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Preface
About this User Guide

This  User Guide  provides instructions and information needed to install, configure 
and use OpenFusion RTOrb Ada Edition.

Intended Audience
The User Guide is intended to be used by software developers who wish to use RTOrb 
to develop CORBA-based, real-time distributed applications in Ada. RTOrb can also 
be used as a conventional, non real-time, high performance enterprise Ada ORB for 
developers who do not need real-time capabilities.

Organisation
This User Guide is divided into three major sections: Installation and Configuration 
which  provides  information  on  installing  and  configuring  RTOrb;  Real-time 
Programming  provides  background  information  on  CORBA,  Ada  and  real-time 
programming;  and  Programming  with  RTOrb  which  describes  how  to  create 
applications using RTOrb.

Conventions
The conventions listed below are intended to guide and assist the reader in 
understanding the User Guide. 

 Item of special significance or where caution needs to be taken. 

i  Item contains helpful hint or special information. 

WIN Information applies to Windows (e.g. NT, 2000, XP) only.

UNIX Information applies to Unix based systems (e.g. Solaris) only. 

On-Line (PDF) versions of this document: Items shown as cross references to other 
parts of the document, e.g. Contacts on page 2, behave as hypertext links: users can 
jump to that section of the document by clicking on the cross reference. 
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% Commands or input which the user enters on the command
line of their computer terminal

Courier New, Courier New Bold , or Courier New Italic fonts indicate 
programming code. The Courier New font also indicates file names.
Extended code fragments are shown as small Courier New font contained in shaded, 
full width boxes (to allow for standard 80 column wide text), as shown below:

NameComponent newName[] = new NameComponent[1];
// set id field to “example” and kind field to an empty string
newName[0] = new NameComponent (“example”, ““);

rootContext.bind (newName, demoObject);

Courier Italics and Courier Italic Bold indicate new terms or emphasise 
an item.
Arial Bold indicates user related actions, such as File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can  be contacted  at  the  following contact points. Users of the On-line 
version of this manual can click the e-mail addresses below to launch their e-mail 
client or Web browser to send e-mail direct to PrismTech.

Corporate Headquarters European Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead NE11 0NG 
UK

Tel: +1 781 270 1177
Fax: +1 781 238 1700

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

2
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O p e n F u s i o n  R T O r b  A d a  E d i t i o n 

What is Real-time?
There are several definitions available which state what real-time means, such as:

“Immediate, as an event is occurring.”1,

“The actual time during which physical events take place.”2

“The processing and visibility of transactions and information as they occur, and not 
on a periodic or batch basis.”3

“...computer systems that update information at the same rate as they receive data...”4

Current computer systems have physical restrictions which limit the ability to process 
information  immediately,  “as  an  event is occurring”- there are  the  inevitable 
processing speed and resource limits which affect how fast data can be processed. For 
the purpose of programming actual real-time applications, a more realistic definition 
of real-time has been adopted:

An application for which the requirements, design, or developers state that execution 
of application logic must or should occur within well-defined temporal conditions. 5

_________________________________________

1.   http://www.hq.nasa.gov/office/pao/History/presrep95/r.htm
2.   http://www.telemet.com/weather_gloss_q_r.htm
3.   http://sun2.lenoir.cc.nc.us/~disted/distermc.htm
4.   The American Heritage® Dictionary of the English Language, Fourth Edition, © 2000
Houghton Mifflin Company.
5.   This definition is as given in Taking the Java™ Language into Uncharted Waters: Project Mackinac, 
Sun’s RTSJ Implementation, Bollella et. al., Sun Microsystems, Inc.
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Or in other words, the processing or completion of tasks is  not instantaneous, but 
occurs within pre-defined time limits. This definition accepts the physical realities of 
our present computing machines and systems.
However, to complicate and possibly confuse matters, two different types of real-time 
have been identified, each relating to their ability to meet “well-defined temporal 
conditions”. The types are:

• hard real-time where the execution of the application logic must always meet 
the temporal requirements,

• soft real-time where the execution of the application logic may sometimes 
meet the temporal requirements.

A system where there are no well-defined temporal conditions is referred to as a non 
real-time system.

These definitions are important (even if they appear to complicate matters) since they 
provide flexibility as to the temporal stringency and capability which a system will be 
designed to achieve. Some systems must perform strictly within the temporal limits, 
whereas others can be more flexible, appreciating that it is likely to be more difficult 
and costly to create the more stringent systems.

How RTOrb Provides for Real-time
The language and architectural components of RTOrb address the practical issues of 
developing real-time applications for the real world, whether they need to meet the 
more demanding hard real-time requirements or the less demanding soft ones. Real-
time Ada and Real-time CORBA address the respective practical aspects of achieving 
hard or soft real-time requirements for distributed systems. Some aspects include:

• end-to-end predictable  execution,  thread scheduling and dispatching,  along 
with the provision of distributable threads

• resource management, particularly memory management and allocation
• synchronization, resource sharing and avoidance of priority inversion1

• asynchronous event handling, transfer of control and thread termination
• interoperability and portability

_________________________________________
1. These aspects are to ensure that things happen in the correct sequence in order to meet specified temporal 
requirements.
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Features, Standards and Compliance
Amongst the key features of OpenFusion RTOrb Ada Edition are:

• CORBA 3.0 ORB
• RT CORBA v1.2 support
• CORBA Object Services – bundled Naming Service and Event Service
• Ada Language bindings based on the OMG’s IDL to Ada Language Mapping 

specification
• Full POA implementation
• Multithreaded support
• Ultra-fast ANYs
• CORBA Messaging implementation (request Timeout, SyncScope and 

Rebind Policies, full AMI (Poll/Async))
• ORB interoperability including OpenFusion RTOrb Java Edition, TAO and 

JacORB. 

The OpenFusion RTOrb Ada Edition product complies with the following standards 
and specifications, except as noted under Limitations below.

• OMG CORBA Specification, version 3
• GIOP Specification, version 1.3
• OMG Real-Time CORBA Specification, version 1.2

Limitations
• OpenFusion RTOrb Ada Edition does not support the "server per method" 

activation policy.
• It can only start local services (services which run on the same host as the 

orb), but it can start a script which can itself start a remote service.
• Persistence of objects must be managed by their implementation.

Support & Maintenance
PrismTech  offers  a  wide  range  of  support  and  maintenance  packages  for  OpenFusion 
RTOrb Ada Edition that can be tailored to each customer’s specific requirements.
PrismTech is renowned for the quality and responsiveness of its technical support services.

Scope of this Guide for RTOrb
The goal of this guide is to help developers use RTOrb as quickly and effectively as 
possible. Its scope includes  essential background information,  in addition to 
installation, configuration and usage information.

7



It is beyond the scope of this manual to provide full coverage of RTOrb’s underlying 
technologies,  such as  explaining real-time programming techniques  and theory, or 
covering the Real-time Ada or Real-time CORBA specifications. Information on these 
topics is available in the various documents listed in the bibliography.
This guide provides a technological overview which developers and architects can use 
as a starting point for understanding the intricacies of writing distributed, hard or soft 
real-time, CORBA-based, Ada programs.
A number of useful, if not essential,  references are provided in the Bibliography: 
readers  are  encouraged  to use  these  references  to  develop understanding  of this 
powerful technology.
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CHAPTER

1 Installation 

This chapter describes how to install OpenFusion RTOrb Ada Edition (RTOrb).  
Please follow the procedures carefully.

1.0.1  Conventions
The following conventions are used in this chapter:

• Commonly used directories are shown as:

<OFRT_DIR> - where RTOrb is or will be installed

• The directory paths and environment variable separator shown here use the 
UNIX forward-slash ( / ) and colon ( : ) separator conventions; Windows™ 
users should substitute these separators with the standard DOS back-slash ( \ ) 
and semi-colon ( ; ) separators.

• Items which are unique to UNIX or Windows are shown using the UNIX Only 
or Windows Only icons, respectively. For example:

WIN > SET CLASSPATH=.;%CLASSPATH%;

UNIX % CLASSPATH=.:$CLASSPATH; export CLASSPATH

1.1 Prerequisites
RTOrb  depends  on underlying services and technologies.  If these services  and 
technologies are not properly installed and configured, then the OpenFusion RTOrb 
Ada Edition cannot perform as intended. Accordingly, please check that your system 
meets each of the prerequisites described below before installing OpenFusion RTOrb 
Ada Edition.

i The currently supported platforms are listed on the RTOrb Supported Platforms web 
page.
The Supported Platforms web page can be accessed from the index.html page located 
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in the root directory where RTOrb is installed (<OFRT_DIR>).
Please  refer  to  Supported  Platforms and  other  Features pages  for  the  latest 
information about this distribution.

1.1.1  Supported Platforms
The OpenFusion RTOrb Ada Edition distribution is supported on a range of leading 
operating  systems  and  has  been  built  using  a  number  of  different  Ada  compiler 
variants, including:

• OS: 
Solaris, Linux, Windows, HP-UX, OpenVMS, MacOsX, Tru64

• RTOS:
VxWorks, LynxOS

• Compilers:
Rational Apex, Aonix ObjectAda, GnatPro, DDC-I Score, Green Hills 
Multi

Other platforms can be supported on request.

1.2 Installation Procedure

1.2.1  General
All installed  RTOrb files  are  placed  in the RTOrb installation directory specified 
during installation. No files are stored in any of the UNIX system directories.

1.2.2  Preparation
It is recommended that any existing RTOrb installation be removed before installing 
the current version (see Uninstalling on page 13). Please note the following warning.

 Uninstalling OpenFusion RTOrb Ada Edition removes all RTOrb files, 
including the executables, license, configuration, and data files located in the 
RTOrb sub-directories. If these files are required, then they should be backed-
up prior to uninstalling.
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1.2.3  Installation

1.2.3.1  Installing the Development Environment
To install the RTOrb development environment, 

UNIX Instructions
• First unzip the downloaded file and provide the unzip key (if the unzip key is 

not available , then contact ) 
• Open a shell and, cd to the directory where the install_orbriver.bin is 

located. 
• At the prompt type:  sh ./install_orbriver.bin 
• Now open the RTOrb inline documentation and check the RTOrb 

configuration operations. 

Notes
• A Java virtual machine is included with installers named VM_xx. It will be 

executed automatically when you run install_orbriver.bin. 

WIN Instructions
• double-click on the downloaded file 
• double-click on install_orbriver.exe and provide the unzip key (if the 

unzip key is not available , then contact) . 

Notes
• A Java virtual machine is included with installers named VM_xx. It will be 

executed automatically when you run the installer.

MAC Instructions
• First unzip the downloaded file and provide the unzip key (if the unzip key is 

not available , then contact) 
• After downloading, double-click install_orbriver 
• Now open the RTOrb inline documentation and check the RTOrb 

configuration operations. 
Notes

• Requires Mac OS X 10.0 or later 
• The compressed installer should be recognized by Stuffit Expander and should 

automatically be expanded after downloading. If it is not expanded, you can 
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expand it manually using StuffIt Expander 7.0.1 or later. 
• If you have any problems launching the installer once it has been expanded, 

make sure that the compressed installer was expanded using Stuffit Expander. 
If you continue to have problems, please contact technical support.

VMS Instructions
• Unzip the kit and then run sys$update:vmsinstal to install the unzipped 

kit. 
• Proceed as usual with vmsinstal and answer the questions  

Notes
• No Java VM included in this installer.

1.2.3.2  Installing for Production
When deploying RTOrb orbs, clients and services for production, the environment 
variable  <OFRT_DIR> must  to be set to a directory containing a copy of the  bin 
(except idl2ada), etc and doc directories.

The  <OFRT_DIR>/etc/Orbs file must be then setup to define the production orb 
topology (see Configuration).

You may need  additional  RTOrb license  keys.  Once  they  are  installed  (see  1.3.2 
"Installing licence keys"), the production installation is completed. The different orbs 
can then be launched, beginning with the license server, and the production clients and 
services can then run.

1.2.4 Testing the ORB
The RTOrb is running properly by running an example such like Echo (see 6.2.2).

1.3  Licenses
1.3.1  Principles

Each license  key  is  specific  to  the  host  where  the  license  server  runs  and  to  the 
licensed tool,  and  may have an  expiration  date.  Execution  of  the  licensed tool  is 
allowed on any machine capable to connect to the license server, providing that the 
number  of  simultaneous  runs  does  not  exceed  the  number  of  license  tokens.  The 
behaviour of the tool in case of license enfringements is tool dependent.
RTOrb and idl2ada execution is protected by license keys which are stored in the file 
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<OFRT_DIR>/etc/top_graph_x.lic.  This  file  is  read  by  the  RTOrb  daemon 
named License_Server which should be described in  the  <OFRT_DIR>/etc/Orbs 
file (see Configuration). 

1.3.2  Installing license keys
The instructions to install the license keys will be provided by Top Graph'X with the 
license keys.

The  tool  <OFRT_DIR>/bin/add_license will  be  used  for  this  purpose.  When 
adding licenses, add_license first tries to update the running license server, then it 
updates the file <OFRT_DIR>/etc/top_graph_x.lic . If it cannot connect to the 
license server, a warning message is displayed (this generally means that the license 
server is not running). When installing RTOrb for the first time, you cannot run any 
daemon before installing a valid license key.

1.3.3  Requesting licenses
If you will use a single license server:
First execute  <OFRT_DIR>/bin/machine_id on the computer which will run the 
license server.  Email the result of this command and the host name to  PrismTech 
support, you will receive the license keys in return.

If you have several licenses and want to run a license server on several hosts, do the 
following for each such host:

• write the result of <OFRT_DIR>/bin/machine_id on this host 
• write the number of RTOrb licenses assigned to this host 
• write the number of idl2ada licenses assigned to this host 

Email the result to PrismTech support, you will receive the license keys in return.

If you need more licenses, ask PrismTech

1.4  Uninstalling
This section describes the procedure for uninstalling OpenFusion RTOrb Ada
Edition.

 Uninstalling RTOrb removes all RTOrb files, including the executables, license, 
configuration, and data files located in the RTOrb sub-directories. If these files 
are required, then they should be backed-up prior to uninstalling.
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Step 1:  Stop any running RTOrb services.

Step 2: Backup any data, license or other required files which are in the RTOrb 
directories.

Step 3: Run the OrbAda_Uninstaller utility (located in the <OFRT_DIR>/UninstallData 
directory):

% <OFRT_DIR>/UninstallData/OrbAda_Uninstaller
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CHAPTER

2 Configuration

2.1  Configuration and Properties
2.1.1 Typing commands

The following tips and rules may help you for typing commands:

• Comment lines start with -- and blank lines are allowed.
• ORB names are not case sensitive.
• The format of the Orbs file is:

<Orb_Name> ID=<Orb_Id> HOST=<Host_Name> TCP=<TCP port> 
where 

➢ <Orb_Name> indicates the name of the ORB (may be put in RTOrb 
variable) 

➢ <Orb_Id> indicates the identification number of the ORB 
➢ <Host_Name> indicates the host where the ORB runs 
➢ <TCP port> indicates the TCP port for IIOP connections to the ORB

• There should be no space on any side of the = sign. Example:

OrbAda_1 ID=1 HOST=localhost TCP=6060
License_Server ID=1 HOST=localhost TCP=6060
OrbAda_2 ID=2 HOST=omg.org TCP=6061 

The command line environment variable  <OFRT_DIR>  must be set and contain the 
name  of  the  directory  where  RTOrb  is  installed.  The  file  Orbs in  the 
<OFRT_DIR>/etc directory contains the list of the known RTOrb daemons.

There should be at most one daemon definition per line and an ORB definition should 
fit in one line. Several names may have the same definition. In this case, these different 
names are aliases of the same RTOrb daemon, which then can be accessed with any of 
the aliases.

There should exist a daemon named License_Server with "TCP=6060" which will be 
used as the license server for CORBA PrismTech tools (like orbriver and idl2ada).
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RTOrb hangs if the daemon named "License_Server" is not running or if no license 
token is available.

2.1.2 POA Ports
POA names can be associated with TCP ports if desired. Add the property assignments 
as shown below in the <OFRT_DIR>/etc/Poas file to assign POA names with TCP 
ports.

To assign a POA name to a
• single port address use:

<POA name> TCP=<TCP port>

• range of port addresses use:
<POA name> TCP=<Min TCP port>-<Max TCP port>

where:
• there must be no space at the beginning of any line
• empty lines and lines beginning with hyphens ( - ) are ignored
• names which are in a POA hierarchy must be separated by forward slashes ( / ), 

for example:

<POA name>/<POA name> TCP=<TCP port>
<POA name> TCP=<Min TCP port>-<Max TCP port>

• the root POA name is called RootPOA by default. The name can be changed by 
running the required service with the -OAName <Root POA name> switch, 
noting that the name change is specific to that service.

Example of POA name TCP port assignments :

RootPOA TCP=10000-10999
RootPOA/Persist_Factories TCP=160001

2.1.3 Messaging Configuration

 The Messaging module must be configured before messaging features are used by an 
application: a system exception is raised if the Messaging module is not configured.
An application can configure  messaging programmatically  by  using  the  following 
Messaging.Configure() method:

procedure Configure
   ( Sync_None_Tasks    : in Natural ;
     Sync_None_Priority : in Priority ;
     Poll_Priority      : in Priority ;
     Async_Priority     : in Priority ;
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     Async_Min_Tasks    : in Natural := 0 ;
     Async_Max_Tasks    : in Natural := 0 ;
     Async_Peak_Tasks   : in Natural := 0 ;
     Async_Stack_Size   : in Natural := 65_536);

The  Configure procedure  allows all  of the relevant  Messaging properties to be 
configured by the user.

2.1.3.1 Messaging Properties
The messaging properties which are set by the Configure() methods are as follows:

Sync_None_Tasks - the number of threads  in the threadpool used  for sending 
oneway sync_none requests.

Sync_None_Priority - the priority of the threads  used for sending oneway 
sync_none requests.

Poll_Priority - the priority of the threads used for receiving  asynchronous 
responses in poll mode.

Async_Priority - the priority of the threads  used  for  receiving  asynchronous 
responses in call_back mode.

Async_Min_Tasks, Async_Max_Tasks, and Async_Peak_Tasks - 
determines  how  the  threadpool  used  for  receiving  asynchronous  responses  in 
call_back mode  should  be  dimensioned.  The  values  for these properties must 
follow  the  rule  whereby Async_Min_Tasks ≤  Async_Max_Tasks ≤ 
Async_Peak_Tasks.

Async_Min_Tasks - the minimum number of threads in the threadpool used for 
receiving asynchronous responses in call_back mode.

Async_Max_Tasks - the maximum number of threads in the threadpool used for 
receiving  asynchronous  responses in call_back mode when  all  threads  are not 
running (in other words, some threads are waiting).

Async_Peak_Tasks - the maximum number of threads in the threadpool used for 
receiving asynchronous responses in call_back mode when all threads are running.

Async_Stack_Size - Async_Stack_Size sets the size of the scoped memories 
used to run each thread of the threadpool which is used for receiving asynchronous 
responses in call_back mode.
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2.1.3.1.1 Messaging Properties Example

Example using Async_Min_Tasks, Async_Max_Tasks, and Async_Peak_Tasks

A  client application  calls Messaging.Configure(),  using  the  following 
parameters:
Async_Min_Tasks = 2

Async_Max_Tasks = 4

Async_Peak_Tasks = 6

The Async_Min_Tasks value is 2 in this case, therefore the Messaging module will 
create a threadpool containing two threads (the minimum).
The application is subsequently required to make three simultaneous, asynchronous 
responses  during  the  course  of  its  operation.  The Messaging module’s  threadpool 
creates a third thread to handle the responses. The three threads will remain in the 
threadpool after the responses have been completed, even though they will be waiting, 
since  the  number  of  threads  in the  threadpool  is  less  than  the  value  of 
Async_Max_Tasks (4).
The application is then asked to handle five simultaneous, asynchronous responses: 
the required two new threads can be added to the threadpool since the total number of 
threads will be less than the value of Async_Peak_Tasks (6).
When one or more the threads  are  freed  after  handling their respective response, 
existing threads in the threadpool will be terminated until the total number of threads 
is equal to or less than the Async_Max_Tasks value (4).
The maximum number of threads that the application will be allowed to have at any 
one time is the value of Async_Peak_Tasks (6): any additional requests must wait 
until a thread is freed.
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CHAPTER

3 Reviewing CORBA Concepts 

CORBA stands for Common Object Request Broker Architecture. CORBA is 
the Object Management Group’s (OMG):
“open,  vendor-independent  architecture and infrastructure  that  computer  
applications use to work together over networks. Using the standard protocol IIOP, a 
CORBA-based program from any vendor, on almost any computer, operating system, 
programming language, and network, can interoperate with a CORBA-based program 
from the same or another vendor, on almost any other computer, operating system, 
programming language, and network.”1

The Object Management  Group is a non-profit  consortium that produces and 
maintains computer industry specifications for interoperable enterprise applications.

3.1 Basic Concepts
3.1.1  The ORB

A core element of CORBA is the Object Request Broker, referred to as the ORB.
An ORB mediates between an object and one of its clients. A client is defined as any 
computing context that invokes operations on the object (that is, sends it a message, or 
invokes a method). ORBs can take many different forms. In common practice, ORBs 
are mechanisms that mediate between clients and objects on different computers, using 
some kind  of  network communication.  ORBs  are  one  of  the  principal  enabling 
technologies in the field of distributed object computing.

3.1.1.1  Distributed Object Computing
Most popular object-oriented programming languages provide language constructs for 
encapsulation, inheritance, polymorphism, and other characteristic object-oriented 
concepts.  These  mechanisms  have  proven beneficial when  building  single-process 
applications. However, because they are implemented  as programming  language 
features,  the benefits  are not  available when the application needs to interact  with 
other  processes  or  with  remote  machines.  Programmers  must  generally  resort  to 
techniques such as sockets to build distributed applications.

_________________________________________
1. The OMG’s definition from its web site at http://www.omg.org

23

http://www.omg.org/


Distributed object  technology extends the  benefits  of  object-oriented technology across 
process and machine boundaries to encompass entire networks. In short, this technology 
makes remote objects appear to programmers as if they were local objects (that is, simple 
programming-language  objects  in  the  same  process).  This  effect  can  be  described  as 
location transparency.

3.1.1.2 Transparencies
Transparencies  occur  when a software  abstraction  allows  programmers to cross  a 
computing  boundary  (such  as a boundary between  different languages,  machines, 
network protocols, and so on) without having to be aware of the boundary at all, or 
without performing an explicit transformation to cross it.
In an object system, location transparency means that an object’s client can invoke the 
object’s methods in a natural manner, regardless of where the object actually resides. 
The target object may reside in the client program itself (as is inherently the case with 
most object-oriented programming languages), it may reside in another address space 
on the same machine as the client, or it may reside on a remote machine. The object’s 
programming interface  (from the client’s  perspective) is  identical  in all  cases.  See 
Figure 1 for an illustration of this concept.

Figure 1 emote Invocations and Location Transparency
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The ORB provides the location transparency in the CORBA model. ORBs also 
provide many other useful transparencies, including the following:

• Programming language transparency- The client and the object may be 
written in different programming languages and the ORB hides this fact; a 
Ada client is completely unaware that it is invoking an operation on a 
language-specific object, whether Java, C++, or Smalltalk, and vice versa.

• Platform transparency- The client and object implementation programs may 
be executing on different types of computing hardware, with different 
operating systems, in such a way that both programs are unaware of these 
differences.

• Representation transparency- Because of language, hardware, or compiler 
differences, processes communicating through an ORB may have different 
low-level data representations. The ORB automatically converts different 
byte orders, word sizes, floating point representations, and so on, so that 
application programmers can ignore the differences and avoid problems.

As lower- level distribution problems be come transparent, architects and 
programmers can focus their efforts on solving application problems, not plumbing 
problems. Expressed in other terms, distributed object technology raises the level of 
abstraction for distributed application design and development.

3.1.2 Distributed Object Computing (DOC) and CORBA
OMG specifications have emerged as the primary focus of industry standardization in 
distributed object computing, client/server computing, and large-scale object-oriented 
application development. The CORBA specifications provide the foundation for the 
most comprehensive platform for system interoperability and software portability that 
is foreseeable in today’s computing market.

To this end, CORBA specifies:
• a concrete object model
• an abstract language for describing object interfaces
• abstract programming interfaces for implementing, using, and managing 

objects
• equivalent concrete programming interfaces in popular object-oriented 

programming languages (that is, language mappings)
• operational interfaces between ORBs to ensure interoperability between 

products from different vendors

Other OMG specifications include  CORBAservices, which specifies standard 
interfaces for fundamental object services, such as naming and persistence, that are 
frequently  required  and  generally  useful  for  managing  objects  regardless  of  their 
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function or application domain.

3.1.2.1 Interfaces
In the CORBA object model, attention is primarily focused on the object’s interface. 
An interface is the boundary layer that separates a consumer of an object’s service (a 
client)  from the  supplier  of  the  object’s  service  (an object implementation). The 
interface defines what a client can know about an object and how a client may interact 
with it. As such, it hides the low-level details on one side of the boundary from the 
other side.

It may seem contradictory to  describe interfaces as “hiding” things  and providing 
“transparencies” at the same time, but it really isn’t. The details that are hidden (such 
as  network  protocols,  programming language  idiosyncrasies,  physical  data 
organization, and so on) are like dirt on a window. They obscure what you really want 
to view the abstract behaviour of the object. By wiping these details out of the way (or 
hiding  them)  ORBs  give an  object’s  consumer  clear,  un-obscured  access  to  the 
object’s essential behaviour, expressed in terminology natural to the consumer.

An interface  may  also  be viewed  as  a contract between  an  object’s  client  and 
implementation. The implementation agrees to respond to a given request with certain 
results; both the client and the implementation agree on the information that will be 
exchanged in a given operation, and so on. If both sides abide by the contract and 
don’t rely on any assumptions that aren’t stated explicitly in the contract, then the 
interaction between client and object will behave properly.
A CORBA interface consists of a collection of operations, attributes, and definitions 
for data types that are used with the operations and attributes. CORBA interfaces may 
be composed from other interfaces through inheritance.
Almost every section of the CORBA specification deals with one aspect of interfaces 
or another, such as how interfaces are described, how the descriptions are stored and 
managed, how abstract de scriptions are mapped into  concrete pro g ramming 
interfaces in various programming languages, how object implementations relate to 
and support an interface, and soon.
The CORBA  specification  defines  a language  for  describing  abstract object 
interfaces, called Interface Definition Language, or IDL.

3.1.2.2 Programming with CORBA Interfaces
IDL can be used to generate the stubs and skeletons that are actually  used  when 
programming. Since IDL is only an abstract interface description language, it must be 
transformed  into  equivalent  constructs in  a  concrete programming language  to  be 
useful. The way in which these transformations are made for a particular language is 
called a mapping for that language.
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Figure 2 illustrates the relationships between stubs, skeletons,  clients,  object 
implementations, and the ORB.

Figure 2 ORB Component Relationships

3.1.2.2.1  Stubs
Stubs are used by clients to invoke operations on target CORBA objects.

A stub is not the CORBA object itself. It represents a CORBA object and is, in part, 
responsible for  propagating requests (invocations)  made on itself  to the real target 
object. In keeping with this role, stubs are sometimes called  proxies or  surrogates. 
When  the  target  object  resides  in  a  remote  process,  the  stub  is  responsible  for 
packaging  the  request,  with  its  parameters,  into  a  message  to  send  to  the  remote 
process across a network, then receiving the reply message from the object, unpacking 
the operation results from the message, and returning them to the calling program.

3.1.2.2.2 Skeletons and impls
Skeletons are used to call object implementations. An implementation of a CORBA 
interface is a package of code in a concrete programming language that provides the 
real be haviour of the object type . In some cases , the term implementation is used 
to indicate the body of code in an abstract sense, that is, the  type (as opposed to an 
individual instance). In other cases, implementation can mean a specific instance of 
the implementation type. When there is a possibility of ambiguity, we will distinguish 
between the two as implementation type and implementation instance.
A skeleton takes the form of an base class declaration with functions that correspond 
to the operations in the IDL interface. Programmers construct an implementation by 
using the  generated  impl class, then  providing  method  implementations  for the 
operations.
The stub and impl have identical (or nearly identical) interfaces.
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3.1.2.2.3 Clients and Servers
When a program includes the stub type and invokes operations on instances of the 
stub type, that program is acting in the role of a client, with respect to the target 
object represented  by  the  particular stub  instance. When  a  program includes an 
implementation  type  (built from the  generated  impl),  creates  instances  of  the 
implementation type, and makes them available for use by clients, the program is 
acting in the role of server, with respect to the implemented objects.
Note that the terms client and server merely describe roles that programs play with 
respect to a particular object or set of objects. In a distributed object context (or more 
specifically, a CORBA  context),  these terms  do  not indicate architectural  roles 
played  by  the  programs, as  they do in  the  traditional sense of  client/server 
computing.  A  client  of  one  CORBA object  may be  the  server  for  other  clients. 
Programs sharing each others’ objects in a variety of client/server roles may in fact 
be peers architecturally.

3.1.2.3 Delivering Requests Using an ORB
As described above, an ORB is anything that mediates between a client and its target 
object. By mediate, we mean to deliver the request from the client context to the server 
context, invoke the method on the target object, and deliver results, if any, back to the 
client. CORBA does not in any way prescribe or limit the mechanisms that  an ORB 
may use to accomplish this  task.  The range of possible implementations is 
extremely large, and has interesting consequences, both practical and theoretical.
By leaving implementation decisions completely  free,  the CORBA specification 
allows  highly  specialized  ORBs to be optimised  for  particular environments with 
unusual requirements, such as embedded real-time systems. For the purposes of this 
discussion, however,  we will  describe  the  OpenFusion  RTOrb  Ada  Edition 
implementation.

 
3.1.2.3.1 Delivering Requests to Remote Objects

The ORB is a set of libraries that are linked into the client and server programs of the 
distributed CORBA-based application. When the client invokes an operation on the 
object, via the stub, the stub and the client-resident ORB library cooperate to assemble 
a message that describes the request. After assembling the message, the stub invokes 
the appropriate function in the client-resident class, transmitting the message to the 
server that contains the target object.
The message is received in the server by the server-resident ORB component. This 
component is responsible for decoding the message. The portable object adapter
(POA) locates  the specific  object  targeted in the request  and passes  the  message 
contents to the skeleton. The skeleton extracts the request parameters and invokes the 
requested operation on the object implementation instance. The process then reverses 
itself: the skeleton creates the reply message, sends it back to the client, where the stub 
decodes it and returns the results to the client that made the request.
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3.1.3 ORB Components
The ORB is composed of everything that intervenes between the client and the object 
to achieve location transparency. In a simple example, illustrated previously in Figure 
2, the ORB encompasses the stub, the client-resident ORB classes, the server-resident 
ORB, and the skeleton. It can be argued that the network itself constitutes part of the 
ORB, because it mediates data transfer between processes - playing a major role in 
providing location transparency.
In an ORB’s run-time environment, there may be a number of other processes (which 
are  neither  the client nor  the  server)  that  become involved  in  some aspect  of  the 
request  delivery activity,  to  locate  objects,  start  new server  processes,  monitor  the 
status of requests in progress, and so on. It is usually not possible to point to a single 
process or software component and (accurately) call it the ORB.
Another way to determine what constitutes an ORB is to observe the two interface 
boundaries that the ORB mediates between. By boundary, we mean a specific API 
invocation (for example, function call, method invocation, and so on) through which 
non-ORB elements (clients and object implementations) interact with the ORB.
The client interacts with the ORB by invoking a member function on a stub. This 
boundary is labeled the client-ORB boundary in Figure 3. The object interacts with the 
ORB primarily by having one of its member functions invoked by the ORB. This 
boundary is labeled the ORB-object boundary in the figure. Anything between those 
boundaries may be considered as part of the ORB for conceptual purposes.

Note: The Client machine and Server machine can be the same physical machine.

Figure 3 The ORB as an Abstraction
3.1.3.1 Abstraction

Contrast the previous example with the following scenario. As mentioned above, stubs 
and skeletons are build from an IDL interface. When a programmer uses an ORB-
based object, methods are invoked on the stub. Since both the stub class and the impl 

29



class are buld from the IDL interface, client code that makes the invocation could be 
using either a stub that is bound to a remote object, or it could be invoking a method 
directly  on  an  implementation  instance  that  is  in  the  same  process.  This  use  of 
polymorphism allows the client to use remote and local objects in exactly the same 
way, without ever having to (or in some cases, even being able to) distinguish between 
them.
When a client “sends” a request to a local implementation instance, what constitutes 
the ORB? You might be tempted to say that there is no ORB present but, in fact, there 
is. All of the necessary  elements are present -  the  client, the target  object,  and 
something that delivers  the  request  from  the  client  to  the  object.  The  delivery 
mechanism  (the  ORB)  in  this  case  is  the  machine  instruction  that  performs  the 
function call on the target object’s member function. The mediation between the client 
and the object takes place in a single stack frame in the local machine. Thinking of 
this as an ORB may seem too abstract, but from the programmer’s point of view a 
local  invocation is indistinguishable (if  the ORB is properly implemented) from a 
remote invocation. If it communicates like an ORB, it’s an ORB.
If you consider this scenario with respect to interface boundaries, the client-ORB and 
ORB-object boundaries from the previous example have coalesced into a single client-
ORB-object boundary, creating for us the mental image that the ORB (in the case of 
local invocations) is a two-dimensional, infinitely thin surface between the client and 
the server.

3.1.4 Terminology Explained
Figure 4 is an adaptation from the CORBA 2.3 specification.  The  following 
subsections describe the elements shown in the figure and their roles in the overall 
activity of delivering requests.  Some of the descriptions given here do not exactly 
match those in the CORBA specification. Where our descriptions vary, it is generally 
to achieve greater clarity and to provide a more consistent overall picture.
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Figure 4 The Structure of Object Request Broker Interfaces

3.1.4.1 Clients and Servers
As mentioned above, the terms client and server in a distributed object context have a 
different meaning than the same terms used in the context of more traditional client-
server computing. In CORBA, the terms refer primarily to roles played by different 
programs (or specific parts of programs) with respect to a particular object. The client 
of an object is the processing context from which a request is made on the object.
The  term  processing context is  used  advisedly,  with  some intentional ambiguity. 
Sometimes it may refer to the program (or process) that makes a request; it may also 
refer to a particular thread or a particular function from which an invocation is made. 
In  some cases, it  may  refer  to  another  object (an implementation  instance)  that 
contains a reference for the first object and makes requests on that object from within 
one of the containing object’s methods.  Though one object’s methods may in fact 
constitute a client context for another object, there is formally no such thing as a client  
object in CORBA systems.
Likewise a server is the computing  context in  which  an  object is implemented. 
Sometimes the word server is used to indicate the object itself; other times it may 
denote the process in which an object resides. In general, its ambiguity is similar to 
that of the term client. Note again that the terms client and server apply to roles that 
components   play,  not  the  components   themselves.  Any  given  program  may 
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simultaneously be a client of some objects and a server for other (or the same) objects.

3.1.4.2 Object References
The meaning of the term object reference is relative to the context in which it is used. 
When used in a programming context in the ORB, an object reference takes the form 
of  an  Ada  interface.  Programmatic object references  may also be  converted  into 
character strings, which may be later  converted back into object references.  These 
strings  capture  the information model encapsulated in the programmatic  reference. 
Even though the string is not usable as a reference in a program, it is thought of as an 
object  reference  because  it potentially locates and identifies a  particular 
implementation instance.
The term object reference may be used to denote the abstract concept of an object’s 
identity and location. In the process of handling requests, the ORB maintains internal 
data structures that it uses to locate, identify, and connect to the target objects. Since 
these  structures are opaque  to  ORB  users,  they  may  be discussed only  as an 
abstraction. One might say, for instance, that an object reference is passed from a 
client to a server as a parameter in an invocation. The thing being passed  inside the 
ORB is neither the stub nor the reference in string form. Though you may not know its 
concrete form, it is sometimes useful to refer to this abstraction in discussions as an 
object reference.

3.1.4.3 First Class Objects, Local Objects and Pseudo Objects
In  CORBA terminology,  a  first  class  object  is  a  fully  functional  CORBA object 
supporting all of the attributes ascribed to regular CORBA objects:

• It has a unique identity assigned and managed by the ORB
• The ORB can supply references to  the object  that  can be used by remote 

clients to make invocations on the object through the ORB
• It supports at least one CORBA interface described in IDL
• Its references support all of the operations defined on CORBA::Object
• It behaves in a manner consistent with  general descriptions of objects in 

the CORBA specification
A first class object may also be referred to as a righteous object.
For  various  reasons,  the  CORBA  specification  and  some  CORBAservices 
specifications  define  programming  interfaces  that,  while  object-oriented  in  style, 
cannot satisfy the requirements of a first-class object. In some cases the object is, of 
necessity, local to the process in which it is used, it is a local object. In other cases the 
interface cannot be properly expressed in IDL: it is a pseudo-interface. Local objects 
have a limitation: they cannot be remotely accessed. In general, pseudo interfaces are 
used  to  provide  APIs  for  ORB components  or  utility  objects  specific  to  ORB or 
service  functions,  such  as  the  ORB  interface  itself  .  Pseudo  interfaces  generally 
become programming objects in the language mappings (that is, a class in Ada), but 
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do not support required righteous object behaviours, such as:
• They cannot be remotely accessed
• They do not have real object references (although they do have 

programmatic references)
• They do not support CORBA::Object operations

Another characteristic of pseudo objects is that their interfaces are often described in 
pseudo-IDL, or PIDL. PIDL is not really a language at all; it is more of a dialect of 
IDL that is used to describe interfaces for pseudo objects in a convenient, familiar 
manner, while recognizing that the PIDL need never actually be compiled into stubs 
and skeletons. Because this is the case, some pseudo interfaces described in PIDL 
contain  syntax  or data types that are not legal IDL but are intended to describe 
interface  elements  that  are  not  allowed for  righteous  objects  (hence,  the  need  for 
pseudo  objects).  The  following  subsections describe some  of  the  more  important 
pseudo and local-objects.

3.1.4.3.1 The ORB Pseudo Object
The definition of ORB - given above - described the ORB as an abstract functional 
entity  that mediates  requests.  The  CORBA  specification  also  desc ribes  a 
programming  interface  called  the  ORB  pseudo  object.  This  interface  supports 
operations  that  interact  with the  computing environment provided by the  CORBA 
implementation (the ORB in the abstract sense) such as initialization, and operations 
that perform utility functions, such as converting object references to and from strings. 
Although this pseudo object interface is called the ORB and it is a component of the 
abstract ORB entity, do not confuse the ORB pseudo object with the actual ORB, or 
infer from the way the interface is described that the ORB is a physical, identifiable 
object.

3.1.4.3.2 Object Adapters
The CORBA specification describes local objects called object adapters that provide 
part  of  the  interface between the ORB and object implementations. In  particular, 
CORBA specifies an interface for the POA. The POA interface supports the following 
capabilities:

• It  allows implementations to associate ORB-managed object identities with 
instances of user-supplied implementation classes

• It allows an implementation to inform the ORB that it (or one of its instances) 
has undergone a state change  that  affects  its relationship with the ORB, 
such as activation (that is, the implementation or object is prepared to receive 
requests) or deactivation (the object is not available to receive requests)
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3.2 Portable Object Adapter
The Portable Object Adapter  is  the  link  between  the  ORB and  individual  servants 
created  in  various  programming languages. It is responsible for creating object 
references and for routing requests from the ORB to the appropriate servant.
The  CORBA  specification  defines the  Portable  Object Adapter  (POA)  with the 
following features:

• source-level portability between ORB products
• allows multiple and distinct instances of the POA to exist in a server
• allows individual servants to support multiple object identities simultaneously
• provides  a  mechanism by which  policy  information  can  be  associated  with 

individual POA instances
• supports both persistent and transient objects
• supports object implementations that inherit from static skeleton classes, as 

well  as Dynamic Skeleton Interface (DSI) implementations (DSI is not 
supported by the OpenFusion RTOrb Ada Edition)

All references to the POA in this section regard POA characteristics as defined in the 
CORBA specification.

3.2.1  How the POA Works
In simplistic terms, after the client obtains an object reference it invokes a request on 
that object. That request is transmitted via the ORB to the server application. Refer to 
Figure 5, Request Dispatching. The POA is responsible for routing the request to the 
appropriate servant, which incarnates the target object responsible for processing the 
request.
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Figure 5 Request Dispatching

The POA maintains an association between the ObjectId (embedded in the object 
reference) and the servant (a programming language implementation of a CORBA 
object). This association is maintained in a table called the Active Object Map. When 
a request is received, the object adapter looks at the ObjectId that came with the 
request and finds the servant associated with that ObjectId from its Active Object 
Map. Then it dispatches the request on that servant. A CORBA server process can 
contain a number of different POAs, each having their own Active Object Map. POAs 
are created in a hierarchical fashion, with the special RootPOA serving as a common 
ancestor to all other POAs.
The ability to create multiple  POAs  and  to  set  characteristics  on  the  POA using 
policies allows you to control POA behaviour and, consequently, the scalability and 
performance of your application.

3.2.2  POA Policies
Key to the POA definition is the ability to create multiple POAs and to customize each 
instance by setting policies. In general, you will define a list of policies, then assign 
them to a POA when it is created. Once a POA is created with an assigned set of 
policies, those policies cannot be changed for the life of the POA. A new POA does 
not inherit policies from its parent POA.
Interfaces that define policies to be assigned to a POA must be derived from
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CORBA::Policy.

3.2.2.1 Standard POA Policies
The following standard POA policies are defined by CORBA.

3.2.2.1.1 Lifespan Policy
POA::create_lifespan_policy allows you to specify the lifespan of objects.

• TRANSIENT objects  cannot  outlive  the  processes in  which  they  are  first 
created.

• PERSISTENT objects can outlive the process in which they are created. The 
default value for this policy is TRANSIENT.

Setting the TRANSIENT policy does not prevent explicit reactivation of a servant with 
the same object  key.  Change  the  object  keys  to  enforce  transient  behaviour.  The 
easiest way to do this is to create new POAs for servant reactivation.

3.2.2.1.2 Object Id Uniqueness Policy
POA::create_id_uniqueness_policy specifies whether servants activated by the 
POA must have unique ObjectIds.

• UNIQUE_ID specifies that each servant activated by that POA can support 
only one ObjectId.

• MULTIPLE_ID specifies that servants activated by that POA can support 
more than one ObjectId.

The default value for this policy is UNIQUE_ID.

3.2.2.1.3 Id Assignment Policy
POA::create_id_assignment_policy specifies  whether ID assignment is 
performed by the POA or by the application.

• SYSTEM_ID specifies that the POA generates and assigns Object Ids.
• USER_ID specifies that ObjectIds are assigned by the application. 

The default value for this policy is SYSTEM_ID.

3.2.2.2 POA Policy Extensions
OpenFusion RTOrb Ada Edition provides the following extensions to the
CORBA-standard POA policies for use with the POA in "Enterprise" mode (they are 
useless in RT mode):
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 3.2.2.2.1 ThreadCount Policy
POA.create_thread_count_policy specifies the number of extra threads that may 
be needed to fluently handle the requests for this POA.
The default value for this policy is 5 for the root POA and 0 for its descendants.

3.2.2.2.2  ProtocolPolicy
OpenFusion  RTOrb  Ada  Edition  provides  a  pluggable  transport  mechanism.  The 
POA.create_Protocol_Policy is used to select and  configure  one  or  more 
communication protocols used by a POA.

3.2.2.3 POA Policy Summary
All POA policy objects are locality constrained (they are local objects); that is, you 
cannot pass their references as arguments to normal CORBA operations or convert 
them to strings using ORB::object_to_string. They can be accessed only within 
the context of the ORB in which they were created.
Once you define the policies to be assigned to a POA, you can create the POA by 
calling create_POA on an existing POA. The new POA becomes the child of the 
POA on which the call was made. create_POA takes three arguments: the name for 
the new POA, a reference to the POAManager for that POA, and a list of policies to 
be applied to the new POA. If no POAManager is specified, a new POAManager is 
created.

3.2.3 POA Manager
The POAManager controls the flow of requests to one or more POA objects. The 
POAManager interface supports operations to change the state of a POA to one of the 
following:

POA State Meaning

ACTIVE Calling activate on the POAManager allows requests to flow 
to the POAs that it controls.

HOLDING
Calling hold_requests on the POAManager allows requests 
to be blocked by the POAs that it controls. 

DISCARDING
Calling discard_requests on the POAManager allows 
requests to fail with a TRANSIENT system exception with standard 
minor code 1returned to the client by the POAs that it controls. 

INACTIVE
Calling deactivate on the POAManager allows requests to 
fail with an ADAPTER_INACTIVE system exception returned to the 
client by the POAs that it controls. 
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3.2.4 Object References, Keys, and IDs
The POA is responsible for creating an object reference, which the client can use to 
contact the target object. The object key is embedded within the object reference and 
the object identifier is embedded within the object key. The policies you set on the 
POA determine whether or not your application controls the content of the ObjectId 
and whether servants can support multiple IDs. ObjectIds must be unique within 
each individual POA; however different POAs can assign the same ObjectId.

3.2.5  Servants
The  IDL  compiler generates  server-side skeleton  and  servant  classes.  These 
skeletons  are   internal  classes  needed  by  the  POA to  call  your  servant  classes. 
Servant  classes  are  obliged  to  implement  all  of  the  functions  declared  in  their 
generated specification. Servants are responsible for incarnating CORBA objects. A 
servant is an Ada instance used to service a request.

3.2.6  Object Creation and Activation
A CORBA  object  must  be  created  and activated before the  client  can  invoke 
operations on it.  The POA remembers the relationship between the object  and the 
servant which created it.
Depending on the policies set on the POA, you will either:

• use POA::activate_object or POA::activate_object_with_id to 
activate the object. Once the object is activated, the POA can dispatch 
requests  arriving for that object. After activation, you may use the 
POA::servant_to_reference() operation to obtain an object  reference 
from the servant.

or
• use  POA::create_reference_with_id to create an  object  reference 

without activating it

Use deactivate object to remove the association of the object with its servant.

3.2.7 Request Processing
When the ORB receives a request, it attempts  to  locate  the  appropriate POA and 
deliver the request. It uses the received  object  reference,  which contains the 
ObjectId and POA identification, to locate the appropriate server and POA within 
that server. The request is then handed off to the POA.
The POA now takes over and tries to locate the target object. The POA searches for 
the servant associated with the ObjectId in its Active Object Map or through its 
servant adapters. Once a reference to the servant is obtained, the appropriate method is 
invoked. Otherwise, an exception is thrown.
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3.2.8 Designing an Application
OpenFusion RTOrb Ada Edition fully support the dynamic features supported by the 
full-version of the CORBA specification. As a result, it support certain features, such 
as activation on demand, which must be taken account of when designing servers. For 
example, POAs can be activated on demand because OpenFusion RTOrb Ada Edition 
fully supports  adapter  activators .  The server can also be designed to dynamically 
activate objects when needed using servant adapters.
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CHAPTER

4 Introduction to Real-time CORBA

This chapter introduces the essential aspects of the Real-time CORBA ORB.

Please note that real-time CORBA examples are provided in the OpenFusion RTOrb 
Ada Edition distribution’s html pages.

4.1  Real-time Specification
The Real-time CORBA Specification defines a set of real-time extensions to standard 
CORBA specification.
Figure 6 shows the key Real-time CORBA entities. The features that these relate to are 
described below.

 Figure 6 Real-time CORBA Extensions
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4.1.1  Real-time CORBA Modules
All CORBA IDL  specified  by  Real-time  CORBA  is  contained  in  new  modules 
RTCORBA and RTPortableServer (with the  exception of new  service  contexts, 
which are additions to the IOP module.)

4.1.2 Real-time ORB
Real-time CORBA defines an extension of the  ORB interface, RTCORBA::RTORB, 
which handles operations concerned with the configuration of the real-time ORB and 
manages the creation and destruction of instances of other Real-time CORBA IDL 
interfaces.

4.1.3 Thread Scheduling
Real-time CORBA  uses  threads  as a schedulable  entity.  Generally,  a thread 
represents a sequence of control flow within a single node. Threads form part of an 
activity. Activities  are  scheduled  by coordination  of  the  scheduling  of their 
constituent  threads.  Real-time  CORBA  specifies  interfaces  through  which  the 
characteristics of a thread that are of interest can be manipulated. These interfaces are 
Threadpool  creation  and  the  Real-time  CORBA  Current  interface.  The  Real-time 
CORBA view of a thread is compatible with the POSIX definition of a thread.

4.1.4 Real-time CORBA Priority
Real-time CORBA defines a universal, platform independent priority scheme called 
Real-time CORBA  Priority.  It  is introduced to  overcome  the  heterogeneity of 
different Operating System provided priority schemes, and allows Real-time CORBA 
applications to make prioritised CORBA invocations in a consistent fashion between 
nodes with different priority schemes.
For consistency, Real-time CORBA applications always should use CORBA Priority 
to express the priorities in the system, even if all nodes in a system use the same 
native thread priority scheme, or when using the server declared priority model.

4.1.5 Native Priority and PriorityMappings
Real-time CORBA defines a NativePriority type to represent the priority scheme that 
is ‘native’ to a particular Operating System.
Priority values specified in terms of the Real-time CORBA Priority scheme must be 
mapped into the native priority scheme of a given scheduler before they can be applied 
to the underlying schedulable entities.  On occasion, it  is  necessary for  the reverse 
mapping to be performed, to obtain a Real-time CORBA Priority to represent the 
present native priority of a thread. The latter can occur, for example, when priority 
inheritance is in use, or when wishing to introduce an already running thread into a 
Real-time CORBA system at its present (native) priority.
Real-time CORBA defines a PriorityMapping interface in order to allow the Real-
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time ORB and applications to do both of these things.

4.1.6 Real-time CORBA Current
Real-time CORBA defines a Real-time CORBA Current interface to provide access to 
the CORBA priority of a thread.

4.1.7 Priority Models
One goal of Real-time CORBA is to bound and to minimize priority inversion in 
CORBA in vocations. One mech an ism that is employed to achieve this is prop agatio 
n o f the activ ity p riority fro m the client to the server, with the requirement that the 
server side ORB make the up-call at this priority (subject to any priority inheritance 
protocols that are in use).
However, in some scenarios, it is sufficient to design the application system by setting 
the priority of servers, and having them handle all invocations at that priority. Hence, 
Real-time CORBA supports two models for the priority at which a server handles 
requests from clients:

• Client Propagated Priority Model: in which the server honours the priority of 
the  invocation, set by the  client.  The  invocation’s Real-time  CORBA 
Priority is propagated to the server ORB and the server-side ORB maps 
this Real-time CORBA Priority into its own native priority scheme using 
its PriorityMapping.
Requests  from non-Real-time CORBA ORBs;  that  is,  ORBs  that  do not 
propagate a Real-time CORBA Priority with the invocation are handled at a 
priority specified by the server.

• Server Declared Priority  Model:  in which the server handles requests at  a 
Real-time CORBA Priority assigned on the server side. This model is useful 
for  setting  a  boundary  where  new  activities  are  begun  with  a  CORBA 
invocation.

4.1.8 Real-time CORBA Mutexes and Priority Inheritance
The Mutex interface provides the mechanism for coordinating contention for system 
resources. Real-time  CORBA  specifies  an RTCORBA::Mutex locality  constrained 
interface, so that applications can use the same mutex implementation as the ORB. A 
conforming  Real- t ime  CORBA  Ada  implementat ion  need  not  provide 
an  implementat ion  of  Mutex  as  Ada  a lready  provides  a  far  bet ter 
solut ion  through  the  use  of  protected  objects.  This  allows  a  consistent 
priority inheritance scheme to be delivered across the whole system.

4.1.9 Threadpools
Real-time CORBA uses the Threadpool abstraction to manage threads of execution on 
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the server-side  of the  ORB.  Threadpool characteristics  can only  be  set  when the 
threadpool is created. Threadpools offer the following features:

• preallocation of threads - This helps reduce priority inversion, by allowing 
the application programmer to ensure that there are enough thread resources to 
satisfy a certain number of concurrent invocations, and helps reduce latency 
and  increase  predictability,  by  avoiding  the  destruction  and  recreation  of 
threads between invocations.

• partitioning of threads - Having multiple thread pools associated with 
different  POAs allows one part of the system to be isolated from the 
thread usage of  another,  possibly  lower  priority,  part  of  the  application 
system. This can again be used to reduce priority inversion.

• bounding of thread usage - A threadpool can be used to set a maximum limit 
on the number of threads that a POA or set of POAs may use. In systems 
where the total number of threads that may be used is constrained, this 
can be used in conjunction with threadpool partitioning to avoid priority 
inversion by thread starvation.

• buffering of additional  requests beyond the  number that  can be dispatched 
concurrently by the assigned number of threads.

4.1.10 Priority Banded Connections
In order to reduce priority inversion due to use of a non-priority respecting transport 
protocol, RT CORBA provides the facility for a client to communicate with a server 
via multiple connections, with each connection handling invocations that are made at a 
different  CORBA  priority or range of CORBA  priorities.  The  selection  of the 
appropriate connection is transparent to the application, which uses a single object 
reference as normal.

4.1.11 Non-Multiplexed Connections
Real-time CORBA allows a client to obtain a private transport connection to a server, 
which will not be multiplexed (shared) with other client-server object connections.

4.1.12 Invocation Timeouts
Real-time CORBA applications may set a timeout on an invocation in order to bound 
the time that the client application is blocked waiting for a reply. This can be used to 
improve the predictability of the system.

4.1.13 Client and Server Protocol Configuration
Real-time CORBA provides interfaces that enable the selection and configuration of 
protocols on the server and client side of the ORB.
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4.1.14  Real-time CORBA Configuration
New policy types are defined to configure the following server-side RT CORBA
features:

• server-side thread configuration (through Threadpools)
• priority model (propagated by client versus declared by server)
• protocol selection
• protocol configuration

Which CORBA policy application points (ORB, POA, Current) that a given policy 
may  be  applied  at  is  given  along  with  the description  of  each  policy. Real-time 
CORBA defines  a  number  of  policies  that  may  be  applied  on  the  client-side  of 
CORBA applications. These policies allow:

• the  creation  of  priority-banded  sets  of  connections  between  clients  and 
servers;

• the creation of a non-multiplexed connection to a server;
• client-side protocol selection and configuration.

In addition, Real-time CORBA uses an existing CORBA policy to provide invocation 
timeouts.

4.2 Real-time Portable Object Adapters
Real-time Portable Object Adapters (RTPOA) configuration is one of the most 
important features in real-time CORBA. Application developers can configure and 
control hardware resources using real-time policies associated with real-time POAs. 
This  section  describes  priority  models,  the  pluggable  RTPOA,  threads  and 
threadpools, and priority banded connections.

4.2.1 Priority Model
OpenFusion  RT Orb  Ada  Edi t ion  only support s  both  the 
RTCORBA::SERVER_DECLARED and RTCORBA::CLIENT_PROPAGATED priority 
models.  Refer to the CORBA  Priority  Model example included in the RTOrb 
examples to see how to set the RTCORBA::SERVER_DECLARED priority model policy 
for an RTPOA.

4.2.2 RTPOA
The RTPOA  module  which  extends  the  standard  POA  interface  with  respect  to 
priority and resource configuration.
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4.2.2.1 POA Activation Methods with Priority

   function create_reference_with_priority

      ( Self : in Ref;

        intf : in CORBA.RepositoryId;

        priority : in RTCORBA.Priority)

      return Corba.Object.Ref ;

   function create_reference_with_id_and_priority

      ( Self : in Ref;

        oid : in PortableServer.ObjectId;

        intf : in CORBA.RepositoryId;

        priority : in RTCORBA.Priority)

      return Corba.Object.Ref ;

   function activate_object_with_priority

      ( Self : in Ref;

        p_servant : in PortableServer.Servant;

        priority : in RTCORBA.Priority)

      return PortableServer.ObjectId ;

   procedure activate_object_with_id_and_priority

      ( Self : in Ref;

        oid : in PortableServer.ObjectId;

        p_servant : in PortableServer.Servant;

        priority : in RTCORBA.Priority) ;

4.2.3 Threads and Threadpools
There are two basi c ways  o f  manipulat ing th reads in  RT CORBA, 
RTCORBA::Current and Threadpools (via policies at POA creation time).

4.2.3.1 Current
RT CORBA defines a RTCORBA::Current interface to provide access to the CORBA 
priority of a thread. Please refer to the CORBA Priority example included with this 
product on how to access the priority of a thread.

4.2.3.2 Threadpools
Thread pools are one of the most important features in Real-time CORBA. Threads in 
pools  can  be  pre-allocated and partitioned amongst active  Real-time  POA's. 
Application developers and end-users configure and control processor resources using 
thread pools. The possibility of experiencing priority inversion can be bounded and 
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reduced by configuring real-time POA's with threadpools where each POA associates 
with one thread pool (see Figure 7). Note that threadpools are independent of the POA 
lifecycle.

4.2.3.3 Thread Pool Operation Basic Mode
Application developers and end-users configure and control processor resources using 
thread pools (see Figure 7). Threads in the threadpool execute requests at the object 
priority for which each request is targeted. Each POA associates with one thread pool. 
However, you are reminded that thread pools are independent of the POA lifecycle.
To dispatch requests to the correct queue and to the right servant on the server side, 
each request needs to be handled by the right priority thread. To achieve this, requests 
are pushed onto the queue of appropriate priority and are processed synchronously by 
the waiting threads within a lane. There is a queue assigned to each thread pool.

Figure 7 Controlling Network Resources 

The client side may hold multiple connections open through the use of individual 
object references to end points in the server, based on priority band.
Threadpools can be configured for use with RTPOA's in one of two forms:

• Non-laned Threadpool
• Laned Threadpool
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4.2.3.4 Laned Threadpool
A threadpool can be created that has n partitions (lanes) each created to serve requests 
at a specific priority. Each lane has m static threads running at the priority defined for 
the lane. Whenever a request arrives, a lane is chosen based on the priority associated 
with the activated object. Please refer to the Threadpools example included with this 
product on how to create a Threadpool with lanes.
As seen above, the half-sync layer consists of a thread pool associated with a POA. A 
thread pool can be shared among POAs.

4.2.3.5 Priority Banded Connections
RT CORBA introduces the concept of priority banded connections. A real time POA 
(RTPOA) supporting  priority  banded connections is capable  of  accepting  requests 
across transport with some concept or awareness of the requestors priority at which 
the server should execute. Each client can open a number of connections with a server, 
each  connection  handling  a  range  of  priorities  defined  in  the  priority  banded 
connection policy.
Priority banded connections  are useful  when used in  conjunction with a transport 
protocol that does not respect priorities. Transports like TCP that are not easily pre-
emptable and do not respect priorities can incur head of line blocking where requests 
of higher priority are blocked and unable to pre-empt requests at lower priority. This 
leads to unbounded delays and the potential of priority inversion. Priority bands allow 
multiple connections to be utilized to minimize the head of line blocking that can 
occur where one connection is used for multiple priority requests. An RTPOA th at is 
configured with   laned th readpools  and prio rity banded connections can provide 
more  predictability. Please  refer  to  the  Connections  example  included  with  this 
product on how to create priority banded connections.

4.2.4 RTPOA Current
This interface is available to perform operations to access the identity of the object on 
which a call was invoked. This is supplied for supporting servants that may implement 
multiple objects.

4.2.5 Associations Between Pools and RTPOA
Each POA must have one thread pool attached to it. This is done by passing a thread 
pool  policy  to  the  POA.  In  the  case  where  no  policy  is  specified  or  an  invalid 
threadpool identifier is used, the ORB will use the default thread pool. One thread 
pool can be shared among multiple POAs. The default pool must be created and set 
before the first inquiry for the RTRootPOA.
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4.3 Priority Machinery
Priority is the medium used to achieve QoS in real-time CORBA, hence the focus of 
RTOrb application design. With the RTOrb priority scheduling is achieved via the 
RTOS scheduler. Tasks or threads that comprise the application execute in a stable, 
predictable manner as a result of this priority scheduling. In addition if using only the 
RTOS for scheduling purposes, it must provide proper mutexes and semaphores to 
resolve resource contention, such as priority-aware application objects and/or code 
segments.
The central theme in real-time CORBA programming  is  the  notion of prioritised 
scheduling of activities, tasks, or threads.
This section provides:

• background information on the phenomenon of priority inversion
• discussion of protocols used to overcome priority inversion
• discussion of priority mapping and CORBA priority scheme

4.3.1 Priority Phenomena and Protocols
Priority inversion is a commonly known phenomenon in real-time systems. It usually 
manifests in the form of unbounded delays of high priority tasks. Normally, when 
priority inversion occurs, high priority tasks are forced to wait on low priority tasks. 
This occurs when the  high priority tasks are  sharing common resources with low 
priority tasks. If a low priority task locks the resource for its own use but is pre-
empted by a higher priority task, which also needs access to the common resource, 
the high priority task will have to wait on the lower priority task.

To illustrate the concept of priority inversion more clearly, consider Figure 8. Here, 3 
tasks or threads  are  executing,  T1, T2, T3. The  tasks  are illustrated  in  order  of 
decreasing priority such that the priority of T1 is the greatest and that of T3 the least 
of the 3. In addition, we assume that T1 and T3 share a common resource, such as a 
critical section, to which only  one  can have access at any point in time.  The 
following is a typical scenario illustrating priority inversion.

At time t0 task T3 starts to run. At time t1 task T3 locks and enters a critical section, 
continuing to execute until time t2. The portion of time for which task T3 is in a 
critical section is shown as shaded. At time t2, task T1 pre-empts task T3 because T1 
has a higher priority. Task t1 now executes from time t2 until time t3, at which point 
it attempts to gain access to the critical section, which has previously been locked by 
lower priority task T3. Task T1 is therefore forced to wait or block until such time as 
T3 releases the lock on the critical section shared between T1 and T3. Task T3 is 
allowed to run next. So at time t3, task T3 resumes execution and continues to work 
its way through the critical section.
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Now at time t4, task T2 pre-empts task T3 and starts to run because task T2 has a 
higher priority than that of task T3.
Task T1 is now blocked by task T3 because of the shared resource, and task T3 is 
blocked by task T2. Therefore T2 is now indirectly blocking task T1 as well. Task T2 
blocks task T3 until T2 completes at time t5. As a consequence T3 is forced to block 
for a significant amount of  time (the length of the shared critical section plus the 
execution time of task T2).
For an actual system, when several medium priority tasks exist with priorities greater 
than that of task T3 but less than that of task T1, it can lead to unbounded delay or 
blocking.

This effect is known as priority inversion and occurs in the time interval t3 to t6.

Figure 8 Priority Inversion

The priority inversion phenomenon in real-time systems is one that can manifest any 
time several tasks want to execute in the presence of services that are shared among 
them.
Several  approaches  have been  proposed  to  alleviate  the  priority  inversion 
phenomenon  in  real-time  systems  and  much  literature  is  available.  A  complete 
description and analysis is beyond the scope of this document. The reader is directed 
to further reading under Bibliography on page 93, particularly Buttazo.
The Real-time Extension aids the RT CORBA developer by  providing priority 
inheritance protocols in the ORB. Specifically, RTOrb’s RT CORBA mutex supplies 
a default  implementation  that  uses the  simple priority  inheritance  protocol  as  an 
example. Other protocols are also possible, but this is used to illustrate the concept 
and its applicability.

The priority inheritance protocol bounds any priority inversion that  could possibly 
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occur. Although  the  ORB’s initial  design is  such  that  it tries  to  eliminate the 
possibility, it can still occur as a result of unusual transports, or hardware specifics 
that are used in a particular setup.
Figure 9 and the following text explain how priority inheritance protocols bound any 
possible priority inversion.  The  same  three  tasks  are  illustrated  as in Figure  8. 
Additionally, the relative priorities of the three tasks are depicted at the bottom of the 
figure as P1, P2, and P3.
Up to time t3, the behaviour of tasks T1 and T3 are the same as in Figure 8. At time t3, 
T1 is forced to block on T3 due to T3 holding a lock on a critical section to which T1 
needs access. At this point the mechanism of priority inheritance is employed.  This 
mechanism causes  T3 to inherit  the  priority  P1 of task T1,  which forces task T3  to 
execute  immediately and run through the remaining part of its critical section.  This 
forces T3  to execute from t3 to t5 at the T1 priority P1, which is the highest priority in 
this illustration. Note that task T2 cannot pre-empt task T3 as task T2 has lower priority 
than the temporarily assigned priority (P1 of task T3, through priority inheritance).

Figure 9 Priority Inheritance Protocol to Bound Priority Inversion

As task T3 exits the critical section, its priority is returned to its original value P3 as 
shown in  Figure 9.  At  time t5,  task T1 can run because priority  P1 is  greater  than 
priority P2 of task T2. Thus it no longer needs to block on task T3, which was holding a 
lock  on  the  critical  section.  Task  T1 now runs  through  the  critical  section  and  to 
completion at t6. At time t6, task T2 has the highest priority and executes as shown in 
Figure 9.
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4.3.1.1 CORBA Priority
CORBA uses  a standard (canonical)  form of priority  that  can be mapped to  any 
RTOS priority scheme. In effect, CORBA su bsumes th e heterogen e ity in RTOS-
specific  priority  schemes  and thus achieves  uniformity.  This  allows CORBA 
invocations to be made across multiple, different RTOS platforms - which may have 
different native priority schemes - in a consistent manner. Therefore, CORBA priority 
is a wrapper for native priority schemes.

4.3.1.1.1 CORBA Priority Mapping
Priorities may be mapped from the CORBA priority scheme to the RTOS native priority 
scheme.  This  is accomplished with  an  interface  defined in  IDL,  and  allows  you to 
forward and reverse map CORBA and native priorities as shown in Figure 10.

Figure 10 Priority Mapping 

An RTCORBA priority type id, defined in IDL to be of type CORBA short, is as follows:

module RTCORBA {
typedef short Priority;
const Priority minPriority = 0;
const Priority maxPriority = 32767;
};

It spans the interval 0 to 32767. Higher values of RTCORBA priorities map to higher 
native RTOS priorities.

52



 

4.3.1.1.2 RTCORBA Current Interface
The Current interface in RTCORBA allows a developer access to the priority data of 
the current locus of execution or thread. The interface allows for setting and getting a 
thread’s CORBA priority.

interface Current : CORBA::Current {

attribute Priority the_priority;

};

 A thread  has  native  base  and  elevated  priorities,  which  may  be  different  than  the 
observed CORBA mapped value.

This is a local interface, which also stores information about its current CORBA and 
native priorities in a thread-local storage structure. It is a singleton within the context of 
its present locus of execution. A typical application’s use of the RTCORBA current 
interface is illustrated below: Please refer to the CORBA Priority example included 
with this product on how to use the RTCurrent get and set methods, and use of the 
default priority mapping.
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CHAPTER

5 Introduction to Real-time Systems

This chapter expands on the short introduction given earlier and introduces some of the 
essential aspects of real-time systems programming.

5.1  Real-time Systems
The term real-time is used to define systems where the time taken for the execution of a 
task is temporally deterministic (predictable). This yields, at the task level, the notion 
of hard deadlines: a task must complete within the specified time. Thus a real-time 
system executes tasks in a predictable manner with respect to time.
The degree of predictability is the basis for the terminology used to describe real-
time systems. Widely used categories are hard real time and soft real time. This degree-
of-predictability classification conveys relative descriptive utility, but more  precise 
definitions are implied for a given application.
In hard real-time systems, task execution that completes at an incorrect time means 
system failure. A missed deadline is the same as a wrong answer.
In soft real-time systems, task execution that completes at an incorrect time means 
reduced system performance. A missed deadline is not catastrophic, but rather 
degrades system performance.

Examples of hard real-time activities are:
• flight control (inertial guidance and navigation)
• nuclear power plant control
• pacemakers (human heart)
• vehicle anti-lock braking
• air-bag deployment systems

Examples of soft real-time activities are:
• command interpretation of inputs from a user interface
• saving or displaying management data
• ship navigation
• certain types of telecommunications traffic shaping functions
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In general, real-time applications consist of soft and hard deadlines. Operating systems 
try  to  guarantee  the  individual  timing constraints  of  the hard deadline  tasks  while 
attempting  to  minimize  the  average  response  times  of  the  soft  ones.  Real-time 
operating system (RTOS) kernels achieve this through the use of appropriate features:

• near constant time system calls
• the ability to associate priority not only with the threads (or tasks) executing, 

but also the synchronization constructs such as mutates
• pre-emption to achieve greater determinism
• appropriate scheduling strategies

5.1.1 Time- and Event-Triggered Systems
Another way to classify real-time  systems is based  on  whether they are time-
triggered or event-triggered. A trigger is an event that causes the start of some action, 
for example, the execution of a task or the transmission of a message.
There are two distinctly  different  approaches  to  the design  of  real-time  computer 
applications: the event-triggered (ET) approach, and the time-triggered (TT) approach. 
A triggering mechanism is used to start communication and processing activities in 
each node of a computer system (network).
In the ET approach, all  communication and processing activities are initiated upon 
occurrence of a significant change of state. The regular event of a clock tick is not such 
an event. In the TT approach, all communication and processing activities are initiated 
at predetermined times. While ET systems are flexible,  TT systems are temporally 
predictable. In this guide, the systems discussed are event-triggered.

5.1.2 Developing Real-time Systems with RTOS
Real-time Operating System (RTOS) kernels are built to support real-time tasking 
through a number of important features that real-time systems use:

• priority based scheduling to perform real time inter-kernel process 
management

• priority aware synchronization constructs (semaphores for instance)
• concurrency constructs such as multi-tasking or multi-threading
• real-time clock for a time reference for internal kernel task management 

and housekeeping tasks
• mechanisms for inter-process and intra-process communication with 

associated synchronization primitives
• bounded, constant-time fast context switch, and often an associated minimal 

base kernel size (typically 16-32kb)
• internal kernel architecture geared to respond to external interrupts in a 

fast manner, and so separate their execution from intra-kernel tasks
Pre-emption and priority-based scheduling are the most important characteristics of 
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real-time kernels. Together  they  give rise  to  the notion of priority, the central 
mechanism used to achieve predictable, deterministic behaviour. These 
characteristics  are  sufficient  for  soft  real-time  systems.  Behavioural  characteristics 
include quick response and small execution times for higher priority tasks - while 
yielding small average response times for other tasks. For hard real-time applications 
however, a centrally important theme is missing in such kernels. It is the notion of 
some form of guarantee, which is necessary for time-critical, hard real-time behaviour.
To achieve hard real-time, distributed applications, the most important properties of a 
distributed, mission-critical system RTOS and ORB tuple are:

• predictability -  The RTOS must be able to predict in an  a priori fashion 
the consequences of scheduling any and all tasks under its control. If it is not 
possible to guarantee an upper bound for the execution time of any task, the 
RTOS must be able to take an alternative course of action to cope with such 
events. Predictability is by far the single most important requirement on an 
RTOS, especially for hard real-time application hosting.

• timeliness -  The RTOS must comprise internal clocks for effective 
handling of tasks with differing time constraints, and degree of importance or 
criticality.

• fault-tolerance -  The RTOS should be immune (to some degree) to certain 
classes of hardware and software failures. Mission critical components in 
such high availability  RTOS models should have fault-tolerance features 
inherent in their design.

• design for peak load - The RTOS should provide some continued minimal 
level of performance when subjected to unusually high peak loads. RTOS 
failure and crash under such circumstances is an unacceptable scenario for 
hard real-time applications. Therefore, they must be designed to cope with 
anticipated scenarios of high sporadic load.

• maintainability -  The  RTOS  kernel  and  ORB  need  to  be  designed  in  a 
modular, pluggable fashion to ensure a minimal, optimised use of RTOS 
resources under  any  load. In addition, the  ability to  make 
modification/customisations to the kernel - as the ORB based application 
might require - should be minimally cross-coupled so as to be able to make 
the changes easily.

5.1.3 Predictability in Distributed Applications
Predictability of a complex, distributed, real-time application is achieved through the 
careful  combination of  RTOS  features,  networking  transport, IPC mechanism 
implementations, and constant-time ORB internals design. A sum of these, yields a 
degree of  predictability that  enables some level  of Quality of Service (QoS) to be 
furnished to the application built on the RTOS-ORB combination.
As far as the RTOS is concerned, it should be able to plot the evolution of tasks and 
events ahead of time in a given situation such that it can guarantee in advance that all 
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critical timing constraints are met by suitable scheduling of its internals. Components 
that contribute to the possibility of predictably scheduling deadline-restricted tasks 
are:

• the features and numbers of CPUs and the scheduling policies they support
• internal CPU features such as  pre-fetch, pipe lining, cache memory, and 

direct memory access, which can contribute to non-determinism
• types of scheduling algorithms employed in the kernel
• synchronization mechanisms
• types of priority-aware semaphore
• memory management policies, especially heap management
• communication mechanism, e.g., whether the kernel is based on messages 

or signals
• interrupt handling mechanisms

5.1.4 Features and Non-Determinism
It is important for the distributed real-time  application  designer  to understand the 
features that will most contribute to non-determinism. These are discussed briefly in 
the context of an RTOS and ORB.
Probably the single greatest contributor, at the ORB level, of non-determinism is a 
transport that is not QoS aware or priority respecting. In essence, the management of 
ORB, application, and RTOS internal tasks needs to be efficiently managed by the 
RTOS.
Perhaps the single greatest enemy of an effective hard real-time system design is the 
phenomenon referred to as priority inversion.
Priority  inversion occurs when a high priority task (that is, of possibly greater 
importance and criticality) is blocked by a less critical, lower priority thread for an 
unbounded period of time. This type of situation is often seen when the high priority 
thread is trying to get access to a shared (with the low priority task) resource, which 
the low priority task has locked for its own use. There is much detailed real-time 
literature  on  this  subject,  and designs  for its avoidance. For further  reading,  see 
Bibliography on page 93, particularly Rajkumar and Buttazo.
The integration of ORB and application tasks is under the control of the application 
designer, but the tasking and priority level control of the transport threads is not, and can 
give rise to priority inversions.

Other major contributors to non-determinism include:
• DMA - Certain methods of direct memory - such as cycle-stealing access, used 

to transfer data between devices and main memory - give rise to unbounded 
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delays. However, this can be overcome by using other techniques, such as 
time-slice methods.

• cache - This procedure buffers CPU-RAM exchanges in an attempt to reduce 
task exe c ut ion t imes.  Under ce r tai n circ um s t ance s ,  this  can 
contribute  t o non-determinism.

• interrupts - These events can be sporadically triggered due to I/O devices and 
can  impair  predictability  of  a  real time system due  to  the  fact  that  they 
introduce unbounded delays into the execution times of other processes.

• system calls - The calls for hard real-time kernel primitives need to be pre-
emptible and implemented to have bounded execution times. These are then 
used by the scheduling subsystem of the kernel to pr oduce the necessary 
guaranteed, temporally-correct behaviours internally in the kernel.

• semaphores - These should be modified to be priority aware and thus avoid 
the priority inversion phenomenon. RTOS’ normally furnish priority protocols 
when  implementing  this  modification.  Examples  include  basic  priority 
inheritance,  priority ceiling,  and  stack  resource  policy.  These protocols 
temporarily modify task priorities to avoid deadlock and anomalous priority 
assignments, which cause non-determinism.

• memory management - This must not produce unbounded delays in the course 
of execution of real-time tasks. A common practice is to use fixed, constant 
time  type  schemes  to  allocate,  and  address memory partitions  to  achieve 
predictable  memory  access.  It  is  usual  to  see  a  greater  degree  of  static 
allocation, which reduces flexibility for dynamic environments. The designer 
of real-time systems must make trade off decisions when implementing on an 
RTOS using languages that permit dynamic heap memory allocations, such as 
C++.
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CHAPTER

 6 Creating Applications

6.1  General
This section describes how to write the applications themselves and covers:

• How to write a simple non real-time application, called Echo. This 
application contains    the   minimal,    essential   elements    needed    to   create 
  a   distributed client-server application

• How  to  write  a  simple  real-time version  of  the  Echo application.  This 
application demonstrates basic real-time programming using RTOrb

i It is assumed that readers understand basic CORBA programming with Ada concepts 
and practice. The descriptions given here concentrate on those aspects which may be of 
most help, with basic operations (which readers should be familiar with) being only 
lightly covered.
 

6.2  A Simple Application
This example, the Echo  application, is very simple: it contains the minimum elements 
needed to create a working client-server application using RTOrb.
 

• has an IDL specification in echo.idl which 
 declares the Echo interface and EchoString function (see 7.2.1)

• has a server which 
 performs the basic initialisation tasks required by all servers
 creates  an  Echo servant   object; the servant’s single method prints a 

greeting for the client which called the server.
 makes  the  Echo  servant accessible  to clients  by  saving  the  servant’s 

stringified IOR to a file 
  listens for requests from clients

• has a client which
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 performs the basic initialisation tasks required by all clients
 obtains  references   to  the  Echo  servant  object   by reading  its 

stringified IOR from a file
 all the EchoString method  on  the  Echo  object  which  displays  a 

greeting with the client’s name

 This example uses files for object resolution. Other methods of object resolution
must be used on platforms which do not have a file system.

T he   comple t e   s ou rce   c ode   fo r   t he   E cho   a pp l i c a t i o n   i s   i n   t h e 
<OFRT_DIR>/examples/ada/echo directory of the RTOrb distribution.

6.2.1  IDL Specification
The IDL specification for Echo  (echo.idl) is  very simple: it declares a single 
interface,  Echo, with a single method, EchoString. The EchoString takes a string 
(the name of the client calling the method) and returns a string (a greeting with the 
client’s name).
 
interface Echo {
  string echoString(in string mesg);
};

6.2.2 Running the example Echo
It is assumed you have installed and configured a compiler and a library beforehand.

WIN The Echo example is located in <OFRT_DIR>\examples\ada\echo. If it does not 
already exist, a tmp directory must be created in the system root (i.e. if RTOrb was 
installed on C:, then you must create c:\tmp)

Step 1 Compile the needed files to run the application. Run compile.bat, located in the Echo 
folder:

<OFRT_DIR>\examples\ada\echo\compile.bat

The executables files echo_server.exe and echo_client.exe are generated.

Step 2 Start the server by executing echo_server.exe

<OFRT_DIR>\examples\ada\echo\echo_server.exe
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The console indicates  the IOR \tmp\ior.dat has been created. The server is running, as 
long as the console it was launched in remains open.

Step 3 In another console, or through Windows Explorer, launch echo_client.exe
The console where the server is running indicates he has received the greeting from the 
client. The client and the server you have created communicate well.

6.2.3 Client-side
First, the client side packages of the interfaces of the objects this client needs to access 
must have been generated using idl2ada. The generated code must not be edited in any 
case. 

6.2.3.1  Initialization
Before doing any method invocation, the client may need to start the OpenFusion orb. 
This is done by calling Corba.Orb.Orb_Init. 
This procedure requires two parameters: 

• Argv : an argument list to supersede command line parameters 
• Orb_Identifier : the name of the RTOrb daemon to connect to if this name is the 

null string, then the command line options () are used to determine the orb (see 
Client and Service switches), else the RTOrb environment variable is tried. If 
the name is still a null string, the client uses its own ORB library only, else if 
the  named  RTOrb  daemon  is  not  found,  a  message  is  displayed  and  the 
exception Ada.Io_Exceptions.Name_Error is raised.
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Example: 

with Corba.Orb ;
procedure Client is 

Args : Corba.Orb.Arg_List ;
Orb_Name : Corba.Orb.Orbid ;

begin 
-- Initialization of the ORB connection
-- Use null argument list and name to allow command line options
-- and RTOrb environment variable
Corba.Orb.Orb_Init (Args, Orb_Name) ;
-- Put client code here
-- Corba processing termination
Corba.Orb.Shutdown (Wait_For_Completion => True) ; 

end Client ;

If needed, the client can establish a connection with RTOrb daemons (for example, an 
administrator  who  wants  to  interconnect  all  the  Naming  Services  will  read  the 
etc/Orbs  file,  connect  to  all  the  RTOrb  daemons,  get  their  Naming  Service  root 
reference, and bind it in all the others).

Corba.Orb.Orb_Init can be called several times for the same daemon (in independent 
parts of the client). In this case, as required by the OMG CORBA specification, the 
daemon reference count is incremented. There must be the same number of calls to 
Corba.Orb.Stop  to  effectively  terminate  the  connection  with  this  daemon. 
Corba.Orb.Shutdown also closes all the connections wherever it is called.

6.2.3.2 Getting object references
In order to invoke methods on an object, the client needs to get a reference to this 
object. This reference can be obtained by different means: 

• by a stringified object reference (IOR) which is transformed into a reference 
by calling Corba.Orb.String_To_Object 

• by a corbaloc, corbaname or file URL object reference which is transformed 
into a reference by calling Corba.Orb.String_To_Object 

• by searching the root object of the service in the initial references of the orb 
by calling Corba.Orb.Resolve_Initial_References 

• by searching in the NamingService under an already defined name 
• by  calling  Corba.Implementation_Repository.Get_Implementation  and 

Corba.ImplementationDef.Get_Root_Object to start a new unshared service 
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• as the result of an operation on another object 

If the object corresponding to the reference exists but is not active, the target orb does 
the job to make it active at the first method invocation.
To allow its resolution by a corbaloc URL, a reference must be added to the initial 
references using Corba.Orb.Register_Initial_Reference. Any server created with RTOrb 
can resolve the references it registers by this mean.

6.2.3.3 Tasking
RTOrb  client  and  service  library  operations  are  tasking-safe.  They  are  potentially 
blocking at the Ada task level.
Asynchronous Transfer of Control (ATC) is not supported during method invocation. 
This would introduce a big performance penalty due to the mandatory extra actions 
which would be needed, and in most of the cases useless (when ATC is not used or 
pending).
If ATC has to be used, the client implementor should use an extra task to perform the 
method invocations while ATC is pending.

6.2.3.4 CORBA exception handling
CORBA exceptions  carry  information  when  they  are  raised.  To  get  these  data,  an 
exception handler must have a choice parameter specification (see Ada RM95 11.2) and 
must be specific to the raised exception. The 'Get_Members' method associated with the 
exception can then retrieve the data. Several exception handlers can retrieve the data if 
the exception is re-raised with the simple instruction 'raise ;' (e.g. if another exception is 
re-raised, the access to the data is lost).

The CORBA exception Impl_Limit is raised during method invocation if a non CORBA 
exception is raised during the execution of the method in the server side.

Example (taken from a Naming Service context operation) :

exception
when NotFound_Exception : CosNaming.NamingContext.NotFound =>
   Ada.Text_Io.Put_Line ("Exception : Not Found");
   declare
      Members : CosNaming.NamingContext.NotFound_Members :=
         CosNaming.NamingContext.Get_Members (NotFound_Exception);
   begin
      Ada.Text_Io.Put_Line ("Reason : " &
         CosNaming.NamingContext.NotFoundReason'Image (Members.Why));
end; 
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6.2.3.5 Termination
Corba.orb.Stop must be called to close the CORBA session. If Corba.orb.Orb_Init was 
called several times, the session will be effectively closed after Corba.orb.Stop is called 
the same number of times, in order to protect the CORBA work from the other tasks of 
the process. The standard procedure Corba.orb.Shutdown forces the termination of the 
session.

If Corba.orb.Stop or Corba.orb.Shutdown are not called, the RTOrb daemon itself (if 
used) will do the cleaning work when the connection is closed (for example at least 
when the client is killed).

6.2.4 Server-side
6.2.4.1  Initialization

Corba.Orb.Orb_Init (Args, Orb_Name) ;

6.2.4.2  Getting the Root POA and activating it

Corba.Orb.Resolve_Initial_References
      (Corba.To_Unbounded_String ("RootPOA"), Root_Poa) ;
Manager := Corba.PortableServer.Poa.Get_The_POAManager (Root_Poa) ;
Corba.PortableServer.PoaManager.Activate (Manager) ;

6.2.4.3  Creating and associating the object

Root_Ptr := new Echo.Impl.Object ;
Corba.PortableServer.Poa.Servant_To_Reference
      ( Self      => Root_Poa,
        P_Servant => Corba.PortableServer.Servant (Root_Ptr),
        Result    => Root_Ref);
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6.2.4.4  Making the object available
You can make the object available either as an initial reference or having its reference 
stored in a file.
As an initial reference:

Corba.Orb.Register_Initial_Reference
( Id     => Echo.Tgx_Service_Name,

Object => Root_Ref) ;

Store its reference in a file:

Ada.Text_Io.Create ( File => File,
Mode => Ada.Text_Io.Out_File,
Name => "/tmp/ior.dat") ;

Ada.Text_Io.Put (File, Corba.To_String
(Corba.Orb.Object_To_String (Root_Ref))) ;

Ada.Text_Io.Put (File, Character'val (0) ) ;
Ada.Text_Io.Close (File) ;
Ada.Text_Io.Put_Line

("The reference of the object is written in /tmp/ior.dat") ;

6.2.4.5  Starting method processing
The current thread is  blocked with this  call.  It  will  only exit  when Orb.shutdown is 
called from another task. 

Corba.Orb.Run ;

Invocation processing is now started.
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