
Ada Language Mapping Specification

Version 1.2: October 2001
New Edition: June 1999

Copyright 1994, 1995, 1999 Objective Interface Systems, Inc.
Copyright 2001, Object Management Group, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . vii

1. Overview . 1-1
1.1 General Requirements . 1-2

1.1.1 Ada Implementation Requirements 1-2
1.1.2 Calling Convention . 1-2

1.1.3 Memory Management 1-2
1.1.4 Tasking . 1-2

1.1.5 Ada Type Size Requirements 1-2

1.2 Mapping Summary . 1-3

1.3 Interfaces and Tagged Types . 1-3

1.3.1 Client Side . 1-3
1.3.2 Forward Declarations . 1-3

1.3.3 Server Side . 1-4

1.4 Operations . 1-4

1.5 Attributes . 1-4

1.6 Inheritance . 1-4

1.7 Data Types . 1-5

1.8 Exceptions . 1-5

1.9 Names and Scoping . 1-5

1.10 New and Changed Features of the Ada Mapping 1-6
1.10.1 Helper Packages . 1-6

1.10.2 Value Types . 1-7
1.10.3 Value Boxes . 1-17

1.10.4 Abstract Interfaces . 1-19
October 2001 Ada Language Mapping, v1.2 i

Contents
1.10.5 Other CORBA/IIOP Specification Changes . . 1-23
1.10.6 Delegating Servants . 1-23

1.10.7 Changes from CORBA Components
Specification . 1-25

2. Lexical Mapping . 2-1

2.1 Mapping of Identifiers . 2-1

2.2 Mapping of Literals . 2-2

2.2.1 Integer Literals . 2-2
2.2.2 Floating-Point Literals 2-2

2.2.3 Fixed Point Literals . 2-3
2.2.4 Character Literals . 2-3

2.2.5 Wide Character Literals 2-4
2.2.6 String Literals . 2-4

2.2.7 Wide String Literals . 2-4
2.2.8 Enumeration Literals . 2-4

2.3 Mapping of Constant Expressions 2-4

2.3.1 Mapping of Operators 2-5

3. Mapping of IDL Types . 3-1
3.1 Mapping of Names . 3-2

3.1.1 Identifiers . 3-2
3.1.2 Scoped Names . 3-2

3.2 Mapping for Basic Types . 3-2

3.3 Mapping for Fixed Type . 3-3

3.4 Mapping for Boolean Type . 3-4

3.5 Mapping for Enumeration Types . 3-4

3.6 Mapping for Structure Types . 3-4

3.7 Mapping for Union Types . 3-5

3.8 Mapping for Sequence Types . 3-6

3.9 Mapping for String Types . 3-8

3.10 Mapping for Wide String Types . 3-9

3.11 Mapping for Arrays . 3-10

3.12 Mapping for Constants . 3-10

3.13 Mapping for Typedefs . 3-11

3.14 Mapping for TypeCodes . 3-12

3.15 Mapping for Any Type . 3-12

3.15.1 Handling Known Types 3-13
3.15.2 Handling Unknown Types 3-13
ii Ada Language Mapping, v1.2 October 2001

Contents
3.16 Mapping for Exception Types . 3-14

3.16.1 Exception Identifier . 3-14
3.16.2 Exception Members . 3-15

4. Mapping of IDL Units . 4-1

4.1 Name Visibility . 4-2
4.1.1 File Inclusion . 4-2

4.1.2 Import Statement . 4-2
4.1.3 CORBA Subsystem . 4-3

4.2 Mapping of IDL Files . 4-3
4.2.1 Comments. 4-3

4.2.2 Other Pre-Processing . 4-3
4.2.3 Global Names . 4-3

4.3 Mapping Modules . 4-4

4.4 General Mapping for Units . 4-4

4.4.1 Package Pattern for Mapping 4-4
4.4.2 Base Types . 4-5

4.5 Interface Package Mapping . 4-6
4.5.1 Reference Types . 4-7

4.5.2 Reference Type Inheritance 4-7
4.5.3 Mapping for Attributes and Public State

Members . 4-8
4.5.4 Mapping for Operations 4-8

4.5.5 Mapping for Valuetype Initializers 4-9
4.5.6 Argument Passing Considerations 4-9

4.5.7 Type Object . 4-10
4.5.8 Interface Mapping Examples 4-10

4.5.9 Valuetype Mapping Example 4-12

4.6 Helper Package Mapping . 4-13

4.6.1 Widening Object References 4-14
4.6.2 Narrowing Object References 4-14

4.6.3 Type Any support . 4-15
4.6.4 Valuetypes Supporting Interfaces 4-15

4.6.5 Examples . 4-16

4.7 Implementation Package Mapping 4-17
4.7.1 Implementation types 4-17

4.7.2 Implementation type inheritance 4-17
4.7.3 Implementing Operations and Attributes 4-18

4.7.4 Implementing State Members 4-19
4.7.5 Implementing Valuetype Initializers 4-19
October 2001 Ada Language Mapping, v1.2 iii

Contents
4.7.6 Interface Implementation Example 4-19
4.7.7 Valuetype Implementation Example 4-20

4.8 Delegating Servants . 4-21

4.9 Mapping Forward Declarations . 4-22

4.9.1 Forward Definition Packages 4-22
4.9.2 Mapping Rules . 4-23

4.9.3 Example . 4-23

4.10 Mapping Value Boxes . 4-25

4.10.1 Value Box Package . 4-25
4.10.2 Mapping of Value Boxes 4-26

4.10.3 Example . 4-26

4.11 Tasking Considerations . 4-27

5. Mapping the CORBA Module . 5-1
5.1 Mapping Rules for Pseudo-Objects 5-1

5.2 Reference and Implementation Base Types 5-2

5.2.1 AbstractBase . 5-2
5.2.2 Object . 5-3

5.2.3 CORBA.Value.Base and
CORBA.Value.Impl_Base 5-5

5.2.4 CORBA.Impl.Object . 5-5

5.2.5 LocalObject . 5-5
5.2.6 PortableServer.Servant_Base 5-6

5.3 Mapping for Native Types . 5-7

5.3.1 AbstractBase . 5-7
5.3.2 ValueFactory . 5-7

5.3.3 OpaqueValue . 5-7
5.3.4 PortableServer::Servant 5-7

5.3.5 Cookie . 5-7

5.4 The CORBA package . 5-8

5.5 Other Pseudo-Objects . 5-16

5.5.1 NamedValue . 5-16
5.5.2 NVList . 5-17

5.5.3 Request . 5-18
5.5.4 Context . 5-19

5.5.5 TypeCode . 5-19
5.5.6 ORB . 5-20

5.5.7 Current . 5-23
5.5.8 Policy . 5-23

5.5.9 DomainManager . 5-24
iv Ada Language Mapping, v1.2 October 2001

Contents
5.5.10 ConstructionPolicy . 5-24

5.6 Ada Specific Support packages . 5-25
5.6.1 CORBA.Forward . 5-25

5.6.2 CORBA.Value_Forward 5-25
5.6.3 CORBA.Value.Box . 5-25

5.6.4 CORBA.Iterate_Over_Any_Elements 5-25
5.6.5 CORBA.Bounded_Strings and

CORBA.Bounded_Wide_Strings 5-25
5.6.6 CORBA.Sequences . 5-25

Appendix A - References. A-1

Appendix B - Glossary . B-1
October 2001 Ada Language Mapping, v1.2 v

Contents
vi Ada Language Mapping, v1.2 October 2001

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the establishment
of industry guidelines and object management specifications to provide a common
framework for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
Conformance to these specifications will make it possible to develop a heterogeneous
applications environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows
applications to communicate with one another no matter where they are located or who
has designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application
Programming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
October 2001 Ada Language Mapping, v1.2 vii

About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping information for
the following languages:

• Ada

• C

• C++

• COBOL

• IDL Script

• IDL to Java

• Java to IDL

• Lisp

• Python

• Smalltalk

Each language is described in a separate stand-alone volume.

Alignment with CORBA

The following table lists each language mapping and the version of CORBA that this
language mapping is aligned with.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++,

Language Mapping Aligned with CORBA
version

Ada CORBA 2.3 + components

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1

IDL Script CORBA 2.3

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Lisp CORBA 2.3

Python CORBA 2.3

Smalltalk CORBA 2.0
viii Ada Language Mapping, v1.2 October 2001

their ORB must comply with the OMG IDL to C++ binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to the Common Object Request Broker: Architecture
and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability, as specified in Chapters 12-16

• CORBA Interworking, as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

• Mapping of OMG IDL to the Ada programming language

• Mapping of OMG IDL to the C programming language

• Mapping of OMG IDL to the C++ programming language

• Mapping of OMG IDL to the COBOL programming language

• Mapping of OMG IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of OMG IDL to the Smalltalk programming language

Acknowledgements

The following company submitted the specification that was approved by the Object
Management Group to become the Ada Language Mapping specification:

• Objective Interface Systems, Inc.
October 2001 Ada Language Mapping, v1.2 About the Object Management Group ix

x Ada Language Mapping, v1.2 October 2001

 Overview 1
The Ada language mapping provides the ability to access and implement CORBA
objects in programs written in the Ada programming language (ISO/IEC 8652:1995).
The mapping is based on the definition of the ORB in Common Object Request Broker:
Architecture and Specification (a.k.a. CORBA/IIOP Specification). The Ada language
mapping uses the Ada language’s support for object oriented programming—packages,
tagged types, and late binding—to present the object model described by the
CORBA/IIOP Specification.

The mapping specifies how CORBA objects (objects defined by IDL) are mapped to
Ada packages and types. Each CORBA object is represented by an Ada tagged type
reference. The operations of mapped CORBA objects are invoked by calling primitive
subprograms defined in the package associated with that object’s CORBA interface.

Contents

This chapter contains the following sections.

Section Title Page

“General Requirements” 1-2

“Mapping Summary” 1-3

“Interfaces and Tagged Types” 1-3

“Operations” 1-4

“Attributes” 1-4

“Inheritance” 1-4

“Data Types” 1-5
October 2001 Ada Language Mapping, v1.2 1-1

1

1.1 General Requirements

1.1.1 Ada Implementation Requirements

The mapping is believed to map completely and correctly any legal set of definitions in
the IDL language to equivalent Ada definitions. The style of this mapping is natural for
Ada and does not impact the reliability either of CORBA implementations or of clients
or servers built on the ORB. The mapping itself does not require any changes to
CORBA.

The Ada language mapping can be implemented in a number of ways. Stub packages,
ORB packages, and data types may vary between implementations of the mapping.
This is a natural consequence of using an object-oriented programming language—the
implementation of a package should not be visible to its user.

1.1.2 Calling Convention

Like IDL, Ada allows the passing of parameters to operations using in, out, and in
out modes and returning values as results. The Ada language mapping preserves these
in/out modes in an operation’s subprogram specification. Parameters may be passed by
value or by reference.

1.1.3 Memory Management

The mapping permits automatic memory management; however, the language mapping
does not specify what kind, if any, of memory management facility is provided by an
implementation.

1.1.4 Tasking

The mapping encourages implementors to provide tasking-safe access to CORBA
services.

1.1.5 Ada Type Size Requirements

The sizes of the Ada types used to represent most IDL types are implementation
dependent. That is, this mapping makes no requirements as to the ’SIZE attribute for
any types except numeric types and string.

“Exceptions” 1-5

“Names and Scoping” 1-5

“New and Changed Features of the Ada Mapping” 1-6

Section Title Page
1-2 Ada Language Mapping, v1.2 October 2001

1

1.2 Mapping Summary

Table 1-1 summarizes the mapping of IDL constructs to Ada constructs. The following
sections elaborate on each of these constructs.

1.3 Interfaces and Tagged Types

1.3.1 Client Side

An IDL interface is mapped to an Ada package and a tagged reference type. The
package name will be mapped from the interface name. If the interface has an
enclosing scope (including a subsystem “virtual scope”), the mapped package will be a
child package of the package mapped from the enclosing scope. The mapped package
will contain the definition of a tagged reference type for the object class, derived from
the reference type mapped from the parent IDL interface, if the IDL interface is a
subclass of another interface, or from an implementation-defined common root
reference type, CORBA.Object.Ref, if the interface is not a subclass of another
interface. This allows implementations of the mapping to offer automatic memory
management and improves the separation of an interface and its implementation.

The mapped package also contains definitions of constants, types, exceptions, and
subprograms mapped from the definitions in the interface or inherited by it.

1.3.2 Forward Declarations

Forward declarations result in the instantiation of a generic package that provides a
reference type that can be used until the interface is fully defined. The generic
instantiation also defines a nested generic package that is instantiated within the full
interface definition and provides conversion from the forward reference type to the full

Table 1-1 Summary of IDL Constructs to Ada Constructs

IDL construct Ada construct

Source file Library package

Module Package (Child Package if nested)

Interface Package with Tagged Type (Child Package if
nested)

Operation Primitive Subprogram

Attribute “Set_attribute” and “Get_attribute” subpro-
grams

Inheritance:
Single
Multiple

Tagged Type Inheritance
Tagged Type Inheritance for first parent;
cover functions with explicit widening and
narrowing for subsequent parents

Data types Ada types

Exception Exception and record type
October 2001 Ada Mapping, v1.2: Mapping Summary 1-3

1

interface reference type and vice versa. This allows clients that hold references to the
interface to convert explicitly those references to the forward reference type when
required.

1.3.3 Server Side

The server-side mapping of an IDL interface creates a “.Impl” package that is a child
of the client-side interface package. The package contains a declaration for the
Object type, derived from the parent interface’s object type or from a common root,
CORBA.Impl.Object, with a (possibly private) extension provided to allow the
implementer to specify the actual data components of the object.

1.4 Operations

Each operation maps to an Ada subprogram with name mapped from the operation
name. In the client-side package, the first (controlling) parameter to the operation is
the reference type for the interface. In the server side package, the controlling
parameter is a general access-to-variable type. Operations with non-void result type
that have only in-mode parameters are mapped to Ada functions returning an Ada type
mapped from the operation result type; otherwise, operations are mapped to Ada
procedures. A non-void result is returned by an added parameter to a procedure.

1.5 Attributes

The Ada mapping models attributes as pairs of primitive subprograms declared in an
interface package, one to set and one to get the attribute value. An attribute may be
read-only, in which case only a retrieval function is provided. The name of the retrieval
function is formed by prepending “Get_” to the attribute name. “Set_” is used to
form the names of attribute set procedures. Like operations, a first controlling
parameter is added. In client-side packages, the controlling parameter is of the
reference type, while in server-side packages, it is a general access-to-variable type.

1.6 Inheritance

IDL inheritance allows an interface to be derived from other interfaces. IDL
inheritance is interface inheritance; the only associated semantics at the IDL level are
that a child object reference has “access to” all the operations of any of its parents.
Reflection of IDL inheritance in mapped code is a function solely of the language
mapping.

Single inheritance of IDL interfaces is directly mapped to inheritance in the Ada
mapping; that is, an interface with a parent is mapped to a tagged type that is derived
from the tagged type mapped from the parent. The definitions of types, constants, and
exceptions in the parent package are renamed or subtyped so that they are also
“inherited” in accordance with the IDL semantics.
1-4 Ada Language Mapping, v1.2 October 2001

1

The client-side of multiple inheritance in IDL maps to a single Ref tagged type, as with
single inheritance, where the parent type is the first interface listed in the IDL parent
interface list. The IDL compiler must generate additional primitive subprograms that
correspond to the operations inherited from the second and subsequent parent
interfaces listed in the IDL.

1.7 Data Types

The mapping of types is summarized in Table 1-2.

1.8 Exceptions

An IDL exception maps directly to an Ada exception declaration of the same name.
The optional body of an exception maps to a type that is an extension of a predefined
abstract tagged type. The components of the record will be mapped from the member
of the exception body in a manner similar to the mapping of record types.
Implementers must provide a function that returns the exception members from the
Ada-provided Exception_Occurrence for each exception type.

1.9 Names and Scoping

Modules are mapped directly to packages. Nested modules map to child packages of
the packages mapped from the enclosing module.

This mapping supports the introduction of a subsystem name that serves as a root
virtual module for all declarations in one or more files. When specified, subsystems
create a library package.

Table 1-2 Summary of Mapping Types

Type(s) Mapping

Numeric Corresponding Ada numeric types

char Character

boolean Boolean

octet Interfaces.Unsigned_8

any CORBA.Any (representation implementation
defined)

struct record with corresponding components

union discriminated record

enum enumerated type

sequence instantiation of pre-defined generic pack-
age

string Ada.Strings type

arrays array types
October 2001 Ada Mapping, v1.2: Data Types 1-5

1

Files (actually inclusion streams) create a package to contain the “bare” definitions
defined in IDL's global scope. The package name is formed from the concatenation of
the file name and _IDL_File.

Lexical inclusion (#include) is mapped to with clauses for the packages mapped
from the included files, modules, and interfaces.

1.10 New and Changed Features of the Ada Mapping

This section presents an overview and rationale for the new features of the IDL to Ada
mapping. The following chapters revise the Ada Language Mapping specification (now
published by the OMG as stand-alone volumes). Change bars in the following chapters
indicate substantive (as opposed to organizational) changes from the currently adopted
specification (OMG TC document number ptc/99-03-11).

Change bars in the following chapters highlight changes from the initial submission
(orbos/99-07-06).

1.10.1 Helper Packages

The current mapping of interfaces to Ada requires the generation of a To_Ref
function in the interface package, which supports widening and narrowing of object
references. In addition, the functions supporting conversion of an object reference to
and from type Any must be statically defined in the CORBA.Object package.
Because Ada’s rules require overriding of functions that return the type being derived
from, the From_Any function had to be generated for every interface package,
regardless of whether the developer had asked the IDL compiler for the generated
functions supporting type Any. Other language mappings, when faced with this
cluttering of the mapped interface, and to facilitate reverse mappings, have relegated
some of these supporting operations to “helper modules.”

This revision of the mapping adopts this strategy. The mapping of interfaces now
requires the generation of three packages:

1. The interface package. As in the present mapping, this package will define the Ref
type and specify its primitive operations mapped from the attribute accessors and
operations of the IDL interface.

2. The interface implementation package. As in the present mapping, this package will
define the servant Object type and the specification of its primitive operations,
which are to be implemented by the developer.

3. An interface helper package. This package will be a child package of the interface
package with extended name .Helper. It will contain:

• The To_Ref function that supports widening and narrowing of object references.

• The interface TypeCode and supporting conversion functions: To_Any and
From_Any.

This packaging pattern is also used for the mapping of new IDL constructs, as seen
below.
1-6 Ada Language Mapping, v1.2 October 2001

1

1.10.2 Value Types

As stated in the CORBA standard:

“Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

• They support description of complex state; that is, arbitrary graphs, with
recursion and cycles.

• Their instances are always local to the context in which they are used (because
they are always copied when passed as a parameter to a remote call).

• They support both public and private (to the implementation) data members.

• They can be used to specify the state of an object implementation; that is, they
can support an interface.

• They support single inheritance (of valuetype) and can support an interface.

• They may also be abstract.”

The Ada mapping for value types provides all of these semantics, and is
complementary to the Ada mapping for Object References.

1.10.2.1 Basic Mapping

A value type is mapped to three packages in Ada.

1. A value interface package. This package is a child of the package mapped from the
IDL scope declaring the value. The name of the package is the value identifier
appended to the parent package name. This package contains:

• A Value_Ref type that represents the mapping of the value type. The
Value_Ref type provides reference counting and “smart pointer” semantics,
similar to those provided by the Ref type that is the mapping of IDL interfaces.
These reference semantics provide the required support of arbitrary graphs. The
Value_Ref type “points to” a Value_Impl.Object.

• Accessor functions and procedures for the public state members of a value.

• Functions and procedures mapped from the operations on the value type. The
signatures of these operations are consistent with those mapped from interface
operations. Although these “primitive operations” are simply pass-throughs to the
actual implementations in the Value_Impl package, they provide the required
inheritance semantics for derived value types.

• Functions returning a Value_Ref mapped from the initializers specified in IDL.

• A “null value” constant that represents the value of uninitialized or “null”
Value_Ref variables.

2. A value implementation package. This package is a child of the value interface
package and has the name extension .Value_Impl. This package contains:

• An Object type that represents the concrete implementation of the value type.
The Value_Impl.Object type contains components for each of the public and
private state members of the value type.

• The Object_Ptr type, which is a general access to the Object class.
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-7

1

• Functions and procedures mapped from the operations on the value type. The
signatures of these operations are consistent with those in Impl packages mapped
from interface operations. The bodies of these operations are implemented by the
CORBA developers.

• Factory functions returning an Object_Ptr. The bodies of these functions are
implemented by the CORBA developers.

Actually, only the package specification1 of the value implementation package
needs to be generated; the body of the package can only be written by the
developer.

3. A value helper package. The value helper package is a child of the value interface
package and has the name extension .Helper. This package contains:

• The definition of the TypeCode constant for the value type, and the From_Any
and To_Any functions for the value type.

• Any necessary widening conversion functions. These are only needed for abstract
values (and abstract interfaces).

For example, the following IDL:

// IDL - ExampleA.idl
module ExampleA {

 typedef sequence<unsigned long> WeightSeq;

 valuetype WeightedBinaryTree {
 public long weight;
 private WeightedBinaryTree left;
 private WeightedBinaryTree right;
 factory createWBT(in long w);
 WeightSeq preOrder();
 WeightSeq postOrder();
 };

};

maps to:

-- Ada - examplea.ads
with CORBA.Unsigned_Long_Unbounded;
package ExampleA is

 type WeightSeq is ...

end ExampleA;

1.Ada formalizes the separation of declaration of a package’s interface, its specification, from
a package’s implementation, the body, by requiring different syntax for the two. Those more
familiar with C++ might best think of this as an enforced separation of “pure” header files
from the files containing the actual implementation.
1-8 Ada Language Mapping, v1.2 October 2001

1

-- Ada - examplea-weightedbinarytree.ads
with CORBA.Value;
package ExampleA.WeightedBinaryTree is

 type Value_Ref is new CORBA.Value.Base with null record;
 Null_Value : constant Value_Ref;

 function Get_weight(Self : Value_Ref) return CORBA.Long;
 procedure Set_weight(Self : Value_Ref; To : CORBA.Long);

 function createWBT(w : in CORBA.Long) return Value_Ref;

 function preOrder (Self: Value_Ref)
 return ExampleA.WeightSeq;
 function postOrder (Self: Value_Ref)
 return ExampleA.WeightSeq;

end ExampleA.WeightedBinaryTree;

-- Ada - examplea-weightedbinarytree-value_impl.ads
with CORBA.Value;
package ExampleA.WeightedBinaryTree.Value_Impl is

 type Object is new CORBA.Value.Impl_Base with record
 weight : CORBA.Long;
 left : Value_Ref;
 right : Value_Ref;
 end record;
 type Object_Ptr is access all Object'class;

 function preOrder (Self: access Object) return WeightSeq;
 function postOrder (Self: access Object)
 return WeightSeq;

 function wreateWBT(W : in CORBA.Long) return Object_Ptr;

end ExampleA.WeightedBinaryTree.Value_Impl;

-- Ada - examplea-weightedbinarytree-helper.ads
package ExampleA.WeightedBinaryTree.Helper is

 function To_Any (From : in Value_Ref) return CORBA.Any;

 function From_Any (From : in CORBA.Any) return Value_Ref;

 TC_WeightedBinaryTree : constant CORBA.TypeCode.Object;

end ExampleA.WeightedBinaryTree.Helper;
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-9

1

1.10.2.2 Abstract vs. Concrete

Again, from the CORBA/IIOP Specification:

“Value types may also be abstract. They are called abstract because an abstract
value type may not be instantiated. Only concrete types derived from them may be
actually instantiated and implemented. Their implementation, of course, is still
local. However, because no state information may be specified (only local
operations are allowed), abstract value types are not subject to the single
inheritance restrictions placed upon concrete value types. Essentially they are a
bundle of operation signatures with a purely local implementation. This distinction
is made clear in the language mappings for abstract values.”

The Ada mapping for abstract values differs only slightly from that for concrete values:
the Value_Impl.Object type and the enclosing Value_Impl package are not
needed. This prevents instance of the abstract type from being created.

Note the Value_Ref type and associated operations are not abstract. This allows the
widening of a concrete value type to an abstract value type (for example, in order to
pass as the actual for a formal parameter that is of the abstract value type). This
mapping also allows the operations of the abstract value type to be invoked on a
reference obtained in this way.

In order to support widening from concrete value types that may inherit from the
abstract value type, the .Helper child package will contain a
To_Abstract_Value_Ref function that will widen a reference to any concrete or
abstract value that inherits from it to a valid reference of the abstract type.

For example, the following IDL:

// IDL
module CORBA {
 abstract valuetype CustomMarshal {
 void marshal (in DataOutputStream ostream);
 void unmarshal (in DataInputStream istream);
 };
};

maps to:

-- Ada - corba-custommarshal.ads
with CORBA.Value;
with CORBA.DataOutputStream;
with CORBA.DataInputStream;
package CORBA.CustomMarshal is

 type Abstract_Value_Ref is
 new CORBA.Value.Base with null record;

 procedure marshal
 (Self : Abstract_Value_Ref;
1-10 Ada Language Mapping, v1.2 October 2001

1

 Ostream : in
 CORBA.DataOutputStream.Abstract_Value_Ref);
 procedure unmarshal
 (Self : Abstract_Value_Ref;
 Istream : in
 CORBA.DataInputStream.Abstract_Value_Ref);
end CORBA.CustomMarshal;

package CORBA.CustomMarshal.Helper is

 function To_Any (From : in Abstract_Value_Ref)
 return CORBA.Any;

 function From_Any (From : in CORBA.Any)
 return Abstract_Value_Ref;

 TC_CustomMarshal : constant CORBA.TypeCode.Object;

 function To_Abstract_Value_Ref
 (From : in CORBA.Value.Base'CLASS)
 return Abstract_Value_Ref;

end CORBA.CustomMarshal.Helper;

1.10.2.3 Inheriting from Stateful Value Types

Value types may (singly) inherit from another concrete value type. The Ada mapping
for inheritance in this case provides for both interface inheritance (subtyping) and
implementation inheritance (subclassing). Both the Value_Ref type and the
Value_Impl.Object type for the inherited type use Ada’s tagged type derivation to
inherit the state members and operations from the corresponding types mapped from
the parent concrete value type.

The derived value type may be widened to the parent value type through Ada’s view
conversion syntax.

1.10.2.4 Inheriting from Abstract Value Types

Value types (stateful or abstract) may also inherit from one or more abstract value
types. In this situation, there is no need for implementation inheritance (there can be
no implementation of the abstract value type), but there is the need for interface
inheritance from multiple entities. Ada does not directly support multiple inheritance.
Instances of concrete value types may also be widened to one of their abstract value
ancestors (for example, for use in a parameter that has formal type of the abstract value
type).

The Ada mapping for value type inheritance from abstract value types is similar to that
used for interfaces that multiply inheritance from other interfaces. The operations
inherited from the abstract value type are “copied down” into both the value interface
package and the value implementation package.
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-11

1

Instances of abstract or stateful value types may be widened to inherited abstract value
types through the To_Abstract_Value_Ref function defined in the value helper
package of the abstract parent value type.

1.10.2.5 Values Supporting Interfaces

Value types may also “support” interfaces, a relationship that is similar to but not
exactly the same as the interface inheritance (subtyping) relationship specified as the
semantics for “inheritance” between interfaces. Abstract value may support multiple
interfaces, while stateful values may only support one. From the CORBA/IIOP
Specification:

“They [value types] can be used to specify the state of an object implementation;
that is, they can support an interface.”

An instance of a value supporting an interface may be passed as a parameter of an
operation that has a formal type of the interface (substitutability). The instance being
passed must have previously been activated with a POA (an instance of a value type
that supports an interface can be “widened” to that interface).

The Ada value interface package mapped from an IDL value type supporting an
interface includes “copied down” operations mapped from the operations on the
supported interface (and all of its ancestors). The value implementation package also
includes subprograms mapped from these operations. The developer writes the bodies
of these operations for local calls on the value interface package.

In addition, the value helper package (for each supported interface):

• Defines Servant and Servant_Ref types that “wrap” the
Value_Impl.Object type.

• Includes a To_Servant function that returns a Servant_Ref instance for an
instance of the value’s Value_Impl.Object type. Once a Servant_Ref has
been obtained, it can be activated with a POA.

This satisfies the substitutability requirement for values that support interfaces.

For example, the following IDL:
1-12 Ada Language Mapping, v1.2 October 2001

1

// IDL
module ExampleB {

 interface Printer{
 typedef sequence<unsigned long> ULongSeq;
 void print(in ULongSeq data);
 };

 valuetype WeightedBinaryTree supports Printer {
 public long weight;
 private WeightedBinaryTree left;
 private WeightedBinaryTree right;
 factory createWBT(in long w);
 ULongSeq preOrder();
 ULongSeq postOrder();
 };

};

maps to:

-- Ada - exampleb-printer.ads
with CORBA.Object;
with CORBA.Unsigned_Long_Unbounded;
package Exampleb.Printer is

 type Ref is new CORBA.Object.Ref with null record;

 type ULongSeq is ...

 procedure Print(Self: Ref; Data: in ULongSeq);

end Exampleb.Printer;

-- Ada - exampleb-weightedbinarytree.ads
with CORBA.Value;
with CORBA.Value;
with Exampleb.Printer;
package Exampleb.WeightedBinaryTree is

 type Value_Ref is new CORBA.Value.Base with null record;
 Null_Value : constant Value_Ref;

 function Get_weight(Self : Value_Ref) return CORBA.Long;
 procedure Set_weight(Self : Value_Ref; To : CORBA.Long);

 function createWBT(w : in CORBA.Long) return Value_Ref;

 function preOrder (Self: Value_Ref)
 return ExampleB.Printer.ULongSeq;
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-13

1

 function postOrder (Self: Value_Ref)
 return ExampleB.Printer.ULongSeq;

 procedure print
 (Self : Value_Ref;
 data : in Printer.ULongSeq);

end Exampleb.WeightedBinaryTree;

-- Ada - exampleb-weightedbinarytree-value_impl.ads
package ExampleB.WeightedBinaryTree.Value_Impl is

 type Object is new CORBA.Value.Impl_Base with record
 weight : CORBA.Long;
 left : Value_Ref;
 right : Value_Ref;
 end record;
 type Object_Ptr is access all Object'CLASS;

 function createWBT(w : in CORBA.Long) return Object_Ptr;

 function preOrder (Self: access Object)
 return ExampleB.Printer.ULongSeq;
 function postOrder (Self: access Object)
 return ExampleB.Printer.ULongSeq;

 procedure print
 (Self : access Object;
 Data : in ExampleB.Printer.ULongSeq);

end ExampleB.WeightedBinaryTree.Value_Impl;

-- Ada - example-weightedbinarytree-helper.ads
with ExampleB.WeightedBinaryTree.Value_Impl;
with PortableServer;
package ExampleB.WeightedBinaryTree.Helper is

 function To_Any (From : in Value_Ref) return CORBA.Any;

 function From_Any (From : in CORBA.Any) return Value_Ref;

 TC_WeightedBinaryTree : constant CORBA.TypeCode.Object;

 type Servant
 (Value: access
 ExampleB.WeightedBinaryTree.Value_Impl.Object'CLASS)
 is
 new PortableServer.Servant with null record;
 type Servant_Ref is access all Servant'CLASS;
1-14 Ada Language Mapping, v1.2 October 2001

1

 function To_Servant
 (Self : access
 ExampleB.WeightedBinaryTree.Value_Impl.Object'CLASS)
 return Servant_Ref;

end ExampleB.WeightedBinaryTree.Helper;

1.10.2.6 Values Supporting Abstract Interfaces

Abstract or stateful values may support multiple abstract interfaces. See Sectio n1.10.4,
“Abstract Interfaces,” on page 1-19 for the mapping of abstract interfaces. Support of
an abstract interface is similar to support of a non-abstract interface:

• Operations from the supported abstract interface are “copied down” and mapped to
subprograms in both the value interface package and, for stateful value types, the
value implementation package.

However an instance of a value type supporting an abstract interface cannot be
registered as a servant, since there are no servants for abstract interfaces. Therefore, the
extra types and operations needed in the value helper package for support of concrete
interfaces is not needed.

The widening of an instance of a value type to an abstract interface reference is
provided by the To_Abstract_Ref function in the helper package of the mapped
abstract interface.

1.10.2.7 Base Types for Values

This revision of the mapping adds the package CORBA.Value to the packages that
must be provided by a conforming implementation. This package must contain the
following definitions:

-- Ada
with CORBA.AbstractBase;
package CORBA.Value is

 type Base is abstract new CORBA.AbstractBase.Ref
 with null record;
 type Impl_Base is abstract tagged limited private;

end CORBA.Value;

Conceptually, instances of the CORBA.Value.Base type point to instances of the
CORBA.Value.Impl_Base type. Conforming implementations must provide
pointer semantics and reference counting, but these semantics will probably be directly
inherited from the parent types.
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-15

1

1.10.2.8 Forward Declaration of Values

There is provision in IDL for the introduction of a value type, so that the value type
may be used before it is fully defined. In this way, systems of value types may
recursively refer to each other. A similar provision is present for interface types
(although most uses of forward declaration of interfaces seem to be so that typing
design flaws do not have to be fixed.)

Ada restricts definition circularities to a greater extent than many other languages to
ensure stronger type safety2. In particular, it is an error for packages to “with” each
other, either directly or indirectly. If all IDL forward declarations are resolved to the
corresponding “real” declarations and mapped to Ada, there are many legal IDL files
that result in illegal circular dependencies among Ada packages. Therefore, the
mapping of IDL value type to Ada requires a special mapping for value forward
declarations. Fortunately, the procedures for mapping forward interface declarations
are readily adaptable to value forward declarations.

A new generic package, CORBA.Value.Forward, is defined to support this:

-- Ada
generic
package CORBA.Value.Forward is

 type Value_Ref is new CORBA.Value.Base with null record;

 generic
 type Ref_Type is new CORBA.Value.Base with private;
 package Convert is

 function From_Forward (The_Forward : in Value_Ref)
 return Ref_Type;
 function To_Ref (The_Forward : in Value_Ref)
 return Ref_Type renames From_Forward;

 function To_Forward (The_Ref : in Ref_Type)
 return Value_Ref;

 end Convert;

end CORBA.Value.Forward;

The mapping of a value forward declaration results in:

2.There is a proposal before ISO WG9 that relaxes this restriction in the Ada language and
would obviate the need for the generic package described in this subsection. However, until
this proposal is passed and widely supported in compilers, the present mapping must be
retained.
1-16 Ada Language Mapping, v1.2 October 2001

1

• An instantiation of CORBA.Value.Forward at the point of the forward
declaration. The instantiated package name is formed by appending “_Forward”
to value type identifier.

• The type value_Forward.Ref_Type, created by this instantiation, is used as
the mapping of the value type until the IDL value type is actually defined.

• In the interface package mapped from the actual value type definition, the
value_Forward.Convert package is instantiated with the actual Ada
Value_Ref type mapped from the value.

This series of instantiations provides convenient functions for type-safe conversions
between instances of the forward Value_Ref type and the actual Value_Ref type.

1.10.2.9 Custom Marshalling

The Ada mappings for the IDL abstract value types, CORBA::CustomMarshal,
CORBA::DataOutputStream, and CORBA::DataInputStream follow the normal
Ada value type mapping rules.

1.10.3 Value Boxes

The CORBA/IIOP Specification states this about value boxes:

“It is often convenient to define a value type with no inheritance or operations and
with a single state member. A shorthand IDL notation is used to simplify the use of
value types for this kind of simple containment, referred to as a “value box”.”

Value boxes may be less useful in Ada than in other languages; all CORBA-defined
Ada types are automatically memory-managed. Indeed, the specification goes on to
cite strings and sequences as particularly useful types to be “boxed.” In Ada, these are
controlled types that allocate additional memory when needed and free it after
instances of these types go out of scope.

In order to support the mapping of value boxes to Ada, conforming implementations
must provide an implementation of the following generic package:
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-17

1

generic
 type Boxed is private;
 type Boxed_Access is access all Boxed;
package CORBA.Value.Box is

 type Box_Ref is new CORBA.Value.Base with private;

 function Is_Null(The_Ref : Box_Ref) return Boolean;

 function Create(With_Value : in Boxed) return Box_Ref;
 function "+" (With_Value : in Boxed) return Box_Ref
 renames Create;

 function Contents(The_Boxed : in Box_Ref)
 return Boxed_Access;
 function "-" (The_Boxed : in Box_Ref)
 return Boxed_Access renames Contents;

 procedure Release(The_Ref : in out Box_Ref);

end CORBA.Value.Box;

Implementations of the Box_Ref type must support reference counting, “smart
pointer” semantics for the boxed value.

The mapping of an IDL value box declaration consists of:

• The declaration of a general access to the type to be boxed.

• An instantiation CORBA.Value.Box with the type to be boxed and declared
access type as actual parameters of the instantiation. The name of the instantiated
package is formed by appending _Value_Box to the IDL identifier for the value
box.

• A derivation of the Box_Ref type from the instantiation with name mapped from
the identifier of the value box. This has the effect of introducing the type and its
operations into the original name scope.

For example, the following IDL:

// IDL
module Example {

 valuetype LongSeq sequence<Long>;
 interface Bar {
 void doit(in LongSeq seq1);
 };
};

maps to:
1-18 Ada Language Mapping, v1.2 October 2001

1

-- Ada - example.ads
with CORBA.Sequences.Unbounded;
with CORBA.Value.Box;
package Example is

 type Long_Array is array(Integer range <>) of CORBA.Long;
 package IDL_SEQUENCE_Long is new
 CORBA.Sequences.Unbounded(CORBA.Long, Integer,
 Long_Array, "=");

 type IDL_SEQUENCE_Long_Access is
 access all IDL_SEQUENCE_Long.Sequence;
 package LongSeq_Value_Box is
 new CORBA.Value.Box(IDL_SEQUENCE_Long.Sequence,
 IDL_SEQUENCE_Long_Access);
 type LongSeq is new LongSeq_Value_Box.Box_Ref;

end Example;

-- Ada - example-bar.ads
with CORBA.Object;
package Example.Bar is

 type Ref is new CORBA.Object.Ref with null record;

 procedure Doit(Self : in Ref; seq1: in Example.LongSeq);

end Example.Bar;

1.10.4 Abstract Interfaces

The CORBA/IIOP Specification states:

“In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides
this capability.”

The semantics of abstract interfaces differ in a number of ways, and the CORBA
specification specifically allows different language mappings for abstract interfaces
versus concrete interfaces.

1.10.4.1 Basic Mapping

The mapping for an abstract interface into Ada includes:

1. An abstract interface package. This package is a child of the package mapped from
the IDL scope declaring the abstract interface. The name of the package is the
abstract interface identifier appended to the parent package name. This package
contains:
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-19

1

• An Abstract_Ref type that represents the mapping of the abstract interface
type. The Abstract_Ref type contributes to the reference counting and “smart
pointer” semantics of the actual interface implementation or value type
implementation that it refers to.

• Functions and procedure mapped from the operations on the abstract interface
type. The signatures of these operations are consistent with those mapped from
interface operations. Although these “primitive operations” are simply pass-
throughs to the actual implementations referred to, they provide the required
inheritance semantics for derived abstract interface types and supporting value
types.

2. An abstract interface helper package. The abstract interface helper package is a
child of the abstract interface package and has the name extension .Helper. This
package contains:

• The definition of a To_Any function. This function must “dispatch” to encode the
TypeCode and value according to the rules for encoding the contents of the value
type or interface type referred to by the abstract interface.

• A To_Abstract_Ref function that is capable of widening a reference to a
supporting interface or value type to a reference to the abstract interface type.

Note that there is no “impl” package, since the abstract interface cannot be directly
implemented.

For example, in the following IDL:

// IDL
module Example {

 exception e{};

 interface Marker {};

 abstract interface Base {
 void baseOp();
 };

 interface Extended: Base, Marker {
 long method (in long arg) raises (e);
 attribute long assignable;
 readonly attribute long nonassignable;
 };
};

the abstract interface, Base, is mapped to:
1-20 Ada Language Mapping, v1.2 October 2001

1

-- Ada - example-base.ads
with CORBA.AbstractBase;
package Example.Base is

 type Abstract_Ref is new CORBA.AbstractBase.Ref
 with null record;

 procedure BaseOp(Self : Abstract_Ref);

end Example.Base;

-- Ada - example.base.helper
package Example.Base.Helper is

 function To_Any (From : in Abstract_Ref)
 return CORBA.Any;

 function To_Abstract_Ref
 (From : in CORBA.AbstractBase.Ref'CLASS)
 return Abstract_Ref;

end Example.Base.Helper;

1.10.4.2 Abstract Interfaces Inheriting from Abstract Interfaces

Abstract interfaces may only inherit from other abstract interfaces, but they may inherit
from multiple ones. The Ada mapping of this inheritance simply requires the “copying
down” of the inherited operations. The To_Abstract_Ref helper function meets the
substitutability requirements.

1.10.4.3 Interfaces Inheriting from Abstract Interfaces

Concrete (non-abstract) interfaces may also inherit from multiple abstract interfaces.
The Ada mapping of inheritance from abstract interfaces is not significantly different
from inheritance of non-abstract interfaces. Currently, Ada’s tagged type inheritance is
used for the first-named parent interface, and the operations of the remaining interfaces
are “copied down.” In the interface implementation package, the inheritance of the
first-named parent allows implementation inheritance from that parent. Since abstract
interfaces never have an implementation, implementation inheritance is never an issue.
Therefore, the rules for inheritance are modified so that tagged-type inheritance is used
for the first-named non-abstract interface in the list of inherited interfaces. The
operations and attributes of all abstract interfaces are “copied down.”

For example, the interface, Extended, in the above IDL is mapped to:
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-21

1

-- Ada - example-extended.ads
with Example.Marker;
package Example.Extended is

 type Ref is new Example.Marker.Ref with null record;

 procedure BaseOp(Self : Ref);

 function Method(Self : Ref; Arg : in CORBA.Long)
 return CORBA.Long;
 procedure Set_Assignable(Self: Ref; To: in CORBA.Long);
 function Get_Assignable(Self : Ref) return CORBA.Long;
 function Get_Nonassignable(Self : Ref)
 return CORBA.Long;

end Example.Extended;

1.10.4.4 Base Types for Abstract Interfaces

In order to support abstract interfaces, the following package is introduced:

-- Ada
package CORBA.AbstractBase is

 type Ref is new Ada.Finalization.Controlled with
 record
 Ptr : CORBA.Impl.Object_Ptr;
 ...
 end record;

 procedure Initialize (The_Ref : in out Ref);
 procedure Adjust (The_Ref : in out Ref);
 procedure Finalize (The_Ref : in out Ref);

 procedure Unref (The_Ref : in out Ref)
 renames Finalize;

 function Is_Nil(Self : in Ref) return Boolean;

 function Is_Null(Self : in Ref) return Boolean
 renames Is_Nil;

 procedure Duplicate(Self : in out Ref) renames Adjust;

 procedure Release(Self : in out Ref);

 function Object_of(Self : Ref) return Object_Ptr;

end CORBA.AbstractBase;
1-22 Ada Language Mapping, v1.2 October 2001

1

Conforming implementations must support sharing semantics on assignment (of the
implementation referred to), and reference counting for the implementations referred
to.

In order to support the widening of both value types and interface types to abstract
interfaces, the definition of CORBA.Object.Ref is modified so that it derives from
CORBA.AbstractBase.Ref. Note that CORBA.Value.Base has already been
specified as deriving from CORBA.AbstractBase.Ref.

Implementations will also require an (unspecified) common ancestor type for both
PortableServer.Servant and CORBA.Value.Impl_Base.

1.10.5 Other CORBA/IIOP Specification Changes

1.10.5.1 Escaped Identifiers

The lexical mapping rules were adjusted by a previous Revision Task Force to account
for escaped identifiers.

1.10.5.2 Additional Pseudo-Operations

There are a number of new type and operation definitions in the CORBA pseudo-
objects. The following changes have been incorporated into this revision:

• in package CORBA: RequestSeq

• in package CORBA.ORB:

• send_multiple_requests_oneway

• send_multiple_requests_deferred

• poll_next_response

• get_next_response

• create_value_tc

• create_value_box_tc

• create_recursive_tc

• create_abstract_interface_tc

• dynamic Any interfaces are mapped according to the standard rules

• additional Interface Repository definitions are mapped according to the standard
rules

1.10.6 Delegating Servants

The current mapping for servants is inheritance-based; object implementations are
required to inherit from a common base class, PortableServer.Servant. In
some instances, in particular when there already exists a legacy implementation that
the developer would like to wrap, this requirement can be intrusive. Also, the current
mapping only supports implementation inheritance from the first-named parent. Ada
supports other useful implementation strategies (for example, building-block
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-23

1

approaches to achieving the effects of multiple-inheritance, that are best implemented
with a “clean slate”). Other language mappings support an alternative mapping for
object implementations that is delegation-based. For example, the C++ mapping
requires the generation of a “tie class” that delegates calls on the object
implementation to an instance of a “tied” class.

For these reasons, this mapping revision codifies an additional mapping for object
implementations that is delegation-based. The form of the additional mapping is a
generic package that can be used to “wrap” any type with the proper syntax; that is, it
supports subprograms with the proper signatures, and yields a CORBA servant type
that can be registered with a POA.

For each interface, an additional “implementation delegation” package is to be
generated. The package will be a child package of the interface package with name
extension .Delegate. The implementation delegation package will be generic with
the following formal parameters:

1. A limited private type that is the type to be wrapped.

2. For each mapped attribute accessor/setter and mapped operation from the interface
and all of its ancestors (not including CORBA.Object), a generic formal
subprogram parameter with the same signature as the subprograms mapped for the
.Impl packages will be required. The formal subprogram parameter will have the
“is box” form of default.

The generic package will define a new type derived from
PortableServer.Servant_Base. Instances of this type may be registered with a
POA to service remote and local requests. This type, Object, will be declared with
unknown discriminants so that instances may not be declared without initialization. A
class-wide access type, Object_Ptr, will also be declared. Finally, a Create
function will be declared that yields an Object_Ptr given an access to an instance of
the wrapped type.

For example, for the horse interface described later in this document, the following
implementation delegation package will be generated:

with Feed;
with PortableServer;
with Animal;
generic
 type Wrapped is limited private;
 with procedure eat (Self : access Wrapped;
 bag : in out Feed.Ref;
 Returns : out CORBA.Boolean) is <>;
 with function Get_alertness (Self : access Wrapped)
 return Animal.State is <>;
 with procedure Set_alertness (Self : access Wrapped;
 To : in Animal.State) is <>;
 with function Get_parent (Self : access Wrapped)
 return Ref'CLASS is <>;
 with procedure trot (Self : access Wrapped;
 distance : in CORBA.Short) is <>;
1-24 Ada Language Mapping, v1.2 October 2001

1

package Horse.Delegate is

 type Object(<>) is new PortableServer.Servant _Base
 with private;
 type Object_Ptr is access all Object'CLASS;
 function Create(From : access Wrapped) return Object_Ptr;

end Horse.Delegate;

1.10.7 Changes from CORBA Components Specification

The CORBA Components specification introduced a number of changes into IDL.

1.10.7.1 Local Interfaces

Local interface types were introduced by the CORBA Components submission.
Essentially, they are a formalization in IDL of the practice of defining “locality
constrained” interfaces (for example, for interfaces to ORB services that can only be
used locally). However, they are now also available for use by application developers.

The syntax of local interfaces differs only in the inclusion of the local keyword.

The semantics of local interfaces differ from “normal” (now termed unconstrained)
interfaces in several ways:

• Instances of local interfaces cannot be “marshalled.” This includes passing after
widening to an unconstrained base interface, stuffing into an any, or passing into
Object_to_String.

• Inheritance: there are restrictions in inheritance so that local types do not have to be
narrowed to unconstrained interfaces.

• Many of the predefined operations on the Object base class do not make sense for
local objects. These operations are modified to return exceptions when invoked on
local interfaces.

Otherwise, the language mapping requirements require unconstrained interfaces and
local interfaces to be mapped in very similar ways.

A standard mapping is also required for implementations of local interfaces. The
Components specification defines a LocalObject type as the base class for
implementations. It also ascribes semantics to this implementation class that are more
properly semantics of operations on the references to the implementation.

The Ada mapping for local interfaces produces three packages: an interface package,
an interface implementation package, and a helper package. These packages will be
very similar to those mapped for unconstrained interfaces.
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-25

1

1.10.7.2 Interface Package Mapping

The Ada interface package mapping for local interfaces differs from the interface
package mapping (previously referred to as the “client-side mapping”) in only one
way: the name of the reference type will be Local_Ref in order to reinforce the
semantic difference.

CORBA.Object.Ref continues to be the ultimate ancestor type for all interface
reference types. However, the specification of the semantics of the subprograms
primitive to CORBA.Object.Ref is altered to add the required semantics when the
implementation referred to is an implementation of a local interface.

1.10.7.3 Implementation Package Mapping

The proposed Ada implementation package mapping for local interfaces differs only in
the inheritance requirements for the Object type declared in the package. Instead of
ultimately deriving from PortableServer.Servant, the implementation type will
directly or indirectly derive from the new CORBA.Local.Object type.

1.10.7.4 Helper Package Mapping

The helper package for local interfaces need only contain a To_Local_Ref function,
that is responsible for narrowing and widening to the interface package’s Local_Ref
type from ancestor local or unconstrained interfaces or from descendant local interface
types.

Since instances of local interfaces cannot be inserted into an any, the helper package
for a local interface should not contain the To_Any and From_Any subprograms
needed for an unconstrained interface.

1.10.7.5 LocalObject Mapping

The components submission specifies a new base native type for local
implementations. It also ascribes semantics to that, but, in the Ada mapping at least,
these semantics are better ascribed to the object references that refer to them. The Ada
mapping for LocalObject is the type CORBA.Local.Object defined in the
following package:

package CORBA.Local is

 type Object is abstract tagged limited private;

end CORBA.Local;

Implementations will also require an (unspecified) common ancestor type for
CORBA.Local.Object, PortableServer.Servant, and
CORBA.Value.Impl_Base.
1-26 Ada Language Mapping, v1.2 October 2001

1

1.10.7.6 Forward Declarations

The rules for mapping forward declarations of local interfaces are the same as those for
mapping of unconstrained interfaces.

1.10.7.7 Import

Visibility rules determine whether an identifier is usable when interpreting a set of
IDL. The most important visibility rules govern the visibility of definitions defined
outside the current scope of compilation. Prior to the Components submission, IDL
visibility rules had been based on the use of pre-processor directives to “include”
definitions within files into the compilation of a file. The Ada mapping for include was
fairly straightforward: an include directive was reflected in the generated Ada by a
corresponding “with” statement.

The CORBA Components submission defines a new IDL “import” statement that
allows visibility to be selected on a unit or type basis. The subject of the import can be
a qualified name or a string containing the repository ID of an IDL name scope. The
specification of import also governs other aspects of IDL processing (for example, the
ability to “re-open” a module).

Unfortunately, the IDL visibility rules for import conflict with the Ada visibility rules
for withing. For example, “importing” an inner name scope in IDL does not implicitly
import the definitions in the enclosing name scopes, while “withing” a child package in
Ada does implicitly “with” the parent packages. In addition, import allows use of the
unqualified form of an identifier for an imported definition.

Because of these problems, the determination of “withs” needed for the mapped Ada
code must be decoupled from the visibility directives for IDL. The Ada mapping now
contains no explicit mapping for include directives or import statements. The software
compiling IDL to Ada must observe the IDL visibility rules to determine the legality of
the IDL being processed, and then must separately determine the “with statements”
needed to make the generated Ada code compilable.

1.10.7.8 Repository Identity Declarations

The Components submission replaces the IDL pragmas that define components of the
repository ID for a type definition with explicit statements. These two new statements
use the new keywords typeID and typePrefix.

There is no need for an Ada mapping of these new statements; their only effect is on
the generated TypeCode constants for use with type any. This is described in the
appropriate section of the mapping.

1.10.7.9 Exception Clauses for Attributes

The Components submission introduces exception clauses for interface attribute
definitions. These clauses are introduced by the new IDL keywords getRaises and
setRaises, which define the user-defined exceptions that may be raised when
querying or setting the value of an attribute.
October 2001 Ada Mapping, v1.2: New and Changed Features of the Ada Mapping 1-27

1

Like the raises clause for operations, the Ada mapping requires no mapping of these
clauses.
1-28 Ada Language Mapping, v1.2 October 2001

Lexical Mapping 2
Contents

This chapter contains the following sections.

2.1 Mapping of Identifiers

IDL identifiers follow rules similar to those of Ada but are more strict with regard to
case (identifiers that differ only in case are disallowed) and less restrictive regarding
the use of underscores. A conforming implementation shall map identifiers by the
following rules:

• Remove any leading underscore.

• Where “_” is followed by another underscore, replace the second underscore with
the character ‘U.’

• Where “_” is at the end of an identifier, add the character ’U’ after the underscore.

• When an IDL identifier collides with an Ada reserved word, insert the string
“IDL_” before the identifier.

These rules cannot guarantee that name clashes will not occur. Implementations may
implement additional rules to further resolve name clashes.

Section Title Page

“Mapping of Identifiers” 2-1

“Mapping of Literals” 2-2

“Mapping of Constant Expressions” 2-4
October 2001 Ada Language Mapping, v1.2 2-1

2

2.2 Mapping of Literals

IDL literals shall be mapped to lexically equivalent Ada literals or semantically
equivalent expressions. The following sections describe the lexical mapping of IDL
literals to Ada literals. This information may be used to provide semantic interpretation
of the literals found in IDL constant expressions in order to calculate the value of an
IDL constant or as the basis for translating those literals into equivalent Ada literals.

2.2.1 Integer Literals

IDL supports decimal, octal, and hexadecimal integer literals:

• A decimal literal consists of a sequence of digits that does not begin with 0 (zero).
Decimal literals are lexically equivalent to Ada literal values and shall be mapped
“as is.”

• An octal literal consists of a leading ‘0’ followed by a sequence of octal digits (0 ..
7). Octal constants shall be lexically mapped by prepending “8#” and appending “#”
to the IDL literal. The leading zero in the IDL literal may be deleted or kept.

• A hexadecimal literal consists of “0x” or “0X” followed by a sequence of
hexadecimal digits (0 .. 9, [a|A] .. [f|F]). Hexadecimal literals shall be lexically
mapped to Ada literals by deleting the leading “0x” or “0X,” prepending “16#” and
appending “#.”

2.2.2 Floating-Point Literals

An IDL floating-point literal consists of an integer part, a decimal point, a fraction
part, an ‘e’ or ‘E,’ and an optionally signed integer exponent.

Note – IDL before version 1.2 allowed an optional type suffix [f, F, d, or D].

The integer and fraction parts consist of sequences of decimal digits. Either the integer
part or the fraction part, but not both, may be missing. Either the decimal point and the
fractional part or the ‘e’ (or ‘E’) and the exponent, but not both, may be missing.

A lexically equivalent floating point literal shall be formed by appending to the integer
part (or “0” if the integer part is missing):

• a “.” (decimal point), the fraction part (or “0” if the fraction part is missing), or

• an “E” and the exponent (or “0” if the exponent is missing).

Optionally, the ending “E0” may be left off if the IDL did not have an exponent.

Note – For implementations choosing a mapping for the pre-1.2 optional type suffix,
the following rule should be observed: If a type suffix is appended, the above
construction should be appended to the Ada mapping of the type suffix followed by
“’(“, and a closing “)” should be appended.
2-2 Ada Language Mapping, v1.2 October 2001

2

2.2.3 Fixed Point Literals

An IDL fixed-point literal consists of an integer part, a decimal point, a fraction part,
and a ‘d’ or ‘D’. The integer and fraction parts consist of sequences of decimal digits.
Either the integer part or the fraction part, but not both, may be missing. The decimal
point may be missing if the fraction part is missing.

A lexically equivalent fixed point literal shall be formed by appending to the integer
part (or “0” if the integer part is missing):

• a “.” (decimal point),

• the fraction part (or “0” if the fraction part is missing).

2.2.4 Character Literals

IDL character literals are single graphic characters or escape sequences enclosed by
single quotes. The first form is lexically equivalent to an Ada character literal.
Table 2-1 supplies lexical equivalents for the defined escape sequences. Equivalent
character literals may also be used, but are not recommended when used in
concatenation expressions.

Table 2-1 Lexical Equivalents for the Defined Escape Sequences

Description IDL
Escape

Octal
Value

Applicable to Ada Lexical Mapping

char wchar

newline \n 012 4 4 Ada.Characters.Latin_1.LF

horizontal tab \t 011 4 4 Ada.Characters.Latin_1.HT

vertical tab \v 013 4 4 Ada.Characters.Latin_1.VT

backspace \b 010 4 4 Ada.Characters.Latin_1.BS

carriage return \r 015 4 4 Ada.Characters.Latin_1.CR

form feed \f 014 4 4 Ada.Characters.Latin_1.FF

alert \a 007 4 4 Ada.Characters.Latin_1.BEL

backslash \\ 134 4 4 Ada.Characters.Latin_1.Reverse_
Solidus

question mark \? 077 4 4 Ada.Characters.Latin_1.Question

single quote \’ 047 4 4 Ada.Characters.Latin_1.Apostrophe

double quote \” 042 4 4 Ada.Characters.Latin_1.Quotation

octal number \ooo ooo 4 4 Character’val(8#ooo#)

hex number \xhh N/A 4 Character’val(16#hh#)

unicode
character

\uhhhh N/A 4 Wide_Character’val(16#hhhh#)
October 2001 Ada Mapping, v1.2: Mapping of Literals 2-3

2

2.2.5 Wide Character Literals

IDL wide character literals have the form of a character literal with an “L” prefix.

2.2.6 String Literals

An IDL string literal is a sequence of IDL characters surrounded by double quotes.
Adjacent string literals are concatenated. Within a string, the double quote character
must be preceded by a ‘\’. A string literal may not contain the “nul” character.
Lexically equivalent Ada string literals shall be formed as follows:

• If the string literal does not contain escape sequences (does not contain ‘\’), the IDL
literal is lexically equivalent to a valid Ada literal.

• If the IDL literal contains escape sequences, the string must be partitioned into
substrings. As each embedded escape sequence is encountered, three partitions must
be formed:

• one containing a substring with the contents of the string before the escape
sequence,

• one containing the escape sequence only, and

• one containing the remainder of the string.

The remainder of the string is checked (iteratively) for additional escape sequences.
The substrings containing an escape sequence must be replaced by their lexically
equivalent Ada character literals as specified in the preceding section. These substrings
must be concatenated together (using the Ada “&” operator) in the original order.
Finally, adjacent strings must be concatenated.

2.2.7 Wide String Literals

Wide string literals are identical to string literals except that they are prefixed with “L.”
Lexically equivalent Ada wide string literals may be formed by following the above
rules for strings, but substituting wide characters.

2.2.8 Enumeration Literals

Enumeration literals are specified by IDL identifiers. Mapping rules for enumeration
literals are the same as for identifiers (see Section 2.1, “Mapping of Identifiers,” on
page 2-1).

2.3 Mapping of Constant Expressions

In IDL, constant expressions are used to define the values of constants in constant
declarations. A subset, those expressions that evaluate to positive integer values, may
also be found as:

• the maximum length of a bounded sequence,

• the maximum length of a bounded string, or as
2-4 Ada Language Mapping, v1.2 October 2001

2

• the fixed array size in complex declarators.

An IDL constant expression shall be mapped to an Ada static expression or a literal
with the same value as the IDL constant expression. The value of the IDL expression
must be interpreted according to the syntax and semantics in the Common Object
Request Broker: Architecture and Specification. The mapping may be accomplished by
interpreting the IDL constant expression yielding an equivalent Ada literal of the
required type or by building an expression containing operations on literals, scoped
names, and interim results that mimic the form and semantics of the IDL literal
expression and yield the same value.

2.3.1 Mapping of Operators

Table 2-2 provides the correspondence between IDL operators in a valid constant
expression and semantically equivalent Ada operators. This information may be used
to provide semantic interpretation of the operators found in IDL constant expressions
or as the basis for translating expressions containing those operators into equivalent
Ada expressions.

Table 2-2 IDL Operators and Semantically Equivalent Ada Operators

IDL
Operator

IDL
symbol

Applicable Types Ada
Operator

Supported by Ada Types

Integer Floating
point

Boolean Modular
Integer

Signed
Integer

Floating
Point

or | √ or √ √
xor ^ √ xor √ √

and & √ and √ √

shift << √ Interfaces.
Shift_Left

√

>> √ Interfaces.
Shift_Right

√

add + √ √ + √ √ √

- √ √ - √ √ √

multiply * √ √ * √ √ √

/ √ √ / √ √ √

% √ rem √ √ √

unary - √ √ - √ √ √

+ √ √ + √ √ √

~ √ not √ √
October 2001 Ada Mapping, v1.2: Mapping of Constant Expressions 2-5

2

-(value - 1) √

Table 2-2 IDL Operators and Semantically Equivalent Ada Operators

IDL
Operator

IDL
symbol

Applicable Types Ada
Operator

Supported by Ada Types

Integer Floating
point

Boolean Modular
Integer

Signed
Integer

Floating
Point
2-6 Ada Language Mapping, v1.2 October 2001

Mapping of IDL Types 3
Contents

This chapter contains the following sections.

Section Title Page

“Mapping of Names” 3-2

“Mapping for Basic Types” 3-2

“Mapping for Fixed Type” 3-3

“Mapping for Boolean Type” 3-4

“Mapping for Enumeration Types” 3-4

“Mapping for Structure Types” 3-4

“Mapping for Union Types” 3-5

“Mapping for Sequence Types” 3-6

“Mapping for String Types” 3-8

“Mapping for Wide String Types” 3-9

“Mapping for Arrays” 3-10

“Mapping for Constants” 3-10

“Mapping for Typedefs” 3-11

“Mapping for TypeCodes” 3-12

“Mapping for Any Type” 3-12

“Mapping for Exception Types” 3-14
October 2001 Ada Language Mapping, v1.2 3-1

3

Note that the following IDL semantics (from the CORBA/IIOP Specification) requires
some coercion of types. Differences in applicability of operators to types may force
some additional type conversions to obtain Ada expressions semantically equivalent to
the IDL expressions.

Mixed type expressions (e.g., integers mixed with floats) are illegal.

3.1 Mapping of Names

3.1.1 Identifiers

The lexical mapping of IDL identifiers is specified in Section 2.1, “Mapping of
Identifiers,” on page 2-1. All identifiers in the Ada interfaces generated from IDL shall
be mapped from the corresponding IDL identifiers.

3.1.2 Scoped Names

Name scopes in IDL have the following corresponding Ada named declarative regions:

• The “global” name space of IDL files are mapped to Ada “_IDL_File” library
packages.

• IDL modules are mapped to Ada child packages of the packages representing their
enclosing scope.

• IDL interfaces are mapped to Ada child packages of the packages representing their
enclosing scope.

• All IDL constructs scoped to an interface are accessed via Ada expanded names.
For example, if a type mode were defined in interface printer, then the Ada type
would be referred to as Printer.Mode.

These mappings allow the expanded name mechanism in Ada to be used to build Ada
identifiers corresponding to IDL scoped names.

3.2 Mapping for Basic Types

Several basic numeric types are defined in IDL. These types shall be mapped to Ada
(sub)types. The following Ada types shall be defined in the package “CORBA” with
correspondence to IDL types, as shown in Table 3-1.

Table 3-1 Ada Types with Correspondence to IDL Types

Ada Type IDL Type Required Range and Representation

CORBA.Short short integer, range -(2**15) .. (2**15 - 1)

CORBA.Long long integer, range -(2**31) .. (2**31 - 1)

CORBA.Long_Long long long integer, range -(2**63) .. (2**63 - 1)

CORBA.Unsigned_Short unsigned short integer, range 0 .. (2**16 - 1)

CORBA.Unsigned_Long unsigned long integer, range 0 .. (2**32 - 1)
3-2 Ada Language Mapping, v1.2 October 2001

3

If supported, and the supported representations conform to the requirements above, the
following declarations, as shown in Table 3-2, should be used.

Use of the corresponding Interfaces.C types may not meet the requirements.

3.3 Mapping for Fixed Type

The IDL fixed type shall be mapped to an equivalent Ada decimal type. The name of
the mapped type shall be Fixed_ prepended to the IDL specified number of digits,
followed by “_”, followed by the IDL specified scale factor. The corresponding Ada
type definition shall have a digits value that is the same as the IDL-specified number of
digits, and a delta that is a power of 10 with an exponent that is the negative value of
the IDL-specified scale factor.

CORBA.
Unsigned_Long_Long

unsigned long
long

integer, range 0 .. (2**64 - 1)

CORBA.Float float floating point, ANSI/IEEE 754-1985
single precision

CORBA.Double double floating point, ANSI/IEEE 754-1985
double precision

CORBA.Long_Double long double floating point, ANSI/IEEE 754-1985
double extended precision

CORBA.Char char 8 bit ISO Latin-1 (8859.1) character set

CORBA.Wchar wchar multi-byte character of negotiated character
set

CORBA.Octet octet integer, must include 0 .. 255

Table 3-2 Declarations

Ada Type Definition

CORBA.Short type Short is new Interfaces.Integer_16;

CORBA.Long type Long is new Interfaces.Integer_32;

CORBA.Long_Long type Long_Long is new Interfaces.Integer_64;

CORBA.Unsigned_Short type Unsigned_Short is new Interfaces.Unsigned_16;

CORBA.Unsigned_Long type Unsigned_Long is new Interfaces.Unsigned_32;

CORBA.Unsigned_Long_Long type Unsigned_Long_Long is new Interfaces.Unsigned_64;

CORBA.Float type Float is new Interfaces.IEEE_Float_32;

CORBA.Double type Double is new Interfaces.IEEE_Float_64;

CORBA.Long_Double type Long_Double is new Interfaces.IEEE_Extended_Float;

CORBA.Char subtype Char is Standard.Character;

CORBA.Wchar subtype Wchar is Standard.Wide_Character;

CORBA.Octet type Octet is new Interfaces.Unsigned_8;

Table 3-1 Ada Types with Correspondence to IDL Types

Ada Type IDL Type Required Range and Representation
October 2001 Ada Mapping, v1.2: Mapping for Fixed Type 3-3

3

For example, the following IDL definition:

typedef fixed<8,2> Megabucks [3];

will map to:

type Fixed_8_2 is delta 0.01 digits 8;
type Megabucks is array(Integer range 0 .. 2) of Fixed_8_2;

3.4 Mapping for Boolean Type

The IDL boolean type shall be mapped to the CORBA Boolean type. The package
CORBA will contain the definition of CORBA.Boolean as a subtype of
Standard.Boolean as follows:

subtype Boolean is Standard.Boolean;

For example, the following IDL definition:

typedef boolean Result_Flag;

will map to

type Result_Flag is new CORBA.Boolean;

3.5 Mapping for Enumeration Types

An IDL enum type shall map directly to an Ada enumerated type with name mapped
from the IDL identifier and values mapped from and in the order of the IDL member
list. For example, the IDL enumeration declaration:

enum Color {Red, Green, Blue};

has the following mapping:

type Color is (Red, Green, Blue);

3.6 Mapping for Structure Types

An IDL struct type shall map directly to an Ada record type with type name mapped
from the struct identifier and each component formed from each declarator in the
member list as follows:

• If the declarator is a simple_declarator, the component name shall be mapped
from the identifier in the declarator and the type shall be mapped from the
type_spec.
3-4 Ada Language Mapping, v1.2 October 2001

3

• If the declarator is a complex_declarator, a preceding type definition shall define
an array type. The array type name shall be mapped from the identifier contained in
the array_declarator prepended to “_Array.” The type definition shall be an array,
over the range(s) from 0 to one less than the fixed_array_size(s) specified in the
array declarator, of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array shall be
created that preserves the indexing order specified in the IDL declaration. In the
component definition, the name shall be mapped from the identifier contained in the
array_declarator and the type shall be the array type.

For example, the IDL struct declaration below:

struct Example {
 long member1, member2;
 boolean member3[4][8];
};

maps to the following:

type Member3_Array is array(0..3, 0..7) of CORBA.Boolean;
type Example is record
 Member1: CORBA.Long;
 Member2: CORBA.Long;
 Member3: Member3_Array;

end record;

3.7 Mapping for Union Types

An IDL union type shall map to an Ada discriminated record type. The type name
shall be mapped from the IDL identifier. The discriminant shall be formed with name
Switch and shall be of type mapped from the IDL switch_type_spec. A default
value for the discriminant shall be formed from the first value of the mapped
switch_type_spec. A variant shall be formed from each case contained in the
switch_body as follows:

• Discrete_choice_list: For case_labels specified by “case” followed by a
const_exp, the const_exp defines a discrete_choice. For the “default”
case_label, the discrete_choice is “others.” If more than one case_label is
associated with a case, they shall be “or”ed together.

• Variant component_list: The component_list of each variant shall contain one
component formed from the element_spec using the mapping in Section 3.6,
“Mapping for Structure Types,” on page 3-4 for components.

For example, the IDL union declaration below:

union Example switch (long) {
 case 1: case 3: long Counter;
 case 2: boolean Flags [4] [8];
 default: long Unknown;
};
October 2001 Ada Mapping, v1.2: Mapping for Union Types 3-5

3

maps to the following:

type Flags_Array is array(0..3, 0.. 7) of Boolean;
type Example(Switch : CORBA.Long := CORBA.Long’first) is
record

case Switch is
when 1 | 3 =>

Counter: CORBA.Long;
when 2 =>

Flags: Flags_Array;
when others =>

Unknown : CORBA.Long;
end case;

end record;

3.8 Mapping for Sequence Types

IDL defines a sequence as a “one-dimensional array with two characteristics: a
maximum size (which is fixed at compile time) and a length (which is determined at
run time).” The syntax is:

<sequence_type> :=
“sequence” “<” <simple_type_spec> “,” <positive_int_const> “>”
“sequence” “<” <simple_type_spec> “>”

Note that a simple_type_spec can include any of the basic IDL types, any scoped
name, or any template type. Thus, sequences can also be anonymously defined within
a nested sequence declaration. A sequence type specification can also be contained in
a typedef, in a declaration of a struct member, or in a definition of a union case.

A sequence is mapped to an Ada type that behaves similarly to an unconstrained array.

Two Ada generic package specifications, CORBA.Sequences.Bounded and
CORBA.Sequences.Unbounded define the interface to the sequence type
operations. Conforming implementation of the packages defining the sequence types
shall provide value semantics for assignment (as opposed to reference semantics).

Thus, the implementation of assignment of one sequence variable to another sequence
variable must first destroy the memory of the target sequence variable and then
perform a deep-copy of the second sequence variable to the target sequence variable.

Each sequence type declaration shall correspond to an instantiation of
CORBA.Sequences.Bounded or CORBA.Sequences.Unbounded, as
appropriate. The formal of the generic packages and the actual arguments provided are
implementation defined. The name and scope of the instantiation is left implementation
defined.

The following sequence types in DrawingKit:

IDL File: drawing.idl
3-6 Ada Language Mapping, v1.2 October 2001

3

module Fresco {
interface DrawingKit {
 typedef sequence<octet> Data8;
 typedef sequence<long, 1024> Data32;
};
};

map to generic package instantiations, as follows:

package Fresco is
end Fresco;

with CORBA.Sequences;
with CORBA.Object;

package Fresco.DrawingKit is

type Ref is new CORBA.Object.Ref with null record;
package IDL_SEQUENCE_octet is

new CORBA.Sequences.Unbounded
(CORBA.Octet);

type Data8 is new IDL_SEQUENCE_octet.Sequence;

package IDL_SEQUENCE_1024_long is
new CORBA.Sequences.Bounded

(CORBA.Long, 1024);
type Data32 is new IDL_SEQUENCE_1024_long.Sequence;

end Fresco.DrawingKit;

Note that for the purposes of other rules, the “type mapped from” a sequence
declaration is the “.Sequence” type of the instantiated package. This is relevant to the
rules for Typedefs (Section 3.13, “Mapping for Typedefs,” on page 3-11) and for other
template types. Thus, in the previous example, the instantiated “.Sequence” type is
followed by a type derivation. Also, the following declaration:

typedef sequence<sequence<octet>> Ragged8;

will map to

with CORBA.Sequences.Unbounded;
...
package IDL_SEQUENCE_octet is

CORBA.Sequences.Unbounded(CORBA.Octet);

package IDL_SEQUENCE_SEQUENCE_octet is
new CORBA.Sequences.Unbounded

(IDL_SEQUENCE_octet.Sequence);

type Ragged8 is new IDL_SEQUENCE_SEQUENCE_octet.Sequence
October 2001 Ada Mapping, v1.2: Mapping for Sequence Types 3-7

3

3.9 Mapping for String Types

The IDL bounded and unbounded string types are mapped to Ada’s predefined string
packages or functional equivalent.

Conforming implementations shall provide an unbounded string type in the package
CORBA. The CORBA.String type shall be a derivation of
Ada.Strings.Unbounded.Unbounded_String or a functionally equivalent
package with equivalent primitive operations. Conforming implementations shall
define a CORBA.Null_String constant. In addition to the subprograms provided by
Ada.Strings.Unbounded, conforming implementations shall provide the
following additional functions in package CORBA:

function To_CORBA_String (Source : Standard.String)
return CORBA.String;

function To_Standard_String (Source : CORBA.String)
return Standard.String;

An unbounded IDL string shall be mapped to the type CORBA.String.

Conforming implementations shall provide a CORBA.Bounded_Strings package
with the same specification and semantics as
Ada.Strings.Bounded.Generic_Bounded_Length.

The CORBA.Bounded_Strings package has a generic formal parameter “Max”
declared as type Positive and establishes the maximum length of the bounded string
at instantiation. A generic instantiation of the package shall be created using the bound
for the IDL string as the associated parameter. The name and scope of the instantiation
is left implementation defined.

For example, the IDL declaration:

typedef string Name;

maps to

type Name is new CORBA.String;

while the following declaration:

typedef string<512> Title;

may map to

with CORBA.Bounded_Strings;
package CORBA.Bounded_String_512 is new
 CORBA.Bounded_Strings(512);

at the library level, and

type Title is new CORBA.Bounded_String_512.Bounded_String;
3-8 Ada Language Mapping, v1.2 October 2001

3

in the corresponding interface package.

3.10 Mapping for Wide String Types

The IDL bounded and unbounded wide strings types are mapped to Ada’s predefined
wide string packages or functional equivalent.

Conforming implementations shall provide an unbounded wide string type in the
package CORBA. The CORBA.Wide_String type shall be a derivation of
Ada.Strings.Wide_Unbounded.Unbounded_Wide_String or a functionally
equivalent package with equivalent primitive operations. Conforming implementations
shall define a CORBA.Null_Wide_String constant. In addition to the subprograms
provided by Ada.Strings.Wide_Unbounded, conforming implementations shall
provide the following additional functions in package CORBA:

function To_CORBA_Wide_String
(Source : Standard.Wide_String)
return CORBA.Wide_String;

function To_Standard_Wide_String
(Source : CORBA.Wide_String)
return Standard.Wide_String;

An unbounded IDL wide string shall be mapped to the CORBA.Wide_String type.

Conforming implementations shall provide a CORBA.Bounded_Wide_Strings
package with the same specification and semantics as
Ada.Strings.Wide_Bounded.Generic_Bounded_Length.

The CORBA.Bounded_Wide_Strings package has a generic formal parameter
“Max” declared as type Positive and establishes the maximum length of the
bounded string at instantiation. A generic instantiation of the package shall be created
using the bound for the IDL string as the associated parameter. The name and scope of
the instantiation is left implementation defined.

For example, the IDL declaration:

typedef wstring WName;

maps to

type WName is new CORBA.Wide_String;

while the following declaration:

typedef wstring<512> WTitle;

may map to

with CORBA.Bounded_Wide_Strings;
package CORBA.Bounded_Wide_String_512 is new
 CORBA.Bounded_Wide_Strings(512);
October 2001 Ada Mapping, v1.2: Mapping for Wide String Types 3-9

3

at the library level, and

type WTitle is new
CORBA.Bounded_Wide_String_512.Bounded_String;

in the corresponding interface package.

3.11 Mapping for Arrays

IDL defines multidimensional, fixed-size arrays by specifying a complex_declarator
as

• any of the declarators in a typedef,

• any of the declarators in a member of a struct, or

• the declarator in any element of a union.

A complex_declarator is formed by appending one or more array size bounds to
identifiers.

An IDL complex_declarator maps to an Ada array type definition. A type definition
shall define an array type. The array type name shall be mapped from the identifier
contained in the array_declarator prepended to _Array. The type definition shall be
an array, over the range(s) from 0 to one less than the fixed_array_size(s) specified
in the array declarator, of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array shall be
created that preserves the indexing order specified in the IDL declaration. In the
component definition, the name shall be mapped from the identifier contained in the
array_declarator and the type shall be the array type.

See Section 3.6, “Mapping for Structure Types,” on page 3-4, “Mapping for Union
Types” on page 3-5, and Section 3.12, “Mapping for Constants,” on page 3-10 for more
information.

3.12 Mapping for Constants

An IDL constant shall map directly to an Ada constant. The Ada constant name shall
be mapped from the identifier in the IDL declaration. The type of the Ada constant
shall be mapped from the IDL const_type as specified elsewhere in this section. The
value of the Ada constant shall be mapped from the IDL constant expression as
specified in Section 2.3, “Mapping of Constant Expressions,” on page 2-4. This
mapping may yield a semantically equivalent literal of the correct type or a
syntactically equivalent Ada expression that evaluates to the correct type and value.

For example, the following IDL constants:

const double Pi = 3.1415926535;
const short Line_Buffer_Length = 80;

shall map to
3-10 Ada Language Mapping, v1.2 October 2001

3

Pi : constant CORBA.Double := 3.1415926535;
Line_Buffer_Length : constant CORBA.Short := 80;

The following IDL constants:

const long Page_Buffer_Length =
 (Line_Buffer_Length * 60) + 2;
const long Legal_Page_Buffer_Length = (80 * 80) + 2;

may be mapped as

Page_Buffer_Length : constant CORBA.Long := 4802;
Legal_Page_Buffer_Length : constant CORBA.Long := 6402;

or

Page_Buffer_Length : constant CORBA.Long :=
(Line_Buffer_Length * 60) + 2;

Legal_Page_Buffer_Length : constant CORBA.Long :=
 (80 * 80) + 2;

3.13 Mapping for Typedefs

IDL typedefs introduce new names for types. An IDL typedef is formed from the
keyword typedef, a type specification, and one or more declarators. A declarator
may be a simple declarator consisting of an identifier, or an array declarator consisting
of an identifier and one or more fixed array sizes. An IDL typedef maps to an Ada
derived type.

Each array_declarator in a typedef shall be mapped to an array type. The array type
name shall be the identifier contained in the array_declarator. The type definition
shall be an array over the range(s) from 0 to one less than the fixed_array_size(s)
specified in the array declarator of the type mapped from the IDL type contained in the
type specification. If multiple bounds are declared, a multiple dimensional array shall
be created that preserves the indexing order specified in the IDL declaration.

Each simple declarator for a non-reference type; that is, a type not in
CORBA.Object.Ref’CLASS shall be mapped to a derived type declaration. Each
simple declarator for a reference type shall be mapped to a subtype declaration. The
type name shall be the identifier provided in the simple declarator. The type definition
shall be the mapping of the typespec, as specified elsewhere in this section.

For example, the following IDL typedefs:

typedef string Name, Street_Address[2];
typedef Name Employee_Name;
typedef enum Color {Red, Green, Blue} RGB;
interface Base {};
typedef Base Root;

will be mapped to
October 2001 Ada Mapping, v1.2: Mapping for Typedefs 3-11

3

type Name is new CORBA.String;
type Street_Address is array(0 .. 1) of CORBA.String;
type Employee_Name is new Name;
type Color is (Red, Green, Blue);
type RGB is new Color;
subtype Root is Base.Ref;

3.14 Mapping for TypeCodes

TypeCodes are values that represent invocation argument types, attribute types, and
Object types. They can be obtained from the Interface Repository or from IDL
compilers and they have a number of uses:

• In the Dynamic Invocation interface: to indicate types of the actual arguments.

• By an Interface Repository: to represent type specifications that are part of the IDL
declarations.

• As a crucial part of the semantics of the any type. Abstractly, TypeCodes consist of
a “kind” field and a “parameter list.”

The Ada mapping of TypeCode is provided by the pseudo-object
CORBA.TypeCode.Object type declared in the CORBA.TypeCode package
nested within the CORBA package (see Section 5.5.5, “TypeCode,” on page 5-19). Its
implementation is left unspecified. The primitive operations of TypeCode are mapped
from the pseudo-IDL contained in the CORBA/IIOP Specification. These operations
allow the matching of two TypeCodes, and extraction of the “kind” and “parameter
list” from it. The contents of the parameter list shall be as specified in the
CORBA/IIOP Specification.

Note – These operations do not include the ability to construct a TypeCode. Two
TypeCodes are equal if the IDL type specifications from which they are compiled
denote equal types. One consequence of this is that all types derived from an IDL type
have equal TypeCodes.

All occurrences of type TypeCode in IDL shall be mapped to the
CORBA.TypeCode.Object type.

All conforming implementations shall be capable (if asked) of generating constants of
type CORBA.TypeCode.Object for all pre-defined and IDL-defined types. The
name of the constant shall be “TC_” prepended to the mapped type name.

3.15 Mapping for Any Type

An Ada mapping for the IDL type any must fulfill two different requirements:

1. Handling values whose types are known.

2. Handling values whose types are not known at implementation compile time.
3-12 Ada Language Mapping, v1.2 October 2001

3

The first item covers most normal usage of the any type, the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with an Ada compiler.

The following specifies a set of Ada facilities that allows both of these cases to be
handled in a type safe manner.

3.15.1 Handling Known Types

For each distinct type T in an IDL specification, pre-defined or IDL-defined,
conforming implementations shall be capable of generating functions to insert and
extract values of that type to and from type Any. The form of these functions shall be:

function From_Any(Item : in Any) return T;

function To_Any(Item : in T) return Any;

An attempt to execute From_Any on an Any value that does not contain a value of
type T shall result in the raising of CORBA.Bad_Typecode.

In addition, the following function shall be defined in package CORBA:

function Get_Type(The_Any : in Any) return TypeCode.Ref;

This function allows the discovery of the type of an Any.

3.15.2 Handling Unknown Types

Certain applications may receive and wish to handle objects of type Any that contain
values of a type not known at compile time, and, thus, for which a matching TypeCode
constant is not available. The TypeCode facility allows the decomposition of any
TypeCode to a point where all components of a type are of pre-defined (and thus
known) type. In order to extract the value associated with each component of this breed
of Any, conforming implementations shall provide an iterator
CORBA.Iterate_Over_Any_Elements defined as follows:

generic
 with procedure Process(The_Any : in Any;
 Continue: out Boolean);
procedure CORBA.Iterate_Over_Any_Elements(In_Any: in Any);

A conforming implementation of Iterate_Over_Any_Elements shall iteratively
call Process for each component of In_Any. The The_Any argument to Process
shall contain both the TypeCode and the value(s) of the component of the In_Any.
Each component may itself be compound and may be of previously unknown type;
therefore, the type of the component The_Any is another Any. Through the recursive
use of the iterator, the input In_Any can be decomposed to the point that all
October 2001 Ada Mapping, v1.2: Mapping for Any Type 3-13

3

components are of known (eventually of pre-defined) type. At that point, a type safe
conversion of the form From_Any discussed above may be applied to obtain the value
of the decomposed component.

No facilities are defined or required for composing Any values of previously unknown
types.

3.16 Mapping for Exception Types

An IDL exception is declared by specifying an identifier and a set of members. This
member data contains descriptive information, accessible in the event the exception is
raised. Standard exceptions are predefined as part of IDL and can be raised by an ORB
given the occurrence of the corresponding exceptional condition. Each standard
exception has member data that includes a minor code (a more detailed subcategory)
and a completion status. Exceptions can also be declared that are application-specific.
The raising of an application-specific exception is bound to an interface operation as
part of the operation declaration. This does not imply that the corresponding
implementation for the operation must raise the exception; it merely announces that the
declared operation may raise any of the listed exception(s). A programmer has access
to the value of the exception identifier upon a raise.

An application-specific exception is declared with a unique identifier (relative to the
scope of the declaration) and a member list that contains zero or more IDL type
declarations.

3.16.1 Exception Identifier

The IDL exception declaration shall map directly to an Ada exception declaration
where the name of the Ada exception is mapped from the IDL exception identifier.

For example, the following IDL exception declaration:

exception null_exception{};

will map to the following Ada exception declaration:

Null_Exception: exception;

A programmer must be able to access the value of the exception identifier when an
exception is raised. A language-defined package, Ada.Exceptions, is provided by
Ada. The package contains a declaration of type Exception_Occurrence. Each
occurrence of an Ada exception is represented by a distinct value of type
Exception_Occurrence.

An Ada exception handler may contain a choice_parameter_specification.
This declares a constant object of type Exception_Occurrence. Upon the raise of
an exception, this constant represents the actual exception being handled. This constant
value can be used to access the fully qualified name using the function,
3-14 Ada Language Mapping, v1.2 October 2001

3

Exception_Name, in the package Ada.Exceptions. Therefore, mapping an IDL
exception declaration to an Ada exception declaration provides access to the value of
the exception identifier by default.

3.16.2 Exception Members

Members are additional information available in the event of a raise of the
corresponding exception. Members can contain any combination of permissible IDL
types.

The following declarations shall be contained in package CORBA:

type IDL_Exception_Members is abstract tagged null record;

procedure Get_Members(From: in
Ada.Exceptions.Exception_Occurrence;
 To: out IDL_Exception_Members) is abstract;

3.16.2.1 Standard Exceptions

A set of standard run-time exceptions is defined in the IDL language specification.
Each of these exceptions has the same member form. The following IDL declarations
appear for standard exceptions:

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status {COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION,

SYSTEM_EXCEPTION};

The following declarations shall exist in package CORBA:

type completion_Status is (COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE);

type Exception_Type is (NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION);

type System_Exception_Members is new IDL_Exception_Members with
record
Minor : CORBA.Long;
Completed : Completion_Status;
end record;
procedure Get_Members
(From: in Ada.Exceptions.Exception_Occurrence;
 To: out System_Exception_Members);

For each standard exception specified in the CORBA/IIOP Specification, a
corresponding Ada exception and exception members type derived from
System_Exception_Members shall be declared in package CORBA. However, the
name Initialization_Failure will be used for the Initialize exception to avoid
conflict with the Ada Initialize procedure.
October 2001 Ada Mapping, v1.2: Mapping for Exception Types 3-15

3

For example, the IDL standard exception declaration below:

exception UNKNOWN ex_body;

maps to the following:

UNKNOWN: exception;
type Unknown_Members is new System_Exception_Members
 with null record;

The Unknown_Members type will be used to hold the current values associated with
the raised exception. The derived Get_Members function may be used to access the
values.

3.16.2.2 Application-Specific Exceptions

For an application-specific exception declaration, a type extended from the abstract
type, IDL_Exception_Members, shall be declared where the type name will be the
concatenation of the exception identifier with “_Members.” Each member shall be
mapped to a component of the extension. The name used for each component shall be
mapped from the member name. The type of each exception member shall be mapped
from the IDL member type as specified elsewhere in this document.

The mapping shall also provide a concrete function, Get_Members, that returns the
exception members from an object of type:

Ada.Exceptions.Exception_Occurrence.

Note – The use of the strings associated with Exception_Message and
Exception_Information in the language-defined package Ada.Exceptions
may be used by the implementer to “carry” the exception members. This may
effectively render these predefined subprograms useless. If so, this fact shall be
documented.

For example, the following IDL exception declaration:

exception access_error {
 long file_access_code;
 string access_error_description;
 }

will map to the following:

Access_error : exception;

type Access_Error_Members is new CORBA.IDL_Exception_Members
with

record
File_Access_Code : CORBA.Long;
Access_Error_Description : CORBA.String;
3-16 Ada Language Mapping, v1.2 October 2001

3

end record;
procedure Get_Members(From: in
Ada.Exceptions.Exception_Occurrence;

To : out Access_Error_Members);

For consistency, the Members type and the Get_Members function must be
generated even if the corresponding IDL exception has zero members. For an
exception declaration without members:

exception a_simple_exception{};

the mapping will be as follows:

A_Simple_Exception : exception;
type A_Simple_Exception_Members is new

CORBA.IDL_Exception_Members with null record;
procedure Get_Members(From: in
Ada.Exceptions.Exception_Occurrence;

To: out A_Simple_Exception_Members);

3.16.2.3 Example Use

The following interface definition:

interface stack {
 typedef long element;
 exception overflow{long upper_bound;};
 exception underflow{};
 void push (in element the_element)
 raises (overflow);
 void pop (out element the_element)
 raises (underflow);
};

maps to the following in Ada:

package Stack is

...

type Element is new CORBA.Long;

Overflow : exception;
type Overflow_Members is new CORBA.IDL_Exception_Members

with record
Upper_Bound : CORBA.Long;

end record;
procedure Get_Members(From: in Ada.Exceptions.
October 2001 Ada Mapping, v1.2: Mapping for Exception Types 3-17

3

Exception_Occurrence;
To: out Overflow_Members;

Underflow : exception;
type Underflow_Members is new CORBA.IDL_Exception_Members

 with null record;
function Get_Members(From: in Ada.Exceptions.

Exception_Occurrence;
To: out Underflow_Members);

...
end stack;

The following usage of the stack illustrates access to members upon an exception raise:

with Ada.Text_IO;
with Ada.Exceptions;
with Stack;
use Ada;

procedure Use_stack is
 ...

The_Overflow_Members : Stack.Overflow_Members;
begin

 ...

exception

when Stack_Error: Stack.Overflow =>
Stack.Get_Members(Stack_Error,The_Overflow_Members;
Text_IO.Put_Line (“Exception raised is “ &

Exceptions.Exception_Name (Stack_Error));
Text_IO.Put_Line (“exceeded upper bound = “ &

CORBA.Long’image(The_Overflow_Members.Upper_Bound));

 ...

end Use_stack;
3-18 Ada Language Mapping, v1.2 October 2001

Mapping of IDL Units 4
This chapter discusses the mapping of the following IDL unit constructs to the Ada
programming language:

• Files

• Modules

• Interfaces, include unconstrained, abstract, and local interfaces

• Value types

Contents

This chapter contains the following sections.

Section Title Page

“Name Visibility” 4-2

“Mapping of IDL Files” 4-3

“Mapping Modules” 4-4

“General Mapping for Units” 4-4

“Interface Package Mapping” 4-6

“Helper Package Mapping” 4-13

“Implementation Package Mapping” 4-17

“Delegating Servants” 4-21

“Mapping Forward Declarations” 4-22

“Mapping Value Boxes” 4-25

“Tasking Considerations” 4-27
October 2001 Ada Language Mapping, v1.2 4-1

4

4.1 Name Visibility

The rules for visibility for IDL and Ada are different, and have been complicated by
the introduction of the “import statement.” Because of the inherent differences in the
visibility models, there is no transformational mapping from the IDL constructs
controlling visibility to the Ada constructs controlling visibility.

The requirements for mapping IDL visibility to the Ada language are:

1. The visibility of an IDL identifier within an IDL name scope shall be determined
according to the visibility rules in the CORBA/IIOP Specification.

2. The Ada generated from the mapping of IDL shall contain sufficient “with
statements” consistent with the visibility rules of Ada to allow the resulting code to
compile.

4.1.1 File Inclusion

The CORBA/IIOP Specification states that

“Text in files included with a #include directive is treated as if it appeared in the
including file.”

The primary use of the preprocessor facility is to make available definitions from other
IDL specifications and avoid redundant IDL type declarations.

The presence of an include directive in a file shall result in Ada “with clauses” to
library units mapped from the definition in “included” files sufficient to provide
visibility (as defined by the Ada language) to all definitions referenced in included
files.

Note – The simplest implementation of this requirement might be to include with
clauses for all included “file packages,” module packages, interface (sub)packages, and
transitively, all inclusions of the included file. However, significant readability and
maintainability benefits can be gained from withing only definitions actually used.

4.1.2 Import Statement

The IDL import statements offer finer grained visibility control:

“The definition of import obviates the need to define the meaning of IDL constructs
in terms of “file scopes.” This specification defines the concepts of a specification
as a unit of IDL expression. In the abstract, a specification consists of a finite
sequence of ISO Latin-1 characters that form a legal IDL sentence. The physical
representation of the specification is of no consequence to the definition of IDL,
though it is generally associated with a file in practice.”

The form of the statement is:
4-2 Ada Language Mapping, v1.2 October 2001

4

import <scoped_name>;

The statement “imports;” that is, makes visible, all identifiers defined in the
scoped_name name scope and all identifiers in nested scopes. Conforming compilers
must implement the IDL visibility rules as specified in the CORBA/IIOP Specification.

The presence of an import statement shall result in Ada “with clauses” to the Ada
library units that contain the mapped Ada constructs for the identifiers from the
imported scopes that are referenced.

4.1.3 CORBA Subsystem

The Ada mapping relies on some predefined types, packages, and functions. In the
CORBA/IIOP Specification, these are logically defined in a module named CORBA
that is automatically accessible. All Ada compilation units generated from an IDL
specification shall have (non-direct) visibility to the CORBA subsystem (through a
with clause.)

In the examples presented in this document, CORBA definitions may be referenced
without explicit selection for simplicity. In practice, identifiers from the CORBA
module would require the CORBA package prefix.

Note – Only the referenced identifiers must be visible in the generated code. It is
acceptable that all identifiers in the imported scopes are visible.

4.2 Mapping of IDL Files

4.2.1 Comments

The handling of comments in IDL source code is not specified; however,
implementations are encouraged to transfer comment text to the generated Ada code.

4.2.2 Other Pre-Processing

Other preprocessing directives (other than #include) shall have the effect specified in
the CORBA specification.

4.2.3 Global Names

The naming scope defined by an IDL file outside of any module or interface shall be
mapped to an Ada package whose name shall be formed by removing the extension, if
any, from the IDL source file name, changing any embedded spaces to underscores
(‘_’), and appending the string _IDL_File. If all the IDL statements in a file are
enclosed by a single module or interface definition, the generation of this “file
package” is optional.
October 2001 Ada Mapping, v1.2: Mapping of IDL Files 4-3

4

Note – Not generating the “file package” when not needed, permits operating system-
specific file naming rules to be isolated from the resulting Ada, and so is encouraged.
However, it may complicate an implementation of the withing rules for inclusion. See
above.

4.3 Mapping Modules

Modules define a name scope and can contain the declarations of other modules,
interfaces, types, constants, and exceptions.

Top level modules; that is, those not enclosed by other modules shall be mapped to
library packages. Modules nested within other modules shall be mapped to child
packages of the corresponding package for the enclosing module. The name of the
generated package shall be mapped from the module name.

Packages mapped from modules form an enclosing name scope for enclosed modules,
interfaces, or other declarations.

Declarations scoped within an IDL module shall be mapped to declarations within the
corresponding mapped Ada package.

4.4 General Mapping for Units

IDL has three object oriented unit constructs:

1. Abstract interfaces: Abstract interfaces have references and operations, but no
implementations. In some sense, abstract interfaces are “more primitive” than non-
abstract interfaces and value types: non-abstract interfaces and valuetypes may be
inherited from abstract interfaces, but not vice versa.

2. Interfaces: Interfaces have references, attributes, operations, and implementations.
References to unconstrained interfaces can be passed across the network, while
references to local interfaces can never leave their original execution scope.

3. Valuetypes: Valuetypes have references, state members, operations, and
implementations. Valuetypes are “passed by value” over the network. Abstract
valuetypes may not have state members or implementations.

The Ada mapping for these constructs reflects the commonality among these constructs
in a common pattern for mapping these constructs, and in a hierarchy of base types
(classes) that support their mapping.

4.4.1 Package Pattern for Mapping

The Ada mapping for each IDL unit construct follows a common pattern. This pattern
is used in the mapping of interfaces, whether unconstrained, abstract, or local, and
value types.

The mapping of a unit requires the generation of three packages:
4-4 Ada Language Mapping, v1.2 October 2001

4

1. The interface package: This package will be a child of the package of the package
mapped from the enclosing IDL name scope (a module or file) and have a final
name component mapped from the IDL identifier for the unit. It will define a
reference type and its primitive operations. The primitive operations are mapped
from the attribute accessors, operations, or state members of the IDL unit.

2. The interface implementation package: This package will be a child package of the
interface package with a final name component of “.Impl”. It will define an Object
type and the signature of its primitive operations, which are to be implemented by
the developer.

3. An interface helper package: This package will be a child package of the interface
package with extended name .Helper. It will contain:

• The functions that support widening and narrowing of references.

• The TypeCode constants and functions supporting conversion to and from type
any.

Certain packages may not be needed for some constructs. In particular, no
implementation package is needed for an abstract interface or abstract valuetypes,
since there can be no implementation for these.

4.4.2 Base Types

The Ada mapping defines the following types to support the mapping of IDL’s object-
oriented constructs:

• CORBA.AbstractBase.Ref: The base type for all abstract interface reference
types, and also for CORBA.Object.Ref and CORBA.Value.Base. Thus, it is the
base type for all references. Each instance contains a class-wide access to an
instance of the CORBA.Impl.Object type. This type is the base type for all
implementations. The primitive operations on this type provide the required
reference counting and memory management semantics.

• CORBA.Object.Ref: The base type for all reference types mapped from IDL
interfaces, whether unconstrained or local. The access component in each instance
of this type will access an instance derived from the type
PortableServer.Servant_Base.

• CORBA.Value.Base: The base type for all references mapped from IDL
valuetypes. The access component in each instance of this type will access an
instance derived from the type CORBA.Value.Impl_Base.

• CORBA.Impl.Object: The abstract base type for all implementations.

• PortableServer.Servant_Base: The base type for all servants inherits from
CORBA.Impl.Object.

• CORBA.Value.Impl_Base: The base type for all valuetype implementations
inherits from CORBA.Impl.Object.

The relationship among these types is illustrated in the following diagram:
October 2001 Ada Mapping, v1.2: General Mapping for Units 4-5

4

Figure 4-1 Base Types Relationship Diagram

Further details on these base types can be found in the “Mapping the CORBA Module”
chapter.

4.5 Interface Package Mapping

Each IDL interface or valuetype shall be mapped to a child package of the package
associated with its enclosing name scope (if any) or to a root library package (if there
is no enclosing name scope). This “interface package” shall define a new controlled
tagged “reference” type, used to represent object references for the mapped interface or
valuetype, as specified in Section 4.5.1, “Reference Types,” on page 4-7.

The declarations of constants, exceptions, and types scoped within interfaces or
valuetype shall be mapped to declarations with the mapped Ada package, as specified
in the “Mapping of IDL Types” chapter.

The declaration of attributes, operations, public state members, and initializers within
each interface or valuetype shall be mapped to primitive subprograms of the reference
type, according to the mapping specified in the following sections.

CORBA.AbstractBase.Ref CORBA.Impl.Object
refers to

CORBA.Object.Ref PortableServer.Servant_Base
refers to

CORBA.Value.Base CORBA.Value.Impl_Base
refers to
4-6 Ada Language Mapping, v1.2 October 2001

4

4.5.1 Reference Types

The reference type defined in the interface packages shall have a name as specified in
Table 4-1. Each reference type shall be a controlled tagged type that will release
automatically the memory of what it refers to, when it is deallocated, assigned a new
object reference, or passes out of scope. A reference type is a private type; that is, its
implementation is not visible to clients.

4.5.2 Reference Type Inheritance

The reference type associated with a derived interface or valuetype will inherit all of
the primitive subprograms of all of its parents as follows:

1. The operations of the first-named non-abstract parent interface or valuetype will be
inherited through Ada’s tagged type inheritance.

2. The attributes accessors, operations, and state member accessors of other parents
(abstract or non-abstract) and (for valuetypes) supported interfaces will be
generated by the IDL compiler. The signature of the generated operation will be
mapped as for the parent interface, but the controlling parameter shall be of the
child reference type.

If the interface or valuetype has an inheritance specification and the inheritance
specification refers to a non-abstract parent of the same IDL construct (interface for
interfaces or valuetype for valuetypes), the reference type shall be derived from the
first-named non-abstract parent. If there is no inheritance specification or all parents
named in the inheritance specification are abstract, the reference type shall be derived
from the type named in the “Ancestor Type” column of Table 4-1.

Each attribute, operation, and public state member in each parent other than the parent
derived from, from each supported interface, and from each of their parents
transitively, shall be mapped to primitive subprograms of the reference type, according
to the mapping specified in the following sections.

Table 4-1 Reference Type Names and Ancestor Types

IDL Construct Name of Reference Type Ancestor Type

abstract interface Abstract_Ref CORBA.AbstractBase.Ref

unconstrained interface Ref CORBA.Object.Ref

local interface Local_Ref

stateful valuetype Value_Ref CORBA.Value.Base

abstract valuetype Abstract_Value_Ref
October 2001 Ada Mapping, v1.2: Interface Package Mapping 4-7

4

4.5.3 Mapping for Attributes and Public State Members

Attributes definitions may be contained in IDL definitions of abstract, unconstrained or
local interfaces. Public state members may be contained in IDL definitions of stateful
valuetypes. Note that private state members of valuetypes are not mapped into the
interface package.

Read-only attributes shall be mapped to an Ada function with name formed by
prepending Get_ to the mapped attribute name. Read-write attributes and public state
members shall be mapped to an Ada function with name formed by prepending Get_
to the mapped attribute name and an Ada procedure with name formed by prepending
Set_ to the mapped attribute name. The Set procedure shall have a controlling
parameter of the mapped reference type and name Self, and a parameter with name To.
The type of the To parameter shall be mapped from the attribute or state member type,
except for an attribute or state member of the enclosing unit type, which shall be
mapped to the class of the reference type (for example, as Ref’CLASS for an
interface). The Get function shall have a controlling parameter only, of the reference
type and name Self. The Get function returns the type mapped from the attribute or
state member type, except for an attribute or state member of the enclosing unit type,
which shall be mapped to the class of the reference type (for example, as
Value_Ref’CLASS for a valuetype).

Examples of mapped attributes may be found in Section 4.5.8, “Interface Mapping
Examples,” on page 4-10.

4.5.4 Mapping for Operations

Operation definitions may be contained in IDL definitions of abstract, unconstrained or
interfaces, and in abstract or stateful valuetypes.

The IDL operations are mapped as primitive operations of the reference type. For
example, if an interface defines an operation called Op with no parameters and
My_Ref is a reference to the interface type, then a call would be written
A.Op(My_Ref).

Operations shall map to an Ada subprogram with name mapped from the operation
identifier. The first argument to operation subprograms will “refer” to the “subject” of
the operation. The first argument to the mapped operation shall be an in mode
argument with the name Self and shall be of the mapped reference type.

IDL operations with non-void result type that have only in-mode parameters shall be
mapped to Ada functions returning an Ada type mapped from the operation result type.
Otherwise, (non-void IDL operations that have out-mode parameters, or void
operations) operations shall be mapped to Ada procedures. The non-void result, if any,
is returned via an added argument with name Returns. This result argument shall
follow all other parameter arguments.

Each specified parameter in the operation declaration and the result type shall be
mapped to an argument of the mapped subprogram. The argument names shall be
mapped from the parameter identifier in the IDL. The argument mode shall be
preserved from the IDL. The argument or return type shall be mapped from the IDL
4-8 Ada Language Mapping, v1.2 October 2001

4

type, except in the case of an argument or return type that is of the enclosing IDL unit
type. Arguments or result types of the enclosing IDL unit type shall be mapped to the
class of the mapped reference type (for example, to Ref’CLASS for unconstrained
interfaces). This is necessary to prevent multiple controlling parameters (it removes the
ambiguity as to which parameter controls dispatching.)

If an operation in an IDL specification has a context specification, then an additional
argument with name In_Context of in mode and of type CORBA.Context.Object
(see Section 5.5.4, “Context,” on page 5-19) shall be added after all IDL specified
arguments and before the Returns argument, if any. The In_Context argument shall
have a default value of CORBA.ORB.Get_Default_Context (see Section 5.5.6,
“ORB,” on page 5-20).

IDL oneway operations are mapped the same as other operations; that is, there is no
indication whether an operation is oneway or not in the mapped Ada specification.

Note – Implementations are encouraged to add a comment to the generated
specification that states that the operation is oneway.

The specification of exceptions for an IDL operation is not part of the generated
operation.

Examples of mapped operations may be found in Section 4.5.8, “Interface Mapping
Examples,” on page 4-10.

4.5.5 Mapping for Valuetype Initializers

Definitions of initializers may be found in IDL for stateful valuetypes. Initializers are a
portable means of defining the initial state of a value type.

An initializer definition shall be mapped to an Ada function that returns the mapped
value reference type. (Thus they will be primitive on the value reference type.) The
Ada function name shall be mapped from the IDL identifier for the name. Each
parameter of the initializer shall be mapped to an argument of the function. Each
argument shall be in mode, and shall have a name mapped from the parameter name in
the initializer and shall of type mapped from the parameter type in the initializer.

An examples of a mapped initializer may be found in Section 4.5.9, “Valuetype
Mapping Example,” on page 4-12.

4.5.6 Argument Passing Considerations

The existing Ada language parameter passing conventions are followed for all types.
The mapping for in, out, and inout parameters to the Ada “in,” “out,” and “in
out” parameter modes obviates the need for any special parameter passing rules.
October 2001 Ada Mapping, v1.2: Interface Package Mapping 4-9

4

4.5.7 Type Object

Each occurrence of pre-defined type Object shall be mapped to
CORBA.Object.Ref.

Type Object is a full (non-pseudo) object type. However, because it is the pre-defined
root type for the Object class, its implementation does not conform to the mapping
rules for interfaces and its implementation is left unspecified. See Section 5.2.2,
“Object,” on page 5-3 for more information.

4.5.8 Interface Mapping Examples

The following IDL specification:

// IDL - file barn.idl
typedef long measure;
interface Feed {
 attribute measure weight;
};
interface Animal {
 enum State {SLEEPING, AWAKE};
 boolean eat(inout Feed bag);
 // returns true if animal is full
 attribute State alertness;
 readonly attribute Animal parent;
};
interface Horse : Animal{
 void trot(in short distance);
};

is mapped to these Ada interface packages:

with CORBA;
package Barn_IDL_FILE is

type Measure is new CORBA.Long;
end Barn_IDL_FILE;

with CORBA;
with CORBA.Object;
with Barn_IDL_FILE;
package Feed is

type Ref is new CORBA.Object.Ref with null record;
procedure Set_Weight

(Self : in Ref;
To : in Barn_IDL_FILE.Measure);

function Get_Weight
(Self : in Ref) return Barn_IDL_FILE.Measure;

end Feed;
4-10 Ada Language Mapping, v1.2 October 2001

4

with CORBA.Object;
with Feed;
package Animal is

type Ref is new CORBA.Object.Ref with null record;
type State is (SLEEPING, AWAKE);
procedure Eat

(Self : in Ref;
Bag : in out Feed.Ref;
Returns : out Boolean);
-- returns true if animal is full

procedure Set_Alertness
(Self : in Ref;
To : in State);

function Get_Alertness
(Self : in Ref) return State;

function Get_Parent(Self : in Ref) return Ref’CLASS;
end Animal;

with Animal;

package Horse is
type Ref is new Animal.Ref with null record;
subtype State is Animal.State;
procedure Trot

(Self : in Ref;
Distance : in CORBA.Short);

end Horse;

The next example includes mapping of multiple inheritance.

This IDL:

interface Asset {
...

 void op1();
 void op2();
 ...
};
interface Vehicle {
 ...
 void op3();
 void op4();
 ...
};
interface Tank : Vehicle, Asset {
 ...
};

produces the following Ada code:
October 2001 Ada Mapping, v1.2: Interface Package Mapping 4-11

4

with CORBA;
package Asset is

type Ref is new CORBA.Object.Ref with null record;

procedure op1 (Self : Ref);
procedure op2 (Self : Ref);

end Asset;

with CORBA;
package Vehicle is

type Ref is new CORBA.Object.Ref with null record;

procedure op3 (Self : Ref);
procedure op4 (Self : Ref);

end Vehicle;

with CORBA;
with Vehicle, Asset;
package Tank is

type Ref is new Vehicle.Ref with null record;

procedure op1 (Self : Ref);
procedure op2 (Self : Ref);

end Tank;

4.5.9 Valuetype Mapping Example

The following IDL interface and valuetype specification:

// IDL
module ExampleB {

 interface Printer{
 typedef sequence<unsigned long> ULongSeq;
 void print(in ULongSeq data);
 };

 valuetype WeightedBinaryTree supports Printer {
 public long weight;
 private WeightedBinaryTree left;
 private WeightedBinaryTree right;
 factory createWBT(in long w);
 ULongSeq preOrder();
 ULongSeq postOrder();
 };
4-12 Ada Language Mapping, v1.2 October 2001

4

};

is mapped to these Ada interface packages:

-- Ada - exampleb-printer.ads
with CORBA.Object;
with CORBA.Unsigned_Long_Unbounded;
package ExampleB.Printer is

 type Ref is new CORBA.Object.Ref with null record;

 type ULongSeq is ...

 procedure Print(Self: Ref; Data: in ULongSeq);

end ExampleB.Printer;

-- Ada - exampleb-weightedbinarytree.ads
with CORBA.Value;
with CORBA.Value;
with ExampleB.Printer;
package ExampleB.WeightedBinaryTree is

 type Value_Ref is new CORBA.Value.Base with null record;
 Null_Value : constant Value_Ref;

 function Get_weight(Self : Value_Ref) return CORBA.Long;
 procedure Set_weight(Self : Value_Ref; To : CORBA.Long);

 function createWBT(w : in CORBA.Long) return Value_Ref;

 function preOrder (Self: Value_Ref)
 return ExampleB.Printer.ULongSeq;
 function postOrder (Self: Value_Ref)
 return ExampleB.Printer.ULongSeq;

 procedure print
 (Self : Value_Ref;
 data : in Printer.ULongSeq);

end ExampleB.WeightedBinaryTree;

4.6 Helper Package Mapping

Each mapped interface package for an IDL interface or valuetype shall have a “helper
package.” The helper package shall be a child package of the interface package with
last name component .Helper. Each helper package shall define:

• A widening and narrowing subprogram that results in the mapped reference type
defined in the interface package.
October 2001 Ada Mapping, v1.2: Helper Package Mapping 4-13

4

• A TypeCode constant and type any conversion functions for the mapped reference
type and for all types defined in the interface package.

In addition, helper packages for stateful value that support unconstrained interfaces
must provide additional supporting types and subprograms.

4.6.1 Widening Object References

Widening of tagged types is supported by Ada through explicit type conversion and,
implicitly, through parameter passing and assignment. Any object reference may be
widened to the base type CORBA.Object.Ref using Ada syntax. Widening using
Ada syntax is supported for object references in the “primary line of descent” of a
particular object reference. The primary line of descent of an object reference consists
of its single or first-named parent and, recursively, their single or first-named parents.
Widening is also directly supported by Ada for stateful valuetype references.

For example, for the definitions:

COR : CORBA.Object.Ref;
My_Ref : Foo.Ref;

the Ada language provides a natural mechanism to widen object references via view
conversion:

COR := CORBA.Object.Ref(My_Ref);

An all purpose widening and narrowing method is defined for all mapped unit
constructs. This function shall support widening (and narrowing) along all lines of
descent. For example, to widen an object reference to CORBA.Object.Ref, the
To_Ref method defined in the CORBA.Object package would be used as follows:

function To_Ref (Self : Ref’CLASS) return Ref;
COR := CORBA.Object.To_Ref(My_Ref);

4.6.2 Narrowing Object References

Often it is necessary to convert a reference from a more general type to a more
specific, derived type. In particular, the root object reference IDL type Object must
often be narrowed to a specific interface object reference type. Conforming
implementations shall provide a primitive subprogram in each helper package to
perform and check the narrowing operation. Unlike widening, narrowing cannot be
accomplished via normal Ada language mechanisms.

The provided function shall have a name formed by prepending To_ to the name of the
reference type. The function shall have one parameter with name The_Ref and type
that is the class of the reference type, and shall have a return type of the reference type.
For example, each interface mapping shall include a function with specification:
4-14 Ada Language Mapping, v1.2 October 2001

4

function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS) return
Ref;

The provided implementation shall be able to narrow any ancestor of the interface or
valuetype, regardless of whether the ancestor was defined through single or multiple
inheritance. If The_Ref cannot be narrowed to the desired interface, this function
shall raise CORBA.Bad_Param.

Narrowing an object reference can require a remote invocation (to either the target
object or to an Interface Repository) to verify the relationship between the actual
object and the desired narrow interface. For cases where the application programmer
wishes to avoid the possibility of this remote invocation, conforming implementations
must provide a primitive subprogram in each helper package to perform an unchecked
narrow operation. Each interface helper package shall include a function with
specification:

function Unchecked_To_Ref(The_Ref : in
CORBA.Object.Ref’CLASS) return Ref;

Regardless of whether or not The_Ref is known to support the desired interface, the
provided implementation returns a narrowed reference.

4.6.3 Type Any support

Each helper package, except those for local interfaces, shall define a TypeCode
constant and conversion functions for the interface or valuetype with value as defined
in the CORBA/IIOP Specification, and two conversion functions, To_Any and
From_Any. These conversion functions shall insert and extract an instance of the
reference type into/from an instance of type any. Each helper package shall define a
TypeCode constant, To_Any, and From_Any for each type defined in the IDL unit
mapped. The TypeCode constants shall have values as defined in the CORBA/IIOP
Specification. The functions shall be defined according to the rules in Section 3.15,
“Mapping for Any Type,” on page 3-12. Implementations are permitted to suppress the
generation of TypeCodes and type any conversion functions unless specifically
required (for example, through a command line switch to the IDL compiler).

4.6.4 Valuetypes Supporting Interfaces

Valuetypes may “support” interfaces, a relationship that is similar to, but not exactly
the same as, the interface inheritance (subtyping) relationship specified as the
semantics for “inheritance” between interfaces. Abstract values may support multiple
interfaces, while stateful values may only support one.

An instance of a value supporting an interface may be passed as a parameter of an
operation that has a formal type of the interface (substitutability). The instance being
passed must have previously been activated with a POA (an instance of a value type
that supports an interface can be “widened” to that interface).

The value helper package for each valuetype that supports an interface shall, for each
supported interface:
October 2001 Ada Mapping, v1.2: Helper Package Mapping 4-15

4

• Define a Servant and a Servant_Ref type. These types will “wrap” the
Value_Impl.Object type defined in the implementation package for the
valuetype. These types shall be defined as follows:

type Servant
(Value: access

mapped_implementation_object_type'CLASS) is
new PortableServer.Servant with null record;

type Servant_Ref is access all Servant'CLASS;

• Define a To_Servant function that returns a Servant_Ref instance for an
instance of the value’s Value_Impl.Object type. This function shall have the
following signature:

function To_Servant
(Self: access mapped_implementation_object_type'CLASS)
return Servant_Ref;

Once a Servant_Ref has been obtained, it can be activated with a POA and a
reference to the supported interface can be obtained. This reference can be widened, if
necessary.

4.6.5 Examples

The helper package for the Animal package would contain:

package Animal.Helper is
TC_Ref : constant CORBA.TypeCode.Object;
function To_Any(Item : Ref) return CORBA.Any;
function From_Any(Item : CORBA.Any) return Ref;
TC_State : constant CORBA.TypeCode.Object;
function To_Any(Item : State) return CORBA.Any;
function From_Any(Item : CORBA.Any) return State;

end Animal;

The helper package for the ExampleB.WeightedBinaryTree interface package
would contain:

-- Ada - example-weightedbinarytree-helper.ads
with ExampleB.WeightedBinaryTree.Value_Impl;
with PortableServer;
package ExampleB.WeightedBinaryTree.Helper is
 function To_Any (From : in Value_Ref) return CORBA.Any;
 function From_Any (From : in CORBA.Any) return Value_Ref;
 TC_WeightedBinaryTree : constant CORBA.TypeCode.Object;

 type Servant
 (Value: access
 ExampleB.WeightedBinaryTree.Value_Impl.Object'CLASS)
 is
 new PortableServer.Servant with null record;
4-16 Ada Language Mapping, v1.2 October 2001

4

 type Servant_Ref is access all Servant'CLASS;
 function To_Servant
 (Self : access
 ExampleB.WeightedBinaryTree.Value_Impl.Object'CLASS)
 return Servant_Ref;

end ExampleB.WeightedBinaryTree.Helper;

4.7 Implementation Package Mapping

An “implementation package” shall be defined for each non-abstract IDL interface or
valuetype. The implementation package shall be a child package of the interface
package, with final name component of .Impl for interfaces or .Value_Impl for
valuetypes. This implementation package shall define an “implementation” type, as
specified in Section 4.7.1, “Implementation types,” on page 4-17.

The declaration of attributes, operations, and state members within each interface or
valuetype shall be mapped to components of the implementation type or primitive
subprograms of the implementation type, according to the mapping specified in the
following sections.

4.7.1 Implementation types

The specification of the implementation package shall contain the declaration of a
tagged record type, Object. The object record is used to hold member data employed
by the implementation of the interface or value type.

The implementation package must define a class-wide general access type for the
object class. The implementation package shall contain the following definition:

type Object_Ptr is access all Object’CLASS;

4.7.2 Implementation type inheritance

The implementation type associated with a derived interface or valuetype will inherit
all of the primitive subprograms of all of its parents as follows:

1. The data members and operation implementations of the first-named non-abstract
parent interface or valuetype will be inherited through Ada’s tagged type inheritance
from the parent’s mapped implementation type.

2. The mapped attributes, and state member of other parents and (for valuetypes)
supported interfaces will be added to the implementation type by the IDL compiler.

3. The operations of other parents (abstract or non-abstract) and (for valuetypes)
supported interfaces will be generated by the IDL compiler. The signature of the
generated operation will be mapped as for the parent interface, but the controlling
parameter shall be of the child implementation type.
October 2001 Ada Mapping, v1.2: Implementation Package Mapping 4-17

4

If the interface or valuetype has an inheritance specification and the inheritance
specification refers to a non-abstract parent of the same IDL construct (interface for
interfaces or valuetype for valuetypes), the implementation type shall be derived from
the implementation type of the first-named non-abstract parent. If there is no
inheritance specification or all parents named in the inheritance specification are
abstract, the implementation type shall be derived from the type named in the
“Ancestor Type” column of Table 4-2.

Each state member in each parent other than the parent derived from, from each
supported interface, and from each of their parents transitively, shall be mapped to
component of the implementation type, according to the mapping specified in the
following sections.

Each attribute, operation, and initializer in each parent other than the parent derived
from, from each supported interface, and from each of their parents transitively, shall
be mapped to primitive subprograms of the reference type, according to the mapping
specified in the following sections.

While the development and maintenance of the Impl package is explicitly the
responsibility of the user, the IDL translator of a conforming implementation shall be
able to generate an incomplete Impl package specification. At minimum, the package
specification shall contain:

• The package declaration.

• A declaration of the Object type. The declaration shall, at least, specify the proper
type derivation (as described above), but may otherwise be left incomplete.

• The specification of the primitive subprograms representing the server-side mapping
of the attributes, operations, and initializer. The mapping rules for attributes,
operations, and initializers are contained below.

4.7.3 Implementing Operations and Attributes

The parameters passed to an implementation subprogram parallel those passed to the
corresponding subprogram in the interface package except that the subprograms will
refer to type Object, not the reference type. Thus, all operation and attribute
implementations will be primitive on the implementation type. This allows
implementations to have a different inheritance hierarchy than that reflected in IDL. It
allows inherited operations to be overridden by implementations (a facility that cannot
be expressed in IDL). It also allows for alternate and delegating implementations that
are not reflected in IDL.

Table 4-2 Implementation Ancestor Types

IDL Construct Ancestor Type

unconstrained interface PortableServer.Servant_Base

local interface CORBA.Local.Object

stateful valuetype CORBA.Value.Base
4-18 Ada Language Mapping, v1.2 October 2001

4

A subprogram shall be generated for each mapped operation and attribute accessor
generated in the interface package. The name and signature of each subprogram shall
be the same as described in the mapping for the interface package in Section 4.5.3,
“Mapping for Attributes and Public State Members,” on page 4-8 (for attributes only)
and Section 4.5.4, “Mapping for Operations,” on page4-8, with the exception that type
of the Self parameter shall be mapped as access Object, rather than the
reference type declared in the interface package.

To implement these facilities, conforming implementations shall force all calls made to
the mapped operation and attribute subprograms to be dispatching calls.

4.7.4 Implementing State Members

Each state member of a valuetype, public or private, must be a component of the
implementation type. These state members must be marshalled when valuetypes are
passed to remote servers in invocations.

The Object record for a stateful value type shall contain a component mapped from
each state member. The component name shall be the mapped identifier of the state
member, and the type shall be mapped from the IDL type of the state member.

4.7.5 Implementing Valuetype Initializers

An initializer definition shall be mapped to an Ada function that returns the
Object_Ptr type. The Ada function name and signature shall be otherwise identical
to the mapped function for the interface package.

4.7.6 Interface Implementation Example

The following IDL interface:

File cultivation.idl:

#include “barn.idl”

interface Plow {
 long row();
 void attach(in short blade);
 void harness(in Horse power);
};

causes the IDL translator to generate the following implementation package
specification:
October 2001 Ada Mapping, v1.2: Implementation Package Mapping 4-19

4

with CORBA;
with CORBA.Object;
with Horse;

package Plow.Impl is
 type Object is new PortableServer.Servant_Base with

private;
function Row

(Self : access Object)
return CORBA.Long;

procedure Attach
(Self : access Object;
Blade : in CORBA.Short);

procedure Harness
(Self : access Object;
Power : in Farm.Horse.Ref);

private
type Object is new PortableServer.Servant_Base with

record
 -- (implementation data)

end record;
end Plow.Impl;

The placement of the object record in the private part is not mandated by this mapping .

4.7.7 Valuetype Implementation Example

The implementation package mapped from the ExampleB.WeightedBinaryTree
valuetype is:

-- Ada - exampleb-weightedbinarytree-value_impl.ads
package ExampleB.WeightedBinaryTree.Value_Impl is

 type Object is new CORBA.Value.Impl_Base with record
 weight : CORBA.Long;
 left : Value_Ref;
 right : Value_Ref;
 end record;
 type Object_Ptr is access all Object'CLASS;

 function createWBT(w : in CORBA.Long) return Object_Ptr;

 function preOrder (Self: access Object)
 return ExampleB.Printer.ULongSeq;
 function postOrder (Self: access Object)
 return ExampleB.Printer.ULongSeq;

 procedure print
 (Self : access Object;
 Data : in ExampleB.Printer.ULongSeq);
4-20 Ada Language Mapping, v1.2 October 2001

4

end ExampleB.WeightedBinaryTree.Value_Impl;

4.8 Delegating Servants

The mapping presented above for servants is inheritance-based; object implementations
are required to inherit from a common base class, PortableServer.Servant. In
some instances, in particular when there already exists a legacy implementation that
the developer would like to wrap, this requirement can be intrusive. Also, this mapping
only supports implementation inheritance from the first-named parent. Ada supports
other useful implementation strategies (for example, building-block approaches to
achieving the effects of multiple-inheritance) that are best implemented with a “clean
slate.”

For these reasons, an additional mapping for object implementations that is delegation-
based is defined.

The form of the additional mapping is a generic package that can be used to “wrap”
any type with the proper syntax; that is, it supports subprograms with the proper
signatures, and yields a CORBA servant type that can be registered with a POA.

Implementation may suppress the generation of the package associated with this
alternate mapping unless it is requested by the user (for example, through a command
line compiler switch). When requested to generate this alternate mapping, the
generation of the implementation package is optional.

When requested, an additional “implementation delegation” package shall be generated
for each unconstrained and local interface. The implementation delegation package
shall be a child package of the interface package with name extension .Delegate.
The implementation delegation package shall be generic with the following formal
parameters:

1. A limited private type with formal name Wrapped. This is the user type to be
wrapped.

2. For each mapped attribute accessor/setter and mapped operation from the interface
and all of its ancestors (not including CORBA.Object), a generic formal
subprogram parameter with the same signature as the subprograms mapped for the
.Impl packages shall be defined. The formal subprogram parameter will have the
“is box” form of default.

The generic package shall define a new type with name Object derived (directly)
from PortableServer.Servant_Base. Instances of this type may be registered
with a POA to service remote and local requests. This type, Object, shall be declared
with unknown discriminants. A class-wide access type, Object_Ptr, shall also be
declared. A Create function shall be declared that yields an Object_Ptr from a
general access to an instance of the Wrapped type.

For example, for the horse interface described in the current mapping document, the
following implementation delegation package will be generated:
October 2001 Ada Mapping, v1.2: Delegating Servants 4-21

4

with Feed;
with PortableServer;
with Animal;
generic
 type Wrapped is limited private;
 with procedure eat (Self : access Wrapped;
 bag : in out Feed.Ref;
 Returns : out CORBA.Boolean) is <>;
 with function Get_alertness (Self : access Wrapped)
 return Animal.State is <>;
 with procedure Set_alertness (Self : access Wrapped;
 To : in Animal.State) is <>;
 with function Get_parent (Self : access Wrapped)
 return Ref'CLASS is <>;
 with procedure trot (Self : access Wrapped;
 distance : in CORBA.Short) is <>;
package Horse.Delegate is

 type Object(<>) is new PortableServer.Servant_Base
 with private;
 type Object_Ptr is access all Object'CLASS;
 function Create(From : access Wrapped) return Object_Ptr;

end Horse.Delegate;

4.9 Mapping Forward Declarations

In IDL, a forward declaration defines the name of an interface or valuetype without
defining it. This allows definitions of interfaces and valuetypes that refer to each other.
This presents a challenge to the mapping since Ada packages cannot “with” each other.
An explicit mapping of forward declarations is defined in order to break this withing
problem.

4.9.1 Forward Definition Packages

Conforming implementations shall provide two generic packages, CORBA.Forward
and CORBA.Value_Forward, with the following specifications that will be used in
the mapping of forward declarations.

generic
package CORBA.Forward is

type Ref is new CORBA.Object.Ref with null record;

generic
type Ref_Type is new CORBA.Object.Ref with private;

package Convert is
function From_Forward(The_Forward : in Ref)

return Ref_Type;
function To_Ref (The_Forward : in Ref)
4-22 Ada Language Mapping, v1.2 October 2001

4

return Ref_Type
renames From_Forward;
function To_Forward (The_Ref : in Ref_Type)

return Ref;
end Convert;

end CORBA.Forward;

generic
package CORBA.Value.Forward is

type Value_Ref is new CORBA.Value.Base with null record;

generic
type Ref_Type is new CORBA.Value.Base with private;

package Convert is
function From_Forward (The_Forward : in Value_Ref)

return Ref_Type;
function To_Ref (The_Forward : in Value_Ref)

return Ref_Type
renames From_Forward;
function To_Forward (The_Ref : in Ref_Type)

return Value_Ref;
end Convert;

end CORBA.Value.Forward;

4.9.2 Mapping Rules

An instantiation of CORBA.Forward shall be performed for every forward
declaration of an interface, and an instantiation of CORBA.Forward shall be
performed for every forward declaration of a valuetype. The name of the instantiation
shall be the interface or valuetype name appended by _Forward. All references to
the forward declared interface or valuetype before the full declaration shall be mapped
to the Ref or Value_Ref type in this instantiated package.

Within the full declaration of the forward declared interface or valuetype, the nested
Convert package shall be instantiated with the actual Ref or Value_Ref type. The
name of the instantiation shall be Convert_Forward. Implementations of the
contained To_Forward and From_Forward subprograms shall allow clients of the
forward declaration package to convert freely from the actual Ref or Value_Ref to
the forward Ref or Value_Ref and vice versa. Clients holding an instance of a valid
reference for an interface or valuetype may have to convert those references to the
corresponding forward references for references mapped before the full declaration.

4.9.3 Example

The following illustrates the use of the forward reference mapping to resolve circular
definitions. Consider the two files:
October 2001 Ada Mapping, v1.2: Mapping Forward Declarations 4-23

4

File chicken.idl:

#ifndef CHICKEN
#define CHICKEN
interface Chicken;
#include “egg.idl”
interface Chicken {
 Egg lay();
};
#endif

File egg.idl:

#ifndef EGG
#define EGG
interface Egg;
#include “chicken.idl”
interface Egg {
 Chicken hatch();
};
#endif

This use of IDL presents a difficult problem for the Ada mapping since two Ada
packages cannot “with” each other. The solution is to define the operations in each
interface in terms of a “forward” type; therefore, the circularity can be resolved.

package Chicken_IDL_FILE is

end Chicken_IDL_FILE;

with CORBA.Forward;
package Chicken_Forward is new CORBA.Forward;

with CORBA.Forward;
package Egg_Forward is new CORBA.Forward;

with CORBA.Object;
with Chicken_Forward;
with Egg_Forward;

package Egg is
type Ref is new CORBA.Object.Ref with null record;
function Hatch (Self : in Ref)

return Chicken_Forward.Ref;
function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)

return Ref;
package Convert is new Egg_Forward.Convert(Ref);

end Egg;
4-24 Ada Language Mapping, v1.2 October 2001

4

with CORBA.Object;
with Egg;
with Chicken_Forward;

package Chicken is
type Ref is new CORBA.Object.Ref with null record;
function Lay

(Self : in Ref) return Egg.Ref;
function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)

return Ref;
package Convert is new Chicken_Forward.Convert(Ref);

end Chicken;

4.10 Mapping Value Boxes

The CORBA/IIOP Specification states this about value boxes:

“It is often convenient to define a value type with no inheritance or operations and
with a single state member. A shorthand IDL notation is used to simplify the use of
value types for this kind of simple containment, referred to as a “value box”.”

4.10.1 Value Box Package

Conforming implementations shall provide an implementation of the following generic
package:

generic
 type Boxed is private;
 type Boxed_Access is access all Boxed;
package CORBA.Value.Box is

 type Box_Ref is new CORBA.Value.Base with private;

 function Is_Null(The_Ref : Box_Ref) return Boolean;
 function Create(With_Value : in Boxed) return Box_Ref;
 function "+" (With_Value : in Boxed) return Box_Ref
 renames Create;

 function Contents(The_Boxed : in Box_Ref)
 return Boxed_Access;
 function "-" (The_Boxed : in Box_Ref)
 return Boxed_Access renames Contents;

 procedure Release(The_Ref : in out Box_Ref);

end CORBA.Value.Box;

Implementations of the Box_Ref type shall support reference counting, “smart
pointer” semantics for the boxed value.
October 2001 Ada Mapping, v1.2: Mapping Value Boxes 4-25

4

4.10.2 Mapping of Value Boxes

Each IDL value box declaration shall be mapped by:

• The declaration of a general access to the type to be boxed.

• An instantiation of CORBA.Value.Box with the type to be boxed and the
previously declared access type as actual parameters of the instantiation. The name
of the instantiated package shall be formed by appending _Value_Box to the IDL
identifier for the value box.

• A derivation of the Box_Ref type from the instantiation with name mapped from
the identifier of the value box shall be defined. This has the effect of introducing the
type and its operations into the original name scope.

4.10.3 Example

For example, the following IDL:

// IDL
module Example {

 valuetype LongSeq sequence<Long>;
 interface Bar {
 void doit(in LongSeq seq1);
 };
};

maps to:

-- Ada - example.ads
package Example is

 package IDL_SEQUENCE_Long is new
 CORBA.Sequences.Unbounded(...

 type IDL_SEQUENCE_Long_Access is
 access all IDL_SEQUENCE_Long.Sequence;
 package LongSeq_Value_Box is
 new CORBA.Value.Box(IDL_SEQUENCE_Long.Sequence,
 IDL_SEQUENCE_Long_Access);
 type LongSeq is new LongSeq_Value_Box.Box_Ref;

end Example;
-- Ada - example-bar.ads
with CORBA.Object;
package Example.Bar is

 type Ref is new CORBA.Object.Ref with null record;

 procedure Doit(Self : in Ref; seq1: in Example.LongSeq);
4-26 Ada Language Mapping, v1.2 October 2001

4

end Example.Bar;

4.11 Tasking Considerations

An implementation should document whether access to CORBA services is tasking-
safe. An operation is tasking-safe if two tasks within an Ada program may perform that
operation and the effect is always as if they were performed in sequence.

Unless otherwise noted, it should be assumed that a CORBA operation is not tasking-
safe, given current semantics of the CORBA specification, which is non-reentrant.

For implementations that support tasking-safe operations, the implementation should
further document the blocking behavior of CORBA operations. Blocking may be at the
task or program level: when an Ada task calls a CORBA operation, it is preferred that
only the task, and not the whole Ada program, be blocked. Refer to the POSIX Ada
binding, IEEE-Std 1003.5-1992, for further discussion.
October 2001 Ada Mapping, v1.2: Tasking Considerations 4-27

4

4-28 Ada Language Mapping, v1.2 October 2001

Mapping the CORBA Module 5
CORBA pseudo-objects are not first class objects. There are no servers associated with
pseudo objects, they are not registered with an ORB, and references to pseudo-objects
are not necessarily valid across computational contexts.

This mapping provides a standard binding for the pseudo-objects, the pre-defined
environment for CORBA. Implementation of pseudo-objects are not specified in this
mapping.

Contents

This chapter contains the following sections.

5.1 Mapping Rules for Pseudo-Objects

The types representing CORBA pseudo-objects are not derived from
CORBA.Object.Ref. Ada also supports “object semantics” better than some other
OOPLs. This mapping allows the types associated with pseudo-objects to be named

Section Title Page

“Mapping Rules for Pseudo-Objects” 5-1

“Reference and Implementation Base Types” 5-2

“Mapping for Native Types” 5-7

“The CORBA package” 5-8

“Other Pseudo-Objects” 5-16

“Ada Specific Support packages” 5-25
October 2001 Ada Language Mapping, v1.2 5-1

5

Object and support copy semantics in assignment. The Self parameter will be of
the Object type and in out mode, except when the operation is obviously a query-
only function, in which case the Object parameter is in mode.

Conforming implementations shall raise appropriate CORBA exceptions on detection
of an error condition.

Conforming implementations shall implement copy semantics for assignment of
pseudo-objects mapped as an Object type; that is, assignment of a value of a type
mapped from a pseudo-object as an Object to another object shall result in a copy of all
components of the original). Conforming implementations shall implement reference
semantics for assignment of pseudo-object mapped as a Ref type; that is, assignment of
a value of a type mapped from a pseudo-object as a Ref to another object shall result
in a sharing of the components of the objects.

Conforming implementations shall ensure that implementations of pseudo-objects do
not “leak” memory.

In general, the operations for CORBA pseudo-objects are mapped from the pseudo-
IDL according to the rules specified in the preceding chapter for local interfaces.

Other exceptions to these general mapping rules are noted in the following text.

5.2 Reference and Implementation Base Types

The base types for references and implementation of CORBA’s object-oriented
constructs were introduced in Section 4.4.2, “Base Types,” on page 4-5. Their
complete definition is presented here.

5.2.1 AbstractBase

This native type is the base type of all abstract interfaces:

“Abstract interfaces implicitly inherit from CORBA::AbstractBase. This type is
defined as native. It is the responsibility of each language mapping to specify the
actual programming language type that is used for this type.”

AbstractBase is mapped to a child package of the CORBA package. It contains an
opaque implementation-defined tagged type that becomes the ancestor type for all
references to interfaces (abstract, unconstrained, or local), valuetypes (stateful and
abstract), and value boxes. This package has the following definition:

package CORBA.AbstractBase is

 type Ref is new Ada.Finalization.Controlled with
 record
 Ptr : CORBA.Impl.Object_Ptr;
 ...
 end record;

 procedure Initialize (The_Ref : in out Ref);
5-2 Ada Language Mapping, v1.2 October 2001

5

 procedure Adjust (The_Ref : in out Ref);
 procedure Finalize (The_Ref : in out Ref);

 procedure Unref (The_Ref : in out Ref)
 renames Finalize;

 function Is_Nil(Self : in Ref) return Boolean;
 function Is_Null(Self : in Ref) return Boolean
 renames Is_Nil;

 procedure Duplicate(Self : in out Ref) renames Adjust;

 procedure Release(Self : in out Ref);

 function Object_Of(Self : Ref)
 return CORBA.Impl.Object_Ptr;

end CORBA.AbstractBase;

CORBA defines three operations on any reference type: duplicate, release, and
is_nil. Note that these operations are on the reference type, not the implementation
type. The Ada mapping of these operations are defined to be primitive to the
CORBA.AbstractBase.Object type. Thus they will be inherited by all reference
types, whether for abstract interfaces, unconstrained interfaces, local interfaces,
stateful valuetypes, or abstract valuetypes.

Conforming implementations shall provide reference counting semantics for references
such that the memory for an implementation may be reclaimed after the last local
reference to that implementation has been finalized. The provided implementation of
these operations shall have the following semantics:

• Duplicate shall be a renaming of Adjust. In general, explicit use of
Duplicate by developers is not needed.

• The Is_Nil operation returns TRUE if the object reference contains an empty
reference.

• The Release procedure indicates that the caller will no longer access the
reference so that associated resources may be deallocated. If the given object
reference is nil, Release does nothing. After a call to Release, a call to
Is_Nil on the same reference must return TRUE.

ORBs are required to define a special value of each object reference, which identifies
an object reference that has not been given a valid value. Conceptually, this is the “nil”
value. This mapping relies on the Is_Nil function to detect unintialized object
references, and does not require or allow definition of a Nil constant.

5.2.2 Object

Object is the root of the IDL interface reference hierarchy. While Object is a
normal CORBA object (not a pseudo-object), its interface is described here because it
references other pseudo-objects and its implementation will necessarily be different.
October 2001 Ada Mapping, v1.2: Reference and Implementation Base Types 5-3

5

The package CORBA.Object provides the Ada interface and includes a Ref type that
is the root for client-side interfaces. See Section 4.5, “Interface Package Mapping,” on
page 4-6 for more information.

--IDL: interface Object {
package CORBA.Object is

 type Ref is new CORBA.AbstractBase.Ref with null record;

 function Get_Interface(Self : in Ref)
 return Ref'CLASS; -- returns CORBA.InterfaceDef.Ref;

 -- IDL: boolean is_nil();
 -- inherited from CORBA.AbstractBase.Ref

 -- IDL: Object duplicate();
 -- inherited from CORBA.AbstractBase.ref
 -- Note: not needed for assignment, just use :=

 -- IDL: void release();
 -- inherited from CORBA.AbstractBase.Ref)

 function Is_A (Self : in Ref;
 Logical_Type_ID : in Standard.String)
 return Boolean;

 function Non_Existent (Self : Ref) return Boolean;

 function Is_Equivalent
 (Self : Ref;
 Other_Object : Ref'CLASS)
 return Boolean;

 function Hash (Self : Ref; Maximum : Unsigned_Long)
 return Unsigned_Long;

 procedure Create_Request
 (Self : in Ref;
 Ctx : in CORBA.Context.Ref;
 Operation : in Identifier;
 Arg_list : in CORBA.NVList.Ref;
 Result : in out NamedValue;
 Request : out CORBA.Request.Object;
 Req_Flags : in Flags);

 function Get_Policy(Self : Ref;
 Policy_Type : in PolicyType) return CORBA.Policy.Ref;

 function Get_Domain_Managers(Self : Ref)
 return CORBA.Domainmanager.DomainManagerList;
5-4 Ada Language Mapping, v1.2 October 2001

5

 procedure Set_Policy_Overrides
 (Self : Ref;
 Policies : CORBA.Policy.PolicyList;
 Set_Add : SetOverrideType);

end CORBA.Object;

5.2.3 CORBA.Value.Base and CORBA.Value.Impl_Base

CORBA.Value.Base is the defined root for all references to valuetypes. It is a
specialization of CORBA.AbstractBase.Ref. The CORBA.Value package also
defines the CORBA.Value.Impl_Base type, which is the ancestor type for all value
implementations. The CORBA.Value package has the following definition:

package CORBA.Value is

 type Base is abstract new CORBA.AbstractBase.Ref
 with null record;
 type Impl_Base is abstract tagged limited private;

end CORBA.Value;

5.2.4 CORBA.Impl.Object

CORBA.Impl.Object is the abstract ancestor type of all implementations, both of
interfaces and valuetypes. It is defined in package CORBA.Impl:

package CORBA.Impl is

 type Object is abstract
 new Ada.Finalization.Limited_Controlled with
 record
 ... // must include reference count
 end record;

 type Object_Ptr is access all Object'CLASS;

 ...

end CORBA.Impl;

5.2.5 LocalObject

LocalObject is the ancestor type for all implementations of local interfaces. It is
defined in package CORBA.Local:

package CORBA.Local is
October 2001 Ada Mapping, v1.2: Reference and Implementation Base Types 5-5

5

 type Object is abstract tagged limited private;

end CORBA.Local;

5.2.6 PortableServer.Servant_Base

This type is the base type for all user implementations of interface implementations:

“This specification defines a native type PortableServer::Servant. Values
of the type Servant are programming-language-specific implementations of
CORBA interfaces. Each language mapping must specify how Servant is mapped
to the programming language data type that corresponds to an object
implementation. The Servant type has the following characteristics and
constraints.”

The Ada mapping of this native type is very similar to the C++ mapping, and is
specified as part of the PortableServer package. This package is the mapping of
the PortableServer module:

package PortableServer is

 package POA_Forward is new CORBA.Forward;

 --I native Servant;
 type Servant_Base is abstract tagged limited private;
 type Servant is access all Servant_Base'CLASS;

 --I "values of type Servant support a language-specific
 --I programming interface that can be used by the ORB to
 --I obtain a default POA for that servant. This
 --I interface is used only to support implicit
 --I activation.”
 function Get_Default_POA (For_Servant : in Servant_Base)
 return POA_Forward.Ref;

 --I "Values of type Servant provide default
 --I implementations of the standard object reference
 --I operations get_interface, is_a, and non_existent."
 function Get_Interface(For_Servant : Servant_Base)
 return CORBA.Object.Ref'CLASS;
 function Is_A (For_Servant : Servant_Base;
 Logical_Type_ID : Standard.String)
 return Boolean;
 function Non_Existent (For_Servant : Servant_Base)
 return Boolean;

 --I "Values of type Servant must be testable for identity
 function "="(Left, Right: in Servant_Base)
 return Boolean;
5-6 Ada Language Mapping, v1.2 October 2001

5

5.3 Mapping for Native Types

There are a number of types in the CORBA/IIOP Specification that are of native
type. All language mappings must provide explicit mappings of native types.

5.3.1 AbstractBase

The mapping of AbstractBase has been discussed in Section 5.2.1, “AbstractBase,”
on page 5-2.

5.3.2 ValueFactory

There is no need for an explicit ValueFactory type in the Ada mapping. There is no
need for user visibility to this underlying type.

5.3.3 OpaqueValue

OpaqueValue is used in the definition of the Dynamic Invocation Interface. The Ada
mapping has the following definition:

subtype OpaqueValue is System.Address;

5.3.4 PortableServer::Servant

The mapping of this native type has already been described in Section 5.2.6,
“PortableServer.Servant_Base,” on page 5-6.

5.3.5 Cookie

The Cookie type allows the developer of ServantLocators to pass arbitrary data
between pairs of calls to Preinvoke and Postinvoke. It is defined as part of the
PortableServer.ServantLocator as follows:

package PortableServer.ServantLocator is

 type Local_Ref is
 new PortableServer.ServantManager.Local_Ref
 with null record;

 --I native Cookie;
 type Cookie_Base is -- ... implementation defined
 -- must be tagged
 type Cookie is access all Cookie_Base'CLASS;

 ...
October 2001 Ada Mapping, v1.2: Mapping for Native Types 5-7

5

5.4 The CORBA package

The CORBA package contains the mapping of most of the definitions in the CORBA
module that are not otherwise contained in interfaces or nested modules. The Ada
mapping has moved some of the definitions into package where they are used and
segmented some of the definitions into child packages. In particular, Interface
Repository definitions have been moved to a child package, and so are not present
here.

The specification of the CORBA package is:

--IDL: module CORBA {
package CORBA is

 -- CORBA Module: In order to prevent names defined with
 -- the CORBA specification from clashing with names in
 -- programming languages and other software systems, all
 -- names defined by CORBA are treated as if they were
 -- defined with a module named CORBA.

 -- Each IDL data type is mapped to a native data
 -- type via the appropriate language mapping.
 -- The following definitions may differ. See the mapping
 -- specification for more information.

 type Short is new Interfaces.Integer_16;
 type Long is new Interfaces.Integer_32;
 type Long_Long is new Interfaces.Integer_64;
 type Unsigned_Short is new Interfaces.Unsigned_16;
 type Unsigned_Long is new Interfaces.Unsigned_32;
 type Unsigned_Long_Long is new Interfaces.Unsigned_64
 type Float is new Interfaces.IEEE_Float_32;
 type Double is new Interfaces.IEEE_Float_64;
 type Long_Double is new Interfaces.IEEE_Extended_Float;

 subtype Char is Standard.Character;
 subtype Wchar is Standard.Wide_Character;
 type Octet is new Interfaces.Unsigned_8;

 subtype Boolean is Standard.Boolean;

 type String is
 new Ada.Strings.Unbounded.Unbounded_String;
 function To_CORBA_String (Source : Standard.String)
 return CORBA.String;
 function To_Standard_String (Source : CORBA.String)
 return Standard.String;
 Null_String : constant String := To_CORBA_String ("");

 type Wide_String is new
 Ada.Strings.Wide_Unbounded.Unbounded_Wide_String;
 function To_CORBA_Wide_String
 (Source : Standard.Wide_String)
 return CORBA.Wide_String;
5-8 Ada Language Mapping, v1.2 October 2001

5

 function To_Standard_Wide_String
 (Source : CORBA.Wide_String)
 return Standard.Wide_String;
 Null_Wide_String : constant Wide_String
 := To_CORBA_Wide_String ("");

 --IDL: typedef string Identifier;
 type Identifier is new CORBA.String;
 Null_Identifier : constant Identifier
 := Identifier(Null_String);

 --IDL: typedef string RepositoryId;
 type RepositoryId is new CORBA.String;
 Null_ID : constant RepositoryId
 := RepositoryId(Null_String);

 --IDL: typedef string ScopedName;
 type ScopedName is new CORBA.String;
 Null_ScopedName : constant ScopedName
 := ScopedName(Null_String);

 --
 -- Exceptions
 --

 type IDL_Exception_Members is
 abstract tagged null record;
 procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;
 To : out IDL_Exception_Members) is abstract;

 procedure Raise_Exception
 (Self : IDL_Exception_Members'CLASS);

 -- CORBA 4.14 Standard Exceptions:
 type Completion_Status
 is (COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE);
 type Exception_Type
 is (NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION);

 type System_Exception_Members is
 new CORBA.IDL_Exception_Members with
 record
 Minor : CORBA.Unsigned_Long;
 Completed : CORBA.Completion_Status;
 end record;
 procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;
 To : out System_Exception_Members);

 -- the unknown exception
 UNKNOWN : exception;
 type UNKNOWN_Members is new System_Exception_Members
 with null record;
October 2001 Ada Mapping, v1.2: The CORBA package 5-9

5

 -- an invalid parameter was passed
 BAD_PARAM : exception;
 type BAD_PARAM_Members is new System_Exception_Members
 with null record;

 -- dynamic memory allocation failure
 NO_MEMORY : exception;
 type NO_MEMORY_Members is new System_Exception_Members
 with null record;

 -- violated implementation limit
 IMP_LIMIT : exception;
 type IMP_LIMIT_Members is new System_Exception_Members
 with null record;

 -- communication failure
 COMM_FAILURE : exception;
 type COMM_FAILURE_Members is
 new System_Exception_Members with null record;

 -- invalid object reference
 INV_OBJREF : exception;
 type INV_OBJREF_Members is new System_Exception_Members
 with null record;

 -- no permission for attempted op.
 NO_PERMISSION : exception;
 type NO_PERMISSION_Members is
 new System_Exception_Members with null record;

 -- ORB internal error
 INTERNAL : exception;
 type INTERNAL_Members is new System_Exception_Members
 with null record;

 -- error marshalling param/result
 MARSHAL : exception;
 type MARSHAL_Members is new System_Exception_Members
 with null record;

 -- ORB initialization failure
 INITIALIZATION_FAILURE : exception;
 type INITIALIZATION_FAILURE_Members is
 new System_Exception_Members with null record;

 -- operation implementation unavailable
 NO_IMPLEMENT : exception;
 type NO_IMPLEMENT_Members is
 new System_Exception_Members with null record;

 -- bad typecode
 BAD_TYPECODE : exception;
 type BAD_TYPECODE_Members is
 new System_Exception_Members with null record;
5-10 Ada Language Mapping, v1.2 October 2001

5

 -- invalid operation
 BAD_OPERATION : exception;
 type BAD_OPERATION_Members is
 new System_Exception_Members with null record;

 -- insufficient resources for req.
 NO_RESOURCES : exception;
 type NO_RESOURCES_Members is
 new System_Exception_Members with null record;

 -- response to request not yet available
 NO_RESPONSE : exception;
 type NO_RESPONSE_Members is
 new System_Exception_Members with null record;

 -- persistent storage failure
 PERSIST_STORE : exception;
 type PERSIST_STORE_Members is
 new System_Exception_Members with null record;

 -- routine invocations out of order
 BAD_INV_ORDER : exception;
 type BAD_INV_ORDER_Members is
 new System_Exception_Members with null record;

 -- transient failure - reissue request
 TRANSIENT : exception;
 type TRANSIENT_Members is
 new System_Exception_Members with null record;

 -- cannot free memory
 FREE_MEM : exception;
 type FREE_MEM_Members is
 new System_Exception_Members with null record;

 -- invalid identifier syntax
 INV_IDENT : exception;
 type INV_IDENT_Members is
 new System_Exception_Members with null record;

 -- invalid flag was specified
 INV_FLAG : exception;
 type INV_FLAG_Members is
 new System_Exception_Members with null record;

 -- error accessing interface repository
 INTF_REPOS : exception;
 type INTF_REPOS_Members is
 new System_Exception_Members with null record;

 -- error processing context object
 BAD_CONTEXT : exception;
 type BAD_CONTEXT_Members is
 new System_Exception_Members with null record;
October 2001 Ada Mapping, v1.2: The CORBA package 5-11

5

 -- failure detected by object adapte
 OBJ_ADAPTER : exception;
 type OBJ_ADAPTER_Members is
 new System_Exception_Members with null record;

 -- data conversion error
 DATA_CONVERSION : exception;
 type DATA_CONVERSION_Members is
 new System_Exception_Members with null record;

 -- object not exist error
 OBJECT_NOT_EXIST : exception;
 type OBJECT_NOT_EXIST_Members is
 new System_Exception_Members with null record;

 -- required transaction context not present
 TRANSACTION_REQUIRED : exception;
 type TRANSACTION_REQUIRED_Members is
 new System_Exception_Members with null record;

 -- transaction already rolled back or marked for
 -- rollback, cannot proceed
 TRANSACTION_ROLLEDBACK : exception;
 type TRANSACTION_ROLLEDBACK_Members is
 new System_Exception_Memberswith null record;

 -- invalid transaction context
 INVALID_TRANSACTION : exception;
 type INVALID_TRANSACTION_Members is
 new System_Exception_Members with null record;

 -- invalid policy
 INV_POLICY : exception;
 type INV_POLICY_Members is
 new System_Exception_Members with null record;

 -- invalid transaction context
 CODESET_INCOMPATIBLE : exception;
 type CODESET_INCOMPATIBLE_Members is
 new System_Exception_Members with null record;

 -- TypeCodes

 type TCKind is (tk_null, tk_void, tk_short, tk_long,
 tk_ushort, tk_ulong, tk_float, tk_double,
 tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode,
 tk_Principal, tk_objref, tk_struct, tk_union,
 tk_enum, tk_string, tk_sequence, tk_array,
 tk_alias, tk_except, tk_longlong, tk_ulonglong,
 tk_longdouble, tk_widechar, tk_wstring,
 tk_fixed, tk_value, tk_valuebox, tk_native,
 tk_abstract_interface);

 type ValueModifier is new Short;
 VTM_NONE : constant ValueModifier := 0;
5-12 Ada Language Mapping, v1.2 October 2001

5

 VTM_CUSTOM : constant ValueModifier := 1;
 VTM_ABSTRACT : constant ValueModifier := 2;
 VTM_TRUNCATABLE : constant ValueModifier := 3;

 type Visibility is new Short;
 PRIVATE_MEMBER : constant Visibility := 0;
 PUBLIC_MEMBER : constant Visibility := 1;

 -- Any Type: The any type permits the specification of
 -- values that can express any IDL type.
 type Any is private;

 -- IDL: interface TypeCode

 package TypeCode is

 type Object is private;

 Bounds : exception;
 type Bounds_Members is
 new CORBA.IDL_Exception_Members with null record;
 procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;
 To : out Bounds_Members);

 BadKind : exception;
 type BadKind_Members is
 new CORBA.IDL_Exception_Members with null record;
 procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;
 To : out BadKind_Members);

 function "=" (Left, Right : in Object)
 return Boolean;
 function Equal (Left, Right : in Object)
 return Boolean renames "=";

 function Equivalent(Left, Right : in Object)
 return Boolean;
 function Get_Compact_Typecode(Self : in Object)
 return Object;

 function Kind (Self : in Object) return TCKind;

 --IDL: for tk_objref, tk_struct, tk_union, tk_enum,
 --IDL: tk_alias, tk_value, tk_value_box, tk_native,
 --IDL: tk_abstract_interface, and tk_except
 function Id (Self : in Object) return RepositoryId;

 --IDL: for tk_objref, tk_struct, tk_union, tk_enum,
 --IDL: tk_alias, tk_value, tk_value_box, tk_native,
 --IDL: tk_abstract_interface, and tk_except
 function Name (Self : in Object) return Identifier;
October 2001 Ada Mapping, v1.2: The CORBA package 5-13

5

 --IDL: for tk_struct, tk_union, tk_enum, tk_value,
 --IDL: tk_value_box, and tk_except
 function Member_Count (Self : in Object)
 return Unsigned_Long;
 function Member_Name (Self : in Object;
 Index : in Unsigned_Long) return Identifier;

 --IDL: for tk_struct, tk_union, tk_value,
 --IDL: tk_value_box, and tk_except
 --IDL: TypeCode member_type (in unsigned long index)
 --IDL: raises (BadKind, Bounds);
 function Member_Type (Self : in Object;
 Index : in Unsigned_Long) return Object;

 --IDL: for tk_union
 function Member_Label (Self : in Object;
 Index : in Unsigned_Long) return Any;
 function Discriminator_Type (Self : in Object)
 return Object;
 function Default_Index (Self : in Object)
 return Long;

 --IDL: for tk_string, tk_sequence, and tk_array
 function Length (Self : in Object)
 return Unsigned_Long;

 --IDL: for tk_sequence, tk_array, tk_value,
 --IDL: tk_value_box, and tk_alias
 function Content_Type (Self : in Object)
 return Object;

 --IDL: for tk_fixed
 function Fixed_Digits(Self : in Object)
 return Unsigned_Long;
 function Fixed_Scale(Self : in Object) return Short;

 --IDL: for tk_value
 function Member_Visibility(Self : in Object;
 Index : in Unsigned_Long) return Visibility;
 function Type_Modifier(Self : in Object)
 return ValueModifier;
 function Concrete_Base_Type(Self : in Object)
 return Object;

 end TypeCode;

 -- pre-defined TypeCode "constants"
 function TC_null return TypeCode.Object;
 function TC_void return TypeCode.Object;
 function TC_short return TypeCode.Object;
 function TC_long return TypeCode.Object;
 function TC_long_long return TypeCode.Object;
 function TC_unsigned_short return TypeCode.Object;
 function TC_unsigned_long return TypeCode.Object;
 function TC_unsigned_long_long return TypeCode.Object;
5-14 Ada Language Mapping, v1.2 October 2001

5

 function TC_float return TypeCode.Object;
 function TC_double return TypeCode.Object;
 function TC_long_double return TypeCode.Object;
 function TC_boolean return TypeCode.Object;
 function TC_char return TypeCode.Object;
 function TC_wchar return TypeCode.Object;
 function TC_cctet return TypeCode.Object;
 function TC_any return TypeCode.Object;
 function TC_TypeCode return TypeCode.Object;
 -- TC_Object defined in CORRBA.Object
 function TC_string return TypeCode.Object;
 function TC_wide_string return TypeCode.Object;

 function "=" (Left, Right : in Any) return Boolean;
 function Equal (Left, Right : in Any) return Boolean
 renames "=";

 function To_Any (From : in Short) return Any;
 function To_Any (From : in Long) return Any;
 function To_Any (From : in Long_Long) return Any;
 function To_Any (From : in Unsigned_Short) return Any;
 function To_Any (From : in Unsigned_Long) return Any;
 function To_Any (From : in Unsigned_Long_Long)return Any;
 function To_Any (From : in Float) return Any;
 function To_Any (From : in Double) return Any;
 function To_Any (From : in Long_Double) return Any;
 function To_Any (From : in Boolean) return Any;
 function To_Any (From : in Char) return Any;
 function To_Any (From : in WChar) return Any;
 function To_Any (From : in Octet) return Any;
 function To_Any (From : in Any) return Any;
 function To_Any (From : in TypeCode.Object) return Any;
 function To_Any (From : in CORBA.String) return Any;
 function To_Any (From : in CORBA.Wide_String) return Any;

 function From_Any (From : in Any) return Short;
 function From_Any (From : in Any) return Long;
 function From_Any (From : in Any) return Long_Long;
 function From_Any (From : in Any) return Unsigned_Short;
 function From_Any (From : in Any) return Unsigned_Long;
 function From_Any (From : in Any) return Unsigned_Long_Long;
 function From_Any (From : in Any) return Float;
 function From_Any (From : in Any) return Double;
 function From_Any (From : in Any) return Long_Double;
 function From_Any (From : in Any) return Boolean;
 function From_Any (From : in Any) return Char;
 function From_Any (From : in Any) return WChar;
 function From_Any (From : in Any) return Octet;
 function From_Any (From : in Any) return Any;
 function From_Any (From : in Any) return TypeCode.Object;
 function From_Any (From : in Any) return CORBA.String;
 function From_Any (From : in Any) return CORBA.Wide_String;
October 2001 Ada Mapping, v1.2: The CORBA package 5-15

5

 function Get_Type (The_Any : in Any)
 return TypeCode.Object;

 type Flags is new CORBA.Unsigned_Long;
 ARG_IN : constant Flags;
 ARG_OUT : constant Flags;
 ARG_INOUT : constant Flags;

 type NamedValue is record
 Name : Identifier;
 Argument : Any;
 Arg_Modes : Flags;
 end record;

 OUT_LIST_MEMORY : constant Flags;
 IN_COPY_VALUE : constant Flags;
 INV_NO_RESPONSE : constant Flags;
 INV_TERM_ON_ERR : constant Flags;
 RESP_NO_WAIT : constant Flags;
 DEPENDENT_LIST : constant Flags;
 CTX_RESTRICT_SCOPE : constant Flags;

 -- in support of Object interface
 type PolicyType is new Unsigned_Long;
 type SetOverrideType is (SET_OVERRIDE, ADD_OVERRIDE);

 -- Container and Contained Objects
 -- moved to child package CORBA.Repository_Root

end CORBA;

5.5 Other Pseudo-Objects

The CORBA/IIOP Specification defines a number of pseudo-interfaces that must be
explicitly mapped by the language specification. These types and packages are
presented here. Packages mapped from the PortableServer module and other local
interfaces are not listed.

5.5.1 NamedValue

NamedValue is used only as an element of NVList. NamedValue contains an
optional name, an any value, and labeling flags. Legal flag values are ARG_IN,
ARG_OUT, and ARG_INOUT in bitwise combination with IN_COPY_VALUE. The type
Flags is mapped in accordance with the mapping rules. Appropriate Flag constants
must be defined by the implementation. NamedValue is mapped to a record in the
CORBA package in conformance with the mapping.

type Flags is new CORBA.Unsigned_Long;
ARG_IN: constant Flags;
ARG_OUT: constant Flags;
ARG_INOUT: constant Flags;
5-16 Ada Language Mapping, v1.2 October 2001

5

IN_COPY_VALUE: constant Flags;
type NamedValue is record
Name : Identifier;
Argument : Any;
Arg_Modes : Flags;
end record;

5.5.2 NVList

NVList is a list of NamedValues. The CORBA.NVList package provides the
mapping for the NVList pseudo-object. The Ref type is the mapping for the
reference and, unlike most pseudo-objects, is fully a CORBA reference types. New
NamedValues may be constructed only as part of an NVList through one of the
add_item functions. An additional version of Add_Item that uses a NamedValue
argument is provided.

package CORBA.NVList is

 type Ref is new CORBA.AbstractBase.Ref with null record;

 procedure Add_Item
 (Self : Ref;
 Item_Name : in Identifier;
 Item_Type : in CORBA.TypeCode.Object;
 Value : in System.Address;
 Len : in Long;
 Item_Flags : in Flags);
 procedure Add_Item
 (Self : Ref;
 Item_Name : in Identifier;
 Item : in CORBA.Any;
 Item_Flags : in Flags);
 procedure Add_Item
 (Self : Ref;
 Item : in NamedValue);

 -- free and free_memory not needed in Ada
 procedure Free(Self : Ref);
 procedure Free_Memory(Self : Ref);

 function Get_Count (Self : Ref) return CORBA.Long;

end CORBA.NVList;
--IDL: };
October 2001 Ada Mapping, v1.2: Other Pseudo-Objects 5-17

5

5.5.3 Request

Request provides the primary support for the Dynamic Invocation Interface (DII). A
new request on a particular target object may be constructed using the
Create_Request operation in the Object interface. Arguments and contexts may
be provided to the Create_Request operation or may be added after construction
via the Add_Arg operation in the Request interface. Requests can be transferred to
a server and responses obtained synchronously through the Invoke operation. The
Send operation may be used to transfer a request to a server without waiting for
results. Results, output arguments, and exceptions may be obtained later with the
Get_Response operation. The CORBA.Request package provides the Ada
interface to the Request pseudo-object and is mapped in conformance with the
mapping rules, except that an additional version of Add_Arg is provided that takes a
NamedValue.

package CORBA.Request is

 type Object is private;

 procedure Add_Arg
 (Self : in out Object;
 Arg_Type : in CORBA.TypeCode.Object;
 Value : in System.Address;
 Len : in Long;
 Arg_Flags : in Flags);
 procedure Add_Arg
 (Self : in out Object;
 Arg : in NamedValue);

 procedure Invoke
 (Self : in out Object;
 Invoke_Flags : in Flags := 0);

 procedure Delete(Self : in out Object);

 procedure Send
 (Self : in out Object;
 Invoke_Flags : in Flags := 0);

 procedure Get_Response
 (Self : in out Object;
 Response_Flags : in Flags := 0);

 function Poll_Response(Self : in Object) return Boolean;

end CORBA.Request;
5-18 Ada Language Mapping, v1.2 October 2001

5

5.5.4 Context

A Context supplies optional context information associated with a method
invocation. Package CORBA.Context provides the Ada interface for this capability.
If an error in processing occurs, the CORBA system exception BAD_CONTEXT is
returned. Conforming implementations must ensure adequate memory management of
dynamically allocated components.

package CORBA.Context is

type Ref is private;

procedure Set_One_Value
(Self : in Ref;
Prop_Name : in Identifier;
Value : in CORBA.String);

procedure Set_Values
(Self : in Ref;
Values : in CORBA.NVList.Ref);

procedure Get_Values
(Self : in Ref;
Start_Scope : in Identifier;
This_Object : in Boolean := TRUE;
Prop_Name : in Identifier;
Values : out CORBA.NVList.Ref);

procedure Delete_Values
(Self : in Ref;
Prop_Name : in Identifier);

procedure Create_Child
(Self : in Ref;
Ctx_Name : in Identifier;
Child_Ctx : out Ref);

procedure Delete
(Self : in Ref;
 Del_Flags : in Flags);

end CORBA.Context;

5.5.5 TypeCode

A TypeCode represents IDL type information. It is intimately related to type Any. For
this reason, package TypeCode that defines the Object type for TypeCode is a
subpackage nested within the CORBA package. See Section 3.14, “Mapping for
TypeCodes,” on page 3-12 for more information.
October 2001 Ada Mapping, v1.2: Other Pseudo-Objects 5-19

5

The TypeCode type is used by type any and type any is used by TypeCode.
Because of this circularity, the TypeCode package is defined as a nested subpackage
of the CORBA package. Its definition can be found in Section 5.4, “The CORBA
package,” on page 5-8.

5.5.6 ORB

An ORB is the programmer interface to the Object Request Broker. The package
CORBA.ORB provides the Ada interface to the Request Broker. Package ORB is
specified as a finite state machine rather than an object. None of the mapped operations
contain the Self parameter specified in the pseudo-object mapping rules.

-- interface ORB {
package CORBA.ORB is

 -- ORB initialization
 type ORBid is new CORBA.String;

 package IDL_Sequence_String is
 new CORBA.Sequences.Unbounded(...
 type Arg_List is new IDL_Sequence_String.Sequence;
 function Command_Line_Arguments return Arg_List;
 procedure Init
 (ORB_Identifier : in ORBid;
 Argv : in Arg_List
 := Command_Line_Arguments);

 type ObjectID is new CORBA.String;

 package ObjectId_Unbounded is
 new CORBA.Sequences.Unbounded (...
 type ObjectIdList is new ObjectId_Unbounded.Sequence;

 InvalidName : exception;
 type InvalidName_Members is
 new CORBA.IDL_Exception_Members with null record;
 procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;
 To : out InvalidName_Members);

 function Object_To_String
 (Obj : CORBA.Object.Ref'CLASS)
 return CORBA.String;
 function Object_To_String
 (Obj : CORBA.Object.Ref'CLASS)
 return Standard.String;

 procedure String_to_Object
 (From : in CORBA.String;
 To : in out CORBA.Object.Ref'CLASS);
5-20 Ada Language Mapping, v1.2 October 2001

5

 procedure String_to_Object
 (From : in Standard.String;
 To : in out CORBA.Object.Ref'CLASS);

 -- Dynamic Invocation related operations
 procedure Create_List
 (Count : in CORBA.Long;
 New_List : out CORBA.NVList.Ref);

 procedure Create_Operation_List
 (Oper : in CORBA.OperationDef.Ref;
 New_List : out CORBA.NVList.Ref);

 function Get_Default_Context return CORBA.Context.Ref;
 procedure Get_Default_Context
 (The_Default_Value : out CORBA.Context.Ref);

 package Request_Unbounded is
 new CORBA.Sequences.Unbounded(...
 type RequestSeq is new Request_Unbounded.Sequence;

 procedure Send_Multiple_Requests_Oneway
 (Req : in RequestSeq);
 procedure Send_Multiple_Requests_Deferred
 (Req : in RequestSeq);
 function Poll_Next_Response return Boolean;
 procedure Get_Next_Response
 (Req : out CORBA.Request.Object);

 -- Service information operations
 type ServiceType is new Unsigned_Short;
 type ServiceOption is new Unsigned_Long;
 type ServiceDetailType is new Unsigned_Long;

 Security : constant ServiceType := 1;

 type ServiceDetail is
 record
 service_detail_type : ServiceDetailType;
 service_detail : CORBA.String;
 end record;

 package IDL_SEQUENCE_ServiceOption is
 new CORBA.Sequences.Unbounded(...
 package IDL_SEQUENCE_ServiceDetail is
 new CORBA.Sequences.Unbounded(...
 type ServiceInformation is record
 service_options : IDL_SEQUENCE_ServiceOption.Sequence;
 service_details : IDL_SEQUENCE_ServiceDetail.Sequence;
 end record;
October 2001 Ada Mapping, v1.2: Other Pseudo-Objects 5-21

5

 procedure get_service_information
 (service_type : in ServiceType;
 service_information : out ServiceInformation;
 Returns : out CORBA.Boolean);

 -- initial reference operation
 function List_Initial_Services return ObjectIDList;

 function Resolve_Initial_References
 (Identifier : in ObjectID)
 return CORBA.Object.Ref'CLASS;
 function Resolve_Initial_References
 (Identifier : in Standard.String)
 return CORBA.Object.Ref'CLASS;

 -- TypeCode creation in CORBA.ORB.TypeCode_Creation

 -- Thead related operations
 function Work_Pending return Boolean;
 procedure Perform_Work;
 procedure Run;
 procedure Shutdown (Wait_For_Completion : Boolean);

 -- policy related operations
 type PolicyErrorCode is new CORBA.Short;
 BAD_POLICY : constant PolicyErrorCode
 := PolicyErrorCode'(0);
 UNSUPPORTED_POLICY : constant PolicyErrorCode
 := PolicyErrorCode'(1);
 BAD_POLICY_TYPE : constant PolicyErrorCode
 := PolicyErrorCode'(2);
 BAD_POLICY_VALUE : constant PolicyErrorCode
 := PolicyErrorCode'(3);
 UNSUPPORTED_POLICY_VALUE : constant PolicyErrorCode
 := PolicyErrorCode'(4);

 PolicyError : exception;
 type PolicyError_Members is
 new CORBA.IDL_Exception_Members with
 record
 Reason : PolicyErrorCode;
 end record;
 procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;
 To : out PolicyError_Members);

 function Create_Policy(Of_Type : PolicyType; Val : Any)
 return CORBA.Policy.Ref;

 -- there is no need in Ada for value factories
5-22 Ada Language Mapping, v1.2 October 2001

5

end CORBA.ORB;

The TypeCode creation functions have been moved to a child package
CORBA.ORB.TypeCode.

5.5.7 Current

Provides standardized access to computation context information. It is little needed in
Ada since language provides direct access to tasking and task-related information.
Current references are locality constrained.

package CORBA.Current is

 type Ref is new CORBA.Object.Ref with null record;

private
 ... implementation defined ...
end CORBA.Current;

5.5.8 Policy

Provides access to choices that may affect operations. The Policy interface is the
abstract base type for access to the various policies assigned. For example, the Security
Service defines a Security Policy that is derived from this reference type.

package CORBA.Policy is

type Ref is abstract new CORBA.Object.Ref with null
record;

function Get_Policy_Type(Self: Ref) return PolicyType;
function Copy(Self: Ref) return Ref;
-- Destroy unneeded
procedure Destroy(Self : Ref)

package IDL_SEQUENCE_Policy is new
CORBA.Sequences.Unbounded
October 2001 Ada Mapping, v1.2: Other Pseudo-Objects 5-23

5

 (Ref);
type PolicyList is new IDL_SEQUENCE_Policy.Sequence;

private

... implementation defined ...

end CORBA.Policy;

5.5.9 DomainManager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

package CORBA.DomainManager is

type Ref is new CORBA.Object.Ref with null record;

function Get_Domain_Policy
(Self : Ref;
Policy_Type : PolicyType)
return CORBA.Policy.Ref;

package IDL_SEQUENCE_DomainManager is
new CORBA.Sequences.Unbounded(Ref);

type DomaingManagerList is
new IDL_SEQUENCE_DomainManager.Sequence;

end CORBA.DomainManager;

5.5.10 ConstructionPolicy

Allows callers to assign membership of a particular object references to a domain at
creation time.

package CORBA.ConstructionPolicy is

type Ref is new CORBA.Policy.Ref with null record;

procedure Make_Domain_Manager
(Self : in Ref;
Object_Type : in CORBA.InterfaceDef.Ref;
Constr_Policy : in Boolean);

end CORBA.ConstructionPolicy;
5-24 Ada Language Mapping, v1.2 October 2001

5

5.6 Ada Specific Support packages

The mapping for Ada requires a number of packages in order to complete the mapping.

5.6.1 CORBA.Forward

The CORBA.Forward package is instantiated for every forward interface declaration.
Its definition has been presented in Section 4.9.1, “Forward Definition Packages,” on
page 4-22.

5.6.2 CORBA.Value_Forward

The CORBA.Value_Forward package is instantiated for every forward interface
declaration. Its definition has been presented in Section 4.9.1, “Forward Definition
Packages,” on page 4-22.

5.6.3 CORBA.Value.Box

The CORBA.Value.Box package is instantiated for every value box declaration. Its
definition has been presented in Section 4.10.1, “Value Box Package,” on page 4-25.

5.6.4 CORBA.Iterate_Over_Any_Elements

CORBA.Iterate_Over_Any_Elements package aids in the analysis and
decomposition of a type any for a type for which no IDL is known to exist. Its
definition has been presented in Section 3.15.2, “Handling Unknown Types,” on
page 3-13.

5.6.5 CORBA.Bounded_Strings and CORBA.Bounded_Wide_Strings

As explained in Section 3.9, “Mapping for String Types,” on page 3-8 and
Section 3.10, “Mapping for Wide String Types,” on page 3-9, conforming products
must supply substitute packages for
Ada.Strings.Bounded.Generic_Bounded_Length and
Ada.Strings.Wide_Bounded.Generic_Bounded_Length.

5.6.6 CORBA.Sequences

This mapping defines three packages to aid in the mapping of sequences:
CORBA.Seqeunces, CORBA.Sequences.Unbounded, and
CORBA.Sequences.Bounded. Conforming implementations shall provide
implementations with semantics that mimic those of the similar named subprograms in
the Ada.Strings package definitions. The specification of these packages is:

package CORBA.Sequences is

 Length_Error, Pattern_Error, Index_Error : exception;
October 2001 Ada Mapping, v1.2: Ada Specific Support packages 5-25

5

 type Alignment is (Left, Right, Center);
 type Truncation is (Left, Right, Error);
 type Membership is (Inside, Outside);
 type Direction is (Forward, Backward);

 type Trim_End is (Left, Right, Both);

end CORBA.Sequences;

generic
 ...
package CORBA.Sequences.Unbounded is

 subtype Index_Range is Index_Type
 range 1 .. Index_Type'Last;
 subtype Length_Range is Index_Type'BASE
 range 0 .. Index_Type'Last;

 Null_Element_Array : Element_Array(1..0);

 type Sequence is private;

 Null_Sequence : constant Sequence;
 -- initial value of all Sequences

 function Length (Source : in Sequence) return Natural;

 type Element_Array_Access is access all Element_Array;

 procedure Free is new Ada.Unchecked_Deallocation
 (Element_Array, Element_Array_Access);

 --
 -- Conversion, Concatenation, and Selection Functions --
 --

 function To_Sequence(Source : in Element_Array)
 return Sequence;
 procedure Set(Item : in out Sequence;
 Source : in Element_Array);

 function To_Sequence(Length : in Natural)
 return Sequence;

 function To_Element_Array (Source : in Sequence)
 return Element_Array;
5-26 Ada Language Mapping, v1.2 October 2001

5

 procedure Append
 (Source : in out Sequence;
 New_Item : in Sequence);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element_Array);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element);

 function "&" (Left, Right : in Sequence) return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element_Array)
 return Sequence;

 function "&"
 (Left : in Element_Array;
 Right : in Sequence)
 return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element)
 return Sequence;

 function "&"
 (Left : in Element;
 Right : in Sequence)
 return Sequence;

 function Get_Element
 (Source : in Sequence;
 Index : in Index_Range)
 return Element;

 procedure Replace_Element
 (Source : in out Sequence;
 Index : in Index_Range;
 By : in Element);

 function Slice
 (Source : in Sequence;
 Low : in Index_Range;
 High : in Index_Type)
 return Element_Array;

 function "=" (Left, Right : in Sequence)
October 2001 Ada Mapping, v1.2: Ada Specific Support packages 5-27

5

 return Standard.Boolean;

 function "="
 (Left : in Element_Array;
 Right : in Sequence)
 return Boolean;

 function "="
 (Left : in Sequence;
 Right : in Element_Array)
 return Boolean;

 function Is_Null(Source : in Sequence)
 return Standard.Boolean;
 -- equivalent to (Source = Null_Sequence)

 -- Search functions --

 function Index
 (Source : in Sequence;
 Pattern : in Element_Array;
 Going : in Direction := Forward)
 return Length_Range; -- 0 = not found

 function Count
 (Source : in Sequence;
 Pattern : in Element_Array)
 return Natural;

 -- Sequence transformation subprograms --

 function Replace_Slice
 (Source : in Sequence;
 Low : in Index_Range;
 High : in Index_Type;
 By : in Element_Array)
 return Sequence;

 procedure Replace_Slice
 (Source : in out Sequence;
 Low : in Index_Range;
 High : in Index_Type;
 By : in Element_Array);

 function Insert
 (Source : in Sequence;
 Before : in Index_Range;
5-28 Ada Language Mapping, v1.2 October 2001

5

 New_Item : in Element_Array)
 return Sequence;

 procedure Insert
 (Source : in out Sequence;
 Before : in Index_Range;
 New_Item : in Element_Array);

 function Overwrite
 (Source : in Sequence;
 Position : in Index_Range;
 New_Item : in Element_Array)
 return Sequence;

 procedure Overwrite
 (Source : in out Sequence;
 Position : in Index_Range;
 New_Item : in Element_Array);

 function Delete
 (Source : in Sequence;
 From : in Index_Range;
 Through : in Index_Type)
 return Sequence;

 procedure Delete
 (Source : in out Sequence;
 From : in Index_Range;
 Through : in Index_Type);

 -- Sequence selector subprograms --

 function Head
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element)
 return Sequence;

 procedure Head
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element);

 function Tail
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element)
 return Sequence;

 procedure Tail
October 2001 Ada Mapping, v1.2: Ada Specific Support packages 5-29

5

 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element);

 -- Sequence constructor subprograms --

 function "*"
 (Left : in Natural;
 Right : in Element)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Element_Array)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Sequence)
 return Sequence;

end CORBA.Sequences.Unbounded;

generic
 ...
package CORBA.Sequences.Bounded is

 subtype Index_Range is Index_Type
 range 1 .. Index_Type'Last;
 subtype Length_Range is Index_Type'BASE
 range 0 .. Index_Type'Last;
 Max_Length : constant Index_Range := Index_Range(Max);

 Null_Element_Array : Element_Array(1..0);

 type Sequence is private;

 Null_Sequence : constant Sequence;

 function Length (Source : in Sequence) return Natural;

 type Element_Array_Access is access all Element_Array;
 procedure Free is new Ada.Unchecked_Deallocation
 (Element_Array, Element_Array_Access);

 --
 -- Conversion, Concatenation, and Selection Functions --
5-30 Ada Language Mapping, v1.2 October 2001

5

 --

 function To_Sequence
 (Source : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 function To_Sequence (Length : in Index_Range)
 return Sequence;

 procedure Set
 (Item : in out Sequence;
 Source : in Element_Array;
 Drop : in Truncation := Error);

 function To_Element_Array (Source : in Sequence)
 return Element_Array;

 function Append
 (Left, Right : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Sequence;
 Right : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Element_Array;
 Right : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Sequence;
 Right : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Element;
 Right : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Append
 (Source : in out Sequence;
 New_Item : in Sequence;
 Drop : in Truncation := Error);
October 2001 Ada Mapping, v1.2: Ada Specific Support packages 5-31

5

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element_Array;
 Drop : in Truncation := Error);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element;
 Drop : in Truncation := Error);

 function "&" (Left, Right : in Sequence) return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element_Array)
 return Sequence;

 function "&"
 (Left : in Element_Array;
 Right : in Sequence)
 return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element)
 return Sequence;

 function "&"
 (Left : in Element;
 Right : in Sequence)
 return Sequence;

 function Get_Element
 (Source : in Sequence;
 Index : in Index_Range)
 return Element;

 procedure Replace_Element
 (Source : in out Sequence;
 Index : in Index_Range;
 By : in Element);

 function Slice
 (Source : in Sequence;
 Low : in Index_Range;
 High : in Index_Type)
 return Element_Array;

 function "=" (Left, Right : in Sequence)
5-32 Ada Language Mapping, v1.2 October 2001

5

 return Standard.Boolean;

 function "="
 (Left : in Sequence;
 Right : in Element_Array)
 return Boolean;

 function "="
 (Left : in Element_Array;
 Right : in Sequence)
 return Boolean;

 -- Search functions --

 function Index
 (Source : in Sequence;
 Pattern : in Element_Array;
 Going : in Direction := Forward)
 return Length_Range; -- 0 indicates not found

 function Count
 (Source : in Sequence;
 Pattern : in Element_Array)
 return Natural;

 -- Sequence transformation subprograms --

 function Replace_Slice
 (Source : in Sequence;
 Low : in Index_Range;
 High : in Index_Type;
 By : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Replace_Slice
 (Source : in out Sequence;
 Low : in Index_Range;
 High : in Index_Type;
 By : in Element_Array;
 Drop : in Truncation := Error);

 function Insert
 (Source : in Sequence;
 Before : in Index_Range;
 New_Item : in Element_Array;
October 2001 Ada Mapping, v1.2: Ada Specific Support packages 5-33

5

 Drop : in Truncation := Error)
 return Sequence;

 procedure Insert
 (Source : in out Sequence;
 Before : in Index_Range;
 New_Item : in Element_Array;
 Drop : in Truncation := Error);

 function Overwrite
 (Source : in Sequence;
 Position : in Index_Range;
 New_Item : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Overwrite
 (Source : in out Sequence;
 Position : in Index_Range;
 New_Item : in Element_Array;
 Drop : in Truncation := Error);

 function Delete
 (Source : in Sequence;
 From : in Index_Range;
 Through : in Index_Type)
 return Sequence;

 procedure Delete
 (Source : in out Sequence;
 From : in Index_Range;
 Through : in Index_Type);

 -- Sequence selector subprograms --

 function Head
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Head
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error);

 function Tail
5-34 Ada Language Mapping, v1.2 October 2001

5

 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Tail
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error);

 -- Sequence constructor subprograms --

 function "*"
 (Left : in Natural;
 Right : in Element)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Element_Array)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Sequence)
 return Sequence;

 function Replicate
 (Count : in Natural;
 Item : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 function Replicate
 (Count : in Natural;
 Item : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 function Replicate
 (Count : in Natural;
 Item : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

end CORBA.Sequences.Bounded;
October 2001 Ada Mapping, v1.2: Ada Specific Support packages 5-35

5

5-36 Ada Language Mapping, v1.2 October 2001

References A
A.1 List of References

The following list of references applies to CORBA and/or the Language Mapping
specifications:

1. IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

2. The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

3. CORBAservices: Common Object Services Specification, Revised Edition, OMG
TC Document 95-3-31.

4. COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

5. COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

6. IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

7. XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

8. OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’Donnell, June 1994.

9. RPC Runtime Support For I18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

10. X/Open System Interface Definitions, Issue 4 Version 2, 1995.

11. ISO/IEC 862:1995 “Information Technology -- Programming Languages -- Ada”
October 2001 Ada Language Mapping, v1.2 i

A

ii Ada Language Mapping, v1.2 October 2001

Glossary
This section defines terms used in the document that are not defined in the glossary of
the CORBA/IIOP Specification. These definitions are quoted mostly from the Ada 95
Reference Manual (ISO/IEC 8652:1995).

Class A class is a set of types that is closed under derivation, which means that if a given
type is in the class, then all types derived from that type are also in the class. The set
of types of a class share common properties, such as their primitive operations.

Class-wide types Class-wide types are defined for (and belong to) each derivation class rooted at a
tagged type. Given a subtype S of a tagged type T, S’Class is the subtype_mark for a
corresponding subtype of the tagged class-wide type T’Class. Such types are called
“class-wide” because when a formal parameter is defined to be of a class-wide type
T’Class, an actual parameter of any type in the derivation class rooted at T is
acceptable.

Controlled type A controlled type supports user-defined assignment and finalization. Objects are
always finalized before being destroyed.

Package Packages are program units that allow the specification of groups of logically related
entities. Typically, a package contains the declaration of a type along with the
declarations of primitive subprograms of the type, which can be called from outside
the package, while the inner working remains hidden from outside users.

Primitive operations The primitive operations of a type are the operations (such as subprograms) declared
together with the type declaration. They are inherited by other types in the same class
of types. For a tagged type, the primitive subprograms are dispatching subprograms,
providing run-time polymorphism. A dispatching subprogram may be called with
statically tagged operands, in which case the subprogram body invoked is determined
at compile time. Alternatively, a dispatching subprogram may be called using a
dispatching call, in which case the subprogram body invoked is determined at run time.
October 2001 Ada Language Mapping ,v1.2 1

Subsystems A library unit is a “top-level” separately compiled program unit, and is always a
package, subprogram, or generic unit. Library units may have other (logically nested)
library units as children, and may have other program units physically nested within
them. A root library unit, together with its children and grandchildren and so on, form
a subsystem.

Tagged type The values of a tagged type have a run-time type tag, which indicates the specific type
from which the value originated. An operand of a class-wide tagged type can be used
in a dispatching call; the tag indicates which subprogram body to invoke.

Withing, withs, with clause The Ada mechanism to gain visibility to a compilation unit is to include a “with
clause” naming that compilation unit. Such a compilation unit is said to be “withed” by
the current unit. Conversely, the current unit “withs” the named unit. This “withing”
allows use of declarations from the “withed” unit through a “selected component”
notation consisting of the withed unit name, “.”, and the declaration name.
2 Ada Language Mapping ,v1.2 October 2001

Index
Symbols
’SIZE 1-2

A
Ada Implementation Requirements 1-2
Ada package 1-3
Any 3-12
Arguments, Passing 4-9
Arrays 3-10
Attributes 1-4, 4-8, 4-18
Attributes, Server Side 4-18

B
Boolean 3-4

C
Calling Convention 1-2
Comments 4-3
compliance viii
Constant Expressions 2-4
Constants 3-10
Context 5-19
CORBA

contributors ix
CORBA package 4-3
core, compliance ix

E
Exceptions 1-5, 3-14
Exceptions, Application-Specific 3-16
Exceptions, Example 3-17
Exceptions, Identifier 3-14
Exceptions, Members 3-15
Exceptions, Standard 3-15

F
Forward Declaration 4-23
Forward Declarations 1-3, 4-22

G
Global Names 4-3

H
helper package 4-13

I
Identifiers 2-1
IDL file 4-3
Implementation Package 4-17
Import 4-2
include 4-2
Inheritance 1-4, 4-7
Initializers 4-9, 4-19
interface package 4-6
Interfaces 1-3
interoperability, compliance ix
interworking

compliance ix

L
Literals 2-2
Literals, Character 2-3

Literals, Floating-Point 2-2
Literals, Integer 2-2
Literals, String 2-4

M
Memory Management 1-2
Modules 4-4

N
NamedValue 5-16
Names 1-5, 3-2
Narrowing 4-14
NVList 5-17

O
Object 4-10, 5-3
Object Management Group vii
Operations 1-4, 4-8, 4-18
Operations, Server Side 4-18
Operators 2-5
ORB 5-20

P
Public State Members 4-8

R
Reference 4-7
Request 5-18

S
Sequence 3-6
Sequence Types 3-6
State Members 4-8
string 1-2
String Types 3-8
Summary of IDL Constructs to Ada Construct s1-3

T
Tagged Types 1-3
Tasking 1-2, 4-27
TypeCode 3-12, 5-19
Typedefs 3-11
Types 1-5
Types, Any 3-12
Types, Array 3-10
Types, Boolean 3-4
Types, Enumeration 3-4
Types, Exception 3-14
Types, Sequence 3-6
Types, Size Requirements 1-2
Types, String 3-8, 3-9
Types, Structure 3-4
Types, TypeCodes 3-12
Types, Typedefs 3-11
Types, Union 3-5

V
Valuetype, Initializers 4-9, 4-19

W
Wide String Types 3-9
Widening 4-14
October 2001 Ada Language Mapping, v1.2 Index-1

Index
Index-2 Ada Language Mapping, v1.2 October 2001

	Preface
	1. Overview
	1.1 General Requirements
	1.1.1 Ada Implementation Requirements
	1.1.2 Calling Convention
	1.1.3 Memory Management
	1.1.4 Tasking
	1.1.5 Ada Type Size Requirements

	1.2 Mapping Summary
	1.3 Interfaces and Tagged Types
	1.3.1 Client Side
	1.3.2 Forward Declarations
	1.3.3 Server Side

	1.4 Operations
	1.5 Attributes
	1.6 Inheritance
	1.7 Data Types
	1.8 Exceptions
	1.9 Names and Scoping
	1.10 New and Changed Features of the Ada Mapping
	1.10.1 Helper Packages
	1.10.2 Value Types
	1.10.3 Value Boxes
	1.10.4 Abstract Interfaces
	1.10.5 Other CORBA/IIOP Specification Changes
	1.10.6 Delegating Servants
	1.10.7 Changes from CORBA Components Specification

	2. Lexical Mapping
	2.1 Mapping of Identifiers
	2.2 Mapping of Literals
	2.2.1 Integer Literals
	2.2.2 Floating-Point Literals
	2.2.3 Fixed Point Literals
	2.2.4 Character Literals
	2.2.5 Wide Character Literals
	2.2.6 String Literals
	2.2.7 Wide String Literals
	2.2.8 Enumeration Literals

	2.3 Mapping of Constant Expressions
	2.3.1 Mapping of Operators

	3. Mapping of IDL Types
	3.1 Mapping of Names
	3.1.1 Identifiers
	3.1.2 Scoped Names

	3.2 Mapping for Basic Types
	3.3 Mapping for Fixed Type
	3.4 Mapping for Boolean Type
	3.5 Mapping for Enumeration Types
	3.6 Mapping for Structure Types
	3.7 Mapping for Union Types
	3.8 Mapping for Sequence Types
	3.9 Mapping for String Types
	3.10 Mapping for Wide String Types
	3.11 Mapping for Arrays
	3.12 Mapping for Constants
	3.13 Mapping for Typedefs
	3.14 Mapping for TypeCodes
	3.15 Mapping for Any Type
	3.15.1 Handling Known Types
	3.15.2 Handling Unknown Types

	3.16 Mapping for Exception Types
	3.16.1 Exception Identifier
	3.16.2 Exception Members

	4. Mapping of IDL Units
	4.1 Name Visibility
	4.1.1 File Inclusion
	4.1.2 Import Statement
	4.1.3 CORBA Subsystem

	4.2 Mapping of IDL Files
	4.2.1 Comments
	4.2.2 Other Pre-Processing
	4.2.3 Global Names

	4.3 Mapping Modules
	4.4 General Mapping for Units
	4.4.1 Package Pattern for Mapping
	4.4.2 Base Types

	4.5 Interface Package Mapping
	4.5.1 Reference Types
	4.5.2 Reference Type Inheritance
	4.5.3 Mapping for Attributes and Public State Members
	4.5.4 Mapping for Operations
	4.5.5 Mapping for Valuetype Initializers
	4.5.6 Argument Passing Considerations
	4.5.7 Type Object
	4.5.8 Interface Mapping Examples
	4.5.9 Valuetype Mapping Example

	4.6 Helper Package Mapping
	4.6.1 Widening Object References
	4.6.2 Narrowing Object References
	4.6.3 Type Any support
	4.6.4 Valuetypes Supporting Interfaces
	4.6.5 Examples

	4.7 Implementation Package Mapping
	4.7.1 Implementation types
	4.7.2 Implementation type inheritance
	4.7.3 Implementing Operations and Attributes
	4.7.4 Implementing State Members
	4.7.5 Implementing Valuetype Initializers
	4.7.6 Interface Implementation Example
	4.7.7 Valuetype Implementation Example

	4.8 Delegating Servants
	4.9 Mapping Forward Declarations
	4.9.1 Forward Definition Packages
	4.9.2 Mapping Rules
	4.9.3 Example

	4.10 Mapping Value Boxes
	4.10.1 Value Box Package
	4.10.2 Mapping of Value Boxes
	4.10.3 Example

	4.11 Tasking Considerations

	5. Mapping the CORBA Module
	5.1 Mapping Rules for Pseudo-Objects
	5.2 Reference and Implementation Base Types
	5.2.1 AbstractBase
	5.2.2 Object
	5.2.3 CORBA.Value.Base and CORBA.Value.Impl_Base
	5.2.4 CORBA.Impl.Object
	5.2.5 LocalObject
	5.2.6 PortableServer.Servant_Base

	5.3 Mapping for Native Types
	5.3.1 AbstractBase
	5.3.2 ValueFactory
	5.3.3 OpaqueValue
	5.3.4 PortableServer::Servant
	5.3.5 Cookie

	5.4 The CORBA package
	5.5 Other Pseudo-Objects
	5.5.1 NamedValue
	5.5.2 NVList
	5.5.3 Request
	5.5.4 Context
	5.5.5 TypeCode
	5.5.6 ORB
	5.5.7 Current
	5.5.8 Policy
	5.5.9 DomainManager
	5.5.10 ConstructionPolicy

	5.6 Ada Specific Support packages
	5.6.1 CORBA.Forward
	5.6.2 CORBA.Value_Forward
	5.6.3 CORBA.Value.Box
	5.6.4 CORBA.Iterate_Over_Any_Elements
	5.6.5 CORBA.Bounded_Strings and CORBA.Bounded_Wide_Strings
	5.6.6 CORBA.Sequences

	Appendix A - References
	Glossary
	Index

