
JacORB 2.3.0.4

IDL Compiler and Interface Repository

Bundled for OpenFusion RTOrb Java Edition

The JacORB Team

January 14, 2011

Contributors in alphabetical order:

Alphonse Bendt
Gerald Brose
Nick Cross
Phil Mesnier
Nicolas Noffke
Steve Osselton
Simon McQueen
Francisco Reverbel
David Robison
André Spiegel

Contents

1 Interface Repository 5
1.1 Type Information in the IR . 5
1.2 Repository Design . 6
1.3 Using the IR . 7
1.4 Interaction between #pragma prefix and -i2jpackage 8

2 JacORB Utilities 11
2.1 idl . 11
2.2 ir . 16
2.3 qir . 16

4 Contents

1 Interface Repository

Run–time type information in CORBA is managed by the ORB’s Interface Repository (IR) com-
ponent. It allows to request, inspect and modify IDL type information dynamically, e.g., to find
out which operations an object supports. Some ORBs may also need the IR to find out whether
a given object’s type is a subtype of another, but most ORBs can do without the IR by encoding
this kind of type information in the helper classes generated by the IDL compiler.

In essence, the IR is just another remotely accessible CORBA object that offers operations to
retrieve (and in theory also modify) type information.

1.1 Type Information in the IR

The IR manages type information in a hierarchical containment structure that corresponds to
the structure of scoping constructs in IDL specifications: modules contain definitions of inter-
faces, structures, constants etc. Interfaces in turn contain definitions of exceptions, operations,
attributes and constants. Figure 1.1 illustrates this hierarchy.

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
ModuleDef

InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Repository

ModuleDef

Figure 1.1: Containers in the Interface Repository

The descriptions inside the IR can be identified in different ways. Every element of the repos-
itory has a unique, qualified name which corresponds to the structure of name scopes in the IDL

6 Interface Repository

specification. An interface I1 which was declared inside module M2 which in turn was declared
inside module M1 thus has a qualified name M1::M2::I1. The IR also provides another, much
more flexible way of naming IDL constructs using Repository Ids. There are a number of differ-
ent formats for RepositoryIds but every Repository must be able to handle the following format,
which is marked by the prefix "IDL:" and also carries a suffix with a version number, as in,
e.g., ”IDL:jacorb/demo/grid:1.0”. The name component between the colons can be
set freely using the IDL compiler directives #pragma prefix and #pragma ID. If no such
directive is used, it corresponds to the qualified name as above.

1.2 Repository Design

When designing the Interface Repository, our goal was to exploit the Java reflection API’s func-
tionality to avoid having to implement an additional data base for IDL type descriptions. An
alternative design is to use the IR as a back-end to the IDL compiler, but we did not want to in-
troduce such a dependency and preferred to a have a rather “light–weight” repository server. As it
turned out, this design was possible because the similarities between the Java and CORBA object
models allow us to derive the required IDL information at run time. As a consequence, we can
even do without any IDL at compile time. In addition to this simplification, the main advantage
of our approach lies in avoiding redundant data and possible inconsistencies between persistent
IDL descriptions and their Java representations, because Java classes have to be generated and
stored anyway.

Thus, the Repository has to load Java classes, interpret them using reflection and translate
them into the appropriate IDL meta information. To this end, the repository realizes a reverse
mapping from Java to IDL. Figure 1.2 illustrates this functionality, where f−1 denotes the reverse
mapping, or the inverse of the language mapping.

Java classes

IR-Process

IDL-Meta data

-1f

Figure 1.2: The JacORB Interface Repository

1.3 Using the IR 7

1.3 Using the IR

For the ORB to be able to contact the IR, the IR server process must be running. To start it,
simply type the ir command and provide the required arguments:

$ ir /home/brose/classes /home/brose/public html/IR Ref

The first argument is a path to a directory containing .class files and packages. The IR
loads these classes and tries to interpret them as IDL compiler–generated classes. If it succeeds,
it creates internal representations of the adequate IDL constructs. See below for instructions on
generating classes with IR information. The second argument on the command line above is
simply the name of the file where the IR stores its object reference for ORB bootstrapping.

To view the contents of the repository, you can use the GUI IRBrowser tool or the query
command. First, let’s query the IR for a particular repository ID. JacORB provides the command
qir (“query IR”) for this purpose:

$ qir IDL:raccoon/test/cyberchair/Paper:1.0

As result, the IR returns an InterfaceDef object, and qir parses this and prints out:

interface Paper
{

void read(out string arg_0);
raccoon::test::cyberchair::Review getReview(in long arg_0);
raccoon::test::cyberchair::Review submitReview(

in string arg_0, in long a rg_1);
void listReviews(out string arg_0);

};

To start the IRBrowser, simply type

$ irbrowser [-i <IOR-string> | -f <filename>]

e.g.

$ irbrowser

Note that if no arguments are supplied it will default to using resolve initial references.

Figure 1.3 gives a screen shot of the IR browser.

The Java classes generated by the IDL compiler using the standard OMG IDL/Java language
mapping do not contain enough information to rebuild all of the information contained in the
original IDL file. For example, determining whether an attribute in an interface was readonly
or not is not possible, or telling the difference between in and inout parameter passing modes.
Moreover, IDL modules are not explicitly represented in Java, so telling whether a directory in
the class path represents an IDL module is not easily possible. For these reasons, the JacORB

8 Interface Repository

IDL compiler generates a few additional classes that hold the required extra information if the
compiler switch -ir is used when compiling IDL files:

$ idl -ir myIdlFile.idl

The additional files generated by the compiler are:

• a XModule.java class file for any IDL module X

• a YIRHelper.java class file for any interface Y.

If no .class files that are compiled from these extra classes are found in the class path
passed to the IR server process, the IR will not be able to derive any representations. Note
that the IDL compiler does not make any non–compliant modifications to any of the standard
files that are defined in the Java language mapping — there is only additional information.

One more caveat about these extra classes: The compiler generates the XModule.java
class only for genuine modules. Java package scopes created by applying the -d switch to the
IDL compiler do not represent proper modules and thus do not generate this class. Thus, the
contents of these directories will not be considered by the IR.

When an object’s client calls the get interface() operation, the ORB consults the IR and
returns an InterfaceDef object that describes the object’s interface. Using InterfaceDef
operations on this description object, further description objects can be obtained, such as descrip-
tions for operations or attributes of the interface under consideration.

The IR can also be called like any other CORBA object and provides lookup() or
lookup name() operations to clients so that definitions can be searched for, given a quali-
fied name. Moreover, the complete contents of individual containers (modules or interfaces) can
be listed.

Interface Repository meta objects provide further description operations. For a given
InterfaceDef object, we can inspect the different meta objects contained in this object (e.g.,
OperationDef objects). It is also possible to obtain descriptions in form of a simple structure
of type InterfaceDescription or FullInterfaceDescription. Since structures
are passed by value and a FullInterfaceDescription fully provides all contained de-
scriptions, no further —possibly remote — invocations are necessary for searching the structure.

1.4 Interaction between #pragma prefix and -i2jpackage

Generally any use of #pragma prefix or -i2jpackage should be avoided if you intend to use an IDL
file with the Interface Repository. If there is no other option there is a property that allows you
to circumvent that restriction in some cases. Note however that this is a non-standard extension.

If, for example you have the following IDL file:

1.4 Interaction between #pragma prefix and -i2jpackage 9

#pragma prefix "org.jacorb.test"

module ir
{

typedef string StringAlias;
typedef sequence<StringAlias> StringAliasList;

struct TestStruct
{

StringAliasList stringList;
};

};

As you want your generated java files to reside in the package org.jacorb.test.ir you
need to add -i2jpackage as an argument to the idl command. $ idl -ir -i2jpackage

ir:org.jacorb.test.ir myIdlFile.idl Now the generated files are in the directory
org/jacorb/test/ir.

As the IR starts it reads in the generated classes and implicitely creates their Repository
ID’s solely based on the directory structure. e.g. the struct TestStruct will get the Repository
ID IDL:org/jacorb/test/ir/TestStruct:1.0 however the correct Repository ID is
IDL:org.jacorb.test/ir/TestStruct:1.0.

This will make it impossible for you to lookup the correct Repository ID successfully. starting
of the IR will fail if the IR itself needs to look up a Repository ID during start.

As a workaround you can specify the property jacorb.ir.patch pragma prefix=on to the IR
server. this property will cause the IR to change the first component of a requested Repository
ID (Repository ID’s consists of multiple components delimited with ’/’ so its org.jacorb.test in
this case). If the first component looks like a pragma prefix (contains multiple ’.’) the ’.’ will be
changed to ’/’.

So the incoming request for IDL:org.jacorb.test/ir/TestStruct:1.0 will be
changed to a request for IDL:org/jacorb/test/ir/TestStruct:1.0 so that the IR
will be able to resolve that.

10 Interface Repository

Figure 1.3: IRBrowser Screenshot

2 JacORB Utilities

2.1 idl

The IDL compiler parses IDL files and maps type definitions to Java classes as specified by
the OMG IDL/Java language mapping. For example, IDL interfaces are translated into Java
interfaces, and typedefs, structs, const declarations etc. are mapped onto corresponding Java
classes. Additionally, stubs and skeletons for all interface types in the IDL specification are
generated.

(The IDL parser was generated with Scott Hudson’s CUP parser generator. The LALR gram-
mar for the CORBA IDL is in the file org/jacorb/idl/parser.cup.)

Compiler Options

-h | help print help on compiler options
-v | version print compiler version information
-d dir root of directory tree for output (default: current directory)
-syntax syntax check only, no code generation
-Dx define preprocessor symbol x with value 1
-Dx=y define preprocessor symbol x with value y
-Idir set include path for idl files
-Usymbol undefine preprocessor symbol
-W [1..4] debug output level (default is 1)
-all generate code for all IDL files, even included ones (default is off)

If you want to make sure that for a given IDL no code will
be generated even if this option is set, use the (proprietary) preprocessor
directive #pragma inhibit code generation.

-forceOverwrite generate Java code even if the IDL files have not
changed since the last compiler run (default is off)

-ami callback generate AMI reply handlers and sendc methods (default is off). See chapter ??
-ami polling generate AMI poller and sendp methods (default is off). See chapter ??
-backend classname use classname as compiler (code generator) backend. The default code generator

class is org.jacorb.idl.javamapping.JavaMappingGeneratingVisitor
(c.f. API documentation). Custom generators must implement the interface
org.jacorb.idl.IDLTreeVisitor

12 JacORB Utilities

-i2jpackage x:a.b.c replace IDL package name x by a.b.c in generated Java code
(e.g. CORBA:org.omg.CORBA)

-i2jpackagefile filenamereplace IDL package names using list from ¡filename¿.
Format as above.

-ir generate extra information required by the JacORB Interface Repository
(One extra file for each IDL module, and another additional file per IDL interface.)
(default is off)

-cldc10 Generate J2ME/CLDC1.0 compliant stubs
-genEnhanced Generate stubs with toString/equals (only StructType)
-nofinal generated Java code will contain no final class definitions, which

is the default to allow for compiler optimizations.
-unchecked narrow use unchecked narrow in generated code for IOR parameters in operations

(default is off). Generated helper classes contain marshalling code which, by default,
will try to narrow any object references to statically known interface type. This
may involve remote invocations to test a remote object’s type, thus incurring
runtime overhead to achieve static type safety. The -unchecked narrow option
generates code that will not by statically type safe, but avoids remote tests
of an object’s type. If the type is not as expected, clients will experience
CORBA.BAD OPERATION exceptions at invocation time.

-noskel disables generation of POA skeletons (e.g., for client-side use)
-nostub disables generation of client stubs (for server-side use)
-diistub generate DII-based client stubs

(default is off)
-sloppy forward allow forward declarations without later definitions

(useful only for separate compilation).
-sloppy names less strict checking of module name scoping (default: off)

CORBA IDL has a number of name resolution rules that are stricter than
necessary for Java (e.g., a struct member’s name identifier must not
equal the type name). The -sloppy names option relaxes checking of these
rules. Note that IDL accepted with this option will be rejected by other, conformant
IDL compilers!

-sloppy identifiers permit illegal identifiers that differ in case (04-03-12:3.3.2) (default: off)
-permissive rmic tolerate dubious and buggy IDL generated by JDK’s rmic stub generator

(e.g., incorrectly empty inheritance clauses), includes -sloppy names.
-generate helper compatibilty

controls the compatibilty level of the generated helper code. Valid values are:
deprecated uses CORBA 2.3 API. this API version is part of the JDK.
portable uses CORBA 2.4 API. the usage of this option mandates the use
of the JacORB provided org.omg.* classes on the bootclasspath. This is the default.
jacorb uses JacORB API. The generated helper code will contain references
to JacORB classes. The helpers will use the CORBA 2.4 API but won’t be portable
anymore. There’s no need to put the org.omg.* classes provided by JacORB
on the bootclasspath.

2.1 idl 13

i2jpackage

The -i2jpackage switch can be used to flexibly redirect generated Java classes into packages.
Using this option, any IDL scope x can be replaced by one (or more) Java packages y. Specifying
-i2jpackage X:a.b.c will thus cause code generated for IDL definitions within a scope x
to end up in a Java package a.b.c, e.g. an IDL identifier X::Y::ident will be mapped to
a.b.c.y.ident in Java. It is also possible to specify a file containing these mappings using
the -i2jpackagefile switch.

Example 1

given the following IDL definition

struct MyStruct
{

long value;
};

Invoking idl without the i2jpackage option will generate (along with other files) the java file
MyStruct.java

/**
* Generated from IDL struct "MyStruct".

*
* @author JacORB IDL compiler V 2.3, 18-Aug-2006

* @version generated at 07.12.2006 11:46:28

*/

public final class MyStruct
implements org.omg.CORBA.portable.IDLEntity

{
[...]

}

Note that the class does not contain a package definition.

The option -i2jpackage :com.acme will place any identifier without scope into the java package
com.acme. Thus we get:

package com.acme;

/**

14 JacORB Utilities

* Generated from IDL struct "MyStruct".

*
* @author JacORB IDL compiler V 2.3, 18-Aug-2006

* @version generated at 07.12.2006 11:46:28

*/

public final class MyStruct
implements org.omg.CORBA.portable.IDLEntity

{
[...]

}

Example 2

module outer
{

struct OuterStruct
{

long value;
};

module inner
{

struct InnerStruct
{

long value;
};

};
};

If you’re not using the i2jpackage option, the IDL compiler will generate the classes
outer.OuterStruct and outer.inner.InnerStruct.

Again using the i2jpackage it’s possible to map IDL modules to different java
packages. $ idl -i2jpackage outer:com.acme.outer will generate the classes
com.acme.outer.OuterStruct and com.acme.outer.inner.InnerStruct.

$ idl -idjpackage inner:com.acme.inner will generate the classes outer.OuterStruct
and outer.com.acme.inner.InnerStruct.

Note: See Section 1.4 if you intend to use the i2jpackage option in conjunction with the
JacORB IfR and are using #pragma prefix statements in your IDL.

2.1 idl 15

Compiler Options

If one is building from Ant it is possible to invoke the compiler directly using the supplied Ant
task, JacIDL. To add the taskdef add the following to the ant script:

<taskdef name="jacidl" classname="org.jacorb.idl.JacIDL"/>

The task supports all of the options of the IDL compiler.

Table 2.1: JacIDL Configuration
Attribute Description Required Default

srcdir Location of the IDL files Yes
destdir Location of the generated java files Yes
includes Comma-separated list of patterns of files that must be

included; all files are included when omitted.
No

includesfile The name of a file that contains include patterns. No
excludes Comma-separated list of patterns of files that must be

excluded; files are excluded when omitted.
No

excludesfile The name of a file that contains include patterns. No
defaultexcludes Indicates whether default excludes should be used (yes

— no); default excludes are used when omitted.
No

includepath The path the idl compiler will use to search for included
files.

No

parseonly Only perform syntax check without generating code. No False
noskel Disables generation of POA skeletons No False
nostub Disables generation of client stubs No False
diistub Generate DII-based client stubs No False
sloppyforward Allow forward declarations without later definitions No False
sloppynames Less strict checking of names for backward compatibil-

ity
No False

generateir Generate information required by the Interface Reposi-
tory

No False

all Generate code for all IDL files, even included ones No False
nofinal Generate class definitions that are not final No False
forceoverwrite Generate code even if IDL has not changed. No False
uncheckedNarrow Use unchecked narrow in generated code for IOR pa-

rameters in operations.
No False

ami Generate ami callbacks. No False
debuglevel Set the debug level from 0 to 4. No 0
helpercompat control the portability of the generated helper code. No portable

16 JacORB Utilities

Nested Elements

Several elements may be specified as nested elements. These are <define>, <undefine>,
<include>, <exclude>, <patternset> and <i2jpackage>. The format of <i2jpackage>
is <i2jpackage names="x:y">

Examples

The task command

<jacidl destdir="${generate}"
srcdir="${idl}"

/>

compiles all *.idl files under the $idl directory and stores the .java files in the $generate directory.

<jacidl destdir="${generate}" srcdir="${idl}">
<define key="GIOP_1_1" value="1"/>

</jacidl>

like above, but additionaly defines the symbol GIOP 1 1 and sets its (optional) value to 1.

<jacidl destdir="${generate}"
srcdir="${idl}"
excludes="**/*foo.idl"

/>

like the first example, but exclude all files which end with foo.idl.

2.2 ir

This command starts the JacORB Interface Repository, which is explained in chapter 1.

Usage

$ ir <reppository class path> <IOR filename>

2.3 qir

This command queries the JacORB Interface Repository and prints out re–generated IDL for the repository
item denoted by the argument repository ID.

2.3 qir 17

Usage

$ qir <reppository Id>

18 JacORB Utilities

Bibliography

	1 Interface Repository
	1.1 Type Information in the IR
	1.2 Repository Design
	1.3 Using the IR
	1.4 Interaction between #pragma prefix and -i2jpackage

	2 JacORB Utilities
	2.1 idl
	2.2 ir
	2.3 qir

