
OpenFusion
RTOrb Ada Edition

Version 1.0

User Guide

OpenFusion
RTOrb Ada Edition

USER GUIDE

Augusta Ada King,
Countess of Lovelace

i

Copyright Notice

© 2006 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and is made
available in good faith without liability on the part of PrismTech Limited or PrismTech
Corporation.

All trademarks acknowledged.

 ii

CONTENTS

iii

 iv

Table of Contents

Preface

About this User guide.
Contacts.

1
2

Introduction

OpenFusion RTOrb Ada Edition
What is Real – time?. .
How RTOrb Provides for Real -Time. .
Features, Standards and Compliance. .
Limitations .
Support and Maintenance .
Scope of this Guide for RTOrb.

5
5
6
7
7
7
7

Installation and Configuration

Chapter 1 Installation 11

1.0.1 Conventions .
1.1 Prerequisites .
1.1.1 Supported Platforms.
1.2 Installation Procedures.
1.2.1 General.
1.2.2 Preparation .
1.2.3 Installation .
1.2.3.1 Installing the development environment.
1.2.3.2 Installing for production .
1.2.4 Testing the ORB. .
1.3 Licenses .
1.3.1 Principles .

11
11
12
12
12
12
13
13
14
14
14
14

v

1.3.2 Installing license keys. .
1.3.3 Requesting licenses .
1.4 Uninstalling .

15
15
15

Chapter 2 Configuration 17
2.1 Configuration and Properties .
2.1.1 Typing commands.
2.1.2 POA Ports .
2.1.3 Messaging Configuration. .
2.1.3.1 Messaging Properties.
2.1.3.1.1 Messaging Properties Example.

17
17
18
18
19
20

Real-time Programming

Chapter 3 Reviewing CORBA Concepts 23

3.1 Basic concepts.
3.1.1 The ORB .
3.1.1.1 Distributed Object Computing .
3.1.1.2 Transparencies .
3.1.2 Distributed Object Computing (DOC) and CORBA.
3.1.2.1 Interfaces .
3.1.2.2 Programming with CORBA interfaces.
3.1.2.2.1 Stubs .
3.1.2.2.2 Skeletons and impls. .
3.1.2.2.3 Client and servers .
3.1.2.3 Delivering requests using an ORB.
3.1.2.3.1 Delivering requests to remote objects.
3.1.3 ORB components .
3.1.3.1 Abstraction .
3.1.4 Terminology explained .
3.1.4.1 Client and servers.
3.1.4.2 Object references .
3.1.4.3 First class objects, local objects and pseudo objects

23
23
23
24
25
26
26
27
27
28
28
28
29
29
30
31
32
32

 vi

3.1.4.3.1 The ORB pseudo object.
3.1.4.3.2 Object adapters .
3.2 Portable Object Adapter (POA) .
3.2.1 How the POA works .
3.2.2 POA policies .
3.2.2.1 Standard POA policies .
3.2.2.1.1 Lifespan Policy .
3.2.2.1.2 Object Id uniqueness policy.
3.2.2.1.3 Id assignment policy .
3.2.2.2 POA policy extensions. .
3.2.2.2.1 Thread count policy. .
3.2.2.2.2 Protocol Object policy.
3.2.2.3 POA policy summary.
3.2.3 POA manager. .
3.2.4 Object references, keys and Ids. .
3.2.5 Servants .
3.2.6 Object Creation Activation .
3.2.7 Request Processing .
3.2.8 Designing an Application .

33
33
34
34
35
36
36
36
36
36
37
37
37
37
38
38
38
38
39

Chapitre 4 Introduction to Real-time CORBA 41

4.1 Real-time Specification .
4.1.1 Real-time CORBA Modules.
4.1.2 Real-time ORB .
4.1.3 Thread Scheduling. .
4.1.4 Real-time CORBA Priority. .
4.1.5 Native Priority and PriorityMappings.
4.1.6 Real-time CORBA Current. .
4.1.7 Priority Models .
4.1.8 Real-time CORBA Mutexes and Priority Inheritance.
4.1.9 Threadpools. .
4.1.10 Priority Banded Connections. .
4.1.11 Non-Multiplexed Connections .

41
42
42
42
42
42
43
43
43
43
44
44

vii

4.1.12 Invocation Timeouts.
4.1.13 Client and Server Protocol Configuration.
4.1.14 Real-time CORBA Configuration.
4.2 Real-time Portable Object Adapters
4.2.1 Priority Model.
4.2.2 RTPOA .
4.2.2.1 POA Activation Methods with Priority
4.2.3 Threads and Threadpools .
4.2.3.1 Current .
4.2.3.2 Threadpools .
4.2.3.3 Thread Pool Operation Basic Mode.
4.2.3.4 Laned Threadpool. .
4.2.3.5 Priority Banded Connections .
4.2.4 RTPOA Current. .
4.2.5 Associations Between Pools and RTPOA.
4.3 Priority Machinery. .
4.3.1 Priority Phenomena and Protocols
4.3.1.1 CORBA Priority.
4.3.1.1.1 CORBA Priority Mapping. .
4.3.1.1.2 RTCORBA Current Interface .

44
44
45
45
45
45
46
46
46
46
47
48
48
48
48
49
49
52
52
53

Chapter 5 Introduction to Real-Time Systems 55

5.1 Real-time Systems. .
5.1.1 Time- and Event-Triggered Systems.
5.1.2 Developing Real-time Systems with RTOS
5.1.3 Predictability in Distributed Applications .
5.1.4 Features and Non-Determinism .

55
56
56
57
58

 viii

Programming with RTOrb

Chapter 6 Creating Applications 63
6.1 General .
6.2 A Simple Application. .
6.2.1 IDL Specification.
6.2.2 Running the example Echo. .
6.2.3 Client-side.
6.2.3.1 Initialization.
6.2.3.2 Getting object references.
6.2.3.3 Tasking.
6.2.3.4 CORBA exception handling.
6.2.3.4 Termination. .
6.2.4 Server-side. .
6.2.4.1 Initialization. .
6.2.4.2 Getting the root POA and activating it. .
6.2.4.3 Creating and associating the object .
6.2.4.4 Making the object available.
6.2.4.5 Starting method processing .

63
63
64
64
65
65
66
67
67
68
68
68
68
69
69
69

Bibliography 73

Index 77

ix

 x

Preface
About this User Guide

This User Guide provides instructions and information needed to install, configure
and use OpenFusion RTOrb Ada Edition.

Intended Audience
The User Guide is intended to be used by software developers who wish to use RTOrb
to develop CORBA-based, real-time distributed applications in Ada. RTOrb can also
be used as a conventional, non real-time, high performance enterprise Ada ORB for
developers who do not need real-time capabilities.

Organisation
This User Guide is divided into three major sections: Installation and Configuration
which provides information on installing and configuring RTOrb; Real-time
Programming provides background information on CORBA, Ada and real-time
programming; and Programming with RTOrb which describes how to create
applications using RTOrb.

Conventions
The conventions listed below are intended to guide and assist the reader in
understanding the User Guide.

 Item of special significance or where caution needs to be taken.

i Item contains helpful hint or special information.

WIN Information applies to Windows (e.g. NT, 2000, XP) only.

UNIX Information applies to Unix based systems (e.g. Solaris) only.

On-Line (PDF) versions of this document: Items shown as cross references to other
parts of the document, e.g. Contacts on page 2, behave as hypertext links: users can
jump to that section of the document by clicking on the cross reference.

1

% Commands or input which the user enters on the command
line of their computer terminal

Courier New, Courier New Bold , or Courier New Italic fonts indicate
programming code. The Courier New font also indicates file names.
Extended code fragments are shown as small Courier New font contained in shaded,
full width boxes (to allow for standard 80 column wide text), as shown below:

NameComponent newName[] = new NameComponent[1];
// set id field to “example” and kind field to an empty string
newName[0] = new NameComponent (“example”, ““);

rootContext.bind (newName, demoObject);

Courier Italics and Courier Italic Bold indicate new terms or emphasise
an item.
Arial Bold indicates user related actions, such as File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be contacted at the following contact points. Users of the On-line
version of this manual can click the e-mail addresses below to launch their e-mail
client or Web browser to send e-mail direct to PrismTech.

Corporate Headquarters European Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead NE11 0NG
UK

Tel: +1 781 270 1177
Fax: +1 781 238 1700

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

2

http://www.prismtech.com/
mailto:info@prismtech.com?subject=Information request

INTRODUCTION

3

4

O p e n F u s i o n R T O r b A d a E d i t i o n

What is Real-time?
There are several definitions available which state what real-time means, such as:

“Immediate, as an event is occurring.”1,

“The actual time during which physical events take place.”2

“The processing and visibility of transactions and information as they occur, and not
on a periodic or batch basis.”3

“...computer systems that update information at the same rate as they receive data...”4

Current computer systems have physical restrictions which limit the ability to process
information immediately, “as an event is occurring”- there are the inevitable
processing speed and resource limits which affect how fast data can be processed. For
the purpose of programming actual real-time applications, a more realistic definition
of real-time has been adopted:

An application for which the requirements, design, or developers state that execution
of application logic must or should occur within well-defined temporal conditions. 5

1. http://www.hq.nasa.gov/office/pao/History/presrep95/r.htm
2. http://www.telemet.com/weather_gloss_q_r.htm
3. http://sun2.lenoir.cc.nc.us/~disted/distermc.htm
4. The American Heritage® Dictionary of the English Language, Fourth Edition, © 2000
Houghton Mifflin Company.
5. This definition is as given in Taking the Java™ Language into Uncharted Waters: Project Mackinac,
Sun’s RTSJ Implementation, Bollella et. al., Sun Microsystems, Inc.

5

Or in other words, the processing or completion of tasks is not instantaneous, but
occurs within pre-defined time limits. This definition accepts the physical realities of
our present computing machines and systems.
However, to complicate and possibly confuse matters, two different types of real-time
have been identified, each relating to their ability to meet “well-defined temporal
conditions”. The types are:

• hard real-time where the execution of the application logic must always meet
the temporal requirements,

• soft real-time where the execution of the application logic may sometimes
meet the temporal requirements.

A system where there are no well-defined temporal conditions is referred to as a non
real-time system.

These definitions are important (even if they appear to complicate matters) since they
provide flexibility as to the temporal stringency and capability which a system will be
designed to achieve. Some systems must perform strictly within the temporal limits,
whereas others can be more flexible, appreciating that it is likely to be more difficult
and costly to create the more stringent systems.

How RTOrb Provides for Real-time
The language and architectural components of RTOrb address the practical issues of
developing real-time applications for the real world, whether they need to meet the
more demanding hard real-time requirements or the less demanding soft ones. Real-
time Ada and Real-time CORBA address the respective practical aspects of achieving
hard or soft real-time requirements for distributed systems. Some aspects include:

• end-to-end predictable execution, thread scheduling and dispatching, along
with the provision of distributable threads

• resource management, particularly memory management and allocation
• synchronization, resource sharing and avoidance of priority inversion1

• asynchronous event handling, transfer of control and thread termination
• interoperability and portability

1. These aspects are to ensure that things happen in the correct sequence in order to meet specified temporal
requirements.

6

Features, Standards and Compliance
Amongst the key features of OpenFusion RTOrb Ada Edition are:

• CORBA 3.0 ORB
• RT CORBA v1.2 support
• CORBA Object Services – bundled Naming Service and Event Service
• Ada Language bindings based on the OMG’s IDL to Ada Language Mapping

specification
• Full POA implementation
• Multithreaded support
• Ultra-fast ANYs
• CORBA Messaging implementation (request Timeout, SyncScope and

Rebind Policies, full AMI (Poll/Async))
• ORB interoperability including OpenFusion RTOrb Java Edition, TAO and

JacORB.

The OpenFusion RTOrb Ada Edition product complies with the following standards
and specifications, except as noted under Limitations below.

• OMG CORBA Specification, version 3
• GIOP Specification, version 1.3
• OMG Real-Time CORBA Specification, version 1.2

Limitations
• OpenFusion RTOrb Ada Edition does not support the "server per method"

activation policy.
• It can only start local services (services which run on the same host as the

orb), but it can start a script which can itself start a remote service.
• Persistence of objects must be managed by their implementation.

Support & Maintenance
PrismTech offers a wide range of support and maintenance packages for OpenFusion
RTOrb Ada Edition that can be tailored to each customer’s specific requirements.
PrismTech is renowned for the quality and responsiveness of its technical support services.

Scope of this Guide for RTOrb
The goal of this guide is to help developers use RTOrb as quickly and effectively as
possible. Its scope includes essential background information, in addition to
installation, configuration and usage information.

7

It is beyond the scope of this manual to provide full coverage of RTOrb’s underlying
technologies, such as explaining real-time programming techniques and theory, or
covering the Real-time Ada or Real-time CORBA specifications. Information on these
topics is available in the various documents listed in the bibliography.
This guide provides a technological overview which developers and architects can use
as a starting point for understanding the intricacies of writing distributed, hard or soft
real-time, CORBA-based, Ada programs.
A number of useful, if not essential, references are provided in the Bibliography:
readers are encouraged to use these references to develop understanding of this
powerful technology.

8

INSTALLATION AND
CONFIGURATION

9

10

CHAPTER

1 Installation

This chapter describes how to install OpenFusion RTOrb Ada Edition (RTOrb).
Please follow the procedures carefully.

1.0.1 Conventions
The following conventions are used in this chapter:

• Commonly used directories are shown as:

<OFRT_DIR> - where RTOrb is or will be installed

• The directory paths and environment variable separator shown here use the
UNIX forward-slash (/) and colon (:) separator conventions; Windows™
users should substitute these separators with the standard DOS back-slash (\)
and semi-colon (;) separators.

• Items which are unique to UNIX or Windows are shown using the UNIX Only
or Windows Only icons, respectively. For example:

WIN > SET CLASSPATH=.;%CLASSPATH%;

UNIX % CLASSPATH=.:$CLASSPATH; export CLASSPATH

1.1 Prerequisites
RTOrb depends on underlying services and technologies. If these services and
technologies are not properly installed and configured, then the OpenFusion RTOrb
Ada Edition cannot perform as intended. Accordingly, please check that your system
meets each of the prerequisites described below before installing OpenFusion RTOrb
Ada Edition.

i The currently supported platforms are listed on the RTOrb Supported Platforms web
page.
The Supported Platforms web page can be accessed from the index.html page located

11

in the root directory where RTOrb is installed (<OFRT_DIR>).
Please refer to Supported Platforms and other Features pages for the latest
information about this distribution.

1.1.1 Supported Platforms
The OpenFusion RTOrb Ada Edition distribution is supported on a range of leading
operating systems and has been built using a number of different Ada compiler
variants, including:

• OS:
Solaris, Linux, Windows, HP-UX, OpenVMS, MacOsX, Tru64

• RTOS:
VxWorks, LynxOS

• Compilers:
Rational Apex, Aonix ObjectAda, GnatPro, DDC-I Score, Green Hills
Multi

Other platforms can be supported on request.

1.2 Installation Procedure

1.2.1 General
All installed RTOrb files are placed in the RTOrb installation directory specified
during installation. No files are stored in any of the UNIX system directories.

1.2.2 Preparation
It is recommended that any existing RTOrb installation be removed before installing
the current version (see Uninstalling on page 13). Please note the following warning.

 Uninstalling OpenFusion RTOrb Ada Edition removes all RTOrb files,
including the executables, license, configuration, and data files located in the
RTOrb sub-directories. If these files are required, then they should be backed-
up prior to uninstalling.

12

1.2.3 Installation

1.2.3.1 Installing the Development Environment
To install the RTOrb development environment,

UNIX Instructions
• First unzip the downloaded file and provide the unzip key (if the unzip key is

not available , then contact)
• Open a shell and, cd to the directory where the install_orbriver.bin is

located.
• At the prompt type: sh ./install_orbriver.bin
• Now open the RTOrb inline documentation and check the RTOrb

configuration operations.

Notes
• A Java virtual machine is included with installers named VM_xx. It will be

executed automatically when you run install_orbriver.bin.

WIN Instructions
• double-click on the downloaded file
• double-click on install_orbriver.exe and provide the unzip key (if the

unzip key is not available , then contact) .

Notes
• A Java virtual machine is included with installers named VM_xx. It will be

executed automatically when you run the installer.

MAC Instructions
• First unzip the downloaded file and provide the unzip key (if the unzip key is

not available , then contact)
• After downloading, double-click install_orbriver
• Now open the RTOrb inline documentation and check the RTOrb

configuration operations.
Notes

• Requires Mac OS X 10.0 or later
• The compressed installer should be recognized by Stuffit Expander and should

automatically be expanded after downloading. If it is not expanded, you can

13

expand it manually using StuffIt Expander 7.0.1 or later.
• If you have any problems launching the installer once it has been expanded,

make sure that the compressed installer was expanded using Stuffit Expander.
If you continue to have problems, please contact technical support.

VMS Instructions
• Unzip the kit and then run sys$update:vmsinstal to install the unzipped

kit.
• Proceed as usual with vmsinstal and answer the questions

Notes
• No Java VM included in this installer.

1.2.3.2 Installing for Production
When deploying RTOrb orbs, clients and services for production, the environment
variable <OFRT_DIR> must to be set to a directory containing a copy of the bin
(except idl2ada), etc and doc directories.

The <OFRT_DIR>/etc/Orbs file must be then setup to define the production orb
topology (see Configuration).

You may need additional RTOrb license keys. Once they are installed (see 1.3.2
"Installing licence keys"), the production installation is completed. The different orbs
can then be launched, beginning with the license server, and the production clients and
services can then run.

1.2.4 Testing the ORB
The RTOrb is running properly by running an example such like Echo (see 6.2.2).

1.3 Licenses
1.3.1 Principles

Each license key is specific to the host where the license server runs and to the
licensed tool, and may have an expiration date. Execution of the licensed tool is
allowed on any machine capable to connect to the license server, providing that the
number of simultaneous runs does not exceed the number of license tokens. The
behaviour of the tool in case of license enfringements is tool dependent.
RTOrb and idl2ada execution is protected by license keys which are stored in the file

14

http://www.stuffit.com/mac/standard/updates.html

<OFRT_DIR>/etc/top_graph_x.lic. This file is read by the RTOrb daemon
named License_Server which should be described in the <OFRT_DIR>/etc/Orbs
file (see Configuration).

1.3.2 Installing license keys
The instructions to install the license keys will be provided by Top Graph'X with the
license keys.

The tool <OFRT_DIR>/bin/add_license will be used for this purpose. When
adding licenses, add_license first tries to update the running license server, then it
updates the file <OFRT_DIR>/etc/top_graph_x.lic . If it cannot connect to the
license server, a warning message is displayed (this generally means that the license
server is not running). When installing RTOrb for the first time, you cannot run any
daemon before installing a valid license key.

1.3.3 Requesting licenses
If you will use a single license server:
First execute <OFRT_DIR>/bin/machine_id on the computer which will run the
license server. Email the result of this command and the host name to PrismTech
support, you will receive the license keys in return.

If you have several licenses and want to run a license server on several hosts, do the
following for each such host:

• write the result of <OFRT_DIR>/bin/machine_id on this host
• write the number of RTOrb licenses assigned to this host
• write the number of idl2ada licenses assigned to this host

Email the result to PrismTech support, you will receive the license keys in return.

If you need more licenses, ask PrismTech

1.4 Uninstalling
This section describes the procedure for uninstalling OpenFusion RTOrb Ada
Edition.

 Uninstalling RTOrb removes all RTOrb files, including the executables, license,
configuration, and data files located in the RTOrb sub-directories. If these files
are required, then they should be backed-up prior to uninstalling.

15

mailto:support@prismtech.com?subject=Obtain licenses for OpenFusion RTOrb Ada Edition
mailto:support@prismtech.com?subject=Obtain license keys for OpenFusion RT Ada Edition
mailto:support@prismtech.com?subject=Obtain licenses for OpenFusion RTOrb Ada Edition
mailto:support@prismtech.com?subject=Obtain licenses for OpenFusion RTOrb Ada Edition

Step 1: Stop any running RTOrb services.

Step 2: Backup any data, license or other required files which are in the RTOrb
directories.

Step 3: Run the OrbAda_Uninstaller utility (located in the <OFRT_DIR>/UninstallData
directory):

% <OFRT_DIR>/UninstallData/OrbAda_Uninstaller

16

CHAPTER

2 Configuration

2.1 Configuration and Properties
2.1.1 Typing commands

The following tips and rules may help you for typing commands:

• Comment lines start with -- and blank lines are allowed.
• ORB names are not case sensitive.
• The format of the Orbs file is:

<Orb_Name> ID=<Orb_Id> HOST=<Host_Name> TCP=<TCP port>
where

➢ <Orb_Name> indicates the name of the ORB (may be put in RTOrb
variable)

➢ <Orb_Id> indicates the identification number of the ORB
➢ <Host_Name> indicates the host where the ORB runs
➢ <TCP port> indicates the TCP port for IIOP connections to the ORB

• There should be no space on any side of the = sign. Example:

OrbAda_1 ID=1 HOST=localhost TCP=6060
License_Server ID=1 HOST=localhost TCP=6060
OrbAda_2 ID=2 HOST=omg.org TCP=6061

The command line environment variable <OFRT_DIR> must be set and contain the
name of the directory where RTOrb is installed. The file Orbs in the
<OFRT_DIR>/etc directory contains the list of the known RTOrb daemons.

There should be at most one daemon definition per line and an ORB definition should
fit in one line. Several names may have the same definition. In this case, these different
names are aliases of the same RTOrb daemon, which then can be accessed with any of
the aliases.

There should exist a daemon named License_Server with "TCP=6060" which will be
used as the license server for CORBA PrismTech tools (like orbriver and idl2ada).

17

RTOrb hangs if the daemon named "License_Server" is not running or if no license
token is available.

2.1.2 POA Ports
POA names can be associated with TCP ports if desired. Add the property assignments
as shown below in the <OFRT_DIR>/etc/Poas file to assign POA names with TCP
ports.

To assign a POA name to a
• single port address use:

<POA name> TCP=<TCP port>

• range of port addresses use:
<POA name> TCP=<Min TCP port>-<Max TCP port>

where:
• there must be no space at the beginning of any line
• empty lines and lines beginning with hyphens (-) are ignored
• names which are in a POA hierarchy must be separated by forward slashes (/),

for example:

<POA name>/<POA name> TCP=<TCP port>
<POA name> TCP=<Min TCP port>-<Max TCP port>

• the root POA name is called RootPOA by default. The name can be changed by
running the required service with the -OAName <Root POA name> switch,
noting that the name change is specific to that service.

Example of POA name TCP port assignments :

RootPOA TCP=10000-10999
RootPOA/Persist_Factories TCP=160001

2.1.3 Messaging Configuration

 The Messaging module must be configured before messaging features are used by an
application: a system exception is raised if the Messaging module is not configured.
An application can configure messaging programmatically by using the following
Messaging.Configure() method:

procedure Configure
 (Sync_None_Tasks : in Natural ;
 Sync_None_Priority : in Priority ;
 Poll_Priority : in Priority ;
 Async_Priority : in Priority ;

18

 Async_Min_Tasks : in Natural := 0 ;
 Async_Max_Tasks : in Natural := 0 ;
 Async_Peak_Tasks : in Natural := 0 ;
 Async_Stack_Size : in Natural := 65_536);

The Configure procedure allows all of the relevant Messaging properties to be
configured by the user.

2.1.3.1 Messaging Properties
The messaging properties which are set by the Configure() methods are as follows:

Sync_None_Tasks - the number of threads in the threadpool used for sending
oneway sync_none requests.

Sync_None_Priority - the priority of the threads used for sending oneway
sync_none requests.

Poll_Priority - the priority of the threads used for receiving asynchronous
responses in poll mode.

Async_Priority - the priority of the threads used for receiving asynchronous
responses in call_back mode.

Async_Min_Tasks, Async_Max_Tasks, and Async_Peak_Tasks -
determines how the threadpool used for receiving asynchronous responses in
call_back mode should be dimensioned. The values for these properties must
follow the rule whereby Async_Min_Tasks ≤ Async_Max_Tasks ≤
Async_Peak_Tasks.

Async_Min_Tasks - the minimum number of threads in the threadpool used for
receiving asynchronous responses in call_back mode.

Async_Max_Tasks - the maximum number of threads in the threadpool used for
receiving asynchronous responses in call_back mode when all threads are not
running (in other words, some threads are waiting).

Async_Peak_Tasks - the maximum number of threads in the threadpool used for
receiving asynchronous responses in call_back mode when all threads are running.

Async_Stack_Size - Async_Stack_Size sets the size of the scoped memories
used to run each thread of the threadpool which is used for receiving asynchronous
responses in call_back mode.

19

2.1.3.1.1 Messaging Properties Example

Example using Async_Min_Tasks, Async_Max_Tasks, and Async_Peak_Tasks

A client application calls Messaging.Configure(), using the following
parameters:
Async_Min_Tasks = 2

Async_Max_Tasks = 4

Async_Peak_Tasks = 6

The Async_Min_Tasks value is 2 in this case, therefore the Messaging module will
create a threadpool containing two threads (the minimum).
The application is subsequently required to make three simultaneous, asynchronous
responses during the course of its operation. The Messaging module’s threadpool
creates a third thread to handle the responses. The three threads will remain in the
threadpool after the responses have been completed, even though they will be waiting,
since the number of threads in the threadpool is less than the value of
Async_Max_Tasks (4).
The application is then asked to handle five simultaneous, asynchronous responses:
the required two new threads can be added to the threadpool since the total number of
threads will be less than the value of Async_Peak_Tasks (6).
When one or more the threads are freed after handling their respective response,
existing threads in the threadpool will be terminated until the total number of threads
is equal to or less than the Async_Max_Tasks value (4).
The maximum number of threads that the application will be allowed to have at any
one time is the value of Async_Peak_Tasks (6): any additional requests must wait
until a thread is freed.

20

REAL - TIME
PROGRAMMING

21

22

CHAPTER

3 Reviewing CORBA Concepts

CORBA stands for Common Object Request Broker Architecture. CORBA is
the Object Management Group’s (OMG):
“open, vendor-independent architecture and infrastructure that computer
applications use to work together over networks. Using the standard protocol IIOP, a
CORBA-based program from any vendor, on almost any computer, operating system,
programming language, and network, can interoperate with a CORBA-based program
from the same or another vendor, on almost any other computer, operating system,
programming language, and network.”1

The Object Management Group is a non-profit consortium that produces and
maintains computer industry specifications for interoperable enterprise applications.

3.1 Basic Concepts
3.1.1 The ORB

A core element of CORBA is the Object Request Broker, referred to as the ORB.
An ORB mediates between an object and one of its clients. A client is defined as any
computing context that invokes operations on the object (that is, sends it a message, or
invokes a method). ORBs can take many different forms. In common practice, ORBs
are mechanisms that mediate between clients and objects on different computers, using
some kind of network communication. ORBs are one of the principal enabling
technologies in the field of distributed object computing.

3.1.1.1 Distributed Object Computing
Most popular object-oriented programming languages provide language constructs for
encapsulation, inheritance, polymorphism, and other characteristic object-oriented
concepts. These mechanisms have proven beneficial when building single-process
applications. However, because they are implemented as programming language
features, the benefits are not available when the application needs to interact with
other processes or with remote machines. Programmers must generally resort to
techniques such as sockets to build distributed applications.

1. The OMG’s definition from its web site at http://www.omg.org

23

http://www.omg.org/

Distributed object technology extends the benefits of object-oriented technology across
process and machine boundaries to encompass entire networks. In short, this technology
makes remote objects appear to programmers as if they were local objects (that is, simple
programming-language objects in the same process). This effect can be described as
location transparency.

3.1.1.2 Transparencies
Transparencies occur when a software abstraction allows programmers to cross a
computing boundary (such as a boundary between different languages, machines,
network protocols, and so on) without having to be aware of the boundary at all, or
without performing an explicit transformation to cross it.
In an object system, location transparency means that an object’s client can invoke the
object’s methods in a natural manner, regardless of where the object actually resides.
The target object may reside in the client program itself (as is inherently the case with
most object-oriented programming languages), it may reside in another address space
on the same machine as the client, or it may reside on a remote machine. The object’s
programming interface (from the client’s perspective) is identical in all cases. See
Figure 1 for an illustration of this concept.

Figure 1 emote Invocations and Location Transparency

24

The ORB provides the location transparency in the CORBA model. ORBs also
provide many other useful transparencies, including the following:

• Programming language transparency- The client and the object may be
written in different programming languages and the ORB hides this fact; a
Ada client is completely unaware that it is invoking an operation on a
language-specific object, whether Java, C++, or Smalltalk, and vice versa.

• Platform transparency- The client and object implementation programs may
be executing on different types of computing hardware, with different
operating systems, in such a way that both programs are unaware of these
differences.

• Representation transparency- Because of language, hardware, or compiler
differences, processes communicating through an ORB may have different
low-level data representations. The ORB automatically converts different
byte orders, word sizes, floating point representations, and so on, so that
application programmers can ignore the differences and avoid problems.

As lower- level distribution problems be come transparent, architects and
programmers can focus their efforts on solving application problems, not plumbing
problems. Expressed in other terms, distributed object technology raises the level of
abstraction for distributed application design and development.

3.1.2 Distributed Object Computing (DOC) and CORBA
OMG specifications have emerged as the primary focus of industry standardization in
distributed object computing, client/server computing, and large-scale object-oriented
application development. The CORBA specifications provide the foundation for the
most comprehensive platform for system interoperability and software portability that
is foreseeable in today’s computing market.

To this end, CORBA specifies:
• a concrete object model
• an abstract language for describing object interfaces
• abstract programming interfaces for implementing, using, and managing

objects
• equivalent concrete programming interfaces in popular object-oriented

programming languages (that is, language mappings)
• operational interfaces between ORBs to ensure interoperability between

products from different vendors

Other OMG specifications include CORBAservices, which specifies standard
interfaces for fundamental object services, such as naming and persistence, that are
frequently required and generally useful for managing objects regardless of their

25

function or application domain.

3.1.2.1 Interfaces
In the CORBA object model, attention is primarily focused on the object’s interface.
An interface is the boundary layer that separates a consumer of an object’s service (a
client) from the supplier of the object’s service (an object implementation). The
interface defines what a client can know about an object and how a client may interact
with it. As such, it hides the low-level details on one side of the boundary from the
other side.

It may seem contradictory to describe interfaces as “hiding” things and providing
“transparencies” at the same time, but it really isn’t. The details that are hidden (such
as network protocols, programming language idiosyncrasies, physical data
organization, and so on) are like dirt on a window. They obscure what you really want
to view the abstract behaviour of the object. By wiping these details out of the way (or
hiding them) ORBs give an object’s consumer clear, un-obscured access to the
object’s essential behaviour, expressed in terminology natural to the consumer.

An interface may also be viewed as a contract between an object’s client and
implementation. The implementation agrees to respond to a given request with certain
results; both the client and the implementation agree on the information that will be
exchanged in a given operation, and so on. If both sides abide by the contract and
don’t rely on any assumptions that aren’t stated explicitly in the contract, then the
interaction between client and object will behave properly.
A CORBA interface consists of a collection of operations, attributes, and definitions
for data types that are used with the operations and attributes. CORBA interfaces may
be composed from other interfaces through inheritance.
Almost every section of the CORBA specification deals with one aspect of interfaces
or another, such as how interfaces are described, how the descriptions are stored and
managed, how abstract de scriptions are mapped into concrete pro g ramming
interfaces in various programming languages, how object implementations relate to
and support an interface, and soon.
The CORBA specification defines a language for describing abstract object
interfaces, called Interface Definition Language, or IDL.

3.1.2.2 Programming with CORBA Interfaces
IDL can be used to generate the stubs and skeletons that are actually used when
programming. Since IDL is only an abstract interface description language, it must be
transformed into equivalent constructs in a concrete programming language to be
useful. The way in which these transformations are made for a particular language is
called a mapping for that language.

26

Figure 2 illustrates the relationships between stubs, skeletons, clients, object
implementations, and the ORB.

Figure 2 ORB Component Relationships

3.1.2.2.1 Stubs
Stubs are used by clients to invoke operations on target CORBA objects.

A stub is not the CORBA object itself. It represents a CORBA object and is, in part,
responsible for propagating requests (invocations) made on itself to the real target
object. In keeping with this role, stubs are sometimes called proxies or surrogates.
When the target object resides in a remote process, the stub is responsible for
packaging the request, with its parameters, into a message to send to the remote
process across a network, then receiving the reply message from the object, unpacking
the operation results from the message, and returning them to the calling program.

3.1.2.2.2 Skeletons and impls
Skeletons are used to call object implementations. An implementation of a CORBA
interface is a package of code in a concrete programming language that provides the
real be haviour of the object type . In some cases , the term implementation is used
to indicate the body of code in an abstract sense, that is, the type (as opposed to an
individual instance). In other cases, implementation can mean a specific instance of
the implementation type. When there is a possibility of ambiguity, we will distinguish
between the two as implementation type and implementation instance.
A skeleton takes the form of an base class declaration with functions that correspond
to the operations in the IDL interface. Programmers construct an implementation by
using the generated impl class, then providing method implementations for the
operations.
The stub and impl have identical (or nearly identical) interfaces.

27

3.1.2.2.3 Clients and Servers
When a program includes the stub type and invokes operations on instances of the
stub type, that program is acting in the role of a client, with respect to the target
object represented by the particular stub instance. When a program includes an
implementation type (built from the generated impl), creates instances of the
implementation type, and makes them available for use by clients, the program is
acting in the role of server, with respect to the implemented objects.
Note that the terms client and server merely describe roles that programs play with
respect to a particular object or set of objects. In a distributed object context (or more
specifically, a CORBA context), these terms do not indicate architectural roles
played by the programs, as they do in the traditional sense of client/server
computing. A client of one CORBA object may be the server for other clients.
Programs sharing each others’ objects in a variety of client/server roles may in fact
be peers architecturally.

3.1.2.3 Delivering Requests Using an ORB
As described above, an ORB is anything that mediates between a client and its target
object. By mediate, we mean to deliver the request from the client context to the server
context, invoke the method on the target object, and deliver results, if any, back to the
client. CORBA does not in any way prescribe or limit the mechanisms that an ORB
may use to accomplish this task. The range of possible implementations is
extremely large, and has interesting consequences, both practical and theoretical.
By leaving implementation decisions completely free, the CORBA specification
allows highly specialized ORBs to be optimised for particular environments with
unusual requirements, such as embedded real-time systems. For the purposes of this
discussion, however, we will describe the OpenFusion RTOrb Ada Edition
implementation.

3.1.2.3.1 Delivering Requests to Remote Objects

The ORB is a set of libraries that are linked into the client and server programs of the
distributed CORBA-based application. When the client invokes an operation on the
object, via the stub, the stub and the client-resident ORB library cooperate to assemble
a message that describes the request. After assembling the message, the stub invokes
the appropriate function in the client-resident class, transmitting the message to the
server that contains the target object.
The message is received in the server by the server-resident ORB component. This
component is responsible for decoding the message. The portable object adapter
(POA) locates the specific object targeted in the request and passes the message
contents to the skeleton. The skeleton extracts the request parameters and invokes the
requested operation on the object implementation instance. The process then reverses
itself: the skeleton creates the reply message, sends it back to the client, where the stub
decodes it and returns the results to the client that made the request.

28

3.1.3 ORB Components
The ORB is composed of everything that intervenes between the client and the object
to achieve location transparency. In a simple example, illustrated previously in Figure
2, the ORB encompasses the stub, the client-resident ORB classes, the server-resident
ORB, and the skeleton. It can be argued that the network itself constitutes part of the
ORB, because it mediates data transfer between processes - playing a major role in
providing location transparency.
In an ORB’s run-time environment, there may be a number of other processes (which
are neither the client nor the server) that become involved in some aspect of the
request delivery activity, to locate objects, start new server processes, monitor the
status of requests in progress, and so on. It is usually not possible to point to a single
process or software component and (accurately) call it the ORB.
Another way to determine what constitutes an ORB is to observe the two interface
boundaries that the ORB mediates between. By boundary, we mean a specific API
invocation (for example, function call, method invocation, and so on) through which
non-ORB elements (clients and object implementations) interact with the ORB.
The client interacts with the ORB by invoking a member function on a stub. This
boundary is labeled the client-ORB boundary in Figure 3. The object interacts with the
ORB primarily by having one of its member functions invoked by the ORB. This
boundary is labeled the ORB-object boundary in the figure. Anything between those
boundaries may be considered as part of the ORB for conceptual purposes.

Note: The Client machine and Server machine can be the same physical machine.

Figure 3 The ORB as an Abstraction
3.1.3.1 Abstraction

Contrast the previous example with the following scenario. As mentioned above, stubs
and skeletons are build from an IDL interface. When a programmer uses an ORB-
based object, methods are invoked on the stub. Since both the stub class and the impl

29

class are buld from the IDL interface, client code that makes the invocation could be
using either a stub that is bound to a remote object, or it could be invoking a method
directly on an implementation instance that is in the same process. This use of
polymorphism allows the client to use remote and local objects in exactly the same
way, without ever having to (or in some cases, even being able to) distinguish between
them.
When a client “sends” a request to a local implementation instance, what constitutes
the ORB? You might be tempted to say that there is no ORB present but, in fact, there
is. All of the necessary elements are present - the client, the target object, and
something that delivers the request from the client to the object. The delivery
mechanism (the ORB) in this case is the machine instruction that performs the
function call on the target object’s member function. The mediation between the client
and the object takes place in a single stack frame in the local machine. Thinking of
this as an ORB may seem too abstract, but from the programmer’s point of view a
local invocation is indistinguishable (if the ORB is properly implemented) from a
remote invocation. If it communicates like an ORB, it’s an ORB.
If you consider this scenario with respect to interface boundaries, the client-ORB and
ORB-object boundaries from the previous example have coalesced into a single client-
ORB-object boundary, creating for us the mental image that the ORB (in the case of
local invocations) is a two-dimensional, infinitely thin surface between the client and
the server.

3.1.4 Terminology Explained
Figure 4 is an adaptation from the CORBA 2.3 specification. The following
subsections describe the elements shown in the figure and their roles in the overall
activity of delivering requests. Some of the descriptions given here do not exactly
match those in the CORBA specification. Where our descriptions vary, it is generally
to achieve greater clarity and to provide a more consistent overall picture.

30

Figure 4 The Structure of Object Request Broker Interfaces

3.1.4.1 Clients and Servers
As mentioned above, the terms client and server in a distributed object context have a
different meaning than the same terms used in the context of more traditional client-
server computing. In CORBA, the terms refer primarily to roles played by different
programs (or specific parts of programs) with respect to a particular object. The client
of an object is the processing context from which a request is made on the object.
The term processing context is used advisedly, with some intentional ambiguity.
Sometimes it may refer to the program (or process) that makes a request; it may also
refer to a particular thread or a particular function from which an invocation is made.
In some cases, it may refer to another object (an implementation instance) that
contains a reference for the first object and makes requests on that object from within
one of the containing object’s methods. Though one object’s methods may in fact
constitute a client context for another object, there is formally no such thing as a client
object in CORBA systems.
Likewise a server is the computing context in which an object is implemented.
Sometimes the word server is used to indicate the object itself; other times it may
denote the process in which an object resides. In general, its ambiguity is similar to
that of the term client. Note again that the terms client and server apply to roles that
components play, not the components themselves. Any given program may

31

simultaneously be a client of some objects and a server for other (or the same) objects.

3.1.4.2 Object References
The meaning of the term object reference is relative to the context in which it is used.
When used in a programming context in the ORB, an object reference takes the form
of an Ada interface. Programmatic object references may also be converted into
character strings, which may be later converted back into object references. These
strings capture the information model encapsulated in the programmatic reference.
Even though the string is not usable as a reference in a program, it is thought of as an
object reference because it potentially locates and identifies a particular
implementation instance.
The term object reference may be used to denote the abstract concept of an object’s
identity and location. In the process of handling requests, the ORB maintains internal
data structures that it uses to locate, identify, and connect to the target objects. Since
these structures are opaque to ORB users, they may be discussed only as an
abstraction. One might say, for instance, that an object reference is passed from a
client to a server as a parameter in an invocation. The thing being passed inside the
ORB is neither the stub nor the reference in string form. Though you may not know its
concrete form, it is sometimes useful to refer to this abstraction in discussions as an
object reference.

3.1.4.3 First Class Objects, Local Objects and Pseudo Objects
In CORBA terminology, a first class object is a fully functional CORBA object
supporting all of the attributes ascribed to regular CORBA objects:

• It has a unique identity assigned and managed by the ORB
• The ORB can supply references to the object that can be used by remote

clients to make invocations on the object through the ORB
• It supports at least one CORBA interface described in IDL
• Its references support all of the operations defined on CORBA::Object
• It behaves in a manner consistent with general descriptions of objects in

the CORBA specification
A first class object may also be referred to as a righteous object.
For various reasons, the CORBA specification and some CORBAservices
specifications define programming interfaces that, while object-oriented in style,
cannot satisfy the requirements of a first-class object. In some cases the object is, of
necessity, local to the process in which it is used, it is a local object. In other cases the
interface cannot be properly expressed in IDL: it is a pseudo-interface. Local objects
have a limitation: they cannot be remotely accessed. In general, pseudo interfaces are
used to provide APIs for ORB components or utility objects specific to ORB or
service functions, such as the ORB interface itself . Pseudo interfaces generally
become programming objects in the language mappings (that is, a class in Ada), but

32

do not support required righteous object behaviours, such as:
• They cannot be remotely accessed
• They do not have real object references (although they do have

programmatic references)
• They do not support CORBA::Object operations

Another characteristic of pseudo objects is that their interfaces are often described in
pseudo-IDL, or PIDL. PIDL is not really a language at all; it is more of a dialect of
IDL that is used to describe interfaces for pseudo objects in a convenient, familiar
manner, while recognizing that the PIDL need never actually be compiled into stubs
and skeletons. Because this is the case, some pseudo interfaces described in PIDL
contain syntax or data types that are not legal IDL but are intended to describe
interface elements that are not allowed for righteous objects (hence, the need for
pseudo objects). The following subsections describe some of the more important
pseudo and local-objects.

3.1.4.3.1 The ORB Pseudo Object
The definition of ORB - given above - described the ORB as an abstract functional
entity that mediates requests. The CORBA specification also desc ribes a
programming interface called the ORB pseudo object. This interface supports
operations that interact with the computing environment provided by the CORBA
implementation (the ORB in the abstract sense) such as initialization, and operations
that perform utility functions, such as converting object references to and from strings.
Although this pseudo object interface is called the ORB and it is a component of the
abstract ORB entity, do not confuse the ORB pseudo object with the actual ORB, or
infer from the way the interface is described that the ORB is a physical, identifiable
object.

3.1.4.3.2 Object Adapters
The CORBA specification describes local objects called object adapters that provide
part of the interface between the ORB and object implementations. In particular,
CORBA specifies an interface for the POA. The POA interface supports the following
capabilities:

• It allows implementations to associate ORB-managed object identities with
instances of user-supplied implementation classes

• It allows an implementation to inform the ORB that it (or one of its instances)
has undergone a state change that affects its relationship with the ORB,
such as activation (that is, the implementation or object is prepared to receive
requests) or deactivation (the object is not available to receive requests)

33

3.2 Portable Object Adapter
The Portable Object Adapter is the link between the ORB and individual servants
created in various programming languages. It is responsible for creating object
references and for routing requests from the ORB to the appropriate servant.
The CORBA specification defines the Portable Object Adapter (POA) with the
following features:

• source-level portability between ORB products
• allows multiple and distinct instances of the POA to exist in a server
• allows individual servants to support multiple object identities simultaneously
• provides a mechanism by which policy information can be associated with

individual POA instances
• supports both persistent and transient objects
• supports object implementations that inherit from static skeleton classes, as

well as Dynamic Skeleton Interface (DSI) implementations (DSI is not
supported by the OpenFusion RTOrb Ada Edition)

All references to the POA in this section regard POA characteristics as defined in the
CORBA specification.

3.2.1 How the POA Works
In simplistic terms, after the client obtains an object reference it invokes a request on
that object. That request is transmitted via the ORB to the server application. Refer to
Figure 5, Request Dispatching. The POA is responsible for routing the request to the
appropriate servant, which incarnates the target object responsible for processing the
request.

34

Figure 5 Request Dispatching

The POA maintains an association between the ObjectId (embedded in the object
reference) and the servant (a programming language implementation of a CORBA
object). This association is maintained in a table called the Active Object Map. When
a request is received, the object adapter looks at the ObjectId that came with the
request and finds the servant associated with that ObjectId from its Active Object
Map. Then it dispatches the request on that servant. A CORBA server process can
contain a number of different POAs, each having their own Active Object Map. POAs
are created in a hierarchical fashion, with the special RootPOA serving as a common
ancestor to all other POAs.
The ability to create multiple POAs and to set characteristics on the POA using
policies allows you to control POA behaviour and, consequently, the scalability and
performance of your application.

3.2.2 POA Policies
Key to the POA definition is the ability to create multiple POAs and to customize each
instance by setting policies. In general, you will define a list of policies, then assign
them to a POA when it is created. Once a POA is created with an assigned set of
policies, those policies cannot be changed for the life of the POA. A new POA does
not inherit policies from its parent POA.
Interfaces that define policies to be assigned to a POA must be derived from

35

CORBA::Policy.

3.2.2.1 Standard POA Policies
The following standard POA policies are defined by CORBA.

3.2.2.1.1 Lifespan Policy
POA::create_lifespan_policy allows you to specify the lifespan of objects.

• TRANSIENT objects cannot outlive the processes in which they are first
created.

• PERSISTENT objects can outlive the process in which they are created. The
default value for this policy is TRANSIENT.

Setting the TRANSIENT policy does not prevent explicit reactivation of a servant with
the same object key. Change the object keys to enforce transient behaviour. The
easiest way to do this is to create new POAs for servant reactivation.

3.2.2.1.2 Object Id Uniqueness Policy
POA::create_id_uniqueness_policy specifies whether servants activated by the
POA must have unique ObjectIds.

• UNIQUE_ID specifies that each servant activated by that POA can support
only one ObjectId.

• MULTIPLE_ID specifies that servants activated by that POA can support
more than one ObjectId.

The default value for this policy is UNIQUE_ID.

3.2.2.1.3 Id Assignment Policy
POA::create_id_assignment_policy specifies whether ID assignment is
performed by the POA or by the application.

• SYSTEM_ID specifies that the POA generates and assigns Object Ids.
• USER_ID specifies that ObjectIds are assigned by the application.

The default value for this policy is SYSTEM_ID.

3.2.2.2 POA Policy Extensions
OpenFusion RTOrb Ada Edition provides the following extensions to the
CORBA-standard POA policies for use with the POA in "Enterprise" mode (they are
useless in RT mode):

36

 3.2.2.2.1 ThreadCount Policy
POA.create_thread_count_policy specifies the number of extra threads that may
be needed to fluently handle the requests for this POA.
The default value for this policy is 5 for the root POA and 0 for its descendants.

3.2.2.2.2 ProtocolPolicy
OpenFusion RTOrb Ada Edition provides a pluggable transport mechanism. The
POA.create_Protocol_Policy is used to select and configure one or more
communication protocols used by a POA.

3.2.2.3 POA Policy Summary
All POA policy objects are locality constrained (they are local objects); that is, you
cannot pass their references as arguments to normal CORBA operations or convert
them to strings using ORB::object_to_string. They can be accessed only within
the context of the ORB in which they were created.
Once you define the policies to be assigned to a POA, you can create the POA by
calling create_POA on an existing POA. The new POA becomes the child of the
POA on which the call was made. create_POA takes three arguments: the name for
the new POA, a reference to the POAManager for that POA, and a list of policies to
be applied to the new POA. If no POAManager is specified, a new POAManager is
created.

3.2.3 POA Manager
The POAManager controls the flow of requests to one or more POA objects. The
POAManager interface supports operations to change the state of a POA to one of the
following:

POA State Meaning

ACTIVE Calling activate on the POAManager allows requests to flow
to the POAs that it controls.

HOLDING
Calling hold_requests on the POAManager allows requests
to be blocked by the POAs that it controls.

DISCARDING
Calling discard_requests on the POAManager allows
requests to fail with a TRANSIENT system exception with standard
minor code 1returned to the client by the POAs that it controls.

INACTIVE
Calling deactivate on the POAManager allows requests to
fail with an ADAPTER_INACTIVE system exception returned to the
client by the POAs that it controls.

37

3.2.4 Object References, Keys, and IDs
The POA is responsible for creating an object reference, which the client can use to
contact the target object. The object key is embedded within the object reference and
the object identifier is embedded within the object key. The policies you set on the
POA determine whether or not your application controls the content of the ObjectId
and whether servants can support multiple IDs. ObjectIds must be unique within
each individual POA; however different POAs can assign the same ObjectId.

3.2.5 Servants
The IDL compiler generates server-side skeleton and servant classes. These
skeletons are internal classes needed by the POA to call your servant classes.
Servant classes are obliged to implement all of the functions declared in their
generated specification. Servants are responsible for incarnating CORBA objects. A
servant is an Ada instance used to service a request.

3.2.6 Object Creation and Activation
A CORBA object must be created and activated before the client can invoke
operations on it. The POA remembers the relationship between the object and the
servant which created it.
Depending on the policies set on the POA, you will either:

• use POA::activate_object or POA::activate_object_with_id to
activate the object. Once the object is activated, the POA can dispatch
requests arriving for that object. After activation, you may use the
POA::servant_to_reference() operation to obtain an object reference
from the servant.

or
• use POA::create_reference_with_id to create an object reference

without activating it

Use deactivate object to remove the association of the object with its servant.

3.2.7 Request Processing
When the ORB receives a request, it attempts to locate the appropriate POA and
deliver the request. It uses the received object reference, which contains the
ObjectId and POA identification, to locate the appropriate server and POA within
that server. The request is then handed off to the POA.
The POA now takes over and tries to locate the target object. The POA searches for
the servant associated with the ObjectId in its Active Object Map or through its
servant adapters. Once a reference to the servant is obtained, the appropriate method is
invoked. Otherwise, an exception is thrown.

38

3.2.8 Designing an Application
OpenFusion RTOrb Ada Edition fully support the dynamic features supported by the
full-version of the CORBA specification. As a result, it support certain features, such
as activation on demand, which must be taken account of when designing servers. For
example, POAs can be activated on demand because OpenFusion RTOrb Ada Edition
fully supports adapter activators . The server can also be designed to dynamically
activate objects when needed using servant adapters.

39

40

CHAPTER

4 Introduction to Real-time CORBA

This chapter introduces the essential aspects of the Real-time CORBA ORB.

Please note that real-time CORBA examples are provided in the OpenFusion RTOrb
Ada Edition distribution’s html pages.

4.1 Real-time Specification
The Real-time CORBA Specification defines a set of real-time extensions to standard
CORBA specification.
Figure 6 shows the key Real-time CORBA entities. The features that these relate to are
described below.

 Figure 6 Real-time CORBA Extensions

41

4.1.1 Real-time CORBA Modules
All CORBA IDL specified by Real-time CORBA is contained in new modules
RTCORBA and RTPortableServer (with the exception of new service contexts,
which are additions to the IOP module.)

4.1.2 Real-time ORB
Real-time CORBA defines an extension of the ORB interface, RTCORBA::RTORB,
which handles operations concerned with the configuration of the real-time ORB and
manages the creation and destruction of instances of other Real-time CORBA IDL
interfaces.

4.1.3 Thread Scheduling
Real-time CORBA uses threads as a schedulable entity. Generally, a thread
represents a sequence of control flow within a single node. Threads form part of an
activity. Activities are scheduled by coordination of the scheduling of their
constituent threads. Real-time CORBA specifies interfaces through which the
characteristics of a thread that are of interest can be manipulated. These interfaces are
Threadpool creation and the Real-time CORBA Current interface. The Real-time
CORBA view of a thread is compatible with the POSIX definition of a thread.

4.1.4 Real-time CORBA Priority
Real-time CORBA defines a universal, platform independent priority scheme called
Real-time CORBA Priority. It is introduced to overcome the heterogeneity of
different Operating System provided priority schemes, and allows Real-time CORBA
applications to make prioritised CORBA invocations in a consistent fashion between
nodes with different priority schemes.
For consistency, Real-time CORBA applications always should use CORBA Priority
to express the priorities in the system, even if all nodes in a system use the same
native thread priority scheme, or when using the server declared priority model.

4.1.5 Native Priority and PriorityMappings
Real-time CORBA defines a NativePriority type to represent the priority scheme that
is ‘native’ to a particular Operating System.
Priority values specified in terms of the Real-time CORBA Priority scheme must be
mapped into the native priority scheme of a given scheduler before they can be applied
to the underlying schedulable entities. On occasion, it is necessary for the reverse
mapping to be performed, to obtain a Real-time CORBA Priority to represent the
present native priority of a thread. The latter can occur, for example, when priority
inheritance is in use, or when wishing to introduce an already running thread into a
Real-time CORBA system at its present (native) priority.
Real-time CORBA defines a PriorityMapping interface in order to allow the Real-

42

time ORB and applications to do both of these things.

4.1.6 Real-time CORBA Current
Real-time CORBA defines a Real-time CORBA Current interface to provide access to
the CORBA priority of a thread.

4.1.7 Priority Models
One goal of Real-time CORBA is to bound and to minimize priority inversion in
CORBA in vocations. One mech an ism that is employed to achieve this is prop agatio
n o f the activ ity p riority fro m the client to the server, with the requirement that the
server side ORB make the up-call at this priority (subject to any priority inheritance
protocols that are in use).
However, in some scenarios, it is sufficient to design the application system by setting
the priority of servers, and having them handle all invocations at that priority. Hence,
Real-time CORBA supports two models for the priority at which a server handles
requests from clients:

• Client Propagated Priority Model: in which the server honours the priority of
the invocation, set by the client. The invocation’s Real-time CORBA
Priority is propagated to the server ORB and the server-side ORB maps
this Real-time CORBA Priority into its own native priority scheme using
its PriorityMapping.
Requests from non-Real-time CORBA ORBs; that is, ORBs that do not
propagate a Real-time CORBA Priority with the invocation are handled at a
priority specified by the server.

• Server Declared Priority Model: in which the server handles requests at a
Real-time CORBA Priority assigned on the server side. This model is useful
for setting a boundary where new activities are begun with a CORBA
invocation.

4.1.8 Real-time CORBA Mutexes and Priority Inheritance
The Mutex interface provides the mechanism for coordinating contention for system
resources. Real-time CORBA specifies an RTCORBA::Mutex locality constrained
interface, so that applications can use the same mutex implementation as the ORB. A
conforming Real- t ime CORBA Ada implementat ion need not provide
an implementat ion of Mutex as Ada a lready provides a far bet ter
solut ion through the use of protected objects. This allows a consistent
priority inheritance scheme to be delivered across the whole system.

4.1.9 Threadpools
Real-time CORBA uses the Threadpool abstraction to manage threads of execution on

43

the server-side of the ORB. Threadpool characteristics can only be set when the
threadpool is created. Threadpools offer the following features:

• preallocation of threads - This helps reduce priority inversion, by allowing
the application programmer to ensure that there are enough thread resources to
satisfy a certain number of concurrent invocations, and helps reduce latency
and increase predictability, by avoiding the destruction and recreation of
threads between invocations.

• partitioning of threads - Having multiple thread pools associated with
different POAs allows one part of the system to be isolated from the
thread usage of another, possibly lower priority, part of the application
system. This can again be used to reduce priority inversion.

• bounding of thread usage - A threadpool can be used to set a maximum limit
on the number of threads that a POA or set of POAs may use. In systems
where the total number of threads that may be used is constrained, this
can be used in conjunction with threadpool partitioning to avoid priority
inversion by thread starvation.

• buffering of additional requests beyond the number that can be dispatched
concurrently by the assigned number of threads.

4.1.10 Priority Banded Connections
In order to reduce priority inversion due to use of a non-priority respecting transport
protocol, RT CORBA provides the facility for a client to communicate with a server
via multiple connections, with each connection handling invocations that are made at a
different CORBA priority or range of CORBA priorities. The selection of the
appropriate connection is transparent to the application, which uses a single object
reference as normal.

4.1.11 Non-Multiplexed Connections
Real-time CORBA allows a client to obtain a private transport connection to a server,
which will not be multiplexed (shared) with other client-server object connections.

4.1.12 Invocation Timeouts
Real-time CORBA applications may set a timeout on an invocation in order to bound
the time that the client application is blocked waiting for a reply. This can be used to
improve the predictability of the system.

4.1.13 Client and Server Protocol Configuration
Real-time CORBA provides interfaces that enable the selection and configuration of
protocols on the server and client side of the ORB.

44

4.1.14 Real-time CORBA Configuration
New policy types are defined to configure the following server-side RT CORBA
features:

• server-side thread configuration (through Threadpools)
• priority model (propagated by client versus declared by server)
• protocol selection
• protocol configuration

Which CORBA policy application points (ORB, POA, Current) that a given policy
may be applied at is given along with the description of each policy. Real-time
CORBA defines a number of policies that may be applied on the client-side of
CORBA applications. These policies allow:

• the creation of priority-banded sets of connections between clients and
servers;

• the creation of a non-multiplexed connection to a server;
• client-side protocol selection and configuration.

In addition, Real-time CORBA uses an existing CORBA policy to provide invocation
timeouts.

4.2 Real-time Portable Object Adapters
Real-time Portable Object Adapters (RTPOA) configuration is one of the most
important features in real-time CORBA. Application developers can configure and
control hardware resources using real-time policies associated with real-time POAs.
This section describes priority models, the pluggable RTPOA, threads and
threadpools, and priority banded connections.

4.2.1 Priority Model
OpenFusion RT Orb Ada Edi t ion only support s both the
RTCORBA::SERVER_DECLARED and RTCORBA::CLIENT_PROPAGATED priority
models. Refer to the CORBA Priority Model example included in the RTOrb
examples to see how to set the RTCORBA::SERVER_DECLARED priority model policy
for an RTPOA.

4.2.2 RTPOA
The RTPOA module which extends the standard POA interface with respect to
priority and resource configuration.

45

4.2.2.1 POA Activation Methods with Priority

 function create_reference_with_priority

 (Self : in Ref;

 intf : in CORBA.RepositoryId;

 priority : in RTCORBA.Priority)

 return Corba.Object.Ref ;

 function create_reference_with_id_and_priority

 (Self : in Ref;

 oid : in PortableServer.ObjectId;

 intf : in CORBA.RepositoryId;

 priority : in RTCORBA.Priority)

 return Corba.Object.Ref ;

 function activate_object_with_priority

 (Self : in Ref;

 p_servant : in PortableServer.Servant;

 priority : in RTCORBA.Priority)

 return PortableServer.ObjectId ;

 procedure activate_object_with_id_and_priority

 (Self : in Ref;

 oid : in PortableServer.ObjectId;

 p_servant : in PortableServer.Servant;

 priority : in RTCORBA.Priority) ;

4.2.3 Threads and Threadpools
There are two basi c ways o f manipulat ing th reads in RT CORBA,
RTCORBA::Current and Threadpools (via policies at POA creation time).

4.2.3.1 Current
RT CORBA defines a RTCORBA::Current interface to provide access to the CORBA
priority of a thread. Please refer to the CORBA Priority example included with this
product on how to access the priority of a thread.

4.2.3.2 Threadpools
Thread pools are one of the most important features in Real-time CORBA. Threads in
pools can be pre-allocated and partitioned amongst active Real-time POA's.
Application developers and end-users configure and control processor resources using
thread pools. The possibility of experiencing priority inversion can be bounded and

46

reduced by configuring real-time POA's with threadpools where each POA associates
with one thread pool (see Figure 7). Note that threadpools are independent of the POA
lifecycle.

4.2.3.3 Thread Pool Operation Basic Mode
Application developers and end-users configure and control processor resources using
thread pools (see Figure 7). Threads in the threadpool execute requests at the object
priority for which each request is targeted. Each POA associates with one thread pool.
However, you are reminded that thread pools are independent of the POA lifecycle.
To dispatch requests to the correct queue and to the right servant on the server side,
each request needs to be handled by the right priority thread. To achieve this, requests
are pushed onto the queue of appropriate priority and are processed synchronously by
the waiting threads within a lane. There is a queue assigned to each thread pool.

Figure 7 Controlling Network Resources

The client side may hold multiple connections open through the use of individual
object references to end points in the server, based on priority band.
Threadpools can be configured for use with RTPOA's in one of two forms:

• Non-laned Threadpool
• Laned Threadpool

47

4.2.3.4 Laned Threadpool
A threadpool can be created that has n partitions (lanes) each created to serve requests
at a specific priority. Each lane has m static threads running at the priority defined for
the lane. Whenever a request arrives, a lane is chosen based on the priority associated
with the activated object. Please refer to the Threadpools example included with this
product on how to create a Threadpool with lanes.
As seen above, the half-sync layer consists of a thread pool associated with a POA. A
thread pool can be shared among POAs.

4.2.3.5 Priority Banded Connections
RT CORBA introduces the concept of priority banded connections. A real time POA
(RTPOA) supporting priority banded connections is capable of accepting requests
across transport with some concept or awareness of the requestors priority at which
the server should execute. Each client can open a number of connections with a server,
each connection handling a range of priorities defined in the priority banded
connection policy.
Priority banded connections are useful when used in conjunction with a transport
protocol that does not respect priorities. Transports like TCP that are not easily pre-
emptable and do not respect priorities can incur head of line blocking where requests
of higher priority are blocked and unable to pre-empt requests at lower priority. This
leads to unbounded delays and the potential of priority inversion. Priority bands allow
multiple connections to be utilized to minimize the head of line blocking that can
occur where one connection is used for multiple priority requests. An RTPOA th at is
configured with laned th readpools and prio rity banded connections can provide
more predictability. Please refer to the Connections example included with this
product on how to create priority banded connections.

4.2.4 RTPOA Current
This interface is available to perform operations to access the identity of the object on
which a call was invoked. This is supplied for supporting servants that may implement
multiple objects.

4.2.5 Associations Between Pools and RTPOA
Each POA must have one thread pool attached to it. This is done by passing a thread
pool policy to the POA. In the case where no policy is specified or an invalid
threadpool identifier is used, the ORB will use the default thread pool. One thread
pool can be shared among multiple POAs. The default pool must be created and set
before the first inquiry for the RTRootPOA.

48

4.3 Priority Machinery
Priority is the medium used to achieve QoS in real-time CORBA, hence the focus of
RTOrb application design. With the RTOrb priority scheduling is achieved via the
RTOS scheduler. Tasks or threads that comprise the application execute in a stable,
predictable manner as a result of this priority scheduling. In addition if using only the
RTOS for scheduling purposes, it must provide proper mutexes and semaphores to
resolve resource contention, such as priority-aware application objects and/or code
segments.
The central theme in real-time CORBA programming is the notion of prioritised
scheduling of activities, tasks, or threads.
This section provides:

• background information on the phenomenon of priority inversion
• discussion of protocols used to overcome priority inversion
• discussion of priority mapping and CORBA priority scheme

4.3.1 Priority Phenomena and Protocols
Priority inversion is a commonly known phenomenon in real-time systems. It usually
manifests in the form of unbounded delays of high priority tasks. Normally, when
priority inversion occurs, high priority tasks are forced to wait on low priority tasks.
This occurs when the high priority tasks are sharing common resources with low
priority tasks. If a low priority task locks the resource for its own use but is pre-
empted by a higher priority task, which also needs access to the common resource,
the high priority task will have to wait on the lower priority task.

To illustrate the concept of priority inversion more clearly, consider Figure 8. Here, 3
tasks or threads are executing, T1, T2, T3. The tasks are illustrated in order of
decreasing priority such that the priority of T1 is the greatest and that of T3 the least
of the 3. In addition, we assume that T1 and T3 share a common resource, such as a
critical section, to which only one can have access at any point in time. The
following is a typical scenario illustrating priority inversion.

At time t0 task T3 starts to run. At time t1 task T3 locks and enters a critical section,
continuing to execute until time t2. The portion of time for which task T3 is in a
critical section is shown as shaded. At time t2, task T1 pre-empts task T3 because T1
has a higher priority. Task t1 now executes from time t2 until time t3, at which point
it attempts to gain access to the critical section, which has previously been locked by
lower priority task T3. Task T1 is therefore forced to wait or block until such time as
T3 releases the lock on the critical section shared between T1 and T3. Task T3 is
allowed to run next. So at time t3, task T3 resumes execution and continues to work
its way through the critical section.

49

Now at time t4, task T2 pre-empts task T3 and starts to run because task T2 has a
higher priority than that of task T3.
Task T1 is now blocked by task T3 because of the shared resource, and task T3 is
blocked by task T2. Therefore T2 is now indirectly blocking task T1 as well. Task T2
blocks task T3 until T2 completes at time t5. As a consequence T3 is forced to block
for a significant amount of time (the length of the shared critical section plus the
execution time of task T2).
For an actual system, when several medium priority tasks exist with priorities greater
than that of task T3 but less than that of task T1, it can lead to unbounded delay or
blocking.

This effect is known as priority inversion and occurs in the time interval t3 to t6.

Figure 8 Priority Inversion

The priority inversion phenomenon in real-time systems is one that can manifest any
time several tasks want to execute in the presence of services that are shared among
them.
Several approaches have been proposed to alleviate the priority inversion
phenomenon in real-time systems and much literature is available. A complete
description and analysis is beyond the scope of this document. The reader is directed
to further reading under Bibliography on page 93, particularly Buttazo.
The Real-time Extension aids the RT CORBA developer by providing priority
inheritance protocols in the ORB. Specifically, RTOrb’s RT CORBA mutex supplies
a default implementation that uses the simple priority inheritance protocol as an
example. Other protocols are also possible, but this is used to illustrate the concept
and its applicability.

The priority inheritance protocol bounds any priority inversion that could possibly

50

occur. Although the ORB’s initial design is such that it tries to eliminate the
possibility, it can still occur as a result of unusual transports, or hardware specifics
that are used in a particular setup.
Figure 9 and the following text explain how priority inheritance protocols bound any
possible priority inversion. The same three tasks are illustrated as in Figure 8.
Additionally, the relative priorities of the three tasks are depicted at the bottom of the
figure as P1, P2, and P3.
Up to time t3, the behaviour of tasks T1 and T3 are the same as in Figure 8. At time t3,
T1 is forced to block on T3 due to T3 holding a lock on a critical section to which T1
needs access. At this point the mechanism of priority inheritance is employed. This
mechanism causes T3 to inherit the priority P1 of task T1, which forces task T3 to
execute immediately and run through the remaining part of its critical section. This
forces T3 to execute from t3 to t5 at the T1 priority P1, which is the highest priority in
this illustration. Note that task T2 cannot pre-empt task T3 as task T2 has lower priority
than the temporarily assigned priority (P1 of task T3, through priority inheritance).

Figure 9 Priority Inheritance Protocol to Bound Priority Inversion

As task T3 exits the critical section, its priority is returned to its original value P3 as
shown in Figure 9. At time t5, task T1 can run because priority P1 is greater than
priority P2 of task T2. Thus it no longer needs to block on task T3, which was holding a
lock on the critical section. Task T1 now runs through the critical section and to
completion at t6. At time t6, task T2 has the highest priority and executes as shown in
Figure 9.

51

4.3.1.1 CORBA Priority
CORBA uses a standard (canonical) form of priority that can be mapped to any
RTOS priority scheme. In effect, CORBA su bsumes th e heterogen e ity in RTOS-
specific priority schemes and thus achieves uniformity. This allows CORBA
invocations to be made across multiple, different RTOS platforms - which may have
different native priority schemes - in a consistent manner. Therefore, CORBA priority
is a wrapper for native priority schemes.

4.3.1.1.1 CORBA Priority Mapping
Priorities may be mapped from the CORBA priority scheme to the RTOS native priority
scheme. This is accomplished with an interface defined in IDL, and allows you to
forward and reverse map CORBA and native priorities as shown in Figure 10.

Figure 10 Priority Mapping

An RTCORBA priority type id, defined in IDL to be of type CORBA short, is as follows:

module RTCORBA {
typedef short Priority;
const Priority minPriority = 0;
const Priority maxPriority = 32767;
};

It spans the interval 0 to 32767. Higher values of RTCORBA priorities map to higher
native RTOS priorities.

52

4.3.1.1.2 RTCORBA Current Interface
The Current interface in RTCORBA allows a developer access to the priority data of
the current locus of execution or thread. The interface allows for setting and getting a
thread’s CORBA priority.

interface Current : CORBA::Current {

attribute Priority the_priority;

};

 A thread has native base and elevated priorities, which may be different than the
observed CORBA mapped value.

This is a local interface, which also stores information about its current CORBA and
native priorities in a thread-local storage structure. It is a singleton within the context of
its present locus of execution. A typical application’s use of the RTCORBA current
interface is illustrated below: Please refer to the CORBA Priority example included
with this product on how to use the RTCurrent get and set methods, and use of the
default priority mapping.

53

54

CHAPTER

5 Introduction to Real-time Systems

This chapter expands on the short introduction given earlier and introduces some of the
essential aspects of real-time systems programming.

5.1 Real-time Systems
The term real-time is used to define systems where the time taken for the execution of a
task is temporally deterministic (predictable). This yields, at the task level, the notion
of hard deadlines: a task must complete within the specified time. Thus a real-time
system executes tasks in a predictable manner with respect to time.
The degree of predictability is the basis for the terminology used to describe real-
time systems. Widely used categories are hard real time and soft real time. This degree-
of-predictability classification conveys relative descriptive utility, but more precise
definitions are implied for a given application.
In hard real-time systems, task execution that completes at an incorrect time means
system failure. A missed deadline is the same as a wrong answer.
In soft real-time systems, task execution that completes at an incorrect time means
reduced system performance. A missed deadline is not catastrophic, but rather
degrades system performance.

Examples of hard real-time activities are:
• flight control (inertial guidance and navigation)
• nuclear power plant control
• pacemakers (human heart)
• vehicle anti-lock braking
• air-bag deployment systems

Examples of soft real-time activities are:
• command interpretation of inputs from a user interface
• saving or displaying management data
• ship navigation
• certain types of telecommunications traffic shaping functions

55

In general, real-time applications consist of soft and hard deadlines. Operating systems
try to guarantee the individual timing constraints of the hard deadline tasks while
attempting to minimize the average response times of the soft ones. Real-time
operating system (RTOS) kernels achieve this through the use of appropriate features:

• near constant time system calls
• the ability to associate priority not only with the threads (or tasks) executing,

but also the synchronization constructs such as mutates
• pre-emption to achieve greater determinism
• appropriate scheduling strategies

5.1.1 Time- and Event-Triggered Systems
Another way to classify real-time systems is based on whether they are time-
triggered or event-triggered. A trigger is an event that causes the start of some action,
for example, the execution of a task or the transmission of a message.
There are two distinctly different approaches to the design of real-time computer
applications: the event-triggered (ET) approach, and the time-triggered (TT) approach.
A triggering mechanism is used to start communication and processing activities in
each node of a computer system (network).
In the ET approach, all communication and processing activities are initiated upon
occurrence of a significant change of state. The regular event of a clock tick is not such
an event. In the TT approach, all communication and processing activities are initiated
at predetermined times. While ET systems are flexible, TT systems are temporally
predictable. In this guide, the systems discussed are event-triggered.

5.1.2 Developing Real-time Systems with RTOS
Real-time Operating System (RTOS) kernels are built to support real-time tasking
through a number of important features that real-time systems use:

• priority based scheduling to perform real time inter-kernel process
management

• priority aware synchronization constructs (semaphores for instance)
• concurrency constructs such as multi-tasking or multi-threading
• real-time clock for a time reference for internal kernel task management

and housekeeping tasks
• mechanisms for inter-process and intra-process communication with

associated synchronization primitives
• bounded, constant-time fast context switch, and often an associated minimal

base kernel size (typically 16-32kb)
• internal kernel architecture geared to respond to external interrupts in a

fast manner, and so separate their execution from intra-kernel tasks
Pre-emption and priority-based scheduling are the most important characteristics of

56

real-time kernels. Together they give rise to the notion of priority, the central
mechanism used to achieve predictable, deterministic behaviour. These
characteristics are sufficient for soft real-time systems. Behavioural characteristics
include quick response and small execution times for higher priority tasks - while
yielding small average response times for other tasks. For hard real-time applications
however, a centrally important theme is missing in such kernels. It is the notion of
some form of guarantee, which is necessary for time-critical, hard real-time behaviour.
To achieve hard real-time, distributed applications, the most important properties of a
distributed, mission-critical system RTOS and ORB tuple are:

• predictability - The RTOS must be able to predict in an a priori fashion
the consequences of scheduling any and all tasks under its control. If it is not
possible to guarantee an upper bound for the execution time of any task, the
RTOS must be able to take an alternative course of action to cope with such
events. Predictability is by far the single most important requirement on an
RTOS, especially for hard real-time application hosting.

• timeliness - The RTOS must comprise internal clocks for effective
handling of tasks with differing time constraints, and degree of importance or
criticality.

• fault-tolerance - The RTOS should be immune (to some degree) to certain
classes of hardware and software failures. Mission critical components in
such high availability RTOS models should have fault-tolerance features
inherent in their design.

• design for peak load - The RTOS should provide some continued minimal
level of performance when subjected to unusually high peak loads. RTOS
failure and crash under such circumstances is an unacceptable scenario for
hard real-time applications. Therefore, they must be designed to cope with
anticipated scenarios of high sporadic load.

• maintainability - The RTOS kernel and ORB need to be designed in a
modular, pluggable fashion to ensure a minimal, optimised use of RTOS
resources under any load. In addition, the ability to make
modification/customisations to the kernel - as the ORB based application
might require - should be minimally cross-coupled so as to be able to make
the changes easily.

5.1.3 Predictability in Distributed Applications
Predictability of a complex, distributed, real-time application is achieved through the
careful combination of RTOS features, networking transport, IPC mechanism
implementations, and constant-time ORB internals design. A sum of these, yields a
degree of predictability that enables some level of Quality of Service (QoS) to be
furnished to the application built on the RTOS-ORB combination.
As far as the RTOS is concerned, it should be able to plot the evolution of tasks and
events ahead of time in a given situation such that it can guarantee in advance that all

57

critical timing constraints are met by suitable scheduling of its internals. Components
that contribute to the possibility of predictably scheduling deadline-restricted tasks
are:

• the features and numbers of CPUs and the scheduling policies they support
• internal CPU features such as pre-fetch, pipe lining, cache memory, and

direct memory access, which can contribute to non-determinism
• types of scheduling algorithms employed in the kernel
• synchronization mechanisms
• types of priority-aware semaphore
• memory management policies, especially heap management
• communication mechanism, e.g., whether the kernel is based on messages

or signals
• interrupt handling mechanisms

5.1.4 Features and Non-Determinism
It is important for the distributed real-time application designer to understand the
features that will most contribute to non-determinism. These are discussed briefly in
the context of an RTOS and ORB.
Probably the single greatest contributor, at the ORB level, of non-determinism is a
transport that is not QoS aware or priority respecting. In essence, the management of
ORB, application, and RTOS internal tasks needs to be efficiently managed by the
RTOS.
Perhaps the single greatest enemy of an effective hard real-time system design is the
phenomenon referred to as priority inversion.
Priority inversion occurs when a high priority task (that is, of possibly greater
importance and criticality) is blocked by a less critical, lower priority thread for an
unbounded period of time. This type of situation is often seen when the high priority
thread is trying to get access to a shared (with the low priority task) resource, which
the low priority task has locked for its own use. There is much detailed real-time
literature on this subject, and designs for its avoidance. For further reading, see
Bibliography on page 93, particularly Rajkumar and Buttazo.
The integration of ORB and application tasks is under the control of the application
designer, but the tasking and priority level control of the transport threads is not, and can
give rise to priority inversions.

Other major contributors to non-determinism include:
• DMA - Certain methods of direct memory - such as cycle-stealing access, used

to transfer data between devices and main memory - give rise to unbounded

58

delays. However, this can be overcome by using other techniques, such as
time-slice methods.

• cache - This procedure buffers CPU-RAM exchanges in an attempt to reduce
task exe c ut ion t imes. Under ce r tai n circ um s t ance s , this can
contribute t o non-determinism.

• interrupts - These events can be sporadically triggered due to I/O devices and
can impair predictability of a real time system due to the fact that they
introduce unbounded delays into the execution times of other processes.

• system calls - The calls for hard real-time kernel primitives need to be pre-
emptible and implemented to have bounded execution times. These are then
used by the scheduling subsystem of the kernel to pr oduce the necessary
guaranteed, temporally-correct behaviours internally in the kernel.

• semaphores - These should be modified to be priority aware and thus avoid
the priority inversion phenomenon. RTOS’ normally furnish priority protocols
when implementing this modification. Examples include basic priority
inheritance, priority ceiling, and stack resource policy. These protocols
temporarily modify task priorities to avoid deadlock and anomalous priority
assignments, which cause non-determinism.

• memory management - This must not produce unbounded delays in the course
of execution of real-time tasks. A common practice is to use fixed, constant
time type schemes to allocate, and address memory partitions to achieve
predictable memory access. It is usual to see a greater degree of static
allocation, which reduces flexibility for dynamic environments. The designer
of real-time systems must make trade off decisions when implementing on an
RTOS using languages that permit dynamic heap memory allocations, such as
C++.

59

60

PROGRAMMING
WITH RTORB

61

62

CHAPTER

 6 Creating Applications

6.1 General
This section describes how to write the applications themselves and covers:

• How to write a simple non real-time application, called Echo. This
application contains the minimal, essential elements needed to create
 a distributed client-server application

• How to write a simple real-time version of the Echo application. This
application demonstrates basic real-time programming using RTOrb

i It is assumed that readers understand basic CORBA programming with Ada concepts
and practice. The descriptions given here concentrate on those aspects which may be of
most help, with basic operations (which readers should be familiar with) being only
lightly covered.

6.2 A Simple Application
This example, the Echo application, is very simple: it contains the minimum elements
needed to create a working client-server application using RTOrb.

• has an IDL specification in echo.idl which
 declares the Echo interface and EchoString function (see 7.2.1)

• has a server which
 performs the basic initialisation tasks required by all servers
 creates an Echo servant object; the servant’s single method prints a

greeting for the client which called the server.
 makes the Echo servant accessible to clients by saving the servant’s

stringified IOR to a file
 listens for requests from clients

• has a client which

63

 performs the basic initialisation tasks required by all clients
 obtains references to the Echo servant object by reading its

stringified IOR from a file
 all the EchoString method on the Echo object which displays a

greeting with the client’s name

 This example uses files for object resolution. Other methods of object resolution
must be used on platforms which do not have a file system.

T he comple t e s ou rce c ode fo r t he E cho a pp l i c a t i o n i s i n t h e
<OFRT_DIR>/examples/ada/echo directory of the RTOrb distribution.

6.2.1 IDL Specification
The IDL specification for Echo (echo.idl) is very simple: it declares a single
interface, Echo, with a single method, EchoString. The EchoString takes a string
(the name of the client calling the method) and returns a string (a greeting with the
client’s name).

interface Echo {
 string echoString(in string mesg);
};

6.2.2 Running the example Echo
It is assumed you have installed and configured a compiler and a library beforehand.

WIN The Echo example is located in <OFRT_DIR>\examples\ada\echo. If it does not
already exist, a tmp directory must be created in the system root (i.e. if RTOrb was
installed on C:, then you must create c:\tmp)

Step 1 Compile the needed files to run the application. Run compile.bat, located in the Echo
folder:

<OFRT_DIR>\examples\ada\echo\compile.bat

The executables files echo_server.exe and echo_client.exe are generated.

Step 2 Start the server by executing echo_server.exe

<OFRT_DIR>\examples\ada\echo\echo_server.exe

64

The console indicates the IOR \tmp\ior.dat has been created. The server is running, as
long as the console it was launched in remains open.

Step 3 In another console, or through Windows Explorer, launch echo_client.exe
The console where the server is running indicates he has received the greeting from the
client. The client and the server you have created communicate well.

6.2.3 Client-side
First, the client side packages of the interfaces of the objects this client needs to access
must have been generated using idl2ada. The generated code must not be edited in any
case.

6.2.3.1 Initialization
Before doing any method invocation, the client may need to start the OpenFusion orb.
This is done by calling Corba.Orb.Orb_Init.
This procedure requires two parameters:

• Argv : an argument list to supersede command line parameters
• Orb_Identifier : the name of the RTOrb daemon to connect to if this name is the

null string, then the command line options () are used to determine the orb (see
Client and Service switches), else the RTOrb environment variable is tried. If
the name is still a null string, the client uses its own ORB library only, else if
the named RTOrb daemon is not found, a message is displayed and the
exception Ada.Io_Exceptions.Name_Error is raised.

65

Example:

with Corba.Orb ;
procedure Client is

Args : Corba.Orb.Arg_List ;
Orb_Name : Corba.Orb.Orbid ;

begin
-- Initialization of the ORB connection
-- Use null argument list and name to allow command line options
-- and RTOrb environment variable
Corba.Orb.Orb_Init (Args, Orb_Name) ;
-- Put client code here
-- Corba processing termination
Corba.Orb.Shutdown (Wait_For_Completion => True) ;

end Client ;

If needed, the client can establish a connection with RTOrb daemons (for example, an
administrator who wants to interconnect all the Naming Services will read the
etc/Orbs file, connect to all the RTOrb daemons, get their Naming Service root
reference, and bind it in all the others).

Corba.Orb.Orb_Init can be called several times for the same daemon (in independent
parts of the client). In this case, as required by the OMG CORBA specification, the
daemon reference count is incremented. There must be the same number of calls to
Corba.Orb.Stop to effectively terminate the connection with this daemon.
Corba.Orb.Shutdown also closes all the connections wherever it is called.

6.2.3.2 Getting object references
In order to invoke methods on an object, the client needs to get a reference to this
object. This reference can be obtained by different means:

• by a stringified object reference (IOR) which is transformed into a reference
by calling Corba.Orb.String_To_Object

• by a corbaloc, corbaname or file URL object reference which is transformed
into a reference by calling Corba.Orb.String_To_Object

• by searching the root object of the service in the initial references of the orb
by calling Corba.Orb.Resolve_Initial_References

• by searching in the NamingService under an already defined name
• by calling Corba.Implementation_Repository.Get_Implementation and

Corba.ImplementationDef.Get_Root_Object to start a new unshared service

66

• as the result of an operation on another object

If the object corresponding to the reference exists but is not active, the target orb does
the job to make it active at the first method invocation.
To allow its resolution by a corbaloc URL, a reference must be added to the initial
references using Corba.Orb.Register_Initial_Reference. Any server created with RTOrb
can resolve the references it registers by this mean.

6.2.3.3 Tasking
RTOrb client and service library operations are tasking-safe. They are potentially
blocking at the Ada task level.
Asynchronous Transfer of Control (ATC) is not supported during method invocation.
This would introduce a big performance penalty due to the mandatory extra actions
which would be needed, and in most of the cases useless (when ATC is not used or
pending).
If ATC has to be used, the client implementor should use an extra task to perform the
method invocations while ATC is pending.

6.2.3.4 CORBA exception handling
CORBA exceptions carry information when they are raised. To get these data, an
exception handler must have a choice parameter specification (see Ada RM95 11.2) and
must be specific to the raised exception. The 'Get_Members' method associated with the
exception can then retrieve the data. Several exception handlers can retrieve the data if
the exception is re-raised with the simple instruction 'raise ;' (e.g. if another exception is
re-raised, the access to the data is lost).

The CORBA exception Impl_Limit is raised during method invocation if a non CORBA
exception is raised during the execution of the method in the server side.

Example (taken from a Naming Service context operation) :

exception
when NotFound_Exception : CosNaming.NamingContext.NotFound =>
 Ada.Text_Io.Put_Line ("Exception : Not Found");
 declare
 Members : CosNaming.NamingContext.NotFound_Members :=
 CosNaming.NamingContext.Get_Members (NotFound_Exception);
 begin
 Ada.Text_Io.Put_Line ("Reason : " &
 CosNaming.NamingContext.NotFoundReason'Image (Members.Why));
end;

67

6.2.3.5 Termination
Corba.orb.Stop must be called to close the CORBA session. If Corba.orb.Orb_Init was
called several times, the session will be effectively closed after Corba.orb.Stop is called
the same number of times, in order to protect the CORBA work from the other tasks of
the process. The standard procedure Corba.orb.Shutdown forces the termination of the
session.

If Corba.orb.Stop or Corba.orb.Shutdown are not called, the RTOrb daemon itself (if
used) will do the cleaning work when the connection is closed (for example at least
when the client is killed).

6.2.4 Server-side
6.2.4.1 Initialization

Corba.Orb.Orb_Init (Args, Orb_Name) ;

6.2.4.2 Getting the Root POA and activating it

Corba.Orb.Resolve_Initial_References
 (Corba.To_Unbounded_String ("RootPOA"), Root_Poa) ;
Manager := Corba.PortableServer.Poa.Get_The_POAManager (Root_Poa) ;
Corba.PortableServer.PoaManager.Activate (Manager) ;

6.2.4.3 Creating and associating the object

Root_Ptr := new Echo.Impl.Object ;
Corba.PortableServer.Poa.Servant_To_Reference
 (Self => Root_Poa,
 P_Servant => Corba.PortableServer.Servant (Root_Ptr),
 Result => Root_Ref);

68

6.2.4.4 Making the object available
You can make the object available either as an initial reference or having its reference
stored in a file.
As an initial reference:

Corba.Orb.Register_Initial_Reference
(Id => Echo.Tgx_Service_Name,

Object => Root_Ref) ;

Store its reference in a file:

Ada.Text_Io.Create (File => File,
Mode => Ada.Text_Io.Out_File,
Name => "/tmp/ior.dat") ;

Ada.Text_Io.Put (File, Corba.To_String
(Corba.Orb.Object_To_String (Root_Ref))) ;

Ada.Text_Io.Put (File, Character'val (0)) ;
Ada.Text_Io.Close (File) ;
Ada.Text_Io.Put_Line

("The reference of the object is written in /tmp/ior.dat") ;

6.2.4.5 Starting method processing
The current thread is blocked with this call. It will only exit when Orb.shutdown is
called from another task.

Corba.Orb.Run ;

Invocation processing is now started.

69

70

BIBLIOGRAPHY

71

72

Bibliography
The documents and articles listed below are referred to in the text or are recommended
reading.

[1] A Comprehensive Source of Information on Real-time Systems and Design,
Jensen D.,http://www.real-time.org.
[2] Concurrent and Real-Time Programming in Java, Andy Wellings, John Wiley & Sons
Ltd.,
2004.
[3] Patterns for Concurrent and Networked Objects, Pattern Oriented Software Architecture
-Volume
2, Schmidt D., et. al.,. J Wiley, 2000.
[4] Predictable Scheduling Algorithms and Applications, Hard Real-time Computing
Systems,
Buttazo G., Kluwer Academic Press, 1997.
[5] Programming for the Real World, Posix.4, Gallmeister B.O., O'Reilly and associates, 1995.
[6] Real-Time Java Programming, Peter C. Dibble, Sun Microsystems Press Java Series, 2002.
[7] Real-Time Specification for Java (RTSJ) v1.0.1, Rudy Belliardi, et. al.,
http://www.rtsj.org
[8] Real-Time Specification for Java, Bollella G., et. al., Addison Wesley, 2000.
[9] Real-Time Systems and Programming Languages, Alan Burns and Andy Wellings,
Addison
Wesley, Third Edition, 2001.
[10]Real-Time Systems: Design Principles for Distributed Embedded Applications,
Kopetz, H.,
Kluwer Academic Press, Fourth Edition, 1997.
[11]Sun Java Real-Time System, http://java.sun.com/j2se/realtime, Sun Microsystems.
[12]Synchronization in Real-time Systems: A Priority Inheritance Approach, Rajkumar R.,
Kluwer
Academic Press, 1991.
[13]What is Predictability for Real-time Systems, Stankovic J.A. and Ramamritham K.,
Journal of
Real-time Systems, Issue 2, 1990.

73

74

INDEX

75

76

Index

A

abstraction, object reference.
adapters, object .
associate
 priority
 thread pools, poa .

33
34

56
48

avoidance techniques . 58

B

basic object adapter interface
Bibliography.

34
73

bounded
 execution times and predictability
 priority inversion.
 system call execution times

56
50
59

C

Cache.
character strings .
client .
 definition .
 different terms. .
 processing context. .
 role .
 stub .
client and server protocol configuration.
compliance .
computing, distributed object.
 definition .

59
32
28,31
31
31
31
28
27
44
7
25
23

connections
 non-multiplexed .
Contacts .
corba model
 location transparency
corba priority .
corba priority mapping
CorbaServices. .
corba specification .
corba to native priority
current .
Current interface. .

44
2

24
52
52
25
22
52
46
53

77

D
deactivation of objects .
delivering requests .
distributed object .
distributed object computing .

38
28,30
24
23,25

distributed object technology
distributed systems
 important properties
 predictability .

23

56
57

E
environment variables .
execution times, bounded .

13
57

explicit object activation 38

F
first class object, righteous . 32

I
IDL.
 rtcorba priority .
implicit object activation .
installation .
installing
 development environment .
 for production .
Intended Audience.
interface
 client .
 contract .
 current .

25
52
38
11

13
14
1

26
26
53

 definition . .
 implementation .
 inheritance .
 mapping priorities
 object implementation
Interface Definition Language (IDL)
interface, base object adapter
interface, POA .
interface, programming, orb pseudo object . .
interrupt triggering .
interrupts .
invocation timeouts .

26
26
26
52
26
26
33
33
33
59
59
44

L
laned threadpool .
language mapping .

48
26

licence file, installing
location transparency .

14
24

M

78

Mapping .
mapping priorities. .

26
52

mediation by orb. .
method invocation .

28
38

N
native priority and priority mappings.
 controlling ressources .
non-determinism. .

42
47
58

network
 non-multiplexed connections 44

O
object

activation .
adapters .

pseudo objects .
deactivation .
first class .
pseudo .
righteous.
services, fundamental, standard interfaces
target .

object activation
 explicit.
object activation, implicit.
object adapter interface. .
object computing, distributed.
object reference.

abstraction .
character strings.
definition .

38
33
32
38
32
32
32
25
24

38
38
33
23,25
32
32
32
32

object technology, distributed
omg
 specifications. .
operating systems. .
orb

architecture.
as an abstraction .
polymorphism
interface boundaries
location transparency
mediation .
pseudo object .
role .
what constitutes .

orb, mediation by .
Organisation. .

24

25
12

30
29
29
29
24
28
33
28
29
28
1

P

79

PIDL.
platform transparency.
POA

activation .
active object map.
arguments.
create .
functionality. .
interface.
policies.
rootpoa. .

POA activation methods with priority
predictability

distributed applications .
real-time terms. .
rtos and.

predictability, distributed systems
priority banded connections.
priority inversion defined. .
priority inversion, bounded. .
priority machinery .
priority mapping, corba .
priority mappings. .
priority models. .

33
25

39
35
37
37
34
33
35
35
46

51
57
57
57
44,48
58
50
49
52
42
43

priority
associate.
corba to native.
data.
inversion.. .
model. .
native to corba .
phenomena and protocols
protocol .
rtcorba type id .
scheduling .
storage structure. .

priority, corba. .
processing context, client.
processing, request .
programming interface, orb pseudo object. . . .
programming language transparency.
protocol configuration, client and server
proxies .
pseudo object .

object adapters .
orb .
PIDL .

pseudo-idl. .

56
52
53
49
45
52
49
59
52
49
53
52
31
38
32
25
44
27
32
33
33
33
33

Q
queue . 47,48 queue, assign to thread pool. 47

R
real-time.

corba configuration .
corba current.
corba modules.
corba mutexes.
corba priority.
defined .
hard.
orb .
portable object adapters .
priority inheritance. .
soft .
terminology .

5
45
43
41
43
42
55
55
42
45
43
55
55

representation transparency
request

assembling messages
request processing .
requests

delivering .
delivering to remote objects

requests, delivering.
to remote objects.

resources, controlling
righteous object .
role, client. .
RTOS

25

28
38

30
28
30
28
47
32
28

80

triggers .
real-time specification .
real-time systems .
real-time systems, developing .
reference, object .

character string .
definition. .

56
41
55
56
32
32
32

relevance in real-time.
rtos, real-time systems
RTPOA. .
RTPOA current.

56
56
45
48

S
scheduling.
server .

definition .
design.
designing .
different terms.
role.
skeleton .

skeleton.
definition .
implementation instance .
implementation type .
implementations .
server.
type .

sockets .
specification

corba .

42,49
28,32
32
39
39
31
28
28,27
27
27
27
27
27
27
27
23

25

stack .
standards.
strings.
strings, character.
stub.

client. .
definition .
invocations.
proxies .
surrogates.

stub, client .
surrogates .
synchronization .
system call execution times, bounded

59
7
32
32
27
28
27
27
27
27
28
27
56
59

T
target object .
terminology. .
thread pool

operation, basic mode.
thread pool, queue assigned to .
thread pools

associate poa.
associations with rtpoa .

24
55

47
47,48

48
48

time-and event-triggered systems.
transparencies. .
transparency, location.

corba model .
orb. .

transparency, platform
transparency, programming language
transparency, representation.

56
24
24
25
25
25
25
25

81

thread scheduling .
threadpool, laned .
threadpools.
threads

threadpools, and .

42
48
43,46

46

tuple .
type

skeleton. .

57

27

U
unbounded delays

avoidance techniques .
illustrated discussion of .
interrupts. .

59
49
59

 language influence.
priority inversion .
uninstalling RTOrb.

59
58
15

V
Variables, system. 12

82

	OpenFusion RTOrb Ada Edition User Guide
	Table of Contents
	Preface
	About this User Guide
	Contacts

	Introduction
	What is Real-time?
	How RTOrb Provides for Real-time
	Features, Standards and Compliance
	Limitations
	Support & Maintenance
	Scope of this Guide for RTOrb

	Installation and Configuration
	Installation
	Conventions
	Prerequisites
	Supported Platforms

	Installation Procedure
	General
	Preparation
	Installation
	Installing the Development Environment
	Installing for Production

	Testing the ORB

	Licenses
	Principles
	Installing license keys
	Requesting licenses

	Uninstalling

	Configuration
	Configuration and Properties
	Typing Commands
	POA Ports
	Messaging Configuration
	Messaging Properties
	Messaging Properties Example

	Real-time Programming
	Reviewing CORBA Concepts
	Basic Concepts
	The ORB
	Distributed Object Computing
	Transparencies

	Distributed Object Computing (DOC)and CORBA
	Interfaces
	Programming wit CORBA Interfaces
	Stubs
	Skele ons and impls
	Clients and Servers

	Delivering Requests Using an ORB
	Delivering Reques s o Remote Objec s

	ORB Components
	Abstraction

	Terminology Explained
	Clients and Servers
	Object References
	First Class Objects,Local Objects and Pseudo Objects
	The ORB Pseudo Object
	Objec Adapters

	Portable Object Adapter
	How the POA Works
	POA Policies
	Standard POA Policies
	Lifespan Policy
	Objec Id Uniqueness Policy
	Id Assignment Policy

	POA Policy Extensions
	ThreadCount Policy
	ProtocolPolicy

	POA Policy Summary

	POA Manager
	Object References,Keys,and IDs
	Servants
	Object Creation and Activation
	Request Processing
	Designing an Application

	Introduction to Real-time CORBA
	Real-time Specification
	Real-time CORBA Modules
	Real-time ORB
	Thread Scheduling
	Real-time CORBA Priority
	Native Priority and PriorityMappings
	Real-time CORBA Current
	Priority Models
	Real-time CORBA Mutexes and Priority Inheritance
	Threadpools
	Priority Banded Connections
	Non-Multiplexed Connections
	Invocation Timeouts
	Client and Server Protocol Configuration
	Real-time CORBA Configuration

	Real-time Portable Object Adapters
	Priority Model
	RTPOA
	POA Activation Methods with Priority

	Threads and Threadpools
	Current
	Threadpools
	Thread Pool Operation Basic Mode
	Laned Threadpool
	Priority Banded Connections

	RTPOA Current
	Associations Between Pools and RTPOA

	Priority Machinery
	Priority Phenomena and Protocols
	CORBA Priority
	CORBA Priority Mapping
	RTCORBA Current Interface

	Introduction to Real-time Systems
	Real-time Systems
	Time-and Event-Triggered Systems
	Developing Real-time Systems with RTOS
	Predictability in Distributed Applications
	Features and Non-Determinism

	Programming with RTOrb
	Creating Applications
	General
	A Simple Application
	IDL Specification
	Running the example Echo
	Client-side
	Initialization
	Getting object references
	Tasking
	CORBA exception handling
	Termination

	Server-side
	Initialization
	Getting the Root POA and activating it
	Creating and associating the object
	Making the object available
	Starting method processing

	Bibliography
	Index

