
Event Service Specification 4
y an
d
r the

t is

to
4.1 Service Description

4.1.1 Overview

A standard CORBA request results in the synchronous execution of an operation b
object. If the operation defines parameters or return values, data is communicate
between the client and the server. A request is directed to a particular object. Fo
request to be successful, both the client and the server must be available. If a request
fails because the server is unavailable, the client receives an exception and must take
some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

• A system administration tool is interested in knowing if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administration tool. The software simply reports that the disk is full. When a disk
runs out of space, the system administration tool opens a window to inform the user
which disk has run out of space.

• A property list object is associated with an application object. The property list
object is physically separate from the application object. The application objec
interested in the changes made to its properties by a user. The properties can be
changed without involving the application object. That is, in order to have
reasonable response time for the user, changing a property does not activate the
application object. However, when the application object is activated, it needs
know about the changes to its properties.

• A CASE tool is interested in being notified when a source program has been
modified. The source program simply reports when it is modified. It is unaware of
the existence of the CASE tool. In response to the notification, the CASE tool
invokes a compiler.
CORBAservices March 1995 4-1

4

 in

e

d

of
st the

via
rs,

 and

all

• Several documents are linked to a spreadsheet. The documents are interested
knowing when the value of certain cells have changed. When the cell value
changes, the documents update their presentations based on the spreadsheet.
Furthermore, if a document is unavailable because of a failure, it is still interested
in any changes to the cells and wants to be notified of those changes when it
recovers.

4.1.2 Event Communication

The Event Service decouples the communication between objects. The Event Servic
defines two roles for objects: the supplier role and the consumer role. Suppliers
produce event data and consumers process event data. Event data are communicate
between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers and
consumers, and two orthogonal approaches to the form that the communication can
take.

The two approaches to initiating event communication are called the push model and
the pull model. The push model allows a supplier of events to initiate the transfer
the event data to consumers. The pull model allows a consumer of events to reque
event data from a supplier. In the push model, the supplier is taking the initiative; in
the pull model, the consumer is taking the initiative.

The communication itself can be either generic or typed. In the generic case, all
communication is by means of generic push or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is
operations defined in OMG IDL. Event data is passed by means of the paramete
which can be defined in any manner desired. Section 4.2 through section 4.5 discuss
generic event communication in detail; section 4.6 through section 4.9 discuss typed
event communication in detail.

An event channel is an intervening object that allows multiple suppliers to
communicate with multiple consumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects
communication with an event channel is accomplished using standard CORBA
requests.

4.1.3 Example Scenario

This section provides a general scenario that illustrates how the Event Service can be
used.

The Event Service can be used to provide “change notification”. When an object is
changed (its state is modified), an event can be generated that is propagated to
interested parties. For example, when a spreadsheet cell object is modified, all
compound documents which contain a reference (link) to that cell can be notified (so
the document can redisplay the referenced cell, or recalculate values that depend on
4-2 CORBAservices March 1995

4

rs

t

f

ome

bjects

t

 them
they
col

e

l

ring
the cell). Similarly, when an engineering specification object is modified, all enginee
who have registered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested in
receiving notifications of changes act as consumers, and one or more event channel
objects are used as intermediaries between consumers and suppliers. Either the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplier interface so that event communication can be discontinued, use the
EventChannel, the SupplierAdmin and the ProxyPushConsumer interfaces to register as
suppliers of events, and use the ProxyPushConsumer interface to push events to even
channels.

When a change occurs to an object, a changeable object invokes a push operation on
the channel. It provides as an argument to the push operation information that
describes the event. This information is of data type any - it can be as simple or as
complex as is necessary. For example, the event information might identify the object
reference of the object that has been changed, it might identify the kind of change that
has occurred, it might provide a new displayable image of the changed object or it
might identify one or more additional objects that describe the change that has been
made.

If the pull model is used by consumers, all client objects that want to be notified o
changes support the PullConsumer interface so communication can be discontinued,
using the EventChannel, ConsumerAdmin and ProxyPullSupplier interfaces to register
as consumers of events, and using the ProxyPullSupplier interface to pull events from
event channels.

The consumer may use either a blocking or non-blocking mechanism for receiving
notification of changes. Using the try_pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can use the pull operation
which will block the consumer’s execution thread until an event is generated by s
supplier.

Event channels act as the intermediaries between the objects being changed and o
interested in knowing about changes. The channels that provide change notification
can be general purpose, well-known objects (e.g., “persistent server-based objects” tha
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objects (e.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for
in a persistently available server (e.g., by looking for them in a naming service) or
may be given references to these objects as part of a specific-to-task object proto
(e.g., when an “open” operation is invoked on an object, the object may return th
reference to an event channel which the caller should use until the object is closed).

Event channels determine how changes are propagated between suppliers and
consumers, i.e., the qualities of service (Section 4.1.6). For example, an event channe
determines the persistence of an event. The channel may keep an event for a specified
period of time, passing it along to any consumer who registers with the channel du
Event Service: v1.0 Service Description March 1995 4-3

4

c

 been

iers.

ore

o

the

 as

that period of time (e.g., it may keep event notifications about changes to engineering
specifications for a week). Alternatively, the channel may only pass on events to
consumers who are currently waiting for notification of changes (e.g., notifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basi
building block used in providing higher-level services specific to an application or
common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have
used.

4.1.4 Design Principles

The Event Service design satisfies the following principles:

• Events work in a distributed environment. The design does not depend on any
global, critical, or centralized service.

• Event services allow multiple consumers of an event and multiple event suppl

• Consumers can either request events or be notified of events, whichever is m
appropriate for application design and performance.

• Consumers and suppliers of events support standard OMG IDL interfaces; n
extensions to CORBA are necessary to define these interfaces.

• A supplier can issue a single standard request to communicate event data toall
consumers at once.

• Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of
suppliers.

• The Event Service interfaces allow multiple qualities of service, for example, for
different levels of reliability. It also allows for future interface extensions, such
for additional functionality.

• The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

4.1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in the OMG Object
Services Architecture1 document as follows:

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
4-4 CORBAservices March 1995

4

t be

ered

 a

dicate

at is,

t
n that

RB

a
the
• Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected from time to time, and do not require
centralized event identification, processing, routing, or other services that migh
a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and deliv
in a very general fashion, with event channels as intermediate routing points. It does
not require (or preclude) polling, nor does it require that an event supplier directly
notify every interested party.

Events involving multiple objects: Complex events may be handled by constructing
notification tree of event consumer/suppliers checking for successively more specific
event predicates. The specification does not require a general or global event pre
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

Scoping, grouping, and filtering events: The specification takes advantage of
CORBA’s distributed scoping and grouping mechanisms for the identifier and type of
events. Event filtering is easily achieved through event channels that selectively
deliver events from suppliers to consumers. Event channels can be composed; th
one event channel can consumer events supplied by another.

Typed event channels can provide filtering based on event type.

Registration and generation of events: Consumers and suppliers register with even
channels themselves. Event channels are objects and they are found by any fashio
objects can be found. A global registration service is not required; any object that
conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of type any that can be
delivered with an event, used for application-specific data.

Forgery and secure events: Because event suppliers are objects, the specification
leverages any ORB work on security for object references and communication.

Performance: The design is a minimalist one, and requires only one ORB call per
event received. It supports both push-style and pull-style notification to avoid
inefficient event polling. Since event suppliers, consumers, and channels are all ORB
objects, the service directly benefits from a Library Object Adapter or any other O
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneficial to formalize the data associated with an event
(defined in this specification as type any). This can be accomplished by defining
typed structure for this information. Depending on the needs of the environment,
kinds of information included might be a priority, timestamp, origin string, and
confirmation indicator. This information might be solely for the benefit of the event
consumer or might also be interpreted by particular event channel implementations.
Event Service: v1.0 Service Description March 1995 4-5

4

s.

 that

e
l
Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of reception back to the supplier. This can be
supported effectively using a “reverse” event channel through which consumers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and all
consumers requires additional interfaces.

4.1.6 Quality of Service

Application domains requiring event-style communication have diverse reliability
requirements, from “at-most-once” semantics (best effort) to guaranteed “exactly-
once” semantics, availability requirements, throughput requirements, performance
requirements (i.e., how fast events are disseminated), and scalability requirements.

Clearly no single implementation of the Event Service can optimize such a diverse
range of technical requirements. Hence, multiple implementations of event services are
to be expected, with different services targeted toward different environments. As
such, the event interfaces do not dictate qualities of service. Different implementations
of the Event Service interfaces can support different qualities of service to meet
different application needs.

For example, an implementation that trades at most once delivery to a single consumer
in favor of performance is useful for some applications; an implementation that favors
performance but cannot preclude duplicate delivery is useful for other application
Both are acceptable implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all events is not a useful
implementation. Useful implementations will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations
support strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none of th
consumers receive an event; and that all events are received in the same order by al
consumers.

4.2 Generic Event Communication

There are two basic models for communicating event data between suppliers and
consumers: the push model and the pull model.

4.2.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invoking push operations on the PushConsumer interface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumer and PushSupplier object references. Event communication can be
broken by invoking a disconnect_push_consumer operation on the
4-6 CORBAservices March 1995

4

en
PushConsumer interface or by invoking a disconnect_push_supplier operation
on the PushSupplier interface. If the PushSupplier object reference is nil, the
connection cannot be broken via the supplier.

Figure 4-1 illustrates push-style communication between a supplier and a consumer.

Figure 4-1 Push-style Communication Between a Supplier and a Consumer

4.2.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invoking pull operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange
PullConsumer and PullSupplier object references. Event communication can be brok
by invoking a disconnect_pull_consumer operation on the PullConsumer
interface or by invoking a disconnect_pull_supplier operation on the
PullSupplier interface. If the PullConsumer object reference is nil, the connection
cannot be broken via the consumer.

Figure 4-2 illustrates pull-style communication between a supplier and a consumer.

Figure 4-2 Pull-style Communication Between a Supplier and a Consumer

PushSupplier

PushConsumer

supplierconsumer

PullConsumer

PullSupplier

supplierconsumer
Event Service: v1.0 Generic Event Communication March 1995 4-7

4

n
4.3 The CosEventComm Module

The communication styles shown in Figure 4-1 and Figure 4-2 are both supported by
four simple interfaces: PushConsumer, PushSupplier, and PullSupplier and
PullConsumer. These interfaces are defined in an OMG IDL module named
CosEventComm, as shown in Figure 4-3.

Figure 4-3 The OMG IDL Module CosEventComm

4.3.1 The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

A supplier communicates event data to the consumer by invoking the push operation
and passing the event data as a parameter. If the event communication has already bee
disconnected, the Disconnected exception is raised.

module CosEventComm {

exception Disconnected{};

i nterface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

} ;

 interface PushSupplier {
void disconnect_push_supplier();

} ;

i nterface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier() ;

} ;

i nterface PullConsumer {
void disconnect_pull_consumer();

} ;

};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};
4-8 CORBAservices March 1995

4

;

;

s

The disconnect_push_consumer operation terminates the event communication
it releases resources used at the consumer to support the event communication. The
PushConsumer object reference is disposed.

4.3.2 The PushSupplier Interface

A push-style supplier supports the PushSupplier interface.

The disconnect_push_supplier operation terminates the event communication
it releases resources used at the supplier to support the event communication. The
PushSupplier object reference is disposed.

4.3.3 The PullSupplier Interface

A pull-style supplier supports the PullSupplier interface to transmit event data.

A consumer requests event data from the supplier by invoking either the pull
operation or the try_pull operation on the supplier.

• The pull operation blocks until the event data is available or an exception is
raised.2 It returns the event data to the consumer. If the event communication has
already been disconnected, the Disconnected exception is raised.

• The try_pull operation does not block: if the event data is available, it return
the event data and sets the has_event parameter to true; if the event is not
available, it sets the has_event parameter to false and the event data is returned
as long with an undefined value. If the event communication has already been
disconnected, the Disconnected exception is raised.

2.This, of course, may be a standard CORBA exception.

interface PushSupplier {
void disconnect_push _supplie r();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier() ;

};
Event Service: v1.0 The CosEventComm Module March 1995 4-9

4

;

;

en

 to

shes
The disconnect_pull_supplier operation terminates the event communication
it releases resources used at the supplier to support the event communication. The
PullSupplier object reference is disposed.

4.3.4 The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

The disconnect_pull_consumer operation terminates the event communication
it releases resources used at the consumer to support the event communication. The
PullConsumer object reference is disposed.

4.4 Event Channels

The event channel is a service that decouples the communication between suppliers
and consumers. The event channel is itself both a consumer and a supplier of the event
data.

An event channel can provide asynchronous communication of event data betwe
suppliers and consumers. Although consumers and suppliers communicate with the
event channel using standard CORBA requests, the event channel does not need
supply the event data to its consumer at the same time it consumes the data from its
supplier.

4.4.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, pu
event data to the consumer. Figure 4-4 illustrates a push-style communication between
a supplier and the event channel, and a consumer and the event channel.

interface PullConsumer {
void disconnect_p ull_ consumer();

};
4-10 CORBAservices March 1995

4

een

umer

l.
el.

Figure 4-4 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

4.4.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn, pulls
event data from the supplier. Figure 4-5 illustrates a pull-style communication betw
a supplier and the event channel, and a consumer and the event channel.

Figure 4-5 Pull-style communication between a supplier and an event channel and a cons
and the event channel

4.4.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communication,
and communicate with a consumer using a different style of communication.

Figure 4-6 illustrates a push-style communication between a supplier and an event
channel, and a pull-style communication between a consumer and the event channe
The consumer pulls the event data that the supplier has pushed to the event chann

event channel

supplierconsumer

PushConsumerPushConsumer

PushSupplier PushSupplier

event channel

supplierconsumer

PullConsumerPullConsumer

PullSupplier PullSupplier
Event Service: v1.0 Event Channels March 1995 4-11

4

ll-
Figure 4-6 Push-style Communication Between a Supplier and an Event Channel, and Pu
style Communication Between a Consumer and an Event Channel

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-4, Figure 4-5, and Figure 4-6 illustrate event channels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a
particular implementation, an event channel provides an event to all consumers.

 Figure 4-7 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

Figure 4-7 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communication
models.

event channel

supplierconsumer

PushSupplier

PushConsumer

PullConsumer

PullSupplier

event channel

supplier

consumer

PushSupplier

PushConsumer

PushSupplier

PushConsumer

consumer

PushSupplier

PushConsumer

supplier

PushSupplier

PushConsumer
4-12 CORBAservices March 1995

4

ers, it

If an event channel has at least one push-style consumer or at least one pending pull
request, the event channel requires an event. If the event channel has pull suppli
will issue a request on a pull supplier to satisfy its requirement.

4.4.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, no
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that supports the EventChannel
interface, as illustrated in Figure 4-8.

Figure 4-8 A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation
returning a ConsumerAdmin object for adding consumers, an operation returning a
SupplierAdmin object for adding suppliers, and an operation for destroying the
channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface of a supplier), but includes
an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of a producer or consumer is a two step process. An event-generating
application first obtains a proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains a proxy supplier from a channel, then “connects” to the proxy
supplier by providing it with a consumer.

event channel

EventChannel
Event Service: v1.0 Event Channels March 1995 4-13

4

ing
The reason for the two-step registration process is to support composing event
channels by an external agent. Such an agent would compose two channels by
obtaining a proxy supplier from one and a proxy consumer from the other, and pass
each of them a reference to the other as part of their connect operation.

Proxies are in one of three states: disconnected, connected or destroyed. Figure 4-9
gives a state diagram for a proxy. The nodes of the diagram are the states and the
edges are labelled with the operations that change the state of the proxy. Push/pull
operations are only valid in the connected state.

Figure 4-9 State diagram of a proxy.

disconnected connected destroyed
obtain connect disconnect

event
communication
4-14 CORBAservices March 1995

4

4.5 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers. The CosEventChannelAdmin
module is defined in Figure 4-10.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};
Event Service: v1.0 The CosEventChannelAdmin Module March 1995 4-15

4

ers,

rts
Figure 4-10 The CosEventChannelAdmin Module

4.5.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding consum
adding suppliers, and destroying the channel.

Any object that possesses an object reference that supports the EventChannel interface
can perform these operations:

• The ConsumerAdmin interface allows consumers to be connected to the event
channel. The for_consumers operation returns an object reference that suppo
the ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the event channel.
The for_suppliers operation returns an object reference that supports the
SupplierAdmin interface.

• The destroy operation destroys the event channel.

Consumer administration and supplier administration are defined as separate objects so
that the creator of the channel can control the addition of suppliers and consumers. For
example, a creator might wish to be the sole supplier of event data but allow many
consumers to be connected to the channel. In such a case, the creator would simply
export the ConsumerAdmin object.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

} ;

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

} ;

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
4-16 CORBAservices March 1995

4

4.5.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to the
event channel; clients use it to obtain proxy suppliers.

The obtain_push_supplier operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns a ProxyPullSupplier object. The
ProxyPullSupplier object is then used to connect a pull-style consumer.

4.5.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the event
channel; clients use it to obtain proxy consumers.

The obtain_push_consumer operation returns a ProxyPushConsumer object. The
ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns a ProxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

4.5.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
r aises(AlreadyConnected);

} ;
Event Service: v1.0 The CosEventChannelAdmin Module March 1995 4-17

4

d

ers

il
A nil object reference may be passed to the connect_push_supplier operation;
if so a channel cannot invoke the disconnect_push_supplier operation on the
supplier; the supplier may be disconnected from the channel without being informe.

If the ProxyPushConsumer is already connected to a PushSupplier, then the
AlreadyConnected exception is raised.

4.5.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull consum
to the event channel.

A nil object reference may be passed to the connect_pull_consumer operation; if
so a channel cannot invoke a disconnect _pull_consumer operation on the
consumer; the consumer may be disconnected from the channel without being
informed.

If the ProxyPullSupplier is already connected to a PullConsumer, then the
AlreadyConnected exception is raised.

4.5.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull suppliers
to the event channel.

Implementations should raise the CORBA standard BAD_PARAM exception if a n
object reference is passed to the connect_pull_supplier operation.

If the ProxyPullConsumer is already connected to a PullSupplier, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPullConsumer may put additional requirements on the
interface supported by the pull supplier. If the pull supplier does not meet those
requirements the ProxyPullConsumer raises the TypeError exception. (See section
4.7.2 for an example.)

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer (

in CosEventComm::PullConsumer pull_consumer)
r aises(AlreadyConnecte d) ;

} ;

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier (

in CosEventComm::PullSupplier pull_supplier)
r aises(AlreadyConnected , TypeError);

} ;
4-18 CORBAservices March 1995

4

il

those

G

y

e
4.5.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel.

Implementations should raise the CORBA standard BAD_PARAM exception if a n
object reference is passed to the connect_push_consumer operation.

If the ProxyPushSupplier is already connected to a PushConsumer, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet
requirements the ProxyPushSupplier raises the TypeError exception. (See section
4.7.1 for an example.)

4.6 Typed Event Communication

 Section 4.2 discusses generic event communication using push and pull operations.
The next few sections describe how event communication can be described in OM
IDL and how typed event channels can support such typed event communication.

4.6.1 Typed Push Model

In the typed push model, suppliers call operations on consumers using some mutuall
agreed interface I. The interface I is defined in IDL, and may contain any operations
subject to the following restrictions:

• All parameters must be in parameters only.
• No return values are permitted

These are the same restrictions as CORBA imposes on oneway operations, and for
similar reasons: event communication is unidirectional, and does not directly support
responses. The operations can be declared oneway , but need not be.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer and PushSupplier object references. (Note that the supplier
interface is the same as the untyped case.) The supplier then invokes the
get_typed_consumer operation of the TypedPushConsumer interface, which
returns an object reference supporting the typed interface, I, referred to as an I-
reference. The particular interface, I, that the reference supports is dependent on th

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
r aises(AlreadyConnected , TypeError);

} ;
Event Service: v1.0 Typed Event Communication March 1995 4-19

4

particular TypedPushConsumer, and must be mutually agreed by supplier and
consumer. Once the supplier has obtained the I-reference, it can call operations in
interface I on the consumer.

As in the case of the generic push-style, event communication can be broken by
invoking a disconnect_push_consumer operation on the TypedPushConsumer
interface or by invoking a disconnect_push_supplier operation on the
PushSupplier interface. If the PushSupplier object reference is nil, the connection
cannot be broken via the supplier.

Figure 4-11 illustrates typed push-style communication between supplier and
consumer.

Figure 4-11 Typed Push-style Communication Between a Supplier and a Consumer

4.6.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event
information, using some mutually agreed interface Pull<I> 3. For every interface I
having the properties described in section 4.6.1, an interface Pull<I> is defined as
follows:

• For every operation o in I, Pull<I> contains two operations:

• pull_o , with all in parameters changed to out parameters. When called, this
operation will return with the event data in the out parameters. If no o-event is
currently available, it will block.

• boolean try_o , with all in parameters changed to out parameters. When
called, this operation will check whether an o-event is currently available. If so,
it will return true , with the event data in the out parameters. If not, it will
return false , with the out parameters undefined

3.Pull<I> is used as notation for a computed interface from interface I. Thus, if I is an interface
DocumentEvents, Pull<I> is an interface PullDocumentEvents.

PushSupplier

TypedPushConsumer

supplierconsumer

I

4-20 CORBAservices March 1995

4

an

mer.
The interface Pull<I> is designed to allow pulling of exactly the same events that c
be pushed using interface I.

To set up typed pull-style communication, consumers and suppliers exchange
PullConsumer and TypedPullSupplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of the TypedPullSupplier, which returns an object
reference supporting the typed interface, Pull<I> , referred to as a Pull<I>-reference.
The particular interface, Pull<I> , that the reference supports is dependent on the
particular TypedPullSupplier, and must be mutually agreed by supplier and consumer.
Once the consumer has obtained the Pull<I>- reference, it can call operations in
interface Pull<I> on the supplier.

Figure 4-12 illustrates typed pull-style communication between supplier and consu

Figure 4-12 Typed Pull-style Communication Between a Supplier and a Consumer

4.7 The CosTypedEventComm Module

The typed communication styles shown in Figure 4-11 and Figure 4-12 are both
supported by two new interfaces, TypedPushConsumer and TypedPullSupplier and two
existing interfaces, PushSupplier and PullConsumer. The first two interfaces are

PullConsumer

TypedPullSupplier

supplierconsumer

Pull<I>
Event Service: v1.0 The CosTypedEventComm Module March 1995 4-21

4

e

l
he

not
defined in an OMG IDL module named CosTypedEventComm, as shown in
Figure 4-13. The last two are the same as for untyped event communication, and were
defined in the CosEventComm module in Figure 4-3.

Figure 4-13 The IDL Module CosTypedEventComm

4.7.1 The TypedPushConsumer Interface

A typed push-style consumer supports the TypedPushConsumer interface both to
receive event data in the generic manner, and to supply a specific typed interface
through which to receive it in typed form.

The TypedPushConsumer can behave just like an untyped PushConsumer, described in
section 4.3.1. In addition, if the supplier wishes to communicate event data to the
consumer in typed rather than generic form, it first invokes the
get_typed_consumer operation. This returns an I-reference supporting an
interface I. The particular interface, I, that the reference supports is dependent on th
particular TypedPushConsumer. The return type of the operation is Object, because
different TypedPushConsumers will return references of different types, so the actua
type cannot be specified in a general definition. Once the supplier has obtained tI-
reference, it can narrow it to I, and then call operations in interface I on the consumer.
Mutual agreement about I is needed between the supplier and consumer. If they do
agree, the narrow operation will fail.

As noted above, a TypedPushConsumer must support the push operation, inherited
from CosEventComm::PushConsumer. Implementing push fully is an unnecessary
burden if the consumer is intended for typed use only. It is therefore permissible to
implement a TypedPushConsumer with a null implementation of push that merely
raises the standard CORBA exception NO_IMPLEMENT. Clearly, suppliers must know
this and confine themselves to typed communication with such consumers.

#include “CosEventComm.idl”

module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

};

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};
4-22 CORBAservices March 1995

4

d

lar

ot

only.

gle
4.7.2 The TypedPullSupplier Interface

A typed pull-style supplier supports the TypedPullSupplier interface both to allow
consumers to pull event data in the generic manner, and to supply a specific type
interface through which they can pull it in typed form.

The TypedPullSupplier can behave just like an untyped PullSupplier, described in
section 4.3.3. In addition, if the consumer wishes to pull event data from the supplier
in typed rather than generic form, it first invokes the get_typed_supplier
operation. This returns a Pull<I>-reference supporting an interface Pull<I> . The
particular interface, Pull<I> , that the reference supports is dependent on the particu
TypedPullSupplier. The return type of the operation is Object, because different
TypedPullSuppliers will return references of different types, so the actual type cann
be specified in a general definition. Once the consumer has obtained the Pull<I>-
reference, it can narrow it to Pull<I> , and then call operations in interface Pull<I> on
the supplier. Mutual agreement about Pull<I> is needed between the supplier and
consumer. If they do not agree, the narrow operation will fail.

As noted above, a TypedPullSupplier must support the pull and try_pull
operations, inherited from CosEventComm::PullSupplier. Implementing these
operations fully is an unnecessary burden if the supplier is intended for typed use
It is therefore permissible to implement a TypedPullSupplier with null implementations
of pull and try_pull that merely raise the standard CORBA exception
NO_IMPLEMENT. Clearly, consumers must know this and confine themselves to typed
communication with such suppliers.

4.8 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A sin
channel can handle events supplied and consumed in any combination of the forms
defined earlier (push/pull, generic/typed). An event supplied in typed form can be
consumed in generic form, or vice versa.4

4.Doing this does require an understanding on the part of the generic suppliers and consumers of how the
channel packages parameters of typed calls when converting them to generic form. Details of this
packaging are dependent on the implementation of the channel.

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};
Event Service: v1.0 Typed Event Channels March 1995 4-23

4

ns
4.9 The CosTypedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. It is defined in Figure 4-14. Most of its interfaces are specializatio
of the corresponding interfaces in the CosEventChannel module defined in
Figure 4-10.
4-24 CORBAservices March 1995

4

Figure 4-14 The CosTypedEventChannelAdmin Module

#include “ CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchImplementation {};
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};
};
Event Service: v1.0 The CosTypedEventChannelAdmin Module March 1995 4-25

4

 to

 a
4.9.1 The TypedEventChannel Interface

This interface is analogous to CosEventChannelAdmin::EventChannel .
However, it returns typed versions of the consumer and supplier administration
interfaces, which are capable of providing proxies for either generic or typed
communication.

4.9.2 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting consumers
typed event channel; clients use it to obtain proxy suppliers.

The obtain_typed_pull_supplier operation takes a Key parameter that
identifies an interface, Pull<I> . The scope of the key is the typed event channel. It
returns a TypedProxyPullSupplier for interface Pull<I> . The TypedProxyPullSupplier
will allow an attached pull consumer to pull events either in generic form or using
operations in interface Pull<I> . It is up to the implementation of
obtain_typed_pull_supplier to create or find an appropriate
TypedProxyPullSupplier. If it cannot, it raises the exception
InterfaceNotSupported .

The obtain_typed_push_supplier operation takes a Key parameter that
identifies an interface, I. The scope of the key is the typed event channel. It returns
ProxyPushSupplier that calls operations in interface I, rather than push operations. It
is up to the implementation of obtain_typed_push_supplier to create or find
an appropriate ProxyPushSupplier5. If it cannot, it raises the exception
NoSuchImplementation .

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};
4-26 CORBAservices March 1995

4

ce

he

 a

Such a ProxyPushSupplier is guaranteed only to invoke operations defined in interfa
I. Any event on the channel that does not correspond to an operation defined in
interface I is not passed on to the consumer. Such a ProxyPushSupplier is therefore an
event filter based on type.

4.9.3 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers to t
typed event channel; clients use it to obtain proxy consumers.

The obtain_typed_push_consumer operation takes a Key parameter that
identifies an interface, I. The scope of the key is the typed event channel. It returns
TypedProxyPushConsumer for I. An attached supplier can provide events by using
operations in interface I. It is up to the implementation of
obtain_typed_push_consumer to create or find an appropriate
TypedProxyPushConsumer. If it cannot, it raises the exception
InterfaceNotSupported .

The obtain_typed_pull_consumer operation takes a Key parameter that
identifies an interface, Pull<I>. The scope of the key is the typed event channel. It
returns a ProxyPullConsumer that calls operations in interface Pull<I> , rather than
pull operations. It is up to the implementation of
obtain_typed_pull_consumer to create or find an appropriate
ProxyPullConsumer. If it cannot, it raises the exception NoSuchImplementation .

Such a ProxyPullConsumer is guaranteed only to invoke operations defined in
interface Pull<I> . Any event request that does not correspond to an operation defined
in interface Pull<I> is not pulled from the supplier. Such a ProxyPullConsumer is
therefore an event filter based on type.

5.see Appendix A for implementation considerations.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};
Event Service: v1.0 The CosTypedEventChannelAdmin Module March 1995 4-27

4

ent
4.9.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting push
suppliers to the typed event channel.

• By inheriting from both CosEventChannelAdmin::ProxyPushConsumer
and CosTypedEventComm::TypedPushConsumer , this interface supports:

• Connection and disconnection of push suppliers, exactly as in the generic ev
channel,

• Generic push operation and

• Obtaining the typed view, so that the supplier can use typed push
communication. The reference returned by get_typed_consumer has the
interface identified by the Key used when this TypedProxyPushConsumer was
obtained. (See section 4.9.3)

4.9.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pull
consumers to the typed event channel.

By inheriting from both CosEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:

• Connection and disconnection of pull consumers, exactly as in the generic event
channel,

• Generic pull and try_pull operations and

• Obtaining the typed view, so that the consumer can use typed pull
communication. The reference returned by get_typed_supplier supports
the interface identified by the Key used when this TypedProxyPullSupplier was
obtained. (See section 4.9.2).

4.10 Composing Event Channels and Filtering

The event channel administration operations defined in section 4.5 support the
composition of event channels. That is, one event channel can consume events
supplied by another. This architecture allows the implementation of an event channel
that filters the events supplied by another.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };
4-28 CORBAservices March 1995

4

l
are

be
Since the ProxyPushSupplier for interface I of a typed event channel only pushes
events that correspond to I, it acts as a filter based on type. Similarly, the
ProxyPullConsumer for interface Pull<I> of a typed event channel only pulls events
that correspond to Pull<I> , it also acts as a filter based on type.

4.11 Policies for Finding Event Channels

The Event Service does not establish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers wil
dictate when an event channel is created and how references to the event channel
obtained. By representing the event channel as an object, it has all of the properties
that apply to objects, including support by finding mechanisms.

For example, when a user performs a drag-and-drop or cut-and-paste
operation, an event channel could be created and identified to suppliers and consumers.
Alternatively, the event channel could be named in a naming context, or it could
exported through an operation on an object.
Event Service: v1.0 Policies for Finding Event Channels March 1995 4-29

4

ld
 be

els

his

e,

ll

e
 Appendix A Implementing Typed Event Channels

Note – Implementation details do not form part of an OMG specification, and shou
not be standardized. On the other hand, it is not obvious that typed channels can
implemented without extensions to CORBA. This section indicates one strategy for
implementing typed event channels. It is included to show that typed event chann
can be implemented; it is not intended in any way to constrain implementations.
Optimized implementations are certainly possible.

Figure 4-15 demonstrates a possible implementation of a typed event channel. T
appendix concentrates on push style communication. The implementation of pull-style
communication is analogous.

The implementation interposes an encoder between typed-style suppliers and the
channel and a decoder between the channel and typed-style consumers.

Figure 4-15 A possible implementation of a typed event channel.

At the supplier end, an encoder converts operation calls to push calls.

At the consumer end, a decoder converts push calls back to operation calls.

The effect of such a communication is thus that the original operation is eventually
called on the consumer, but the communication is routed via the channel. Of cours
there can be multiple suppliers and multiple consumers on the same channel.
Whenever one of the suppliers calls an operation, it is delivered by the channel to a
consumers.

The encoder must package the operation identification and the parameters in a manner
that the decoder can unpack them correctly.

Given the OMG IDL definition of an interface, I, an encoder generator could generat
an implementation that supports the interface I and converts all calls on this interface
to push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

event

typedtyped
supplierconsumer

I
channel

PCPCI

PC = PushConsumer

encoderdecoder

 I = interface I
4-30 CORBAservices March 1995

4

he
er

ting
 the
The typed event channel is responsible for finding, creating or implementing the
appropriate encoders. An appropriate encoder is found or created in response to t
obtain_typed_push_consumer request on the typed event channel. The encod
is returned in response to the get_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating or implemen
the appropriate decoders. An appropriate decoder is found or created in response to
connect_push_consumer request on the typed event channel.

Implementing Typed Event Channels Policies for Finding Event Channels March 1995 4-31

4

en
te

 Appendix B An Event Channel Use Example

This section illustrates an example use of the event channel, including the following:

• Creating an event channel

• Consumers and/or suppliers finding the channel

• Suppliers using the event channel

• In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.

• The Document interface defines two operations to return event channels:

The title_changed operation causes the document to generate an event wh
its title is changed; the new_section operation causes the document to genera
an event when a new section is added. Both operations return ConsumerAdmin
object references. This allows consumers to be added to the event channel.

• The title_changed implementation contains instance variables for using and
administering the event channels.

interface Document {

ConsumerAdmin title_changed();

ConsumerAdmin new_section();

:

};

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */
EventChannelRef event_channel;

ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;
4-32 CORBAservices March 1995

4

l
• At some point, the document implementation creates the event channel, gets
supplier and consumer administrative references, and adds itself as a supplier6.

• The title_changed operation returns the ConsumerAdmin object reference.

Clients of this operation can add consumers.

• When the title changes, the document implementation pushes the event to the
channel.

The document implementation similarly initializes, exports, and uses the event channe
for reporting new sections.

6.For readability, exception handling is omitted from these code fragments.

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push _supplie r(env,
doc_side_connection)

return consumer_admin;

proxy_push_consumer->push(env,data);
Event Channel Use Example Policies for Finding Event Channels March 1995 4-33

4

4-34 CORBAservices March 1995

	Event Service Specification
	4.1 Service Description
	4.1.1 Overview
	4.1.2 Event Communication
	4.1.3 Example Scenario
	4.1.4 Design Principles
	4.1.5 Resolution of Technical Issues
	4.1.6 Quality of Service

	4.2 Generic Event Communication
	4.2.1 Push Model
	4.2.2 Pull Model

	4.3 The CosEventComm Module
	4.3.1 The PushConsumer Interface
	4.3.2 The PushSupplier Interface
	4.3.3 The PullSupplier Interface
	4.3.4 The PullConsumer Interface

	4.4 Event Channels
	4.4.1 Push-Style Communication with an Event Chann...
	4.4.2 Pull-Style Communication with an Event Chann...
	4.4.3 Mixed Style Communication with an Event Chan...
	4.4.4 Multiple Consumers and Multiple Suppliers
	4.4.5 Event Channel Administration

	4.5 The CosEventChannelAdmin Module
	4.5.1 The EventChannel Interface
	4.5.2 The ConsumerAdmin Interface
	4.5.3 The SupplierAdmin Interface
	4.5.4 The ProxyPushConsumer Interface
	4.5.5 The ProxyPullSupplier Interface
	4.5.6 The ProxyPullConsumer Interface
	4.5.7 The ProxyPushSupplier Interface

	4.6 Typed Event Communication
	4.6.1 Typed Push Model
	4.6.2 Typed Pull Model

	4.7 The CosTypedEventComm Module
	4.7.1 The TypedPushConsumer Interface
	4.7.2 The TypedPullSupplier Interface

	4.8 Typed Event Channels
	4.9 The CosTypedEventChannelAdmin Module
	4.9.1 The TypedEventChannel Interface
	4.9.2 The TypedConsumerAdmin Interface
	4.9.3 The TypedSupplierAdmin Interface
	4.9.4 The TypedProxyPushConsumer Interface
	4.9.5 The TypedProxyPullSupplier Interface

	4.10 Composing Event Channels and Filtering
	4.11 Policies for Finding Event Channels

