
Micro Focus
OpenFusion CORBA Services

Version 5.0.1

System Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2009-2016. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2016-04-15

OpenFusion CORBA Services System Guide iii

Contents

Preface ... ix
About the OpenFusion CORBA Services System Guide... ix

Intended Audience... ix
Organisation ... ix
Conventions... x

Contacting Micro Focus ... xi
Further Information and Product Support .. xi
Information We Need ... xi
Contact information ...xii

Part I Common System Operations
Running Servers .. 3

Starting Servers from the Administration Manager... 3
Starting Servers from the Command Line ... 4

OpenFusion Graphical Tools .. 7
The Browser Framework .. 7

Starting the Administration Manager ... 7
Command Line Switches.. 8
Domain Configuration Parameters... 8

Administration Manager ... 9
Object Hierarchy... 9

Tool Tips ... 10
Object Hierarchy Icons .. 11
Status... 11
Starting the Services .. 12
Extending the Object Hierarchy .. 13

Locking ... 16
Locking Nodes.. 16
Locking Properties .. 17

Restoring Services and Singletons... 17
Properties.. 18

Type ... 18
Mandatory ... 18
Accessibility ... 19
Conditional Properties ... 19
Assigning Values to Properties.. 19
Actions that Can be Performed on Properties 20
Signals.. 21

User Identity.. 21
Service Log.. 22
Memory Profiler .. 22
Tool Bar Options ... 23

The CORBA Object Browser .. 25
Distributed Installation Configuration... 26

The Central Configuration Host ... 26
Using a Shared File System.. 28

Set up the Central Host ... 28
Implementation Repository .. 28
Environment Properties ... 29

Using a Web Server... 29
Set up the Central Host ... 29

iv OpenFusion CORBA Services System Guide

Configure Remote Singletons..29
Set the Central Host Properties ...29
Set up the Remote Machine..30
Working with Central Configuration..31

Tomcat Web Server Integration ...31
Deployment of Web Archives ..31
Security ...32
Deploying Java Server Pages ..32
Configuration..32
Testing the Tomcat Installation..35

Common Configuration Properties ...37
Persistence Properties ..37
Logging Properties...43
Internal Properties...47
CORBA Properties..48
Security Properties ..53
Java Properties ...53
System Properties ...54
Common Singleton Properties ...55
Administration Manager Properties...57

CORBA Properties..58
Configure Properties ..59
General Properties...60

Instrumentation ..61
Overview..61

Manageable Resources...61
Object Counters..61

SNMP Agent ...62
Configuring the SNMP Agent ...62
Notifications ...65
Trap Hosts File ..65
Starting the SNMP Agent..66
Stopping the SNMP Agent...66
OpenFusion MIBs ..66

CORBA Process Interface..66
Using the Process Interface ..67

Example Program..68

Service Portability ...71
Portability Classes ...71

The ORBAdapter Class ...72
ORB Initialization ..72
ORB Shutdown ...72
Object Information..72
Object Stringification ...73
Service Resolution...73

The ObjectAdapter Class ..73
Initialization ...73
Object Creation ..73
Object Identity ...75
Multiple Object Identity..75
Object Deactivation ...76
Object Destruction ..76
Object Reactivation ...76
Object Existence ...76

OpenFusion CORBA Services System Guide v

Object References .. 77
Object Implementations .. 77
Persistent Object State.. 77
Running a Server.. 78
Restrictions.. 78
Recommendations .. 79

The DynAnyFactory Class... 79
Creation Operations .. 79

Implementing an Interface... 80
Persistent Servers... 81

Running User Defined Clients and Servers .. 82
Resolving Services .. 82

Configuration ... 82
Dynamic Registration .. 83

Jar Files... 83
Using OpenFusion Run Scripts .. 83
Command Line Format .. 84

OpenFusion Java IDL Compilation.. 84
C++ Support.. 86

Configuring Persistent Storage.. 87
Configuring a JDBC Data Source ... 87
Oracle ... 88

Oracle Thin Drivers ... 89
Oracle OCI Drivers .. 89

Sybase .. 89
Informix .. 90
SQL Server .. 91
MySQL .. 91
HSQLDB .. 92

Create an HSQLDB Instance... 92
Configure OpenFusion Services to Run with HSQLDB Persistence................... 92
HSQLDB in Client/Server Mode ... 92

Name.. 93
Timeout .. 93
Trace .. 93
No System Exit .. 94
Silent.. 94
Port .. 94

Restoring Data ... 95

Command Line Tools ... 97
IOR Decoder .. 97
Administration Manager Tool... 97
Configuration Generator... 99

Part II Security Service
Description of the Security Service.. 103

Concepts and Architecture.. 103
Securable Objects... 103
Authentication.. 104
ACLs ... 104
Groups.. 105
Mapping Principals .. 105

vi OpenFusion CORBA Services System Guide

LoginModule ... 106

Using Specific Features..107
Securing an Interface or Method.. 107

Excluding Methods from the Security Manager .. 108
Creating ACL Groups.. 109
Creating Principal Mappings .. 109
Supplying Authorised Credentials... 110

Security Configuration ...113
Configuring a Secure OpenFusion Service ... 113

Security Administration Manager Properties .. 113
Configuring a Secure Client... 115

Security Configuration File Properties... 116

Security Administration Manager...119
Starting the Security Administration Manager.. 119
Using the Security Administration Manager ... 119

Object Hierarchy ... 120
Security Hierarchy Options ... 121
Excluding Methods from the Object Hierarchy 122

Tool Bar Buttons ... 122
Principals Panel... 122

Operations ... 123
Implementing Security Configuration Changes 125
Interfaces .. 125

Part III Appendices
XML Configuration Files ...129

The Object Hierarchy ... 129
Completing the XML File Installation .. 130
Directory Tree... 131

XML Files.. 131
Domains and Nodes... 131

Services .. 132
Singletons.. 132
Java Objects .. 133

XML Templates.. 133
Directory Tree... 134
Defining a Property in the XML File .. 134

GroupName.. 134
CategoryName ... 134
Dependencies... 134
Conditional... 135

XML Schema... 135
Command Line Configuration .. 135

Log Messages ..137
Using a Pattern Layout ... 137
Conversion Characters ... 138

Managing Java Objects ..141
Creating the Java Object .. 141
Describing the Java Object in XML ... 141

OpenFusion CORBA Services System Guide vii

Defining Properties for the Java Object .. 142
The Object Hierarchy... 142

Glossary .. 145
Definitions ... 145

Index ...153

viii OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide ix

Preface
About the OpenFusion CORBA Services System
Guide

The OpenFusion CORBA Services System Guide is included with the
OpenFusion CORBA Services’ Documentation Set. The OpenFusion CORBA
Services System Guide provides:

• General information necessary to develop, use, configure and manage the
OpenFusion Services and its related framework

• Information about the OpenFusion Graphical Tools

• Information about common service configuration, properties, and
instrumentation

Configuration and property information specific to an individual service or
interface is provided in that service’s or interface’s service guide.

The OpenFusion CORBA Services System Guide is intended to be used
with the individual service and interface guides, and with other OpenFusion
documents included with the product distribution: A complete list of
documents, comprising the OpenFusion CORBA Services Documentation
Set, is included in the Product Guide.

Intended Audience
The OpenFusion CORBA Services System Guide is intended to be used
by users, developers, and administrators who wish to integrate or manage
the OpenFusion CORBA Services into or with their applications and
products. Readers who use this guide should have a good understanding of
the relevant programming languages (such as Java, IDL) and the relevant
underlying technologies (such as J2EE, CORBA).

Organisation
The OpenFusion CORBA Services System Guide covers the following
topics:

• How to run the OpenFusion Services

• A description of the Administration Manager, which is used to configure
the OpenFusion Services and launch the Service Managers

• Details of common properties

• How to configure and use remote JMX Instrumentation

• Service portability issues (portability classes, user-defined clients and
servers, OpenFusion IDL compilation, and C++ Support)

• How to configure a JDBC data source to provide a persistent storage
mechanism for OpenFusion Services

• Details of various command-line tools provided with OpenFusion

• How to configure and use the OpenFusion Security Service to apply
access control to CORBA Services and Java Objects

“XML Configuration Files” describes how the Service configuration files are
stored in the OpenFusion installation. This appendix is only relevant to

x OpenFusion CORBA Services System Guide

developers who want to edit the configuration files programmatically;
configuration should normally be performed through the Administration
Manager, where the configuration files are hidden from the user.

“Log Messages” describes how to use pattern layouts to configure log
messages for any Service.

“Managing Java Objects” describes how to configure user-defined Java Objects
to make them available for management through the Administration
Manager.

The full text of this guide is also available as on-line help, accessible from
the Administration Manager.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the OpenFusion CORBA Services System Guide.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows systems only.

Information applies to Unix based systems (e.g. Solaris) only.

C language specific

C++ language specific

Java language specific

Hypertext links are shown as blue.

PDF versions of this document

Items shown as cross-references, such as “Contact information”’, act as
hypertext links; click on the reference to go to the item.

Courier fonts indicate programming code and file names.

Extended code fragments are shown in shaded boxes:

Italics and Italic Bold indicate new terms or emphasise an item.

Bold indicates user related actions, e.g. File | Save from a menu.

Steps in a task are numbered:

1 One of several steps required to complete a task.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i

i
WIN

UNIX

C
C++
Java

OpenFusion CORBA Services System Guide xi

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

• The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

• The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

• The Micro Focus YouTube channel for videos related to your product.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. You can find this by either logging into your order via
the Electronic Product Distribution email or via the invoice with the order.

http://www.microfocus.com

xii OpenFusion CORBA Services System Guide

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check in particular:

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

http://www.microfocus.com
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Common System

Operations

In this part
This part contains the following:

Running Servers page 3

OpenFusion Graphical Tools page 7

Common Configuration Properties page 37

Instrumentation page 61

Service Portability page 71

Configuring Persistent Storage page 87

Command Line Tools page 97

OpenFusion CORBA Services System Guide 3

Running Servers
This section describes the ways in which the OpenFusion CORBA Services
can be started, either from the Administration Manager or from command-
line scripts.

Note

The terms server and service are often used interchangeably. However,
there is a subtle and important distinction:

• A service is a set or collection of features, functions, etc. (e.g. the OMG
Notification Service or OMG Naming Service)

• A server is an entity which provides services and makes their features,
etc. available for use

A server must be running before a service can be provided. A single server
can provide one or more services.

Starting Servers from the Administration Manager
1 Ensure that the environment is correctly configured and as described in

the OpenFusion Product Guide.

2 Running the ORB Daemons

Start or check that the appropriate ORB daemon is running, if required:
please refer to the OpenFusion Product Guide and your ORB’s
documentation.

When servers are run on fixed ports, an ORB daemon may not be
necessary.

3 Configure the System

OpenFusion can be configured using the Administration Manager.

4 Starting the Administration Manager

The Administration Manager can be started by selecting Start | Programs |
OpenFusionV5 | Administration Manager from the start menu or by
running the following batch file:

where <install_dir> is the OpenFusion installation directory.

Use the following script to start the Administration Manager:

where <install_dir> is the OpenFusion installation directory.

5 Starting and Stopping Servers

The Administration Manager can be used to manage servers.

To start a server, right-click on the service name and select Start from
the pop-up menu.

If the Name Service Entry field is filled in at the time of system
configuration, the NameService server must be started first.

> <install_dir>\bin\manager

% <install_dir>/bin/manager

i

WIN

UNIX

4 OpenFusion CORBA Services System Guide

Starting Servers from the Command Line
Individual servers can also be controlled from the command line using a
server script.

No servers can be started from the command line until the XML
configuration files have been fully populated using either the Administration
Manager or the command line Administration tool. See “Administration
Manager Tool” for details.

The server command and its options are:
server [-x] (-start | -exec | -run | -restart | -stop |
-halt | -status | -statusloop x) service [configURL]

where
-startStart server
-execStart server and wait for startup
-runStart server and wait for termination
-restartStart server and restart on termination
-haltStop server and wait for stopped
-stopStop server
-statusPrint server status
-statusloop xPrint server status every x seconds.
serviceService name
configURLOptional URL for the service configuration XML

The server script takes a command-line option followed by one or more
server names. For example, the XYZServer (where XYZServer is the server
you want to start) can be started from the command line with:

where <install_dir> is the OpenFusion installation directory.

Alternatively, the server can be run in the foreground, rather than the
background, with:

It is also possible to start a server so that it is automatically restarted on
any abnormal exit. To do this, use the -restart option:

This is a blocking operation, so to stop the server either the Administration
Manager or another shell should be used.

In order to stop a running server, use:

To stop a server and wait for the server to be stopped, use:

To check whether a server is already running, use:

% <install_dir>/bin/server -start XYZServer

% <install_dir>/bin/server -run XYZServer

% <install_dir>/bin/server -restart XYZServer

% <install_dir>/bin/server -stop XYZServer

% <install_dir>/bin/server -halt XYZServer

% <install_dir>/bin/server -status XYZServer

OpenFusion CORBA Services System Guide 5

To output the status of a server every x seconds, use:

Use the -status command without specifying a server name to show the
status of all supported servers.

To start a server and wait for startup (that is, use a blocking call to the
server), use:

The -x option runs the JVM using the -Xbootclasspath flag. (See “Use
Xbootclasspath” in “Java Properties” for further details on the Xbootclasspath
flag.) For example, use:

A service can be specified by supplying a complete URL to the service
configuration xml file after the name of the service.

All the servers configured to run on the local node can be controlled via the
node script. This node script has -start, -stop, -status, and -x options.

To start every server on the local node, use:

To stop every server on the local node, use:

To check whether servers on the local node are running, use:

Status and other information about servers residing on nodes other than
the default node (localhost) can be obtained by altering the OF_Node_URL
property.

For example, to set OF_Node_URL to a valid, existing node called mynode
under OpenFusion, change the default value from:

<install_dir>/domains/OpenFusion/localhost
to:

<install_dir>/domains/OpenFusion/mynode

OF_NODE_URL is located in:

bin/.javaenv or

bin\fusiondefs.bat

% <install_dir>/bin/server -statusloop x XYZServer

% <install_dir>/bin/server -exec XYZServer

% <install_dir>/bin/server -start -x XYZServer

% <install_dir>/bin/server -start XYZServer
file:/<path>/XYZService.xml

% <install_dir>/bin/node -start

% <install_dir>/bin/node -stop

% <install_dir>/bin/node -status

UNIX

WIN

6 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 7

OpenFusion Graphical Tools
The OpenFusion Graphical Tools can be used to configure, test, and manage
the OpenFusion CORBA Services (OpenFusion).

The Browser Framework
All service managers and browsers use the same browser framework, which
provides common menus and tool bars. Common functions are standardised
between individual browsers so each new browser presents a gentle
learning curve.

New browsers can be opened to manage individual service elements. Each
new browser opens in the browser framework as a new panel identified by a
named tab. Switch between different browsers by clicking on the browsers’
name tabs.

Figure 1 OpenFusion Browser Framework

The hub of the browser framework is the Administration Manager. This is
where OpenFusion can be configured and controlled.

Starting the Administration Manager
The Administration Manager can be started by selecting Start | Programs |
OpenFusion | Administration Manager from the taskbar or by running the
following batch file:

where <install_dir> is the OpenFusion installation directory.

> <install_dir>\bin\manager

WIN

8 OpenFusion CORBA Services System Guide

Use the following script to start the Administration Manager:

where <install_dir> is the OpenFusion installation directory.

Command Line Switches
The following command line switches can be used when starting the
Administration Manager:

-noorb

Start the Administration Manager without a connection to an ORB. This does
not allow Services to be started or stopped, and does not report any status
information from Services. The Manager can be used purely as an XML
configuration tool.

-port

The Administration Manager attempts to start on the port specified in the
Server Port property on the Administration Manager properties panel.

-remote

The Administration Manager will only show configurations which can be
managed from the node the manager is started from.

-x

Use the Xbootclasspath when starting the Manager.

-help

Gives usage information on the command line switches. The switches --
help and -? can also be used.

Domain Configuration Parameters
By default, configuration information for an OpenFusion CORBA Services
installation is located under the OpenFusion installation directory. If this
directory is changed (to allow configuration from a remote host, for
example), environment variables must be set to specify the locations of the
correct directories.

The three environment variables listed below point to the configuration
directories at different levels of the OpenFusion hierarchy. (The hierarchy is
explained in “Object Hierarchy”.) These variables must be expressed as valid
URL strings.

Example:
set OF_DOMAINS_URL=file://C:\Program Files\Micro Focus\
OpenFusionV5\domains

export OF_DOMAINS_URL=file:///usr/users/Micro Focus/OpenFusionV5/
domains

% <install_dir>/bin/manager
UNIX

WIN

UNIX

OpenFusion CORBA Services System Guide 9

OF_DOMAINS_URL

The location of the top-level domains directory, expressed as a file-based
URL. This defaults to:

file://<INSTALL>/domains

Where <INSTALL> is the OpenFusion installation directory.

OF_DOMAIN_URL

The location of the OpenFusion domain directory, expressed as a file-based
URL. This defaults to:

file://<INSTALL>/domains/OpenFusion

OF_NODE_URL

The location of the node directory, expressed as a file-based URL. This
defaults to:

file://<INSTALL>/domains/OpenFusion/localhost

Administration Manager
The Administration Manager is used to configure the OpenFusion Services
and to manage (stop and start) the Services. The Administration Manager is
extensible and can be used to configure user-created Java Objects.

The Administration Manager has two panes:

• The left-hand pane shows the Object Hierarchy of the OpenFusion
installation.

• The right-hand pane shows the configurable properties for the object
selected in the hierarchy.

Object Hierarchy
The left-hand pane of the Administration Manager shows all services,
Singletons, and Java Objects, and the domains that contain them, in a tree
structure, as shown in Figure 2.

Figure 2 The Object Hierarchy

10 OpenFusion CORBA Services System Guide

Domains are high-level organisational units. The default hierarchy shows all
installed OpenFusion Services under a single domain. This hierarchy can be
restructured and extended as required, as described in “Extending the Object
Hierarchy”.

Nodes represent actual hardware devices within the domain and are given
the name of the machine they represent. The default hierarchy shows the
local machine as a node called localhost. This node can be deleted and
replaced with a node which uses the computer name, if required. There is
no difference, functionally, between using the machine name and the name
localhost.

A Service is a logical group of Singletons and Java Objects that are
controlled together. Groups of Services can be started together at the node
or domain level.

Each of the OpenFusion Services is represented by a Service node in the
Object Hierarchy. New Services can be created, which can contain different
permutations of Singletons and Java Objects.

Every Service should contain a ProcessSingleton. The ProcessSingleton is
the object which allows the Service to be controlled from the Administration
Manager.

Every OpenFusion CORBA object is represented by a Singleton in the Object
Hierarchy. Additional Singletons and Java Objects can be added to the
hierarchy, either to existing OpenFusion Services or to user-created
Services.

Java Objects should be co-located with CORBA Singletons in a Service. A
Service which contains Java Objects and no Singletons cannot be monitored
correctly for its status and cannot be controlled from the Administration
Manager.

See “Extending the Object Hierarchy” for details of adding nodes, Services, and
Singletons. See “Distributed Installation Configuration” for details of how multiple
nodes can be managed from a central host.

Tool Tips
Every node in the Object Hierarchy has an associated tool tip which
provides information about that node. To see the tool tip, hover the mouse
pointer over the node, as shown in Figure 3.

Figure 3 Viewing Tool Tips

The tool tip gives the type of node (Domain, Service, Singleton, etc.), the
name of the node, and the status of the node (see “Status”).

OpenFusion CORBA Services System Guide 11

Object Hierarchy Icons
Different nodes in the Object Hierarchy are identified by different icons.
These icons are shown in Table 1.

Status
A coloured icon in the Status column of the tree view shows the current
status of each service.

Parent nodes can show an indeterminate status. This is used when the
node’s child nodes have mixed status (for example, some are stopped and
some are started). Status icons are shown in Table 2.

Table 1 Object Hierarchy Icons

Icon Object

Root node

No actions can be performed at this level of the
hierarchy, other than adding new domains and
saving. Administration Manager properties can be
amended at this level.

Domain

An organisational grouping.

Node

A hardware device which runs OpenFusion Services.
localhost is the default node. Other devices can be
added as nodes.

Service

Singletons and Java Objects are grouped under
Services and are started and stopped together at the
Service level. Service-level properties can be set in
the right-hand pane.

Singleton

Represents an underlying CORBA object. Properties
can be set in the right-hand pane.

Java Object

Represents an underlying Java object. Properties can
be set in the right-hand pane.

12 OpenFusion CORBA Services System Guide

The status is also shown in the tool tip for each Service.

Starting the Services
Services can be started or stopped individually.

To start a service, right-click on the service name in the Object Hierarchy
and select Start from the pop-up menu.

To stop a running service, right-click on the service name in the Object
Hierarchy and select Stop from the pop-up menu.

Some properties cannot be modified after a service is started, so the service
must be properly configured beforehand.

To start (or stop) a collection of services, right-click on the services’ parent
node and select Start (or Stop) from the pop-up menu. Services are started
and stopped in the order they appear in the Object Hierarchy.

Table 2 Service Status Icons

Icon Status

Running

The service is running normally.

Stopped

The service is stopped.

Starting (yellow)
The service is in the process of starting. This icon will
be displayed while the browser is polling the server
to determine if the service has started. The icon will
eventually change to show Running (if the service
starts normally) or the state of the service prior to
the start command being issued (if the request times
out without starting the service).

Unknown (blue)
The status of the object hierarchy node is unknown
(has never been started). This icon is displayed when
the browser is first loaded or a node is restored.

Indeterminate (mixed red/green/blue)
This icon is used for an object hierarchy node when
its child nodes have a mix of different statuses, or
when one of the child nodes has an indeterminate
status.

Indeterminate (mixed red/green)
This icon is used for an object hierarchy node when
its child nodes are a mix of running and stopped
status.

Indeterminate (mixed green/blue)
This icon is used for an object hierarchy node when
its child nodes are a mix of running and unknown
status.

Indeterminate (mixed red/blue)
This icon is used for an object hierarchy node when
its child nodes are a mix of stopped and unknown
status.

OpenFusion CORBA Services System Guide 13

If an object hierarchy node cannot be started (that is, the option is
disabled), then it is likely that the Node object hierarchy node is not valid
for the hardware device that the Administration Manager is being invoked
from, noting that localhost is always valid.

Before a service is started, the system automatically saves the service
configuration. If there are mandatory properties for the service which have
not been completed, the service will not start, a warning will be displayed,
and the missing property will be noted in the browser log.

Extending the Object Hierarchy
The Object Hierarchy can be extended with new Domains, Nodes, Services,
Singletons, and Java Objects.

The default Object Hierarchy shows all installed OpenFusion Services
grouped under a single node under a single domain. Extending the Object
Hierarchy provides a more flexible approach to managing the OpenFusion
installation.

For example it may be necessary to run a particular Service in different
configurations at different times. Instead of re-setting all the properties for
the Service when it is run in another configuration, copies of the Service
could be created under different domains. Each could be configured with the
required properties. Then, to switch between configurations, simply stop
one domain and start the other.

Another use for multiple domains would be to set up different combinations
of Services that should be started together.

Nodes can be used to represent different servers within the domain.

New Services can be created to manage user-created Java Objects.

Other ways of grouping domains, nodes, and services will suggest
themselves based on the way OpenFusion is used in a particular installation.

Adding Nodes
Domains and Services are simply organisational groupings and can be
added without restriction.

Nodes represent hardware devices running CORBA Services. A node can
only be managed through the Administration Manager if it is given a valid
device name (localhost is always valid).

To add a node, right-click on the parent node and select Add Domain, Add
Node, or Add Service (the command depends on the level you are adding
to) from the pop-up menu, as shown in Figure 4.

i

14 OpenFusion CORBA Services System Guide

Figure 4 Adding a Node

Enter a name for the node. Node names must be unique within the scope of
their parent nodes. You can re-use a name if it is under a different parent.
Names can only contain alphanumeric characters.

When a new Service is added, a ProcessSingleton is automatically
created beneath it. This allows the service to be managed by the
Administration Manager: it is not recommended that users have a service
without a ProcessSingleton.

Adding Singletons and Java Objects
Singletons and Java Objects can only be added under Service nodes of the
Object Hierarchy.

Singletons and Java Objects in the Object Hierarchy are representations of
underlying objects and so only objects which already exist are available for
adding to a Service.

The Resolve Name of the Naming Service Singleton must be unique within
the whole Domain, not just within the scope of the parent node (localhost
by default). The Resolve Name must be unique to avoid the possibility of
two objects attempting to register themselves in the NameService with the
same name.

To add a Singleton or Java Object, right-click on a Service node and select
Add from the pop-up menu. Select either Singleton or Java Object to see a
menu of available objects. Objects that cannot be added to the Service are

OpenFusion CORBA Services System Guide 15

greyed-out. Select the required object from the list, as shown in Figure 5.

Figure 5 Adding a Java Object

It is not possible to have two instances of the same Singleton or Java Object
under one Service.

If the same Singleton or Java Object is added under two different Services,
they are two separate instances and properties changed in one instance will
not affect the other instance.

Deleting Nodes
To delete a node from the Object Hierarchy, right-click the node and select
Delete from the pop-up menu, as shown in Figure 6.

Figure 6 Deleting a Singleton

16 OpenFusion CORBA Services System Guide

When a node is deleted, all children and all properties and settings of that
node are also deleted.

A deleted node cannot be recovered, but a new node with the same name
as the deleted node can be added later.

Changing the Ordering of Services and Singletons
The order of Services beneath nodes and Singletons/Java Objects beneath
Services can be altered. The order is important as it determines the
sequence in which Singletons and Java Objects will start when a node is
started.

To move a Service, Singleton, or Java Object higher up the list, right-click
on the node and select Start Earlier from the pop-up menu.

To move a Service, Singleton, or Java Object down the list, right-click on
the node and select Start Later from the pop-up menu.

The ProcessSingleton is always the last Singleton in a Service and cannot
be moved up.

Locking
Locking a property prevents that property from being updated. Single
properties can be locked selectively, or an entire node in the Object
Hierarchy can be locked.

This is not intended as a security measure. It is a simple matter to unlock a
locked node or property. The purpose of the lock is to prevent accidental
changes, and to prevent global changes from cascading through to a locked
property.

Locking a property in the Administration Manager browser does not lock the
property in the underlying CORBA object and does not prevent the property
being changed programmatically.

The locked state of nodes and properties is saved when the browser is
closed, so locks are restored when the browser is reloaded.

Locking Nodes
To lock a node in the Object Hierarchy, check the box in the Lock column
for that node. To unlock the node, clear the checkbox.

Locks cascade to nodes lower in the hierarchy. If a Service is locked, the
Singletons under that Service are also locked. If a domain is locked, the
entire hierarchy under that domain is locked.

Nodes which have been locked by a cascade from a node higher in the
hierarchy display a padlock icon in the Lock column. These nodes cannot be
unlocked individually; the parent node much be unlocked first.

When a node is locked, all properties for the node are locked and cannot be
individually unlocked. You can, however, selectively lock properties without
locking an entire node. If a property is selectively locked and then a lock is
applied to a higher node, the individual lock is retained if the higher lock is
removed.

Starting a Service node can also cause some of the properties for that
Service to be locked. Whether a property is locked or not when the Service
starts is determined by the Type of the property (see “Type”).

OpenFusion CORBA Services System Guide 17

Locking Properties
Properties can be locked for a number of reasons. Locked properties display
a padlock icon in the Lock column and are coloured grey.

When a node is locked, all properties for that node automatically become
locked. The only way to unlock these properties is to unlock the node.

Some properties are locked based on Type (see “Type”):

• Fixed properties are locked as soon as the Service is first activated (and
cannot be unlocked, even if the Service is subsequently stopped).

• Static properties are locked while the Service is running and unlocked
when the Service is stopped.

Some properties are locked based on the value of another property. For
example, if the Security Enabled property for a service is checked, the other
properties on the Security tab are unlocked and available. If the Security
Enabled property is unchecked, then the other security properties are not
needed and are all locked.

Any property can be locked individually, at the user’s discretion. To lock a
single property, check the box in the Lock column for that property. To
unlock the property, clear the checkbox.

Restoring Services and Singletons
It is possible to restore all, or selected, Services and Singletons to their
default (as supplied) states.

When a Singleton is restored, the IOR for the Singleton is deleted from the
domains directory structure. (See “XML Configuration Files” for details of how
the domains directory structure maps the Object Hierarchy.)

When a Service is restored, the Service’s data directory contents and log file
are deleted and the IORs for each of that Service’s Singletons are deleted.

The Restore command can be used at higher levels of the Object Hierarchy
to restore all Services below the selected node.

Use this command with caution.

To restore a Service or a Singleton, right-click it in the Object Hierarchy.

1 Click Restore from the pop-up menu.

2 To restore all properties to their default values, check the Restore default
properties check-box.

18 OpenFusion CORBA Services System Guide

Properties
The right-hand panel of the Administration Manager (Figure 7) shows the
properties for the node selected in the Object Hierarchy.

Figure 7 Administration Browser Properties Pane

Each service has properties arranged on tabbed panels. Utilities for service
management are in the Service Log and Memory Profiler panels.

The following sections give basic instructions for working with properties.
Details of how specific properties can be used for configuring individual
Services are described in the sections dealing with each Service.

Type
Every property has a type, which defines how and when the property value
can be changed. These types are identified by icons in the Type column,
shown in Table 3.

Setting Properties Dynamically
If the value of a dynamic property is changed in the Administration Manager
while the Service is running, the Set menu option must be used to update
the property in the underlying CORBA object (see “Set”).

Mandatory
Some properties are defined as mandatory. A mandatory property is one
which must be given a value before the Service is started and cannot be left

Table 3 Property Types

Icon Property Type

Fixed

The property can only be changed before the Service
is started for the first time.

Dynamic

The property can be changed at any time, including
while the Service is running.

Static

The property can only be changed when the Service
is stopped.

OpenFusion CORBA Services System Guide 19

blank. Zero (0) is a valid entry for a mandatory integer property.

The icons used in the Mandatory column to indicate mandatory properties
are shown in Table 4.

A node can be saved with mandatory properties left incomplete but a
warning message will be displayed.

Accessibility
Properties can be read only or read/write. Read-only properties display
information which can never be amended in the Administration Manager.
Read/write properties can be amended (unless locked).

Read-only properties are indicated by grey shading. This is the same look as
a locked property, but there is no icon in the Lock column for a read-only
property.

Conditional Properties
Some properties will not appear on the Administration Manager property
panel because they are conditional properties. These are properties which
apply only to specific system configurations. For example, some properties
relate to a specific ORB and will not appear on the screen if a different ORB
is in use.

Assigning Values to Properties
A property with a boolean data type has a checkbox in the Value field. If the
checkbox is ticked, the property is set to true. If the box is cleared, the
property is set to false. To change the state of the checkbox, click it once.

A property with an enumerated data type has a drop-down list of valid
values. To set the property, click the arrow at the right of the Value field
and select a value from the list.

All other property values accept keyboard input. To set or edit the property,
click in the Value field and type the required value.

Table 4 Mandatory Properties

Icon Mandatory Status

Optional

The Service will start successfully with this property
left blank.

Mandatory property (blue tick)
The Service will not start if this property is blank.

Incomplete mandatory property (red tick)
This icon is used for a mandatory property which has
been left blank. A Service will not start if any of its
properties show red ticks.

20 OpenFusion CORBA Services System Guide

Property Validation
Some property types are validated and will produce an error message if an
invalid value is entered:

• INTEGER properties will only accept numeric input.

• UUID properties will only accept a string which is a valid UUID.

• URL properties will only accept a string which is a valid URL format. Only
file, gopher, and http URL formats are accepted.

• COUNTER properties will only accept numeric input.

Entering Directory Paths
If the special characters $$are entered into a property field, the directory
path of the current node is substituted. For example, if $$ is entered for a
property of the NotificationSingleton, the following string is substituted:

<install_dir>/domains/OpenFusion/localhost/
NotificationService/NotificationSingleton/

Where <install_dir> is the OpenFusion installation directory and the
directory path is entered as a continuous string (no carriage returns).

For example, enter the following to specify the location of the
NotificationSingleton.ior file:

$$NotificationSingleton.ior

Note that the $$substitution includes the trailing slash of the directory path,
so entering the following text would be incorrect (resulting in a double-
slash):

$$/NotificationSingleton.ior

Actions that Can be Performed on Properties
Each type of property has a set of actions which can be performed on it.
Right-click the property row to access a pop-up menu of actions.

The following actions are available.

Reset Counter
This action resets the counter to zero.

The action is only available for counter properties.

Refresh
This action retrieves the current value of the property from the underlying
CORBA object and updates the Value field of the property.

If the value of an object’s property is changed programmatically while the
Service is running, the property displayed in the Administration Manager
will not be updated unless this action is performed, and therefore can show
a false value for dynamic properties.

This action can only be performed while the Service is running (and
therefore is only available for dynamic properties).

Set
This action transfers the value of the property in the Administration
Manager to the underlying CORBA object.

This action can only be performed while the Service is running (and
therefore is only available for dynamic properties).

OpenFusion CORBA Services System Guide 21

If the value of a dynamic property is changed in the Administration Manager
while the service is running, the property in the underlying CORBA object is
not automatically updated. The Set action must be used to update the
CORBA object property.

Assign Value to Peers
This action copies the value of the selected property to all peers (all objects
under the same parent node) which have a property with the same name.

If this action is performed on a Singleton property, the same property for all
other Singletons and Java Objects under the same Service will be updated.
If the action is performed on a Service property, the same property for all
other Services under the same node will be updated.

If it is a dynamic property, the updated value is also set in the underlying
CORBA object.

For example, the Storage Type property could be changed to File for the
NotificationService and this command could be used to transfer that change
to all other Services under the same node.

Properties which are locked (see “Locking”) are protected from being
updated by this action.

Assign Value Globally
This action copies the value of the selected property to all properties in the
Object Hierarchy which have the same name. This action is similar to
Assign Value to Peers but the change is made over the entire Object
Hierarchy.

If it is a dynamic property, the updated value is also set in the underlying
CORBA object.

Properties which are locked (see “Locking”) are protected from being
updated by this action.

New UUID
Assigns a valid UUID to the property.

This action is only available for UUID properties.

Signals
Signals are displayed as buttons in a Service’s property list, as shown in
Figure 8.

Figure 8 A Signal Button

When clicked, a signal button will trigger some action in the underlying
Service. The action each signal button performs will depend on how the
signal has been defined and will be described in the documentation for each
Service.

A signal will only trigger an action when the underlying Service is running.

User Identity
To access secured services, a valid user identity must be provided.

The current user identity is displayed in the Administration Manager’s status
bar. To change the identity, use the Enter user identity tool bar button and
enter a user name and password in the User Identity Details dialog box.

22 OpenFusion CORBA Services System Guide

Service Log
Every Service has a log file that can be viewed on the SERVICE LOG tab for
the Service. Only the last (most recent) 250Kb of the log file will be
displayed.

The log file for each Service can be configured to specify log file location,
maximum log file size, the level of information to be logged, and other
factors. See “Logging Properties” for details.

Use the Refresh Log button to refresh the display with the current contents
of the log file (the display is not automatically updated when the file
contents change).

Use the Delete Log File button to clear the Service Log. This clears the
display and deletes the contents of the underlying log file. The Service Log
can only be deleted if the Service is not running.

Memory Profiler
The Memory Profiler for each service shows the total available, used, and
free memory in the Java Virtual Machine (JVM) that the service is running
in. The total and used memory are also shown as a graph which shows
changes over time. The graph is illustrated in Figure 9.

To start the Memory Profiler, select the reporting interval from the Interval
drop-down list and click Start. The service must be running or the Memory
Profiler will not start. To halt the Profiler, click Stop. Stopping the Profiler
freezes the display but does not clear it. Re-starting a stopped graph,
however, clears the display.

The scale of the Memory axis (y-axis) changes dynamically in order to
effectively display changing amounts of memory.

The Clean button forces immediate garbage collection on the current
process. The results of this will be seen as a drop in the Used JVM Memory
and an increase in the Free JVM Memory on the Memory Profiler. This
operation can be performed even when the Memory Profiler is stopped.

OpenFusion CORBA Services System Guide 23

Figure 9 Memory Profiler

Tool Bar Options
The browser tool bar buttons provide access to a number of common
features. These buttons are described in Table 5.

Many of these functions can be performed by using a key combination
(control key plus a letter). These keyboard short cuts are also shown in
Table 5.

24 OpenFusion CORBA Services System Guide

If a function is not available in a particular browser, the corresponding
button will be greyed-out while that browser is active.

When functions specific to a particular browser are added to the tool bar,
the buttons will be described in the section of this Guide which deals with
the relevant browser.

Table 5 Tool Bar Buttons

Button Function

Delete selected browser (Ctrl+D)
Removes the currently active browser from the
browser framework. The browser configuration is not
automatically saved when the browser is removed.

Refresh selected browser (Ctrl+R)
Refreshes the currently active browser. This does not
refresh property values unless they are dynamic and
the service is running.

Refresh the current node

Refreshes the view of the node currently selected in
the Object Hierarchy. This does not refresh
property values unless they are dynamic and the
service is running. This button is only valid for the
Administration Manager.

Stop current action

Aborts any action which has been initiated but has
not yet completed.

Launch the file browser

Opens the file browser.

Save configuration

Save the current values of all the properties in the
Object Hierarchy. This button is only valid for the
Administration Manager.

View the browser log

Opens the browser’s message log file.

Enter user identity
Opens the User Identity Details dialog box to allow
user authentication.

OpenFusion CORBA Services System Guide 25

The CORBA Object Browser
Any Singleton of a running Service can be queried from the Administration
Manager to reveal key information about the Singleton.

To query the Singleton, right-click the Singleton and select CORBA Object
Browser from the pop-up menu, as shown in Figure 10.

Figure 10 Starting the CORBA Object Browser

This action opens the CORBA Object Browser, as shown in Figure 11. The
CORBA Object Browser can also be started from the command on the Tools
menu.

Figure 11 CORBA Object Browser

26 OpenFusion CORBA Services System Guide

The CORBA Object Browser displays the following information about the
Singleton object:

• Host IP address.

• Host port number.

• Object type.

• Status (active or inactive and persistent or non-persistent).

• IOR.

The displayed IOR can be selected and copied to the clipboard as a string.

When the CORBA Object Browser is active, two buttons are added to the
tool bar These buttons are shown in Table 6.

Distributed Installation Configuration
Multiple OpenFusion installations can be configured from a central host. This
allows OpenFusion Services on different machines to share common
configuration files and, if required, a common implementation repository.

The machines can be connected via a shared file system or by using a Web
server running on the central host.

Note that the central configuration host and each remote machine must
have a licensed OpenFusion installation.

The Central Configuration Host
The XML files used to configure the properties of each remote OpenFusion
installation are all stored on the central configuration host under the
domains directory (see “The Object Hierarchy” for details). The central host
must therefore be configured to store details of each remote installation.

Each remote installation should be set up as a separate node in the
Administration Manager Object Hierarchy on the central host. (See “Adding
Nodes”.)

Table 6 CORBA Object Browser Tool Bar Buttons

Button Function

Load IOR

Loads a previously-saved IOR from a text file. The
file must contain a valid IOR as a string.

Save IOR

Writes the object’s IOR as a string to a text file.

OpenFusion CORBA Services System Guide 27

Figure 12 shows the Object Hierarchy of a central configuration host
managing four remote machines.

Figure 12 Remote Nodes

Each node should have the unique machine name of the remotely-managed
computer.

Each remote machine displays the full Object Hierarchy from the central
host, including all remote machine nodes and the localhost node, unless the
Administration Manager is started with the -remote command-line option,

28 OpenFusion CORBA Services System Guide

for example:

The appearance of the localhost node could potentially cause confusion for
remote users. It might be assumed that localhost refers to the remote
machine, but it actually refers to the central host. To avoid the confusion,
delete the localhost node from the central configuration host’s Object
Hierarchy and add a new node with the name of the host machine.

Add Services to each node and add Singletons and Java Objects to the
Services, as described in “Adding Singletons and Java Objects”. Figure 12 shows
one Service with two Singletons added to a remote node. The Singletons
and Java Objects must exist as valid objects on the remote machine.

Using a Shared File System
All hosts must have identical mappings to a common file system.

On Windows systems, network drives must be mapped so that all machines
(including the central host) can refer to the central OpenFusion installation
directory with the same drive letter. This ensures that a directory path (for
example, O:\OpenFusion\domains) will always point to the same location
on the central host regardless of which remote machine it is invoked from.

On Unix, use a soft link to achieve the same effect.

Note that it is not possible to use a common file system to link OpenFusion
installations running on a mixture of Unix and Windows hosts. In a mixed
operating system environment, central configuration can only be performed
via a Web server (see “Using a Web Server”).

Set up the Central Host
On the central host, set up nodes in the Object Hierarchy with each node
representing a remote machine. This is described in “The Central Configuration
Host”.

Implementation Repository
It may be necessary to configure remote installations to share a common
implementation repository. This is not necessary if the central host is only
used for configuration purposes, but it is required if the clients need to
communicate with Services running on other hosts.

The Servers running on each host must be configured to use the common
implementation repository. With JacORB, for example, the
ORBInitRef.ImplementationRepository property in the
jacorb.properties file on each host must be set to point to the location
of the common implementation repository’s IMR file.

The common implementation repository can be running on any host.

In order to prevent conflicts when starting the Administration Manager with
a common implementation repository, the POA Name property (found on
the CORBA tab of the Domains node in the Administration Manager) must
be unique for each host. To change this property, the Administration
Manager must be started for each host with the -noorb option.

% bin/manager -remote

OpenFusion CORBA Services System Guide 29

Environment Properties
Each remote host requires an OF_DOMAINS_URL environment property set
to the domains directory on the remote host. If the shared file system has
been mapped correctly, this property should be identical on every host. For
example:

set OF_DOMAINS_URL=file://O:\Openfusion\domains

export OF_DOMAINS_URL=file:///usr/users/central/
OpenFusion/domains

Each remote host requires an OF_Admin_URL environment property set to
the local domains directory. For example:

set OF_Admin_URL=file://C:\Openfusion\domains

export OF_Admin_URL=file:///usr/users/node1/OpenFusion/
domains

Using a Web Server
The central configuration host must be running Web server software. (Any
third-party Web server will be suitable.)

The OpenFusion distribution includes the Tomcat Web server, but this
should not be used to enable remote configuration.

Set up the Central Host
On the central host, set up nodes in the Object Hierarchy with each node
representing a remote machine. This is described in “The Central Configuration
Host”.

Configure Remote Singletons
When you add a Singleton to a remote node in the Object Hierarchy, it will
have default data locations that apply to the central host. These locations
must be changed to point to valid locations on the remote machine. As
many of these properties are hidden from the Administration Manager GUI,
the underlying XML files must be edited directly (Note: this is normally not
recommended, and care should be taken that no errors are introduced into
the XML files).

The Appendix “XML Configuration Files”, gives details of the structure and
locations of the files which must be edited.

Every Singleton property value which is a directory path should be changed
to point to a location on the remote machine. If the central host and the
remote machine have exactly the same installation path and directory
structure for their OpenFusion installations, these properties will be correct
and do not need to be changed.

If HSQLDB is used for persistence (see “hsqldb”), ensure that the
DB.WAL.DIR property for each Service is set to point to an existing
directory on the remote machine, otherwise the Service will not start.

Set the Central Host Properties
Set the properties of the domains node in the Object Hierarchy as described
here. (These properties are described fully in “Configure Properties”.)

Central Configuration Host
This check box should be checked to indicate that the machine is the central
configuration host.

WIN

UNIX

WIN

UNIX

30 OpenFusion CORBA Services System Guide

OpenFusion Install URL
The URL that remote machines must use to access the central configuration
host. This is a http URL which gives the host’s machine name. This URL will
be determined by the root document directory of the Web server.

For example, if the central configuration host is an NT Server named
central with the Web server document directory set to C:\, and the
OpenFusion installation on that machine is C:\Micro Focus\OpenFusion,
then the correct URL will be:

http://central/Micro Focus/OpenFusion

If the Web server document directory is set to C:\Micro Focus\
OpenFusion, however, the correct URL will be:

http://central

Caution: entering an invalid URL will cause fatal problems! Take backups of
the OpenFusion installation and be very careful when changing this
property.

Configure from Remote Host
This check box should remain clear on the central host. The setting is only
needed on remote machines.

Remote OpenFusion Install URL
This setting is not needed on the central host. The property should be
locked, as Configure from Remote Host should not have been selected on
the central host.

Set up the Remote Machine
To set up a remote machine to use central configuration, the central host
must have been configured and the remote machine must have been set up
as a node in the central host’s Object Hierarchy.

The following properties must be configured for the domains node in the
remote machine’s Object Hierarchy. These properties are described fully in
“Configure Properties”.

These properties are stored on the remote machine, not the central
configuration host, which is why they must be set on each remote machine.

Central Configuration Host
This check box should remain clear on the remote machine. The setting is
only needed on the central host.

OpenFusion Install URL
This setting is not needed on the remote machine. The property should be
locked, as Central Configuration Host should not have been selected on the
remote machine.

Configure from Remote Host
If this machine is to be configured from a central host, this check box must
be checked.

Remote OpenFusion Domains URL
A URL which points to the location on the central host that stores the XML
configuration files. This will be the OpenFusion installation directory.

This URL will be determined by the root document directory of the Web
server.

OpenFusion CORBA Services System Guide 31

For example, if the central configuration host is an NT Server named
central with the Web server document directory set to C:\, and the
OpenFusion installation on that machine is C:\Micro Focus\OpenFusion,
then the correct URL will be:

http://central/Micro Focus/OpenFusion/domains

If the Web server document directory is set to C:\Micro Focus\
OpenFusion, however, the correct URL will be:

http://central/domains

Working with Central Configuration
When a remote machine is configured from a central host, all of the XML
files which hold properties for Services and Singletons are stored on the
central host. The remote machine can read from the configuration files but
cannot write to them.

Because the remote machine cannot write to its own configuration files, it
can never over-ride the configuration set by the remote configuration host.
On the remote machine, most properties will be locked.

The only properties which remain unlocked are Dynamic properties (see
“Type”). Changes to these properties will not be stored permanently when
the Administration Manager is shut down.

Many main menu options, tool bar buttons, and right-click menu options are
disabled on the remote machine. All actions which apply to changing the
Object Hierarchy or modifying locked property values are disabled.

Tomcat Web Server Integration
It is possible to deploy the Java Tomcat Web server within an OpenFusion
installation.

Tomcat is deployed as an embedded server and can be configured as a Java
Object. As such, it can be deployed as a separate service or co-located with
another OpenFusion service. See “Adding Singletons and Java Objects” for
details of deploying Java Objects in an OpenFusion installation.

See http://jakarta.apache.org/ for further details of the Tomcat Web server.

Deployment of Web Archives
Each configured Tomcat object has its own webapps directory created
within the configuration directory hierarchy. In addition, a global webapps
directory is maintained at the root level of the OpenFusion installation.

By default, the ROOT Web archive file (ROOT.war) is deployed into every
configured Tomcat instance. Additional Web archive files can be deployed
by one of the following methods:

• Put the file into the specific webapps directory.

• Put the file into the global webapps directory and configure the Tomcat
WAR Files property to include the file name.

http://jakarta.apache.org/

32 OpenFusion CORBA Services System Guide

Security
The Tomcat Web server has a security manager enabled by default. This
uses the following security policy file:

<INSTALL>/etc/tomcat.policy

where <INSTALL> is the OpenFusion installation directory.

If more fine-grain security control is required, the file can be copied into the
Tomcat home directory and edited as appropriate. The Tomcat Security
Policy File property is used to locate this file.

Deploying Java Server Pages
In order to deploy your own Java Server Pages (JSPs) in the Tomcat Web
server, a .jar file containing a Java compiler must be included in the
CLASSPATH.

JSPs supplied with the OpenFusion CORBA Services distribution are pre-
compiled and deployed within a .war file and therefore do not need access
to a Java compiler.

Configuration
The following properties can be configured through the GUI manager for
each embedded Tomcat object.

Tomcat Home Directory
The home directory of the Tomcat server. This defaults to the configuration
directory for the Tomcat Java Object:

<INSTALL>/domains/<domain>/<node>/<service>/TomcatObject/

where <INSTALL> is the OpenFusion CORBA Services installation directory.
See “The Object Hierarchy” for details of the domains directory structure.

Tomcat Work Directory
The Tomcat work directory. This defaults to the work directory under the
default Tomcat home directory:

<INSTALL>/domains/<domain>/<node>/<service>/TomcatObject/
work

where <INSTALL> is the OpenFusion CORBA Services installation directory.
See “The Object Hierarchy” for details of the domains directory structure.

Property Name Tomcat.Home

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 33

This property is independent of the Tomcat Home Directory property and
does not change if Tomcat Home Directory is changed.

Tomcat WAR directory
The directory into which Tomcat deploys Web archive files. This defaults to
the webapps directory under the default Tomcat home directory:

<INSTALL>/domains/<domain>/<node>/<service>/TomcatObject/
webapps

where <INSTALL> is the OpenFusion CORBA Services installation directory.
See “The Object Hierarchy” for details of the domains directory structure.

This property is independent of the Tomcat Home Directory property and
does not change if Tomcat Home Directory is changed.

Tomcat WAR Files
A colon-separated list of Web archive files to be deployed from the global
webapps directory into the Tomcat WAR directory.

The ROOT.war file is always deployed and does not have to be included in
the list.

Tomcat Security Policy File
The full path and name of the file which defines the security policies used by
the Tomcat security manager. This defaults to:

<INSTALL>/etc/tomcat.policy

where <INSTALL> is the OpenFusion CORBA Services installation directory.

Property Name Tomcat.WorkDir

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.Context

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.Archives

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Tomcat.PolicyFile

Property Type STATIC

Data Type FILE

Accessibility READ/WRITE

Mandatory YES

34 OpenFusion CORBA Services System Guide

Tomcat Port
The port on which the Tomcat server listens for http requests. The default is
8080, but if this port in use by any other Web server deployed on the same
system, a different port must be selected.

Serve Root URL
This property should be checked (TRUE) if the Tomcat Object will be used to
serve up the files used for remote system configuration. The default value
for this property is TRUE. See “Distributed Installation Configuration”, for more
details of remote system configuration.

Root URL
The directory that will be served up by the Tomcat Object. To allow remote
system configuration, this should be the OpenFusion installation directory
(which is the default value for the property). The directory should be
specified as a URL of type file://.

This directory will be served up when a Web browser is used to access the
following URL:

http://<server>:<port>/<context>

Where:
server is the machine which is running the Tomcat Object.
port is the port that Tomcat listens on, specified in the Tomcat Port
property.
context is the path specified in the Context Path property.

If the directory contains a file called index.html, that file is returned to the
browser. If index.html does not exist, a directory listing is returned
instead.

This property is only enabled if the Serve Root URL property is checked.

Property Name Tomcat.Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.ServeRoot

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.RootURL

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 35

Context Path
The virtual directory that will be served up by the Tomcat Object. This
defaults to the name of the Service that the Tomcat Object is a part of. See
the Root URL property for details of how this property can be used.

This property is only enabled if the Serve Root URL property is checked.

Testing the Tomcat Installation
Once the service containing the Tomcat Java Object has been started, the
Tomcat deployment can be tested by attempting to connect to the default
Web page. To connect to the default page, type the following into the
address bar of a Web browser:

http://<server>:<port>

where <server> is the name of the machine running the Tomcat server and
<port> is the port number specified in the Tomcat Port property (8080 by
default).

If the server is working correctly, the Tomcat server default Web page will
be displayed.

Property Name Tomcat.ContextPath

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

36 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 37

Common Configuration
Properties
The properties described in this section are found in all Services. The
properties must be set individually for each Service, although the
commands “Assign Value to Peers” and “Assign Value Globally” can be used to
set the same values for multiple Services.
The properties are grouped by function on different tabs of the properties
pane.
The ENUM data type has special meaning in that it represents a drop-down
list in the GUI where a definitive list of values is allowed, rather than the
usual meanings associated with the other data types (for example the
INTEGER data type represents an integer).

Persistence Properties
The properties on the Persistence tab determine how and where the Service
data is stored persistently. See “Configuring Persistent Storage” for details of
different persistent storage methods.

Persistence Type
The DB.Type property specifies the type of persistence for the Service. It
can either be database persistence ("JDBC") or file persistence.

Service Data Directory
The DB.File.Dir property specifies the directory under which the service
stores its information. When using file persistence, that is if DB.Type is set
to “File”, the persistent data files are also placed in this directory.

Storage Write Interval
This property specifies the delay (in seconds) between saving object state
changes within a server and writing this information to persistent storage.
This option is a performance optimization feature as it can be used to
prevent the Service from making a lot of small updates to the persistent
store.

i

Property Name DB.Type

Property Type FIXED

Data Type ENUM ("File" / "JDBC")

Accessibility READ/WRITE

Mandatory YES

Property Name DB.File.Dir

Property Type FIXED

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

38 OpenFusion CORBA Services System Guide

A value of zero indicates no delay (changes are written immediately to the
persistent store). Increasing the write interval may improve performance
when the data held by a service is changing rapidly.

Storage Write Batch Size
The Storage Write Batch Size option specifies the maximum number of
updates that will be buffered before the data is written to persistent
storage. This option is a performance optimization feature.

A value of zero indicates that the updates are not buffered but are written
immediately to the data store. Increasing the property value may improve
performance when the data held by a Service is changing rapidly.

The effect of setting both the Storage Write Interval and the Storage Write
Batch Size to values greater than zero is that of batched timed writes.

JDBC Auto-create tables
If this property is checked (true), the Service will check for the presence of
the JDBC tables required for persistent storage and automatically create the
tables if they are not present.

The default value for this property is true.

JDBC Handler
The class name of the custom plug-in which will implement the JDBC
ExceptionHandler interface.

The ExceptionHandler interface allows the customising of how an SQL
exception will be handled. The interface is specified as follows:

Property Name DB.WriteInterval

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name DB.WriteBatch

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.AutoCreate

Property Type FIXED

Data Type BOOLEAN

Accessibility READ-WRITE

Mandatory NO

public interface ExceptionHandler
{
 public static final int OK = 0;
 public static final int REPEAT = -1;
 public static final int FATAL = -2;

 public int handleException (java.sql.SQLException ex);
}

OpenFusion CORBA Services System Guide 39

This operation should return a status indicating how an SQL exception
should be handled. Possible return values are:

A return value greater than 0 (zero) means that the database operation
should be re-tried after the returned interval (in milliseconds).

JDBC Database Type
The JDBC Database Type option specifies the available, underlying
relational database type. Select from one of the following supported
databases:

• Oracle

• Sybase

• Informix

• SQL Server (Windows only)

• HSQLDB

The default database type is HSQLDB, which is installed with the
OpenFusion CORBA Services distribution and will run with no additional
configuration.

JDBC URL
The JDBC URL option sets the location of the JDBC data source. The format
of the URL depends on the type of data source being used.

Oracle

jdbc:oracle:thin:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

Sybase

jdbc:sybase:Tds:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

OK The program should continue as normal.

REPEAT The database operation should be re-tried immediately.

FATAL The program should terminate.

Property Name DB.JDBC.Handler

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.Type

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

40 OpenFusion CORBA Services System Guide

Informix

jdbc:informix-sqli:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

SQL Server

jdbc:odbc:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

HSQLDB

There are three ways in which HSQLDB can be run, each requiring a
different URL format.

• Running on the local machine:

jbbc:HSQLDB:<database>

Where <database> is the path to the HSQLDB database. The default
database location is a subdirectory of the Service directory, as follows:
jdbc:HSQLDB:<install_path>/domains/<domain>/<node>/

<service>/data/HSQLDB

Where:
<install_path> is the OpenFusion installation directory.
<domain> is the name of the domain.
<node> is the name of the node.
<service> is the name of the OpenFusion Service.

This default location can be changed if required.

• Running in local memory (in the same JVM as the Service being started):

jdbc:HSQLDB:.

• Running on a remote machine:

jdbc:HSQLDB:hsql://<host>:<port>

Where:
<host> is the name of the remote machine.
<port> is the port used to connect to HSQLDB on the host machine.
This is optional but will be required if the host machine runs more than
one HSQLDB server.

Property Name DB.JDBC.URL

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 41

JDBC Driver
This is the class name of the JDBC driver used. A default driver based upon
the type of database chosen will be used when this field is left blank, so it is
not normally necessary to set this field.

JDBC Logging
Whether JDBC calls will be logged or not.

JDBC User
Your Database Administrator will provide the user name for use in the JDBC
User option.The default user is sa (the HSQLDB system administrator user).

This user must have create rights on the database.

JDBC Password
Your Database Administrator will provide the password for use in the JDBC
Password option. The default password is blank (none is required for the
default user, sa, in HSQLDB).

Property Name DB.JBDC.Driver

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.Logging

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.User

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.JDBC.Password

Property Type FIXED

Data Type PASSWORD

Accessibility READ/WRITE

Mandatory NO

42 OpenFusion CORBA Services System Guide

Server Persistent ID
A unique identifier (UUID) associated with a specific server. Persistent
storage databases use this ID to indicate which server persistent data
belongs to. This allows different processes to share persistent data.

JDBC Connection Attempts
Defines the number of attempts that will be made to establish a connection
to the JDBC data source. A value of 0 (zero) indicates an unlimited number
of attempts.

If an unlimited number of attempts is allowed and the process cannot
establish a connection (for example, due to an incorrect username/
password), the server process will continue to attempt to establish a
connection indefinitely. This cannot be aborted from within the
Administration Manager and will require the server process to be killed via
an interrupt signal. To avoid this problem, set this property to a finite (non-
zero) value.

JDBC Connection Retry Interval
The length of time, in milliseconds, between reconnection attempts.

HSQLDB Checkpoint Interval
This property applies only when using the HSQLDB database. It is the
number of calls between checkpoints. The default is 10000, meaning that
after 10,000 database calls a CHECKPOINT SQL command is performed.

Property Name SID

Property Type FIXED

Data Type UUID

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.ConnectionAttempts

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.JDBC.ConnectionRetryInterval

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.JDBC.CheckpointInterval

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 43

DB.HSQLDB.DefaultDir
This property is not used.

Logging Properties
All OpenFusion Services can produce logging information. This can be used
to both track bugs and monitor server operation. OpenFusion uses four
basic logging levels: Error, Warning, Information and Debug. The
OpenFusion logging system uses the log4j logging package. (See http://
jakarta.apache.org/log4j for more information.)

If you are using the VisiBroker ORB and you wish to obtain debug
information at the ORB level (ORB logging) then it is necessary to add -
DOF.close.output.streams=true as a JVM flag. See “Java Properties”.

Log Pattern
The format used for the logging output. This property is only required if Log
Layout is set to Pattern.

Details of setting log patterns can be found in “Log Messages”.

Log Layout

The layout used for the logging output. Choices are:

• Simple

• Pattern

If Pattern is selected, the Log Pattern property must be set.

Property Name log4j.appender.Default.layout.Conversi
onPattern

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.layout

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

http://jakarta.apache.org/log4j
http://jakarta.apache.org/log4j

44 OpenFusion CORBA Services System Guide

Enabled LogFactor5 pattern layout
If true, log output is formatted for viewing with LogFactor5. The default is
false. The property is only used if the Log Layout property is set to
Pattern.

Syslog Facility
This is the UNIX Syslog facility to which logging is directed. See your UNIX
documentation for more information on Syslog facility categories.

Syslog Host
This option determines the name of the host to which logging is directed
when the Syslog logging plug-in is selected. Syslog output is sent to the
local host by default.

File Backup Number
This is the number of backup files that are retained after the value of File
Maximum Size is exceeded and RollingFile is selected as the logging plug-
in. The default is 1.

Property Name LogFactor5.enabled

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name log4j.appender.Default.Facility

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.SyslogHost

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.MaxBackupIndex

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 45

File Append
This option controls whether the existing log file is replaced or new
messages are appended to the file.

File Maximum Size
This is the maximum size, in megabytes, of the log file created when
RollingFile is selected as the logging plug-in. A new logging file will be
created when the value of File Maximum Size is exceeded.

Log File
The File Name specifies the file where diagnostic output is saved. A default
value is used when this property is not set. This is:

<install_dir>/domains/<domain>/<node>/<service>/log/
<service>.log

where <install_dir> is the OpenFusion installation path. See “The Object
Hierarchy” for details of the domains directory structure.

Log Plug-in
This property determines how diagnostic output will be logged. Options are:

• File

• Rolling File

• Syslog

• Event Log

• Log Service

• None

Property Name log4j.appender.Default.Append

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name log4j.appender.Default.MaxFileSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name log4j.appender.Default.File

Property Type STATIC

Data Type FILE

Accessibility READ/WRITE

Mandatory YES

46 OpenFusion CORBA Services System Guide

File
Selecting this option will direct all diagnostic output to a file specified by the
Log File property.

Rolling File
This option directs diagnostic output to a file. The output file is backed up
periodically when a specific size is reached. See also “File Backup Number”.

Syslog
This option directs diagnostic output to the UNIX syslog facility.

Event Log
This option directs diagnostic output to the NT Event Log.

Log Service
This option redirects all diagnostic output to the OpenFusion Log Service. A
notification-type log is used.

None
All diagnostic messages are disabled.

Notify Log ID
This is the identity of the Notify Log that is used when logging to the Log
Service is selected. A new log is created when a log with this identity does
not already exist.

Log Level
This property determines the level of diagnostic output that is logged in the
log file. The logging level can be changed dynamically. Options are:

• Disable - No messages are logged; logging is disabled.

• Error - Only error messages are logged.

• Warning - Error and warning messages are logged.

• Information - Error, warning, and information messages are logged.

• Debug - Error, warning, information, and debugging messages are
logged.

Property Name log4j.appender.Default

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.LogID

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

UNIX

WIN

OpenFusion CORBA Services System Guide 47

Caution: significant amounts of output may be generated when the Debug
level of logging is selected.

Internal Properties

Service Status File
This is a zero-length file that is created when a service is started, and is
deleted when the service is stopped normally. It is used to help determine
the state of a service.

Property Name log4j.rootLogger

Property Type DYNAMIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name StatusFile

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

48 OpenFusion CORBA Services System Guide

CORBA Properties
The properties on the CORBA tab provide a view of the CORBA-related
state of the services.

INITIALIZE Exception Count
The current total of CORBA INITIALIZE exceptions thrown since the
Service was started.

BAD_PARAM Exception Count
The current total of CORBA BAD_PARAM exceptions thrown since the Service
was started.

INTERNAL Exception Count
The current total of CORBA INTERNAL exceptions thrown since the Service
was started.

Number of active CORBA objects
Number of active CORBA objects currently in service.

Property Name CORBA.InitializeExceptions

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

Property Name CORBA.BadParamExceptions

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

Property Name CORBA.InternalExceptions

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

Property Name ObjectRegistry.Objects

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

OpenFusion CORBA Services System Guide 49

Number of purged CORBA objects
Number of CORBA objects purged from memory.

CORBA Object Activity Timeout
Timeout for CORBA object activity check, in seconds.

Incoming Call Count
The current total of CORBA operations invoked.

Load CORBA Singletons on Startup
Whether to load Singletons on server startup or on demand.

Property Name ObjectRegistry.Purges

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

Property Name Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name CORBA.Calls

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

Property Name LoadOnStart

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

50 OpenFusion CORBA Services System Guide

Enable Dynamic Portable Interceptors
If set to TRUE (checked), this property enables the use of OpenFusion
Dynamic Portable Interceptors for the Service.

Object Purging
When set to TRUE this option enables the purging (deactivation) of objects
from the server, limiting the amount of object references that are stored by
the ORB. Objects may be purged at a given interval and/or when a
maximum number of object references has been exceeded. Objects are
purged using a least-recently-used algorithm.

The properties Object Cache Maximum Size and Object Cache Minimum Size
are used to control object purging behaviour. These properties set upper
and lower limits for the number of object references that the ObjectRegistry
is expected to manage. Object purging will be triggered when the number of
object references exceeds the Object Cache Maximum Size limit. The
purging algorithm will attempt to destroy sufficient object references to
reduce the number held in the ObjectRegistry to that specified by the
Object Cache Minimum Size property.

For example, with the properties ObjectRegistry.MaxSize=1000 and
ObjectRegistry.MinSize=100, purging will be triggered when the 1001st
object reference is created. The purging algorithm will attempt to destroy
901 object references to reduce the number of references held in the
ObjectRegistry to 100.

Note that memory usage does not correlate directly to the number of
objects.

Naming Service: When the OpenFusion Naming Service is being used with
object purging enabled, clients must always perform operations from the
root context. Otherwise, problems will occur if the parents have been
purged from memory.

Property Name EnableDynamicInterceptors

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name ObjectRegistry.Purge

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 51

Object Cache Maximum Size
This is the maximum number of objects that can be created in a server
before purging occurs. When the object references handled by the
ObjectRegistry exceeds the value of this property, objects are removed
using a least-recently-used algorithm.

Objects will only be purged if Object Purging has be set TRUE. For full details
of using this property, see “Object Purging”.

Object Cache Minimum Size
The minimum cache size for persistent CORBA objects. When objects are
purged from the server, this number of objects will be left. For full details of
using this property, see “Object Purging”.

Object Cache Purge Interval
This is the interval, in minutes, between object purge operations.

Objects will only be purged if Object Purging has be set TRUE.

ORB Initialization Arguments
This is a space separated list of arguments passed to the ORB at
initialization.

Property Name ObjectRegistry.MaxSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name ObjectRegistry.MinSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name ObjectRegistry.Interval

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name ORB.Arguments

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

52 OpenFusion CORBA Services System Guide

POA Name
This is the name of the POA (Portable Object Adaptor) created for the
server. This property is only used by the VisiBroker distribution (but see
below for information pertaining to JacORB). Every server should have a
unique POA name. The server UUID is used as the POA name when this field
is left blank.

JacORB and the POA Name
On JacORB, the POA Name property is used to set Implementation Name
property used by the Naming Service.

To federate two separately-installed Naming Services running on JacORB,
each service must have different Implementation Name. The following
parameter can be passed to override the Implementation Name when the
service is started:

-Djacorb.implname=<name>

where <name> is the required Implementation Name. This does not
override the POA Name.

Server Port
The server will run on a fixed port number when this option is set. The port
number is that which the server will use to listen for requests.

A fixed port number allows for inter-ORB interoperability and enables
servers to run without a daemon. Fixed ports also make it easier to
implement security measures such as firewalls.

Server Process ID
A unique identifier (UUID) associated with a specific server process. This ID
is used to identify every object belonging to the process.

Property Name POA.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name PID

Property Type FIXED

Data Type UUID

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 53

Security Properties
The properties on the Security tab relate to securing OpenFusion Services.

For convenience, these properties have been placed in a separate section.
See “Security Configuration”.

Java Properties
These properties relate to the Java Virtual Machine (JVM) that runs the
OpenFusion Services.

JVM Information
This property displays information about the Java Virtual Machine that the
Service is running in, for example:

build JDK-1.2.2_006, native threads, symcjit

This information is only displayed while the service is running.

JVM Flags
These flags are passed to the Java Virtual Machine used to run the Service.

JVM Free Memory
Displays the free memory available to the Java Virtual Machine that the
Service is running in.

This information can only be refreshed while the Service is running.

JVM Total Memory

Displays the total memory available to the Java Virtual Machine that the
Service is running in.

Property Name JVM.Info

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO

Property Name JVM.Flags

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name JVM.FreeMemory

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

54 OpenFusion CORBA Services System Guide

This information can only be refreshed while the Service is running.

Use Xbootclasspath
If this property is checked, the JVM is passed the -Xbootclasspath flag
when the service is started.

The -Xbootclasspath flag causes the service to use the OpenFusion
classes and not those supplied with the JRE. A side-effect of using -
Xbootclasspath is the inability of the JVM to find shared libraries. This
option should not be necessary under JacORB and RTOrb since the
OpenFusion CORBA Services support the endorsed standards override
mechanism which overcomes this problem. Detailed information is available
on Oracle’s web site at http://docs.oracle.com/javase/1.5.0/docs/guide/
standards/.
For a Singleton to register itself with a running Naming Service when it is
started, this property must be checked.

System Properties
These properties relate to the system that OpenFusion runs on.

User Name
Displays the name of the user running the process.

This information is only displayed while the Service is running.

Property Name JVM.TotalMemory

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

Property Name JVM.XBoot

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name User.Name

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO

http://docs.oracle.com/javase/1.5.0/docs/guide/standards/
http://docs.oracle.com/javase/1.5.0/docs/guide/standards/

OpenFusion CORBA Services System Guide 55

System Type
Displays the operating system type.

This information is only displayed while the Service is running.

System Name
Displays the name of the system running the Service (the computer name).
This information is only displayed while the Service is running.

Common Singleton Properties
These properties are used to specify the location for reading and writing the
Singleton’s IOR.

The method used to read and write the IOR file will depend on which
properties have been completed.

Reading the IOR
The rules for reading the IOR are, in order of precedence:

• The IOR will be read from the location specified in the IOR URL property.

• If the IOR URL property is blank, the IOR will be read from the naming
service specified in IOR Name Service, under the name specified in IOR
Name Service Entry.

• If IOR Name Service Entry is blank, the IOR will be read from the location
specified in the IOR File Name property.

Writing the IOR
The rules for writing the IOR are, in order of precedence:

1 The IOR will be written to the location specified in the IOR File Name
property.

2 If IOR Name Service Entry is not blank the IOR will be written to the
naming service specified in IOR Name Service, under the name specified
in IOR Name Service Entry.

Property Name System.Type

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO

Property Name System.Name

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO

56 OpenFusion CORBA Services System Guide

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton
object. This defaults to NameService, which is the resolve name of the
OpenFusion Naming Service, and should only be changed if the name
service is being resolved using a different name.

IOR Name Service Entry
The naming service entry for the Singleton, in INS format (Interoperable
Naming Service stringified name). This name will be written to the naming
service specified in the IOR Name Service property.

Any intermediary naming context must already exist in the naming service.
For example, to write Singleton “b” to the naming service as follows:

R/a/b

the context “a” must already exist.

This property has no default value, and if it is left blank the Singleton will
not be written to the naming service.

IOR URL
The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator (URL)
format. This information is used when a client attempts to resolve a
reference to the Service.

Currently, only http and file URLs are supported.

This property defaults to:

where <install> is the OpenFusion CORBA Services installation path. See
“The Object Hierarchy” for details of the domains directory structure.

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

file:/<install>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

OpenFusion CORBA Services System Guide 57

The IOR URL can only be used when reading the IOR. The IOR cannot be
written to a location specified in a URL; the IOR File Name property should
be used instead.

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for
the Singleton. This defaults to:

<install>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <install> is the OpenFusion CORBA Services installation path. See
“The Object Hierarchy” for details of the domains directory structure.

Resolve Name
The ORB Service name used to locate the Singleton using
resolve_initial_references.

The Resolve Name of the Naming Service Singleton must be unique within
the whole Domain.

ProcessSingletons do not have this property.

Administration Manager Properties
Properties set at the root level of the Object Hierarchy govern the operation
of the Administration Manager.

Although administration properties are shown as dynamic in the
Administration Manager, in order for changes to those properties to take
affect they must be saved, and the Administration Manager must be shut
down and re-started.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

58 OpenFusion CORBA Services System Guide

To set Administration Manager Properties, select the Domains node (root
node) in the Object Hierarchy. The properties, described below, are shown
on the following tabs:

• CORBA contains properties that relate to the CORBA ORB.

• LOGGING contains the logging properties (see “Logging Properties”).

• GENERAL contains properties specific to the Administration Manager.

• CONFIGURE contains the properties for setting up OpenFusion to run
remotely from a central configuration server (see “Distributed Installation
Configuration”).

• SERVICE LOG tab displays the Browser Log as described in “Service Log”.

CORBA Properties

POA Name
This is the name of the POA (Portable Object Adaptor) created for the
server. Every server should have a unique POA name. The server UUID is
used as the POA name when this field is left blank.

The default value is OpenFusion.Manager.

Server Port
The Server port that the Administration Manager attempts to use when
started with the -port command line switch. See “-port”.

Property Name POA.Name

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name Port

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 59

Configure Properties
These properties allow the configuration of OpenFusion installations from a
central host. This is described in Section “Distributed Installation Configuration”.

Central Configuration Host
If this server is to act as the central configuration manager for remote
hosts, then this check box must be checked. The location of the
configuration file on the local host must be entered in the OpenFusion
Install URL field.

OpenFusion Install URL
The URL of the OpenFusion installation on a central configuration host.

Caution: entering an invalid URL will cause fatal problems! Take backups of
the OpenFusion installation and be very careful when changing this
property.

Remote OpenFusion Domains URL
The URL of the OpenFusion configuration file on a central configuration host.

Configure From Remote Host
If the OpenFusion configuration is to read from a central host, then this
check box must be checked. The location of the configuration file on the
remote host must be entered in the Remote OpenFusion Install URL field.

Property Name RunViaWebServer

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name OpenFusionInstallURL

Property Type DYNAMIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name RunOpenFusionDomainsURL

Property Type DYNAMIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name ConfigViaWebServer

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

60 OpenFusion CORBA Services System Guide

General Properties

Pre-load Properties
If this option is selected, the performance of the browser will improve. The
disadvantage is that the browser takes slightly longer to load when first
started. For best performance, we recommend that this option is always
selected (which is the default value).

Service Timeout
The timeout interval (in seconds) when starting Services, after which the
Administration Manager stops checking the Service node to see if it is
started. If the service has not started, then it is flagged as “failed to start”.
The default value is 60 seconds.

Status Timeout
The timeout interval (in seconds) which is allowed for a response when
checking the status of servers. The default value is 2 seconds.

Property Name PreLoadProperties

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name Service.Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name StatusTimeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 61

Instrumentation
OpenFusion provides both general and service-specific instrumentation
features which can be used for system monitoring, which in turn aids in
problem identification, performance tuning, and so on. OpenFusion
instrumentation consists of a set of properties that can be monitored at run
time using the Administration Manager, SNMP or CORBA Process interface.
In addition to properties that are read-only at runtime, OpenFusion provides
some properties that can be set at runtime as required, such as when a
particular threshold value is reached or a time period has elapsed. There is
virtually no performance overhead involved in using any of the OpenFusion
instrumentation features.

Overview

Manageable Resources
An OpenFusion manageable resource is a CORBA Singleton or Java Object
that can be managed at runtime via SNMP (see “SNMP Agent”) or using the
CORBA Process interface (“CORBA Process Interface”).

The CORBA Singletons listed below are manageable resources:

• ProcessSingleton (the default Singleton within each Service)

• NameSingleton

• LoadBalancingFactorySingleton

• TradingSingleton

• ServiceTypeRepositorySingleton

• NotificationSingleton

• TimeSingleton

The following Java Objects are manageable resources:

• SNMPAgentObject (the SNMP agent can be managed via SNMP)

Object Counters
The Object Counters provided for each managed Singleton or Java Object
(for example, the Number of Event Channels property of the
NotificationSingleton) give a count of the number of objects in existence.
The counter is incremented when an object is created and decremented
when the object is destroyed.

The destruction of an object occurs during garbage collection, not when the
object is de-referenced. Therefore, there will be a delay between an object
being de-referenced and the counter registering that it has been destroyed.

62 OpenFusion CORBA Services System Guide

SNMP Agent
The SNMP agent is a Java Object that enables SNMP management
applications to access the properties of manageable resources at runtime
via SNMP. The OpenFusion SNMP agent implements SNMPv1 and uses UDP
as the underlying transport protocol for sending and receiving SNMP
messages.

To use the SNMP agent, the SNMPAgentObject must be added to a Service
in the Administration Manager. Adding Java Objects to a Service is
described in “Adding Singletons and Java Objects”. The SNMP agent enables all
manageable resources that are co-located with it to be managed via SNMP.

Configuring the SNMP Agent
The following properties of the SNMPAgentObject can be configured from
the Administration Manager.

Port
The port used by the agent to listen for SNMP requests. The standard port
for listening for SNMP requests is port 161.

Max Packet Size
The maximum packet size (in bytes) of an SNMP message.

Warning: If the packet size is configured to be too small then the SNMP
agent may fail with an exception when attempting to process an SNMP
message whose size exceeds the maximum packet size.

Max Active Clients

The maximum number of clients that can access the agent concurrently. A
value less than one is interpreted to mean that there is no limit to the
number of clients that can access the SNMP agent concurrently.

Property Name Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 161

Property Name MaxPacketSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 1300

Property Name MaxActiveClients

Property Type STATIC

Data Type INTEGER

OpenFusion CORBA Services System Guide 63

Enable Traps
A flag indicating if the agent will send SNMP traps. By default the SNMP
agent does not send traps.

Trap Hosts File
An XML file defining hosts to receive traps sent by the agent. See “Trap Hosts
File” for a description of this file.

Default Trap Port
The port to send traps to when a port is not specified in the XML. The
standard port for listening for SNMP traps is port 162.

Default Trap Community
The community name used for sending traps when a community name is
not specified in the XML. For security reasons this property cannot be
monitored via SNMP.

Accessibility READ/WRITE

Mandatory YES

Default Value 10

Property Name EnableTraps

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Default Value FALSE

Property Name TrapHostsFile

Property Type STATIC

Data Type FILE

Accessibility READ/WRITE

Mandatory YES

Default Value none

Property Name DefaultTrapPort

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 162

Property Name DefaultTrapCommunity

Property Type STATIC

Data Type STRING

64 OpenFusion CORBA Services System Guide

Trap On Authentication Failure
A flag indicating if the agent sends a trap when an authentication failure
occurs. Regardless of the value of this property, the SNMP agent will only
send traps if the EnableTraps property is set to TRUE.

Read-only Community
The community name of the agent providing read-only access to the MIB
view. For security reasons this property cannot be monitored via SNMP.

Enable Write Access
A flag indicating if the agent will allow write access. By default the SNMP
agent does not allow write access.

Read-write Community
The community name of the agent providing read-write access to the MIB
view. For security reasons this property cannot be monitored via SNMP.
Requests that use this community when the EnableWriteAccess property is
set to FALSE will result in an authentication failure.

Accessibility READ/WRITE

Mandatory YES

Default Value none

Property Name TrapOnAuthenticationFailure

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Default Value TRUE

Property Name ReadOnlyCommunity

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Default Value none

Property Name EnableWriteAccess

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Default Value FALSE

Property Name ReadWriteCommunity

Property Type STATIC

Data Type STRING

OpenFusion CORBA Services System Guide 65

Notifications
The following notifications are sent by the SNMP agent:

• SnmpAgentStartup

This notification signals that the SNMP agent has started and is listening
for SNMP requests.

• AuthenticationFailure

This notification signals that an authentication failure has occurred while
processing an SNMP message.

• SnmpAgentShutdown

This notification signals that the SNMP agent has stopped and is no
longer listening for SNMP requests.

Notifications are sent to SNMP management applications as SNMPv1 traps.
These traps are enterprise specific and do not belong to the snmp group in
MIB-II. Consult the SNMP agent MIB for details of all traps sent by the
SNMP agent.

Trap Hosts File
The trap hosts file is an XML file that defines the hosts that are to receive
SNMPv1 traps emitted by the SNMP agent. The full path to this file is
specified by the TrapHostsFile property (“Trap Hosts File”). If the
EnableTraps property (“Enable Traps”) is set to FALSE then the TrapHostsFile
property is ignored by the SNMP agent.

Each host is defined in the XML by a host name and optionally a port and
community name. If the port is not specified then the value of the
DefaultTrapPort property (“Default Trap Port”) is used. Similarly, if the
community name is not specified then the value of the
DefaultTrapCommunity property (“Default Trap Community”) is used. The host
name must be specified and can either be the name or the IP address of the
host.

The DTD that specifies the format of the XML is defined in the following file:

<INSTALL>/xml/schema/TrapHosts.dtd

where <INSTALL> is the OpenFusion installation directory.

A DOCTYPE declaration referencing TrapHosts.dtd must be included in
every XML file so that the XML can be validated. If this declaration is not
included then the SNMP agent will fail to start.

Accessibility READ/WRITE

Mandatory YES

Default Value none

66 OpenFusion CORBA Services System Guide

Starting the SNMP Agent
Once an SNMPAgentObject has been added to a Service, starting the
Service automatically starts the SNMP agent. Immediately after the agent
has started it will send an SnmpAgentStartup trap (if traps are enabled)
and it will begin listening for incoming SNMP requests.

Manageable resources that are co-located with the SNMPAgentObject must
be started before the SNMPAgentObject in order to be managed via SNMP.
This can be accomplished from within the Administration Manager by
positioning all co-located resources above the SNMPAgentObject in the
Service definition. The exception to this starting rule is the
ProcessSingleton, which is normally the last resource in a Service
definition.

Stopping the SNMP Agent
Stopping the Service containing the SNMPAgentObject automatically stops
the SNMP agent. Immediately before the agent has stopped it will send an
SnmpAgentShutdown trap (if traps are enabled) and it will stop listening for
incoming SNMP requests.

OpenFusion MIBs
The OpenFusion MIBs are contained in the <INSTALL>/mibs directory
where <INSTALL> is the OpenFusion installation directory.

There is one MIB for each OpenFusion manageable resource. The name of
each MIB is prefixed with the name of the resource it describes (minus the
Singleton or Object suffix). For example, the MIB representing the
TradingSingleton is named TRADING-MIB.txt, and the MIB representing
the SNMPAgentObject is named SNMPAGENT-MIB.txt. The exception to this
naming rule is the ProcessSingleton MIB, which is named SERVER-
MIB.txt.

The OpenFusion MIBs fully conform to SMIv1. Management applications
connected to the SNMP agent will be able to access the objects defined in
the MIBs of co-located resources by their OIDs. The OID of the root node of
the OpenFusion MIB tree is 1.3.6.1.4.1.5510.1.

CORBA Process Interface
The CORBA Process interface can be used to programmatically monitor the
system by accessing the instrumentation properties of individual service
instances.

The services in this release which support the use of the Process interface
are listed below in Table 7. The table also lists the names used by Process’
methods to access the services.

Table 7 Services’ Access Names

Service Singleton Access Name

ProcessSingleton
(default service singleton)

Server

NotificationSingleton Notification

OpenFusion CORBA Services System Guide 67

Using the Process Interface
An instance of the Process interface can be used to programmatically obtain
property values for any instrumentation-enabled singletons which are co-
located with the Process object.

The following steps describe how to use the Process interface in a program
or module for obtaining instrumentation property values for a service
instance.
 1 Ensure the program module imports the following packages:

com.prismt.orb.ObjectAdapter
com.prismt.openfusion.Server.Process
com.prismt.openfusion.Server.ProcessHelper

2 Perform the standard ORB initialisation, for example:

3 Obtain a reference to the local Process interface instance by retrieving
the instance’s IOR from a file called ProcessSingleton.ior (located in
the <install_dir>/domains/OpenFusion/localhost/<service>/
ProcessSingleton directory). The ORB's string_to_object() method
is used to convert the stringified version of the IOR, which the file
contains, to the needed object reference.

The code examples shown here use BufferedReader and FileReader
for simplicity, although other file reading approaches could be used;
modules using these packages must import the standard
java.io.BufferedReader and java.io.FileReader packages.

Example

The example code above assigns the needed Process object to
processObject.

4 Use the Process object’s getValue() method to retrieve the desired
property values for a service instance. Please note that each service
instance is referenced as a named singleton object (see Table 7).

The getValue() method is given (as Strings) the access name of the
service’s singleton object as well as the name of the desired
instrumentation property:

• The access name for each service’s singleton object is given in Table 7

• The instrumentation property names are listed under Instrumentation
Properties in the Configuration section of the service’s user guide; for
example, those for the Notification Service are listed under Notification
Service Configuration, Instrumentation Properties of the Notification
Service Guide

The getValue() method returns an any which contains the property value.
The contained value will be of the type (String, long, ulonglong, etc.)
specified for the property, as listed under the Instrumentation Properties for
the service referred to above: the value must be retrieved from the any
using the appropriate Any extraction method, for example

static org.omg.CORBA.ORB orb = ObjectAdapter.init (new String[0]);

String iorPathName = "ProcessSingleton.ior";
BufferedReader in = new BufferedReader (new FileReader
(iorPathName));
String iorString = in.readLine ();
in.close ();
org.omg.CORBA.Object obj = orb.string_to_object (iorString);
Process processObject = ProcessHelper.narrow (obj);

68 OpenFusion CORBA Services System Guide

extract_string() for Strings, extract_long() for longs,
extract_longlong() for longlongs, etc.

Example

Example Program
The following example shows how instrumentation value can be displayed
using a stand-alone program.

String service = "Notification";
String propertyName = "Channels";

org.omg.CORBA.Any any = processObject.getValue(propertyName,
service);
long channelValue = any.extract_longlong();
System.out.println ("The value of the Channels property is: " +
channelValue);

import com.prismt.orb.ObjectAdapter;
import com.prismt.openfusion.Server.Process;
import com.prismt.openfusion.Server.ProcessHelper;

import java.io.BufferedReader;
import java.io.FileReader;

// display instrumentation values using the CORBA Process interface
public class InstrumentationAccessor
{
 private org.omg.CORBA.ORB orb = null;
 private Process localProcess = null;

 // Constructor, where
 // iorPathName is the location of the file (pathname) containing the Process IOR
 public InstrumentationAccessor (String iorPathName)
 {
 orb = ObjectAdapter.init (new String[0]);

 // Obtain reference to the Process object using the stringified
 // IOR stored in the file defined in iorPathName
 try
 {
 BufferedReader in = new BufferedReader (new FileReader (iorPathName));
 String iorString = in.readLine ();
 in.close ();
 org.omg.CORBA.Object object = orb.string_to_object (iorString);
 localProcess = ProcessHelper.narrow (object);
 }
 catch (Exception e)
 {
 System.out.println ("Failed to obtain process.");
 }
 }

 // Obtain a property value using the Process.getValue() method, where
 // propertyName is the name of the property
 // service is the name of the service containing the property
 public org.omg.CORBA.Any getPropertyValue (String propertyName, String service)
 throws Exception
 {
 try
 {
 org.omg.CORBA.Any any = localProcess.getValue (propertyName, service);
 return any;
 }
 catch (Exception ex)
 {
 throw new Exception ("Failed to retrieve value of " + propertyName
 + " from " + service);
 }
 }

OpenFusion CORBA Services System Guide 69

 // main //////////////////////////////
 public static void main (String[] args)
 {
 // check that pathname of Process IOR file provided by user
 if (args.length != 1)
 {
 System.out.println ("Please supply pathname of Process IOR file");
 System.exit (1);
 }

 // InstrumentationAccessor's constructor obtains a reference to the
 // local process using the stringified IOR stored in file provided by
 // the user as a command line parameter
 InstrumentationAccessor accessor = new InstrumentationAccessor (args [0]);

 // display instrumentation property values
 try
 {
 System.out.println ("\nDisplaying instrumentation property values.\n");

 // Server object properties values
 org.omg.CORBA.Any any = accessor.getPropertyValue ("JVM.FreeMemory",

"Server");
 long freeMem = any.extract_long ();
 System.out.println ("JVM Free mem: " + freeMem);

 any = accessor.getPropertyValue ("JVM.Info", "Server");
 String info = any.extract_string ();
 System.out.println ("JVM info: " + info);

 // Service object properties values for the Notification Service
 any = accessor.getPropertyValue ("Channels", "Notification");
 long chans = any.extract_longlong ();
 System.out.println ("Channels: " + chans);

 any = accessor.getPropertyValue ("ProxyPushConsumers", "Notification");
 long ppc = any.extract_longlong ();
 System.out.println ("ProxyPushConsumers: " + ppc);

 any = accessor.getPropertyValue ("EventsDelivered", "Notification");
 long evsd = any.extract_longlong ();
 System.out.println ("Events delivered: " + evsd);
 Thread.sleep (2000);
 }
 catch (Exception ex)
 {
 ex.printStackTrace ();
 }
 }
}

70 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 71

Service Portability
The OpenFusion CORBA Services conform with the OMG defined Java
bindings. However, there are some ORB and platform differences that must
be taken into account when developing and running clients and servers.

The following sections cover these issues:

• Portability Classes

The OpenFusion framework supports a number of CORBA portability
classes that normalise access to the underlying ORB and related classes.

• Running User Defined Clients and Servers

This section covers both vendor and platform issues concerning the
content of CLASSPATH, PATH and different parameters required for the
command line when executing user defined clients and servers.

• OpenFusion Java IDL Compilation

This section covers both vendor and platform issues concerning the
compilation of OpenFusion IDL when creating user defined servers, for
example, creating event suppliers for the Notification Service.

• C++ Support

This section gives some basic guidelines for the development of C++
clients for the OpenFusion CORBA services.

Portability Classes
The OpenFusion framework supports a number of CORBA portability classes
that normalise access to the underlying ORB and related classes. There are
a number of reasons why this has been done:

• Prior to the CORBA 2.3 specification, server side object mappings were
not standardised and the generated server side support classes were
different for each ORB vendor.

• It hides some of the complexity in using the ORB native object adapters
(particularly with respect to the POA) and proprietary loaders.

• It supports the deployment of both transient and persistent objects and
simplifies the management of a persistent object’s state.

• It normalises the creation of and access to dynamic Any classes. This is
required as these were repackaged in the CORBA 2.3 specification.

Three classes are used to support the development of ORB portable code:

• ORBAdapter: This provides a client side abstraction layer for initilializing
and accessing the ORB and running client applications.

• ObjectAdapter: This provides a server side abstraction layer for
managing server objects.

• DynAnyFactory: This provides a factory class for creating dynamic any
objects. This class returns implementations of the dynamic any classes
which conform with CORBA 2.3.

These three portability classes are in the com.prismt.orb package. The
following sections describe each of these three classes in detail.

72 OpenFusion CORBA Services System Guide

The ORBAdapter Class
The ORBAdapter class contains operations for ORB initialization and a
number of utility operations to return information about object references.

ORB Initialization
Two static initialization operations are supported. The first takes an array of
String arguments and is intended to be called from the main operation so
that any arguments passed to an application may be passed onto the ORB
when it is initialized. The second form takes an ORB parameter and should
be called to initialize from a pre-existing full ORB implementation. These
operations are defined as follows:

These operations both return an instance of a full ORB. An operation is also
provided to return the initialized ORB instance:

A limited functionality singleton ORB will be returned when an init
operation has not been previously called. Most of the other operations
defined on this class will throw the INITIALIZE exception when the class
has not been initialized via one of the init operations.

ORB Shutdown
A single operation is provided to shut down the ORB. The ORBAdapter class
should not be used after this has been called.

Object Information
A number of operations are provided to query the status of an object
reference. These operations are guaranteed to work only with objects
created using the ObjectAdapter class.

A CORBA object reference is defined to be valid when it is either active or
non transient.

When checking for whether an object is active, an ORB implementation may
block for some time. A timeout value for the isActive operation is
supported via the following two operations:

public static synchronized org.omg.CORBA.ORB init (String[] args)
 throws org.omg.CORBA.INITIALIZE
public static synchronized void init (org.omg.CORBA.ORB existing)
 throws org.omg.CORBA.INITIALIZE

public static synchronized org.omg.CORBA.ORB getORB ()

public static synchronized void shutdown ()

public static boolean isProcessLocal (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isNodeLocal (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isActive (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static Boolean isActive (org.omg.CORBA.Object obj, int timeout)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isPersistent (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isTransient (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isValid (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static int getActiveTimeout ()
public static void setActiveTimeout (int timeout)

OpenFusion CORBA Services System Guide 73

Object Stringification
Two operations are provided to convert object references to strings and vice
versa. These operations are similar to the ORB operations
string_to_object and object_to_string except that INS
(Interoperable Name Service) format strings are also supported.

Service Resolution
Two operations support the dynamic resolution of services from names:

The resolve operation resolves a CORBA object or service by name in a
similar way to the ORB resolve_initial_references operation.

The ObjectAdapter Class
This class supports operations for the management of server objects. This
adapter logically layers over either a BOA or POA depending on the ORB
implementation.

Initialization
Two static initialization operations are supported. The first takes an array of
String arguments and is intended to be called from the main operation so
that any arguments passed to an application may be passed onto the ORB
when it is initialized. The second form takes an ORB parameter and should
be called to initialize from a pre-existing full ORB implementation.

These initialization operations also initialize the ORB through the
corresponding operations defined in the ORBAdapter class. These
operations are defined as follows:

Object Creation
Object implementations should implement the Operations interface
generated for the IDL interface that is being implemented. An object
implementation must also implement the java.io.Serializable
interface when it may be used as a persistent object. A serializable
implementation may be used to create either transient or persistent
objects. However, a non-serializable implementation may only be used to
create transient objects.

Objects are created using either the createPersistent or
createTransient operations on the ObjectAdapter class, as appropriate.
Both operations return a CORBA object reference
(org.omg.CORBA.Object) that may be narrowed to the appropriate type
using the appropriate generated helper class.

A number of overloaded creation operations are supported but there are
essentially two forms. The first, createPersistent, is used to create

public static org.omg.CORBA.Object stringToObject (String str) throws
 org.omg.CORBA.INITIALIZE,
 org.omg.CORBA.BAD_PARAM
public static String objectToString (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE

public static org.omg.CORBA.Object resolve (String name)
 throws org.omg.CORBA.BAD_PARAM, org.omg.CORBA.INITIALIZE

public static synchronized org.omg.CORBA.ORB init (String[] args)
 throws org.omg.CORBA.INITIALIZE
public static synchronized void init (org.omg.CORBA.ORB orb)
 throws org.omg.CORBA.INITIALIZE

74 OpenFusion CORBA Services System Guide

persistent CORBA objects and the second, createTransient, to create
transient CORBA objects. Both operations have the general form:

All the parameters, apart from the object implementation, are optional and
are defined as follows:

• obj: The object implementation. This must be serializable for persistent
objects.

• opsClass: The Operations class being implemented. By default, the most
derived Operations class for an implementation will be discovered via
reflection. However, the type of the operations class being supported
must be specified when an implementation supports several, possibly
unrelated, interfaces.

• flags: Creation option flags. A number of flags are supported that
provide additional semantic behaviour for the created object. Currently
this includes purging and activation policies and whether multiple CORBA
objects can be created for a single implementation. The flag values are
supplied as final static ints for the ObjectAdapter class and are
intended to be combined using the and operator. These flags are
described in Table 8 below.

• id: The identity of the created object. All OpenFusion CORBA objects use
UUIDs for identity. By default, a new UUID is assigned for created
objects. This parameter uses the provided UUID as the object identity for
the created CORBA object.

public static org.omg.CORBA.Object createTransient
(
 java.lang.Object obj
 [,java.lang.Class opsClass]
 [,int flags]
 [,UUID id]
)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static org.omg.CORBA.Object createPersistent
(
 Serializable obj
 [,java.lang.Class opsClass]
 [,int flags]
 [,UUID id]
)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

OpenFusion CORBA Services System Guide 75

Object Identity
All object implementations registered with the OpenFusion object adapter
have an identity based upon the DCE UUID and are encapsulated within the
com.prismt.util.UUID class. The getId operation returns an object
identity from an object reference. The getIds operation returns an array of
these identities when an implementation has multiple object identities.
These operations are defined as follows:

The ObjectAdapter class provides a number of overloaded operations that
can use either an object identity or an object reference to identify a
particular implementation (deactivate, destroy, reactivate, exists,
and getImplementation).

Multiple Object Identity
A single Java object instance may implement any number of CORBA
objects. This is supported by means of the ENABLE_DUPLICATES flag. An
object implementation must implement the
com.prismt.orb.Multiplexable interface when it is to be used for
multiple CORBA objects. This interface consists of two operations:

An implementation must maintain, as part of its state, a unique identifier for
each of the operations interfaces that it supports. These unique identifiers
must be made available through the getGroupId operation. The first such
identifier issued must be recorded and returned by subsequent calls to
getPrimaryGroupId.

Table 8 ObjectAdapter Object Creation Flags

Flag Persistent Transient Description

DISABLE_AUTO_
ACTIVATION

 X This flag disables the
auto-activation of persistent
objects, i.e. on demand. A
persistent object must be explicitly
reactivated via the
ObjectAdapter reactivate
operation when this flag is set.

DISABLE_PURGE D This flag disables the purging of
persistent objects. By default,
transient objects will not be
purged as they cannot be
reactivated

ENABLE_PURGE D This flag enables the automatic
purging of objects based upon the
configurable purging options. A
transient object is effectively
destroyed when it is purged.

ENABLE_DUPLICATES This flag allows a transient object
implementation to have multiple
CORBA object identities.

D = Default behaviour, = Supported, X = Not supported.

public static UUID getId (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public UUID getGroupId (Class opsClass);
public UUID getPrimaryGroupId ();

76 OpenFusion CORBA Services System Guide

An implementation may need to determine the identity of the object being
called when the implementation has been used to create multiple CORBA
objects. The following operation supports this functionality:

This operation should only be called within the context of an invoked
operation on an implementation.

Object Deactivation
Transient object references are only valid while their implementations exist
so deactivating a transient object is equivalent to destroying it. Any
references to a deactivated transient object become invalid. Persistent
objects store their state thus allowing implementations to be activated and
deactivated any number of times (when deactivated, an object’s
implementation has been deleted but its state remains).

Object Destruction
All objects can be destroyed so that any references to them are no longer
valid. For persistent objects, the object’s state is also destroyed. The
ObjectAdapter operations that support this are defined as follows:

Object Reactivation
All persistent objects can be deactivated and reactivated as required. Either
an object reference or an id can be used to reactivate an object
implementation. The ObjectAdapter operations that support this are
defined as follows:

The OBJECT_NOT_EXIST exception is thrown when the object cannot be
reactivated, e.g. when the object is not persistent or has been destroyed.

Object Existence
Two operations are provided to determine whether or not an object
implementation exists for a given object reference or identity:

public static UUID getCallerId ()

public static void deactivate (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void deactivate (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void deactivate (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static void destroy (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void destroy (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void destroy (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static Serializable reactivate (UUID id) throws
 org.omg.CORBA.INITIALIZE,
 org.omg.CORBA.OBJECT_NOT_EXIST,
 org.omg.CORBA.BAD_PARAM
public static Serializable reactivate (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.OBJECT_NOT_EXIST

public static boolean exists (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean exists (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

OpenFusion CORBA Services System Guide 77

These operations will return true when a persistent object exists, whether
or not it is currently active.

Object References
Object implementations may be associated with one or more CORBA object
references. Two operations are supported to return the reference(s)
associated with a particular implementation:

Object Implementations
Two operations are provided to return an object implementation class given
an object identity or reference:

These operations are typically used where co-located persistent object
implementations may need to refer to each other.

Persistent Object State
Persistent object implementations may have state and, by default, this is
managed by OpenFusion Object Adapter using serialization (persistent
object implementations must implement Serializable). The state of a
persistent object is stored when it is first created so the state can be
restored whenever it is reactivated. A persistent object must ensure that its
state is saved whenever a persistent implementation’s state changes
(typically through a client invoking some operation). Two operations, save
and write, are supported on the ObjectAdapter class to support this.
These operations are defined as follows:

Both these operations write out the implementation objects state via
serialization. The save operation may be buffered due to configured caching
policies, i.e. an asynchronous operation, whereas the write operation
ensures that the state has been written out to persistent store, i.e. a
synchronous operation.

All the non-transient attributes of a persistent implementation must be
serializable. However, the OpenFusion object adapter can deal with a
number of non-serializable CORBA data types through the use of specialized
input and output streams. The following CORBA data types may be held as
attributes of a persistent implementation:

• org.omg.CORBA.Any, and

• org.omg.CORBA.TypeCode.

Two approaches are possible when a persistent object wishes to store
persistent references to other CORBA objects. The object identity (UUID)
can be stored and then used to remap back to the server object and
narrowed to the correct type on restoration. Alternatively, the object
reference can be stringified when stored and destringified and narrowed
when restored.

public static org.omg.CORBA.Object getObject (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static java.lang.Object getImplementation (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static java.lang.Object getImplementation (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static void save (Serializable entity)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void write (Serializable entity)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

78 OpenFusion CORBA Services System Guide

Persistent object implementations may implement
javax.ejb.EntityBean. This interface specifies a number of callback
operations that are invoked by the object adapter on a persistent
implementation when a state change has occurred or is about to occur.
Callbacks are invoked as follows:

• The ejbStore operation is called just before an implementation is saved.

• The ejbLoad operation is called just after an implementation has been
restored.

• The ejbActivate operation is called just after an implementation has
been created or reactivated.

• The ejbPassivate operation is called just before an implementation is
deactivated.

• The ejbRemove operation is called just before an implementation is
destroyed.

The com.prismt.ejb.EntityBeanAdapter abstract class provides default
implementations of all these operations. Persistent implementations can
simply extend this class and only re-implement any callbacks they wish to
use.

Running a Server
Incoming requests from clients are not processed until the server is started
when object implementations have been registered with the
ObjectAdapter. A server is started with the ready operation and stopped
with the shutdown operation, defined as follows:

The first form of the ready operation blocks; the second takes a boolean
parameter that determines whether the operation should block or not.

Restrictions
Most operations on the ObjectAdapter class should not be called until
after it has been initialized with the init operation or an
org.omg.CORBA.INITIALIZE system exception will be thrown.

Most operations on the ObjectAdapter class will throw
org.omg.CORBA.BAD_PARAM when invalid parameters or unexpected null
parameters are passed.

A persistent object should not use any of the object related operations on
ObjectAdapter from within the implementation of the readObject
operation used in object serialization. A persistent implementation that
needs to use ObjectAdapter operations on restoration, e.g. when mapping
from persistent object UUIDs to implementations, should implement
javax.ejb.EntityBean and put this functionality in the ejbLoad
operation.

public static void ready ()
 throws org.omg.CORBA.INITIALIZE
public static void ready (boolean block)
 throws org.omg.CORBA.INITIALIZE
public static void shutdown ()

OpenFusion CORBA Services System Guide 79

Recommendations
Use the factory design pattern to create all CORBA object implementations,
that is to locate the create operation in a factory rather than in an
implementation constructor. This allows:

• The object implementation to be deployed where appropriate as an EJB
rather than a CORBA object

• A factory to create an implementation as either a transient or persistent
object (as long as it implements Serializable)

• One implementation to extend another

Try not to use any object-based ObjectAdapter operations in:

• Constructors

• Serialization operations (readObject and writeObject)

When persistent implementation classes need to reference each other, they
should:

• Store the object id for the related implementation when saved

• Use the reactivate and getImplementation operations to retrieve a
reference to the related implementation class when restored

Persistent implementations should re-implement the ejbActivate
operation, which is called by the object adapter after a persistent
implementation has been reactivated and its state restored, when they
need to do some further initialization after reactivation.

Most of the ObjectAdapter class operations can throw CORBA system
exceptions. These are all derived from RuntimeException and so no
try-catch block is required in the calling code. However, users of the
ObjectAdapter class should be aware that these may be thrown in some
circumstances. The causes and types of exception thrown are described
fully in the javadoc documentation for the class.

The DynAnyFactory Class
This class supports creation operations for the CORBA 2.3 defined dynamic
any classes.

Creation Operations
Six operations are provided for the creation of dynamic any objects from a
given type code. The InconsistentTypeCode exception is thrown when
the provided type code does not correspond to the type of the requested
dynamic object.

 1: public static org.omg.DynamicAny.DynAny createBasicDynAny (TypeCode tc)
 2: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 3: public static org.omg.DynamicAny.DynStruct createDynStruct (TypeCode tc)
 4: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 5: public static org.omg.DynamicAny.DynSequence createDynSequence (TypeCode tc)
 6: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 7: public static org.omg.DynamicAny.DynArray createDynArray (TypeCode tc)
 8: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 9: public static org.omg.DynamicAny.DynUnion createDynUnion (TypeCode tc)
 10: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 11: public static org.omg.DynamicAny.DynEnum createDynEnum (TypeCode tc)
 12: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode

80 OpenFusion CORBA Services System Guide

Implementing an Interface
A simple example is presented to demonstrate the use of the OpenFusion
object adapter. This consists of two interfaces: a Counter interface that
implements simple counter functionality, and, a CounterFactory interface
that is used to create Counter objects with the ability to set their initial
count. These interfaces are defined as follows:

The OpenFusion object adapter supports both persistent and transient
objects. To demonstrate the usage of both, the Counter interface is
implemented as a persistent object whereas the CounterFactory interface
is implemented as a transient. The Counter interface is implemented by the
CounterImpl class as follows:

This implementation simply implements the operations defined in the
CounterOperations class and uses the ObjectAdapter save operation to
save its state when the count changes. The save operation will have no
effect when an implementation is created as a non-persistent, i.e. transient,
object.

 1: #pragma prefix "prismt.com/cos/CosLifeCycle/examples"
 2:
 3: module Counters
 4: {
 5: interface Counter
 6: {
 7: attribute long count;
 8: };
 9:
 10: interface CounterFactory
 11: {
 12: Counter createCounter (in long initial);
 13: };
 14: };

 1: package com.prismt.cos.CosLifeCycle.examples.Counters;
 2:
 3: import java.io.Serializable;
 4: import com.prismt.orb.ObjectAdapter;
 5:
 6: public class CounterImpl implements CounterOperations, Serializable
 7: {
 8: public CounterImpl ()
 9: {
 10: value = 0;
 11: }
 12:
 13: public CounterImpl (int val)
 14: {
 15: value = val;
 16: }
 17:
 18: public int count ()
 19: {
 20: return value;
 21: }
 22:
 23: public void count (int count)
 24: {
 25: value = count;
 26: ObjectAdapter.save (this);
 27: }
 28:
 29: private int value;
 30: }

OpenFusion CORBA Services System Guide 81

The CounterFactory interface is implemented by the FactoryImpl class
as follows:

This implementation implements the createCounter operation defined in
the CounterFactoryOperations interface. This operation simply creates a
new Counter implementation as a persistent CORBA object. The factory
object itself is created as a transient CORBA object in main.

Persistent Servers
The OpenFusion ORB portability framework uses UUIDs to identify both
persistent objects and persistent servers that contain these objects.
Persistent objects are created within the context of a persistent server.
When a server is running, persistent objects may be deactivated and
reactivated, on demand, any number of times until they are explicitly
destroyed. Persistent objects can also maintain their state across the cycle
of starting and stopping persistent servers. To do this, a persistent server
must be coded, or configured, so that it has the same identity each time it is
started.

Servers must be registered with the ORB as OpenFusion.<uuid>, where
<uuid> is the server’s UUID.

Server identity is encapsulated within the com.prismt.util.PID class.
This has a setPID operation that can be used to hard code the identity of a
server. This must be done before the ORB is initialised.

 1: package com.prismt.cos.CosLifeCycle.examples.Counters;
 2:
 3: import org.omg.CosLifeCycle.*;
 4: import com.prismt.orb.ObjectAdapter;
 5:
 6: public class FactoryImpl implements CounterFactoryOperations
 7: {
 8: public static final void main (String[] args)
 9: {
 10: ObjectAdapter.init (args);
 11:
 12: ObjectAdapter.createTransient (new FactoryImpl ());
 13:
 14: ObjectAdapter.ready ();
 15: }
 16:
 17: public Counter createCounter (int count)
 18: {
 19: org.omg.CORBA.Object ref;
 20:
 21: ref = ObjectAdapter.createPersistent (new CounterImpl (count));
 22:
 23: return (CounterHelper.narrow (ref));
 24: }
 25: }

package com.prismt.orb.examples;

public class Server
{
 public static void main (String args[])
 {
 com.prismt.util.PID.setPID ("43fe0080-9b6c-11d4-9727-af67c68e5b18");
 com.prismt.orb.ObjectAdapter.init (args);
 com.prismt.orb.ObjectAdapter.ready ();
 }
}

82 OpenFusion CORBA Services System Guide

Alternatively, the Java system property Process.PID can be set as a JVM
command line parameter to determine the id of a server. This has the
advantage over the hard coded approach in that it is possible to run
multiple instances of the same server class with different identities.

Persistent state must also be configured in order to use persistent servers
and objects. (See “Configuring Persistent Storage”.)

Running User Defined Clients and Servers

Resolving Services
The OpenFusion Java examples use the resolve_initial_references
method to access the individual CORBA services. The examples and other
clients must be run in a manner that is specific to each ORB vendor in order
for this mechanism to be correctly initialised. The following sections assume
JacORB.

Services can be resolved either via static configuration or dynamically via
an ORB initialisation class.

Configuration
IORs created for persistent services may be configured as initial references.
The following example shows how this can be done directly via a
configuration file entry.

Alternatively, a utility class has been provided to help in the generation of a
configuration file from the generated IOR files. This can be run as follows:

This reads in all the configured services within an OpenFusion domain
identified by the domain_xml file or URL, and writes out a JacORB
configuration file, out_file, for these services. This file can then be
appended to the standard JacORB properties configuration file.

% run -DProcess.PID=43fe0080-9b6c-11d4-9727-af67c68e5b18
MyServer

ORBInitRef.TimerEventService=IOR:000000000000003049444c3a6f6d672e6f
72672f436f7354696d65724576656e742f54696d65724576656e745365727669636
53a312e30000000000100000000000000a20001020000000007756c747261350000
62b80000000000463a3e02323106756c74726135174f70656e467573696f6e2e546
96d655365727669636500212105240520b3ef11d5b154d7b9de5c8185028f7790b3
ef11d5b154d7b9de5c818500000000000300000000000000080000000049545f410
0000001000000180000000000010001000000000001010400000001000101090000
000600000006000000000023

% java com.prismt.openfusion.orb.ConfigGen jacorb
domain_xml out_file

OpenFusion CORBA Services System Guide 83

Dynamic Registration
Services may be registered using a portable interceptor ORB initialisation
class. The following Java system property should be defined, noting that the
jacorb23 shown in the system property should be replaced with jacorb21,
jacorb30, or jacorb37 for the relevant JacORB version:

VisiBroker users should refer to the VisiBroker documentation for the
appropriate classname to use in dynamic registration of their ORB.

Jar Files
The CLASSPATH must contain the following jar files when using OpenFusion
services or the examples. The required jar files are listed in Table 9. These
files are need to compile applications

The correct classpath for JacORB and OpenFusion RTOrb Java™ Edition can
be automatically set by scripts included with the OpenFusion distribution. If
these scripts are used (which is recommended), then developers do not
need to manually add the jar files to the classpath.

Please refer to the ORB documentation for specific ORB configuration
requirements.

Using OpenFusion Run Scripts
A script file named run has been provided on UNIX systems (named run.bat
on NT) to simplify the command line execution of classes used in
conjunction with OpenFusion. The script will add the required standard
properties to the command line; the user has only to consider properties
and parameters required for the execution of the target class.

 -Dorg.omg.PortableInterceptor.ORBInitializerClass.com.

 prismt.orb.portable.jacorb23.Initializer

Table 9 Jar Files

ORB Required Jar Files ORB Subdirectory

JacORB 2.3, 3.0 jacorb.jar lib/endorsed

JacORB 3.7 jacorb.jar, jacorb-
omgapi.jar

lib/endorsed

RTOrb ofj.jar lib/endorsed

i

84 OpenFusion CORBA Services System Guide

Command Line Format
Example command line formats when using the scripts, where classname is
replaced by the required Java client class:

Classname only

Classname with parameters and/or properties

The -x option runs the JVM using the -Xbootclasspath flag. For further
details on the Xbootclasspath flag see “Use Xbootclasspath” in “Java Properties”.

The -d option runs the class in debug mode. This mode displays debug
information on the console for any client class which implements
debug.debug from the log4j logging package.

The -s option enables security for the client. The run script sets the
property -DSecurityEnabled=true. The OpenFusion Security Service is
described in “Description of the Security Service”.

OpenFusion Java IDL Compilation
There are a number of issues to consider when compiling interfaces using
any of the OpenFusion defined services. These are demonstrated in the
following Notification Service example, News.idl.

The elements to be considered when compiling News.idl and other similar
IDL files are:

• IDL Compilers and Definitions

Each ORB vendor has its own IDL to Java compiler and the code
generated may be ORB specific. All ORB vendor specific includes,
definitions and fixups are handled in a orbdefs.idl file. This is included
where required by all other IDL files supplied as part of the distribution.

% run classname

% run [-x] [-d] [-s] –DmyDef=adef classname myParam

 1: #include <CosNotifyComm.idl>
 2:
 3: #pragma prefix "prismt.com/cos/CosNotification/examples"
 4:
 5: module News
 6: {
 7: interface Bureau : CosNotifyComm::StructuredPushSupplier
 8: {
 9: void broadcast ();
 10: void stop ();
 11: };
 12:
 13: interface Listener : CosNotifyComm::StructuredPushConsumer
 14: {
 15: void select (in string bureau);
 16: void print ();
 17: };
 18: };

OpenFusion CORBA Services System Guide 85

When using the IDL compiler to compile any of these files, the
appropriate ORB must be identified with a -D parameter. The values
currently supported are.

• Package Specification

The compiler has to be provided with the specifications for the
OpenFusion packages that will be used in this module. The example
below illustrates the required format for an included package.

• The compiler needs to be informed of the location of the package being
compiled as well as provided with details of the location of external
packages.

• Include Directories

An include path must be provided with the -I flag for any included IDL
file. All OpenFusion service IDL files are provided in the idl subdirectory of
a distribution. ORB vendor IDL files may also be required.

• Output Directory

An output directory, where the compiler can place the generated Java
files, is usually specified:

Table 10 ORB Definitions

ORB Definition

-DJACORB23 JacORB 2.3

-DJACORB30 JacORB 3.0

-DJACORB37 JacORB3.7

-DOFJ OpenFusion RTOrb Java™ Edition

-i2jpackage CosNotifyComm:org.omg.CosNotifyComm

Table 11 IDL Includes

ORB Include Subdirectory

JacORB 2.3 idl

JacORB 3.0 idl

JacORB 3.7 idl

OpenFusion RTOrb Java™
Edition

idl

-d outputDir

86 OpenFusion CORBA Services System Guide

C++ Support
OpenFusion services may be used from C++ clients. The client side stubs
must be compiled from the provided IDL service definitions in order to do
this. Please see your ORB vendor’s documentation and examples for full
details on how to do this. Some general guidelines are provided below.

The elements to be considered when compiling IDL files using C++ are:

• IDL Compilers and Definitions

Each ORB vendor has its own IDL to C++ compiler and the code
generated is ORB specific. Any OpenFusion IDL specifying definitions
must also be compiled for the ORB and language used, i.e. with a -D
parameter. A set of orb/platform specific .mk files can be found in the
<OPENFUSION>/etc directory where the appropriate idl compiler and -D
parameters are already set. The Makefiles within the examples include
the appropriate file from this directory.

• Include Directories

An include path to the location of the standard OMG IDL files must be
provided as an OpenFusion interface is inherited. This will be the same
for any vendor but the format will vary depending upon the platform.

For Solaris:

Again, the .mk files found in the <OPENFUSION>/etc directory include
the standard OMG and OpenFusion IDL. Only user defined IDL needs to
be specifically included in Makefiles when the /etc/*.mk files are
included.

Should you require further assistance with developing C++ clients or code
examples, contact Micro Focus support at
http://supportline.microfocus.com/.

 #include <CosPropertyService.idl>

 module Example
 {
 interface MyServer : CosPropertyService::PropertySet
 {
 void printAllProperties();
 };
 };

INCS += -I<OPENFUSION>/idl

http://supportline.microfocus.com/

OpenFusion CORBA Services System Guide 87

Configuring Persistent
Storage
OpenFusion CORBA Services supports persistent storage via JDBC access to
a relational database. Oracle, Sybase, Informix, and HSQLDB are supported
on both Unix and Windows platforms. Microsoft SQL Server is supported on
Windows. See the Product Guide for details of supported versions.

Persistent storage is configured for each Service using the following
properties on the Persistence tab of the Administration Manager:

• Persistence Type

• Service Data Directory

• Storage Write Interval

• Storage Write Batch Size

• JDBC Handler

• JDBC Database Type

• JDBC URL

• JDBC Driver

• JDBC Logging

• JDBC User

• JDBC Password

See “Persistence Properties” for details of these properties.

The default database for database persistence is HSQLDB, which is installed
with the OpenFusion CORBA Services distribution and will run with no
additional configuration.

Configuring a JDBC Data Source
JDBC stands for Java Database Connectivity and is a Java implementation of
the Open Database Connectivity standard (ODBC). JDBC specifies a
standard interface to allow Java applications to access a relational database.
All JDBC drivers support this interface, thus allowing applications to be
written against the interface and isolating the developer from the different
database vendors’ APIs.

The JDBC data source must be pre-configured prior to running a Service.
The process of configuring a JDBC database source for the databases
supported by the OpenFusion CORBA Services is described below.

Your Database Administrator should configure the JDBC data source when
using Oracle, Sybase, Informix or SQL Server. The HSQLDB database runs
locally and is installed with the OpenFusion CORBA Services distribution. No
additional configuration should be required.

A set of SQL scripts that will generate all the necessary tables and stored
procedures needed by the Services, within the database, have been
provided. The scripts create all the necessary indexes for the tables, thus
making searching through the database faster.

88 OpenFusion CORBA Services System Guide

When an OpenFusion Service starts, it will check for the existence of the
required tables (the common tables and the tables specific to that Service)
in the directory indicated by the JDBC URL property. If the tables do not
exist, OpenFusion will attempt to create them.

The scripts involved in creating the required tables and indexes are:

These scripts can be found in the /admin/database/ sub-directory of the
OpenFusion installation. Scripts are provided for each supported database.

The common tables must always be created. If the tables for each Service
are held in Service-specific directories, a separate set of common tables
must exist in each directory. If all the tables are held in a single location,
only one set of common tables will be required in that location.

All the nameof created tables are prefixed with OF_ and all stored
procedures with of_.

Oracle
The various OpenFusion tables and stored procedures can be added to an
Oracle database using the sqlplus application, as follows:

Alternatively, the generic OpenFusion JDBC Loader class can be used, as
follows:

Where:
<URL> is the database URL pointing to the directory created in Step 1.
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12.

Table 12 SQL Scripts

Script Description

CreateCommonTables.sql Creates common shared tables (required by all
services).

DropCommonTables.sql Drops the common shared tables.

CreateJNDITables.sql Creates tables for the Naming Service.

DropJNDITables.sql Drops the tables created for the Naming Service.

CreateTraderTables.sql Creates tables for the Trading Service.

DropTraderTables.sql Drops the tables created for the Trading Service.

CreateNotificationTables.sql Creates tables for the Notification Service.

DropNotificationTables.sql Drops the tables created for the Notification
Service.

CreateLogTables.sql Creates tables for the Log Service.

DropLogTables.sql Drops the tables created for the Log Service.

% sqlplus <USER>/<PASSWORD> < <FILE.SQL>

> run com.prismt.jdbc.Loader -dt oracle -db <URL>
-dr oracle.jdbc.driver.OracleDriver -u <USER>
-p <PASSWORD> -s <SCRIPT> [-v]

OpenFusion CORBA Services System Guide 89

-v is an optional switch which will cause Loader to produce verbose
output (listing each individual command from the script file before it
executes it).

The Oracle user must have the rights to create tables and procedures in the
database in order to run the SQL scripts successfully using either of the
above methods.

Oracle Thin Drivers
The type 4 thin (all Java) Oracle JDBC drivers are supplied as part of the
OpenFusion distribution. The Oracle JDBC drivers are from the Oracle 8.1.7
distribution and are backwardly compatible to Oracle version 7.3.4. The
Oracle JDK 1.2 JDBC driver is supplied in the lib directory of the
distribution in the zip file classes12.zip.

Oracle OCI Drivers
To use OCI Drivers with OpenFusion Services, the oci7 or oci8 drivers must
be obtained from Oracle. These can be downloaded from http://
technet.oracle.com (these drivers are not included as part of the OpenFusion
distribution). Complete the following steps to configure the system to use
these drivers.

1 Install classes12.zip into the directory:

<INSTALL>/lib

where <INSTALL> is the OpenFusion installation directory.

2 Install the appropriate driver file (liboci73jdbc.so or
libocijdbc8.so, depending on the version of Oracle being used) into
the directory:

<INSTALL>/lib

where <INSTALL> is the OpenFusion installation directory.

3 Edit the file <INSTALL>/bin/.javaenv (where <INSTALL> is the
OpenFusion installation directory) to remove this line:

unset LD_LIBRARY_PATH

and add the following two lines:

LD_LIBRARY_PATH=/lib
export LD_LIBRARY_PATH

4 In the Administration Manager, set the JDBC URL property to:

• For Oracle 7:

jdbc:oracle:oci7:@

• For Oracle 8:

jdbc:oracle:oci8:@

Sybase
The various OpenFusion tables and stored procedures can be added to a
Sybase database using a generic OpenFusion loader class. This can be done

90 OpenFusion CORBA Services System Guide

using:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12.
-v is an optional switch which will cause Loader to produce verbose
output (listing each individual command from the script file before it
executes it).

The Sybase user must have the rights to create tables and procedures in
the database in order to run the SQL scripts successfully using the above
method.

The SQL scripts assume that the tables and procedures are being added to
the user's default database. The use database command should be added
to the start of the scripts when this is not the case.

Informix
The various OpenFusion tables and stored procedures can be added to an
Informix database using the dbaccess application that is provided with
Informix, as follows:

Where:
<DATABASE> is the name of the Informix database.
<SCRIPT> is the SQL script from Table 12.

Alternatively, the generic OpenFusion JDBC Loader class can be used, as
follows:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12.
-v is an optional switch which will cause Loader to produce verbose
output (listing each individual command from the script file before it
executes it).

The Informix user must have the rights to create tables and procedures in
the database in order to run the SQL scripts successfully using either of the
above methods.

The appropriate access rights must also be granted in order for the
OpenFusion services to access the database. See the Informix
documentation for details of how to do this.

% run com.prismt.jdbc.Loader -dt sybase -db <URL>
-dr com.sybase.jdbc2.jdbc.SybDriver -u <USER>
-p <PASSWORD> -s <SCRIPT> [-v]

% dbaccess <DATABASE> <SCRIPT>

> run com.prismt.jdbc.Loader -dt informix -db <URL>
-dr com.informix.jdbc.IfxDriver -u <USER>
-p <PASSWORD> -s <SCRIPT> [-v]

OpenFusion CORBA Services System Guide 91

SQL Server
The various OpenFusion tables and stored procedures can be added to an
SQL Server database using a generic OpenFusion JDBC Loader class. Use
the following command to run this using the JDBC/OBDC driver supplied as
part of the Java Runtime Environment on NT:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12.
-v is an optional switch which will cause Loader to produce verbose
output (listing each individual command from the script file before it
executes it).

MySQL
The various OpenFusion tables can be added to a MySQL database using the
mysql application which is provided with MySQL, as follows:

Where
<USER> is the database owner
<PASSWORD> is the database owner's password
<DATABASE> is the name of the MySQL database
<SCRIPT> is the SQL script from Table 12.

Alternatively, the generic OpenFusion JDBC Loader class can be used, as
follows:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the database owner’s password.
<SCRIPT> is the SQL script from Table 12.
-v is an optional switch which will cause Loader to produce verbose
output (listing each individual command from the script file before it
executes it).

The MySQL user must have create rights (for the SQL Create scripts) and
the drop right (for the SQL Drop scripts) in the database in order to run the
SQL scripts successfully using either of the above methods.

The SQL scripts assume that the tables are being added to the user’s
default database. If this is not the case, and the database name is not
specified either directly or as part of the database URL, then the use
<database> command should be added to the start of the scripts.

> run com.prismt.jdbc.Loader -dt sqlserver -db <URL>
-dr com.microsoft.jdbc.sqlserver.SQLServerDriver
-u <USER> -p <PASSWORD> -s <SCRIPT> [-v]

% mysql -u <USER> -p<PASSWORD> -D <DATABASE> < <SCRIPT>

% run com.prismt.jdbc.Loader -dt mysql -db <URL> -dr \
com.mysql.jdbc.Driver -u <USER> -p <PASSWORD> -s \
<SCRIPT> [-v]

92 OpenFusion CORBA Services System Guide

HSQLDB
The HSQLDB database is installed with the OpenFusion CORBA Services and
configured automatically to run in standalone mode. Additional
configuration is required to use HSQLDB in client/server mode. To configure
a new instance of HSQLDB, the following steps should be used.

Create an HSQLDB Instance
 1 Create a directory to contain the database.

2 Use the following command to add OpenFusion tables to the database:

Where:
<URL> is the database URL pointing to the directory created in Step 1.
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12.
-v is an optional switch which will cause Loader to produce verbose
output (listing each individual command from the script file before it
executes it).

Note that OpenFusion’s default behaviour is to create the tables required by
a Service in the data sub-directory of the Service’s directory.

Configure OpenFusion Services to Run with
HSQLDB Persistence
Set the following properties in the Administration Manager. See “Persistence
Properties”, for full details of these properties.

• In order to establish a connection to HSQLDB, set the JDBC URL property
to the value supplied to the -db switch in Step 2, above.

• To use the default administrator account, set the JDBC User property to
sa and the JDBC Password property to blank.

Alternatively, a new HSQLDB user can be created. This user must have
admin privileges in order to close down the database automatically and
must be granted appropriate access permissions for the database tables.

HSQLDB in Client/Server Mode
The default version of HSQLDB used when a Service started is in standalone
mode. This means that only one application can access the database at a
time. To access the same database simultaneously from multiple JVMs, the
Client/Server version of HSQLDB must be used. This is highly recommended
when using HSQLDB in a production environment.

A Java Object for the configuration and management of HSQLDB instances,
HSQLDBObject, is included with the OpenFusion product distribution. To
use the Java Object, add a Service to the OpenFusion Object Hierarchy
(calling it, for example, HSQLDBService) and add the Java Object to it, as
described in “Extending the Object Hierarchy”. When the Service is started, the
HSQLDB database will be started.

% run com.prismt.jdbc.Loader -dt HSQLDB -db <URL>
-dr org.HSQLDB.jdbcDriver -u <USER> -p <PASSWORD>
-s <SCRIPT> [-v]

OpenFusion CORBA Services System Guide 93

The database must have its tables loaded using the
com.prismt.jdbc.Loader class, as described in step 2 of “Create an
HSQLDB Instance”.

Use the Administration Manager to configure the properties of the
HSQLDBObject. The properties are described below.

Name
The name and full path of the database. This identifies where data files will
be stored. The default location is:

<INSTALL>/domains/<DOMAIN>/<NODE>/<SERVICE>/data/
HSQLDBServer

Where:
<INSTALL> is the OpenFusion installation directory.
<DOMAIN> is the name of the domain in the Object Hierarchy.
<NODE> is the name of the Node in the Object Hierarchy.
<SERVICE> is the name of the Service that has been created to hold the
HSQLDBObject.

Timeout
When the Service containing the HSQLDBObject is started, it polls HSQLDB
to determine whether it can establish a connection. When the Service is
stopped, it polls HSQLDB to see if the shutdown statement has completed
execution. The Timeout property is used by the Administration Manager to
determine how long (in seconds) the Service will spend polling the
database.

The default value is 30 seconds.

Trace
This property toggles the JDBC Trace on and off. If the property is checked
(true), The JDBC Trace is switched on. The JDBC Trace is off by default.

Property Name Name

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory YES

Property Name Timeout

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name Trace

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

94 OpenFusion CORBA Services System Guide

No System Exit
If this property is checked (true), it directs HSQLDB to avoid
System.exit() calls when the shutdown command is issued to the
database. This is of particular importance when running an HSQLDB server
inside another application. The property is mainly used to ensure
interoperability with application servers.

Silent
If this property is checked (true), it allows the database to display all
queries.

Port
The port that the HSQLDB database listens on. If more than one instance of
HSQLDB is running on a machine, each must be set to use a different port.

For each OpenFusion Service that will use the HSQLDB instance, set the
JBDC URL property to include the specified port (see “JDBC URL”).

The default port is 9001. If this default is used, it does not need to be added
to the JDBC URL.

Property Name NoSystemExit

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name Silent

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 95

Restoring Data
If the Restore command is used to restore a Service to its default state (see
“Restoring Services and Singletons”), all HSQLDB tables and data for the
Service being restored will be deleted.

This will only happen if the default JDBC URL is used. If the tables are in an
alternative location (not a subdirectory of the Service being restored), the
tables will not be deleted. The procedures given above can be used to
configure an instance of HSQLDB in a different location.

96 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 97

Command Line Tools
All command line tools are found in the <install_dir>/bin directory,
where <install_dir> is the OpenFusion installation directory.

IOR Decoder
OpenFusion provides a tool that will decode an Interoperable Object
Reference (IOR) and display its component parts or, alternatively, will
generate a corbaloc:iiop URL that can be used in place of an IOR for
obtaining a reference to a CORBA object.

The IOR Decoder is started with the following command:

The parameters are defined as follows:

If the IOR Decoder is invoked with the -corbaloc option then a
corbaloc:iiop URL is generated for the IOR. Otherwise, the IOR is
decoded and its type, port, host and stringified object key are displayed.

Administration Manager Tool
The XML configuration files in an OpenFusion installation can be fully
populated from within the Administration Manager GUI (as described in
“Completing the XML File Installation”). As an alternative to running the
Administration Manager GUI, OpenFusion provides a command line
Administration Manager tool, adminMgrTool, that will fully populate the
XML configuration files.

The Administration Manager tool is started with the following command:

The following parameters can be used with the tool to provide different
functionality:

-p

Causes the tool to fully populate the XML configuration files.

% iorDecoder [-corbaloc] (-ior <IOR> | -file <file>)
[-h | -? | -help]

-corbaloc This option specifies that the tool should generate a
corbaloc:iiop URL for the IOR.

-ior <IOR> <IOR> is the IOR to decode.

-file <file> <file> is a file containing the IOR to decode.

-h -? -help These options are equivalent and print usage information
for the tool.

% adminMgrTool <parameter>

98 OpenFusion CORBA Services System Guide

-r <restore_name>

Restores a named object in the Object Hierarchy. <restore_name> is a
hierarchical name (using dots to separate the name components) which
identifies the object to be restored. For example, to restore the
NotificationService from the localhost node of the OpenFusion domain:

adminMgrTool -r OpenFusion.localhost.NotificationService

-d <node_name>

Deletes a named object in the Object Hierarchy. <node_name> is a
hierarchical name (using dots to separate the name components) which
identifies the object to be deleted. For example, to delete the
NotificationService from the localhost node of the OpenFusion domain:

adminMgrTool -d OpenFusion.localhost.NotificationService

-aDom <domain_name>

Adds a Domain to the Object Hierarchy. For example:

adminMgrTool -aDom OpenFusion

-aNode <domain_name> <node_name>

Adds a node to a domain, where <domain_name> is the name of the
domain that the node will be added to. For example, to add the localhost
node to the Openfusion domain:

adminMgrTool -aNode Openfusion localhost

-aServ <node_name> <service_name>

Adds a Service to a node in the Object Hierarchy. <node_name> is a
hierarchical name (using dots to separate the name components) which
identifies the node that the Service will be added to. For example, to add
NamingService to the localhost node of the OpenFusion domain:

adminMgrTool -aServ OpenFusion.localhost NameService

-aSing <service_name> <singleton_name>

Adds a Singleton to a Service. <singleton_name> is a hierarchical name
(using dots to separate the name components) which identifies the
Service that the Singleton will be added to. For example, to add the
NameSingleton to the NameService:

adminMgrTool -aSing OpenFusion.localhost.NameService
NameSingleton

-aJO <service_name> <java_object_name>

Adds a Java Object to a Service. <service_name> is a hierarchical name
(using dots to separate the name components) which identifies the
Service that the object will be added to. For example, to add the
SNMPAgentObject to the NameService:

adminMgrTool -aJO OpenFusion,localhost.NameService
SNMPAgentObject

-ap <object_name> <property_name> <new_property_value>

Changes a property value for an object in the Object Hierarchy.
<object_name> is a hierarchical name (using dots to separate the name
components) which identifies the object. For example, to change the
value of the Naming Service log4j.rootLogger property to “Debug”:

adminMgrTool -ap OpenFusion.localhost.NameService
log4j.rootLogger Debug

OpenFusion CORBA Services System Guide 99

-dpv <object_name> <property_name>

Displays a property value for an object in the Object Hierarchy.
<object_name> is a hierarchical name (using dots to separate the name
components) which identifies the object. <property_name> is the name
of the property to be displayed. For example, to display the value of the
Naming Service logging level property:

adminMgrTool -dpv OpenFusion.localhost.NameService
log4j.rootLogger

-h

-?

-help

These options are equivalent and print usage information for the tool.

A single command line can only include one parameter. So to add a domain,
a node, and two Services to the Object Hierarchy, for example, the
Administration Manager tool must be invoked four times with a different
object added in each invocation.

The Administration Manager tool must be invoked with the -p option before
any Services can be started from the command line using the server -
start script (as described in “Starting Servers from the Command Line”).

Configuration Generator
OpenFusion provides a tool that will parse an XML configuration hierarchy
and output references to configured objects in a form suitable either for
inclusion in an ORB configuration file or as arguments that can be passed to
an ORB at initialization.

The Configuration Generator is started with the following command:

The parameters are defined as follows:

If the Configuration Generator is invoked without the -out_file parameter
then the output is written to the console. If the portable type is specified
with the -orb option then the output is in the format -ORBInitRef
<ObjectID>=<ObjectURL> described in the CORBA specification.

% configGen -orb (jacorb | portable | visibroker)
-domain_xml <XML> [-out_file <file>] [-h | -? | -help]

-orb This option specifies the type of ORB for which output
is to be generated.

-domain_xml <XML> <XML> is the XML configuration file for the domain to
be parsed by the tool.

-out_file <file> <file> is the file to contain the generated output.

-h -? -help These options are equivalent and print usage
information for the tool.

100 OpenFusion CORBA Services System Guide

Part II
Security Service

In this part
This part contains the following:

Description of the Security Service page 103

Using Specific Features page 107

Security Configuration page 113

Security Administration Manager page 119

OpenFusion CORBA Services System Guide 103

Description of the Security
Service
The OpenFusion Security Service provides the ability to apply access control
to CORBA Services and Java Objects.
Access control is based upon clients’ identities being verified by plug-in
authentication modules. The OpenFusion Security Service is independent of
the authentication technology in use, allowing the flexibility of a range of
authentication systems from simple username/password entry to voice or
fingerprint verification.
The Security Service can be used to control access to individual Object
instances or even specific methods. This level of granularity provides an
extremely flexible and configurable security model. For example, individual
Notification Service message queues can be secured so that only clients
which provide a valid username and password combination can access a
particular queue. This is of great value in messaging applications where
sensitive data is involved; in the banking sector, for example.

Concepts and Architecture
The OpenFusion Security Service supports the use of Pluggable
Authentication Modules (PAM) which conform to Oracle’s Java
Authentication and Authorisation Service (JAAS) API specification. Pluggable
authentication modules allow the Security Service to remain independent of
the underlying authentication technologies. Typical authentication modules
may prompt for and verify a username and password, for example.

Securable Objects
The Security Service allows security to be applied to CORBA Objects and
Java Objects. Any Java Object which implements the Identifiable
interface, and any CORBA Object, is a securable object.

For a CORBA Object, only operations interfaces and their methods are
securable.

For a Java Object, only the interfaces from the class implementing the
Identifiable interface (its interfaces and the interfaces of its
superclasses) are securable.

Running the Security Service does not automatically secure all objects and
Services. Nothing is secured in a default OpenFusion installation. It is
necessary to identify which resources will be secured and to establish
access lists for each resource.

104 OpenFusion CORBA Services System Guide

Authentication
The purpose of the authentication process is to associate a Principal with a
Subject.

A Subject is any client or user of a Service or resource. A Principal is a name
that represents an identity attribute. For example, a Principal could be the
user ID of the client user, the user’s role within an organisation, or the
name of a group of users.

Authentication can be performed on either the client or the server side of
any transaction, or on both sides of the transaction. If successful, the
Subject will be associated with zero or more Principals. One Subject may
have several Principals, representing the names by which it is identified to
different Services.

Once a Subject has been authenticated, the Security Service propagates the
Subject’s identity (Principal) to all subsequent actions attempted by that
Subject.

ACLs
An ACL (Access Control List) is a list of Principals which will be allowed
access to a particular resource. When a subject attempts to access a
resource, the Security Service checks each of the Subject’s Principals
against the resource’s ACLs to determine whether access should be allowed.

Each given resource can have two different ACLs in effect:

• The ACL specific to this particular method on this particular type of object.
If an ACL is not defined at the method level, the ACL for the type of
object is used, if defined.

• The ACL specific to this particular method on this particular object
instance. If an ACL is not defined at the method level, the ACL for the
object instance is used, if defined.

If either or both ACLs are defined for a resource, Principals which are listed
in either or both ACLs will be allowed access the resource. Principals which
do not appear on either list will be denied access.

If no ACLs are defined, the resource will be considered unrestricted and
access will be permitted to any Subject.

If both ACLs are defined and both are empty lists, or if only one ACL is
defined and it is an empty list, all access to the resource is prohibited.

If one ACL grants a Principal access to a resource, that access cannot be
revoked by the resource’s other ACL. So if a Principal is granted access to a
particular type of object, those access rights extend to all instances of that
object even where the instance has a blank ACL (which would normally
deny access to all Principals).

ACLs are created and maintained through the Security Administration
Manager (see “Security Administration Manager”) and are held as XML files. It is
possible, but not recommended, to edit the XML files using some method
other than the Security Administration Manager.

OpenFusion CORBA Services System Guide 105

The UML model in Figure 13 shows the relationship between Principals and
ACLs.

Figure 13 ACL UML Model

Groups
Groups represent collections of Principals. Groups cannot be assigned to a
Subject, but they can be used in ACLs in order to simplify the construction
of the ACL.

It is possible to construct Groups of Groups, recursively, with the resulting
potential for cyclic references. Cyclic references will be rejected from the
ACL with unpredictable results, and so should be avoided when Groups are
constructed.

When the Security Service evaluates an ACL to determine if a Principal
should be granted access to a resource, all Groups in the ACL will be
examined to see if the Principal is a member. If the Principal is a member of
a Group in the ACL, it will be granted access.

ACLs are examined to determine Group membership each time an attempt
is made to access a resource.

Group details are defined in an XML file, as described in “Creating ACL
Groups”.

Mapping Principals
The OpenFusion Security Service LoginModule includes a mechanism for
mapping Principals to a Subject at the point of authentication. The
LoginModule examines the Principals which other login modules have
associated with a Subject and determines whether mappings exist between
those Principals and any other Principals. If mappings exist, the mapped
Principals are also associated with the Subject.

Principal mappings are defined in an XML file, as described in “Creating
Principal Mappings”.

Group

Principal

ACL Entries

ACL

<<contains>>

1

1

*

*

*

*

106 OpenFusion CORBA Services System Guide

Example:
A user logs on to the system, providing his user name joe and password
secret to the login module. These are authenticated and found to be
correct. The login module assigns a Principal, joe, to represent his
authenticated identity.

In the Principal Mappings file, a mapping exists between the Principal joe
and the two Principals administrator and boss. These Principals are
added to the Subject joe. Furthermore, the Principal administrator is
also mapped to the Principal guest. This mapping is resolved, and guest is
also assigned to joe.

After login, joe will be able to access any resource whose ACL includes any
of the Principals joe, administrator, boss, or guest, or any Groups
which had any of these Principals as direct or indirect members.

LoginModule
The supplied LoginModule includes a simple Generic Security Service
Username and Password (GSSUP) authentication mechanism. It holds user
names against passwords in plain text in an XML file and will successfully
authenticate any user which supplies a correct username and password
pair.

Other Pluggable Authentication Modules can be used, as long as they
conform to the JAAS specification. A discussion of Pluggable Authentication
Modules is outside the scope of this document.

When different authentication modules are used, the last stage of
authentication is always performed by the Security Service LoginModule,
which performs Principal mapping as described in “Mapping Principals”.

OpenFusion CORBA Services System Guide 107

Using Specific Features
This section describes the main procedures for securing OpenFusion
Services. The procedures are the same for any OpenFusion Service.

Securing an Interface or Method
This procedure describes how an object can be secured using the
Administration Manager. Each object and method for which security access
has been set is stored persistently in an XML file. It is possible, but not
recommended, to add entries directly to the XML file without using the
Security Administration Manager.

See “Security Administration Manager”, for a further details of using the
Security Administration Manager.

1 Ensure that the Service is Stopped. Note that it is possible to configure a
running service, but see Step 10.

2 Select the Service in the Administration Manager’s Object Hierarchy and
select the SECURITY tab in the properties panel.

3 Enable security for the Service by clicking the Security Enabled check
box.

4 Enter the location of the following security configuration files:

 - XML Group Persistence

 - XML Principal Persistence

 - JAAS Configuration File

 - XML ACL Persistence

 - Security Credentials File

 - Security Configuration File

If these properties are unavailable (grey), it means that the Security
Enabled property has not been set.

Default locations are supplied for all of these files, and can be accepted
without change if desired.

5 Start the Service and then start the Service Manager.

6 Right-click on an object in the Service Manager hierarchy and select
Security Administration Manager from the popup menu. This will start the
Security Administration Manager with the security object hierarchy
populated with the interfaces and methods of the selected object.

The Security Administration Manager is fully described in “Security
Administration Manager”.

7 Select an interface or method in the security object hierarchy. This is the
operation which we will secure so that only authorised clients can access
it.

The security Principals that are associated with the operation will be
shown in the Access Entry Details list. At this point, the list should be
blank.

8 Type a Principal name in the Enter principal to be added box and click the
Add button. This will add the principal to the Access Entry Details list.

108 OpenFusion CORBA Services System Guide

Only clients which supply valid credentials for the listed Principal will be
able to access the operation. Note that by default (before any security
Principals are added), any client could have accessed the operation. The
act of adding a Principal effectively denies access to everybody except
that Principal.

Repeat the previous step with additional Principals, if required.

9 Click the Save Changes to Security Access Entries tool bar button. This
action saves the security configuration to persistent storage.

10 If the Service is running, go back to the SECURITY tab of the
Administration Manager and click the Reload Security Configuration
signal button to force the Service to reload the security configuration
from persistent storage (XML files).

A Service reads its security configuration on start-up. Any changes made in
the Security Administration Manager while the service is running will not be
automatically implemented. This signal must be used to implement the
changes in the running Service.

This step is only required if the Service is running when the properties are
changed. If the Service is stopped first, there is no need to force a
configuration reload.

The signal button reloads the configuration from the XML files, not from the
current state of the Security Administration Manager. Any changes made in
the Security Administration Manager must be explicitly saved (using the tool
bar button) before the signal button is used to reload the configuration.
Otherwise, the changes will be lost.

Excluding Methods from the Security Manager
In some circumstances, it is only possible to secure an object at the object
level, not at the method level. This is because the methods are never called
on an instantiated object and therefore can never be intercepted. (This only
allies to instantiated objects, never to interfaces.) In this situation, it is
useful to exclude the object’s methods from the object hierarchy of the
Security Administration Manager. This avoids the mistaken belief that an
object has been made secure because its methods appear secure, when in
fact the security should have been set at the object level.

To exclude an object from the hierarchy, add an entry for the object to the
SecurityObjectLevel.xml file, using a suitable XML editor or plain text
editor. This file is located in the <install>/xml/security directory
(where <install> is the OpenFusion CORBA Services installation path).

A working knowledge of XML is required to edit the SecurityObjectLevel
file. An example of this file is given below.

Example 1 SecurityObjectLevel File

i

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Singleton SYSTEM "file:///D:/openfusion/xml/schema/
SecurityObjectLevel.dtd">
<SecurityObjectLevel>
 <ClassName>com.prismt.j2ee.jms.QueueImpl</ClassName>
 <ClassName>com.prismt.j2ee.jms.TopicImpl</ClassName>
</SecurityObjectLevel>

OpenFusion CORBA Services System Guide 109

Creating ACL Groups
Groups represent collections of Principals. Groups can be placed into an ACL
in order to simplify the construction of ACLs. ACL Group details are defined
in an XML file.

A working knowledge of XML is required to create and maintain ACL Groups.
An example of the XML Group Persistence File is given below.

1 Select the Service in the Administration Manager’s Object Hierarchy and
select the SECURITY tab in the properties panel.

2 Enable security for the Service by clicking the Security Enabled check
box.

3 Enter the location of the XML Group Persistence file. The default location
can be used if required.

Services can share a single Group persistence file, or a different file can
be specified for each Service. The default is for all Services to store their
Group persistence files in a common location.

4 Locate the XML Group Persistence File in the directory identified in Step 3.

5 Use a suitable XML editor or plain text editor to create or modify the XML
Group Persistence file. The file must conform to the following schema:

<install>/xml/schema/of-security-groups.xsd

where <install> is the OpenFusion CORBA Services installation path.

6 Click the Reload Security Configuration signal button on the SECURITY
tab to force the underlying Service to implement the changed security
configuration.

Example XML Group Persistence File:

Creating Principal Mappings
Mappings between Principals can be used to assign additional Principals to a
subject at the point of authentication. Principal mappings are defined in an
XML file.

A working knowledge of XML is required to create and maintain Principal
mappings. An example of the XML Principal Persistence File is given below.

1 Select the Service in the Administration Manager’s Object Hierarchy and
select the SECURITY tab in the properties panel.

2 Enable security for the Service by clicking the Security Enabled check
box.

3 Enter the location of the XML Principal Persistence file. The default
location can be used if required.

i

<?xml version="1.0" encoding="UTF-8"?>
<securityGroups xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="d:openfusion/xml/schema/of-security-
groups.xsd">
 <group>
 <groupName>All Users</groupName>
 <memberPrincipal>Administrator</memberPrincipal>
 <memberPrincipal>Default User</memberPrincipal>
 <memberPrincipal>Guest</memberPrincipal>
 </group>
</securityGroups>

i

110 OpenFusion CORBA Services System Guide

Services can share a single Principal mapping file, or a different file can
be specified for each Service. The default is for all Services to store their
Principal mapping files in a common location.

4 Locate the XML Principal mapping file in the directory identified in Step 3.

5 Use a suitable XML editor or plain text editor to create or modify the XML
Principal mapping file. The file must conform to the following schema:

<install>/xml/schema/of-security-principal-map.xsd

where <install> is the OpenFusion CORBA Services installation path.

6 Click the Reload Security Configuration signal button on the SECURITY
tab to force the underlying Service to implement the changed security
configuration.

Example XML Principal Persistence File:

Supplying Authorised Credentials
Authorised credentials must be supplied by any client code which attempts
to use a secured operation. Authentication is carried out by a Pluggable
Authentication Module (PAM). The login module supplied with OpenFusion
provides a Generic Security Service Username and Password (GSSUP)
authentication mechanism. The supplied module is:

com.prismt.openfusion.security.login.LoginModule

The default LoginModule compares supplied credentials with the list of
credentials held in the Security Credentials file to determine validity. This is
a plain-text XML file stored in a location identified by the Security
Credentials File property in the Administration Manager. The location can
also be set in the gssupUsers element of the Security Configuration file or

<?xml version="1.0" encoding="UTF-8"?>
<principalMappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="openfusion/xml/schema/of-security-principal-
map.xsd">
 <principal>
 <principalName>root</principalName>
 <impliesPrincipal>admin</impliesPrincipal>
 </principal>
 <principal>
 <principalName>user</principalName>
 <impliesPrincipal>canRead</impliesPrincipal>
 <impliesPrincipal>canPrint</impliesPrincipal>
 <impliesPrincipal>canExecute</impliesPrincipal>
 </principal>
 <principal>
 <principalName>admin</principalName>
 <impliesPrincipal>user</impliesPrincipal>
 <impliesPrincipal>canWrite</impliesPrincipal>
 </principal>
 <principal>
 <principalName>canRead</principalName>
 </principal>
 <principal>
 <principalName>canPrint</principalName>
 </principal>
 <principal>
 <principalName>canExecute</principalName>
 </principal>
 <principal>
 <principalName>canWrite</principalName>
 </principal>
</principalMappings>

OpenFusion CORBA Services System Guide 111

in the system property security.UserDataFile. See “Security Configuration
File Properties” for details.

The default location of the Security Credentials file is:

<install>/Security/etc/security/userdata.xml

where <install> is the OpenFusion CORBA Services installation path.

A working knowledge of XML or familiarity with an XML editor is required to
create and maintain the Security Credentials file. An example of this file is
given below.

Example Security Credentials File:

i

<Users>
 <User>
 <UserName>adminuser</UserName>
 <Password>adminPass</Password>
 </User>
 <User>
 <UserName>guest</UserName>
 <Password>guestPass</Password>
 </User>
</Users>

112 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 113

Security Configuration
Security must be configured separately for a Service and for the clients of
that Service. Service configuration is performed through the Administration
Manager. Client configuration comes from a combination of system
properties and details stored in an XML file.

Configuring a Secure OpenFusion Service
Security properties for a service are configured through the Administration
Manager, as follows.

1 Select a Service in the Administration Manager’s Object Hierarchy.

2 Select the SECURITY tab.

3 Set the following properties:

 - Security Enabled

 - XML Group Persistence

 - XML Principal Persistence

 - JAAS Configuration File

 - XML ACL Persistence

 - Security Credentials File

 - Security Configuration File

These properties are fully described in “Security Administration Manager
Properties”, below.

These properties should be configured separately for each OpenFusion
Service.

Security Administration Manager Properties
Services can share common persistence files, or different file locations can
be specified for each Service. The default is for all Services to store their
persistence files in a common location, which means that by default the
above properties are configured identically for each Service.

Security Enabled
If this property is checked, security is enabled for the Service. If security is
not enabled, the remaining properties on this tab are unavailable.

Property Name security.Enabled

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

i

114 OpenFusion CORBA Services System Guide

XML Group Persistence
The name and location of the XML group persistence file, given as either a
file or http URL. This defaults to:

file:<install>/etc/security/grouppersistence.xml

where <install> is the OpenFusion CORBA Services installation path.

This file is described in “Creating ACL Groups”.

XML Principal Persistence
The name and location of the XML principal persistence file, given as either
a file or http URL. This defaults to:

file:<install>/etc/security/principalpersistence.xml

where <install> is the OpenFusion CORBA Services installation path.

This file is described in described in “Creating Principal Mappings”

JAAS Configuration File
The name and location of the Java Authentication and Authorisation Service
(JAAS) configuration file, given as either a file or http URL. This defaults to:

file:<install>/etc/security/jaas.config

where <install> is the OpenFusion CORBA Services installation path.

XML ACL Persistence
The name and location of the XML ACL persistence file, given as either a file
or http URL. This defaults to:

file:<install>/etc/security/accessentry.xml

Property Name security.XMLGroupPersistenceFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name security.XMLPrincipalPersistenceFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name java.security.auth.login.config

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 115

where <install> is the OpenFusion CORBA Services installation path.

Security Credentials File
The name and location of the file holding user credentials, given as either a
file or a http URL. This defaults to:

file:<install>/Security/etc/security/userdata.xml

where <install> is the OpenFusion CORBA Services installation path.

This file is described in “Supplying Authorised Credentials”.

Security Configuration File
The name and location of the security configuration file, given as either a
file or a http URL. This defaults to:

file:<install>/etc/security/SecurityProperties.xml

where <install> is the OpenFusion CORBA Services installation path.

This file is described in “Security Configuration File Properties”.

This property will be over-ridden by the system property
security.ConfigurationFile, if it is set.

Configuring a Secure Client
A secure client is configured from properties held as elements in an XML file.
The location of this file is given by the system property
security.ConfigurationFile. If this has not been set, the location will
be taken from the Security Configation File property set in the
Administration Manager.

A working knowledge of XML or familiarity with an XML editor is required to
create the Security Configuration file.

Property Name security.XMLACLPersistenceFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name security.UserDataFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name security.ConfigFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

i

116 OpenFusion CORBA Services System Guide

Security Configuration File Properties
The following properties can be set in the Security Configuration file. Some
of these properties can also be set (or overridden) in other ways, as noted.

securityEnabled
This property determines whether security will be enabled or disabled and
can take the values true (enabled) or false (disabled). It defaults to
false if not explicitly set.

To disable security, neither this property nor the Security Enabled property
in the Administration Manager must be set to true. Either one of the two
properties set to true is sufficient to enable security.

gssupCredential
This includes two properties: user and password, which are the GSSUP
credentials that will be used for the Subject.

There are three ways that these properties can be set. In order of
precedence, these are:

1 As the following system properties:
OF.Security.UserName

OF.Security.Password

2 Programatically, by invoking the following methods:

3 In the Security Configuration file, as in the following example fragment:

fileLocations
This group of properties defines the locations of up to five different files
used by the Security Service:

• principalMappings

This property gives the location of the Principal Mappings file (described
in “Creating Principal Mappings”). If this property is set, it will override the
XML Principal Persistence File property set in the Administration
Manager. The system property
security.XMLPrincipalPersistenceFile can be used to override the
location set by this property.

• acls

This property gives the location of the ACL Persistence file. If this
property is set, it will override the XML ACL Persistence File property set
in the Administration Manager. The system property
security.XMLACLPersistenceFile can be used to override the
location set by this property.

com.prismt.openfusion.security.util.Configuration.getInstance().setGSSUPUserName
(name)
com.prismt.openfusion.security.util.Configuration.getInstance().setGSSUPPassword
(password)

 <gssupCredential>
 <user>administrator</user>
 <password>my_password</password>
 </gssupCredential>

OpenFusion CORBA Services System Guide 117

• groups

This property gives the location of the Group Persistence file (described in
“Creating ACL Groups”). If this property is set, it will override the XML
Group Persistence File property set in the Administration Manager. The
system property security.XMLGroupPersistenceFile can be used to
override the location set by this property.

• gssupUsers

This property gives the location of the file that holds user names and
passwords for the default LoginModule. If this property is set, it will
override the Security Credentials File property set in the Administration
Manager. The system property security.UserDataFile can be used to
override the location set by this property.

• jaasLoginConfig

If this property is present, its value will be used to set the
java.security.auth.login.config system property. It is used by the
com.sun.security.auth.login.ConfigFile object, which handles
runtime login configuration. For more details, consult the JAAS
documentation.

jaasLoginConfigName
If this property is present, it will override the default key used to identify
the configured LoginModules. The default value of this key is OpenFusion.
For more details, consult the JAAS documentation.

clientSideLogin
If this property is set to true, LoginModules will be triggered on the client
side of a call. The property defaults to false if not explicitly set.

serverSideLogin
If this property is set to true, LoginModules will be triggered if this is the
server side of a call. The property defaults to true if not explicitly set.

Example Security Configuration File
<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 NamespaceSchemaLocation="/openfusion/xml/schema/of-security-config.xsd">
 <gssupCredential>
 <user>administrator</user>
 <password>my_password</password>
 </gssupCredential>
 <fileLocations>
 <principalMappings>http://configserver/openfusion/mapping.xml</
principalMappings>
 <acls>http://configserver/openfusion/acls.xml</acls>
 <groups>http://configserver/openfusion/groups.xml</groups>
 <gssupUsers>http://configserver/openfusion/usersfile.xml</gssupUsers>
 <jaasLoginConfig>http://configserver/openfusion/jaas.config</
jaasLoginConfig>
 </fileLocations>
 <jaasLoginConfigName>LoginConfig_Name</jaasLoginConfigName>
 <clientSideLogin>false</clientSideLogin>
 <serverSideLogin>true</serverSideLogin>
</securityConfig>

118 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 119

Security Administration
Manager
Use the Security Administration Manager to create and maintain ACLs for
the OpenFusion Services. The Manager allows Principals to be added to
individual objects, interfaces, or methods.

Starting the Security Administration Manager
The Security Administration Manager cannot be started from the command
line. It must be started from within the Administration Manager, either from
a Service node or from an instantiated object.

• Starting from a Service node

To start the Security Administration Manager, right-click on a Service
node in the Administration Manager’s Object Hierarchy and select
Security Administration Manager from the pop-up menu.

When the Security Administration Manager is started from a Service
node, the browser will not be initially populated with entries in the
security object hierarchy.

• Starting from an instantiated object

The Security Administration Manager can be started from any node in a
Service Manager’s object hierarchy which represents a securable object.

To start the Security Administration Manager, right-click on the selected
node and select Security Administration Manager from the pop-up menu.

When the Security Administration Manager is started from an instantiated
object, the security object hierarchy will be populated automatically with
the object’s interfaces and the methods it implements (including methods
inherited from its interfaces).

Only one instance of the Security Administration Manager can be loaded in
any one session.

Using the Security Administration Manager
The left-hand panel of the Security Administration Manager (the security
object hierarchy) shows the securable objects that have been loaded into
the Security Administration Manager. The right-hand panel shows details of
the object selected in the hierarchy. See Figure 14, The Security Administration
Manager, on page 120.

120 OpenFusion CORBA Services System Guide

Figure 14 The Security Administration Manager

Object Hierarchy
The security object hierarchy shows the securable objects that have been
loaded into the Security Administration Manager.

Figure 15 The Security Object Hierarchy

OpenFusion CORBA Services System Guide 121

If the Security Administration Manager is launched from an instantiated
object, the security object hierarchy will be automatically populated with
objects, interfaces, and methods. If these objects are then assigned
security access entries, they will be added to persistent storage.

When the Security Administration Manager is launched from a Service node,
the security object hierarchy is empty. To populate it with entries from
persistent storage, right-click on the root node and use one of the pop-up
menu options, described below.

Different objects in the Security Administration Manager are identified by
different icons in the security object hierarchy tree view. These icons are
shown in Table 13.

Security Hierarchy Options
The following options are used to populate the security object hierarchy.
These options are accessed by right-clicking on the root node of the security
object hierarchy.

• Get First 100 Security Access Entries

This option retrieves the first 100 entries in the XML file. For performance
reasons, the number of entries displayed at any one time is limited to
100.

Get Next 100 Security Access Entries

This option is enabled after the Get First 100 Security Access Entries
option has been used. This option retrieves the next 100 security access
entries from the XML file. The previous 100 entries are removed from the
hierarchy, so that a maximum of 100 entries are displayed at one time.

• Search

This option allows a single interface to be loaded from persistent storage.
Enter an interface name in the dialog box displayed when this option is
selected. If an entry exists in persistent storage for the object, or a
method or interface relating to the object, the details are retrieved and
added to the security object hierarchy.

Table 13 Security Object Icons

Icon Node

Root Node
The object hierarchy root node.

Object
Represents a CORBA object or Java object. When this
node is selected, security access information for the
object is shown in the right-hand panel.

When this node is expanded, all methods applicable
to the object are shown. Methods inherited from any
operations type class are also shown.

Type
Represents an object’s operations type class, to allow
security access controls to be set against either the
object or the type.

Method
Represents a method, which is the lowest level at
which security access controls can be set. When this
node is selected, security access information for the
method is shown in the right-hand panel.

122 OpenFusion CORBA Services System Guide

• Add New Security Access Entry

This option allows a new security access entry to be added for an
interface. Enter an interface name in the dialog box displayed when this
option is selected. If an entry exists in persistent storage for the object,
or a method or interface relating to the object, the details are retrieved
and added to the security object hierarchy. If it does not exist, the details
will be added to the security object hierarchy and a persistent storage
entry will be created if Principals are added and saved.

Excluding Methods from the Object Hierarchy
In some circumstances, it is only possible to secure an object at the object
level, not at the method level. In this situation, it is useful to exclude the
object’s methods from the object hierarchy. See “Excluding Methods from the
Security Manager” for details.

Tool Bar Buttons
The Security Administration Manager adds a new button to the tool bar.
This button is shown in Table 14.

Principals Panel
The Principals panel controls security access for the object, interface, or
method selected in the security hierarchy. It consists of two sections: Add
new principals and Access Entry Details.

The Access Entry Details list box lists all Principals who have been granted
access to the class or method. The Add new principals list box lists all
Principals that are available for adding to a class or method. This list is built
dynamically as each node is selected. It is not a definitive list of all known
Principals.

Table 14 Security Administration Manager Tool Bar

Button Function

Save Changes to Security Access Entries
Saves security access entries to XML files for
persistent storage.

OpenFusion CORBA Services System Guide 123

Figure 16 The Principals Panel

Operations
The following operations can be performed from the Principals panel of the
Security Administration Manager:

• Add a new Principal

• Assign a Principal to a class or method

• Add and inherit

• Remove a Principal from a Class or Method

• Remove All Principals from a Class or Method

• Delete Access Entries Globally

• Assign Principals Globally

These operations are described in the following sections.

Add a New Principal
 1 In the security object hierarchy, select the class or method that the

Principal will be added to.

2 Enter the Principal name in the text box under Add new principles.

3 Click the Add button. The Principal will be added to the Access Entry
Details list.

4 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

A Principal must be added to a specific class or method. It is not possible to
add a Principal to the list of Principals without also assigning it to a class or
method.

A new Principal will be added to persistent storage with the ACL entry for
the object, interface, or method it is added to.

124 OpenFusion CORBA Services System Guide

Assign a Principal to a Class or Method
Once a Principal has been added to one class or method, it is available to
add to other classes and methods.
 1 Select the class or method from the security object hierarchy.

2 Click the Principal name in the list of Principals. Use shift+click to select a
range of Principals, ctrl+click to select a non-contiguous range.

3 Click the Add button. The Principal will be added to the selected class or
method.

4 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Add and Inherit
Principals applied to an object or interface are not automatically applied to
every method of that object or interface. The following procedure should be
used to cause a method to inherit its parent’s security Principals.

1 Select a method from the security object hierarchy.

2 Click the Add and Inherit button. (This button is not enabled until a
method is selected in the security object hierarchy.)

3 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Remove a Principal from a Class or Method
1 Select the class or method from the security object hierarchy.

2 Click the Principal name in the Access Entry Details list. Use shift+click to
select a range of Principals, ctrl+click to select a non-contiguous range.

3 Click the Remove Selected button.

4 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Note that when a Principal has been removed from all classes and methods
and the changes saved, it is no longer held in persistent storage. It remains
in the Principals list until the Security Administration Manager is shut down.

Remove All Principals from a Class or Method
There are two ways in which all Principals can be removed from a class or
method. The results of the two procedures are significantly different
because of how empty ACLs are treated. See “ACLs” for more details of this.

Remove Principals and deny all access

This will leave the class or method’s ACL with no Principals recorded against
it. This has the effect of denying all access to the class (if Principals are
removed at the class level) or method (if Principals are removed at the
method level).

1 Select the class or method from the security object hierarchy.

2 Click the Remove All button.

3 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Remove Principals and allow free access

This will remove the class or method’s ACL. This has the effect of removing
all security from the class (if Principals are removed at the class level) or

OpenFusion CORBA Services System Guide 125

method (if Principals are removed at the method level) and allowing anyone
access to it.

1 Right-click the class or method in the security object hierarchy.

2 Select Delete Access Entry from the pop-up menu.

3 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Delete Access Entries Globally
This procedure will delete all security access entries for an object or
interface, and all security access entries for methods of that object or
interface.

1 Right-click the object or interface in the security object hierarchy.

2 Select Global Delete from the pop-up menu.

Note that the deleted Principals remain in the Principals list until another
node in the security object hierarchy is selected.

3 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Assign Principals Globally
4 Assign Principals to a class or method, using the steps in either “Add a

New Principal” or “Assign a Principal to a Class or Method”.

5 Click the Assign Globally button. Every Principal in the Access Entry
Details list is assigned to all methods of the parent object or interface.

6 Click the Save Changes to Security Access Entries tool bar button to
commit the changes.

Implementing Security Configuration Changes
Changes to the security configuration for a Service can be performed while
the Service is running or halted, but changes made while the Service is
running will not be immediately implemented. There are two ways in which
security changes can be passed to a running Service:

• If the Service is stopped and re-started, it will read and implement the
new security configuration.

• If the Reload Security Configuration signal button is clicked, the Service
re-reads the security configuration and implements any changes.

Interfaces
This panel is only displayed when the Security Administration Manager has
been invoked from a Service node (see “Starting from a Service node”).

The Interfaces panel lists the interfaces for the class selected in the security
object hierarchy. These interfaces may have their own security access
settings, and so can be loaded into the security object hierarchy.

To load an interface class into the hierarchy:

1 Select an object in the security hierarchy. The Interfaces panel will not be
available if a method is selected.

2 Select the Interfaces tab in the right-hand panel of the Security
Administration Manager.

3 Select the required interface from the list in the Interfaces panel.

126 OpenFusion CORBA Services System Guide

4 Click the Load Selected Class button.

The class (including all of its methods) is loaded as a separate node in the
security object hierarchy, and if it has access details in persistent storage
they are retrieved and loaded also.

Part III
Appendices

In this part
This part contains the following:

XML Configuration Files page 129

Log Messages page 137

Managing Java Objects page 141

Glossary page 145

OpenFusion CORBA Services System Guide 129

XML Configuration Files
All properties for the OpenFusion CORBA Services are stored in and
controlled from XML files, making the list of properties flexible and
extensible.

It is possible to directly edit property values in the XML files, although it is
recommended that the Administration Manager interface be used. The
Administration Manager provides proper validation of input and reduces
errors.

Manually editing the XML configuration files is not recommended, but it
would be possible to programmatically alter the properties. The XML files
are described here for developers who wish to do that. The OpenFusion
graphical tools include an XML editor which performs validation against XML
DTDs. A command-line utility for setting properties is also provided; this is
described in “Command Line Configuration”.

All configuration files are stored under the OpenFusion installation directory.

Take great care when manually editing XML files as errors can seriously
interfere with the functioning of the OpenFusion graphical tools and
Services.

Directory paths given as examples in this section use Unix conventions.
Users of OpenFusion on Windows NT should make the appropriate
substitutions.

The Object Hierarchy
The domains directory under the OpenFusion installation directory contains
the XML files that record the current configuration of the OpenFusion
installation. The domains directory structure maps directly to the Object
Hierarchy in the Administration Manager, so a directory exists for each
domain, node, Service, Singleton, and Java Object. The directory must have
exactly the same name as the domain, node, Service, Singleton, or Java
Object it represents.

For example, the localhost node in the Administration Manager’s default
Object Hierarchy is represented by the following directory structure:

<INSTALL>/domains/OpenFusion/localhost

where <INSTALL> is the OpenFusion installation directory.

If the Object Hierarchy is altered or added to through the Administration
Manager (see “Extending the Object Hierarchy”), new directories and XML files
are created to reflect the new structure.

WIN

130 OpenFusion CORBA Services System Guide

The following figure shows the correlation between the Object Hierarchy
and the domains directory structure (the illustration is from Windows NT,
however the same structure is used on UNIX).

Figure 17 Object Hierarchy and Directory Structure

Completing the XML File Installation
The normal installation of OpenFusion CORBA Services creates minimal XML
configuration files in the domains directory structure. These files only
contain configuration information for properties which differ from the
default values. To fully populate these XML files with property information,
you must run the Administration Manager and save the configuration.

As an alternative to running the Administration Manager GUI, the
configuration can be completed using the Administration Manager command
line tool, described in “Administration Manager Tool”.

This must be performed before any Services can be started from the
command line using the server -start script (as described in “Starting
Servers from the Command Line”).

OpenFusion CORBA Services System Guide 131

Directory Tree
The structure of the domains directory is shown in Figure 18.

Figure 18 Domains Directory Tree

Configuration information is stored in XML files at each level of the directory
tree.

XML Files

Domains and Nodes
Each domain and node directory must contain a single file, <name>.xml,
where <name> is the name of the domain or node.

The domain and node files list all the children of that domain or node. They
also show whether the Object Hierarchy has been locked at that level (see
“Locking Nodes”).

These files are located and named as follows:

<INSTALL>/domains/<domain>/<domain>.xml
<INSTALL>/domains/<domain>/<node>/<node>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the
name of the domain, and <node> is the name of the node.

For example, the localhost node in the Administration Manager’s Object
Hierarchy is defined in the following XML file:

<INSTALL>/domains/OpenFusion/localhost/localhost.xml

<Installation
Directory>

log

service

domains

node

java objects

data

singletons

132 OpenFusion CORBA Services System Guide

The XML file also records whether or not the node is locked (see “Locking
Nodes”).

The format of the XML files for domains and nodes is defined in the
following DTD files:

<INSTALL>/xml/schema/Domain.dtd
<INSTALL>/xml/schema/Node.dtd

Services
Each Service directory must contain a single file, <service>.xml, where
<service> is the name of the Service.

The service file lists the Singletons and Java Objects under that Service.
They also show whether the Object Hierarchy has been locked at that level
(see “Locking Nodes”) and store any run time properties for the service.

These files are located as follows:

<INSTALL>/domains/<domain>/<node>/<service>/<service>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the
name of the domain, <node> is the name of the node, and <service> is
the name of the Service.

For example, the NameService node in the Administration Manager’s Object
Hierarchy is defined in the following XML file:

<INSTALL>/domains/OpenFusion/localhost/NameService/
NameService.xml

The XML file also records the current value and locking status of each
property belonging to the Service. See “Common Configuration Properties” for
details of Service properties.

The format of the XML files for Services is defined in the following DTD file:
<INSTALL>/xml/schema/Service.dtd

Singletons
Each Singleton directory must contain a file, <singleton>.xml, where
<singleton> is the name of the Singleton. The directory also contains the
Singleton’s IOR file (after the Service has been started).

These files are located as follows:

<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.xml
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <INSTALL> is the OpenFusion installation directory, <domain> is the
name of the domain, <node> is the name of the node, and <service> is
the name of the Service that contains the Singleton.

For example, the NameSingleton Singleton in the Administration Manager’s
Object Hierarchy is represented by the following XML file:

<INSTALL>/domains/OpenFusion/localhost/NameService/
NameSingleton/NameSingleton.xml

The XML file records the current value and locking status of each property
belonging to the Singleton. See “Common Configuration Properties” for details
of properties.

OpenFusion CORBA Services System Guide 133

The format of the XML files for Singletons is defined in the following DTD
file:

<INSTALL>/xml/schema/Singleton.dtd

Java Objects
Each Java Object directory must contain a file, <javaobject>.xml, where
<javaobject> is the name of the Java Object.

This file is located as follows:

<INSTALL>/domains/<domain>/<node>/<service>/<javaobject>/
<javaobject>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the
name of the domain, <node> is the name of the node, and <service> is
the name of the Service that contains the Java Object.

For example, the ChannelConfiguratorObject Java Object in the
Administration Manager’s Object Hierarchy is represented by the following
XML file:

<INSTALL>/domains/OpenFusion/localhost/
NotificationService/ChannelConfiguratorObject/
ChannelConfiguratorObject.xml

The XML file records the current value and locking status of each property
belonging to the Java Object. See “Common Configuration Properties” for details
of properties.

The format of the XML files for Java Objects is defined in the following DTD
file:

<INSTALL>/xml/schema/JavaObject.dtd

See the Appendix “Managing Java Objects” for details of how to create and
configure Java Objects.

XML Templates
The xml/templates directory under the OpenFusion installation directory
contains the XML files that define the properties for every object in the
Administration Manager’s Object Hierarchy.

To add a property to a Service, Singleton, or Java Object in the Object
Hierarchy, the property must be fully defined in the appropriate XML file, as
described below.

See “Properties” for details of how properties are displayed in the
Administration Manager.

134 OpenFusion CORBA Services System Guide

Directory Tree
The structure of the templates directory is shown in Figure 19

Figure 19 Templates Directory Tree

Defining a Property in the XML File
The XML DTDs in the schema directory (see “XML Schema”) define how a new
property must be created in the XML files. The following notes give further
explanations of the XML elements.

GroupName
In the Administration Manager, each group is assigned a different pane and
identified by a named tab. The GroupName element identifies which tab the
property will appear on.

CategoryName
This is an organisational element. Properties on the same tab which also
have the same CategoryName are grouped together on the tab.

Dependencies
Dependencies describe the relationship between different set of properties.
If setting a property to a specific value will disable (lock) or enable (unlock)
other properties, the Dependencies element should be used to show that
relationship.

<Installation
Directory>

singletons

templates

xml

schema

properties

objects

properties

services

properties

browser

properties

OpenFusion CORBA Services System Guide 135

Conditional
Some properties apply only to specific system configurations. For example,
some properties relate to a specific ORB and will not appear on the
Administration Manager screens if a different ORB is in use. Conditional
elements, if present, show which configurations are required for the
property to be valid. The conditions currently supported are CORBA version,
Java version, operating system, and ORB version. Permitted values are
shown in the DTD.

XML Schema
All XML files used to configure the managers and browsers must conform to
the DTDs in the directory:

<INSTALL>/xml/schema

where <INSTALL> is the OpenFusion installation directory.

The configuration DTD files are listed in Table 15.

Warning: under no circumstances alter any DTD files in the schema
directory.

Command Line Configuration
The OpenFusion CORBA Services distribution includes a command-line
utility com.prismt.openfusion.tools.ChangeSettings which can be
used to set properties in the XML configuration files. This provides an
alternative to using the Administration Manager and can be useful when
performing a command-line or script-driven install of OpenFusion.

This utility is run as follows:

Where:

<dir> is the directory that contains the XML files.
<property> is the name of the property which is to be set.
<value> is the value that the property is to be set to.

Table 15 DTD Files

File Function

Domain.dtd Describes a domain object the Object Hierarchy.

JavaObject.dtd Describes a Java Object in the Object Hierarchy.

Node.dtd Describes a node object in the Object Hierarchy.

Properties.dtd Describes the properties of an object and controls
how they are displayed in the property pane of the
Administration Manager.

Service.dtd Describes a service process object in the Object
Hierarchy.

Singleton.dtd Describes a Singleton object in the Object
Hierarchy.

% java com.prismt.openfusion.tools.ChangeSettings <dir>
<property> <value> [<property> <value> ...]

136 OpenFusion CORBA Services System Guide

The utility will search all XML files in the specified directory, and recursively
in all directories below that directory, for incidences of the specified
property. Wherever an incidence of that property is located, it is set to the
specified value.

Multiple property-value arguments can be specified, allowing several
properties to be set in a single operation.

Properties can only be set in XML files which conform to the DTD for
OpenFusion property files.

Because directories are searched recursively, care must be taken when
specifying the directory argument. If a property exists in multiple different
services but should be set to a different value in each service (IOR.URL, for
example), do not set that property by running the utility at the domains
directory level.

All Service properties are named and described in the Configuration and
Management section of each Service guide. Properties common to all
Services are documented in “Common Configuration Properties”.

i

OpenFusion CORBA Services System Guide 137

Log Messages
OpenFusion uses the log4j package to support error diagnostics and
logging. This is a public domain logging package. Further details can be
found at http://jakarta.apache.org/log4j.
Conceptually, the log4j package supports appenders and layout managers.
Appenders direct output to a particular destination such as file or system
log. Layout managers can be used to format the generated log message.
Every appender has an associated layout manager.

The layout of the log messages in OpenFusion is set to the default pattern
layout of the log4j package, which means only the message and severity
appear. The format of the output message can be customised by the use of
a pattern layout manager and an associated conversion pattern. See the
on-line log4j documentation for details on how this can be done.

Using a Pattern Layout
To use a pattern layout for a Service, the Log Layout property for that
Service must be set to Pattern. See “Log Layout” for details of how to set this
in the Administration Manager.

The format of the output message is customised by entering a pattern
string in the Log Pattern property for the service. See “Log Pattern”.

For example, to prefix the date and time to the log messages generated by
the Notification Service use the following pattern:

%d{DATE} - %m%n

It is recommended that %n is always appended to the end of any log
pattern. This forces a line break at the end of each message and makes the
log file easier to read.

http://jakarta.apache.org/log4j

138 OpenFusion CORBA Services System Guide

Conversion Characters
The characters that can be used in a logging pattern are shown in Table 16
. The patterns are case-sensitive.

Table 16 Conversion Characters

Conversion
Character Effect

%c The category of the logging event. The category conversion
specifier can be optionally followed by a precision specifier, which
is a decimal constant in brackets.

If a precision specifier is given, then only the corresponding
number of right-most components of the category name will be
printed. By default, the category name is printed in full.
For example, for the category name "a.b.c" the pattern %c{2}
will output "b.c".

%C The fully-qualified class name of the caller issuing the logging
request. This conversion specifier can be optionally followed by a
precision specifier, which is a decimal constant in brackets.
If a precision specifier is given, then only the corresponding
number of right-most components of the class name will be
printed. By default the class name is output in fully-qualified form.
For example, for the class name "org.apache.xyz.SomeClass" the
pattern %C{1} will output "SomeClass".
WARNING: Generating the caller class information is slow. Its
use should be avoided unless execution speed is not an issue.

%F The file name where the logging request was issued.
WARNING: Generating caller location information is extremely
slow. Its use should be avoided unless execution speed is not an
issue.

%d The date of the logging event. The date conversion specifier may
be followed by a date format specifier enclosed between braces.
For example, %d{HH:mm:ss,SSS} or %d{dd MMM yyyy
HH:mm:ss,SSS}. If no date format specifier is given then ISO8601
format is assumed.
The date format specifier uses the same syntax as the time
pattern string of the SimpleDateFormat. Although part of the
standard JDK, the performance of SimpleDateFormat is quite
poor.
For better results it is recommended to use the log4j date
formatters. These can be specified using one of the strings
ABSOLUTE, DATE and ISO8601 for specifying
AbsoluteTimeDateFormat, DateTimeDateFormat, and
ISO8601DateFormat respectively. For example, %d{ISO8601}
or %d{ABSOLUTE}.

These dedicated date formatters perform significantly better than
SimpleDateFormat.

%l Location information of the caller which generated the logging
event.
The location information depends on the JVM implementation but
usually consists of the fully qualified name of the calling method
followed by the caller’s source file name and line number between
parentheses.
The location information can be very useful. However, its
generation is extremely slow. Its use should be avoided unless
execution speed is not an issue.

OpenFusion CORBA Services System Guide 139

%L The line number from where the logging request was issued.
WARNING: Generating caller location information is extremely
slow. Its use should be avoided unless execution speed is not an
issue.

%m The application-supplied message associated with the event being
logged.

%M The name of the method where the logging request was issued.
WARNING: Generating caller location information is extremely
slow. Its use should be avoided unless execution speed is not an
issue.

%p The priority of the logging event.

%r The number of milliseconds elapsed since the start of the
application and the time of creation of the logging event.

%t The name of the thread that generated the logging event.

%x The NDC (nested diagnostic context) associated with the thread
that generated the logging event.

%n A platform-dependent new line character (usually included at the
end of each logging pattern, to force one message per line in the
log file).
This conversion character offers practically the same performance
as using non-portable line separator strings such as “\n”, or "\r\
n". Thus, it is the preferred way of specifying a line separator.

%% A single percent sign (required to escape the percent sign).

Table 16 Conversion Characters (Continued)

Conversion
Character Effect

140 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 141

Managing Java Objects
The OpenFusion Administration Manager can be used to manage and
configure user-defined Java Objects. Java Objects can be added to the
Administration Manager’s Object Hierarchy as described in “Extending the
Object Hierarchy”. To make a Java Object available for management in the
Administration Manager, the Java Object must be set up as described in this
Appendix.

The Administration Manager can be used to configure the Java Object’s
properties. To provide further management facilities, a custom GUI browser
(which must extend com.prismt.browser.BaseBrowser) can be created
for the Object. The browser can be launched from the Administration
Manager (effectively acting as an Administration Manager plug-in) or
started from a command line.

Creating the Java Object
If a Java Object is to use the ORB or any of the properties passed through
from the OpenFusion Service, then it must implement the
com.prismt.openfusion.plugin.JavaObject interface. This interface is
defined as follows:

ExtendedProperties is found in the com.prismt.util package, which
would have to be imported.

Management of the Java Object also requires a default constructor. When a
Service containing the Java Object is started, the Administration Manager
calls the Object’s default constructor followed by the init method (if the
JavaObject interface is not implemented then only the default constructor is
called).

Describing the Java Object in XML
An XML file must be created for each Java Object and placed in the
<INSTALL>/xml/templates/objects directory (where <INSTALL> is the
OpenFusion installation directory). This file should be given the name of the
Java Object. For example:

<INSTALL>/xml/templates/objects/MyObject.xml

The presence of this file makes the Java Object available for adding to the
Object Hierarchy.

See “XML Configuration Files” for more of the XML files used by OpenFusion.

The Java Object definition file must conform to the DTD specified in
<INSTALL>/xml/schema/JavaObject.dtd.

 public interface JavaObject
 {
 public void init (org.omg.CORBA.ORB orb, ExtendedProperties props) throws
Exception;
 }

142 OpenFusion CORBA Services System Guide

The following example illustrates the MyObject.xml file for the MyObject
Java Object:

Name - The name of the Java Object as it will appear in the menu of
available objects in the Administration Manager (this is illustrated in Figure
5).

ClassName - The name of the class which is actually executed.

BrowserName - The name of the GUI browser which will be used to manage
and configure the Java Object. This is the name which will be displayed on
screen in the Administration Manager (optional).

BrowserClassName - The class name of the GUI browser used to manage
and configure the Java Object (optional).

Defining Properties for the Java Object
If the Java Object has properties which should be set through the
Administration Manager, the properties must be described in an XML file in
the <INSTALL>/xml/templates/objects/properties directory (where
<INSTALL> is the OpenFusion installation directory). This file should be
given a name of the form <Java-Object>Properties.xml. For example:

<INSTALL>/xml/templates/objects/properties/
MyObjectProperties.xml

The properties XML file must conform to the DTD specified in <INSTALL>/
xml/schema/Properties.dtd. See “Defining a Property in the XML File” for
details.

The Object Hierarchy
When an instance of the Java Object is added to a Service in the
Administration Manager, an XML file is created for it. This file records the
current value and locking status of each property belonging to the Java
Object instance. The file is located as follows:

<INSTALL>/domains/<domain>/<node>/<service>/<javaobject>/
<javaobject>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the
name of the domain, <node> is the name of the node, <service> is the
name of the Service, and <javaobject> is the name of the Java Object.

 <?xml version="1.0" encoding="UTF-8">
 <!DOCTYPE JavaObject SYSTEM "file://Micro Focus/OpenFusion/xml/schema/
JavaObject.dtd">
 <JavaObject>
 <Name>
 My Object
 </Name>
 <ClassName>
 user.path.MyObjectImpl
 </ClassName>
 <Browser>
 <BrowserName>
 My Object Manager
 </BrowserName>
 <BrowserClassName>
 user.path.browser.MyObjectBrowser
 </BrowserClassName>
 </Browser>
 </JavaObject>

OpenFusion CORBA Services System Guide 143

For example, an instance of the ChannelConfiguratorObject Java Object in
the Administration Manager’s Object Hierarchy could be represented by the
following XML file:

<INSTALL>/domains/OpenFusion/localhost/
NotificationService/ChannelConfiguratorObject/
ChannelConfiguratorObject.xml

144 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 145

Glossary
Definitions
Term Meaning

Activate Prepare an object to receive requests.
Active Object Map A table of associations between Object IDs and Servants, which

is maintained by a POA to allow it to dispatch incoming
requests.

Administration Manager Tool used to manage and configure the OpenFusion Services.
alias An additional or alternative name for the same thing; an object

containing the name of another object. Aliases enable one
object to have more than one name. For example:
LoadBalancer and LoadBalancerAlias refer to same object. This
enables LoadBalancer to change dynamically even after being
bound into the Naming Service.

AMI See Asynchronous Messaging Interface.
AOM See Active Object Map.
Asynchronous Messaging
Interface

This is an extension of CORBA functionality into a complete
messaging semantics (as opposed to request brokering). This
includes various modes of communication between the
originator and recipient and also various qualities of service.

bind To bind is to associate a meaningful name with an object
reference as a name-value pair. Binding is the process of
associating a name with a remote object in a server
application, so that a client application can resolve the name
and obtain a reference to the (remote) object. A binding is an
association between a name and a reference.

BOA Basic Object Adapter – the standard within CORBA versions 2.2
and lower which specifies how objects invoke and obtain
references to each other.

An object adapter is the way in which a programming language
object in the server is associated with a CORBA object. The
BOA loosely describes an inheritance and delegation based
approach. The BOA has been deprecated and is superseded by
the POA.

CCM CORBA Component Model.
CFA Common Facilities Architecture.
composite namespace See federated namespace.
ConnectionFactory A connection factory is an administered object that JMS clients

use primarily for bootstrapping purposes. There are both topic
and queue connection factories, which are typically resolved
from the Java Naming and Directory Interface (JNDI). Clients
use the factory object to create new connections.

Constraint Selection criterion or search condition. See TCL (Trader
Constraint Language).

context See naming context.

146 OpenFusion CORBA Services System Guide

CORBA Common Object Request Broker Architecture. An open
standard for interoperable distributed object systems
developed and maintained by the OMG. The standard only
defines the architecture; it is up to individual companies how
they produce actual implementations.

Corbaloc The Corbaloc URL scheme provides URLs that are familiar to
people and similar to ftp or http URLs. This URL format is
independent of the Naming Service.

Corbaname A Corbaname URL is similar to a Corbaloc URL except that a
Corbaname URL also contains a stringified name that identifies
a binding in a naming context.

Core Object Model The fundamental object-oriented model in the OMA which
defines the basic concepts on which CORBA is based.

COS CORBA Object Service. This is a label for a broad set of add-on
services that extend the core CORBA specification.

cyclic A ‘backward’ reference from a naming context to a ‘parent’ or
‘grandparent’ context in the same naming graph.

DCE Distributed Computing Environment. A distributed computing
architecture developed by the OSF before CORBA.

DCOM Distributed Component Object Model (COM). The architecture
and implementation of the distributed request/response
technology from Microsoft.

delegate One object only presents an interface and makes a local call to
another object which actually implements the functions offered
by the first. Enables separation of application and control
interfaces; used in OpenFusion Load Balancing (a Naming
Service option). Also referred to as a ‘Tie’ in CORBA.

Directory Service A service providing facilities for organising and finding objects.
The service often includes operations for creating, adding,
removing, and modifying the attributes associated with objects
in a directory. The CORBA Naming and Trading Services are
collectively referred to as directory services.

DTD Document Type Definition. A file containing declarations that
specify a format for XML files.

DTF Domain Task Force; OMG working group.
EJB Enterprise Java Beans. Part of the J2EE standard which defines

the application and data component models.
ESIOP Environment-Specific Inter-ORB Protocol. The implementation

of GIOP for a non-TCP/IP environment, such as DCE.
etherealize The action of destroying a Servant associated with an Object

ID, so that the ID no longer identifies a CORBA object with
respect to a particular POA.

fail-over The use of two or more systems running in parallel so that if
one fails another immediately takes over with no disruption
apparent to users. Normally implemented as two identical
synchronised systems, nominated “master” and “slave”. The
slave takes over if the master fails. Fail-over is usually
performed at a low level and is therefore transparent to
applications.

Definitions
Term Meaning

OpenFusion CORBA Services System Guide 147

federated namespace A single logical namespace comprised of multiple autonomous
naming systems.

federation A grouping of autonomous systems linked in such a way as to
appear to be or to work as a single system. A component within
one system should be able to communicate or interact with a
component of a different system as though it were
communicating or interacting with another component in the
same system, even though the systems may be implemented
on different platforms using different languages and/or
protocols.

GIOP General Inter-ORB Protocol. The high level specification of wire
protocol introduced in CORBA 2.0. All CORBA 2.0-compliant
ORBs use this common wire protocol specification, which allows
clients and servers using different ORBs to interoperate. GIOP
is implemented using a network protocol. See also IIOP and
ESIOP.

HTTP Hypertext Transfer Protocol. The standard Internet transport
protocol for HTML documents.

IDL Interface Definition Language. A high-level declarative
language for defining the interfaces of distributed objects. It is
used for the definition of CORBA services and objects because
it is platform-independent.

IDL compiler An application which converts an IDL specification into
programming-language-specific stub and skeleton files which
are used to implement distributed objects.

IFR Interface Repository.
IIOP Internet Inter-ORB protocol. A TCP/IP-based protocol

developed by the OMG. The IIOP enables multiple ORBs to
interoperate to provide requests to objects. The
implementation of GIOP for TCP/IP.

incarnate The action of providing a running Servant to serve requests
associated with a particular Object ID. A POA will keep this
association in its Active Object Map.

initial context The starting point for the resolution of names for naming and
directory operations. Also known as a root context.

INS Interoperable Naming Service. One of the CORBA services. The
Interoperable Naming Service functions just like the Naming
Service, holding bindings between meaningful names and
Object References (IORs). The INS provides additional “under
the covers” support for interoperability between different
ORBs.

instrumentation Functions which return information about the current status of
a system or items within it. Used for monitoring performance
and detecting problems. For example, resetable counters can
report the number of events occurring in a specified time
interval (see also QoS).

Definitions
Term Meaning

148 OpenFusion CORBA Services System Guide

Interface Repository
(IFR or IR)

The CORBA service (server or component) that stores meta-
data about IDL interfaces. A CORBA component which stores
type information and makes it available through standard
interfaces at run time. It contains all the registered component
interface definitions, including the methods they support and
the parameters they require. Programs may use the IFR APIs
to access and update this information.

IOP Inter-Operable Protocol.
IOR Interoperable Object Reference. An Object Reference (OR) is

the way a CORBA Object is named. The IOR is the CORBA 2.x-
compliant format for a standard representation of an OR for all
ORBs.

Istring An IDL data type, the “internationalized string”, which is not
implemented. In the original CORBA specifications, the Istring
was “a placeholder for an internationalized string data type”; it
is now only retained for compatibility reasons, and is always
mapped to the string data type with typedef string Istring
in IDL.

JDMK Java Dynamic Management Kit.
Jini A distributed system based on the idea of federating groups of

users and the resources required by those users.
JMS Java Message Service. Part of the J2EE standard specifying how

applications can send asynchronous messages to each other.
JMX Java Management eXtensions.
JNDI Java Naming and Directory Interface. JNDI is a standard

extension to the Java platform which provides Java-enabled
applications with a unified interface to multiple naming and
directory services.

JTS Java Transaction Service; an API defined as a part of the J2EE
specification for transactional capabilities.

LDAP Lightweight Directory Access Protocol; an API defined to
provide a common interface to data stores, regardless of their
underlying nature and location.

load balancing Optimisation of the use of available resources in order to
minimise the time between the issue of a request for a service
and the performance of that service. Load balancing involves
the distribution of requests for a particular service amongst
multiple servers which provide that service. The methods used
to allocate requests are known as policies.

marshalling Conversion of data into a programming-language- and
architecture-independent format ready for transmission.

MessageConsumer A message consumer is an object that receives JMS messages.
A consumer in the point-to-point model is referred to as a
queue receiver, while the publish/subscribe model uses the
term topic subscriber. Message consumers are created by
sessions and may use either a push model to receive messages
asynchronously, or a pull model to receive messages
synchronously. JMS supports both transient and durable
message consumers.

Definitions
Term Meaning

OpenFusion CORBA Services System Guide 149

MessageProducer A message producer is an object that sends JMS messages. A
producer in the point-to-point model is referred to as a queue
sender, while the publish/subscribe model uses the term topic
publisher. Message producers are created by sessions.

meta-data Data which describes the format of the representation or
storage of other data.

MOF Meta-Object Facility.
MSMQ Microsoft Message Queue; a messaging product from Microsoft.
MTS Microsoft Transaction Server; a transaction processor product

from Microsoft.
name binding In the Naming Service name bindings are contained in naming

contexts. A binding can refer to either an object or another
naming context. The process of associating a Name with a
remote object in a server application, so that a client
application can resolve the Name and obtain a reference to the
remote object.

name resolution The process of resolving a name to obtain a reference to the
object to which it is bound.

name space The set of all names in a naming system.
naming context An object containing name bindings which refer to other

objects, which may be naming contexts. A set of naming
contexts which can be traversed by following (resolving) the
bindings it such bindings is a naming graph.

naming graph An hierarchy of naming contexts and objects in a Naming
Service. Name bindings are contained in naming contexts. A
binding can refer to either an object or another naming
context. A set of naming contexts which can be traversed by
following (resolving) such bindings is a Naming graph.

naming system A connected set of naming contexts. The naming contexts are
all of the same type, have the same naming convention, and
provide the same set of operations with identical semantics.

NTP Network Time Protocol.
object adapter The ORB component which provides object reference,

activation, and state related services to an object
implementation. See also BOA and POA.

OMA Object Management Architecture. The overall architecture and
roadmap of the OMG, of which CORBA forms a part.

OMG Object Management Group. A cross-industry consortium which
develops and promotes the CORBA open-systems standards.

OR Object Reference. The way CORBA objects are identified.
ORB Object Request Broker.
OSF Open Software Foundation.
OTM Object Transaction Monitor. A set of CORBA Services for

developing Enterprise systems.
PIDL Pseudo Interface Definition Language (Pseudo-IDL). This is

identical to IDL, however it is not used for describing a
remotely accessed CORBA Object but rather an object in the
CORBA infrastructure that is implicitly local.

Definitions
Term Meaning

150 OpenFusion CORBA Services System Guide

POA Portable Object Adapter. An object adapter is the way in which
a programming language object in the server is associated with
a CORBA object. The POA describes a full set of models and
policies for managing object life-cycles. (Introduced in CORBA
2.3, superseding the BOA.)

point-to-point Method of event delivery which ensures that an event
generated by a supplier is received by a subscriber once (and
only once). Sometimes referred to as “exactly once” delivery.
Contrast with normal “at least once” delivery (as in the publish-
subscribe model).

POS Persistence Object Service. A deprecated CORBA Service for
storing the state of implementation objects into a database.
The PSS supersedes the POS.

provider resource file An optional properties file named [prefix/
]jndiprovider.properties, where prefix is the package name of
the service provider class with each period character converted
to a forward slash character (“/”). This file is used by the JNDI
when determining the values of the following JNDI-defined
properties:

java.naming.factory.object

java.naming.factory.state

java.naming.factory.control

java.naming.factory.url.pkgs

PSS Persistence State Service. A CORBA Service for storing the
state of implementation objects into a database. The PSS
supersedes the POS.

QoS Quality of Service.
reference Information needed for accessing an object. It contains one or

more addresses for referring to or communicating with an
object. See also Object reference.

resolve (resolution) The process of obtaining an object reference from a name
binding. (See also name binding.)

rollback To undo the successful steps of a sequence of operations when
one step fails. Part of a method of ensuring database integrity
whereby if any one of a group of related operations or updates
fails, then all the other operations in the group are undone and
the database is restored to the state it was in before the
operations were attempted.

RPC Remote Procedure Call. A strategy which allows procedures to
be called from outside the currently running program's
memory. RPC allows two or more different programs to
interoperate with one another.

RUP Rational Unified Process.
SASL Simple Authentication and Security Layer.

Definitions
Term Meaning

OpenFusion CORBA Services System Guide 151

servant An implementation object that provides the run-time semantics
of one or more CORBA objects. An instance of an object
implementation for an IDL interface. The servant object is
registered with the ORB so that the ORB knows where to send
invocations. It is the servant that performs the services
requested when a CORBA object's method is invoked.

session A session is the context used by clients for sending and
receiving messages. Sessions are created by connections and
are factories for creating message suppliers and consumers as
well as message objects. Each session retains messages
received by all its consumers until they have been
acknowledged.

SID Service ID, Server Persistent ID, or Server persistence UUID
scope.

SII Static Invocation Interface (or Stub Invocation Interface). This
is the client-side API for generating network messages that is
based on the stubs that are code-generated by the IDL
compiler for a given IDL interface. See also DII.

SNMP Simple Network Management Protocol. A widely used standard
for specifying systems management interfaces and operations.

SOAP Simple Object Access Protocol. A protocol for sending RPC calls
over the Internet encoded as XML and using the HTTP protocol.
This is intended to avoid the firewall problems that face the use
of protocols such as IIOP.

SSL Secure Socket Layer.
stringification Conversion of an object reference to a character string. Used

when an object reference needs to be saved in a text file or
stored in a database (persistence) or sent to a client program.

TCL Trader Constraint Language. A simple language used for
constructing constraints (also referred to as search conditions
or selection criteria) used in queries to retrieve offers from
servers.

TCP/IP Transport Control Protocol/Internet Protocol. A network
protocol used on the Internet and many internal networks. TCP
is for establishing connections between hosts and guaranteeing
delivery of data packets in the correct order; IP determines the
structure of the packets themselves.

TOG The Open Group.
TP Transaction Processor. Typically used as TP Monitor. A kind of

middleware that manages connections and transactions to
databases.

trader An object which supports the Trading Service. A trader can be a
server, a client, or both. The components (Register, Proxy,
Lookup, Admin, Link) provide the functions for handling offers
of service and queries.

transaction server A server which supports transactional semantics, (for example,
commit or rollback).

Definitions
Term Meaning

152 OpenFusion CORBA Services System Guide

UML Unified Modelling Language. A standard developed and
maintained by the OMG to facilitate object analysis and design
representation. A method of modelling any process using
simple diagrams; used for communications and analysis/
design.

UUID Universally Unique IDentifier. A 128-bit identifier generated by
an algorithm which will never produce the same value twice
and hence can uniquely identify entities in a distributed
system.

XMI XML Metadata Interchange.
XML eXtensible Markup Language. A standard for representing data

in a language- and database-neutral format. XML separates a
document’s definition, content, and presentation (style).

XSL eXtensible Stylesheet Language. A standard for defining the
formatting of an XML document.

XSLT XSL Transformation. A standard for describing transformations
between XML documents.

Definitions
Term Meaning

OpenFusion CORBA Services System Guide 153

A
Access Control List 104
Access Entry Details 122
Accessibility 19
ACL 104
ACL Groups 109
acls (property) 116
Add new principals 122, 123
Adding

Java Objects 14
Nodes 13
Singletons 14

Administration Manager 9
Properties 57

Administration Manager Tool 97
adminMgrTool 97
Appenders 137
Assign a Principal to a Class or Method 124
Assign Principals Globally 125
Assign Value

Globally 21
to Peers 21
to Properties 19

Authentication 21, 104
Authorised Credentials 110

B
BAD_PARAM Exception Count (property) 48
BaseBrowser class 141
Browser

CORBA Object 25
Framework 7
Log 24
Save Configuration 24

BrowserClassName element 142
BrowserName element 142

C
C++ Support 86
CategoryName 134
Central Configuration

Set up Host 26
Central Configuration Host (property) 29, 30,

59
Central Host 26
Changing the Order of Services and
Singletons 16

ClassName element 142
CLASSPATH

Jar files 83
clients

user defined 82
clientSideLogin (property) 117
Command Line Switches 8

-noorb 8
-port 8
-remote 8
-start 5

-status 5
-stop 5

Command Line Tools 97
Conditional Properties 19, 135
ConfigFile object (property) 117
configGen 99
Configuration 113

Distributed Installation 26
Files 129
from the Command Line 135
Save 24

Configuration Generator 99
Configuration Manager

configuring persistent storage
JDBC Data Source 87

Configure from Remote Host (property) 30
Configuring 62, 135

Secure Client 115
Secure Service 113

ConfigViaWebServer (property) 59
Conversion Characters 138
CORBA Object

Browser 25
CORBA Object Activity Timeout (property) 49
CORBA Process Interface 66
CORBA.BadParamExceptions (property) 48
CORBA.Calls (property) 49
CORBA.InitializeExceptions (property) 48
CORBA.InternalExceptions (property) 48
Creating

ACL Groups 109
Principal Mappings 109

Credentials 110

D
Daemons 3
DB.File.Dir(property) 37, 87
DB.HSQLDB.DefaultDir 43
DB.JBDC.Driver (property) 41
DB.JDBC.AutoCreate (property) 38
DB.JDBC.CheckpointInterval 42
DB.JDBC.ConnectionAttempts (property) 42
DB.JDBC.ConnectionRetryInterval
(property) 42

DB.JDBC.Handler (property) 39
DB.JDBC.Logging (property) 41
DB.JDBC.Password (property) 41
DB.JDBC.Type (property) 39
DB.JDBC.URL (property) 40
DB.JDBC.User (property) 41
DB.Type (property) 37
DB.WriteBatch (property) 38
DB.WriteInterval (property) 38
Default Trap Community (property) 63
Default Trap Port (property) 63
DefaultTrapCommunity (property) 63
DefaultTrapPort (property) 63
Delete

Nodes 15

Index

 154 OpenFusion CORBA Services System Guide

selected browser 24
Delete Access Entries Globally 125
Dependencies 134
Directory Tree 131, 134
Distributed Installation 26
documentation

.pdf format xii
updates on the web xii

Domain 11, 131
Domain Configuration Parameters 8
Domain.dtd 135
DynAnyFactory class 79

creation operations 79

E
Enable Dynamic Portable Interceptors
(property) 50

Enable Traps (property) 63
Enable Write Access (property) 64
EnableDynamicInterceptors (property) 50
EnableTraps (property) 63
EnableWriteAccess (property) 64
Enter user identity 24
Event Log option 46

F
File

Browser 24
option 46

File Append (property) 45
File Backup Number (property) 44
File Maximum Size (property) 45
fileLocations (property group) 116

G
Generic Security Service Username and
Password 106

getValue() method 67
Group Persistence File

Example 109
GroupName 134
Groups 105, 109
groups (property) 117
GSSUP 106, 110
gssupCredential (property) 116
gssupUsers (property) 117

H
HSQLDB 87, 92
hsqldb

client/server 92
HSQLDB Checkpoint Interval
(property) 42

HSQLDBObject 92
Name 93
NoSystemExit 94
Port 94
Silent 94
Timeout 93
Trace 93

I
Identifiable interface 103
IDL

compiling 84
Implementation Name 52
Implementation Repository 28
Incoming Call Count (property) 49
Informix 87, 90
INITIALIZE Exception Count (property) 48
Instrumentation 61
Interfaces 125
INTERNAL Exception Count (property) 48
IOR Decoder 97
IOR File Name (property) 57
IOR Name Service (property) 56
IOR Name Service Entry (property) 56
IOR URL (property) 56
IOR.File (property) 57
IOR.Name (property) 56
IOR.Server (property) 56
IOR.URL (property) 57
iorDecoder 97

J
JAAS 103, 114
JAAS Configuration File (property) 114
jaasLoginConfig (property) 117
jaasLoginConfigName (property) 117
JacORB 83, 85
jacorb.properties file 28
Jar Files 83
Java

IDL Compilation 84
Properties 53

Java Authentication and Authorisation
Service 103

Java Object
Properties 142

Java Objects 11, 133, 141
Adding 14
Managing 141

java.security.auth.login.config (system
property) 114, 117

JavaObject interface 141
JavaObject.dtd 135, 141
JDBC Auto-create tables (property) 38
JDBC Connection Attempts (property) 42
JDBC Connection Retry Interval
(property) 42

JDBC Data Source 87
HSQLDB 92
Informix 90
Oracle 88
SQL Server 91
Sybase 89

JDBC Database Type (property) 39, 87
JDBC Driver 41, 87
JDBC Handler (property) 38, 87
JDBC Logging (property) 41, 87
JDBC Password (property) 41, 87
JDBC URL (property) 39, 87

OpenFusion CORBA Services System Guide 155

JDBC User (property) 41, 87
JVM Flags (property) 53
JVM Free Memory (property) 53
JVM Information (property) 53
JVM Total Memory (property) 53
JVM.Flags (property) 53
JVM.FreeMemory (property) 53
JVM.Info (property) 53
JVM.TotalMemory (property) 54
JVM.XBoot (property) 54

L
Launch

file browser 24
Layout Managers 137
Load CORBA Singletons on Startup
(property) 49

LoadOnStart (property) 49
localhost 10, 11
Locking

Nodes 16
Properties 16

Log
Layout 137
Messages 137

Log File (property) 45
Log Layout (property) 43
Log Level (property) 46
Log Pattern (property) 43
Log Plugin (property) 45
Log Service

Plugin option 46
log4j 137
log4j.appender.Default (property) 46
log4j.appender.Default.Append
(property) 45

log4j.appender.Default.Facility
(property) 44

log4j.appender.Default.File (property) 45
log4j.appender.Default.layout
(property) 43

log4j.appender.Default.layout.Conversion
Pattern (property) 43

log4j.appender.Default.LogID
(property) 46

log4j.appender.Default.MaxBackupIndex
(property) 44

log4j.appender.Default.MaxFileSize
(property) 45

log4j.appender.Default.SyslogHost
(property) 44

log4j.rootLogger (property) 47
Logging Plugin

Event Log 46
File 46
Log Service 46
Rolling File 46
Syslog 46

LoginModule 105, 106, 110

M
Manageable Resources 61
manager (script) 3, 8
manager.bat 3, 7
Mandatory

Properties 18
Mapping Principals 105
Max Active Clients (property) 62
Max Packet Size (property) 62
MaxActiveClients (property) 62
MaxPacketSize (property) 62
Memory Profiler 22
Multiple Object Identity 75
MySQL 91

N
Name (property) 93
New UUID 21
No System Exit (property) 94
Node.dtd 135
Nodes 11, 131

Adding 13
Deleting 15

-noorb (Command Line Switch) 8
Notify Log ID (property) 46
Number of active CORBA objects
(property) 48

Number of purged CORBA objects
(property) 49

O
object

creation 73
creation flags 75
deactivation 76
destruction 76
existence 76
identity 75
implementations 77
information 72
persistent state 77
reactvation 76
references 77
stringification 73

Object Browser 25
Object Cache Maximum Size
(property) 51

Object Cache Minimum size (property) 51
Object Cache Purge Interval (property) 51
Object Hierarchy 9, 27, 129

Extending 13
Icons 11

Object Purging (property) 50
ObjectAdapter class 73

implementing an interface 80
initialization 73
multiple object identity 75
object creation 73
object deactivation 76
object destruction 76
object existence 76

 156 OpenFusion CORBA Services System Guide

object identity 75
object implementation 77
object persistent state 77
object reactivation 76
object references 77

ObjectRegistry.Interval (property) 51
ObjectRegistry.MaxSize (property) 51
ObjectRegistry.MinSize (property) 51
ObjectRegistry.Objects (property) 48
ObjectRegistry.Purge (property) 50
ObjectRegistry.Purges (property) 49
OF_Admin_URL (property) 29
OF_DOMAIN_URL 9
OF_DOMAINS_URL 9
OF_DOMAINS_URL (property) 29
OF_NODE_URL 9
OF.Security.Password (system
property) 116

OF.Security.UserName (system
property) 116

OpenFusion Graphical Tools 7
Starting 7

OpenFusion Install URL (property) 30, 59
OpenFusion Java IDL Compilation 84
OpenFusion.Manager 58
OpenFusionInstallURL (property) 59
Oracle 87, 88
ORB

Daemons 3
initialization 72
shutdown 72

ORB Initialization Arguments
(property) 51

Orb.Name (property) 51
ORBAdapter class 72

object information 72
object stringification 73
ORB initialization 72
ORB shutdown 72
Recommendations 79
restrictions 78

ORBInitRef.ImplementationRepository
(property) 28

P
PAM 103, 110
Pattern Layout 137
PDF documentation xii
Persistence Properties 37
Persistence type (property 87
Persistence type (property) 37
persistent servers 81
Persistent Storage 87
PID (property) 52
Pluggable Authentication Modules 103,

106, 110
POA Name (property) 52, 58
POA.Name (property) 52, 58
-port (Command Line Switch) 8
Port (property) 52, 58, 62, 94
Portability classes 71

Pre-load Properties (property) 60
PreLoadProperties (property) 60
Principal 104, 122

Mapping 105, 109
Principal Persistence File

Example 110
principalMappings (property) 116
Principals Panel 122
Process Interface 66
ProcessSingleton Configuration 55
Properties 18

Administration Manager 57
Assign Value Globally 21
Assign Value to Peers 21
Assigning Values 19
Conditional 19, 135
Java Properties 53
Locking 16
Locking Nodes 16
Mandatory 18
New UUID 21
Persistence 37
Refresh 20
Reset Counter 20
Security 53
Set 20
System 54
Type 18
XML File 134, 142

Properties.dtd 135

R
Read-only Community (property) 64
ReadOnlyCommunity (property) 64
Read-write Community (property) 64
ReadWriteCommunity (property) 64
Refresh 20

current node 24
selected browser 24

Reload Security Configuration (signal) 108
-remote (Command Line Switch) 8
Remote OpenFusion Install URL
(property) 30, 59

Remote Singletons 29
Remove a Principal from a Class or
Method 124

Remove All Principals from a Class or
Method 124

Reset Counter 20
Resolve Name (property) 57
ResolveName (property) 57
Restoring Services and Singletons 17
Rolling File option 46
Root node 11
RTOrb 83, 85
run script

command line format 84
using 83

Running OpenFusion 3
RunOpenFusionInstallURL (property) 59
RunViaWebServer (property) 59

OpenFusion CORBA Services System Guide 157

S
Save

Configuration 24
Save Changes to Security Access
Entries 122

Securable Objects 103
Secure Client 115
Securing an Interface or Method 107
Security

Properties 53
User Identity 21

Security Access Entries 121
Security Configuration 113
Security Configuration File 116

Example 117
Security Configuration File (property) 115
Security Credentials File

Example 111
Security Credentials File (property) 115
Security Enabled (property) 113
Security Hierarchy Options 121
Security Manager 119
Security Object Icons 121
Security Principals 122
security.ConfigFile (property) 115
security.Enabled (property) 113
security.UserDataFile (property) 115
security.UserDataFile (system
property) 117

security.XMLACLPersistenceFile
(property) 115

security.XMLACLPersistenceFile (system
property) 116

security.XMLGroupPersistenceFile
(property) 114

security.XMLGroupPersistenceFile
(system property) 117

security.XMLPrincipalPersistenceFile 116
security.XMLPrincipalPersistenceFile
(property) 114

securityEnabled (property) 116
server

running 78
running user defined 82

server (script) 4, 5
Server Persistent ID (property) 42
Server Port (property) 52, 58
Server Process ID (property) 52
Servers

Persistent 81
serverSideLogin (property) 117
Service 11, 132

Changing the Order 16
Log 22

service
resolving 82

Service Data Directory (property) 37, 87
Service Portability 71
Service Resolution 73
Service Status File (property) 47
Service Timeout (property) 60

Service.dtd 135
Service.Timeout (property) 60
Services

Starting 12
Set 20
Shared File System 28
SID (property) 42
Signals 21
Silent (property) 94
Singleton.dtd 135
Singletons 11, 132

Adding 14
Changing the Order 16
Remote 29

SNMP Agent 62
SNMPAgentObject 62
SQL Scripts 88
SQL Server 87, 91
Starting

Services 3, 12
Status 11
Status.Timeout (property) 60
StatusFile (property) 47
StatusTimeout (property) 60
Stop current action 24
Storage Write Batch Size (property) 38, 87
Storage Write Interval (property) 37, 87
Subject 104
Supplying Authorised Credentials 110
Sybase 87, 89
Syslog Facility (property) 44
Syslog Host (property) 44
Syslog option 46
System Name (property) 55
System Properties 54
System Type (property) 55
System.Name (property) 55
System.Type (property) 55

T
Timeout (property) 49, 93
Tomcat Home Directory (property) 32
Tomcat Port (property) 34
Tomcat Security Policy File (property) 33
Tomcat WAR directory (property) 33
Tomcat WAR Files (property) 33
Tomcat Web Server 29, 31
Tomcat Work Directory (property) 32
Tomcat.Archives (property) 33
Tomcat.Context (property) 33
Tomcat.Home (property) 32
Tomcat.PolicyFile (property) 33
Tomcat.Port (property) 34
Tomcat.WorkDir (property) 33
Tool Bar 23

CORBA Object Browser 26
Tool Bar Button

Delete selected browser 24
Launch the file browser 24
Refresh selected browser 24
Refresh the current node 24

 158 OpenFusion CORBA Services System Guide

Save Configuration 24
Stop current action 24
View the browser log 24

Tool Bar Buttons 122
Tool Tips 10
Trace (property) 93
Trap Hosts File (property) 63
Trap On Authentication Failure
(property) 64

TrapHostsFile (property) 63
TrapOnAuthenticationFailure
(property) 64

Type 18

U
Use Xbootclasspath (property) 54
User Identity 21
User Name (property) 54
User.Name (property) 54

V
View

browser log 24

W
Web Archives 31
Web server 29

X
Xbootclasspath 54
XML

Configuration Files 97, 129
Schema 135
Templates 133

XML ACL Persistence (property) 114
XML Group Persistence (property) 114
XML Group Persistence File

Example 109
XML Principal Persistence (property) 114
XML Principal Persistence File

Example 110

	Contents
	Preface
	About the OpenFusion CORBA Services System Guide
	Intended Audience
	Organisation
	Conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Common System Operations
	Running Servers
	Starting Servers from the Administration Manager
	Starting Servers from the Command Line
	OpenFusion Graphical Tools
	The Browser Framework
	Starting the Administration Manager
	Command Line Switches
	Domain Configuration Parameters

	Administration Manager
	Object Hierarchy
	Tool Tips
	Object Hierarchy Icons
	Status
	Starting the Services
	Extending the Object Hierarchy

	Locking
	Locking Nodes
	Locking Properties

	Restoring Services and Singletons
	Properties
	Type
	Mandatory
	Accessibility
	Conditional Properties
	Assigning Values to Properties
	Actions that Can be Performed on Properties
	Signals

	User Identity
	Service Log
	Memory Profiler
	Tool Bar Options

	The CORBA Object Browser
	Distributed Installation Configuration
	The Central Configuration Host
	Using a Shared File System
	Set up the Central Host
	Implementation Repository
	Environment Properties

	Using a Web Server
	Set up the Central Host
	Configure Remote Singletons
	Set the Central Host Properties
	Set up the Remote Machine
	Working with Central Configuration

	Tomcat Web Server Integration
	Deployment of Web Archives
	Security
	Deploying Java Server Pages
	Configuration
	Testing the Tomcat Installation

	Common Configuration Properties
	Persistence Properties
	Logging Properties
	Internal Properties
	CORBA Properties
	Security Properties
	Java Properties
	System Properties
	Common Singleton Properties
	Administration Manager Properties
	CORBA Properties
	Configure Properties
	General Properties

	Instrumentation
	Overview
	Manageable Resources
	Object Counters

	SNMP Agent
	Configuring the SNMP Agent
	Notifications
	Trap Hosts File
	Starting the SNMP Agent
	Stopping the SNMP Agent
	OpenFusion MIBs

	CORBA Process Interface
	Using the Process Interface
	Example Program

	Service Portability
	Portability Classes
	The ORBAdapter Class
	ORB Initialization
	ORB Shutdown
	Object Information
	Object Stringification
	Service Resolution

	The ObjectAdapter Class
	Initialization
	Object Creation
	Object Identity
	Multiple Object Identity
	Object Deactivation
	Object Destruction
	Object Reactivation
	Object Existence
	Object References
	Object Implementations
	Persistent Object State
	Running a Server
	Restrictions
	Recommendations

	The DynAnyFactory Class
	Creation Operations

	Implementing an Interface
	Persistent Servers

	Running User Defined Clients and Servers
	Resolving Services
	Configuration
	Dynamic Registration

	Jar Files
	Using OpenFusion Run Scripts
	Command Line Format

	OpenFusion Java IDL Compilation
	C++ Support
	Configuring Persistent Storage
	Configuring a JDBC Data Source
	Oracle
	Oracle Thin Drivers
	Oracle OCI Drivers

	Sybase
	Informix
	SQL Server
	MySQL
	HSQLDB
	Create an HSQLDB Instance
	Configure OpenFusion Services to Run with HSQLDB Persistence
	HSQLDB in Client/Server Mode
	Name
	Timeout
	Trace
	No System Exit
	Silent
	Port

	Restoring Data

	Command Line Tools
	IOR Decoder
	Administration Manager Tool
	Configuration Generator

	Security Service
	Description of the Security Service
	Concepts and Architecture
	Securable Objects
	Authentication
	ACLs
	Groups
	Mapping Principals
	LoginModule

	Using Specific Features
	Securing an Interface or Method
	Excluding Methods from the Security Manager

	Creating ACL Groups
	Creating Principal Mappings
	Supplying Authorised Credentials
	Security Configuration
	Configuring a Secure OpenFusion Service
	Security Administration Manager Properties

	Configuring a Secure Client
	Security Configuration File Properties

	Security Administration Manager
	Starting the Security Administration Manager
	Using the Security Administration Manager
	Object Hierarchy
	Security Hierarchy Options
	Excluding Methods from the Object Hierarchy

	Tool Bar Buttons
	Principals Panel
	Operations
	Implementing Security Configuration Changes
	Interfaces

	Appendices
	XML Configuration Files
	The Object Hierarchy
	Completing the XML File Installation
	Directory Tree

	XML Files
	Domains and Nodes
	Services
	Singletons
	Java Objects

	XML Templates
	Directory Tree
	Defining a Property in the XML File
	GroupName
	CategoryName
	Dependencies
	Conditional

	XML Schema
	Command Line Configuration

	Log Messages
	Using a Pattern Layout
	Conversion Characters

	Managing Java Objects
	Creating the Java Object
	Describing the Java Object in XML
	Defining Properties for the Java Object
	The Object Hierarchy

	Glossary
	Definitions

	Index

