread pool

Number of Pending Jobs

The number of jobs that are pending execution.

Maximum Threadpool Size

The maximum number of threads in the thread pool.

Property Name EventsReceived

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name MinThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name FreeThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name PendingJobs

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name MaxThreads

Property Type DYNAMIC

Data Type COUNTER
86 OpenFusion CORBA Services Not i f icat ion Service Guide

The Number of Working Threads

The number of threads in the thread pool that are executing jobs.

The Number of Current Threads

The number of threads currently in the thread pool.

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name WorkingThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name CurrentThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
OpenFusion CORBA Services Not i f icat ion Service Guide 87

General Properties
Maximum Queue Size

The maximum queue size of the event delivery manager. When the
maximum queue size is exceeded, events are removed from the queue,
oldest first, if the EventReliability QoS is set to BestEffort. In the case of
Persistent, the events are stored and re-sent when appropriate.

Messaging
JMX Instrumentation: Start Oracle HTML Adapter

Checkbox. If this is true (checked), then the Oracle HTML Adapter will be
started alongside the service. The Adapter runs for as long as the
notification service does.

The Oracle HTML Adapter is a utility provided by Oracle Corporation that
allows JMX instrumentation values to be examined via a web browser. It is
provided as an alternative to the Instrumentation panel for the Notification
Singleton. To use the adapter, specify the port on which it will be run (JMX
Instrumentation: Port for Oracle HTML Adapter) and ensure it is started with
the service (JMX Instrumentation: Start Oracle HTML Adapter). The adapter
can be accessed by entering http://server:port in a web browser, where

• server is the server on which the notification service is running and

• port is the port selected for the adapter.

JMX Instrumentation: Port for Oracle HTML Adapter

A numeric value which specifies which port the Oracle HTML Adapter will run
on.

JMX Instrumentation: Register Individual Objects

This is a checkbox: if set then the JMX instrumentation will be available on
individual objects (channels, admins and proxies). The Instrumentation
panel for the Notification Singleton will always display the total figures for
the entire Notification Service. However, these figures are derived from the
objects within the service: this control allows those objects to be registered
individually when examining using the Oracle HTML Adapter, for example.

Property Name MaxQueueSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO
88 OpenFusion CORBA Services Not i f icat ion Service Guide

Lock Set Factory: Fairness Policy

The fairness policy for the lock set factory. Options are:

• FIFO

• JVM

Although JVM is shown as an option, it is not currently implemented. FIFO
will be used, regardless of which option is selected for this property.

Thread Pool: Minimum Pool Size

The minimum pool size for the thread pool. The default is 0 (zero).

Thread Pool: Maximum Pool Size

The maximum size of the thread pool. The default is 20.

Thread Pool: Initial Pool Size

The initial size for the thread pool. The default is 0 (zero).

Property Name components/LockSetFactory/fairness

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name components/ThreadPool/pool-min

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/ThreadPool/pool-max

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/ThreadPool/pool-initial

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

i

OpenFusion CORBA Services Not i f icat ion Service Guide 89

Thread Pool: Thread Timeout

How long, in milliseconds, an idle thread remains in the pool before being
discarded. This controls how long an The default timeout is 1000
milliseconds (1 second).

Transaction Manager: Domain Timeout

The maximum time is allowed before a transaction times out, in
milliseconds. The default timeout is set to 0, which is an unlimited timeout.
It is recommended that this value is changed to reflect the specific needs of
the system. For example, moderately loaded systems might use a value of
60000 (60 seconds); a heavily loaded system needed a higher value or may
even retain the default unlimited timeout value.

Event Database: Purge Rate

When using file persistence for the service, the threshold for the number of
Delete Event records that can be written to the database before a purge
attempt will be initiated. The default value is 1000.

The purge involves a scan of the database to determine if records are
eligible for deleting. An event will be deleted if it has been received and
acknowledged by all the consumers who were expected to receive it or if it
was discarded by the service.

Property Name components/ThreadPool/thread-timeout

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/TransactionManager/domain/
timeout

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/EventDatabase/purgerate

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
90 OpenFusion CORBA Services Not i f icat ion Service Guide

Event Database: Maximum Purge Memory

When using file persistence, the maximum amount of memory the purge
algorithm is allowed to use for storing records in memory during processing
(expressed in Kb). The default value is 5000.

The purge algorithm attempts to match Store records with Delete records
for a specific event and will continue to read records until a match is made
or the size of the temporary collection in memory reaches the size set by
this property. When this memory threshold is reached, all the records
currently in memory are processed and any outstanding records are written
to the end of the data files for future processing.

Journal: Guaranteed Synchronisation

If set to true, this property forces the Journal to synchronize the disk file
with the Journal file stream when event records are written. If false, there
is no guarantee that event records will be written to disk (the
synchronization will be determined by the JVM). This property only applies
to file persistence.

The default value of this property is false.

Property Name components/EventDatabase/
maxpurgememory

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name components/Journal/guaranteedsyncing

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES
OpenFusion CORBA Services Not i f icat ion Service Guide 91

ProcessSingleton Configuration
IOR Name Service Entry

The Naming Service entry for the Singleton.

IOR URL

The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator (URL)
format. This information is used when a client attempts to resolve a
reference to the Service. Currently only http and file URLs are supported,
for example:
file:/usr/users/openfusion/ProcessSingleton.ior
http://www.microfocus.com/openfusion/ProcessSingleton.ior

IOR File Name

The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See The Object
Hierarchy in the System Guide for details of the domains directory
structure.

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO
92 OpenFusion CORBA Services Not i f icat ion Service Guide

IOR Name Service

The name of the Naming Service which will be used to resolve the Singleton
object.

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
OpenFusion CORBA Services Not i f icat ion Service Guide 93

94 OpenFusion CORBA Services Not i f icat ion Service Guide

Notification Service
Manager
The Notification Service browser acts as a window on to the functioning
processes of the service. The Notification Service Manager enables developers
to create Event Channels, Admin Objects, and Proxy Objects. A useful feature
of the Notification Service Manager is its use in verifying new Notification-
Service-based clients.

The Notification Singleton object acts as the base process for a single instance
of the OpenFusion Notification Service. The Notification Service Manager is
invoked by right-clicking on the Notification Singleton of a running Notification
Service in the Administration Manager.

Using the Notification Service Manager
Start the Notification Service Manager from the command line with the
following command:

The Structured Consumer Manager can be started with the following
command:

The Structured Supplier Manager can be started with the following
command:

The Notification Service must be running before any of the Managers can be
started.

The Notification Service Manager
The Notification Service Manager displays information about the channels
that have been created by an EventChannelFactory object. When the
manager is first run, and providing no Event Channels have been created
programmatically, the manager will display the default service
EventChannelFactory object below the Notification Service icon itself
(Figure 10).

% run com.prismt.cos.treebrowser.notification.
NotificationServiceBrowser -name NotificationService

% run com.prismt.cos.CosNotification.util.Consumer
-name NotificationService

% run com.prismt.cos.CosNotification.util.Supplier
-name NotificationService
OpenFusion CORBA Services Not i f icat ion Service Guide 95

If the ChannelConfigurator Object is present, a saved configuration may be
loaded.

Figure 10 Notification Service Manager

Notification Service Hierarchy
The left-hand pane of the Notification Service browser displays the
Notification Service object hierarchy. The icons used in the Notification
Service object hierarchy are shown in Table 8.

Table 8 Notification Service Nodes

Icon Object

Event Channel Factory
The root node. Also used to show the Default Filter
Factory parent node and for Filter Factory objects.

Channel
Shows the unique identification number and the
name of the channel interface.

Supplier Admins
Parent node for all supplier admins.

Consumer Admins
Parent Node for all consumer admins.

Supplier Admin
Shows the unique identification number and the
name of the supplier admin interface.

Consumer Admin
Shows the unique identification number and the
name of the consumer admin interface.

Filters
Parent node for event filters.
96 OpenFusion CORBA Services Not i f icat ion Service Guide

Notification Service Details
The right hand pane will display the details of the individual objects in the
hierarchy when they are selected. If no node is selected, or if a node which
has no associated details is selected, this box will be empty and contain the
message There is no information to display.

Setting up an Event Channel
The core component of the Notification Service is the Event Channel. The
Event Channel handles the transmission of events over the distributed
network provided by the ORB implementation being used.

Creating an Event Channel
1 To create an Event channel, right-click on the Event Channel Factory

node in the hierarchy pane of the browser and select Create Channel.

2 A new Event Channel instance will be created. If the Event Channel is
selected in the hierarchy pane, the details about its ID and Class name
are displayed at the top, and a tabbed pane with the current Admin and
QoS properties and their values are shown. Details about Event Channel
properties are described next.

Setting Properties on an Event Channel
Default properties can be set for an Event Channel. This enables the user to
specify how the channel will respond to the events it receives. There are
two types of property: Admin properties and QoS properties.

Proxy Push Suppliers
Parent Node for Proxy Suppliers.

Proxy Push Consumers
Parent node for Proxy Consumers.

Proxy Push Supplier
Shows the unique identification number and the
name of the proxy interface.

Proxy Push Consumer
Shows the unique identification number and the
name of the proxy interface.

Table 8 Notification Service Nodes (Continued)

Icon Object
OpenFusion CORBA Services Not i f icat ion Service Guide 97

Admin Property Settings
Administrative properties refer to property settings that may be applied
only to event channel objects. These properties are usually set when an
event channel is first created. These settings are typically static in nature
although they may be changed during the lifetime of the channel object.
The standard administrative properties which can be set through the
Notification Service Manager are:

• MaxQueueLength

• MaxConsumers

• MaxSuppliers

• RejectNewEvents

See “Administrative Properties” for a description of these properties.

QoS Property Settings
The QoS properties which can be set on a event channel through the
Notification Service Manager are:

• ConnectionReliability

• EventReliability

• MaxEventsPerConsumer

• MaxReconnectAttempts

• MaximumBatchSize

• OrderPolicy

• PacingInterval

• Priority

• ReconnectInterval

• Timeout

• AutoSequenceBatchSize

• AutoSequenceTimeout

• PropagateQoS

See “Quality of Service Properties” for a description of these properties.

Setting up a Supplier or Consumer Admin
A supplier admin is a representation of a SupplierAdmin object created by
a particular event channel. A consumer admin is a representation of a
ConsumerAdmin object created by a particular event channel. Every
channel is created with a default SupplierAdmin and ConsumerAdmin
object, which are given IDs of zero. To view these, expand the tree in the
left pane. You should see a similar structure to that shown in Figure 11.
98 OpenFusion CORBA Services Not i f icat ion Service Guide

Figure 11 Supplier and Consumer Admins

If the user selects either of the default Supplier or Consumer Admin objects
in the hierarchy, then the right panel will display details about these. At the
top of the pane there is information about the object selected: its ID, Class,
Channel and its default filter operator OR. Beneath this is a tabbed panel,
displaying the QoS Settings associated with the object.

QoS Settings
The following QoS properties can be set for SupplierAdmin and
ConsumerAdmin objects:

• ConnectionReliability (Consumer Admin only)

• MaxEventsPerConsumer (Consumer Admin only)

• MaxReconnectAttempts (Consumer Admin only)

• MaximumBatchSize (Consumer Admin only)

• OrderPolicy (Consumer Admin only)

• PacingInterval (Consumer Admin only)

• Priority

• ReconnectInterval (Consumer Admin only)

• Timeout

• AutoSequenceBatchSize

• AutoSequenceTimeout

See “Quality of Service Properties” for a description of these properties.
OpenFusion CORBA Services Not i f icat ion Service Guide 99

Admin Filters
Administration objects and all of the proxy objects in the Notification
Service inherit the FilterAdmin interface. This means that all of these
objects can have filters attached. Each object which can have filters
attached contains a child node, Filters. The Filters node contains children
that represent the individual filters that have been created for that object.

Filter Settings
One use of filters is to narrow the sorts of events received by Consumer
objects. This is done by applying constraints to Supplier and Consumer
Admin objects. These constraints can be specified by using the extended
Trader Constraint Language (TCL). To locate the Filter section beneath the
Supplier and Consumer Admin objects, expand the hierarchies below each.
The Notification Browser should look like that in Figure 12.

Figure 12 Filters

Custom Filters

A custom filter is a filter which is not based on the standard grammar (TCL)
but is created via a custom filter implementation class. This class must
implement the FilterOperations interface and must be available on the
CLASSPATH. The class must be specified when the filter is created, as
described in the following section.

Creating a New Filter

1 To create a new filter object, right-click on the Filters icon in the
hierarchy tree beneath either the Admin or Proxy object. Select the
option Add Filter from the pop-up menu. The Add Filter dialog is
displayed, as shown in Figure 13.
100 OpenFusion CORBA Services Not i f icat ion Service Guide

Figure 13 Add Filter

2 Select the required filter grammar from the drop-down list (currently,
EXTENDED_TCL is the only available option). Or, if a custom filter is
required, type the name of the custom filter implementation class into
the text box.

3 Click the OK button.

4 A new filter object line will appear in the hierarchy. Select this line to view
the filter details in the right-hand pane. See Figure 14.

Figure 14 Filter Details

At the top of this filter is a pane containing the filter ID, the IDL Class on
which the filter is based, and the Grammar with which it will be constructed.
Below this is a split panel. To the left is a pane where any number of filter
OpenFusion CORBA Services Not i f icat ion Service Guide 101

constraints can be added and removed. To the right is another pane with
the details of the constraint currently selected in the left pane.

If a filter is based on a custom filter implementation class which does not
support constraints, the constraint-related controls (Add, Remove) will be
disabled.

Adding a Constraint

1 Add a new constraint by clicking the Add button in the left pane. This
displays the Add Constraint dialog, as shown in Figure 15.

Figure 15 Add Constraint

Each constraint is automatically assigned an ID number. When the
constraint is first added, the ID text box will be blank.

Constraint expressions are added using the Expression field and the
Event Types table. Steps 2, 3, and 4 illustrate this using the following
constraint expression as an example:

(($domain_type == ’Telecommunications’ and
 $type_name == ’CommunicationsAlarm’) or
 $domain_type == ’Healthcare’ and
 $type_name == ’VitalSigns’)) and severity == 3

This expression could be added directly into the Expression text box.
However it is easier to add the domain and type names of the events into
the Event Types table.

2 Enter the expression severity == 3 into the Expression text box.

3 Click the Add button below the Event Types table. A new row will now
appear in the table. Enter Telecommunications into the Domain Name
column and CommunicationsAlarm into the Type Name column.

4 Click the Add button below the Event Types table and enter Healthcare
and VitalSigns into the Domain Name and Type Name columns.

i

102 OpenFusion CORBA Services Not i f icat ion Service Guide

5 Click the OK button once the full constraint expression has been entered.

6 To complete the process of adding a constraint, click the Save button in
the Constraints panel. The constraint will now be stored.

Removing a Filter

To remove a filter object, right-click on the Filters icon in the hierarchy tree
beneath the required Supplier or Consumer Admin object. Select Destroy
Filter from the pop-up menu. A warning dialog will appear to confirm that
the filter will now be destroyed and removed from the hierarchy tree.

Removing a Constraint

1 To remove a constraint, select the constraint in the Constraints list.

2 Click the Remove button below it. The constraint will now disappear from
the list. Click the Remove All button to remove all constraints from the
filter.

Setting Proxy Instances
Supplier and Consumer Proxy objects are shown in the Notification Service
Browser beneath Proxy Nodes in the hierarchy panel. See Figure 16. A
Notification Service may have one or more Proxy instances. These Proxy
instances are created using the Supplier or Consumer Admin interfaces.

Proxy instances are used to connect suppliers and consumers to the Event
Channel. A supplier connects via a Proxy Consumer, which is obtained from
a Supplier Admin. A consumer connects via a Proxy Supplier, which is
obtained from a Consumer Admin.

Figure 16 Proxy Objects
OpenFusion CORBA Services Not i f icat ion Service Guide 103

QoS Settings
The QoS properties which can be set on a Proxy object through the
Notification Service Manager are:

• ConnectionReliability

• DisconnectCallback

• MaxEventsPerConsumer

• MaxReconnectAttempts

• MaximumBatchSize

• PacingInterval

• Priority

• ReconnectInterval

• Timeout

• AutoSequenceBatchSize

• AutoSequenceTimeout

Some of these Qos properties are not available for all types of Proxy object.

See “Quality of Service Properties” for a description of these properties.

Creating a New Proxy Object
Supplier Admin objects are used to create proxy consumer objects for
Supplier clients. Consumer Admin objects are used to create proxy supplier
objects for Consumer clients.

1 To create a new Proxy Object, select the relevant node in the Notification
browser hierarchy pane:

a Proxy Push Supplier

b Proxy Push Consumer

2 Right-click on the line in the hierarchy tree and select the Obtain New
Proxy option from the pop-up menu.

3 Select the Client Type from the list box: Structured, or Sequence.

4 Click the OK button to create the proxy. A new proxy instance will appear
in the tree below the node.

Proxy Filters
Proxy objects like Admin objects can have filter objects associated with
them. Applying filters to Proxy objects in the Notification Browser is
essentially the same process as applying them to Admin objects. Refer to
the section “Filter Settings” for details.

Upon receipt of each event, the Proxy invokes the appropriate match
operation on each of its associated filter objects. The match operation takes
the contents of the event as input and returns a boolean result. A FALSE
value is returned only when none of the constraints in the filter objects are
satisfied by the event, otherwise TRUE is returned. Where the Proxy has
multiple filter objects associated with it, it will invoke match on each in turn
until either one returns TRUE or all have returned FALSE. Whenever the
result of all match operations evaluates FALSE, then the event is discarded.
104 OpenFusion CORBA Services Not i f icat ion Service Guide

Testing Event Delivery
The Notification Browser provides facilities for testing the communication
between objects in the Notification Service. Once Event Channels are
available, the user can configure and create events and send them using
built-in Structured Supplier and Consumer clients.

To use the event delivery test clients, the Notification Service requires the
following objects to be configured and available.

• An Event Channel object. Refer to “Creating an Event Channel”.

• Two Event Channel Admin objects. Default Supplier and Consumer Admin
objects will always be available when the Event Channel is created, so
there is no need to create any more unless the user wishes to do this.

Creating the Test Clients
Once the Notification Service is running and configured correctly, the clients
can be created.

• Right click on the NotificationSingleton in the Administration Manager’s
Object Hierarchy and select Notification Structured Supplier Manager
from the pop-up menu. A new Structured Supplier Manager will appear as
a new tab in the browser framework.

• Right click on the NotificationSingleton in the Administration Manager’s
Object Hierarchy and select Notification Structured Consumer Manager
from the pop-up menu. A new Structured Consumer Manager will appear
as a new tab in the browser framework.

Configuring the Test Clients
Configuring the Structured Supplier

Figure 17 shows the Structured Supplier Manager. The manager is split into
two panes; the Status pane and the Events pane. The Status pane displays
information about the current status of the supplier connection through its
proxy and admin objects. The Events pane shows the events being
transmitted by the supplier.

The Events pane can be cleared by right clicking on the window and
selecting the Clear option from the pop-up menu.

Figure 17 Structured Supplier Manager
OpenFusion CORBA Services Not i f icat ion Service Guide 105

Configuring the Structured Consumer

Figure 18 shows the Structured Consumer Manager. The manager is split
into two panes; the Status pane and the Events pane. The Status pane
displays information about the current status of the consumer connection
through its proxy and admin objects. The Events pane shows the events
being received by the consumer.

The Events pane can be cleared by right clicking on the window and
selecting the Clear option from the pop-up menu.

Figure 18 Structured Consumer Manager

The textual representations of events sent and received by the Test Client
GUIs will take up space in memory while they are displayed (as all text does
within any text pane). The user should be aware that this could potentially
cause memory exhaustion in the Administration Manager process if
messages are sent or received over extended periods.

Connecting the Structured Supplier

When the Structured Supplier Manager is invoked, the Structured Supplier
client resolves the Notification Service.

1 Connect the Structured Supplier to the Notification Service by clicking on
the Connect Supplier icon in the tool bar. You will then be prompted to
select the identifier of the Event Channel and Supplier Admin. If there is
more than one Event Channel or more than one Supplier Admin available
then you can select the appropriate identifiers from the drop-down lists.

2 Select a Channel and Admin and click OK. The Structured Supplier client
will now be connected to the Notification Service and will create a proxy
automatically.

Connecting the Structured Consumer

When the Structured Consumer Manager is invoked, the Structured
Consumer client resolves the Notification Service.

1 Connect the Structured Consumer to the Notification Service by clicking
on the Connect Consumer icon in the tool bar. You will then be prompted
to select the identifier of the Event Channel and Consumer Admin. If
there is more than one Event Channel or more than one Consumer Admin
available then you can select the appropriate identifiers from the drop-
down lists.

2 Select a Channel and Admin and click on OK. The Structured Consumer
client will now be connected to the Notification Service and will create a
proxy.
106 OpenFusion CORBA Services Not i f icat ion Service Guide

Creating Test Events

The final stage of configuration is to create events to transmit over the
Notification Service.

1 Click on the Structured Supplier Manager tab in the browser, and click on
the Configure Events tool bar button. The Configure Events dialog box is
displayed, as shown in Figure 19.

Figure 19 Configure Events Dialog Box

The Configure Events dialog is separated into two panes. The Event
Sequence contains a list of the events to be transmitted. The Event
Communication allows the user to configure the event transmission
mechanism. The Number of Loops field expects an integer for the number
of times that the batch of events in the Event Sequence table will be
transmitted across the Event Channel. In normal circumstances events are
usually transmitted once only, but for testing purposes this can be
increased. The Event Interval field allows the user to specify, in milliseconds,
the interval between the transmission of the event batches listed in the
Event Sequence table.

1 Enter the value of 10 into the Number of Loops field and 100 into the
Event Interval field. This will instruct the Notification Service to transmit
the event sequence ten times, at intervals of one every one tenth of a
second.

2 Click the Add button in the Event Sequence pane. This gives a dialog box
for creating structured events, shown in Figure 20.
OpenFusion CORBA Services Not i f icat ion Service Guide 107

Figure 20 Configure Event Dialog Box

3 Enter Healthcare into the Domain field of the Fixed Header section, and
VitalSigns into the Type field. Enter an identifier for the Event instance
(for example, my_vital_signs_event_1).

4 Click the Add button in the Filterable Body section of the dialog. Enter
the property severity into the Name field and switch the data type to
short in the Type field. Finally set the value to 3 in the Value field. Click
OK. The Filterable Body will now contain the new property.

5 Click OK to load the event into the Event Sequence table of the Configure
Events dialog.

6 Repeat step 3 through step 6 as before, but give this event a different
identifier and set the severity to 4.
108 OpenFusion CORBA Services Not i f icat ion Service Guide

7 To save a configured event sequence for use at a later date, click the
Save button. To load events select the Load button and load a previously
saved file. For this exercise click on OK.

Transmitting Test Events
 1 To begin transmitting the events, click the Send Events button on the tool

bar.

2 If you examine the Structured Supplier Manager you should notice the
events being transmitted in the Events pane.

3 If you switch to the tab of the Structured Consumer Manager you will
notice the events being received in the Events window.

Filter Events

The next example will demonstrate the use of filters on event transmission.

1 Select the Notification Service Manager window and create a new Filter
object on the Supplier Admin object.

2 Create a new constraint.

3 Add the expression $severity != 3, and add the domain Healthcare
and type VitalSigns to the Event Types table. This will create a filter to
accept only Healthcare/Vital Signs events whose severity is not equal
(!=) to 3. Property variables in constraint expressions must always be
preceded by the $ sign.

4 Clear the Events panes in the Structured Supplier and Consumer
Manager windows and click the Send Events button again.

5 Examine the Events pane in the Structured Supplier Manager. Both
events are transmitted to the Event Channel.

6 Now examine the Events pane in the Structured Consumer Manager. You
should notice that only the event with severity==4 is being received by
the Consumer client. The event with severity==3 is filtered out due to
the constraint created on the Supplier Admin in step 3.

Destroying Proxy Objects
Proxy objects are destroyed if the Disconnect button is clicked or if the
browser is closed.
OpenFusion CORBA Services Not i f icat ion Service Guide 109

110 OpenFusion CORBA Services Not i f icat ion Service Guide

ChannelConfigurator Tool
The ChannelConfigurator tool is a Java Object which is used with the
Notification Service to help manage channel configurations. The configuration
of Notification Service channels can be saved and used to re-initialise the
Notification Service when it is restarted. The Service can therefore be stopped
and started without the added overhead of recreating all the channels.

The ChannelConfigurator can perform the following functions:

• Save the Notification Service channel configuration into an XML file.

• Load an existing channel configuration into the Notification Service from
an XML file.

ChannelConfiguratorObject Configuration
The ChannelConfigurationObject Java Object must be added to the
Notification Service before the ChannelConfigurator tool can be used.
Adding Java Objects to a Service is described in the System Guide.

Once the ChannelConfigurationObject has been added to the Service, the
following properties must be configured before the Notification Service is
restarted.

NotificationServiceName

The name of the Notification Service that the ChannelConfigurator tool will
run on. The default value is NotificationService.

NameServiceName

The name of the Naming Service that the ChannelConfigurator tool will bind
objects to.

Property Name NotificationServiceName

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name NameServiceName

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
OpenFusion CORBA Services Not i f icat ion Service Guide 111

Channel Configuration URL

The URL of the XML file containing the channel configuration information.
This property is mandatory but does not have a default value, so a value
must be entered before the Notification Service can be started.

Using the ChannelConfigurator Tool
When the Notification Service is started, the ChannelConfigurator tool will
automatically attempt to load channel configurations from the XML file
pointed to by the Channel Configuration URL property. If the file cannot be
located, the Service will start with no channels configured.

The tool will attempt to resolve each object described in the XML file,
according to the following rules:

1 If the XML file contains an ID number (ID element), the tool will load the
object described by the ID.

2 If the XML file contains an IOR string (IOR element), the tool will load the
object described by the string.

3 If the XML file contains an IOR URL (IOR_URL element), the tool will load
the object pointed to by the URL.

4 If the XML file contains a Naming Service entry (NS_Entry element) and
the object can be resolved in the Naming Service, the tool will load that
object.

5 If the XML file contains a Naming Service entry (NS_Entry element) but
the object cannot be resolved, the tool will create a new object and
register it in the Naming Service with the name specified by the
NS_Entry element.

These rules are evaluated in the order given. So if all three elements exist
for an object, the object will be resolved from the IOR string and the other
elements will not be evaluated.

If the tool cannot resolve an object from any of these elements, it will
create a new object.

From version 2.5.3 onwards, only the ID element is used. The other
elements (IOR, IOR_URL, and NS_Entry) are still checked, but this is only
for compatibility with files created by earlier versions (which did not have
the ID element). It is suggested that older XML files are re-saved in the
current version in order to update their structure.

When the channel configurator writes the time-related QoS property values
(MaxInactivityInterval, PacingInterval, ReconnectInterval,
ThreadIdleTime and Timeout) to the XML file, it changes the units from
100 nanoseconds to milliseconds. When the configurator reads in the XML
file to recreate the service configuration, it will convert the values back to
100ns units.

Property Name ChannelConfigurationURL

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

i

112 OpenFusion CORBA Services Not i f icat ion Service Guide

Saving a Channel Configuration
To save the Notification Service’s current channel configuration, open the
Notification Service Manager. Right-click on the root node of the Notification
Service hierarchy and select Save Channel Configuration from the pop-up
menu, as shown in Figure 21.

Figure 21 Saving Channel Configuration

A Save dialog box is displayed. Select the directory and file name for the
XML file. The file should be given an .XML extension.

If the specified XML file already exists, it will be overwritten by the new file.

If the file name and location do not match that specified by the Channel
Configuration URL property, then the Notification Service will not be
initialised with the saved configuration the next time it is started.

Running from the Command Line
To load a saved channel configuration into the Notification Service:

To save the current channel configuration of the Notification Service to an
XML file:

Where:

<URL> is the URL of the XML configuration file.

<NotificationService> is the Notification Service resolve name.

<NamingService> is the Naming Service resolve name.

% run com.prismt.cos.CosNotification.tools.config.ChannelConfigurator:
-load <URL> <NotificationService> <NamingService>

% run com.prismt.cos.CosNotification.tools.config.ChannelConfigurator:
-save <URL> <NotificationService>
OpenFusion CORBA Services Not i f icat ion Service Guide 113

114 OpenFusion CORBA Services Not i f icat ion Service Guide

Index
A
Adding

Constraints 102
Admin Objects 13
Admin Properties 98
Administration Interfaces 51
AutoSequenceBatchSize (QoS property) 59, 98
AutoSequenceTimeout (QoS property) 60, 98
Auto-sequencing 18

B
Blobstore Logger Level (property) 76

C
Channel

Configuration 111
Channel Configuration URL (property) 112
ChannelConfigurationURL (property) 112
ChannelConfigurator 96, 111
Channels 96
Channels (property) 83
Component

Connection 9
Creation 9

Component Manager Logger Level
(property) 79

components/EventDatabase/
maxpurgememory (property) 91

components/Journal/guaranteedsyncing
(property) 91

components/LockSetFactory/fairness
(property) 89

components/ThreadPool/pool-initial
(property) 89

components/ThreadPool/pool-max
(property) 89

components/ThreadPool/pool-min
(property) 89

components/ThreadPool/thread-timeout
(property) 90

components/TransactionManager/domain/
timeout (property) 90

Configuring a Structured Supplier 105
ConnectedClient (QoS property) 59
ConnectionReliability (property) 54
ConnectionReliability (QoS property) 98, 99,

104
Constraint Language 17
Constraints

Adding 102
Removing 103

Consumer Admin 96
Consumer Admins 96

Setting up 98
ConsumerAdmins (property) 81
create_channel Operation 49
Creating

a New Filter 100

Test Events 107
Current Total of Events Awaiting Delivery
(property) 82

Current Total of Events in Channels
(property) 81

CurrentEvents (property) 81

D
Database Plugin Class (property)

Notification Service 70
DB.Plugin (property)

Notification Service 70
DB.WAL (property) 69
DB.WAL.Dir (property) 70
DB.WAL.MaxSize (property) 70
default_consumer_admin Operation 50
default_filter_factory Operation 50
default_supplier_admin Operation 50
Dependencies (on Other Services) 7
DiscardPolicy (QoS property) 56
DisconnectCallback (QoS property) 60, 104
documentation

.pdf format ix
updates on the web ix

E
Enable Write Ahead Log (property) 69
Errors 65
Event

Body 12
Communication Models 12
Header 11
Transmission 8

Event Channel 12
Factory 96
Properties 97
Setting up 97

Event Channel Factory
create_channel Operation 49

Event Channel Factory Interface 49
Event Channel Interface

default_consumer_admin Operation 50
default_filter_factory Operation 50
default_supplier_admin Operation 50
destroy Operation 50
for_consumers Operation 50
for_suppliers Operation 50
get_admin Operation 50
get_all_consumeradmins Operation 50
get_all_supplieradmins Operation 50
get_consumeradmin Operation 50
get_qos Operation 50
get_supplieradmin Operation 50
MyFactory Operation 50
new_for_consumers Operation 50
new_for_suppliers Operation 50
set_admin Operation 50
set_qos Operation 50

Event Database
OpenFusion CORBA Services Not i f icat ion Service Guide 115

Maximum Purge Memory (property) 91
Purge Rate (property) 90

EventChannelFactory Object 95
EventReliability (QoS property) 53, 98
Events Delivered (property) 81
Events Received (property) 80
Events, Defined 11
Events, Structured 11
EventsAwaitingDelivery (property) 82
EventsDelivered (property) 81
EventsReceived (property) 80
Exceptions 65

F
Federation 20
Filter 96

Events 109
Interfaces 51
Removing 103

Filtering 16
for_consumers Operation 50
for_suppliers Operation 50

G
get_admin Operation 50
get_all_consumeradmins Operation 50
get_all_supplieradmins Operation 50
get_consumeradmin Operation 50
get_qos Operation 50
get_supplieradmin Operation 50
getValue() method 80
GlobalSetting (property) 73

I
Instrumentation

Notification Service Properties 80
Instrumentation Properties 80
IOR File Name (property) 71, 92
IOR Name Service (property) 71, 93
IOR Name Service Entry (property) 71, 92
IOR URL (property) 71, 92
IOR_URL Element 112
IOR.File (property) 71, 92
IOR.URL (property) 71, 92

J
JMX (Instrumentation) Properties 80
Journal

Guaranteed Syncing (property) 91
JTO Logger Level (property) 74

L
Local Channel 21
Lock Set Factory

Fairness Policy (property) 89
Lock Set Factory Logger Level
(property) 79

logcategory/blobstore (property) 76
logcategory/ecfc (property) 78
logcategory/ecm (property) 79
logcategory/jto (property) 74

logcategory/locksetfactory (property) 79
logcategory/messenger (property) 75
logcategory/orb (property) 75
logcategory/rolemanager (property) 74
logcategory/scheduler (property) 73
logcategory/statefactory (property) 77
logcategory/statemachinefactory
(property) 77

logcategory/threadpool (property) 78
logcategory/transactionmanager
(property) 76

logkit/targets/file/filename (property) 72
logkit/targets/file/format (property) 73

M
Managing

Proxies 28, 33
MaxConsumers (admin property) 64, 98
MaxEventsPerConsumer (QoS
property) 55, 98, 99, 104

Maximum Queue Size (property) 88
MaximumBatchSize (QoS property) 56, 98,

99, 104
MaxInactivityInterval (QoS property) 58
MaxMemoryUsage (QoS property) 60
MaxMemoryUsagePolicy (QoS
property) 60

MaxQueueLength (admin property) 64, 98
MaxQueueSize (property) 88
MaxReconnectAttempts (QoS
property) 58, 98, 99, 104

MaxSuppliers (admin property) 64, 98
Messenger Logger Level (property) 75
MyFactory Operation 50

N
NameServiceName (property) 111
new_for_consumers Operation 50
new_for_suppliers Operation 50
Notification Service

Configuration 69
Errors 65
Event Channel Factory, create_channel
Operation 49

Event Channel Interface
default_consumer_admin
Operation 50

default_filter_factory Operation 50
default_supplier_admin Operation 50
destroy Operation 50
for_consumers Operation 50
for_suppliers Operation 50
get_admin Operation 50
get_all_consumeradmins
Operation 50

get_all_supplieradmins Operation 50
get_consumeradmin Operation 50
get_qos Operation 50
get_supplieradmin Operation 50
MyFactory Operation 50
new_for_consumers Operation 50
 116 OpenFusion CORBA Services Notification Service Guide

new_for_suppliers Operation 50
set_admin Operation 50
set_qos Operation 50

Exceptions 65
Hierarchy 96
Introduction 5, 23, 47, 53
Manager 95
Proxy Management 28, 33
Quality of Service Property

ConnectedClient 59
ConnectionReliability 54
DiscardPolicy 56
EventReliability 53
MaxEventsPerConsumer 55
MaximumBatchSize 56
MaxInactivityInterval 58, 59
MaxReconnectAttempts 58
OrderPolicy 56
PacingInterval 56
Priority 54
ReconnectInterval 59
StartTimeSupported 55
StopTime 54
StopTimeSupported 55
Timeout 55

Service Dependencies 7
Notification Service Logger Level
(property) 78

NotificationServiceName (property) 111
NotificationSingleton Configuration 69
NS_Entry Element 112
Number of Consumer Admins
(property) 81

Number of Event Channels (property) 83
Number of Proxy Push Consumers
(property) 80

Number of Proxy Push Suppliers
(property) 82

Number of Sequence Proxy Push
Consumers (property) 81

Number of Sequence Proxy Push
Suppliers (property) 83

Number of Structured Proxy Push
Consumers (property) 80

Number of Structured Proxy Push
Suppliers (property) 82

Number of Supplier Admins (property) 83

O
Object.Name (property) 71, 92
OMG

Standard API Definitions 47
Standard Features 5

OpenFusion
Enhancements 6
QoS Extensions 16, 58

ORB Logger Level (property) 75
OrderPolicy (QoS property) 56, 98, 99

P
PacingInterval (QoS property) 56, 98, 99,

104
Passivating Persistent Clients 20
PDF documentation ix
Persistence 19
Priority 54
Priority (QoS property) 54, 98, 99, 104
Process.getValue() 80
ProcessSingleton Configuration

Notification Service 92
PropagateQoS (QoS property) 61, 98
Proxy

Defined 13
Instances 103
Management 28, 33
Push Consumers 97
Push Suppliers 97

Proxy Objects
Destroying 109

Proxy Push Consumer 97
Proxy Push Supplier 97
ProxyPushConsumers (property) 80
ProxyPushSuppliers (property) 82

Q
QoS Settings 99

Proxy Objects 104
Quality of Service Property

ConnectedClient 59
ConnectionReliability 54
DiscardPolicy 56
EventReliability 53
MaxEventsPerConsumer 55
MaximumBatchSize 56
MaxInactivityInterval 58, 59
MaxReconnectAttempts 58
OrderPolicy 56
PacingInterval 56
Priority 54
ReconnectInterval 59
StartTimeSupported 55
StopTime 54
StopTimeSupported 55
Timeout 55

Queues, Defined 14

R
Reconnecting Consumers (property) 83
ReconnectingConsumers (property) 83
ReconnectInterval (QoS property) 59, 98,

99, 104
RejectNewEvents (admin property) 98

Notification Service 64
Removing

Constraints 103
Filters 103

Requirements 19
Resolve Name (property) 72
ResolveName (property) 72
Resuming Connections 13
OpenFusion CORBA Services Notification Service Guide 117

Role Manager Logger Level (property) 74

S
SequenceProxyPushConsumers
(property) 81

SequenceProxyPushSuppliers
(property) 83

Sequencing 17
Service Log File Format (property) 72
Service Log File Location (property) 72
Set All Loggers To (property) 73
set_admin Operation 50
set_qos Operation 50
Singletons

NotificationSingleton 69
Standard

OMG Properties 15, 53
Starting the Notification Service
Manager 95

StartTime 54
StartTimeSupported (QoS property) 55
State Factory Logger Level (property) 77
State Machine Factory Logger Level
(property) 77

StopTime (property) 54
StopTimeSupported (QoS property) 55
Structured Consumer, Connecting 106
Structured Events 11
Structured Supplier, Configuration 106
StructuredProxyPushConsumers
(property) 80

StructuredProxyPushSuppliers
(property) 82

Supplier Admin 96
Supplier Admins 96

Setting up 98
SupplierAdmins (property) 83
Suspending Connections 13

T
Thread Pool

Initial Pool Size (property) 89
Maximum Pool Size (property) 89
Minimum Pool Size (property) 89
Thread Timeout (property) 90

Thread Pool Logger Level (property) 78
Timeout (QoS property) 55, 98, 99, 104
Transaction Manager

Domain Timeout (property) 90
Transaction Manager Logger Level
(property) 76

Transmitting Test Events 109

W
Write Ahead Log 69
Write Ahead Log Directory (property) 70
Write Ahead Log Maximum Size
(property) 70
 118 OpenFusion CORBA Services Notification Service Guide

	Contents
	Preface
	About the Notification Service Guide
	Intended Audience
	Organisation
	Conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Introduction
	Notification Service
	Description
	OMG Standard Features
	OpenFusion Enhancements
	Concepts and Architecture
	Dependencies on Other Services
	The Basic Concept
	The Architecture
	The Details
	Structured Events
	Event Communication Models
	Event Channel
	Admin Objects
	Proxies
	Queues
	Quality of Service
	Filtering
	Sequencing
	Persistence
	Federation

	Using the Service
	Introduction
	Import Statements
	Compiling and Running Clients
	Compiling Client Applications
	Running Client Applications
	Initialising the ORB
	Starting the Notification Service
	Configuring the Notification Service
	Starting Clients

	Creating Clients
	Creating a Supplier
	Connecting to the Server
	Creating Events
	Sending Events

	Creating a Consumer
	Connecting to the Server
	Receiving Events
	Suspending and Resuming Connections

	Removing Inactive Proxies
	Proxy Push Consumers
	Proxy Push Suppliers
	Alternative Method

	Using Quality of Service Properties
	Creating an Event Channel with QoS
	Managing QoS
	Adding New QoS to a Channel
	Accessing the QoS
	Validating Event QoS

	Using Filters
	Filter Objects
	Creating a Filter Object
	Adding a Filter Object to an Admin Object
	Listing Filter Objects
	Removing Filter Objects

	Event Filters
	Constructing Constraints
	Managing Constraints

	Writing Constraint Expressions
	Extended TCL Grammar
	Basic Elements
	Operators
	Constraint Examples

	Using Persistence
	API Definitions
	OMG Standard API Definitions
	Event Channel Factory Interface
	Event Channel Interface
	Administration Interfaces
	Filter Interfaces

	Supplemental Information
	Quality of Service Properties
	Standard OMG Properties
	OpenFusion QoS Extensions
	Memory Management Properties

	Administrative Properties
	Errors and Exceptions
	Errors
	Exceptions
	Implementation Limit Exception

	Configuration and Management
	Notification Service Configuration
	Common Properties
	NotificationSingleton Configuration
	Persistence Properties
	CORBA Properties
	Messaging Loggers
	Instrumentation Properties
	General Properties
	Messaging
	ProcessSingleton Configuration
	Notification Service Manager
	Using the Notification Service Manager
	The Notification Service Manager
	Notification Service Hierarchy
	Notification Service Details

	Setting up an Event Channel
	Creating an Event Channel
	Setting Properties on an Event Channel
	Admin Property Settings
	QoS Property Settings

	Setting up a Supplier or Consumer Admin
	QoS Settings

	Admin Filters
	Filter Settings

	Setting Proxy Instances
	QoS Settings
	Creating a New Proxy Object
	Proxy Filters

	Testing Event Delivery
	Creating the Test Clients
	Configuring the Test Clients
	Destroying Proxy Objects

	ChannelConfigurator Tool
	ChannelConfiguratorObject Configuration
	Using the ChannelConfigurator Tool
	Saving a Channel Configuration
	Running from the Command Line
	Index

