
ORBIX
®

PROGRESS
®

Introduction to Orbix C++ Edition
Version 3.3, SP11 March 2012

Progress Orbix v3.3.11

© 2012 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, Corticon,
Corticon (and design), DataDirect (and design), DataDirect Connect, DataDirect
Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery,
DataXtend, Dynamic Routing Architecture, Empowerment Center, Fathom, Fuse Mediation
Router, Fuse Message Broker, Fuse Services Framework, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, Pow-
erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empower-
ment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
RulesCloud, RulesWorld, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic,
Sonic ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our Technol-
ogy-Experience the Connection are registered trademarks of Progress Software Corporation
or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store,
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event
Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress
RPM, Progress Responsive Cloud, Progress Responsive Process Management, Progress
Software, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartCompo-
nent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Con-
tinuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or
service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the
U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any
other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements: One or more products in the Progress Orbix v3.3.11
release includes third party components covered by licenses that require that the following
documentation notices be provided:

Progress Orbix v3.3.11 incorporates OpenSSL/SSLeay v0.9.8.i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
OpenSSL License
Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
Original SSLeay License
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This pack-
age is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implemen-
tation was written so as to conform with Netscapes SSL. This library is free for commercial
and non-commercial use as long as the following conditions are adhered to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc.,
code; not just the SSL code. The SSL documentation included with this distribution is cov-
ered by the same copyright terms except that the holder is Tim Hudson (tjh@crypt-
soft.com).
Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be
removed. If this package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a textual message at pro-
gram startup or in documentation (online or textual) provided with the package. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement:
"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library being used are not
cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another distri-
bution licence [including the GNU Public Licence.]

Progress Orbix v3.3.11 incorporates mcpp v2.6.4 from SourceForge (http://sourceforge.net/
softwaremap/index.php). Such technology is subject to the following terms and conditions:
Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved.
This software including the files in this directory is provided under the following license.
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met: 1. Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Orbix v3.3.11 incorporates IDL Compiler Front End v1.0 from Sun Microsystems.
Such technology is subject to the following terms and conditions: COPYRIGHT NOTICE
on OMG IDL CFE: Copyright 1992 Sun Microsystems, Inc. Printed in the United States of
America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front
End (CFE) is made available for your use provided that you include this license and copy-
right notice on all media and documentation and the software program in which this product
is incorporated in whole or part. You may copy and extend functionality (but may not
remove functionality) of the Interface Definition Language CFE without charge, but you are
not authorized to license or distribute it to anyone else except as part of a product or pro-
gram developed by you or with the express written consent of Sun Microsystems, Inc.
("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may
not be used in advertising or publicity pertaining to distribution of Interface Definition Lan-
guage CFE as permitted herein. This license is effective until terminated by Sun for failure
to comply with this license. Upon termination, you shall destroy or return all code and doc-
umentation for the Interface Definition Language CFE. The Interface Definition Language
CFE may not be exported outside the United States without first obtaining the appropriate
government approvals. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS
IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED

WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC-
TION, MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES
OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE
DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN
OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REV-
ENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun
logo are trademarks or registered trademarks of Sun Microsystems, Inc. SunSoft, Inc. 2550
Garcia Avenue Mountain View, California 94043

Updated: 07-Mar-2012

Contents
 Preface 13
Objectives of Orbix 13
Audience 14
Organization of this Guide 14
Related Documentation 15
Document Conventions 16

Part I Introduction to

CORBA and Orbix

Chapter 1 Introduction to CORBA and Orbix 19
CORBA and Distributed Object Programming 19

The Role of an Object Request Broker 20
The Structure of a CORBA Application 21
The Structure of a Dynamic CORBA Application 22
Interoperability between Object Request Brokers 23

The Object Management Architecture 24
The CORBAservices 25
The CORBAfacilities 26

How Orbix Implements CORBA 27
Orbix Components 28
Orbix Architecture 29

OrbixNames—The Naming Service 31
OrbixEvents—The Event Service 32
OrbixOTS—The Transaction Service 33
Security with OrbixSSL 35
7

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Part II The StockWatch Demonstration

Chapter 2 The StockWatch Demonstration 39
Overview of the StockWatch Demonstration 39

Starting Point for StockWatch 40
Configuration Hints 41

Environment Variables 42
Orbix Configuration Files 43
OCGT Configuration 43

Defining the Stock Interface 43
The IDL Compiler 45
Code Generation 47

Generating Starting Code 48
Dummy Application Implementation 49

Client Code 50
IDL-to-C++ Mapping 53
Exception Handling 53

Server Code 54
Implementing the Stock Interface 55
Implementing the Server Main Function 57

Compile and Run the Demonstration 61
Smart Pointers and Dumb Pointers 64

Smart Pointer for Strings 64
Smart Pointer for Object References 66
Smart Pointers for Other Data Types 69

Chapter 3 Compound Types and Exceptions 71
Extending the Example 71
Parameter Passing Modes 73
The struct Data Type 75
The sequence Data Type 79
Memory Management 84
Exception Handling 86
Client Code 90
Server Code 92
 8

C o n t e n t s
Chapter 4 Integration with a Database 95
Designing a Three-Tier Architecture 95

Benefits of a Three-Tier Architecture 96
Factory Objects 97
StockWatch Three-Tier Application 100
Server Implementation 105

Implementation of Stock_i 106

Chapter 5 The Naming Service 111
OrbixNames Concepts 111
Naming Service IDL 113
How Servers Bind Objects in OrbixNames 117
How a Client Finds a Named Object 119
Names Wrapper Demo 120
Server Code Using Names Wrapper 124
Client Code Using Names Wrapper 126
Configuring OrbixNames 128

Configuration Variables for OrbixNames 129
Registering the Naming Service 129
Naming Service Utilities 131

Chapter 6 The Event Service 133
Introduction 133
Types of Event Communication 135

The Push Model 135
The Pull Model 135
Untyped Event Communication 136
Typed Event Communication 136

Callback Objects 137
The Mainline of an Impure Client 139

Locating an Event Channel 141
Locating Channels via _bind() 142
Locating Channels via the ChannelManager Interface 143

Attaching a Supplier 146
Getting a Reference to a ProxyPushConsumer 148
Connecting to a ProxyPushConsumer 149

Supplying Events 151
Attaching a Consumer 152
9

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Getting a Reference to a ProxyPushSupplier 152
Connecting to a ProxyPushSupplier 153

Consuming Events 154
Extending the StockWatch Example 155

Initializing the StockWatch Server 157
Initializing the StockWatch Consumers 157

Chapter 7 The Object Transaction Service 159
Example of a Distributed Transaction 161

One OTS Client Invoking on Two OTS Servers 162
One Ordinary Client Invoking on Two OTS Servers. 163
One OTS Client Invoking on One OTS Server. 165
StockWatch Example 166

Modification of StockWatch IDL for OTS 166
Controlling Database Transactions 168

Embedded SQL 169
Database Native Interface 169
XA Interface 169

The OTS as Transaction Manager 171
Format of the Open String 173
Format of the Close String 174

Writing an OTS Server 174
Initializing a Transactional Server 174
Implementing a Transactional Class 179

Writing an OTS Client 179
Initializing a Transactional Client 179
Making a Transactional Invocation 180

Implicit Indirect and Explicit Direct Modes 183
Two-Phase Commit Protocol 184
Recoverability and Log Files 188
Threading and Concurrency 188

Programming in Multithreaded Mode 189

Chapter 8 Security 193
OrbixSSL Concepts 194
Authentication in SSL 194

Certificates in SSL Authentication 195
Privacy of SSL Communications 196
 10

Integrity of SSL Communications 196
Validation of Certificates 196
Certificate Revocation List (CRL) 197
Installing OrbixSSL 197
Enabling SSL Security 198
Extending the StockWatch Example for SSL 198

Making the Server Secure 198
Making the Client Secure 200

Administration of OrbixSSL 201

Chapter 9 Load Balancing 203
Object Groups in OrbixNames 204
Creating an Object Group in OrbixNames 206
Modifications to the Client 207
Modifications to the Server 207
Enabling Load Balancing 209

 Index 211
11

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 12

Preface
Orbix is a suite of integrated Progress Software products offering an advanced
execution environment for CORBA applications. This standards-based
deployment infrastructure delivers secure, transactional, distributed applications
in a managed environment.

This guide presents an overview of the components of Orbix and how to build
multi-tier systems.

Orbix documentation is periodically updated. New versions between releases are
available at this site:

http://communities.progress.com/pcom/docs/DOC-105220

If you need assistance with Orbix or any other Progress products, go to http://
www.progress.com/orbix/orbix-support.html.

If you want to provide any comments on Progress documentation, go to http://
www.progress.com/en/about/contact.html.

Objectives of Orbix
The objectives of Orbix are as follows:

♦ To provide a rich set of integrated components that can be used as a
basis for delivering advanced applications. These components are
accessible from standard APIs, and are supported with graphical user
interfaces (GUI) and system management facilities.

♦ To enable integration with other system resources, such as databases.

♦ To enable access to Orbix server applications from within (intranet)
and outside (Internet) corporate networks.
13

http://communities.progress.com/pcom/docs/DOC-105220
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/en/about/contact.html
http://www.progress.com/en/about/contact.html

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Audience
The Introduction to Orbix C++ Edition is intended for use by application designers
who wish to familiarize themselves with Orbix C++, and develop distributed
applications using Orbix C++ components. This guide assumes as a prerequisite
that the reader is familiar with programming in C++ and/or Java.

This guide does not discuss every API in great detail, but gives a general
overview of the capabilities of the Orbix component set, and an overview of their
APIs. For complete information on each Orbix component, consult the individual
programming guides.

Organization of this Guide
The Orbix guide is divided into the following parts:

Part I Introduction to CORBA and Orbix

This part gives an overview of the architecture of OrbixOTM, including a
brief overview of each of the components and services of the OrbixOTM
suite.

Part II The StockWatch Demonstration

This part guides the reader through a worked example called StockWatch.
Initially, the example is based on code generated by the Orbix Code
Generation Toolkit. In later chapters, the examples are based directly on
example1...example5 from the progress/demos/ directory.

The StockWatch example is progressively extended as the various features
of Orbix are incorporated.
 14

P r e f a c e
Related Documentation
The Introduction to Orbix C++ Edition is part of a set of manuals that are delivered
with your Orbix installation. The following table provides a comprehensive list of
all related documents.

Related Documentation

Component Reference

Orbix C++ Orbix C++ Programmer’s Guide

Orbix C++ Programmer’s Reference

Orbix C++ Administrator’s Guide

Orbix Java Orbix Programmer’s Guide Java Edition

Orbix Programmer’s Reference Java Edition

Orbix Administrator’s Guide Java Edition

Orbix Code
Generation Toolkit

Orbix Code Generation Toolkit Programmer’s Guide

OrbixNames OrbixNames Programmer’s and Administrator’s Guide

Orbix Wonderwall Orbix Wonderwall Administrator’s Guide

OrbixEvents OrbixEvents Programmer’s Guide

OrbixSSL OrbixSSL C++ Programmer’s and Administrator’s Guide

OrbixSSL Java Programmer’s and Administrator’s Guide

OrbixOTS OrbixOTS Programmer’s and Administrator’s Guide

Table 0.1: Reference Material
15

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width in normal text represents portions of code
and literal names of items such as classes, functions,
variables, and data structures. For example, text might
refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

cd /users/your_name

< > Some command examples may use angle brackets to
represent variable values you must supply (this is an older
convention).

... . . .
Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an item
in format and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed
in { } (braces) in format and syntax descriptions.
 16

Part I
Introduction to

CORBA and Orbix

 1
Introduction to CORBA and Orbix

Orbix is a software environment that allows you to build and
integrate distributed applications. Orbix is a full
implementation of the Object Management Group’s (OMG)
Common Object Request Broker Architecture (CORBA)
specification. This chapter introduces CORBA and describes
how Orbix implements this specification.

CORBA and Distributed Object Programming
The diversity of modern networks makes the task of network programming very
difficult. Distributed applications often consist of several communicating
programs written in different programming languages and running on different
operating systems. Network programmers must consider all of these factors when
developing applications.

The Common Object Request Broker Architecture (CORBA) defines a
framework for developing object-oriented, distributed applications. This
architecture makes network programming much easier by allowing you to create
distributed applications that interact as though they were implemented in a single
programming language on one computer.

CORBA also brings the advantages of object-oriented techniques to a distributed
environment. It allows you to design a distributed application as a set of
cooperating objects and to re-use existing objects in new applications.
19

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The Role of an Object Request Broker

CORBA defines a standard architecture for Object Request Brokers (ORBs). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The role of the ORB is to
hide the underlying complexity of network communications from the
programmer.

An ORB allows you to create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A program
that contains instances of CORBA objects is often known as a server.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 1.1, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Figure 1.1: The Object Request Broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call
 20

I n t r o d u c t i o n t o C O R B A a n d O r b i x
The Nature of Objects in CORBA

CORBA objects are just standard software objects implemented in any supported
programming language. CORBA supports several languages, including C++,
Java, and Smalltalk.

With a few calls to an ORB’s application programming interface (API), you can
make CORBA objects available to client programs in your network. Clients can
be written in any supported programming language and can call the member
functions of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in the
CORBA Interface Definition Language (IDL). The interface definition specifies
which member functions are available to a client, without making any
assumptions about the implementation of the object.

To call member functions on a CORBA object, a client needs only the object’s
IDL definition. The client does not need to know details such as the programming
language used to implement the object, the location of the object in the network,
or the operating system on which the object runs.

The separation between an object’s interface and its implementation has several
advantages. For example, it allows you to change the programming language in
which an object is implemented without changing clients that access the object. It
also allows you to make existing objects available across a network.

The Structure of a CORBA Application

The first step in developing a CORBA application is use CORBA IDL to define
the interfaces to objects in your system. You then compile these interfaces using
an IDL compiler.

An IDL compiler generates C++ from IDL definitions. This C++ includes client
stub code, which allows you to develop client programs, and object skeleton
code, which allows you to implement CORBA objects.

As shown in Figure 1.2 on page 22, when a client calls a member function on a
CORBA object, the call is transferred through the client stub code to the ORB. If
the client has not accessed the object before, the ORB refers to a database, known
21

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
as the Implementation Repository, to determine exactly which object should
receive the function call. The ORB then passes the function call through the
object skeleton code to the target object.

Figure 1.2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the
IDL associated with your objects and use the generated C++ code in your
applications. This means that your client programs can only call member
functions on objects whose interfaces are known at compile-time. If a client
wishes to obtain information about an object’s IDL interface at runtime, it needs
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the
IDL interfaces implemented by objects in your network. A client program can
query this database at runtime to get information about those interfaces. The
client can then call member functions on objects using a component of the ORB
called the Dynamic Invocation Interface (DII), as shown in Figure 1.3 on page 23.

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code
 22

I n t r o d u c t i o n t o C O R B A a n d O r b i x
Figure 1.3: Client Invoking a Function Using the DII

CORBA also supports dynamic server programming. A CORBA program can
receive function calls through IDL interfaces for which no CORBA object exists.
Using an ORB component called the Dynamic Skeleton Interface (DSI), the server
can then examine the structure of these function calls and implement them at
runtime. Figure 1.4 on page 24 shows a dynamic client program communicating
with a dynamic server implementation.

Interoperability between Object Request Brokers

The components of an ORB make the distribution of programs transparent to
network programmers. To achieve this, the ORB components must communicate
with each other across the network.

In many networks, several ORB implementations coexist and programs
developed with one ORB implementation must communicate with those
developed with another. To ensure that this happens, CORBA specifies that ORB
components must communicate using a standard network protocol, called the
Internet Inter-ORB Protocol (IIOP).

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

D11
Object

Skeleton
Code
23

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 1.4: Function Call Using the DII and DSI

The Object Management Architecture
An ORB is one component of the OMG’s Object Management Architecture
(OMA). This architecture defines a framework for communications between
distributed objects.

As shown in Figure 1.5 on page 25, the OMA includes four elements:

• Application objects.

• The ORB.

• The CORBAservices.

• The CORBAfacilities.

Application objects are objects that implement programmer-defined IDL
interfaces. These objects communicate with each other, and with the
CORBAservices and CORBAfacilities, through the ORB. The CORBAservices
and CORBAfacilities are sets of objects that implement IDL interfaces defined by
CORBA and provide useful services for some distributed applications.

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

D11 DS1
 24

I n t r o d u c t i o n t o C O R B A a n d O r b i x
When writing Orbix applications, you may require one or more CORBAservices
or CORBAfacilities. This section provides a brief overview of these components
of the OMA.

Figure 1.5: The Object Management Architecture

The CORBAservices

The CORBAservices define a set of low-level services that allow application
objects to communicate in a standard way. These services include the following:

• The Naming Service. Before using a CORBA object, a client program
must get an identifier for the object, known as an object reference. This
service allows a client to locate object references based on abstract,
programmer-defined object names.

• The Trader Service. This service allows a client to locate object references
based on the desired properties of an object.

• The Object Transaction Service. This service allows CORBA programs to
interact using transactional processing models.

Application Objects

CORBAservices CORBAfacilities

Object Request Broker
25

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
• The Security Service. This service allows CORBA programs to interact
using secure communications.

• The Event Service. This service allows objects to communicate using
decoupled, event-based semantics, instead of the basic CORBA
function-call semantics.

Progress Software implements several CORBAservices including all the services
listed above.

The CORBAfacilities

The CORBAfacilities define a set of high-level services that applications
frequently require when manipulating distributed objects. The CORBAfacilities
are divided into two categories:

• The horizontal CORBAfacilities.

• The vertical CORBAfacilities.

The horizontal CORBAfacilities consist of user interface, information
management, systems management, and task management facilities. The vertical
CORBAfacilities standardize IDL specifications for market sectors such as
healthcare and telecommunications.
 26

I n t r o d u c t i o n t o C O R B A a n d O r b i x
How Orbix Implements CORBA
Orbix is an ORB that fully implements the CORBA 2 specification. By default,
all Orbix components and applications communicate using the CORBA standard
IIOP protocol.

The components of Orbix are as follows:

• The IDL compiler parses IDL definitions and produces C++ code that
allows you to develop client and server programs.

• The Orbix library is linked against every Orbix program and implements
several components of the ORB, including the DII, the DSI, and the core
ORB functionality.

• The Orbix daemon is a process that runs on each server host and
implements several ORB components, including the Implementation
Repository.

• The Orbix Interface Repository server is a process that implements the
Interface Repository.

Orbix also includes several programming features that extend the capabilities of
the ORB. These features are described in Part IV, “Advanced Orbix
Programming”.

In addition, Orbix is an enterprise ORB that combines the functionality of the
core CORBA standard with an integrated suite of services: OrbixNames,
OrbixEvents, OrbixOTS, and OrbixSSL. This chapter introduces the architecture
of Orbix and briefly describes each of these services.

Note: Only an overview of these components is given here. For more detailed
descriptions of functionality, refer to the individual programming guides
and reference guides that accompany each component.
27

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Orbix Components
Table 1.1 gives a brief synopsis of the Orbix suite.

Orbix The multithreaded Orbix Object Request Broker (ORB) is at the
heart of Orbix. This is Progress Software’s implementation of the
OMG (Object Management Group) CORBA specification.

Orbix Code
Generation
Toolkit

The Orbix Code Generation Toolkit is a powerful development tool
that can automatically generate code from IDL files. The Orbix
Code Generation Toolkit contains an IDL parser called IDLgen and
ready-made applications called genies that allow you to generate
Java or C++ code from CORBA IDL files automatically.

Orbix
Wonderwall

Orbix Wonderwall is a firewall product that enables CORBA
applications to be deployed on an intranet or the Internet with
protection against hostile access to your internal network.

OrbixOTS OrbixOTS brings transactional object capability to enterprise-wide
applications. This is Progress Software’s implementation of the
OMG CORBAservices Object Transaction Service (OTS).

OrbixSSL OrbixSSL integrates Orbix with Secure Socket Layer (SSL)
security. Using OrbixSSL, distributed applications can securely
transfer confidential data across a network. OrbixSSL offers
CORBA level zero security.

OrbixNames OrbixNames maintains a repository of mappings that associate
objects with recognisable names. This is Progress Software’s
implementation of the OMG CORBAservices Naming Service.

OrbixEvents OrbixEvents enables asynchronous communication between groups
of objects via event channels. This is Progress Software’s IIOP-
based OMG CORBAservices Event Service.

Table 1.1: The Orbix Suite
 28

I n t r o d u c t i o n t o C O R B A a n d O r b i x
Orbix Architecture
The overall architecture of Orbix and it’s components is shown in Figure 1.6. On
the lower part of Figure 1.6, a number of CORBA servers and clients are shown
attached to an intranet and, on the top left, a sample client is shown attached to the
system via the Internet. It is necessary to pencil in a number of server hosts in this
basic illustration because Orbix is an intrinsically distributed system. In contrast
to the star-shaped architecture of many traditional systems, with clients attached
to a central monolithic server, the architecture of Orbix is based on a collection of
components cooperating across a number of hosts.

Some standard services, such as the CORBA Naming Service (OrbixNames) and
the CORBA Event Service (OrbixEvents), are implemented as clearly identifiable
processes with an associated executable. There can be many instances of these
processes running on one or more machines.

Other services, for example the Orbix Object Transaction Service (OrbixOTS),
rely on cooperation between components. They are, either wholly or partly, based
on libraries linked with each component. You cannot, for example, point to a
single process and say that it embodies OrbixOTS. Services such as this are
intrinsically distributed.

Since Orbix has an open, standards-based architecture it can readily be extended
to integrate with other CORBA-based products. In particular, as Figure 1.6
shows, integration with a mainframe is possible when Orbix is combined with an
ORB running on OS/390.

For more information on Orbix, see the Orbix Programmer’s Guide C++ Edition,
Orbix Programmer’s Reference C++ Edition and Orbix Administrator’s Guide C++
Edition.

In the remainder of this section on Orbix architecture, each of the components of
Orbix will be presented with a brief description of the main features.
29

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 1.6: The Orbix Architecture
 30

I n t r o d u c t i o n t o C O R B A a n d O r b i x
OrbixNames—The Naming Service

OrbixNames is Progress Software’s implementation of the CORBA Naming
Service. The role of OrbixNames is to allow a name to be associated with an
object and to allow that object to be found using that name. A server that holds an
object can register it with OrbixNames, giving it a name that can be used by other
components of the system to subsequently find the object. OrbixNames maintains
a repository of mappings (bindings) between names and object references.
OrbixNames provides operations to do the following:

• Resolve a name.

• Create new bindings.

• Delete existing bindings.

• List the bound names.

Using a Naming Service such as OrbixNames to locate objects allows developers
to hide a server application’s location details from the client. This facilitates the
invisible relocation of a service to another host. The entire process is hidden from
the client.

Figure 1.7: The OrbixNames Architecture
31

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 1.7 summarizes the functionality of OrbixNames, which is as follows:

1. A server registers object references in OrbixNames. OrbixNames then
maps these object references to names.

2. Clients resolve names in OrbixNames.

3. Clients remotely invoke on object references in the server.

OrbixNames, which runs as an Orbix server, has a number of interfaces defined in
IDL that allow the components of the system to use its facilities. Other features of
OrbixNames include an enhanced GUI browser interface. OrbixNames can
support clients that use either IIOP or the Orbix protocol.

For more information on OrbixNames, see the OrbixNames Programmer’s and
Administrator’s Guide.

OrbixEvents—The Event Service

OrbixEvents is Progress Software’s implementation of the CORBA Event
Service enabling decoupled communication between objects via a set of one or
more event channels. OrbixEvents supports typed and untyped event models. It is
implemented as a stand-alone Orbix server.

Event channels mediate the transfer of events between suppliers (where an event
originates) and consumers (where an event is transferred) as follows:

Figure 1.8: Schematic View of OrbixEvents Architecture
 32

I n t r o d u c t i o n t o C O R B A a n d O r b i x
1. Event channels allow consumers to register interest in events, and they
store this registration information.

2. Event channels accept incoming events from suppliers.

3. The channels forward supplier-generated events to registered consumers.

Suppliers and consumers connect to the event channel and not directly to each
other. To the supplier, the event channel appears as a single consumer. To the
consumer, the event channel appears as a single supplier. In this way, the event
channel decouples suppliers and consumers.

Suppliers can issue events to any number of consumers using a single event
channel, and any supplier or consumer can connect to more than one channel.
There is no correlation between the number of suppliers and the number of
consumers. New consumers and suppliers can be added easily to the system.

Suppliers, consumers, and event channels are implemented as CORBA
applications. Events are defined using standard IDL. Suppliers, consumers, and
event channels each implement clearly-defined IDL interfaces that support the
steps required to transfer events in a distributed system.

For more information on OrbixEvents, see the OrbixEvents Programmer’s Guide.

OrbixOTS—The Transaction Service

OrbixOTS brings distributed transactional capability to enterprise-wide
applications. OrbixOTS is an implementation of the CORBAservices Object
Transaction Service (OTS) specification. In practice OrbixOTS is implemented as
a linked-in library to which Orbix clients and servers must link. This reduces the
risk of OrbixOTS being a single point of failure.

The OMG OTS standard requires that OTS be able to import and export
transactions to and from XA compliant resource managers. In accordance with
this requirement, OrbixOTS is fully compatible with X/Open compliant software.
The design of OrbixOTS is based on the X/Open reference model and includes
the following improvements:

♦ The procedural XA and TX interfaces have been replaced with a set of
CORBA interfaces defined in IDL.

♦ All inter-component communication is mandated to be via CORBA
function calls on remote method invocations.
33

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
OrbixOTS allows resources that export XA interfaces to participate in a
distributed transaction. Correspondingly, any common off-the-shelf database
supporting the XA interface can participate in an OrbixOTS transaction.

Most commercial relational databases and some message queuing systems export
XA interfaces which can be integrated into OrbixOTS applications.

OrbixOTS acts as a transaction and recovery co-ordinator for distributed
transactions. The process can be summarized as follows:

Figure 1.9: OrbixOTS Functionality Overview

1. Clients begin or commit a transaction.

2. Clients invoke requests as part of a transaction. Servers register resources
with the transaction.

3. The OrbixOTS transaction manager then transparently co-ordinates the
transaction and failure recovery, including resource management, voting
for commit or rollback, and heuristic outcomes.

1

22

3 3
 34

I n t r o d u c t i o n t o C O R B A a n d O r b i x
Distributed Transactions

Consider the case where two bank accounts reside in different applications,
control threads, processes or machines: to guarantee Atomicity, Consistency,
Isolation, and Durability (ACID) on the complete system, distributed transaction
processing (DTP) must be employed.

An external entity usually called a transaction co-ordinator is required to allow a
transaction to span more than one application, process, or machine. It does this by
keeping track of resources involved in the transaction, and by co-ordinating
transaction completion.

The transaction co-ordinator uses a two-phase commit (2PC) protocol to commit
distributed transactions. Firstly, all resources are asked to prepare the transaction
and to return a vote to indicate whether they are willing to make modifications
durable. If all resources voted to commit, then they are asked to commit in turn: if
one or more resources voted to rollback, then all resources are asked to rollback in
turn. In this way, atomicity is largely assured. For further details on 2PC, see
“Two-Phase Commit Protocol” on page 184 and the OrbixOTS Programmer’s and
Administrator’s Guide.

X/Open DTP Standard

The X/Open company has defined a standard for DTP systems called the DTP
reference model. This identifies three components in a DTP scenario—the
application, the resource manager, and the transaction manager—and defines
procedural interfaces between them; XA between transaction managers and
resource managers, and TX between the application and transaction manager.

For more details on the X/Open DTP standard, see the OrbixOTS Programmer’s
and Administrator’s Guide.

Security with OrbixSSL

OrbixSSL introduces Level 0 CORBA security, as specified by the OMG, to the
Orbix product suite. Level 0 corresponds to the provision of authentication and
session encryption, which maps onto the functionality provided by the Secure
Socket Layer (SSL) library.
35

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
SSL is a protocol for providing data security for applications that communicate
across networks via TCP/IP. By default, Orbix applications communicate using
the standard CORBA Internet Inter-ORB Protocol (IIOP). These application-level
protocols are layered above the transport-level protocol TCP/IP.

OrbixSSL provides authentication, privacy, and integrity for communications
across TCP/IP connections as follows:

To initiate a TCP/IP connection, OrbixSSL provides a security ‘handshake’. This
handshake results in the client and server agreeing on an ‘on the wire’ encryption
algorithm, and also fulfils any authentication requirements for the connection.
Thereafter, OrbixSSL’s only role is to encrypt and decrypt the byte stream
between client and server.

The steps involved in establishing an OrbixSSL connection are as follows:

1. The client initiates a connection by contacting the server.

2. The server sends an X.509 certificate to the client. This certificate includes
the server’s public encryption key.

3. The client authenticates the server’s certificate (for example, an X.509
certificate, endorsed by an accredited certifying authority).

4. The client sends the certificate to the server for authentication.

5. The server generates a session encryption key and sends it to the client
encrypted using the client’s public key: the session is now established.

Once the connection has been established, certain data is cached so that in the
event of a dropping and resumption of the dialogue, the handshake is curtailed
and connection re-establishment is accelerated.

For more information on OrbixSSL, see OrbixSSL Programmer’s and
Administrator’s Guide.

Authentication Allows an application to verify the identity of another
application with which it communicates.

Privacy Ensures that data transmitted between applications can
not be understood by a third party.

Integrity Allows applications to detect whether data was
modified during transmission.
 36

Part II
The StockWatch
Demonstration

 2
The StockWatch Demonstration

Orbix is introduced here by presenting the steps involved in
writing a simple application and concentrating on the features
of the core ORB. The Orbix Code Generation Toolkit is used to
generate a starting point for the demonstration application.

Overview of the StockWatch Demonstration
To illustrate Orbix and its components, a simple StockWatch example is
developed. This example provides stock price information for a selected number
of stocks. It consists of a server process, which accesses stock prices from
persistent storage, and a number of client processes.

The StockWatch demonstration is a sample implementation of an application that
gathers and distributes information about a range of stocks. A history of prices is
archived for each of the stocks and this archive can be queried by subscribers to
the StockWatch service. Likewise, whenever stock is traded the StockWatch
service allows the new price to be recorded leading to an update in the price
history archive.

The StockWatch application is not concerned with modeling all aspects of a stock
exchange—for example StockWatch does not provide any facilities for trading
stock, such as a broker service. The demonstration focuses on providing a service
to record stock prices, archive the data and make the historical price data
available to subscribers.
39

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
In the ProgressRoot/demos/common/src directory of your Orbix installation you
will find the code for a demonstration called StockWatch. This demonstration
forms the basis for the example code throughout this book:

1. Example 1 “The Naming Service” on page 111 introduces object location
transparency using OrbixNames.

2. Example 2 “The Event Service” on page 133 introduces decoupled
event-based communication using OrbixEvents.

3. Example 3 “The Object Transaction Service” on page 159 introduces
distributed transaction processing using OrbixOTS.

4. Example 4 “Security” on page 193 introduces security in the form of
OrbixSSL.

5. Example 5 “Load Balancing” on page 203 introduces load balancing for
Orbix applications.

Starting Point for StockWatch

The example code for the current chapter is not supplied with the StockWatch
demonstration. Instead, the starting code for this chapter is automatically
generated by the Orbix Code Generation Toolkit. A small amount of additional
code has to be supplied by the developer to complete the sample application.

In later chapters, as the examples become more complex, the sample code for
StockWatch is based directly on the code found in the
ProgressRoot/demos/common/src directory of Orbix.
 40

T h e S t o c k W a t c h D e m o n s t r a t i o n
Configuration Hints
Some basic hints on Orbix configuration are given here to help you get started
and check that your system is correctly configured. For complete details on
configuring Orbix consult the Orbix C++ Administrator’s Guide and the
installation guide for your particular platform.

The following aspects of configuring Orbix are discussed below:

• Environment variables.

• Orbix configuration files.

• OCGT configuration.

For convenience, this section assumes that Orbix has been installed in its default
location:

This Orbix root directory is referred to as ProgressRoot in the following
subsections.

/opt/progress UNIX default Orbix root directory.

C:\progress Windows default Orbix root directory.
41

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Environment Variables

The following environment variables are a basic part of Orbix configuration on
most platforms:

As an alternative to using the environment variable IT_CONFIG_PATH you can use
the variable IT_IONA_CONFIG_FILE to specify the full pathname of the Orbix
configuration file. This allows you to set the name of the Orbix configuration file
to something other than iona.cfg.

PATH Add the following directories:

ProgressRoot/bin

ProgressRoot/contrib

Library Path On UNIX, this variable specifies the
directory where Orbix shared libraries are
located. The name of this variable depends on
the particular platform. For example, on
Solaris it is LD_LIBRARY_PATH and on
HP-UX it is SHLIB_PATH.

This variable should include the following in
its list of directories:

ProgressRoot/lib

IT_CONFIG_PATH This must point at the directory containing
the Orbix configuration file iona.cfg.

To use the default Orbix configuration files,
set this equal to the following directory:

ProgressRoot/config

IT_IDLGEN_CONFIG_FILE Specifies the location of the configuration file
idlgen.cfg used to configure the Orbix
Code Generation Toolkit.

To use the default version of idlgen.cfg, set
it equal to the following:

ProgressRoot/config/idlgen.cfg
 42

T h e S t o c k W a t c h D e m o n s t r a t i o n
Orbix Configuration Files

After installing Orbix, a complete set of configuration files can be found
underneath the directory ProgressRoot/config. The main configuration file is
iona.cfg, which in turn includes other configuration files such as common.cfg,
orbixnames3.cfg, orbix3.cfg and others.

These files can be edited either directly using a text editor, or using the
Configuration Explorer Tool supplied with Orbix.

OCGT Configuration

The configuration file for the Orbix Code Generation Toolkit (OCGT) is called
idlgen.cfg. Before running the idlgen tool, you must set the environment
variable IDLGEN_CONFIG_FILE to the absolute pathname of this configuration
file.

To check the basic configuration of OCGT, run the following command:

idlgen -list

which should generate output similar to the following:

available genies are...

cpp_equal.tcl cpp_op.tcl cpp_random.tcl stats.tcl
cpp_genie.tcl cpp_print.tcl idl2html.tcl

Defining the Stock Interface
The starting point for the implementation of StockWatch is the definition of an
interface between the client and the server. This interface is defined using the
OMG Interface Definition Language (IDL), which allows you to specify
interfaces in a language-neutral manner. For example, it does not matter whether
the server or client is implemented in Java or C++; in each case the same IDL
specification can be used
43

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 The IDL for StockWatch is defined as follows:

// IDL
1 // File: StockWatch.idl

2 typedef float Money;
typedef string Symbol;

// Interfaces

3 interface Stock {
4 Symbol getSymbol();

string getDescription();
Money getCurrentPrice();

};

The most important part of the IDL file is the definition of the Stock interface. It
represents a class of CORBA objects, which make up the basic building blocks of
a CORBA application.

The preceding IDL file can be explained as follows:

1. Two consecutive forward slashes // introduce a comment. All characters
from the // up to the end-of-line are ignored by the IDL compiler.

2. The typedef directive has a similar syntax to the typedef of C and C++.
In the above example, Money becomes a synonym for the type float, and
Symbol becomes a synonym for the type string.

3. Interface definitions are introduced by the interface reserved keyword.
There is a strong similarity between the syntax of an IDL interface and a
C++ or Java class. The construction is called interface instead of class
to underline the fact that IDL does not provide the implementation.
Implementation details are left to the target language (such as Java or
C++) instead.

4. Within the scope of the Stock interface, between the curly braces, three
operations are defined: getSymbol(), getDescription() and
getCurrentPrice(). The syntax of these operation declarations is similar
to the syntax of method declarations in Java or C++. These particular
operations take no parameters, but they do declare return values. If an
operation has no return value it must specify the return type as void.
 44

T h e S t o c k W a t c h D e m o n s t r a t i o n
Note: All of the IDL operations are public. There is no equivalent in IDL to the
C++ and Java concept of private scope.

The Stock IDL interface provides you with the starting point for both the client
and server ends of the CORBA application.

A client programmer, supplied with a copy of the above IDL file
StockWatch.idl, has all the information needed to write the client component. It
does not matter whether the server is written in C++, Java, COBOL or PL/I, nor
does it matter which platform the server runs on. The client programmer is
insulated from these implementation details and can focus on writing a client that
is compatible with the given IDL.

Likewise, the server programmer, supplied with a copy of the IDL file
StockWatch.idl, can go ahead and implement the Stock interface without
worrying about details of the client component.

The IDL Compiler
Using IDL makes it possible to specify the architecture of a CORBA application
in a way that is platform independent and language independent. At some point,
however, the interface has to be translated from its language-neutral format into
the target language used to implement the client or server component, for
example C++. The tool responsible for performing this translation is known as the
IDL compiler.

Here we are interested in the IDL compiler that translates IDL into C++.
Generally speaking, IDL compilers are specialized to one particular language and
platform. For example, Orbix C++ Edition for Windows NT supplies an IDL
compiler that produces C++ code suitable for use with Microsoft Visual C++. If
you want to translate IDL to Java instead, you can use the IDL compiler supplied
with Orbix Java Edition.
45

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The syntax for running the IDL compiler supplied with Orbix is as follows:

idl options IDLFile

A full list of options for the IDL compiler can be found by consulting the Orbix
C++ Programmer’s Guide and Orbix C++ Programmer’s Reference. Two options
in particular are used fairly frequently:

For example, imagine you are a server programmer about to implement the IDL
specified in StockWatch.idl. In that case it is likely that you will run the idl
compiler as follows:

idl -B StockWatch.idl

resulting in the generation of the following three files:

StockWatch.hh
StockWatchC.cxx
StockWatchS.cxx

The StockWatch.hh file is a C++ header file that is included by the other two
files. The C in StockWatchC.cxx stands for Client. This file contains the client
stub code for StockWatch and is intended to be compiled and linked with the
client application. The S in StockWatchS.cxx stands for Server. This file contains
the server skeleton code for StockWatch and is meant to be compiled and linked
with the server application.

Note: Both the stub and skeleton files, StockWatchC.cxx and
StockWatchS.cxx, contain ORB-specific code. They are not intended to
be edited by the application programmer and it is not recommended that
you do so.

Another example of running the IDL compiler might include the –S flag, as
follows:

idl -B –S StockWatch.idl

-B Generate the extra code needed to support the inheritance
approach to implementing an interface.

-S Generate starting point code for the C++ classes used to
implement the interfaces appearing in the IDL file.
 46

T h e S t o c k W a t c h D e m o n s t r a t i o n
which generates the following files:

StockWatch.hh
StockWatchC.cxx
StockWatchS.cxx
StockWatch.ih
StockWatch.ic

In this case, two extra files are generated: StockWatch.ih and StockWatch.ic.
These files contain starting point code for the classes that implement the
StockWatch interfaces (in this example, there is just one class to implement the
Stock interface). These two files are intended to be edited by the application
developer. They form the basis for the implementation of CORBA objects.

However, this particular approach to implementing CORBA objects is not
pursued in this chapter. Orbix provides a more powerful approach to generating
starting point code, which is used instead.

Code Generation
The Orbix Code Generation Toolkit (OCGT) is a tool for generating code from
IDL files. It is based on Ousterhout’s Tool Command Language (Tcl)—a
customizable scripting language. However it is not necessary to understand Tcl in
order to use the OCGT.

In this chapter the OCGT is used to generate starting point code for the
StockWatch application. The starting point generated by the OCGT is a complete
client and server, requiring only a few modifications to be made by the
application developer.

Before using the toolkit, you need to ensure that Orbix has been correctly
configured and installed including the code generation option—check the
installation guide for your platform.

The OCGT is run via the idlgen executable. A simple test of the idlgen
executable can be made by running the following command:

idlgen –list
47

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
A typical output from this command looks like this:

available applications are...

cpp_equal.tcl cpp_op.tcl cpp_random.tcl stats.tcl
cpp_genie.tcl cpp_print.tcl idl2html.tcl

These toolkit applications are known as genies. A genie is a Tcl script that can
generate output based on the contents of an IDL file. Genies can automate the
generation of various coding patterns. For example, the genie idl2html.tcl
takes an IDL file and convert it to HTML format with embedded links.

The genie that is of particular relevance to this chapter is cpp_genie.tcl. This
genie can be used to generate comprehensive starting point code and has a
number of options for supporting advanced features of Orbix.

Generating Starting Code

Perform the following steps to generate the starting point for this example:

1. Create a new directory, OCGTExample. Change directory to
OCGTExample and create a new file, StockWatch.idl,containing the IDL
shown in “Defining the Stock Interface” on page 43.

2. At a command-line prompt, enter the following command:

idlgen cpp_genie.tcl –makefile –client –server \
–interface StockWatch.idl

(the backslash \ is used here to indicate continuation of the line). This
command outputs the following lines to the screen:

StockWatch.idl:
cpp_genie.tcl: creating Stock_i.h
cpp_genie.tcl: creating Stock_i.cxx
cpp_genie.tcl: creating server.cxx
cpp_genie.tcl: creating client.cxx
cpp_genie.tcl: creating call_funcs.h
cpp_genie.tcl: creating call_funcs.cxx
cpp_genie.tcl: creating it_print_funcs.h
cpp_genie.tcl: creating it_print_funcs.cxx
cpp_genie.tcl: creating it_random_funcs.h
cpp_genie.tcl: creating it_random_funcs.cxx
cpp_genie.tcl: creating makefile
cpp_genie.tcl: creating makefile.inc
 48

T h e S t o c k W a t c h D e m o n s t r a t i o n
The genie generates all the files you need, including the makefile. By default, a
working dummy application is generated that can be compiled and run right
away. You can modify this dummy application to provide the appropriate
functionality for the new CORBA application, as detailed in the following
sections.

Dummy Application Implementation

By default (or when the -complete option is specified) the OCGT generates
client and server code, which is sufficiently complete to compile and run
immediately. For example, the following command:

idlgen cpp_genie.tcl –makefile –client –server \
–interface –complete StockWatch.idl

when applied to the file StockWatch.idl generates a complete demonstration
application. Simply follow the steps of “Compile and Run the Demonstration” on
page 61 to compile and run the demonstration.

The OCGT provides a simple default implementation of the client and server
functionality.

Dummy Implementation of Server

The dummy server implements all of the interfaces appearing in the supplied IDL.
Each operation and attribute of every interface is programmed to print out the
parameters it was invoked with. The operation or attribute then generates random
data for the return value and out parameters. Sometimes, on a random basis, the
operation throws a CORBA exception instead.

The dummy server’s main() function creates one instance of a CORBA object for
every interface it has implemented, before entering a CORBA event loop.

Dummy Implementation of Client

The dummy client obtains an object reference for each of the CORBA objects in
the server (one per interface). It then invokes every operation on every interface,
passing random data as parameters.
49

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Client Code
The starting code for the client is contained in the client.cxx generated file. A
few lines of code have to be modified to implement the StockWatch client. In this
example, it is assumed that there is only one Stock object in the server. The client
connects to the single Stock object and invokes its operations.

Edit the client.cxx file.

Search for the #include "call_funcs.h" line and replace it with the
#include "StockWatch.hh" line.

Search for the lines where the call_Stock_OperationName() function is
called. Delete these lines and replace them with the lines of code highlighted in
bold font below:

//---
// Edit the idlgen.cfg to have
// your own copyright notice placed here.
//---

//---
// File:client.cxx
// Description:Client main function.
//---

//--------
// #include's
//--------
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

1 #include "StockWatch.hh"

//--------
// Forward declaration of static functions.
//--------

//---
// Function:main()
// Description:Client main function.
//---
 50

T h e S t o c k W a t c h D e m o n s t r a t i o n
int
main(int argc, char **argv)
{

2 Stock_var obj1;
//--------
// Set Orbix diagnostics level
//--------
CORBA::Orbix.setDiagnostics(1);

ifstream iorfile;
char myIor [2048];
CORBA::Object_var tObj;

try {

3 iorfile.open ("./Stock.ior");
iorfile >> myIor;
iorfile.close();

4 tObj = CORBA::Orbix.string_to_object(myIor);
if (CORBA::is_nil(tObj)) {

cerr << "Object reference is nil" << endl;
cerr << "Have you run the server to create the IOR files?"
 << endl;
exit(1);

}
obj1 = Stock::_narrow(tObj);

} catch (CORBA::SystemException sysEx) {
cerr << "Unexpected Exception: " << sysEx << endl;
exit(1);

} catch (...) {
cerr << "Unknown Exception caught " << endl;
exit (1);

}

//--------
// Invoke the operations and attributes
//--------
try {

CORBA::String_var theSymbolV, theDescriptionV;
5 theSymbolV = obj1->getSymbol();

theDescriptionV = obj1->getDescription();
Money theMoney = obj1->getCurrentPrice();

cout << "Symbol: " << theSymbolV << endl;
51

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
cout << "Description: " << theDescriptionV << endl;
cout << "Current Price: " << theMoney << endl;

}
catch (CORBA::Exception& ex) {

cerr << "error: " << ex << endl;
}

//--------
// Terminate gracefully.
//--------
return 0;

}

The important steps are numbered and can be explained as follows:

1. The client includes the StockWatch.hh file. This header gives access to
the types and interfaces defined in the StockWatch.idl stub code. It also
recursively includes the corba.h header that declares the Orbix runtime
programming interface.

2. The obj1 object reference is declared to be of Stock_var type. The
Stock_var type is a smart pointer class that holds references to Stock
objects. Syntactically, its behavior imitates the Stock* pointer type so that
you can, for example, dereference members of the Stock class as follows:

(*obj1).getSymbol()

or use the dereferencing operator -> as follows:

obj1->getSymbol()

3. A stringified object reference, myIor, is read from a local file, Stock.ior.
It is assumed that the stringified object reference has already been written
to Stock.ior by the server program.

This method of distributing an object reference (writing to a file) is
suitable only for simple demonstrations. Realistic applications use the
CORBA Naming Service to distribute object references to clients.

4. The myIor stringified object reference is converted to an object reference,
obj1, using the standard CORBA::ORB:string_to_object() function.

Locating a remote CORBA object is a critical step for the client
programmer. There are three main approaches supported by Orbix:

♦ Writing stringified object references to a file (or files).

This is the approach used throughout this chapter because it is
relatively easy to use.
 52

T h e S t o c k W a t c h D e m o n s t r a t i o n
♦ The CORBA Naming Service.

This approach is more useful for realistic applications—see “The
Naming Service” on page 111.

♦ The _bind() mechanism. (Deprecated.)

5. The obj1 object reference allows you to make remote invocations on a
Stock CORBA object—the C++ member functions have the same name
as the corresponding Stock IDL operations.

The return values of getSymbol() and getDescription() are assigned to
variables of CORBA::String_var type. The CORBA::String_var type is a
smart pointer equivalent for the char* type. It relieves you of the
responsibility of deleting the string, because the CORBA::String_var
destructor does it for you.

IDL-to-C++ Mapping

The return type of getSymbol() and getDescription() is declared to be the
string IDL type, and the return type of getCurrentPrice() is the float IDL
type. These IDL data types have simple counterparts in C++. The standard IDL to
C++ mapping defines the correspondence as follows:

There is a close parallel between the definition of interfaces in IDL and the
definition of classes in C++.

Exception Handling

All invocations on a remote CORBA object should be enclosed within a try
block similar to the following:

try {

IDL C++

string char *

float CORBA::Float

interface Stock class Stock

getSymbol() operation getSymbol() member function
53

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
// Remote invocations go in here.
}
catch (CORBA::SystemException &ex) {

cerr << ex << endl;
}

The CORBA::SystemException class is the base class for exceptions raised
within the ORB runtime. An instance, ex, of a system exception is caught by
reference, which is the recommended way to catch exceptions in the C++
language. The exception ex can then be printed directly to an output stream using
the << operator, because the ORB runtime defines the appropriate overloaded
form of this operator.

You must get used to the idea that enclosing CORBA invocations in such a
try/catch block is necessary. Because of the uncertainty of what can happen to
the network separating client from server, exception conditions are more frequent
in a distributed system than in a stand-alone application.

Server Code
The starting point for the server code is contained in the three files Stock_i.h,
Stock_i.cxx and server.cxx generated by cpp_genie.tcl.

The main purpose of the server application is to provide an implementation of the
interfaces defined in the StockWatch.idl file. In this example there is just one
interface to implement, the Stock interface. The class that implements Stock is
called Stock_i and is defined in the files Stock_i.h and Stock_i.cxx.

Note: The convention followed in this book (and, by default, the code generation
toolkit) is that an interface called InterfaceName is implemented by the
class InterfaceName_i. This convention is adopted for convenience only;
you are free to call the implementation class whatever you like.

The code in server.cxx contains the main() function and carries out the steps to
initialize the ORB.
 54

T h e S t o c k W a t c h D e m o n s t r a t i o n
Implementing the Stock Interface

In this sample implementation of the Stock interface, the object’s business logic
is not provided. Instead, for the purpose of illustration, the Stock_i class is
hardcoded to return fixed information about a single stock: the IONA stock. Later
on, in “Integration with a Database” on page 95, a more realistic implementation
is provided that retrieves the stock information from a database.

To complete the implementation of the Stock_i class, you have to supply the
function bodies for getSymbol(), getDescription() and getCurrentPrice().
This requires you to edit just the Stock_i.cxx file (the Stock_i.h file is already
complete).

Replace the existing code in the function bodies with the lines highlighted in bold
font below:

// C++
// File: Stock_i.cxx
. . .
// . . . Some lines of code omitted . . .
//---
// Function:getSymbol()
//
// Description: Implementation of the IDL operation
// Stock::getSymbol().
//---

char *
Stock_i::getSymbol(

CORBA::Environment &)
throw(CORBA::SystemException)

{
return CORBA::string_dup("IONA");

}

//---
// Function:getDescription()
// Description: Implementation of the IDL operation
// Stock::getDescription().
//---

char *
Stock_i::getDescription(
55

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
CORBA::Environment &)
throw(CORBA::SystemException)

{
return CORBA::string_dup("IONA Technologies Inc.");

}

//---
// Function:getCurrentPrice()
//
// Description: Implementation of the IDL operation
// Stock::getCurrentPrice().
//---

Money
Stock_i::getCurrentPrice(

CORBA::Environment &)
throw(CORBA::SystemException)

{

return (Money) 18.01;
}

Although the operations are declared without parameters in IDL, they have one
parameter, the CORBA::Environment parameter, when mapped to C++. This
parameter can safely be ignored because it is defaulted in the Stock_i.h header
file and is not used in any of the example code here. The CORBA::Environment
parameter is needed only for legacy platforms that do not support native C++
exception handling—see the Orbix C++ Programmer’s Guide and the Orbix C++
Programmer’s Reference.

The preceding functions that return a string, char*, do not return the string
directly but copy the string and return a pointer to the copy. For example, the
getSymbol() function returns CORBA::string_dup("IONA") instead of
returning the string literal, IONA, directly.

This is a basic memory management rule in CORBA: when returning data from
an operation, always returning a copy of the data, not the original data itself.

This is consistent with good coding practice in C++. You can never predict when
calling code is going to delete the return value. By passing back a copy of the
data, you prevent the CORBA object’s data from being prematurely deleted.

1. The price (in dollars) of IONA stock at the time of its flotation in April 1997.
 56

T h e S t o c k W a t c h D e m o n s t r a t i o n
Simple data types like Money (a floating point number) are passed by value, so no
copying is required.

Implementing the Server Main Function

The server main() function is implemented in the server.cxx file and performs
miscellaneous initialization, including initialization of the ORB. The server.cxx
file generated by the OCGT is complete and needs no additions or modifications
for this example. However, it is instructive to have a look at this file to gain an
understanding of the main steps involved in initializing the server.

//---
// Edit the idlgen.cfg to have
// your own copyright notice placed here.
//---

//---
// File:server.cxx
// Description:Server main function.
//---

//--------
// #include's
//--------
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include "Stock_i.h"

//---
// Function:main()
// Description:Main Function of the server
//---

int
main(int argc, char **argv)
{
 // Local Variables

CORBA::ORB_var orbVar;
CORBA::BOA_var boaVar;
try {
57

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
1 orbVar = CORBA::ORB_init (argc , argv, "Orbix");
boaVar = orbVar->BOA_init (argc, argv, "Orbix_BOA");

} catch (CORBA::SystemException e) {
cerr << "Unexpected System Exception :" << e << endl;
exit (1);

} catch (...) {
cerr << "Unexpected Exception." << endl;
exit (1);

}

Stock_var obj1;

//--------
// Initialise Orbix.
//--------

2 orbVar->setDiagnostics(1);
try {

3 boaVar->impl_is_ready("StockWatchSrv", 0);
} catch(CORBA::SystemException &ex) {

cerr << "impl_is_ready() failed" << endl
<< ex << endl;

exit(1);
}

4 obj1 = Stock_i::_create("Stock-1");
//--------
// Application-specific initialisation.
//--------
ofstream ofile;
ofile.open ("./Stock.ior");

5 ofile << obj1->_object_to_string();
ofile.close ();

//--------
// Main event loop.
//--------
try {

6 CORBA::Orbix.processEvents(-1);
} catch(CORBA::SystemException &ex) {

cerr << "processEvents() failed" << endl
<< ex << endl;

exit(1);
}

 58

T h e S t o c k W a t c h D e m o n s t r a t i o n
//--------
// Terminate.
//--------
return 0;

}

The main steps in the server main() function are as follows:

1. References to an initial ORB object and an initial BOA object are obtained
using the CORBA::ORB_init() and CORBA::ORB::BOA_init() functions,
respectively. The BOA object returned from BOA_init() offers
functionality equivalent to the now deprecated CORBA::Orbix static BOA
instance.

2. The CORBA::ORB::setDiagnostics() function is called, with diagnostic
level equal to 1. This is an optional step that sets the level of diagnostics
generated by Orbix and written to the standard output. There are three
levels of diagnostics:

The default level of diagnostics is 1. The higher level of diagnostics, 2, can
be a valuable aid to debugging a distributed application.

3. The CORBA::BOA::impl_is_ready() function is called. This performs
initialization of the basic object adapter (BOA) and tells the Orbix daemon
that the server is ready to receive requests. From this point on, the server
has internally set the values of the server name, host and port that it is
using (all of the information required to identify and locate a server).

The function signature for impl_is_ready() is:

// C++

void CORBA::BOA::impl_is_ready(

 CORBA::ImplementationDef_ptr serverName = "",

 CORBA::ULong timeOut=CORBA::ORB::DEFAULT_TIMEOUT,

 CORBA::Environment& = IT_chooseDefaultEnv ()

);

0 No diagnostics.

1 Generate diagnostic output each time a connection
is opened or closed.

2 Generate diagnostic output for every request or
reply that enters or leaves the application.
59

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The serverName identifies the server process. The timeOut specifies how
many milliseconds the server remains blocked in an event loop. The value
specified here is zero, implying that the event loop is not started at this
point.

4. A single CORBA object of Stock_i type is instantiated and assigned to
the obj1 object reference. The Stock_i::_create(marker) function
delegates the creation of a new CORBA object to the Stock_i constructor.
A marker is a unique identifier for the CORBA object.

This use of _create() is an idiom of the code generator, not standard
CORBA. If you prefer to call the constructor directly, you can edit the
generated code (in Stock_i.h and Stock_i.cxx) to make the constructor
public and change the signature of the constructor. The advantage of the
OCGT idiom is that it can hide different approaches to object instantiation.
See the Orbix C++ Programmer’s Guide and the Orbix Code Generation
Toolkit Programmer’s Guide for details.

Once a CORBA object has been instantiated, no further initialization is
necessary. In Orbix, instantiation implicitly makes a CORBA object
known to the ORB (enabling the object to receive invocations).

5. The obj1 object reference is converted to a string by invoking
_object_to_string() and the server writes the string to a local file,
Stock.ior.

This is a simple approach to distributing object references from servers to
clients. Clients read the object reference directly from the Stock.ior file,
assuming that they have access to the file via a networked file system or
similar. This approach is only suitable for simple demonstrations—
realistic applications would use the CORBA Naming Service.

6. The CORBA::BOA::processEvents() function is called. This call blocks
as the server enters an internal event loop and makes itself ready to do
useful work. From this point on, the server is able to accept connection
attempts from clients. It can also receive and process remote invocations.

The processEvents() function unblocks and returns if there is no activity
in the server (no new connection attempts, no incoming invocations) for
the length of time specified in the inactivity timeout. The default inactivity
timeout is 60 seconds, but the value can be customized via the optional
argument to processEvents().
 60

T h e S t o c k W a t c h D e m o n s t r a t i o n
Some sample values for the inactivity timeout are as follows:

If a server does time out and exit, this does not ordinarily cause problems. Servers
are normally configured so that they can be restarted on demand when needed by
clients. In applications where the latency of a server restart is unacceptable, an
infinite timeout can be used.

Compile and Run the Demonstration
The makefile generated by the code generation toolkit has a complete set of rules
for compiling both the client and server applications. To compile the client and
server:

Windows

At a command-line prompt, from the OCGTExample directory enter:

> nmake

UNIX

At a command-line prompt, from the OCGTExample directory enter:

% make

Run the application as follows:

1. Run the Orbix daemon.

The Orbix daemon is responsible for bootstrapping connections between
CORBA clients and servers and can, if necessary, activate dormant servers

processEvents(0) No events processed.

processEvents() Default timeout is used
(60 seconds)

processEvents(30*1000) Specifies timeout in
milliseconds (for
example, 30 seconds).

processEvents(
CORBA::Orbix.INFINITE_TIMEOUT)

Never times out.
61

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
on demand. Information about CORBA servers is stored in the the
Implementation Repository, a database of CORBA servers maintained by
the Orbix daemon. Exactly one Orbix daemon runs on each server host.

Open a new MS-DOS prompt, or xterm window (UNIX).

Windows

> orbixd

UNIX

% orbixd

The Orbix daemon runs in the foreground and logs its activities to this
window.

2. Register the server with the daemon.

Every Orbix server must be registered with the Orbix daemon before it
runs for the first time. Registration only needs to be performed once per
server.

Open a new MS-DOS prompt, or xterm window (UNIX).

Windows

At a command-line prompt, from the OCGTExample directory enter:

> nmake putit

UNIX

At a command-line prompt, from the OCGTExample directory enter:

% make putit

This script outputs the following lines to the screen:

putit StockWatchSrv OCGTExample/server.exe
[264:New Connection
(foobar.iona.ie,IT_daemon,*,userid,pid=275,optimised)]

The makefile uses the Orbix putit utility to register the server—see the
Orbix Administrator’s Guide for details.

3. Run the server program.

Open a new MS-DOS prompt, or xterm window (UNIX). From the
OCGTExample directory enter the name of the executable file—
server.exe (Windows) or server (UNIX).

The server outputs the following lines to the screen:

[StockWatchSrv:New Connection
(foobar.iona.ie,IT_daemon,*,userid,pid=275,optimised)]
 62

T h e S t o c k W a t c h D e m o n s t r a t i o n
[StockWatchSrv:Server "StockWatchSrv" is now available
to the network]
[Configuration tcp/1591/cdr]

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Stock CORBA object.

♦ The stringified object reference for the Stock object is written to the
local Stock.ior file.

♦ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

4. Run the client program.

Open a new MS-DOS prompt, or xterm window (UNIX). From the
OCGTExample directory enter the name of the executable file—
client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

[335:New Connection
(foobar.iona.ie,IT_daemon,*,userid,pid=275,optimised)]
[335:New IIOP Connection (foobar.iona.ie:1591)]
Symbol: IONA
Description: IONA Technologies Inc.
Current Price: 18

The client performs the following steps when it runs:

♦ It reads the stringified object reference for the Stock object from the
local Stock.ior file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Stock operations by invoking on the object
reference. This causes a connection to be established with the server
and the remote invocation to be performed.

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is running.

The passing of the object reference from the server to the client in this way is
suitable only for simple demonstrations. Realistic server applications use the
CORBA Naming Service to export their object references instead.
63

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Smart Pointers and Dumb Pointers
In the course of CORBA development, it is frequently necessary to create and use
heap-allocated data. The IDL-to-C++ mapping defines a set of smart pointer
types that make it easier for the developer to manage heap-allocated memory and
avoid memory leaks.

This section describes the following types of smart pointer:

• Smart pointer for strings.

• Smart pointer for object references.

Smart Pointer for Strings

For the basic string IDL type there are two representations in C++:

The string IDL type maps to a conventional C++ string, that is a null terminated
array of char. Therefore, just like a normal string, it is referenced using a char*
pointer. This is the dumb pointer referred to in the table above.

The CORBA::String_var smart pointer aids memory management. In order to
appreciate its role, it is necessary to begin with a few remarks about the memory
management of strings.

When you are writing client code you should keep in mind that return values from
CORBA invocations are dynamically allocated and must therefore be deleted
when you are finished with them. In particular, you must avoid writing code such
as the following:

// C++
// Wrong! – memory will be leaked.
cout << "Symbol: " << obj1->getSymbol() << endl;

This code is incorrect and leaks memory. The string returned from getSymbol()
is dynamically allocated so it must be deleted.

IDL C++ Kind of pointer

string char * Dumb pointer

CORBA::String_var Smart pointer
 64

T h e S t o c k W a t c h D e m o n s t r a t i o n
Allocation and deletion of CORBA strings should be done with the aid of the
following three helper functions:

static char * CORBA::string_alloc(CORBA::ULong len);
static void CORBA::string_free(char *str);
static char * CORBA::string_dup(const char *p1)

The CORBA::string_alloc() and CORBA::string_free() functions should be
used instead of new and delete to allocate and delete CORBA strings. This
ensures portability of your code across all platforms and is required for CORBA
compliancy. The function CORBA::string_dup() is a convenient function that
combines memory allocation and string copying into a single step.

Armed with these functions, it is now possible to rewrite the above code fragment
correctly:

// C++
// The correct way:
char * tmpP = obj1->getSymbol();

cout << "Symbol: " << tmpP << endl;
CORBA::string_free(tmpP);

This version of the code avoids leaking the memory associated with the returned
string.

There are, however, some drawbacks to this memory management approach. For
example, the requirement to release the string using CORBA::string_free() can
easily be forgotten in the midst of a large volume of code. More seriously, if an
exception is raised before the CORBA::string_free() line is reached the string’s
memory is leaked.

The CORBA::String_var smart pointer type is introduced to make it easier to
avoid memory leaks. The use of smart pointer classes is a common C++ trick. At
a minimum, it involves overloading the operator for dereferencing operator*.
The smart pointer is designed to imitate the syntax and semantics of an ordinary
pointer. However, in certain respects it displays smart behaviour not normally
associated with an ordinary (dumb) pointer.

The smart behaviour of CORBA::String_var relates to memory management. It
has the intelligence to automatically delete the string it is pointing at, once it goes
out of scope. This is illustrated by the following short example:

// C++
// Automatic memory management:
65

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
{ // Begin local scope
 CORBA::String_var tmpV = obj1->getSymbol();

 cout << "Symbol: " << tmpV << endl;

} // String is auto-deleted at end of this scope

There is no need to call CORBA::string_free() when using the tmpV smart
pointer. As soon as tmpV goes out of scope, its destructor calls
CORBA::string_free()—safely disposing of the string.

The nett effect of using the CORBA::String_var type is that dynamically
allocated strings behave like automatic variables.

Smart Pointer for Object References

An object reference in C++ can also be referenced either by a smart or a dumb
pointer. For example, when the Stock interface is mapped to C++ two pointer
types are made available:

A dumb pointer of Stock_ptr type behaves essentially like an ordinary pointer.
You can think of it as being synonymous2 with the Stock* pointer. The dumb
pointer type is typically used on the server side when implementing the methods
of a CORBA object.

In order to appreciate the significance of the smart pointer Stock_var, it is
necessary to present a short, and incomplete, discussion of the memory
management of object references. For a comprehensive discussion of memory
management for object references consult the Orbix C++ Programmer’s Guide.

Consider the following code extract, which shows an incorrect example that
ignores memory management issues:

IDL C++ Kind of Pointer

Stock Stock_ptr Dumb pointer

Stock_var Smart pointer

2. In fact, in the current version of Orbix it is typedef'ed to be Stock*. Nonetheless, you should
always use Stock_ptr for portability and CORBA compliancy.
 66

T h e S t o c k W a t c h D e m o n s t r a t i o n
// C++
// Client code
...
main() {

Stock_ptr obj1;

try {
iorfile.open ("./Stock.ior");
iorfile >> myIor;
iorfile.close();
obj1 = CORBA::Orbix.string_to_object(myIor);
...

}
catch(CORBA::SystemException &ex) { exit(1); }
...
// Wrong! – we forgot to release the object reference
// <----- 'obj1' gets leaked when we go out of scope

}

The problem with this example is that an object reference gets created when the
call is made to string_to_object() but is subsequently never deleted.

To help you manage the memory associated with Stock object references,
CORBA supplies two functions:

static Stock_ptr Stock::_duplicate(Stock_ptr obj)
static void CORBA::release(CORBA::Object_ptr obj);

The Stock::_duplicate() static method is called to make a copy of a given
object reference. The CORBA::release() method is called to delete an object
reference. For convenience, you can think of these functions as copying and
deleting instances of object references. In reality, there is only one instance of a
particular object reference—the ORB uses reference counting to create the
illusion that references are being copied and deleted.

On the server side, an object reference is created by calling the implementation
class constructor. For example, a Stock object can be obtained by creating an
instance of the Stock_i class.

With the help of the preceding memory management functions, the code extract
can be written correctly as follows:

// C++
// Client code
...
67

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
main() {
Stock_ptr obj1;

try {
iorfile.open ("./Stock.ior");
iorfile >> myIor;
iorfile.close();
obj1 = CORBA::Orbix.string_to_object(myIor);

}
catch(CORBA::SystemException &ex) { exit(1); }
...
// The object reference is released here, avoiding leaks.
CORBA::release(obj1);

}

The Stock_var smart pointer is a class with overloaded operators that is designed
to imitate the syntax of an ordinary Stock* dumb pointer.A Stock_var variable
automatically calls CORBA::release() on the object reference it is pointing at, as
soon as the Stock_var variable goes out of scope.

For example, the code extract can be rewritten with the help of the Stock_var
type, as follows:

// C++
// Client code
...
main() { // Begin scope of 'main()'

Stock_var obj1;

try {
obj1 = Stock::_bind("Stock-1:StockWatchSrv", host);

}
catch(CORBA::SystemException &ex) { exit(1); }
...
// Object reference is auto-released at the end of scope

} // End scope of 'main()'

In this example there is no need to call CORBA::release() explicitly because it is
called automatically in the destructor of obj1.
 68

T h e S t o c k W a t c h D e m o n s t r a t i o n
Smart Pointers for Other Data Types

Smart pointer types are provided for all CORBA data types that can be allocated
on the heap. These types are explained as they arise. For a comprehensive
discussion of CORBA data types and smart pointers (_var types) consult the
Orbix C++ Programmer’s Guide.
69

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 70

 3
Compound Types and Exceptions

The StockWatch example is extended to make use of the IDL
compound types struct and sequence. User exceptions are also
introduced and discussed.

Extending the Example
The version of the StockWatch demonstration developed in Chapter 2 allowed
you to find out the price of a stock at a particular point in time. In this chapter the
example is extended to implement a history feature, allowing you to access a list
of recent prices for a particular stock.

The StockWatch IDL must be updated to implement the history feature. Two new
IDL operations to the Stock interface are added:

The recordSale() operation is added to the interface to make it easy for
CORBA clients to append the latest price to the history list.

recordSale() Record the price at which the stock has just
traded and add the information to the history
list.

getRecentPrices() Retrieve the history of recent prices for this
particular stock.
71

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The introduction of the history feature also requires the use of more flexible data
types, so that a list of prices, which may be of variable length, can be specified as
a return value. This need is satisfied by the IDL compound types and this chapter
introduces the struct and sequence data types needed to pass around the history
of prices.

The other topic introduced in this chapter is exception handling. How IDL allows
you to specify user-defined exceptions via the exception data type is explained.
The advantage of the IDL exception handling mechanism is that it integrates
cleanly with the exception handling mechanisms of recent computer languages
such as Java and C++.

The extended IDL for StockWatch that features support for price history and
demonstrates exception handling is as follows:

// IDL
// File: StockWatch.idl

typedef float Money;
typedef string Symbol;
typedef string Date;

// Structs
struct PriceInfo {

Money m_price;
Date m_when;

};
typedef sequence<PriceInfo> PriceInfoSeq;

// Exceptions
exception rejected {

string m_reason;
};

// Interfaces
interface Stock {

Symbol getSymbol();
string getDescription() raises (rejected);
Money getCurrentPrice() raises (rejected);
PriceInfoSeq getRecentPrices() raises (rejected);
void recordSale(in Money price) raises (rejected);

};
 72

C o m p o u n d T y p e s a n d E x c e p t i o n s
The new features of this IDL, such as parameter passing modes, struct and
sequence data types, and exception handling are discussed in the sections below.

Parameter Passing Modes
The operation recordSale(), introduced in the above IDL, is the first example of
an operation that passes a parameter. The signature of the operation in IDL is as
follows:

// IDL
void recordSale(in Money price) raises (rejected);

The clause raises(rejected) is associated with exception handling and is
ignored for now. The operation recordSale() takes a single parameter called
price of type Money (where Money is typedef'ed to be of type float).

The signature of this operation is nearly identical to the syntax of a function
declaration in C++ or Java, except for the appearance of the in keyword, an
example of a parameter passing mode. The in keyword is used to indicate that
the parameter price is passed from the client to the server.

There are three different parameter passing modes that can be specified in IDL, as
follows:

It is compulsory to specify the parameter passing mode for each operation
parameter. If the mode is not specified for any parameter it is treated as a syntax
error in the IDL.

Mode Meaning

in Parameter passes from client to server

out Parameter passes from server back to client

inout Parameter passes from client to server and
back again
73

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
To illustrate what happens for each of the different modes, consider the following
fragment of IDL:

// IDL
interface Foo {

void op(
in string inParam,
inout string inoutParam,
out string outParam);

};

Figure 3.1 shows schematically how the various parameters are passed as op() is
invoked. When the invocation is made, a request message is sent from client to
server containing, amongst other things, the parameters inParam and
inoutParam. When the server has finished processing the invocation it sends
back a reply message from server to client including the parameters inoutParam
and outParam.

Figure 3.1: Parameters Passed as Foo::op() is Invoked.

Client Server

inParam inoutParam

outParaminoutParam
 74

C o m p o u n d T y p e s a n d E x c e p t i o n s
The struct Data Type

IDL Syntax

Consider the struct defined in the file StockWatch.idl:

// IDL
struct PriceInfo {

Money m_price;
Date m_when;

};

The syntax of struct declaration in IDL is virtually identical to the syntax used
in the C programming language. The declaration above results in the definition of
a new IDL type called PriceInfo. An arbitrary number of struct members can be
declared within the curly braces. The semicolon at the end of the closing brace is
mandatory.

Remember that IDL is a purely declarative language and there is no support in the
language for manipulating data types such as this PriceInfo struct. The sole
purpose of defining this struct in IDL is to allow it to be used as the parameter or
return value of an IDL operation.

Fixed and Variable Length Structs

The CORBA standard makes an important distinction between two different
kinds of struct. These different kinds of struct are known as fixed and variable
length structs. Consider the following example of a struct:

struct FixedStruct {
long l;

};

This defines a fixed length struct FixedStruct, so called because the length of
the struct is known at compile time. It contains one member, the long integer l,
therefore its total length is 32 bits1.

1. The length of the IDL long type is defined to be exactly 32 bits.
75

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Consider another example of a struct:

struct VariableStruct {
string s;

};

This defines the variable length struct VariableStruct. In this case the length of
the struct is not known at compile time. It has just one member, the variable
length string s, therefore the length of the struct is also variable.

Although there is no obvious syntactical difference between the two examples,
they differ in one important respect: the CORBA rules of memory management
for fixed and variable length types are different. These rules of memory
management are so important that it is helpful to think of fixed length structs and
variable length structs as distinct IDL data types.

A discussion of memory management issues is postponed to the memory
management section below.

C++ Mapping

Consider the PriceInfo struct once more. Under the action of the C++ compiler,
it is mapped to a corresponding C++ struct called PriceInfo. Here is an example
of a C++ code extract that uses the struct:

{
// 1. Allocate space for the PriceInfo struct (i.e. declare it)
PriceInfo myPriceInfo;

// 2. Initialize the PriceInfo struct
myPriceInfo.m_price = (CORBA::Float) 18.0;
myPriceInfo.m_when = CORBA::string_dup("April 1997");

// Use the PriceInfo struct
cout << "The price was: " << myPriceInfo.m_price << endl;
cout << "On the date: " << myPriceInfo.m_when << endl;

// 3. Deallocate the PriceInfo struct
// Happens automatically when leaving the current scope
}

 76

C o m p o u n d T y p e s a n d E x c e p t i o n s
In addition to the C++ struct called PriceInfo, the IDL compiler also generates
definitions for two pointer types: the dumb pointer PriceInfo_ptr and the smart
pointer PriceInfo_var. To see how a smart pointer is used in practice, the C++
code extract is rewritten to use the type PriceInfo_var instead an automatic
variable, as follows:

{
// 1. Allocate space for the PriceInfo struct (i.e. declare it)
PriceInfo_var myPriceInfoV = new PriceInfo();

// 2. Initialize the PriceInfo struct
myPriceInfoV->m_price = (CORBA::Float) 18.0;
myPriceInfoV->m_when = CORBA::string_dup("April 1997");

// Use the PriceInfo struct
cout << "The price was: " << myPriceInfoV->m_price << endl;
cout << "On the date: " << myPriceInfoV->m_when << endl;

// 3. Deallocate the PriceInfo struct
// Happens automatically when leaving the current scope
}

Note that when using the PriceInfo_var type you use pointer syntax throughout.
The only surprise comes at the last step, when it comes to deallocating the
PriceInfo struct. Since PriceInfo_var is a smart pointer type it automatically
deletes the memory pointed at as soon as it goes out of scope.

Deep Copy and Recursive Delete

There is more than one way to make a copy of the struct PriceInfo. For example,
struct PriceInfo contains m_when, a pointer to a string. When the struct is copied
there is the question of what happens to the string: whether just the pointer is
copied, or whether a the whole string is copied. In other words, the copy operation
might be a shallow copy or a deep copy.

CORBA requires that the copy is a deep copy. How this is achieved is an
implementation detail.
77

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
This means that code such as the following performs a deep copy:

// C++
PriceInfo_var myPriceInfoV1 = new PriceInfo();

myPriceInfoV1->m_price = (CORBA::Float) 18.0;
myPriceInfoV1->m_when = CORBA::string_dup("April 1997");

PriceInfo_var myPriceInfoV2 = new PriceInfo();

// Perform a deep copy of struct 1 to struct 2
*myPriceInfoV2 = *myPriceInfov1;

That last line can also be written:

// Perform a deep copy of struct 1 to struct 2
myPriceInfoV2 = myPriceInfov1;

having the same effect. The smart pointer type PriceInfo_var is smart enough to
realise that what you want is not a copy of the pointer to the struct but a deep copy
instead.

A similar question can be posed with respect to deletion of a struct. If a struct
contains a string, will the deletion of the struct also result in the deletion of the
member string or must the string be deleted as a separate step? CORBA specifies
that deleting the struct also results in deletion of the member string. In fact, it is a
general rule for compound CORBA data types that deletes are recursive. With
any highly recursive IDL data type, it is only necessary to delete the top level
item for all associated memory to be deallocated2.

2. An exception to this rule is the case where you have allocated the data yourself and used some
special options in the constructor.
 78

C o m p o u n d T y p e s a n d E x c e p t i o n s
The sequence Data Type

IDL Syntax

An IDL sequence is used to define what is effectively a variable length array. A
simple example of a sequence can be defined as follows:

// IDL
typedef sequence<long> LongSeq;

This defines a new IDL type LongSeq which can be used to hold a variable
number of IDL longs. A sequence is known within IDL as a template type
because the declaration of a sequence is parameterized by another IDL type. This
should not be confused with the concept of a C++ template; a sequence need not
even map to a C++ template.

You are allowed to declare sequences of any IDL type, not just basic types such
as long declared above. For example, the extension to StockWatch.idl declares
the following sequence:

// IDL
struct PriceInfo {

Money m_price;
Date m_when;

};
typedef sequence<PriceInfo> PriceInfoSeq;

In fact, it is even permissible to define sequences of sequences:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq> LongSeqSeq;

which allows you to get around the limitation that sequences are only one-
dimensional.
79

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
In all of these examples, the sequence is typedef'ed to give it a name. In fact it is
usually mandatory to give a sequence a name using a typedef. Thus the
following fragment of IDL is syntactically incorrect:

// IDL
interface Foo {

// Wrong! Anonymous sequence not allowed!
void op(in sequence<long> theSeq);

};

and would give rise to a syntax error if you tried to pass it through the IDL
compiler.

However, there is one notable exception to the rule that anonymous sequences are
not allowed. The syntax of IDL allows a very special case where a sequence is
being defined as a member of a struct:

// IDL
struct Node {

string nodeName;
sequence<Node> subNodes;

};

This fragment appears to violate IDL syntax but, because of its potential
usefulness, this declaration syntax is allowed as a special case in IDL.

Variable Length Sequence

In the case of sequences, there is no need to make the distinction between fixed
and variable length types as was done in the case of IDL structs. This is because
sequences are inherently of variable length.

C++ Mapping

A sequence is mapped to a class in C++. This C++ class is designed to be similar
to a one-dimensional array, except that it has two extra attributes: a length() and
a maximum(). This is illustrated in Figure 3.2.
 80

C o m p o u n d T y p e s a n d E x c e p t i o n s
Figure 3.2: The Length and Maximum of a Sequence Type

The meaning of the length() and maximum() attributes is as follows:

• length The number of elements of the sequence that are currently in use.
Valid indices for the sequence must lie in the range [0, length-1]. The
length also indicates the number of elements that are marshalled when the
sequence is passed a parameter of a remote invocation.

• maximum The number of elements allocated in the sequence memory
buffer. This attribute is greater than or equal to the length attribute. Note
that the number of allocated elements (the maximum) increases
automatically as the length is increased.

As an example, consider how to use a simple sequence of long:

// IDL
typedef sequence<long> LongSeq;

When this is mapped to C++, a corresponding C++ class called LongSeq is
defined. A sample of C++ code using LongSeq might look like the following:

// C++
{
// 1. Allocate the sequence (i.e. declaration)
LongSeq x(10); // x.maximum() is 10

// x.length() is 0
x.length(4)

length() maximum()
81

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
// 2. Initialize the sequence, etc.
// Can only access 4 elements
CORBA::ULong i;
for (i=0; i<4; i++) x[i] = i;

// Increasing length reallocates memory if necessary
x.length(20);
for (i=4; i<20; i++) x[i] = i;

// 3. Delete the sequence
// Happens automatically when it goes out of scope
}

The constructor for LongSeq takes a single parameter that sets the maximum of
the sequence, that is it makes an initial allocation of 10 elements. Notice that a
sequence always starts out with its length set to zero, therefore the first thing you
have to do to a sequence is explicitly set its length.

The sequence is accessed via an overloaded [] (indexing) operator. This gives the
sequence the appearance of a one-dimensional array. Note the type of the index
must be a CORBA::ULong.

In spite of its name, the attribute maximum() does not pose a real limit to the size
of a sequence. It is quite permissible, as in this example, to increase the length
beyond the maximum. The effect is that the maximum is automatically increased
to accommodate the new length.

A smart pointer LongSeq_var is also declared for this sequence. The above
example can be written using the LongSeq_var pointer, as follows:

// C++
{
// 1. Allocate the sequence
LongSeq_var xV = new LongSeq(10);

// xV->maximum() is 10
// xV->length() is 0

xV->length(4)
 82

C o m p o u n d T y p e s a n d E x c e p t i o n s
// 2. Initialize the sequence, etc.
// Can only access 4 elements
CORBA::ULong i;
for (i=0; i<4; i++) xV[i] = i;

// Increasing length reallocates memory if necessary
xV->length(20);
for (i=4; i<20; i++) xV[i] = i;

// 3. Delete the sequence
// Happens automatically when it goes out of scope
}

On the whole, the smart pointer LongSeq_var uses pointer syntax. An exception
to the expected syntax is the indexing xV[i] where you might have expected
(*xV)[i]. In fact, either of these is correct. The first version is supported as well
for convenience.

Deep Copy and Recursive Delete

Copying of sequences obeys deep copy semantics. That is, if a sequence contains
a compound type that contains other types, up to an arbitrary degree of nesting,
then a simple copy of the sequence recursively copies all of the nested data
contained in the sequence. Consider the simple example of a sequence of strings:

// IDL
typedef sequence<string> StringSeq;

The type StringSeq can be initialized and copied as follows:

// C++
// 1. Allocate and initialize the first sequence.
StringSeq_var originalSeq = new StringSeq(2);

// originalSeq->maximum() is 2
// originalSeq->length() is 0

originalSeq->length(2);
originalSeq[(CORBA::ULong)0] =

CORBA::string_dup("First string");
originalSeq[(CORBA::ULong)1] =

CORBA::string_dup("Second string");
83

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
// 2. Allocate the second sequence.
StringSeq_var copyOfSeq = new StringSeq(2);

// originalSeq->maximum() is 2
// originalSeq->length() is 0

// 3. Deep copy from originalSeq into copyOfSeq
*copyOfSeq = *originalSeq;

When the deep copy is carried out, by assigning *originalSeq to *copyOfSeq,
new copies of the two strings are made and the corresponding char* pointers for
the new strings are stored in (*copyOfSeq)[0] and (*copyOfSeq)[1]
respectively.

In keeping with the general rule for compound CORBA types, sequences also
have recursive delete semantics. Given a sequence with nested levels of data, it is
only necessary to call delete on the top level sequence in order to effect a
recursive delete of all data associated with the sequence. In the above code
extract, deletion is carried out automatically by the smart pointer type
StringSeq_var3.

Memory Management
The rules for the memory management of CORBA data types are important.
Mismanagement of memory leads either to dumping core (where memory is
unexpectedly deleted) or leaking of memory (if data is not deleted when it should
be). This is the price paid for explicit control over memory allocation in C++. In
Java, by contrast, memory management is much easier; it is taken care of by the
garbage collector.

There are three significant steps in the life-cycle of a CORBA data type:

• Allocation—either on the stack or on the heap (using new).

• Initialization

• Deallocation—either automatic, or using delete.

3. An exception to this rule is the case where you have allocated the data yourself and used some
special options in the constructor.
 84

C o m p o u n d T y p e s a n d E x c e p t i o n s
The CORBA developer has to understand where each of these steps is carried out,
whether in the calling code (client) or in the called code (server). The rules are
different for each of the different parameter passing modes. Thus there are
different memory management rules for each of the following five cases:

• in

• inout

• out—fixed length type

• out—variable length type

• return value

The memory management rules for each of these five cases can be summarized
by the following table:

A = Allocate

I = Initialize

D = Deallocate

C = Copy param explicitly, if needed on server

DO = Deallocate old param, if changed by server

Table 3.1: Summary of Memory Management Rules
for CORBA Data Types.

For the StockWatch demonstration it is enough to understand the rules for return
values and the in mode. The sample client and server code given at the end of this
chapter can be used as an example of the correct memory management of return
values. For a full exposition of memory management issues, consult the Orbix
C++ Programmer’s Guide.

in inout out
(fixed-len)

out
(variable-
len)

return value

Client A, I, D A, I, D A, D D D

Server C C, DO I, C A, I, C A, I, C
85

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Memory Management and the OCGT

If you do not have time to become expert in CORBA memory management, there
is significant help available in the form of the Orbix Code Generation Toolkit
(OCGT). Considerable care was taken during the development of the OCGT to
ensure that code would be generated strictly in accordance with the rules of
memory management. One of the intended uses of the OCGT, therefore, is to
generate sample code that serves as a model of correct memory management.

For example, given an IDL file Foo.idl, the following command:

idlgen cpp_genie.tcl –makefile –client –server \
–interface –complete Foo.idl

generates a sample application that shows how parameters passed to CORBA
invocations are correctly allocated, initialized and deallocated. By default, the
generated code uses the smart pointer (_var) types wherever possible. If you want
to see how the same example would look using dumb pointers instead, you can
use the –novar option to the cpp_genie. For example:

idlgen cpp_genie.tcl –makefile –client –server \
–interface –complete –novar Foo.idl

When using dumb pointers, memory deallocation is an explicit operation. It is
therefore easier to see where deallocation occurs.

Exception Handling
Exception handling is a very important capability of the ORB. Distributed
applications can often be affected by network failures or configuration problems.
It is therefore necessary to program these applications in a way that responds to
errors, enabling them to deal with network errors or other transient failures in a
flexible way.

Another reason for the importance of exception handling is to assist in the
component oriented approach to application development. In a CORBA
environment, server components and clients components are typically developed
by different groups of people. In this sort of environment, errors due to incorrect
usage or implementation limits of a particular component should be accompanied
by an error message that is as informative as possible. These kinds of error
message can be helpful to client component developers during the testing phase.
 86

C o m p o u n d T y p e s a n d E x c e p t i o n s
All CORBA exceptions are arranged in a hierarchy. There are two broad
categories of exceptions: CORBA system exceptions, which inherit from the base
class CORBA::SystemException; and CORBA user exceptions, which inherit
from the base class CORBA::UserException. Both of these exception classes, in
turn, are derived from the base class CORBA::Exception. This exception
hierarchy is illustrated in Figure 3.3.

Figure 3.3: Hierarchy of Exception Classes in CORBA.

The first category of exception is the CORBA system exception. Exceptions of
this type are raised exclusively by the ORB and they represent errors that
originate in the ORB runtime or stub/skeleton code. Errors in this category
include COMM_FAILURE, indicating network problems, and INV_OBJ_REF,
indicating that a particular object was not found on the server. Exceptions of this
type can be raised on an IDL operation without being explicitly declared. Most of
the exceptions in this category are standardized by the OMG and can be used
interoperably between ORBs.

The second category of exception is the CORBA user exception. Exceptions of
this type are intended to be used by application developers to signal application-
level exceptions. Unlike CORBA system exceptions, it is not possible to raise
arbitrarily any user exception on any operation. It is necessary, first of all, to
declare the user exception in IDL and to explicitly associate the user exception
with an operation by appending a raises() clause.

CORBA::Exception

CORBA::SystemException CORBA::UserException
87

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Consider, for example, the following extract from the StockWatch IDL file:

// IDL
// File: StockWatch.idl

... // Some definitions omitted.

// Exceptions
1 exception rejected {

string m_reason;
};

// Interfaces

interface Stock {
Symbol getSymbol();

2 string getDescription() raises (rejected);
Money getCurrentPrice() raises (rejected);
PriceInfoSeq getRecentPrices() raises (rejected);
void recordSale(in Money price) raises (rejected);

};

This IDL can be explained as follows:

1. Before an exception can be used it must be declared. The syntax for
declaring an exception is similar to that of a struct, with the keyword
exception being substituted for the keyword struct. The purpose of
declaring fields in a user exception is to make the exception as informative
as possible. However, it is also permissible to declare an exception that has
no fields, for example:

// IDL
exception rejected {};

would also be a valid declaration for an exception.

2. It is not enough just to define the exception in IDL. Before you can use it,
it is also necessary to add a raises() clause to each operation that might
raise the exception, as shown here. The raises() clause supports a
comma separated list of exceptions, if multiple exceptions are required.
This declaration mechanism bears a similarity to the C++ throw()
declaration. However, it differs in an important respect: the absence of a
raises() clause in an operation declaration implies that no user
exceptions may be raised by that operation (system exceptions are always
permitted).
 88

C o m p o u n d T y p e s a n d E x c e p t i o n s
When programming with user exceptions there are two aspects to their use. One
aspect is on the server side, where the user exception can be constructed and
thrown. The other aspect is on the client side, where the user exception can be
caught and handled.

On the server side, consider this example of the exception rejected being
thrown:

// C++
...
// Some lines of code omitted...
void
Stock_i::recordSale(Money price, CORBA::Environment &)

throw (CORBA::SystemException, rejected)
{

// Throw a CORBA User Exception ...
throw rejected("recordSale not implemented");

}

The user exception rejected maps to a class of the same name in C++. The
constructor for rejected takes a single string argument that is used to initialize
the field m_reason. If an exception has multiple fields, the C++ constructor
features multiple arguments to initialize the corresponding fields.

On the client side, the exception rejected can be explicitly caught as follows:

// C++
... // Some lines of code omitted.

try {
obj1->recordSale(latestPrice);

}
catch (rejected& ex) {

cerr << "UserException: rejected: reason = "
<< ex.m_reason << endl;

}

The exception rejected is caught by reference, which is the recommended way
of catching CORBA exceptions. The fields of the exception are accessible from
the caught instance ex, as in ex.m_reason.

It is also possible to catch the whole category of user exceptions with a single
catch clause. This works because user exceptions, such as rejected, inherit from
the base class CORBA::UserException. For example:
89

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
// C++
... // Some lines of code omitted.

try {
obj1->recordSale(latestPrice);

}
catch (CORBA::UserException& ex) {

cerr << ex << endl;
}

When this generic user exception is printed to cerr, it gives the type of the user
exception that was caught.

Some examples of how to throw and catch exceptions also appear in the sample
code in the following sections.

Client Code
Sample code that makes use of the new features of the Stock interface is shown
below. The code is intended to illustrate the concepts introduced in the preceding
section and is not intended to be a realistic example of a client program.

A complete sample client program can be obtained by pasting the code below into
the // Add Code Here section of an OCGT generated client:

// C++
// 1. Invoke 'recordSale()' with a recent price
Money latestPrice = 18.0;

try {
obj1->recordSale(latestPrice);

}
catch (rejected& ex) {

cerr << "UserException: rejected: reason = "
<< ex.m_reason << endl;

}
catch (CORBA::SystemException& ex) {

cerr << ex << endl;
}

 90

C o m p o u n d T y p e s a n d E x c e p t i o n s
// 2. Invoke 'getRecentPrices()' and print results
PriceInfoSeq_var priceHistoryV;

try {
priceHistoryV = obj1->getRecentPrices();

}
catch (rejected& ex) {

cerr << "UserException: rejected: reason = "
<< ex.m_reason << endl;

}
catch (CORBA::SystemException& ex) {

cerr << ex << endl;
}

cout << "PriceInfoSeq = {" << endl;
for (CORBA::ULong i=0; i < priceHistoryV->length(); i++) {

cout << "\t" << "[" << i << "] = {" << endl;
cout << "\t\t" << "m_price = "

<< priceHistoryV[i].m_price << endl;
cout << "\t\t" << "m_when = "

<< priceHistoryV[i].m_when << endl;
cout << "\t}" << endl;

}
cout << "}" << endl;

// Deallocation of 'priceHistoryV' takes place
// automatically at the end of the current scope.

First of all, the client invokes recordSale() to add a new price to the history of
sales. Then it invokes getRecentPrices() and prints out the complete price
history it received.

Note that it is necessary to declare the index of the sequence to be of type
CORBA::ULong. The C++ compiler relies on the type of the index to find the
correct definition of the overloaded [] (indexing) operator.
91

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Server Code
The OCGT can be used, as in the previous chapter, to generate the starting point
for the server. The server code can then be completed by filling in the missing
method bodies of the Stock_i class in file Stock_i.cxx.

The code below shows a sample implementation of the two new operations
recordSale() and getRecentPrices(). It is not intended to provide a realistic
implementation of these operations. The purpose of this code sample is to
illustrate how to use the features introduced in this chapter, that is the
manipulation of structs and sequences, and the use of exception handling.

// C++
//---
// Function:getRecentPrices()
//
// Description: Implementation of the IDL operation
// Stock::getRecentPrices().
//---

PriceInfoSeq*
Stock_i::getRecentPrices(

CORBA::Environment &)
throw(CORBA::SystemException,
 rejected)

{
// Dummy Implementation:
// Always returns the same data...

// Allocation
PriceInfoSeq* theInfoSeqP = new PriceInfoSeq(2);
theInfoSeqP->length(2);

// Initialization
(*theInfoSeqP)[(CORBA::ULong)0].m_when =

CORBA::string_dup("27 April 1999");
(*theInfoSeqP)[(CORBA::ULong)0].m_price =

(Money) 18.0;

(*theInfoSeqP)[(CORBA::ULong)1].m_when =
CORBA::string_dup("28 April 1999");

(*theInfoSeqP)[(CORBA::ULong)1].m_price =
 92

C o m p o u n d T y p e s a n d E x c e p t i o n s
(Money) 18.5;

return theInfoSeqP;
}

//---
// Function:recordSale()
//
// Description: Implementation of the IDL operation
// Stock::recordSale().
//---

void
Stock_i::recordSale(

Money price,
CORBA::Environment &)

throw(CORBA::SystemException,
 rejected)

{
// Dummy implementation:
// Echo the parameters to standard out...
cout << "Attempted to record sale." << endl;
cout << "Price = " << price << endl;

// Throw a CORBA User Exception now...
throw rejected("recordSale not implemented");

}

Notice how the memory management rules are applied to the return value of the
operation getRecentPrices(). The return value theInfoSeqP is declared to be a
dumb pointer InfoSeq*. This is deliberate, because if theInfoSeqP were
declared to be a smart pointer InfoSeq_var the data it pointed at would be
deleted as soon as the method returned. Declaring it to be a dumb pointer is the
only approach that makes sense.

Deallocation of the return value theInfoSeqP is the responsibility of the calling
code (usually the ORB runtime). It is deallocated after the method returns.
93

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 94

 4
Integration with a Database

The concept of a three-tier application is discussed and applied
to the StockWatch example.

Versions of the client application described in this chapter are located in the
/demos/common/cxx directory of your Orbix installation. The server code is
located in the /demos/common/src/servers/examplex directory of your Orbix
installation (where x=1-5).

Designing a Three-Tier Architecture
When building applications that use or generate persistent data, a key
architectural decision is how many tiers to include in the architecture.

Historically many applications were structured in two tiers, where application
and database servers were integrated, and the client application would typically
have explicit knowledge about the detail and schema of the database. This would
commonly extend to having embedded SQL calls in the client. Although this
approach has certain advantages, there are a number of problems with this tight
coupling of database clients and servers. For example:

♦ Any change to the database schema requires that all of the clients
which access that database also potentially need to change. This can
lead to technical and logistical problems, especially where large
numbers of clients are concerned.

♦ Clients can become bloated if they need to incorporate large database
libraries in order to operate.
95

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
♦ Distribution of clients over a wide area can be difficult to manage.

♦ Large numbers of clients can create a bottleneck at the database server.
This can be addressed by replicating the database, or by introducing a
transaction processing monitor to multiplex connections. Both of these
approaches can lead to added complexity.

These and other problems have led to the widespread adoption of a three-tier
approach to building distributed applications. Three-tiered architectures facilitate
communication between application clients and application servers, which in turn
communicate with databases. Orbix allows you to develop three-tier systems.

Benefits of a Three-Tier Architecture

CORBA, with its use of IDL to define application interfaces, is well suited for use
in a three-tier environment. By additionally employing OTS technology,
applications can readily co-ordinate two-phase commit transactions across
distributed components. Well-designed three-tier CORBA applications can also
make use of CORBA Naming and Trader Services in order to provide improved
scalability and location transparency for object services on the network.

The main benefits of the three-tier approach include the following:

• There is a much higher level of abstraction between the client and the
database. An intervening layer of application logic means that particular
database design aspects (including the type and version of the database
itself) can be hidden from the client, and changed.

• Once the application server, which is a client to the database, exposes a
well-defined and unchanging interface to its clients, modifying or
swapping out the database is easy.

• Additionally, when the load on a given application server becomes too
high, it is straightforward to add more servers to balance the load.
 96

I n t e g r a t i o n w i t h a D a t a b a s e
Factory Objects
This section introduces factory objects, a useful concept in the design of three-tier
applications with CORBA. There is nothing fundamentally new introduced here,
from the point of view of CORBA, but factory objects are very commonly used in
the design of CORBA interfaces. You can think of it as a factory pattern, a simple
design pattern.

The motivation for factory objects can be got by taking a closer look at the
existing design of the StockWatch system. In the current system there is only one
type of CORBA object, the Stock object. As the number of stocks increases, a
separate Stock object has to be instantiated in the server for each stock symbol.
Ultimately, in a fully fledged system, thousands of Stock objects may be needed
leading to the situation illustrated in Figure 4.1.

Figure 4.1: No Factory Object—All Objects Published in Naming Service

Client
Process

Server Process

. . . .

Naming Service
97

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
This approach does not scale particularly well. Some of the problems with this are
as follows:

• With a very large number of stocks, there might not be enough memory to
instantiate all of the Stock objects.

• There may be unacceptable latency while the server starts up because it
takes a long time to instantiate all of the objects.

• The access that the client has to these objects is inflexible. Clients must
know the identifier for each Stock object and access them directly. There
is no facility, for example, to search for particular kinds of stock.

To avoid instantiating all of the Stock objects at once, it would be better to have
some mechanism for creating Stock objects dynamically, as they are needed. In
other words, what is needed is something like the distributed equivalent to a C++
constructor.

There is no such thing as a constructor in IDL. However you can get the effect
that you need by defining a factory interface. A factory interface is any interface
that can be used to obtain references to other objects.

In the case of Stock objects the factory interface StockWatch can be introduced
both to manage the Stock objects and to dynamically instantiate them as they are
needed. The StockWatch interface is defined as follows:

// IDL
// File – StockWatch.idl

. . .

typedef sequence<Symbol> SymbolSeq;

interface StockWatch {

 SymbolSeq getSymbols ()
 raises (rejected);

 Stock getStockBySymbol (in Symbol aSymbol)
 raises (rejected);

};

The first operation getSymbols() returns a list of symbols recorded in the
database, each of which corresponds to a Stock object.
 98

I n t e g r a t i o n w i t h a D a t a b a s e
The second operation getStockBySymbol() is the operation analogous to a
constructor. Given a valid symbol, it dynamically instantiates the corresponding
Stock object and returns a reference to it.

It is easy to spot a factory interface: one of its operations has a return type that is
the name of another interface. In this example, the operation
getStockBySymbol() has the return type Stock.

Figure 4.2: Factory Object—One Object Published in the Naming Service

With the introduction of the StockWatch factory interface, the system can by
described by Figure 4.2. In this system there is one StockWatch_i object
(implementing the StockWatch interface) and a small number of Stock objects.

A sample implementation of the StockWatch interface is provided below in the
Server Implementation section.

Client
Process

Server Process

Naming Service

Factory Object

Stock Objects

Single entry in
Naming Service
99

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
StockWatch Three-Tier Application
To illustrate Orbix we work through a simple StockWatch example. This example
provides stock price information for a selected number of stocks. It consists of a
server process that accesses stock prices from persistent storage, in this case an
Oracle database. Figure 4.3 illustrates the components in the application. These
consist of:

• A C++ StockWatch client, and a Java StockWatch client.

These clients invoke IDL operations in the server via the CORBA IIOP
protocol.

• A C++ StockWatch server.

The server processes client requests, and can access and communicate
implicitly with persistent storage via SQL statements embedded in ‘C’.

• Persistent storage.

Storage, for StockWatch, could be in the form of one of the following
databases: Oracle or SQLServer.

Figure 4.3: Simple Three-Tiered Architecture

The three tier architecture features two important interfaces, indicated in
Figure 4.3 by a thick black line at each side of the C++ server.
 100

I n t e g r a t i o n w i t h a D a t a b a s e
These interfaces can be described as follows:

• 1st–2nd tier interface—The IDL interface. This represents the interface
between remote clients and the CORBA server.

• 2nd–3rd tier interface—The backend interface. This represents the
interface between the C++ server and the database. The StockWatch
example defines this interface in terms of an abstract C++ class called
backend.

The Database Schema

Two database tables are used in the StockWatch example. The SYMBOLS table
contains the name, symbol description and current stock price(s) of a company.

Example SQL command to create the SYMBOLS table:

CREATE TABLE SYMBOLS (NAME VARCHAR(20) PRIMARY KEY,
SYM_DESC VARCHAR(50) NOT NULL,
VALUE REAL);

Table SYMBOLS

Field Type & Names Field Descriptions

string NAME Name of symbol.

string SYM_DESC Description of symbol.

number VALUE Current stock price(s) of
company.

Table 4.1: The SYMBOLS Table
101

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The PRICES table contains the history of stock prices for a given company and
maintains this history on a date basis.

Example SQL command to create the PRICES table:

CREATE TABLE PRICES (NAME VARCHAR(20) NOT NULL,
VALUE REAL,
PRICE_DATE VARCHAR(30) NOT NULL);

The IDL Interfaces

This IDL plays the role of interface between the first and second tier of the three-
tier application. The IDL used for example 1 of the StockWatch example is as
follows:

// IDL
// CORBA IDL for the StockWatch example

#include "EventService.idl"

// Basic type definitions
typedef string Date;
typedef float Money;
typedef string Symbol;
typedef sequence<Symbol> SymbolSeq;

// Exceptions
exception rejected {
 string m_reason;
};

Table PRICES

Field Type & Names Field Descriptions

string NAME Name of stock.

number VALUE Current value of stock.

number PRICE_DATE Stock price history.

Table 4.2: The PRICES Table
 102

I n t e g r a t i o n w i t h a D a t a b a s e
// Structs
struct PriceInfo {
 Money m_price;
 Date m_when;
};
typedef sequence<PriceInfo> PriceInfoSeq;

// Interfaces
interface Stock {
 Symbol getSymbol();
 string getDescription ()
 raises (rejected);
 Money getCurrentPrice ()
 raises (rejected);
 PriceInfoSeq getRecentPrices ()
 raises (rejected);
 void recordSale(in Money price)
 raises (rejected);
 CosEventChannelAdmin::ConsumerAdmin getFeed();
};

interface StockWatch {
 SymbolSeq getSymbols ()
 raises (rejected);
 Stock getStockBySymbol (in Symbol aSymbol)
 raises (rejected);
};

This version of the StockWatch IDL features a new operation Stock::getFeed()
which is used in conjunction with the event service. It is not needed for example 1
and is discussed later in connection with the event service.
103

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The Backend Interface

The backend interface is defined as an abstract C++ class that hides database
details and exposes methods useful to the StockWatch server. This abstract class
plays the role of interface between the second and third tier of the three-tier
application. It is defined as follows:

class backend {

public:
~backend() {}
virtual char* get_all_symbols(

char**& symbols,
int& numSymbols)=0;

virtual char* get_symbol_description(
const char* sym,
char*& desc)=0;

virtual char* get_symbol_prices(const char* sym,
 float*& prices,
 char**& times,
 int& num_returned)=0;

virtual char* get_current_price(const char*, float&)=0;

virtual char* put_current_price(const char*, const float)=0;
};

The get_all_symbols() returns a list of all stock symbols in the database,
get_symbol_description() returns a description of a specified stock symbol,
and get_symbol_prices() returns the price of a selected stock symbol.

Class backend is defined as an abstract C++ class. You can easily plug in
different underlying database systems by sub-classing backend.
 104

I n t e g r a t i o n w i t h a D a t a b a s e
Server Implementation
The structure of the server code is outlined in Figure 4.4.

The top layer of Figure 4.4 is the StockWatch IDL interface that stands between
the first and second tiers of the application.

Figure 4.4: Structure of StockWatch Server Program

The middle layer of Figure 4.4 is the backend interface, defined as an abstract
C++ class, that stands between the second and third tier of the application.
Specific sub-classes of backend, such as oracle_backend, are implemented to
allow different databases to plug into the StockWatch demonstration. The
implementation details of these backend classes are not considered here since that
is purely an exercise in database programming.
105

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Implementation of Stock_i

Sample implementations for the Stock interface have already been given in the
previous chapters. To integrate with the database, Stock_i must be modified to
retrieve information from the database, via the backend class, and use this data
for return values instead. The necessary modifications are straightforward and not
presented here.

Implementation of StockWatch_i

The implementation of the StockWatch interface is instructive as it illustrates
typical features of the factory design pattern, discussed earlier in this chapter. It
also affords an opportunity to illustrate how the backend interface is used to
interact with the database. The code for the constructor of the StockWatch_i
class is as follows:

// C++
#define EXCEPTIONS
#include "StockWatch_i.h"
#include <iostream.h>
#include <stdio.h>

StockWatch_i::StockWatch_i(
backend* b,
unsigned char feed)

{
m_backend = b;
m_cache = new StockObjCache;

if (feed){ ... // Ignore code for using event service.
}

}

The variables m_backend and m_cache are two private members of the
StockWatch_i class. The m_backend is used to hold a reference to the backend
object and it provides the interface for all subsequent interaction with the
database.

The m_cache holds a reference to a hash table. It is used to store references to
Stock objects that are currently active in memory. The stock symbol is used as
the key and the stock object reference as the value in the hash table.
 106

I n t e g r a t i o n w i t h a D a t a b a s e
The first of the IDL operations to be implemented is the getStockBySymbol()
method:

Stock_ptr StockWatch_i::getStockBySymbol(
const char* sym,
CORBA::Environment &IT_env)

{
1 Stock_i* stk = m_cache->find(sym);

if (stk){
 cout << "Found one in the cache" << endl;
 return Stock::_duplicate(stk);
}

//
// A non-zero return value indicates a database error.
// A null out value for desc indicates that the symbol
// does not exit.
//

char* desc;
char* status =

2 m_backend->get_symbol_description(sym,desc);
if (status){

throw rejected(status);
}
if (!strlen(desc)){

throw rejected("Bad Symbol");
}
delete desc;

stk = new Stock_i(sym,m_backend,m_eventChanMgr);
m_cache->insert(sym,stk);
return Stock::_duplicate(stk);

}

This code can be explained as follows:

1. The implementation checks to see whether the stock object has already
been loaded into memory from the database by searching the cache. If an
object reference is found in the cache, the reference to the existing
Stock_i object is duplicated and used as the return value.
107

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The call to Stock::_duplicate() is needed because of the rules of
memory management. To prevent the ORB from deallocating the returned
object reference, a call is made to Stock::_duplicate().

2. If the implementation fails to find the stock symbol in its cache, it
proceeds to check whether a record exists for this particular symbol in the
database. If the method get_symbol_description() fails it can be
deduced that the symbol does not exist, in which case a CORBA user
exception of type rejected is raised to alert the client.

If a record of the symbol does exist in the database, the implementation
proceeds to instantiate a Stock_i object, records this object reference in
its cache and returns it, taking care to duplicate it first.

The other operation of the StockWatch interface is getSymbols() which returns a
list of all the stock symbols recorded in the database. It is implemented as
follows:

SymbolSeq* StockWatch_i::getSymbols(
CORBA::Environment &IT_env)

{
char** symbolArray;
int numSymbols = 0;

char* status = m_backend->get_all_symbols(
symbolArray,
numSymbols);

if (status){
throw rejected(status);

}
SymbolSeq* sseq = new SymbolSeq();
sseq->length(numSymbols);

for (int i = 0; i < numSymbols;i++){
 (*sseq)[(CORBA::ULong) i] =

CORBA::string_dup(symbolArray[i]);
 delete symbolArray[i];
}

if (numSymbols) {
 delete symbolArray;
}
return sseq;

}

 108

I n t e g r a t i o n w i t h a D a t a b a s e
The implementation is a straightforward wrapper for the function
backend::get_all_symbols(). First get_all_symbols() is invoked, returning
symbolArray. The array of strings symbolArray is then converted to the CORBA
type SymbolSeq.

Note how the rules for memory management of CORBA types are applied in this
case. A dumb pointer type SymbolSeq* is used in the declaration of sseq rather
than a _var type—it is not the responsibility of the implementation code to ensure
that the return value is deallocated. The deallocation of the return value takes
place after the getSymbols() method has returned and is carried out by the
calling code.
109

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 110

 5
The Naming Service

The standard CORBA Naming Service is introduced and
programming examples are given. A non-standard wrapper
class, with convenient features for accessing the naming
service, is also presented.

Many large scale applications use a CORBA-compliant naming service such as
OrbixNames as a centralized object repository. OrbixNames is Progress
Software’s implementation of the CORBA Naming Service specification. The
role of OrbixNames is to allow a name to be associated with a CORBA object,
and to allow that object to be found subsequently by resolving that name. Instead
of requiring that a client bind to a specific server on some host, the server binds a
name-to-object mapping in the names repository. The client resolves that object
reference by looking up the name. The name still needs to be available to the
client, but it need not be concerned with the object’s server location.

OrbixNames Concepts
OrbixNames maintains a database of bindings between names and object
references. A binding is an association between a name and an object. The
naming service provides operations to resolve a name, to create new bindings, to
delete existing bindings, and to list the bound names.

A name is always resolved within a given naming context. The naming context
objects in the system are organized into a naming graph, which may form a
naming hierarchy, much like that of a filing system.
111

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 5.1 illustrates the components of the application:

Figure 5.1: Using OrbixNames in Orbix

1. A StockWatch server publishes StockWatch object references in
OrbixNames. OrbixNames maps names to these StockWatch object
references, thereby maintaining a repository of name associations in the
form of a database.

2. Clients resolve names in OrbixNames.

3. Clients remotely invoke operations on object references in the StockWatch
server.
 112

T h e N a m i n g S e r v i c e
Naming Service IDL
Figure 5.2 shows a tree-like hierarchy in a naming service. The black discs
represent naming contexts and the open discs represent object bindings. At the
root of the hierarchy is the root naming context. This is generally the point of
entry to the naming service: all other naming contexts and name bindings are
accessible from the root. In Figure 5.2 are shown two other naming contexts
example1 and example2. The naming context example1 shows two bindings
oracle and sqlsrv.

Figure 5.2: StockWatch Naming Context Hierarchy

A convenient string format is used to refer to entries in the naming service—a
format used by the OrbixNames command-line utilities. Using this format1, the
bindings under the naming context example1 can be denoted as
"example1.oracle" and "example1.sqlsrv". The '.' (dot) character is used to
separate the components of a name.

Name Format

The format of a name is defined by the naming service IDL (see OrbixNames
Programmer’s and Administrator’s Guide for a complete listing of this IDL) in the
module CosNaming2. Names are defined in IDL as follows:

1. This is not a standard string format. The OMG has yet to ratify a standard string format for names.
However, according to the current draft of the Interoperable Naming Service, the name component
separator character is likely to be standardized as '/' (forward slash).
113

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
#pragma prefix "omg.org"

module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
...
// Further definitions not shown...

};

An individual name component is defined as a struct containing two fields, an id
field and a kind field. The id field is intended to function as a simple identifier
while the kind field is intended to describe the purpose of the named entity. Note,
however, that the kind field currently does not enjoy any special status. In most
cases it is left blank (that is, equal to an empty string).

The id field and kind field taken together are used to specify a name component
uniquely. Therefore, if the kind field is not blank it must also be supplied as part
of the name component in order to avoid ambiguity.

A complete Name is defined to be a sequence of name components. For example,
the name "example1.oracle" translates into a sequence of two name
components:

The kind field is implicitly assumed to be blank.

2. The Cos in CosNaming stands for common object services.

Sequence index id field kind field

0 "example1" ""

1 "oracle" ""
 114

T h e N a m i n g S e r v i c e
In the string format used by the OrbixNames utilities, a '-' (hyphen) is used to
separate the id field from the kind field. For example, a name such as
"example1-TheKindField.oracle" translates into:

There are, in general, no restrictions on the strings specified in the id or kind
fields except that OrbixNames will not accept an empty string for the id field.

Binding

The most common operation carried out by servers is that of publishing an object
binding in the naming service. The entry thus created can be resolved by a client,
at a later stage, in order to locate the associated object.

The operation used to create an object binding is called rebind() and it is defined
as part of the interface NamingContext. Most of the interesting functionality of
the naming service is defined in the interface NamingContext. The relevant
extract of IDL is as follows:

#pragma prefix "omg.org"

module CosNaming {
interface NamingContext {

...
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);
...

};
...
// Further definitions not shown...

};

The operation rebind() takes two arguments: a Name, as defined in the previous
section, and Object, representing an object reference.

Sequence index id field kind field

0 "example1" "TheKindField"

1 "oracle" ""
115

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The type Object has a special significance in IDL. It represents the base interface
for all interfaces—in other words, all IDL interfaces implicitly inherit from type
Object. Therefore, a parameter of type Object allows you to pass object
references of arbitrary type.

When rebind() is invoked it creates an object binding—an association between
the specified name and object reference, stored persistently in the Names
Repository. Since an object reference gives the location of a CORBA object,
another way of expressing this is to say that the object's location is stored under a
particular name.

There are, in fact, two operations available for creating object bindings: these are
rebind() and bind(). The operation rebind() has more convenient semantics
because it allows you to overwrite existing entries in the naming service.

Resolving

The most common operation carried out by clients is that of resolving a name to
obtain an object reference. In doing so, clients are effectively executing a find
operation because an object reference contains location details for the remote
object.

The operation used to resolve a name is called resolve() and is defined as part
of the NamingContext interface. The relevant extract of IDL is as follows:

#pragma prefix "omg.org"

module CosNaming {
interface NamingContext {

...
Object resolve(in Name n)

raises(NotFound,
CannotProceed,
InvalidName);

...
};
...
// Further definitions not shown...

};

The client supplies the Name of the object it wishes to locate and receives a return
value Object, which is the corresponding object reference.
 116

T h e N a m i n g S e r v i c e
The special type Object is also used here because it offers the flexibility to return
object references of any type.

How Servers Bind Objects in OrbixNames
The following code sample demonstrates how a server names an object. It shows
how the main() function of a StockWatch server could be changed to publish a
single StockWatch object to the naming service.

// serverOracle.cc
...
oracle_backend orac(argv[1], argv[2]);

try {
// Set my Orbix server name
// It is recommended that this should be done BEFORE
// objects are instantiated, and put into OrbixNames

1 CORBA::Orbix.setServerName(serverName);
// Instantiate my instance of StockWatch
StockWatch_i swatch(&orac);
// Bind to OrbixNames
CosNaming::NamingContext_var rootCtx;

2 rootCtx =
CosNaming::NamingContext::_bind("root:NS",host);

// Construct a Name.
3 tmpName = new CosNaming::Name(2);

tmpName->length(2);
tmpName[0].id = CORBA::string_dup("example1");
tmpName[0].kind = CORBA::string_dup("");
tmpName[1].id = CORBA::string_dup("oracle");
tmpName[1].kind = CORBA::string_dup("");

// Now bind() my instance of StockWatch in OrbixNames
4 rootCtx->rebind(tmpName,&swatch);

// Now wait for incoming invocations.
5 CORBA::Orbix.impl_is_ready(serverName,TIMEOUT);

} catch ... // Series of catch blocks hidden
117

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The code is explained as follows:

1. Initialize the Orbix specific server name to example1/oracle. Orbix
requires that applications which publish objects in OrbixNames call either
CORBA::BOA::setServerName() or CORBA::BOA::impl_is_ready()
before interaction with OrbixNames. Object references cannot be correctly
created until the server name has been set because Orbix needs to embed
the server name into the object reference.

2. Obtain a proxy to the root naming context using the Orbix _bind()
feature. An alternative approach is to use Progress Software’s
implementation of the CORBA initialization service.

3. Construct an instance of CosNaming::Name. The name constructed can be
written in the OrbixNames utilities string format as "example1.oracle".

4. Create a name-to-object binding in OrbixNames. The use of rebind()
handles the case where the name-to-object mapping already exists in
OrbixNames.

5. A call to impl_is_ready() signals that the server is ready to receive
invocations from clients and starts a CORBA event loop for the processing
of these events.
 118

T h e N a m i n g S e r v i c e
How a Client Finds a Named Object
Clients find objects by resolving names and obtaining object references in the
naming service. The following code sample illustrates how a C++ client finds a
named object:

// clientns.cc

int main(int argc, char **argv) {
StockWatch_var swatch;
CosNaming::Name_var tmpName;

char* server = argv[1];
char* demo = argv[2];
char* host = argv[3];

try {
// Bind to OrbixNames
cout << " Binding to OrbixNames " << endl;
CosNaming::NamingContext_var rootCtx;

1 rootCtx=CosNaming::NamingContext::_bind("root:NS",host);

// Construct a Name
2 tmpName = new CosNaming::Name(2);

tmpName->length(2);
tmpName[0].id = CORBA::string_dup("example1");
tmpName[0].kind = CORBA::string_dup("");
tmpName[1].id = CORBA::string_dup(server);
tmpName[1].kind = CORBA::string_dup("");

// Now resolve() my instance of StockWatch in OrbixNames
3 CORBA::Object_var tmpObj = rootCtx->resolve(tmpName);

4 swatch = StockWatch::_narrow(tmpObj);
if (CORBA::is_nil(swatch)) {

cerr << "Error: StockWatch narrow failed" << endl;
exit(1);

}
menuLoop(swatch);
} catch ... // Series of catch blocks hidden

}

119

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The code is explained as follows:

1. Obtain a proxy to the root naming context.

2. Construct an instance of CosNaming::Name. The name constructed can be
written in the OrbixNames utilities string format as "example1.oracle".

3. Resolve the name in OrbixNames. If the binding exists, then an instance of
CORBA::Object is returned, otherwise the exception
CosNaming::NamingContext::NotFound is thrown.

4. Narrow the instance of CORBA::Object to a StockWatch proxy. The type
CORBA::Object is the C++ representation of the IDL type Object. Since
CORBA::Object is a generic base class it is not possible to invoke any
useful methods on the returned object reference until it has been narrowed
to the correct type.

In this example, a StockWatch object is expected so the static method
StockWatch::_narrow() is used to cast tmpObj to the correct type.

If the narrowing should fail for any reason, the _narrow() method will
return a nil object reference. It will not throw a CORBA exception. To
check for an error condition arising from a failed narrowing you can use
the function CORBA::is_nil() to test if the narrowed reference (in this
example swatch) is nil or not.

Names Wrapper Demo
One drawback to the NamingContext interface is that it does not support the
specification of names in a simple string format. Instead the user is forced to
specify a name in the relatively ungainly form of a CosNaming::Name, a sequence
of structs.

To simplify the interface to the naming service, Orbix supplies a sample
implementation of a parser which can convert a string format name to a
CosNaming::Name. The parser is implemented by the class IT_Demo_NSWParser
and can be found in the directory ProgressRoot/demos/demolib of your Orbix
installation.
 120

T h e N a m i n g S e r v i c e
The public interface to the parser class is as follows:

// C++
// File: IT_Demo_NSWParser.h

class IT_Demo_NSWParser {
public:

static IT_Demo_NSWParser *
1 create(

char componentSeparator,
char idKindSeparator,
char escape

) throw ();

virtual CosNaming::Name *
2 stringToName(

const char *prefix,
const char *name

) throw ();

void
3 defineNameSeparators(

char componentSeparator,
char idKindSeparator,
char escape

) throw ();

};

The three public methods of IT_Demo_NSWParser can be explained as follows:

1. The create() method is used instead of a constructor to create an instance
of a parser object. For example, to create a parser that accepts strings in the
same format as that used by the OrbixNames utilities you would initialize
it as follows:

// C++

IT_Demo_NSWParser * theParserP;
theParserP = create('.','-','\\');
121

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
2. The method stringToName() carries out the conversion of a string to a
CosNaming::Name. The prefix is simply prefixed to the name argument
before the conversion takes place. That is, given the parser initialized as
above, calling stringToName("example1","oracle") would be
equivalent to calling stringToName("","example1.oracle").

3. The method defineNameSeparators() allows the string format accepted
by the parser instance to be altered at any time.

There is another class IT_Demo_NSW provided in the directory
ProgressRoot/demos/demolib, which provides a wrapper around the naming
service. This wrapper class provides a slightly enhanced interface to the naming
service and can be used instead of making invocations directly on the
NamingContext interface. However, it must be borne in mind that this is not a
standard interface and the code is supplied only as a demo.

The class IT_Demo_NSW has the following public methods:

class IT_Demo_NSW {
public:

1 IT_Demo_NSW () throw();
virtual ~IT_Demo_NSW() throw();

2 virtual void setNamePrefix (const char *contextName) throw ();

3 virtual void clearNamePrefix () throw ();

4 virtual void registerObject (
const char *objectName,
CORBA::Object_ptr object

) throw (CORBA::Exception);

virtual CORBA::Object_ptr
5 resolveName(const char *name) throw (CORBA::Exception);

virtual void
6 removeObject (const char *objectName) throw (CORBA::Exception);

enum BehaviourOption {
ignoreNotFoundError = 0x01,
createMissingContexts = 0x02,
overwriteExistingObject = 0x04,
deleteEmptyContexts = 0x08

};
 122

T h e N a m i n g S e r v i c e
7 void setBehaviourOption(BehaviourOption option) throw ();
...

};

The methods of class IT_Demo_NSW can be explained as follows:

1. The constructor for IT_Demo_NSW initializes the wrapper in a state where it
accepts names given in the string format of the OrbixNames utilities. In
fact, each wrapper instance is implicitly associated with an instance of the
parser IT_Demo_NSWParser which it uses to convert strings to names.

2. The method setNamePrefix() specifies a name prefix which is prefixed
to object names appearing in all subsequent invocations of
registerObject(), resolveName() and removeObject().

3. The method clearNamePrefix() clears the name prefix set by
setNamePrefix().

4. The method registerObject() replaces the functionality of rebind() or
bind(), causing a name binding to be published to the naming service. It
takes its name argument in a string format, prepending whatever name
prefix is currently set. The semantics of this method are affected by the
options set by setBehaviourOption().

5. The method resolveObject() replaces the functionality of resolve(),
looking up a name in the naming service and returning an object reference.
It allows the name argument to be specified in a string format, prepending
the current value of the name prefix.

6. The method removeObject() replaces the functionality of unbind() and
is used to delete a name binding from the naming service. The current
name prefix is prepended to the objectName argument to specify the name
binding. The semantics of this method are affected by the options set by
setBehaviourOption().

7. There are four behaviour options, of type BehaviourOption, which can be
set via the method setBehaviourOptions(). These options have the
following effects:

ignoreNotFoundError—causes the removeObject() method to ignore
any errors of the type CosNaming::NamingContext::NotFound.

createMissingContexts— registerObject() will create any naming
contexts needed for the compound name.
123

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
overwriteExistingObject—cause registerObject() to overwrite any
existing entry in the naming service (same semantics as rebind()).

deleteEmptyContexts—removeObject() will delete any contexts left
empty as a result of removing an object from the naming service or as a
result of the automatic removal of a context.

Server Code Using Names Wrapper
The following code extract shows the implementation of the main() function for
the StockWatch server that connects to an Oracle database backend:

// C++
// File: serverOracle.cxx

...
#include <it_demo_nsw.h>
...

#define TIMEOUT 1*1000*60 // 1 mins.

int main(int argc, char **argv) {
1 CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"Orbix");

CORBA::BOA_var boa = orb->BOA_init(argc, argv, "Orbix_BOA");

char serverName[64];
char *username = argv[1];
char *passwd = argv[2];

sprintf(serverName,"%s/%s","example1","oracle");

orb->setServerName(serverName);
//Indicate server should not quit while clients are connected
boa->setNoHangup(1);

// For correct generation of IORs, one must call impl_is_ready
// before any objects are created.

2 boa->impl_is_ready(serverName, 0);

// Create an implementation object
oracle_backend orac(username, passwd);
 124

T h e N a m i n g S e r v i c e
try{
3 IT_Demo_NSW ns_wrapper;

ns_wrapper.setNamePrefix("example1");

4 StockWatch_var swatch = new StockWatch_i(&orac);

const char *object_name = "oracle";

5 ns_wrapper.setBehaviourOption(
IT_Demo_NSW::createMissingContexts);

ns_wrapper.setBehaviourOption(
IT_Demo_NSW::overwriteExistingObject);

// register the object in the naming service
6 ns_wrapper.registerObject(object_name,swatch);

7 boa->impl_is_ready(serverName, TIMEOUT);
}
catch (CORBA::Exception &ex) {

cerr << ex << endl;
CORBA::release(orb);
exit(1);

}
cout << "server exiting" << endl;

return 0;
}

The code can be explained as follows:

1. The functions CORBA::ORB_init() and CORBA::ORB::BOA_init() are
used to obtain, respectively, references to a CORBA::ORB object and a
CORBA::BOA object. These two functions are part of the CORBA
initialization service used for bootstrapping an ORB. The two references
orb and boa obtained in this way are meant to be used in place of the
global static object CORBA::Orbix. The methods accessible from the
CORBA::ORB object are useful for both clients and servers. The methods
exposed by the CORBA::BOA class (which inherits from CORBA::ORB) are
intended to be used by server programs. The use of the object
CORBA::Orbix is now deprecated.
125

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
2. The method impl_is_ready() is invoked with a zero timeout before any
name bindings are published to the naming service. It must be invoked
before any new object references are created. Note how it is invoked on
the boa instance rather than using the CORBA::Orbix global object.

3. An instance of a names wrapper IT_Demo_NSW is created and the prefix is
set to be "example1".

4. An instance of interface StockWatch is created by instantiating a
StockWatch_i object.

5. Two behaviour options are set for the names wrapper:
createMissingContexts and overwriteExistingObject.

6. The method registerObject() publishes the object reference swatch to
the naming service. Assuming that object_name is equal to "oracle", the
name used in the name binding is "example1.oracle" (since "example1"
is the current prefix). On account of the behaviour options set in the
preceding step, the naming context "example1" will be created if it does
not already exist, and if the name binding "example1.oracle" already
exists it will be overwritten.

7. When impl_is_ready() is called with a non-zero timeout the server
enters a state where it begins processing client connection requests and
invocations.

Client Code Using Names Wrapper
The following code extract shows the implementation of the main() function for
the client clientns.cxx which connects to the StockWatch server with the help
of the naming service:

// C++
// File: clientns.cxx

...
#include <it_demo_nsw.h>
...

int main(int argc, char **argv) {
char* object_name = argv[1];
char* demo = argv[2];
 126

T h e N a m i n g S e r v i c e
1 CORBA::ORB_var orb = CORBA::ORB_init(argc,argv,"Orbix");

try {
2 IT_Demo_NSW ns_wrapper;

ns_wrapper.setNamePrefix(demo);

3 CORBA::Object_var obj = ns_wrapper.resolveName(object_name);
4 StockWatch_var swatch = StockWatch::_narrow(obj);

5 if (CORBA::is_nil(swatch)) {
 cout << "StockWatch::_narrow() failed" << endl;
 CORBA::release(orb);
 exit(1);
}

menuLoop(swatch);
}
catch (CORBA::Exception &ex) {

cerr << ex << endl;
CORBA::release(orb);
exit(1);

}

return 0;
}

The code can be explained as follows:

1. The function CORBA::ORB_init() is used to obtain a reference, called orb
above, to a CORBA::ORB object that is used on the client side. This function
is part of the CORBA initialization service and replaces use of the now
deprecated CORBA::Orbix object.

2. An instance of a names wrapper IT_Demo_NSW is created and the prefix is
set to the value of demo equal to the string "example1" in this case.

3. The wrapper object is used to resolve a name given in string format.
Assuming that object_name has been specified as "oracle" on the
command line, and the prefix "example1" is in force, the name that is
resolved is "example1.oracle".
127

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
4. Narrow the instance of CORBA::Object to a StockWatch proxy. The type
CORBA::Object is the C++ representation of the IDL type Object. Since
CORBA::Object is a generic base class it is not possible to invoke any
useful methods on the returned object reference until it has been narrowed
to the correct type.

In this example, a StockWatch object is expected so the static method
StockWatch::_narrow() is used to cast obj to the correct type.

5. If the narrowing should fail for any reason, the _narrow() method will
return a nil object reference. It will not throw a CORBA exception. To
check for an error condition arising from a failed narrow you must use
CORBA::is_nil() to test whether the narrowed reference is nil or not.

Configuring OrbixNames
Progress Software’s implementation of the naming service, OrbixNames, is
written in Java making it possible to run this service on a wide variety of
platforms. However, users do not have to worry much about Java configuration
issues because the OrbixNames server is packaged in two different forms:

1. OrbixNames is provided as a stand-alone executable ns. In this form, the
Java runtime is combined with the executable and ns can be run in the
same way as any binary executable.

2. OrbixNames is also provided as a set of classes OrbixNames.jar and a
Java runtime is provided in the IONARoot/tools/jre directory. This is
the form of naming service that is normally used in conjunction with
OrbixWeb.

In the following sections it is assumed that the various Progress products have
been installed in:

This progress root directory will be referred to as ProgressRoot in the following
subsections.

/opt/progress UNIX default progress root directory.

C:\progress Windows default progress root directory.
 128

T h e N a m i n g S e r v i c e
Configuration Variables for OrbixNames

The configuration variables for OrbixNames are usually found in the file
ProgressRoot/config/orbixnames3.cfg. The following environment variables
are the ones that most commonly need to be edited for OrbixNames, and they are
found in the OrbixNames configuration scope:

Two other configuration variables that are important for the naming service are
Common.IT_DEFAULT_CLASSPATH and Common.IT_JAVA_INTERPRETER, from the
file ProgressRoot/config/common.cfg. It should not be necessary to change
these from the default install values. However, if the value of either of these
variables is accidentally corrupted it can prevent the naming service from
running.

Registering the Naming Service

Before the naming service can be used it must be registered with the Orbix
daemon. The following steps assume that the naming service will be run on a host
NSHost, which is just the value of OrbixNames.IT_NAMES_SERVER_HOST. The
naming service can be registered as follows:

1. Ensure that an Orbix daemon is running on NSHost. If necessary, start an
Orbix daemon by typing the following at a command prompt:

orbixd

IT_NAMES_SERVER The default server name for the naming
service is NS.

The server name specified here must be the
same as that given in the putit command
when registering the naming service.

IT_NAMES_SERVER_HOST The name of the host where the naming
service will be run.

IT_NAMES_REPOSITORY_PATH The names repository is a file based
repository for storing the persistent state of
the naming service. This variable specifies
the directory where the names repository is
stored.
129

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
2. Register the naming service with the following command:

Windows

putit -h NSHost NS ProgressRoot\bin\ns

UNIX

putit -h NSHost NS ProgressRoot/bin/ns

The option -h NSHost can be omitted if this command is executed on
NSHost. Note that it is essential that the pathname given as the last
argument is an absolute pathname.

If you want to use the load balancing features of OrbixNames, you should
register it using the following command instead:

Windows

putit -h NSHost NS "ProgressRoot\bin\ns -l"

UNIX

putit -h NSHost NS "ProgressRoot/bin/ns -l"

The -l switch tells the naming service to enable load balancing. For
further details, consult “Load Balancing” on page 203

3. To test that the naming service has been correctly registered, enter:

catit NS

to view the registration details.

4. Try running one of the naming service utilities:

lsns -k

This command lists the contents of the root context of the naming service.
If this command is run against a newly configured naming service, you
should see output like the following:

[Contents of root]
lost+found- (Context)
ObjectGroups- (Context)

[0 Objects, 3 Contexts]

If this runs successfully it means the naming service is correctly
configured.
 130

T h e N a m i n g S e r v i c e
Naming Service Utilities

A number of command-line utilities are supplied with the naming service.

To list the contents of a particular naming context, use the following command:

lsns -k NamingContext

To create a new naming context in the naming hierarchy use the following
command:

putnewncns NewNamingContext

To print the object reference (IOR) associated with a particular name binding, use
the following command:

catns NameOfBinding

All of these commands take their name arguments in the string format discussed
in the section “Name Format” on page 113.
131

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 132

 6
The Event Service

The standard CORBA Event Service is introduced.
Programming examples are presented that illustrate the
untyped push model of event propagation.

Introduction
OrbixEvents implements the CORBA Event Service specification. This
specification defines a model for communications between ORB applications that
supplements the direct operation call system that client/server applications
normally use.

The CORBA Event Service introduces the concept of events to CORBA
communications. An event originates at an event supplier and is transferred to any
number of event consumers. Suppliers and consumers are completely decoupled:
a supplier has no knowledge of the number of consumers or their identities, and
consumers have no knowledge of which supplier generated a given event.
133

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 6.1: An Event Channel Mediates the Flow of Events from Suppliers to Consumers.

In order to support this model, the CORBA Event Service introduces to CORBA
a new architectural element, called an event channel. An event channel mediates
the transfer of events between suppliers and consumers as follows:

1. The event channel allows consumers to register interest in events, and
stores this registration information.

2. The channel accepts incoming events from suppliers.

3. The channel forwards supplier-generated events to registered consumers.

Suppliers and consumers connect to the event channel and not directly to each
other (preceding Figure 6.1). From a supplier’s perspective, the event channel
appears as a single consumer; from a consumer’s perspective, the event channel
appears as a single supplier. In this way, the event channel decouples suppliers
and consumers

Consumer

Consumer

Consumer

Consumer
Event channel

Supplier

Supplier

Supplier

Event propagation
 134

T h e E v e n t S e r v i c e
Types of Event Communication
There are two approaches to initiating event propagation—the push model and
the pull model.

Two different kinds of event channel are provided, one of which allows you to
send events via a generic interface (untyped event channel) and another which
allows you to send events via a user defined interface (typed event channel). Only
the untyped event channel is covered in this chapter. For details on how to
program with typed event channels you should consult the OrbixEvents
Programmer’s Guide.

The Push Model

In this model the supplier initiates event propagation by sending an event to the
event channel. Immediately following this, the event channel attempts to
propagate this event to all of the registered consumers. In other words, the
supplier decides when to send an event and propagation of the event proceeds
without delay.

This model is often used as part of a callback design pattern. A server program,
acting as supplier, can notify a large number of clients, acting as consumers,
whenever an event of particular interest occurs. The StockWatch example makes
use of this pattern to distribute updates on changing prices to eventconsumer
clients. The StockWatch server (supplier) signals changes in stock prices by
sending events to the eventconsumer clients (consumers).

The advantage of the push model is that it reverses the usual direction of event
flow between client and server. Normally it is the client that sends events to the
server, while the server waits passively. By contrast, the push model supports a
pattern where the server takes the initiative in transmitting events to the client.

The Pull Model

In this model the consumer initiates event propagation by requesting an event
from the event channel. In response, the event channel will go back to all of the
registered suppliers and request an event from them. If one of the suppliers yields
135

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
an event, this event can be propagated to the consumer. In other words, the
consumer decides when it wants an event but propagation may be delayed if none
of the suppliers are ready to supply an event.

The pull model is not discussed any further in this chapter. Consult the
OrbixEvents Programmer’s Guide for details.

Untyped Event Communication

Untyped event communication is so named because it does not allow the user to
choose the type of the interface used to propagate events. Instead, the user is
forced to use the generic interface for either the push or the pull model of events.
For example, if electing to use the push model of untyped communication, you
must use the following interface:

//IDL

// In scope of module ‘CosEventComm’
interface PushConsumer {

void push(in any data) raises (Disconnected);
void disconnect_push_consumer();

};

to propagate events. Event propagation proceeds by invoking the operation
push() on a PushConsumer object. An event is represented by the argument data
which is of type any. Use of the IDL type any to represent an event gives a
reasonable degree of flexibility to the interface because it allows any valid IDL
type, including user defined IDL types, to be sent as arguments to the operation
push().

Typed Event Communication

For some applications, the restrictiveness of untyped event communication may
be unsuitable. In these cases, the interfaces used for event propagation might
already have been defined or it might be a requirement of the design to have well
defined user interfaces for event propagation.
 136

T h e E v e n t S e r v i c e
With typed event communication, the user defines an interface, subject to some
restrictions, and event propagation in the typed push model proceeds by invoking
the operations of this user defined interface (the typed pull model, however, is
slightly more complicated). Data types passed are no longer restricted to be of
type any, but can be declared to be any valid IDL type.

For details on how to use the typed model of event propagation, consult the
OrbixEvents Programmer’s Guide.

Callback Objects
In a simple CORBA application, all of the CORBA objects might reside in the
server. A straightforward distinction then exists between server processes and
client processes. Servers provide a home for CORBA objects and service
incoming invocations from clients. Clients access these objects via remote
invocation, but do not themselves contain CORBA objects. However, in some
cases it can be useful to implement a CORBA object in a client process: these
objects are known as callback objects.

Figure 6.2: Impure Client (left) Containing Callback Object.

Client programs that do not implement any CORBA objects are referred to here
as pure clients. Clients that implement callback objects are referred to here as
impure clients as illustrated in Figure 6.2.

proxy

 proxy

push()

Register()

Client Server

PushConsumer

RegCallback
137

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
To see why it might be useful to implement a callback object, consider the
example of a financial trader using a GUI client to interact with a broker server.
For much of the time the broker server is in a passive mode, responding to
requests from the trader’s GUI client. However, for certain types of interaction
the server needs to take an active role. For example, the rise and fall of stock
prices could be monitored by sending updates to a screen showing price
information in the GUI client. In order for this to work, there has to be a CORBA
object implemented in the GUI client. The broker server can then call back on this
CORBA object whenever it has new price information for the client.

The main features in the design of a callback can be illustrated with the help of
the following sample IDL:

// IDL

exception Disconnected { };

// 1. Interface for the ‘Callback object’
// Implemented on the client side.

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

// 2. Interface for the ‘Registration object’
// Implemented on the server side.

interface RegCallback {
void Register(in PushConsumer PCObj);
void Deregister(in PushConsumer PCObj);

};

Two interfaces are needed as part of the callback design: the interface for the
callback object, PushConsumer, and the interface for registering the callback,
RegCallback.

The interface PushConsumer exposes two operations. The operation push() is the
operation that a server invokes when it wants to call back on the client. The
argument to push() is declared to be any, a special type that allows any CORBA
data type to be passed at runtime. Another operation,
disconnect_push_consumer(), is declared which can be used by the server to
tell the client that it will not be sending any more messages.
 138

T h e E v e n t S e r v i c e
The interface RegCallback is implemented by the server. This interface is needed
so that the client can pass the server a reference to the callback object. The
operation Register() passes a reference to the client’s PushConsumer object to
the server. The operation Deregister() indicates that the client does not wish to
receive any more messages via the callback object. The role of this interface is
important because it is technically difficult to obtain references to callback
objects. It is not possible to locate a callback object using _bind() because a
client is not registered with the daemon.

Sample code for the implementation of PushConsumer and RegCallback
interfaces is not given here. However, the concepts underlying callback objects
recur in the discussion of the event service, for which sample code is given later
in this chapter.

The Mainline of an Impure Client

The use of callback objects in a client has some programming implications for
client developers. It changes the way in which a client main() function must be
written.

In order to appreciate the changes that are made to the client main() function, it is
helpful to look at the distinction that exists in CORBA between clients and
servers.

A list of characteristics can be given for a CORBA server:

• Instances of CORBA objects are created.

• Object references are, optionally, published in the naming service.

• The server must call CORBA::BOA::impl_is_ready().

• The server is registered with the Orbix daemon via a call to putit.

A client program that contains no CORBA objects is a pure client.
139

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
A pure client program has the following features:

• References to remote CORBA objects are obtained.

• Invocations are made on remote CORBA objects.

• The client never calls CORBA::BOA::impl_is_ready().

• The client executable is not registered with the Orbix daemon via a call to
putit.

It can be seen from this that a pure client is chiefly distinguished by the things it
does not do.

A client program that implements one or more callback objects is an impure
client. An impure client program has the following additional features:

• A callback object is instantiated and registered with the server.

• The impure client must call CORBA::BOA::processEvents() (or an
equivalent Orbix event handling function).

Because the impure client implements a CORBA object it must start an Orbix
event loop to process invocations on the callback object. This is a step that servers
usually accomplish by calling impl_is_ready(). Clients, on the other hand, are
prohibited from calling impl_is_ready() so they must call processEvents()
instead.

Calling the processEvents() function can potentially cause a difficulty in the
client code. When processEvents() is called it blocks and usually it remains
blocked for the entire lifetime of the client. If the client is single threaded, it
cannot perform other tasks.

In most cases, the best solution is to make the client multithreaded and to call
processEvents() from a subthread, allowing the main thread to carry on with
other client activities. For a detailed discussion of event handling options in
Orbix, and for approaches that work with single threaded clients, consult the
Orbix C++ Programmer’s Guide.
 140

T h e E v e n t S e r v i c e
Locating an Event Channel
The standard event service is under-specified in one respect; there is no single
starting point that represents the whole event service and can be used to gain
access to all event channels. Instead, the starting point for the event service is
given by an event channel object. Since there are many event channel objects (as
illustrated in Figure 6.3) the first task facing the programmer is how to locate the
appropriate one.

The mechanism for locating event channels is implementation dependent and
Orbix supports two different approaches: bootstrap via the Orbix specific
_bind() call, or bootstrap via the Orbix specific ChannelManager interface. Each
of these mechanisms is presented in turn.

Figure 6.3: Architecture of the OrbixEvents Server.

Typed push consumer

Typed push consumer

Push consumer

Push consumer

Typed push supplier

Typed event channel

Untyped event channel

Orbix Events Server

Typed push supplier

Push supplier

Channel Manager

Interface Repository
(IFR)
141

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Locating Channels via _bind()

When using the Orbix specific _bind() mechanism, the location of the event
channel object is specified by the triplet of marker, serverName and hostName.
Recall that an invocation of _bind() takes the following form:

interfaceName::_bind(
"marker:serverName",
"hostName"
)

In this example, the interfaceName is CosEventChannelAdmin::EventChannel.

• The marker is equal to a channel identifier. A channel identifier is
associated with every event channel when created by OrbixEvents. This
identifier can be specified as one of the command-line options to the es
event service executable.

• The serverName is the name of the event server as specified via the putit
utility when it is being registered, by default "ES".

• The hostName is the name of the host where the event server is running.

The following code extract illustrates this approach:

// C++

#include <EventService.hh>
...
CosEventChannelAdmin::EventChannel_var channelV;

try {
channelV =

CosEventChannelAdmin::EventChannel::_bind(
"Channel_1:ES",
"myHost.dublin.iona.ie"
);

}
catch (CORBA::Exception& ex) {

// Handle the exception...
}
// The reference 'channelV' is now initialized
// and ready for use.
 142

T h e E v e n t S e r v i c e
Note that the channel identifier used in this example is "Channel_1". The server
name ES is the default name for the Orbix event service.

Locating Channels via the ChannelManager Interface

Although the CORBA standard does not specify any interface for managing
EventChannel objects, a ChannelManager interface is supplied with OrbixEvents
for convenience. This ChannelManager is, necessarily, non-standard and takes
care of such things as creating new event channels and finding existing ones (in
other words, a kind of factory object).

The ChannelManager interface provides another option for locating event
channels. An extract from the IDL file for the ChannelManager interface is given
by:

// IDL
module OrbixEventsAdmin {

 exception duplicateChannel{ };
 exception noSuchChannel{ };

 interface ChannelManager
 {
 typedef sequence<string> stringSeq;

 CosEventChannelAdmin::EventChannel create
 (
 in string channel_id
) raises (duplicateChannel);

 CosEventChannelAdmin::EventChannel find
 (
 in string channel_id
) raises (noSuchChannel);

 string findByRef
 (
 in CosEventChannelAdmin::EventChannel channel_ref
)
 raises (noSuchChannel);

 stringSeq list();
143

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 CosTypedEventChannelAdmin::TypedEventChannel createTyped
 (
 in string channel_id
) raises (duplicateChannel);

 CosTypedEventChannelAdmin::TypedEventChannel findTyped
 (
 in string channel_id
) raises (noSuchChannel);

 string findByTypedRef
 (
 in CosTypedEventChannelAdmin::TypedEventChannel channel_ref
)
 raises (noSuchChannel);

 stringSeq listTyped();
};
};

You can use _bind() to connect to the channel manager and then invoke
ChannelManager::find() to locate an event channel. The programming steps
needed to connect to a particular event channel via this method are given by the
following code extract:

// C++

OrbixEventsAdmin::ChannelManager_var m_eventChanMgr;
CosEventChannelAdmin::EventChannel_var m_chan;

try{
m_eventChanMgr =

OrbixEventsAdmin::ChannelManager::_bind(":ES", eventsHost);
}
catch(CORBA::Exception& ex) {

cerr << "Exception binding to OrbixEvents" << endl;
exit(1);

}

try {
m_chan = m_eventChanMgr->create("IONA");

}

 144

T h e E v e n t S e r v i c e
catch(OrbixEventsAdmin::duplicateChannel) {
cout << "Use already existing Channel " << sym << endl;
try {

m_chan = m_eventChanMgr->find("IONA");
}
catch(CORBA::Exception& ex) {

cerr << "Error finding channel" << endl << ex << endl;
exit(1);

}
}
catch(CORBA::Exception& ex) {

cerr << "Exception creating channel" << endl << ex << endl;
exit(1);

}

As an alternative to using _bind() to connect to the ChannelManager object, you
have the option of looking up the ChannelManager in the naming service.
145

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
By default, the event service publishes the ChannelManager object reference in
the naming service, under the following name:

The full IDL for the channel manager can be found in Appendix B. For further
details consult the OrbixEvents Programmer’s Guide.

Attaching a Supplier
Once a supplier has got hold of a reference to an event channel, the next step is to
attach itself to the event channel so that it can begin supplying events.

Figure 6.4: Architecture of an Event Channel

id "OrbixEventsAdmin ChannelManager"

kind ""

Key

EC EventChannel PPC ProxyPushConsumer

SA SupplierAdmin PPS ProxyPushSupplier

CA ConsumerAdmin

Untyped Event Channel

Push supplier

Push supplier Push Consumer

Push Consumer

PS
PPS

PC

PC

PPS

PPC

PPC

SA

PS

CA

EC
 146

T h e E v e n t S e r v i c e
In this context, attaching the supplier means getting hold of a reference to a
ProxyPushConsumer (PPC) object. The PPC object acts as a sink for all of the
events emanating from the supplier.

The process of attaching a supplier is broken up into a number of steps, in the
standard event service. This is illustrated by Figure 6.4. The supplier proceeds via
a chain of factory objects before it finally gets hold of a reference to a PPC object.
It starts with a reference to an EventChannel object, then gets a reference to the
corresponding SupplierAdmin object and then a reference to a PPC object.

The IDL for the factory objects illustrated in Figure 6.4 is as follows:

// IDL
module CosEventChannelAdmin {

exception AlreadyConnected {
};

exception TypeError {
};

...

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier ();
ProxyPullSupplier obtain_pull_supplier ();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer ();
ProxyPullConsumer obtain_pull_consumer ();

};

interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();

};
};
147

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Getting a Reference to a ProxyPushConsumer

Sample code for obtaining a reference to a PPC object is shown below. It is
assumed that the reference to an event channel channelV has already been
obtained using one of the methods outlined in the preceding section “Locating an
Event Channel” on page 141.

// C++

CosEventChannelAdmin::EventChannel_var channelV;
CosEventChannelAdmin::SupplierAdmin_var supAdminV;
CosEventChannelAdmin::ProxyPushConsumer_var ppcV;
...

// Assume that the reference 'channelV' has already
// been initialized

try {
supAdminV = channelV->for_suppliers();
ppcV = supAdminV->obtain_push_consumer();

}
catch (CORBA::Exception& ex) {

// Handle exception...
}

// The reference 'ppcV' is now initialized and
// ready for use.

Figure 6.4 on page 146 illustrates the chain of objects invoked to obtain a
reference to a ProxyPushConsumer object. An invocation is made on the EC
(EventChannel), that returns a reference to the SA (SupplierAdmin). An
invocation is then made on SA to return a reference to a PPC
(ProxyPushConsumer) object.

The object SA is unique per channel and invoking for_suppliers() always
returns a reference to the same object. By contrast, invoking
obtain_push_consumer() always returns a reference to a new
ProxyPushConsumer object.
 148

T h e E v e n t S e r v i c e
Connecting to a ProxyPushConsumer

The final step in the attachment of a supplier to the channel is when the supplier
invokes the appropriate connect operation on the PPC object. Two IDL interfaces
are important at this stage: the ProxyPushConsumer interface and the
PushSupplier interface. The relevant IDL from the event service is as follows:

// IDL
module CosEventComm {

exception Disconnected {
};

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

interface PushSupplier {
void disconnect_push_supplier();

};
...

};

module CosEventChannelAdmin {
exception AlreadyConnected { };
exception TypeError { };

interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

};

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

};
};

The supplier finishes attaching itself to the channel by calling
connect_push_supplier() on the PPC object.
149

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Note however, that the connect_push_supplier() operation requires a
reference to a PushSupplier object. Therefore, before the supplier can connect it
must provide an implementation of a PushSupplier object.

The PushSupplier object does not play a major role. The function of the
PushSupplier object is to facilitate an orderly shutdown of connections to the
event server, should the event server go off-line for some reason. It supports just a
single operation disconnect_push_supplier(). A sample implementation
might look like this:

// C++

#include <EventService.hh>

class PushSupplier_i : public virtual
CosEventComm::PushSupplierBOAImpl {

// Private member variables
int m_disconnected;

public:
// C'tor and D'tor
PushSupplier_i() : m_disconnected(0) { }

int isOkToPush() throw() {
return (m_disconnected) ? 0 : 1;

}
//
// IDL Operations
//
void disconnect_push_supplier() {

m_disconnected = 1;
}

};

Once you have an implementation of a PushSupplier object in the supplier, you
are ready to connect to the ProxyPushConsumer in the event channel. Just a few
lines of code are needed to accomplish this step:

// C++
...
PushSupplier_i * psImpl = new PushSupplier_i();
// The reference to the ProxyPushConsumer 'ppcV'
// has already been initialized above
ppcV->connect_push_supplier(psImpl);
 150

T h e E v e n t S e r v i c e
The remote ProxyPushConsumer object is now in its connected state and ready to
receive events.

Supplying Events
Most of the work associated with using the event service has been done in the
preceding sections. Supplying events is simply a matter of invoking the push()
operation on the PPC object. The following code extract shows a string event
being supplied to the event channel:

// C++

...
// The following variables have been initialized above:
//
// psImpl- reference to a local PushSupplier_i
// object
//
// ppcV - reference to a remote ProxyPushConsumer
// object in the 'connected' state.

CORBA::Any a;
a <<= "StringToBePushed";

if (psImpl->isOkToPush()) {
ppcV->push(a);

}

The class CORBA::Any is the C++ representation of the IDL type any. The any can
be used to hold any valid IDL type, including basic types and user defined types.
To initialize an any, the relevant data is inserted using the <<= (left shift
assignment) operator. In this case, a string is inserted into the any and the correct
version of the <<= operator is selected by the C++ compiler via operator
overloading. The any makes a copy of the inserted string and this copy is owned
by the any.

In this example, the status of the connection is checked via isOkToPush() before
invoking the push() operation.
151

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Attaching a Consumer
The process of attaching a consumer to an event channel parallels the steps
involved in attaching a supplier. After obtaining a reference to the event channel,
the consumer attaches itself by getting hold of a reference to a
ProxyPushSupplier (PPS) object.

The steps involved in attaching a consumer are shown in Figure 6.4 on page 146.
The consumer proceeds via a chain of factory objects. It starts with a reference to
an EventChannel object, then gets a reference to the corresponding
ConsumerAdmin object and then a reference to a PPS object.

The IDL for the factory objects illustrated in Figure 6.4 on page 146 is given in
the preceding section “Attaching a Supplier” on page 146.

Getting a Reference to a ProxyPushSupplier

Sample code for obtaining a reference to a PPS object is shown below. It is
assumed that the reference to the event channel channelV has already been
obtained using one of the methods outlined in the preceding section “Locating an
Event Channel” on page 141.

// C++

CosEventChannelAdmin::EventChannel_var channelV;
CosEventChannelAdmin::ConsumerAdmin_var consAdminV;
CosEventChannelAdmin::ProxyPushSupplier_var ppsV;
...

// Assume that the reference 'channelV' has already
// been initialized

try {
consAdminV = channelV->for_consumers();
ppsV = consAdminV->obtain_push_supplier();

}
catch (CORBA::Exception& ex) {

// Handle exception...
}
// The reference 'ppsV' is now initialized and
// ready for use.
 152

T h e E v e n t S e r v i c e
Connecting to a ProxyPushSupplier

The final step in the attachment of a consumer to the channel is when the
consumer invokes the appropriate connect operation on the PPS object. Two IDL
interfaces are important at this stage: the ProxyPushSupplier interface and the
PushConsumer interface. The relevant IDL from the event service is shown in the
section “Connecting to a ProxyPushConsumer” on page 149.

The consumer finishes attaching itself to the channel by calling
connect_push_consumer() on the PPS object.

Note that this operation requires a reference to a PushConsumer object. Therefore,
before the consumer can connect it must provide an implementation of a
PushConsumer object.

The implementation of the PushConsumer object is of key importance to the
consumer application. It provides the implementation of the push() operation
that the consumer uses to receive events from the event service. This interface is
implemented by the class PushConsumer_i. A sample implementation is given in
the next section.

Assuming that the implementation PushConsumer_i is given, the following few
lines of code can be used to connect to the ProxyPushSupplier in the event
channel:

// C++

...
PushConsumer_i * pcImpl = new PushConsumer_i();

// The reference to the ProxyPushSupplier 'ppsV'
// has already been initialized above
ppsV->connect_push_consumer(pcImpl);

// The remote ProxyPushSupplier object is now in
// its 'connected' state and ready to supply events
153

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Consuming Events
The consumer receives events by providing an implementation of the
PushConsumer interface. The code that is responsible for receiving events is
found in the implementation of the push() operation. The class PushConsumer_i
provides a sample implementation, as follows:

// C++

#include <EventService.hh>

class PushConsumer_i : public virtual
CosEventComm::PushConsumerBOAImpl {

// Private member variables
int m_disconnected;

public:
// C'tor and D'tor
PushConsumer_i() : m_disconnected(0) { }

//
// IDL Operations
//
virtual void disconnect_push_supplier() {

m_disconnected = 1;
}
virtual void push (CORBA::Any& any) {

char * msg;

if (a >>= msg)
cout << "Event: " << msg << endl;

else
cout << "Event: Unexpected data type" << endl;

}
};

Note the use of the operator >>= (right shift assignment) to extract the string value
from the any. The above implementation expects the value in the any to be a
string. If the type of data contained in the any is not a string, the return value of
the expression (a >>= msg) is false and the value is not extracted. To learn more
about how to extract values from an any consult the Orbix C++ Programmer’s
Guide.
 154

T h e E v e n t S e r v i c e
As explained in “Callback Objects” on page 137, the PushConsumer object is an
example of a callback object and should be ready to receive events at any time.
An Orbix event loop must be running in the consumer even if it is just a client
application. Typically, in a client application, this event loop would be set
running in a subthread or else integrated with another event loop. These options
are described in the Orbix C++ Programmer’s Guide.

Extending the StockWatch Example
In the StockWatch demonstration, example 2, the event service is used to monitor
changes in stock prices. The StockWatch server plays the role of event supplier,
propagating news of price changes to clients via the event service. Clients play
the role of consumers and receive events via PushConsumer callback objects.

Figure 6.5 on page 156 shows the basic architecture of the StockWatch example
when it uses events. When a client of the StockWatch application records the sale
of a stock, the server generates an event that represents the new price and pushes
the event onto that stock’s event channel. At this point the server is acting as an
event supplier.

Figure 6.5 on page 156 illustrates the implementation of an event propagation in a
CORBA system as follows:

1. When a client of the StockWatch application records a sale of a stock, the
server updates the database with the new price.

2. The server then generates an event that represents the new price, and
pushes the event onto that stock’s event channel. In this case the server is
acting as a supplier to the event channel.

3. The OrbixEvents server maintains an event channel for each stock. When
an event is pushed onto a channel, the channel propagates it to all
consumers that are connected to the channel.

Both the StockWatch server and the event consumers, in this example, are
clients of the OrbixEvents service.
155

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 6.5: The Architecture of StockWatch When Using Events
 156

T h e E v e n t S e r v i c e
Initializing the StockWatch Server

The StockWatch server locates the event service by using either _bind() or the
naming service to obtain a reference to the ChannelManager object in the event
server.

As each Stock object is created in the server’s address space, a check is made to
see if an event channel exists for that stock by invoking find() on the remote
ChannelManager object. If not, a new event channel is created for the stock by
invoking create() on the remote ChannelManager object.

The server attaches itself to each of the active event channels so that it is ready to
begin supplying events.

Initializing the StockWatch Consumers

A different approach to locating event channels is taken by the clients of
StockWatch. With the help of some additions to the StockWatch IDL file, a
simpler approach to bootstrapping the clients (consumers) is possible. The
relevant extract of IDL from the StockWatch.idl file is as follows:

// CORBA IDL for the StockWatch example
//

1 #include "EventService.idl"
//
// Basic type definitions, Exceptions, Structs
...
// Interfaces

interface Stock {
Symbol getSymbol ();
string getDescription ()

 raises (rejected);
Money getCurrentPrice ()

raises (rejected);
PriceInfoSeq getRecentPrices ()

raises (rejected);
void recordSale(in Money price)

raises (rejected);
2 CosEventChannelAdmin::ConsumerAdmin getFeed ();

};
...
157

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The code is described as follows:

1. The IDL file includes the EventService.idl to make available the data
types and definitions required for OrbixEvents.

2. The getFeed() operation provides a convenient short cut for clients to
attach themselves to the event channel corresponding to this Stock object.
For example, when getfeed() is invoked on the "IONA" Stock object it
returns a reference to the ConsumerAdmin object for the "IONA" event
channel.

This simplified approach to finding an event channel has the benefit that
clients can use standard event service interfaces.
 158

 7
The Object Transaction Service

The concept of a transaction and a distributed transaction is
explained. The programming principles of OrbixOTS are
explained and code examples presented. Other topics such as
the two-phase commit protocol and multithreaded
programming with OrbixOTS are also discussed.

OrbixOTS brings transactional capability to developers creating enterprise-wide
applications. So far, the example applications in this guide have used a single
database. Figure 7.1 shows that although the client invokes a function on an
object in the server, only the server and the database need to be involved in the
transaction. From the client’s point of view, the transaction is completely hidden.

Figure 7.1: A Simple Transaction
159

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
When applications need to manage transactions across multiple, distributed data
resources, transaction demarcation (the beginning and end of a transaction)
becomes the responsibility of the client. Also, the Object Transaction Service,
OrbixOTS, is needed to co-ordinate all the components involved in the
transaction.

Figure 7.2: A Distributed Transaction

The classical illustration of a transaction is that of funds transfer in a banking
application. This involves two operations: a debit of one account and a credit of
another (perhaps after extracting an appropriate fee). To combine these operations
into a single unit of work, the following properties are required:

• If the debit operation fails, the credit operation ought to fail, and vice-
versa: that is, they should both work or both fail.

• The total amount of money in the system should be the same, before and
after the transaction.

• The system goes through an inconsistent state during the process (between
the debit and the credit). This inconsistent state should be hidden from
other parts of the application.

• It is implicit that committed results of the whole operation are permanently
stored.
 160

T h e O b j e c t T r a n s a c t i o n S e r v i c e
These points illustrate the so-called ACID properties of a transaction:

Atomic—A transaction is an all or nothing procedure; individual updates are
assembled and either all committed or all aborted (rolled back) simultaneously
when the transaction completes.

Consistent—A transaction is a unit of work that takes a system from one
consistent state to another.

Isolated—While a transaction is executing, its partial results are hidden from
other entities accessing the system.

Durable—The results of a transaction are persistent.

Thus a transaction is an operation on a system that takes it from one persistent,
consistent state to another.

Example of a Distributed Transaction
Consider the example of a funds transfer between two accounts. The actions of
debiting a sum of money from one account and crediting that sum of money to
another account should take place within the context of a single transaction. A
sample definition of an account object is given by the following IDL1:

// IDL
#include <OrbixOTS.idl>
exception DBError { string reason; };

interface TransAccount : CosTransactions::TransactionalObject {
void makeWithdrawal(in float amount) raises (DBError);
void makeDeposit(in float amount) raises (DBError);
void query(out string accName, out float accBalance)

raises (DBError);
};

1. This IDL is extracted from the transbank demonstration, which can be found in the OrbixOTS
demos directory.
161

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The TransAccount interface provides basic operations for manipulating an
account, allowing you to query the account balance, withdraw and deposit money.
In order to participate properly in a distributed transaction, the account interface
must be defined to be transactional—that is why TransAccount inherits from
CosTransactions::TransactionalObject.

The transaction under consideration involves making a debit from one account,
by invoking makeWithdrawal(), and a credit to a second account, by invoking
makeDeposit(). If the reference to the first account is called srcAccount and the
reference to the second account is called destAccount, the transaction can be
described by the following steps:

// Pseudo-code
// Transaction: Transfer funds from srcAccount to destAccount

// Beginning of transaction
srcAccount->makeWithdrawal(amountToTransfer);
destAccount->makeDeposit(amountToTransfer);
// End of transaction

Different scenarios for the execution of transactions are considered in the
following sections:

1. One OTS client invoking on two OTS servers.

2. One ordinary client invoking on two OTS servers.

3. One OTS client invoking on one OTS server.

One OTS Client Invoking on Two OTS Servers

The first scenario for carrying out the funds transfer is shown in Figure 7.3. All of
the participants are transactional in this scenario, with one OTS client invoking on
two OTS servers. The client transfers money by invoking makeWithdrawal() on
the object srcAccount and invoking makeDeposit() on the object destAccount.

Both of the account objects involved in the transaction are specified as
transactional, which is indicated in Figure 7.3 as a dark outline around the
transactional objects.

In this example the client invokes directly on the two transactional objects. To
make the sequence of invocations atomic, the client must bracket them between
calls to begin and commit the transaction. The client is thus responsible for
transaction demarcation and plays the role of transaction originator.
 162

T h e O b j e c t T r a n s a c t i o n S e r v i c e
Figure 7.3: Distributed Transaction with OTS Client.

In order to synchronize the transaction extra information, known as transaction
context, passes back and forth between the participants. The extra messages
needed to transfer transaction context are sent automatically by OrbixOTS and
are transparent to the application developer.

This scenario is most appropriate for the case where both servers and clients are
physically close together and connected by a high quality network.

In the case where clients are connected to the OTS servers by a poor quality
network, for example clients connected by a dialup network or via the Internet,
this approach to transactions is best avoided. The transaction monitor would then
be attempting to commit a transaction over an unreliable network, giving rise to
frequent rollbacks and aborted transactions.

One Ordinary Client Invoking on Two OTS Servers.

The second scenario for carrying out a funds transfer is shown in Figure 7.4. In
this example, only the two OTS servers are transactional. The client is an ordinary
non-transactional client (it does not need to be linked with any OTS libraries).

OTS - Server A

OTS - Server B

OTS Client

src Account

dest Account

DB A

DB B

SQL

SQL

Begin

Commit
163

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 7.4: Distributed Transaction with Ordinary Client.

As pointed out in the previous section, it is better to limit the scope of a
distributed transaction to include the smallest number of participants possible.
This approach minimizes the risk of network problems interfering with the
transaction.

In this example, a new object of type BankService is introduced in Server A. The
BankService is a non-transactional CORBA object that exposes a single
operation transfer_funds(). It is the implementation of transfer_funds()
that carries out the individual steps of the transaction in this example, including
bracketing the invocations between calls to begin and commit. The BankService
object plays the role of transaction originator in this scenario.

The client can now carry out the whole transaction by making a single invocation
of operation transfer_funds() on the ordinary object BankService. In general,
it is a good idea to expose to remote clients only IDL operations that represent a
single atomic transaction.

OTS - Server A

OTS - Server B

Client
Bank Service src Account

dest Account

DB A

DB B

SQL

SQL
transfer-funds()
 164

T h e O b j e c t T r a n s a c t i o n S e r v i c e
One OTS Client Invoking on One OTS Server.

The third scenario shown in Figure 7.5 has an OTS client invoking on a single
OTS server. Strictly speaking, this is not a distributed transaction at all because
there is only one transactional server and one database involved. If the
invocations on this transactional object can be made independently of other
transactional servers then there is no need for the object to be transactional.

Figure 7.5: OTS Client Invoking on a Single OTS Server.

However, it often arises that a transactional object exposes some operations that
are intended to be executed in the context of a distributed transaction, while other
operations are atomic and can be invoked individually.

For example, an OTS client that wants to query the balance of a TransAccount
object can execute the following pseudo-code:

// Pseudo-code
// Transaction: Query an account balance

// Beginning of transaction
Account->query(accountName,returnedBalance);
// End of transaction

This transaction is trivial; there is only one invocation bracketed between the
begin and commit. Although there is no real coordination needed to commit this
transaction the call to begin and commit is still required in OTS. The transaction
service normally requires that a transaction begin before an operation is invoked
on a transactional object. Otherwise, a CORBA system exception is raised by the
ORB. In OrbixOTS, however, an option can be set to relax this restriction.

OTS - ServerClient

Account

DB A
SQL

Begin

Commit
165

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
StockWatch Example

The transactional StockWatch demonstration of example 3 is organized along the
lines of the scenario depicted in Figure 7.5. That is, an OTS client talks to a single
OTS server StockWatch.

The default setup of StockWatch does not, therefore, illustrate a truly distributed
transaction. It has the practical advantage of being easy to set up because only one
database has to be configured. If you want to experiment with distributed
transactions you can modify the example to connect to two transactional servers
at once. Alternatively, you can run one of the demos from the OrbixOTS
directory that does connect to more than one database (scenario depicted in
Figure 7.3).

Modification of StockWatch IDL for OTS
Before your clients and servers can handle distributed transactions, the objects
involved have to be made transactionally aware. The objects that participate in
transactions are called transactional objects.

The following IDL file shows the interface for two transactional interfaces:
StockWatchOTS and StockOTS. Transactional objects must receive transaction
context with each invocation. The programmer can pass the transaction context as
additional arguments (explicit propagation). However, the easiest approach is to
have the IDL definition of your interface inherit from
CosTransactions::TransactionalObject. This instructs OrbixOTS to include
the transaction context with each IIOP request (implicit propagation).
 166

T h e O b j e c t T r a n s a c t i o n S e r v i c e
// StockWatchOTS.idl
//

1 #include <OrbixOTS.idl>

// Basic type definitions
typedef string Date;
typedef float Money;
typedef string Symbol;
typedef sequence<Symbol> SymbolSeq;

// Exceptions
exception rejected {

string m_reason;
};

// Structs
struct PriceInfo {

Money m_price;
Date m_when;

};
typedef sequence<PriceInfo> PriceInfoSeq;

// Interfaces
2 interface StockOTS : CosTransactions::TransactionalObject {

Symbol getSymbol();
string getDescription()

raises (rejected);
Money getCurrentPrice()

raises (rejected);
PriceInfoSeq getRecentPrices()

raises (rejected);
void recordSale (in Money price)

raises (rejected);
};

3 interface StockWatchOTS : CosTransactions::TransactionalObject {

SymbolSeq getSymbols ()
raises (rejected);

Stock getStockBySymbol (in Symbol aSymbol)
raises (rejected);

};
167

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The code is described as follows:

1. Include in your interface the IDL file that specifies the interfaces for
OrbixOTS.

2. Make the StockOTS interface transactional by specifying that the interface
is derived from the CosTransactions::TransactionalObject interface.

3. Make the StockWatchOTS interface transactional by specifying that the
interface is derived from the CosTransactions::TransactionalObject
interface.

The definition of interface TransactionalObject is given in the file
OrbixOTS.idl as follows:

// IDL
// File: OrbixOTS.idl
module CosTransactions {

interface TransactionalObject {};
...

};

The definition of the TransactionalObject interface is trivial. Its sole purpose
is to act as a marker. Interfaces that inherit from it are treated by the OTS as
transactional.

Controlling Database Transactions
There are typically three options available for controlling database transactions:

1. Embedded SQL

2. Database Native Interface

3. XA Interface

The first two are used for controlling local transactions.
 168

T h e O b j e c t T r a n s a c t i o n S e r v i c e
Embedded SQL

If the interaction with the database is coded in embedded SQL, control of
transactions is available via the following SQL statements:

Generally, a transaction is implicitly begun whenever you access the database.
The EXEC SQL COMMIT WORK statement is called after a successful outcome to the
transaction and indicates that you want the changes to the database to be made
permanent. The EXEC SQL ROLLBACK WORK statement indicates a failed outcome
and signals the database to forget details of the transaction.

These are not the only embedded SQL statements that can affect a transaction.
For example, there are some SQL statements that can commit a pending
transaction as a side effect of their execution. You must consult your database
documentation for a complete list of SQL statements that affect transactions.

Database Native Interface

In addition to embedded SQL, most databases provide the option of using a native
interface. This includes, for example, function calls for committing and rolling
back transactions. The effect of calling these functions is typically the same as
using their embedded SQL equivalents.

XA Interface

Most modern databases provide an XA interface for controlling transactions (an
industry standard defined by the X/Open group). The motivation behind this
standard was a desire to open up databases to the control of distributed transaction
monitors, such as OrbixOTS. It turns out that the traditional interfaces for steering
transactions are unsuitable for this purpose because they allow an inadequate

SQL Effect on Transaction

(implicit) Begin transaction

EXEC SQL COMMIT WORK Commit (successful outcome)

EXEC SQL ROLLBACK WORK Rollback (abort transaction)
169

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
degree of control. In particular, explicit support is needed for the two-phase
commit protocol (described below) in distributed transaction systems. The
necessary level of support is provided by the XA interface.

Table 7.1: Methods of the XA Interface

XA Operation Purpose

xa_open() Opens the connection to the resource
manager. This is called during initialization.

xa_close() Closes the connection to the resource
manager.

xa_start() Informs the resource manager that a thread
or process has started working on behalf of a
transaction.

xa_end() Informs the resource manager that a thread
or process has finished working on behalf of
a transaction.

xa_rollback() Rolls back modifications made by a
transaction to the resource manager.

xa_prepare() Prepares the resource manager for eventual
commitment of a transaction. The resource
manager returns its vote.

xa_commit() Commits modifications made by a
transaction to the resource.

xa_recover() Retrieves the identifiers of transactions for
which the resource manager needs to know
the final outcome. This is called during
initialization.

xa_forget() Informs the resource manager that a
heuristic decision may be forgotten.

xa_complete() Completes an asynchronous call.
 170

T h e O b j e c t T r a n s a c t i o n S e r v i c e
The form in which the XA interface is expressed is object-oriented but, for
pragmatic reasons, it had to be defined in a non-object oriented language ‘C’. The
X/open committee therefore used the ‘C’ style approximation to an object: a
struct containing a collection of pointers to functions. This pseudo-object is
known as an XA switch. The methods of the XA switch are summarized in
Table 7.1 on page 170.

In general, it is not intended for this interface to be called directly by the
application developer. Usually the interface is controlled by a distributed
transaction monitor instead.

In most cases, the XA interface is not meant to be used at the same time as other
means of transaction control (embedded SQL or native interface) from within the
same process.

The OTS as Transaction Manager
When there is more than one database in a system and two or more of these
databases are involved in a transaction, it becomes essential to place these
databases under the control of a single transaction manager. The transaction
manager is needed to properly coordinate a transaction involving multiple
databases or, more generally, resources.

The database, or resource, must export its XA interface to the transaction
manager and, in this way, it gives up control of its transactions to the transaction
manager (in this case, OrbixOTS). It is useful to remember that all of the
interaction between transaction manager and database happens via this XA
interface. There are other things going on between the application and the
database, but the rest of this activity is due to code written by the application
developer (for example, SELECTs and UPDATEs to read from and write to the
database).

To take a specific example, look at how the database Oracle exports its XA switch
to the OrbixOTS transaction manager. This is known as registering the resource
with OrbixOTS. The code appears in an OTS server process (only OTS server
processes are able to register resources):
171

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
// C++
#include <OrbixOTS.hh>

extern "C" {
 // The Oracle XA switch.
 extern struct xa_switch_t xaosw;
}

int main()
{
 OrbixOTS::Server_var ots;

 //--
 // Various initialization steps (not shown)
 //--
 // ...

 //--
 // Register XA resource with OTS txn manager
 //--
 char * openString =

"Oracle_XA+Acc=P/scott/tiger+SesTm=60";
 char * closeString = "";

 CORBA::Long rm_id = ots->register_xa_rm(
&xaosw,
openString,
closeString,
0);

 // ...
}

The XA switch is provided by Oracle in the form of a global static instance of the
struct called xaosw. Since the struct is instantiated within the Oracle libraries, it
means that xaosw is an Oracle-specific identifier that is always used to identify
the Oracle XA switch.

Initialization of OrbixOTS is carried out via the OrbixOTS::Server2 object. The
key step is the call to register_xa_rm(). The address of the switch xaosw is
passed as the first argument, establishing the link between transaction manager

2. This object is non-standard because the CORBA OTS specification does not specify the details of
how an OTS initializes itself. That is an implementation detail.
 172

T h e O b j e c t T r a n s a c t i o n S e r v i c e
and database resource. The OTS transaction manager is now able to make calls on
xa_open(), xa_close(), and so on via the pointers to functions defined in the
struct xaosw.

The openString is the string that will be passed as an argument to xa_open()
when it is called, later on, by the transaction manager. Likewise closeString is
the string argument that will be passed to xa_close(). The last argument of
register_xa_rm() is used to indicate whether the database is operating in
concurrent (multithreaded) mode. In this example a 0 (zero) is passed because the
server is accessing the database in single-threaded mode.

Format of the Open String

The format of the openString is specified neither by the X/Open group nor by
OrbixOTS. To determine the correct format of the openString you must consult
the documentation for the particular database you are using, and check the
required format of the string passed to xa_open(). For example, in the case of
Oracle the most basic openString includes the following mandatory fields

Oracle_XA
Acc=P/user/password
SesTm=session_time_limit

joined by a ‘+’ (plus sign). Putting these mandatory fields together for the Oracle
account scott/tiger gives the following sample openString:

"Oracle_XA+Acc=P/scott/tiger+SesTm=60"

Note that Oracle allows for other optional fields in the open string. In particular,
extra options are required if you want to run the database in concurrent mode.

The effect of the call xa_open() (a call made automatically by the transaction
manager) is to establish a session with the database. However the connection to
the database might not be opened right away, depending on how your database
vendor has implemented xa_open().

The call to xa_open() also establishes the fact that the XA interface is being used
to control database transactions.
173

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Format of the Close String

The close string is passed as an argument to xa_close(). However, Oracle does
not make use of this string and it can be left empty. Most other databases ignore
the close string as well.

Writing an OTS Server
In this section, the StockWatch server is extended to use OrbixOTS as the
transaction co-ordinator. The backend database’s XA interface is registered with
OrbixOTS.

Server programming is divided into two sections:

• The first code sample initializes the server so that it can use distributed
transactional objects.

• The second section briefly describes how the implementation of a
transactional object interface is different from a non-transactional
implementation.

Initializing a Transactional Server

Servers are implemented as objects in OrbixOTS applications. The OrbixOTS
C++ interface supplies the server class that you use to initialize servers. The
following code sample shows the main() function of the example3/
serverOracle.cxx file.

// serverOracle.cxx
//
// Orbix OTS header files
#include <OrbixOTS.hh>
...
int main(int argc, char **argv) {

if (!argv[1] || !argv[2])
syntax_error();

// OTS required variables for registering an OTS
oracle_backend orac;
 174

T h e O b j e c t T r a n s a c t i o n S e r v i c e
// Instantiate my instance of StockWatchOTS
StockWatch_i swatch(&orac,1);

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");
CORBA::BOA_var boa = orb->BOA_init(argc, argv, "Orbix_BOA");

try {
...
// Create an instance of OTS::Server

1 OrbixOTS::Server_var ots = OrbixOTS::Server::IT_create();
ots->serverName(serverName);
ots->logDevice(logfile);
ots->restartFile(recoveryFile);
ots->mirrorRestartFile(mirrorRecoveryFile);

// Register XA/Resource
2 int serverid = ots->register_xa_rm

(&xaosw,
 openString,
 closeString,
 0);

// initialize OTS
3 ots->init();

// Now wait for incoming invocations
4 // OTS::Server::impl_is_ready calls

// CORBA::ORB::impl_is_ready
ots->impl_is_ready(TIMEOUT);

} catch (...)

5 ots->shutdown();
}

175

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The code is described as follows:

1. Create and initialize an instance of OrbixOTS::Server The
OrbixOTS::Server object needs the following configuration information:

2. An XA-compliant resource, in this case Oracle, is registered with
OrbixOTS. All transactional client requests that visit this server process
cause OrbixOTS to register Oracle with the transaction co-ordinator.
OrbixOTS::Server::register_xa_rm() requires the following
arguments:

Server name The string that is actually passed to
CORBA::Orbix::impl_is_ready().

Log device As explained earlier, there is no centralized
transaction co-ordinator in the implementation of
OrbixOTS. Instead any server that participates in a
transaction can potentially become transaction co-
ordinator. A co-ordinator requires a logging facility to
avoid problems arising due to resource failure during
two-phase commit.

OrbixOTS allows both ordinary files or raw devices
to be used for the transaction log. Typically, ordinary
files are used in the early development stages;
however in a deployed system, a raw device is usually
required.

OrbixOTS supports transaction log mirroring.

Restart file This is the path for a file that contains information
about the log. It is created the first time the server is
run and the log file is formatted. On subsequent runs
it is read and used to read the log during recovery
processing.

Restart mirror This is a mirror copy of the restart file, which is used
for redundancy. This must be specified.

In a deployed system the restart file and mirror restart
file should be on separate disks.
 176

T h e O b j e c t T r a n s a c t i o n S e r v i c e
An XA client resource is required to export a struct of type xa_switch_t.
The following is a ‘C’ definition of xa_switch_t:

struct xa_switch_t {
char name[RMNAMESZ];
long flags;//resource mgr specific options
long version;
int(*xa_open_entry)(char*,int,long);
int(*xa_close_entry)(char*,int,long);
int(*xa_start_entry)(XID*,int,long);
int(*xa_end_entry)(XID*,int,long);
int(*xa_rollback_entry)(XID*,int,long);
int(*xa_prepare_entry)(XID*, int,long);
int(*xa_commit_entry)(XID*,int,long);
int(*xa_recover_entry)(XID*,long,int,long);
int(*xa_forget_entry)(XID*,int,long);
int(*xa_complete_entry)(int*,int*,int,long);

};

XA structure A pointer to an xa_switch_t (as detailed below).

A database open
string

As stated earlier, when an XA resource is registered
with OrbixOTS, connection to the database is
controlled via XA and not by SQL.

In Oracle, the XA open string has the following
format:

"Oracle_XA+Acc=P/<account>
<passwd>+SesTm=60"

A database close
string

Typically empty.

Association flag TRUE indicates that the XA resource supports multiple
association. That is, several threads can call XA
functions concurrently.

FALSE indicates that the XA resource supports only
single association. That is, calls to XA functions
must be serialized.
177

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
3. The OrbixOTS::Server::init() function initializes the underlying
OrbixOTS components and services. This must be done after any XA
resources have been registered. This function also drives OTS recovery
(see the OrbixOTS Programmer’s and Administrator’s Guide).

4. After server objects are created, the server must tell Orbix that its
implementation is ready to service requests.

The operation OrbixOTS::Server::impl_is_ready() can optionally
take a concurrency mode, as a second parameter. Possible values are as
follows:

♦ OrbixOTS::Server::serializeRequestsAndTransactions
(default). This concurrency mode only allows one transaction and one
request to be active in the server at a time. That is, once a transaction
accesses a server, no other transaction can enter that server until that
transaction is complete.

♦ OrbixOTS::Server::concurrent. This concurrency mode applies no
serialization constraints. That is, requests that are part of different
global transactions run concurrently in the server.

♦ OrbixOTS::Server::serializeRequests. This mode is a
compromise between the two previous modes. Requests that are part of
different global transactions are serialized as they arrive at the server.

The operation OrbixOTS::Server::impl_is_ready() allows you to
specify an inactivity timeout as the first argument. This timeout is
specified in milliseconds, just like the regular
CORBA::BOA::impl_is_ready() function.

The inactivity timeout for the Orbix event loop can also be set via the
environment variable OTS_LISTEN_TIMEOUT or via the configuration
variable OrbixOTS.OTS_LISTEN_TIMEOUT, specifying the duration of the
timeout in milliseconds.

5. Before terminating the server application, you must call
OrbixOTS::Server::shutdown() to shut down the OrbixOTS services.
The application continues as normal after the call to shutdown(), allowing
you to perform miscellaneous housekeeping tasks before the server

terminates3.

3. The use of OrbixOTS::Server::exit() is now deprecated.
 178

T h e O b j e c t T r a n s a c t i o n S e r v i c e
Implementing a Transactional Class

You implement transactional classes much like normal interface classes, using
standard Orbix programming and standard embedded SQL for the backend.
However, what is different about implementing transactional classes is the coding
you do not do.

• By registering an XA resource manager for the database in the main()
server function, the resource manager opens a connection to the database.
Therefore, your code should not use SQL to open a connection to the
database. In this implementation, the db_connect() function, shown in
the file db_oraapi.pc, is never called.

• Since distributed transaction demarcation is controlled by clients, your
SQL code does not need to explicitly begin and end transactions. SQL can
still be used to access the database, but transaction control is with the
client and the transaction manager.

Writing an OTS Client
A client program that invokes directly on transactional objects is known as an
OTS client or a transactional client. It must be linked with an OTS client library.

Initializing a Transactional Client

The following code sample shows how to initialize clients using the client class
supplied with the OrbixOTS C++ interface. This code sample is from the main()
function of the file clientots.cxx.

// C++
// clientots.cc

// OTS header file
1 #include <OrbixOTS.hh>

...
int main(int argc, char **argv) {

StockWatchOTS_var swatch;

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");
...
179

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
// Initialize OTS
2 OrbixOTS::Client_var clientots = OrbixOTS::Client::IT_create();

clientots->init();

try {
// Main application loop

} catch (...) { }

3 clientots->shutdown();
}

The code is described as follows:

1. Include the OrbixOTS.hh header file to gain access to OTS definitions.

2. Create an instance of an OrbixOTS::Client object by invoking the static
method IT_Create(). The OrbixOTS::Client class is a singleton class,
so a call to IT_Create() always returns a reference to the same object.

The member function OrbixOTS::Client::init() is then invoked to
initialize the OrbixOTS client application.

3. Before terminating, the client application must call
OrbixOTS::Client::shutdown() to shut down the OrbixOTS services.
All of the transactions in progress are completed (either committed or
rolled back). The application continues as normal after the call to
shutdown(), allowing you to perform miscellaneous housekeeping tasks

before the client terminates4.

Making a Transactional Invocation

Distributed transactions expose transaction programming to the client application.
The rules of basic transaction programming are straightforward: after initializing
a client object, the client has to do three basic steps for each transaction:

1. Begin the transaction.

2. Invoke functions within the transaction.

3. Initiate a commit or rollback to end the transaction.

The following extract is taken from the clients/cxx/menuots.cxx file from the
StockWatch demonstration:

4. The use of OrbixOTS::Server::exit() is now deprecated.
 180

T h e O b j e c t T r a n s a c t i o n S e r v i c e
// C++
void printSymbols(StockWatchOTS_ptr swatch){

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "Orbix");
CORBA::BOA_var boa = orb->BOA_init(argc, argv, "Orbix_BOA");

CosTransactions::Current_var current;

try {
SymbolSeq_var ss;

// Get ‘Current’ using initialization service
1 CORBA::Object_ptr objP =

orb->resolve_initial_references("TransactionCurrent");
current = CosTransactions::Current::_narrow(objP);
if (CORBA::is_nil(current)) {

cerr << "Narrow failed on Current" << endl;
exit(1);

}

2 current->begin();

3 ss = swatch->getSymbols();

4 current->commit(TRUE);

for (CORBA::ULong i = 0; i < ss->length(); i++){
cout << " " << ss[i] << endl;

}
cout << endl;

}
5 } catch(CORBA::TRANSACTION_ROLLEDBACK){

cerr << "transaction rolledback" << endl;
throw;

}
6 catch(...){

current->rollback(); // end the transaction
throw;

}
}

The code is described as follows:
181

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
1. An instance of the class CosTransactions::Current is created using the
initialization service. A different Current object is implicitly associated
with each thread in an application.

2. Clients begin a transaction by calling the function
CosTransactions::Current::begin(). The Current object can be used
to manage different concurrent transactions, one per calling thread.

3. The application-specific function getSymbols() executes within the
scope of the transaction.

Note: For simplicity, this example has only one participating server and
database.

4. Call the CosTransactions::Current::commit() function to commit the
current transaction. This call ends the transaction and starts the two-phase
commit processing. The transaction is committed only if all of the
participants in the transaction agree to commit.

The boolean argument to commit() is the report_heuristics flag that
specifies whether heuristic decisions should be reported for the transaction
associated with the calling thread. Normally it is best for this flag to be set
to TRUE.

5. If a commit fails, the OrbixOTS runtime system throws the
CORBA::TRANSACTION_ROLLEDBACK exception indicating that the
transaction rolled back and the caller is disassociated from the transaction.

6. If any other exception is thrown the caller should call
CosTransactions::Current::rollback() to explicitly rollback the
current transaction.

The association between the transaction and the client process ends when the
client calls either of the functions CosTransactions::Current::commit() or
CosTransactions::Current::rollback().
 182

T h e O b j e c t T r a n s a c t i o n S e r v i c e
Implicit Indirect and Explicit Direct Modes
Implicit indirect mode, as used in the preceding example, is the usual mode in
which the OTS is used and it is recommended for the majority of applications. It
allows transactionality to be configured at an object level of granularity. In this
mode, therefore, you can talk of transactional and non-transactional objects. This
mode is also the easiest to use as it demands minimal coding by the developer.
Transaction context is implicitly propagated to all participants in a transaction.

In contrast, the explicit direct mode is much harder to use because transaction
context must be explicitly propagated. Explicit coding is required by the
developer to make a particular process (or thread) into a participant of the
transaction. This mode does allow a more fine-grained configuration of
transactionality—allowing you to specify whether individual IDL operations are
transactional or not. Generally, this mode is recommended in special cases where
the additional flexibility proves indispensable.
183

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Two-Phase Commit Protocol
Consider a client that wants to execute a transaction that requires two servers to
update their respective databases. Figure 7.6 through Figure 7.9 depict this
situation—two servers, each with its own database, are distributed using
OrbixOTS. OrbixOTS mediates between the applications, ensuring that the
database updates are performed atomically.

Client Begins the Distributed Transaction

A client begins a transaction by making a call on OrbixOTS (Figure 7.6). The
client is now in the context of a created transaction.

Figure 7.6: Client Begins a Transaction

OrbixOTS is shown here as separate from the applications; however, this is only
conceptual. In fact the transaction manager is implemented as a linked-in library;
hence, transactional applications each have an instance of the transaction manager
that co-operate to implement distributed transactions. This architecture has the
advantage that there is no dedicated ‘transaction server’ that could be a central
point of failure and bottleneck.

current::begin()
 184

T h e O b j e c t T r a n s a c t i o n S e r v i c e
Client Invokes Operations within the Transaction

When a client invokes a transactional object in a server, some transactional
context accompanies each request. Transactional contexts contain such details as
a global transaction identifier and a reference to a transaction co-ordinator.

Using implicit context propagation the transaction context is automatically
included in the service context field of each IIOP request message. Alternatively,
explicit context propagation requires the programmer to pass the transaction
context as an argument to IDL operations.

On invocation of an IDL operation that uses a Resource, the resource must be
registered with the transaction Coordinator. A resource must only be registered
once with the co-ordinator: subsequent invocations within the context of the same
transaction should not re-register the resource.

Registration of XA-compliant resources is much simpler. An XA resource is
registered once with OrbixOTS, typically when the server starts up.

Figure 7.7: Server Registers with OrbixOTS when Client First Invokes

coordinator::

register_resource()

invoke()
185

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Client Ends the Transaction

The client ends the transaction by invoking a commit or rollback operation on
OrbixOTS (Figure 7.8).

Figure 7.8: Client Ends a Transaction

OrbixOTS Co-ordinates a Two-Phase Commit

After the application code has invoked commit() on the OTS transaction
manager, a number of extra steps are executed automatically by the OTS in order
to complete the transaction and fully commit the participants. It is at this stage
that the differences between an ordinary local transaction (single-phase commit)
and a distributed transaction (two-phase commit) become apparent.

In the first phase of the two-phase commit, the transaction manager invokes
prepare() on all of the resources participating in the transaction. This gives the
participating resources an opportunity to save the current status of the transaction
in their respective transaction logs. These transaction logs are used by the
automatic failure recovery mechanism if something goes wrong before the
transaction completes. Resources reply to the prepare() operation by sending
back a vote on the outcome of the transaction. The alternatives available for the
Vote response are:

current::commit()/
current::callback()
 186

T h e O b j e c t T r a n s a c t i o n S e r v i c e
• Return VoteReadOnly if the resource’s data is not modified by the
transaction. This would be the case, for example, if the interaction with the
database only involved SQL SELECT statements.

• Return VoteCommit if the resource’s data is written to stable storage by the
transaction and the transaction is properly prepared. The response
indicates that this particular participant is happy to proceed with
committing the transaction.

• Return VoteRollback if this particular participant wants to abort the
transaction for any reason.

The transaction manager waits for all of the votes to be returned before initiating
the second phase of the two-phase commit.

The action taken by the transaction manager in the second phase of the two-phase
commit depends upon the outcome of the voting by participants. If the consensus
of the participants is to commit, the transaction manager proceeds by invoking
commit() on all of the resources. However, if there are one or more negative
outcomes, the transaction manager invokes rollback() on all participating
resources.

The OTS operates on a model of presumed-abort. In other words, if a particular
resource fails to receive the confirming commit() it will ultimately roll back the
transaction (after a certain timeout).

Figure 7.9: A Two-Phase Commit

1

2 2
187

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Recoverability and Log Files
Recoverability of transactions relies crucially on careful management of a
transaction log file. Every recoverable OTS server is associated with such a log
file, which stores the state of pending transactions. In the course of executing a
two-phase commit, a recoverable server will not proceed to the commit phase
until data needed for recovery has been physically written to the log file.

In the event of a server crash, the log file will enable the restarted server to
resolve transactions pending before the crash.

Threading and Concurrency
The X/Open Distributed Transaction Processing (DTP) model does not directly
address issues of threading and concurrency. It was developed originally to
describe resources accessed from a single thread of control. This applies, for
example, to the case where a process opens only a single connection to a
database. In the original X/Open DTP model, there was no need to identify which
database connection was being used at any one time, nor which thread of control
was associated with a particular transaction.

In the meantime, as threading has become the norm across a wide range of
applications, database vendors have added multithreading capability to their
products. What this means is that a single process, which is a client of the
database, may open multiple connections to the database and have multiple
threads running, all of which are accessing the database simultaneously. Several
transactions may be active at once. Each active transaction must be associated
with a database connection and a thread of control.

In the case of multithreaded database access, the following convention is
followed by the database vendors:

• Each database connection is uniquely associated with a particular thread of
control.

This implies that a particular database connection must be opened and
closed by a particular thread. Moreover, the database connection must
only be accessed via its associated thread and not by any other thread.

• Each transaction is uniquely associated with a database connection and,
therefore, also uniquely associated with a particular thread of control.
 188

T h e O b j e c t T r a n s a c t i o n S e r v i c e
A transaction is begun when a database is accessed via a particular thread,
and it remains associated with this thread for the duration of the
transaction. All work on a particular transaction must therefore be carried
out via its unique associated thread.

When a transaction manager, such as OrbixOTS, is used in multithreaded mode, it
must be aware of this threading convention. That is why there is a final boolean
argument to the method OrbixOTS::Server::register_xa_rm() to indicate to
OrbixOTS whether the resource is multithreaded.

Programming in Multithreaded Mode

The developer who wants to use OrbixOTS with a resource in multithreaded
mode has to carry out the following tasks:

• Tell OrbixOTS that the resource is concurrent.

• Configure the resource to run in concurrent mode.

• Choose a concurrency model for Orbix event processing.

• Set the OrbixOTS thread pool size.

Tell OrbixOTS that the Resource is Concurrent

The operation OrbixOTS::Server::register_xa_rm() takes an association flag
as its final argument. This association flag should be set to TRUE if you want to
use OrbixOTS in multithreaded mode. The important point is that by telling the
OTS transaction manager it is being used in multithreaded mode, you ensure that
it adopts the proper threading convention in its interaction with the database.

Configure the Resource

It is necessary to consult the documentation from your resource or database
vendor for detailed instructions on setting up the resource to operate in concurrent
mode. You must follow the instructions specifically relating to the use of an XA
interface. Most of the hard work for the multithreading case must be done in the
part of the application code that accesses the database. This work consists of
implementing thread synchronization and following the directions of the database
vendor in relation to concurrent database access.
189

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Choose a Concurrency Model

Part of the support for multithreading in OrbixOTS is a feature that allows a
developer to choose a concurrency model for the processing of incoming CORBA
invocations. OrbixOTS uses a thread pool by default for processing incoming
CORBA invocations. This thread pool can be operated according to one of three
alternative threading models: serializeRequestsAndTransactions,
concurrent or serializeRequests.

• OrbixOTS::Server::serializeRequestsAndTransactions (default) is
used by single-threaded applications. This concurrency mode only allows
one transaction and one request to be active in the server at a time. That is,
once a transaction accesses a server, no other transaction can enter that
server until that transaction is complete.

• OrbixOTS::Server::concurrent is used by multithreaded applications

using a database in multithreaded mode.5 This concurrency mode applies
no serialization constraints. That is, requests that are part of different
global transactions run concurrently in the server.

• OrbixOTS::Server::serializeRequests can be used by applications
using a database in multithreaded mode, but it is not a very common
option. This mode is a compromise between the two previous modes.
Requests that are part of different global transactions are serialized as they
arrive at the server.

The concurrency model is specified as an argument to the operation
OrbixOTS::Server::impl_is_ready().

Set the OrbixOTS Thread Pool Size

OrbixOTS uses a pool of threads to process incoming requests and this thread
pool is activated once OrbixOTS::Server::impl_is_ready() is called. It is
important for the scalability of your application to ensure that the size of the
thread pool is large enough to cope with the volume of incoming requests.

The variables OTS_TPOOL_LWM and OTS_TPOOL_HWM are used to control the
number of threads available in the OrbixOTS thread pool.

5. It is possible for an application to be multithreaded but use the database in single-threaded mode.
This implies that only one of the threads is ever used to access the database. The appropriate
concurrency mode for such a case is serializeRequestsAndTransactions.
 190

T h e O b j e c t T r a n s a c t i o n S e r v i c e
The low water mark OTS_TPOOL_LWM defines the minimum number of active
threads available in the thread pool. It should be set to a value roughly equal to
the average number of concurrent requests pending on a server. The default value
is 5.

The high water mark OTS_TPOOL_HWM defines the maximum number of threads
that can be active in the thread pool at any time. It should be set to a value greater
than the peak number of concurrent requests made on an OTS server. The default
value is 10*OTS_TPOOL_LWM.

The number of active threads in the pool varies dynamically between the limits
set by OTS_TPOOL_LWM (minimum) and OTS_TPOOL_HWM (maximum) depending
upon the load.

These variables can be set either as environment variables in the environment of
the server, or as configuration variables in the scope OrbixOTS of your Orbix
configuration.
191

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 192

 8
Security

This chapter presents the basic concepts of OrbixSSL security
and shows you how to add security to the StockWatch
demonstration.

OrbixSSL integrates Orbix and Secure Sockets Layer (SSL) security. Using
OrbixSSL, distributed applications can transfer confidential data securely across
a network.

Normal Orbix applications communicate using the CORBA standard Internet
Inter-ORB Protocol (IIOP). This application-level protocol is layered above the
transport-level protocol TCP/ IP.

OrbixSSL offers application developers the option of layering IIOP on top of
SSL, which in turn is layered on top of TCP/IP.

All Orbix components, including the Orbix daemon and Orbix utilities, and all
OrbixSSL applications can communicate using SSL. OrbixSSL imposes few
requirements on administrators and programmers who want to support SSL
communications in Orbix applications.
193

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
OrbixSSL Concepts
SSL provides authentication, privacy, and integrity for communications across
TCP/IP connections:

• Authentication allows an application to verify the identity of another
application with which it communicates.

• Privacy ensures that data transmitted between applications can not be
eavesdropped on or understood by an intermediary.

• Integrity allows applications to detect whether data was modified during
transmission.

This section provides a brief introduction to these features of SSL.

Authentication in SSL
SSL uses Rivest Shamir Adleman (RSA) public key cryptography for its
authentication phase. In public key cryptography, each application has an
associated public key and private key. Data encrypted with the public key can be
decrypted only with the private key. Data encrypted with the private key can be
decrypted only with the public key.

Public key cryptography allows an application to prove its identity by encoding
data with its private key. Since no other application has access to this key, the
encoded data must derive from the true application. Any application can confirm
the content of the encoded data by decoding it with the application’s public key.

Consider the example of two applications, a client and a server. The client
connects to the server and wants to send some confidential data. Before sending
the data, the client must ensure that it is connected to the required server and not
to an impostor.

When the client connects to the server, it confirms the server identity using the
following protocol:

1. The client asks the server to transmit the server’s public key.

2. The server sends its public key to the client.

3. The client challenges the server to send a message encrypted with the
server’s private key.
 194

S e c u r i t y
4. The server sends a message to the client both in plaintext format and
encrypted with the server’s private key. The format of this message is such
that it would be infeasibly difficult for an application other than the true
server to generate.

5. The client decrypts the encrypted version of the message with the
corresponding public key. The client compares this decoded message with
the plaintext message to verify the identity of the server.

The protocol also allows the server to authenticate the client. Client
authentication, which is supported by OrbixSSL, is also optional in SSL
communications.

As any application can have a public and private key pair, the transfer of the
public key in step two must be accompanied by additional information that proves
the key is associated with the true server, and not some other application. For this
reason, the key is transmitted as part of a certificate thereby contributing to the
process of owner verification.

Certificates in SSL Authentication

The International Telecommunications Union (ITU) recommendation X.509
defines a standard format for certificates. SSL authentication uses X.509
certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.

• The public key of the entity.

• The name of the certification authority that issued the certificate.

For more information on X.509 certificates, see the OrbixSSL C++ Programmer’s
and Administrator’s Guide.

The role of a certificate is to match an entity name to a public key. A certification
authority (CA) is a trusted authority that verifies the validity of the combination
of entity name and public key in a certificate.

You have to specify trusted CAs in order to use OrbixSSL.
195

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Privacy of SSL Communications
Immediately after authentication, an SSL client application sends an encoded data
value, encrypted using the server’s public key, to the server. This unique session
encoded value is a key to a symmetric cryptographic algorithm.

A symmetric cryptographic algorithm is an algorithm in which a single key is
used to encode and decode data. Once the server has received such a key from the
client, all subsequent communications between the applications can be encoded
using the agreed symmetric cryptographic algorithm.

Examples of symmetric cryptographic algorithms used to maintain privacy in
SSL communications are the Data Encryption Standard (DES) and RC4.

Integrity of SSL Communications
The authentication and privacy features of SSL ensure that applications can
exchange confidential data that cannot be understood by an intermediary.
However, these features do not protect against the modification of encrypted
messages transmitted between applications.

To detect if an application has received data modified by an intermediary, SSL
adds a message authentication code (MAC) to each message. This code is
computed by applying a function to the message content and the secret key used
in the symmetric cryptographic algorithm.

An intermediary cannot fake the MAC for a message without knowing the secret
key used to encrypt it. If the message is corrupted during transmission, the
message content will not match the MAC. SSL automatically detects this error
and rejects corrupted messages.

Validation of Certificates
Validation is a key step in the process of authentication where it is decided
whether or not a received certificate can be considered trustworthy. OrbixSSL
provides you with a number of options for certificate validation, allowing you to
customize it to a greater or lesser degree. The basic options are as follows:
 196

S e c u r i t y
• Default validation. By default, OrbixSSL checks that a certificate has been
signed by a CA that you trust (a list of CAs can be supplied in the
configuration of OrbixSSL). This policy can be useful if you know that the
application can trust all certificates signed by a particular CA or CAs.

• Customized validation. For more fine-grained validation, you have the
option of adding code to your secure application to check the validity of
certificates. OrbixSSL allows you to register a callback function that will
be called during the authentication phase of connection establishment. The
callback function is passed a copy of the peer certificate and can decide
whether to accept or reject the connection based on the contents of this
certificate. The default validation is still carried out by OrbixSSL.

Certificate Revocation List (CRL)
A CRL is a blacklist of certificates that are denied access to secure applications.
Once a certificate is revoked it is denied access to secure applications. This
requirement might arise, for example, if certain certificates were no longer
considered trustworthy or if certificates lost the privilege of accessing the secure
system.

The mechanism for revoking certificates is easy to administer. The certificate to
be revoked is appended to a file containing the certificate revocation list.
OrbixSSL automatically consults this file when a connection attempt is made.
Connection attempts by clients using one of the revoked certificates will fail. No
extra coding is required to enable this feature.

Installing OrbixSSL
OrbixSSL is delivered on a separate CD-ROM to the other Orbix components.
OrbixSSL includes the following components:

• Link libraries and header files for C++ developers.

• Java classes for Java developers.

• Utility programs for creating and managing X.509 certificates.
197

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
OrbixSSL installation integrates SSL components with your existing Orbix
installation. It adds SSL capabilities to your system without affecting existing
applications.

Enabling SSL Security
There are number of steps involved in making an Orbix application secure:

1. Set up X.509 certificates for the applications. These can either be obtained
from a public CA or generated by a private CA.

2. Add some code to your applications to enable SSL.

3. Configure which certificates the applications use to identify themselves
and which certificates they accept.

4. Configure security for each of the Orbix components and services. This
typically includes the Orbix daemon, the interface repository, the naming
service, and the event service.

You also want to be sure that the runtime environment is set up so that your
application picks up dynamic libraries from the correct location.

Extending the StockWatch Example for SSL
Example 4 of the StockWatch demonstration adds SSL capability to the
StockWatch clients and servers. The demonstration configures security with the
client authentication option enabled.

Making the Server Secure

When extending an application to use SSL security you must:

• Initialize the OrbixSSL library.

• Ensure OrbixSSL knows where the application’s X.509 certificate file and
private key are located.

• Ensure OrbixSSL knows the password associated with the private key.
 198

S e c u r i t y
• Define an OrbixSSL security policy. This instructs Orbix whether insecure
client connections will be accepted, or whether the application will
connect to insecure server applications.

These issues are dealt with in the following code sample.

// C++
1 #include <IT_SSL.h>

...
// Initialize the toolkit and check for any errors
//

2 CORBA(Orbix).filterBadConnectAttempts(1);

3 if (OrbixSSL.init() == IT_SSL_SUCCESS) {
cout << "Specifing secure, insecure servers and clients"

<< endl;
//
// Associate a particular certificate with this application.
//

4 if (OrbixSSL.setPrivateKeyPassword("demopassword")
!= IT_SSL_SUCCESS) {

cout << "Error setting private key password" << endl;
return 1;

}

if (OrbixSSL.setSecurityName("demos/demo_server")
!= IT_SSL_SUCCESS) {

cout << "Error setting security name" << endl;
return 1;

}

//
// set the server policy to connect to insecure servers and
// accept insecure and secure connections
//

5 if (OrbixSSL.setInvocationPolicy(
IT_INSECURE_ACCEPT | IT_SECURE_ACCEPT) != IT_SSL_SUCCESS

) {
cout << "Error setting security policy" << endl;
return 1;

}
}

199

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
The code is explained as follows:

1. Include the header file IT_SSL.h to gain access to the declarations for the
OrbixSSL programming interface.

2. If a client connection attempt is rejected, this would normally cause an
exception to be raised on the server side during event processing
(CORBA::BOA::impl_is_ready() or CORBA::BOA::processEvents()).

In a secure environment, however, connection attempts are routinely
rejected when the SSL authentication step fails. In most cases, it would be
inconvenient to handle these exceptions, therefore the option
filterBadConnectAttempts() is set to true to suppress them. This
behaviour can also be specified by an administrator via the orbixssl.cfg
file.

3. Basic OrbixSSL initialization call. This initialization call is invoked on the
OrbixSSL object, which is a predefined instance of class IT_SSL
constructed in the SSL libraries.

4. Specify the application’s X.509 certificate, and its associated password.
This example application uses a demonstration certificate which is located
in the OrbixSSL demonstration certificate repository.

The function setSecurityName() specifies the name of the file
containing both the X.509 certificate and its associated private key (the
private key is stored in encrypted form). The name of this file is specified
relative to a root certificate directory, IT_CERTIFICATE_PATH, specified in
the Orbix SSL configuration file.

5. A variety of client and server policies can be specified as arguments to
setInvocationPolicy(). In this example, the chosen invocation policy
allows both secure and insecure applications to connect to the StockWatch
application.

Making the Client Secure

A client can be made secure using similar code to that given in the preceding
section. The only difference is that the client specifies its own X.509 certificate in
the call to setSecurityName() and passes the corresponding password to
setPrivateKeyPassword(). These calls are only necessary, however, if client
authentication is enabled.
 200

S e c u r i t y
The client is likely to choose a different set of options in the call to
setInvocationPolicy(). A typical client policy is IT_SECURE_CONNECT,
specifying that the client always attempts to use SSL security when it opens a new
connection to a server.

In the case of the StockWatch clients, for example
clients/cxx/clientots_ssl.cxx, extra code is used to perform customized
validation of the server’s X.509 certificate. Detailed explanation of this feature is
beyond the scope of this chapter.

Administration of OrbixSSL
An understanding of OrbixSSL administration is essential in order to run secure
applications. Consult the OrbixSSL C++ Programmer’s and Administrator’s Guide
for a full discussion of the configuration issues surrounding security before
running an SSL demonstration.

The main configuration issues that you should be aware of are:

• Selection of a CA.

• Selecting an appropriate security policy. For example, should all
communications be secure or should a server allow secure and insecure
clients to attach to it. Likewise, should a client insist on only connecting to
secure servers or should it selectively open secure and insecure
connections.

• Specifying the security policy of the Orbix daemon process.

• Enabling client authentication by OrbixSSL servers.

• Specifying the list of supported message encryption algorithms in order of
preference.

Setting up a secure Orbix system includes configuring the following:

• A secure Orbix daemon.

• A secure interface repository (IFR).

• A secure naming service.

• A secure event service.

• A secure management service.
201

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 202

 9
Load Balancing

Load balancing extensions to the naming service are introduced
and a complete programming example is presented.

As your application scales up from a test to a production environment, more and
more clients will cause the load to become high on a single server. However, you
can design your server so that as you monitor its activity, an administrator can
replicate it to facilitate load balancing. Requests can then be routed according to
the load on the server process. Additional client requests can be taken care of
automatically with minimal delay.

To optimize system throughput, Orbix uses the object group feature of
OrbixNames first to register pools of servers and then to distribute requests
according to the load on the server processes.

Load balancing is invisible to the client. When a client requests an object from
OrbixNames, OrbixNames selects, from a group of objects, an object to resolve
that request. The algorithm for choosing an object is set when the object group is
initially created in the naming service, and can be either random or round-robin.

Example 5 introduced here is simply a modification of example 1. The tasks to
consider in the revision are as follows:

• Creation of an object group in the naming service.

• Introduction of a mechanism whereby the server can be replicated. This is
done via the OrbixNames object groups feature and can be implemented
by modifying the server main() function.
203

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Object Groups in OrbixNames
OrbixNames gives application developers the opportunity to hide object location
details from client applications. The CORBA services naming specification
describes a model whereby a name maps to an associated object. OrbixNames
optionally extends this model to allow a name to map to a group of objects (see
Figure 9.1).

Figure 9.1: Object Group

In addition to implementing the CosNaming IDL module, OrbixNames also
supports a new IDL module called LoadBalancing as follows:

module LoadBalancing {
exception no_such_member{};
exception duplicate_member{};
exception duplicate_group{};
exception no_such_group{};
typedef string memberId;
typedef sequence<memberId> memberIdList;
struct member{

Object obj;
memberId id;

};

 Name

 Name

 bind()

 Object 1

 Object

 Object 3

 Object 2

 Object Group
 204

L o a d B a l a n c i n g
interface ObjectGroup{
readonly attribute string id;
Object pick();
void addMember(in member mem) raises (duplicate_member);
void removeMember(in memberId id) raises (no_such_member);
Object getMember(in memberId id) raises (no_such_member);

memberIdList members();
void destroy();

};
typedef string groupId;
typedef sequence<groupId> groupList;

interface RandomObjectGroup : ObjectGroup {};
interface RoundRobinObjectGroup : ObjectGroup {};
interface ObjectGroupFactory{

RoundRobinObjectGroup createRoundRobin(in groupId id)
raises (duplicate_group);

RandomObjectGroup createRandom(in groupId id)
raises (duplicate_group);

ObjectGroup findGroup(in groupId id) raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};
};

Typically, an instance of object group is bound to a name in OrbixNames.
Application objects can be added to, or removed from, this object group.

Internally, the implementation of CosNaming::NamingContext::resolve() has
been modified to check whether the name being resolved maps to an object of
type ObjectGroup. If it does not, then the object is simply returned as normal.
However, if the object is of type ObjectGroup, then the operation
ObjectGroup::pick() is called. This operation picks and returns a member of
the group.

Object groups offer basic load balancing functionality to developers (see
Figure 9.2). They are invisible to client side applications which simply call
CosNaming::NamingContext::resolve(), as before. However, server code
modifications are required.
205

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Figure 9.2: Naming Service and Load Balancing

OrbixNames load balancing functionality is summarized as follows:

1. The administrator creates an object group and binds it to a name typically
by using the new_group utility.

2. Servers add members to the group.

3. Clients resolve names in the usual manner. However, because the name
being resolved maps to an object group, one member is chosen for that
client.

4. Clients invoke a member of the object group.

Creating an Object Group in OrbixNames
The simplest way to create an object group is to use the new group utility as
follows:

new_group oracle example5.oracle -round_robin

This creates a new round-robin load balancing group with group ID oracle. It
binds the group to the name oracle in the example5 naming context which is in
the root context.
 206

L o a d B a l a n c i n g
It is also possible to create an object group programmatically. Using the interfaces
given in the IDL LoadBalancing module you can write code directly in your
server that creates an object group as needed. This is the approach taken in
example 5 of the StockWatch demonstration.

Modifications to the Client
The client must be linked with the stub code for LoadBalancing.idl. If the stub
code is not already part of the client, the client has to be relinked.

Usually no programming modifications are required on the client side. The syntax
used to access a load-balancing names server is identical to the syntax used to
access an ordinary names server. In both cases the client invokes the method
CosNaming::NamingContext::resolve() to look up a name and obtain an
object reference.

However, the semantic difference between the load-balancing and non-load-
balancing cases may have an impact on some clients. If a client assumes that the
naming service returns a reference to the same server instance every time, and if
the client relies on this assumption in a non-trivial way, then the client might be
affected by the introduction of load balancing. This is a general semantic
consideration which can affect any load balanced system.

Modifications to the Server
Previously the application simply bound a name to a single StockWatch object.
Using object groups the server should add a member to an object group instead.

// serverOracle.cc

int main(int argc, char **argv) {

if (!argv[1] || !argv[2] || argv[3])
syntax_error();

char servername [64];
sprintf(serverName, "%s/%s_%s", DEMO, "oracle", argv[3]);
CosNaming::Name_var tmpName;
207

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
CORBA::ORB_var orb = CORBA::ORB_init(argc,argv,"Orbix");

oracle_backend orac (argv[1], argv[2]);
try {

CORBA::Orbix.setServerName(serverName);

// Instantiate my instance of StockWatch
StockWatch_i swatch(&orac);

cout << "Resolve to OrbixNames" << endl;
CosNaming::NamingContext_var rootCtx;
CORBA::Object_var objectV =

orb->resolve_initial_references(
"NameService"

);
rootCtx = CosNaming::NamingContext::_narrow(objectV);
if (CORBA::is_nil(rootCtx)) {

cerr << "Narrow failed for NamingContext" << endl;
exit(1);

}
cout << "resolved successfully to OrbixNames" << endl;

// Construct a Name
tmpName = new CosNaming::Name(2);
tmpName->length(2);
tmpName[0].id = CORBA::string_dup("example5");
tmpName[0].kind = CORBA::string_dup("");
tmpName[1].id = CORBA::string_dup("oracle");
tmpName[1].kind = CORBA::string_dup("");
try {

CORBA::Object_ptr tmp =
1 rootCtx->resolve_object_group(tmpName);

LoadBalancing::ObjectGroup_var og =
LoadBalancing::ObjectGroup::_narrow(tmp);

LoadBalancing::member mem;
mem.obj = CORBA::Object::_duplicate(&swatch);
mem.id = CORBA::string_dup(argv[3]);

2 og->addMember(mem);

} catch (LoadBalancing::duplicate_member) {
cout << "Already a member of" << tmpName << endl;
 208

L o a d B a l a n c i n g
cout << "Ignoring... " << endl;
}

// Now wait for incoming invocations.
3 CORBA::Orbix.impl_is_ready(serverName,TIMEOUT);

} catch(...)

The code is explained as follows:

1. Resolve an object group which should be bound to the name
example5.oracle. This object group was created and bound using the
new_group utility.

2. Use the addMember() function to add your server’s object to the naming
service’s object group. This function takes a LoadBalancing::member
structure as an argument. It includes the object reference you want
associated with the object group (that is, swatch) and an id for the object.
This example uses a simple id (argv[3]) to represent this server instance.

3. The impl_is_ready() function lets Orbix know that the server is ready to
service client requests. In this case the Orbix server name is example5/
oracle_id, where id is taken from argv[3].

Object group members reside in different Orbix servers. This means that
each server needs to be individually registered with the Orbix
Implementation Repository. For example:

putit example5/oracle_server_1 ...
putit example5/oracle_server_2 ...

Enabling Load Balancing
The naming service must be configured to enable load balancing before you can
run this application. Load balancing is enabled by supplying the -l command line
switch. Register the naming service with the Orbix daemon as follows:

putit -h NSHost NS "ProgressRoot/bin/ns -l"

where NSHost is the host where the naming service is run. This ensures that load
balancing is enabled whenever the naming service is started automatically.
209

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
 210

Index
A
a simple transaction 159
anonymous sequence 80
architecture 29
authentication 194

B
backend interface 104
begin()

in CosTransactions::Current 182
binding

in naming service 111, 115
BOA_init()

in CORBA::ORB 125

C
CA 195
catns command 131
certificate authentication 195
certificate revocation list 197
certification authority 195
ChannelManager 157
client

stub code 46, 52
clients 20
Code Generation 47
comments

in IDL 44
commit()

in CosTransactions::Current 182
common.cfg 43
Common.IT_DEFAULT_CLASSPATH 129
Common.IT_JAVA_INTERPRETER 129
compiler

IDL 45
options 46

compound type 71
sequence 72
struct 72, 75

concurrent
in OrbixOTS::Server 178

configuration
explorer tool 43
of OCGT 43
Orbix hints 41

configuration explorer tool 43
CORBA

introduction to 19
CORBA::BOA 125
CORBA::BOA::impl_is_ready() 59, 126
CORBA::BOA::processEvents() 60
CORBA::BOA::setServerName() 118
CORBA::Environment 56
CORBA::is_nil() 120
CORBA::Object 128
CORBA::ORB 125
CORBA::ORB::BOA_init() 125
CORBA::ORB::setDiagnostics() 59
CORBA::ORB_init() 125
CORBA::Orbix 125
CORBA::release() 68

release()
in CORBA 67

CORBA::string_alloc() 65
CORBA::string_dup() 56, 65
CORBA::string_free() 65
CORBA::String_var 64
CORBA::TRANSACTION_ROLLEDBACK 182
CORBAfacilities 24, 26
CORBAservices 24, 25
CosNaming::Name 114
CosNaming::NamingContext 115
CosNaming::NamingContext::bind() 116
CosNaming::NamingContext::rebind() 115
CosNaming::NamingContext::resolve() 116
CosTransactions::Current 182
CosTransactions::Current::begin() 182
CosTransactions::Current::commit() 182
CosTransactions::Current::rollback() 182
CosTransactions::TransactionalObject 168
cpp_genie 86
CRL 197

D
daemon 27
database native interface 169
database schema 101
211

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
decoupled communication 32
deep copy

struct 77
diagnostics 59
DII 22
distributed transaction 33, 160, 161, 164

server programming for 174
writing a client 180

distributed transaction processing 35
distributed transactions

implementing a transactional class 179
steps involved 184

DSI 23
DTP 35
dumb pointers 64
_duplicate() 108

in proxy class 67
dynamic CORBA programming 22
Dynamic Invocation Interface. See DII
Dynamic Skeleton Interface. See DSI

E
environment parameter 56
event channels 32
event propagation 155
Event Service 26
event service 133
exception 71

catching 89
handling 86
keyword 88
raises() clause 87, 88
system 87
throwing 89
user 72, 87

exceptions 53
system 53

exit()
in OrbixOTS::Server 178

F
factory interface 98
factory object 97, 106
filterBadConnectAttempts() 200
finding objects in OrbixNames 119
fixed length

struct 75
 212
G
genie 48

I
id field 114
IDL 43

anonymous sequence 80
compiler 21, 27, 45

options 46
interface 44
mapping to C++ 53
operation 44
scope 44
sequence 79
string 53, 56, 64
struct 75
typedef 44

idlgen 47, 49, 86
idlgen.cfg 42, 43
IDLGEN_CONFIG_FILE 43
IFR 201
IIOP 23, 27, 32
Implementation Repository 22
implementing a transactional class 179
implementing an interface 55
impl_is_ready()

in CORBA::BOA 59, 126
in OrbixOTS::Server 178

inactivity timeout 60
infinite timeout 61
init()

in OrbixOTS::Client 180
initialization service 125
initializing a server 174
integrity 194, 196
interface 44
Interface Definition Language 43
Interface Repository 22, 27
interface repository 201
Internet Inter-ORB Protocol. See IIOP
iona.cfg 42
IONARoot 41
is_nil()

in CORBA 120
IT_CONFIG_PATH 42
IT_Create()

in OrbixOTS::Client 180
IT_DEFAULT_CLASSPATH 129
IT_Demo_NSW 122

I n d e x
IT_Demo_NSW::clearNamePrefix() 123
IT_Demo_NSW::IT_Demo_NSW() 123
IT_Demo_NSW::registerObject() 123
IT_Demo_NSW::removeObject() 123
IT_Demo_NSW::resolveObject() 123
IT_Demo_NSW::setBehaviourOptions() 123
IT_Demo_NSW::setNamePrefix() 123
IT_Demo_NSWParser 120
IT_Demo_NSWParser::create() 121
IT_Demo_NSWParser::defineNameSeparators() 1

22
IT_Demo_NSWParser::stringToName() 122
IT_IDLGEN_CONFIG_FILE 42
IT_IONA_CONFIG_FILE 42
IT_JAVA_INTERPRETER 129
IT_NAMES_REPOSITORY_PATH 129
IT_NAMES_SERVER 129
IT_NAMES_SERVER_HOST 129
IT_SECURE_CONNECT 201

K
kind field 114

L
LD_LIBRARY_PATH 42
library path 42
library, Orbix 27
load balancing 203

adding servers to the naming service 207
creating an object group 206

lsns command 130

M
memory management 56, 64, 66, 84, 86, 93, 109

N
name component 114
names repository 116
names wrapper 120
naming context 111
naming objects 117
Naming Service 25
naming service 111

binding 111
_narrow() 120, 128
narrowing 120, 128
new_group 206
nil object reference 120
O
Object

in CORBA 128
object group 203

creating, adding objects to 206
Object Management Architecture 24
object reference 66
Object Transaction Service 25
objects

in CORBA 21
OCGT 40, 47

client code 50
configuration 43
genie 48
idl2html genie 48
memory management 86
server code 54

OMA 24
operation 44
Oracle 172, 173
ORB_init()

in CORBA 125
Orbix 29

components
OrbixEvents 32
OrbixNames 31
OrbixSSL 35

suite of products 28
Orbix Code Generation Toolkit 28, 40, 47

genie 48
Orbix protocol 32
Orbix Wonderwall 28
orbix3.cfg 43
orbixd 27
OrbixEvents 28, 32, 133

consumers 33
event channels 33
event propagation 155
functionality overview 32
suppliers 32

OrbixEventsAdmin
ChannelManager 157

OrbixNames 28, 111
bind() 116
binding 111, 115
building applications

using OrbixNames 111
client example 119
functionality overview 31
id field 114
213

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
Java implementation 128
kind field 114
name 114
name component 114
name format 113
names repository 116
naming context 111
object group 203
rebind() 115
resolve() 116
resolving 116, 120
root naming context 113
server example 117
string format 113
wrapper demo 120

orbixnames3.cfg 43
OrbixOTS 28, 159

ACID properties of 161
atomic property of 161
begin transaction 162, 182
building applications

using OrbixOTS 159
close string 174
commit transaction 162, 182
consistency property of 161
controlling database transactions 168
database integration 34
distributed transaction 160, 161, 164

server programming for 174
distributed transactions 33

steps involved 184
durability 161
embedded SQL 169
explicit direct mode 183
functionality overview 34
implicit indirect mode 183
isolation 161
log device 176
open string 173
OTS client 165
report_heuristics flag 182
restart file 176
restart mirror 176
roll back transaction 182
specifying transactional objects 166
transaction context 163
transaction manager 171
transaction originator 162
transactional object 166
TRANSACTION_ROLLEDBACK
 214
exception 182
two-phase commit 35, 186
two-phase commit protocol 170
X/Open 35
XA interface 171

OrbixOTS::Client::init() 180
OrbixOTS::Client::IT_Create() 180
OrbixOTS::Client::shutdown() 180
OrbixOTS::Server::concurrent 178
OrbixOTS::Server::exit() 178
OrbixOTS::Server::impl_is_ready() 178
OrbixOTS::Server::init() 178
OrbixOTS::Server::register_xa_rm() 172
OrbixOTS::Server::serializeRequests 178
OrbixOTS::Server::serializeRequestsAndTransacti

ons 178
OrbixOTS::Server::shutdown() 178
OrbixOTS.OTS_LISTEN_TIMEOUT 178
OrbixSSL 28, 35, 193

administration of 201
authentication 36, 194
certificate 195
certificate authentication 195
certificate revocation list 197
certification authority 195
enabling 198
establishing a connection 36
installing 197
integrity 36, 196
privacy 36, 196
private key 194
public key 194
validation of certificates 196

OrbixSSL::setInvocationPolicy() 200
OrbixSSL::setSecurityName() 200
orbixssl.cfg 200
OS/390 29
OTS client 165
OTS_LISTEN_TIMEOUT 178

P
parameter passing mode

in 73
inout 73
out 73

PATH 42
PRICES table 102
privacy 194, 196
private key 194
processEvents()

I n d e x
in CORBA::BOA 60
public key 194
putit command 130
putnewncns command 131

R
raises() 87, 88
rebind() 115
recursive delete

sequence 83
struct 77

register_xa_rm()
in OrbixOTS::Server 172

registration 130
release()

in CORBA 68
report_heuristics 182
resolving

in OrbixNames 116
resolving names 119
rollback()

in CosTransactions::Current 182
root naming context 113

S
schema

for StockWatch example 101
scope 44
secure sockets layer 193
security 193

‘handshake’ 36
SSL 36, 193

authentication 36, 194
integrity 36, 196
privacy 36, 196

Security Service 26
sequence 72, 79

anonymous 80
example 90, 92
length() 81
maximum() 81, 82
recursive delete 83
smart pointer 82
variable length 80

serializeRequests
in OrbixOTS::Server 178

serializeRequestsAndTransactions
in OrbixOTS::Server 178

server
skeleton code 46
servers 20
setInvocationPolicy() 200
setSecurityName() 200
setServerName()

in CORBA::BOA 118
SHLIB_PATH 42
shutdown()

in OrbixOTS::Client 180
in OrbixOTS::Server 178

skeleton code 21, 46
smart pointer 52

for struct 77
sequence 82

smart pointers 64, 65, 66, 69
SQL 101, 102, 169, 179

COMMIT WORK 169
ROLLBACK WORK 169

SSL 193
StockWatch 39
string 56, 64
string_alloc()

in CORBA 65
string_dup()

in CORBA 65
string_free()

in CORBA 65
String_var

in CORBA 64
struct 72, 75

client example 89
deep copy 77
example 90, 92
fixed length 75
recursive delete 77
variable length 75

stub code 21, 46, 52
SYMBOLS table 101
system exception 87

T
TCL 47
template type 79
three-tier application 95, 100
timeout 60

infinite 61
Tool Command Language 47
Trader Service 25
transaction

ACID properties of 161
215

I n t r o d u c t i o n t o O r b i x C + + E d i t i o n
atomic 161
begin 162
commit 162
consistency property 161
durability 161
embedded SQL 169
isolation 161
XA interface 169

transaction context 163
transaction co-ordinator 35
transaction manager 171
transaction originator 162
transactional object 166
TransactionalObject 168
transactions

controlling 168
two-phase commit 35, 186
two-phase commit protocol 170
typedef 44, 80

U
user exception 87

V
_var type 52, 66, 69, 86
variable length

sequence 80
struct 75

W
Wonderwall 28
wrapper for OrbixNames 120

X
X.509 certificate 195, 200
X/Open DTP standard 35
XA interface 34, 169, 171, 177
XA switch 172, 177
xa_switch_t 177
 216

	Preface
	Objectives of Orbix
	Audience
	Organization of this Guide
	Related Documentation
	Document Conventions

	Part I Introduction to
	CORBA and Orbix
	Introduction to CORBA and Orbix
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The CORBAservices
	The CORBAfacilities

	How Orbix Implements CORBA
	Orbix Components
	Orbix Architecture
	OrbixNames—The Naming Service
	OrbixEvents—The Event Service
	OrbixOTS—The Transaction Service
	Security with OrbixSSL

	Part II The StockWatch Demonstration
	The StockWatch Demonstration
	Overview of the StockWatch Demonstration
	Starting Point for StockWatch

	Configuration Hints
	Environment Variables
	Orbix Configuration Files
	OCGT Configuration

	Defining the Stock Interface
	The IDL Compiler
	Code Generation
	Generating Starting Code
	Dummy Application Implementation

	Client Code
	IDL-to-C++ Mapping
	Exception Handling

	Server Code
	Implementing the Stock Interface
	Implementing the Server Main Function

	Compile and Run the Demonstration
	Smart Pointers and Dumb Pointers
	Smart Pointer for Strings
	Smart Pointer for Object References
	Smart Pointers for Other Data Types

	Compound Types and Exceptions
	Extending the Example
	Parameter Passing Modes
	The struct Data Type
	The sequence Data Type
	Memory Management
	Exception Handling
	Client Code
	Server Code

	Integration with a Database
	Designing a Three-Tier Architecture
	Benefits of a Three-Tier Architecture

	Factory Objects
	StockWatch Three-Tier Application
	Server Implementation
	Implementation of Stock_i

	The Naming Service
	OrbixNames Concepts
	Naming Service IDL
	How Servers Bind Objects in OrbixNames
	How a Client Finds a Named Object
	Names Wrapper Demo
	Server Code Using Names Wrapper
	Client Code Using Names Wrapper
	Configuring OrbixNames
	Configuration Variables for OrbixNames
	Registering the Naming Service
	Naming Service Utilities

	The Event Service
	Introduction
	Types of Event Communication
	The Push Model
	The Pull Model
	Untyped Event Communication
	Typed Event Communication

	Callback Objects
	The Mainline of an Impure Client

	Locating an Event Channel
	Locating Channels via _bind()
	Locating Channels via the ChannelManager Interface

	Attaching a Supplier
	Getting a Reference to a ProxyPushConsumer
	Connecting to a ProxyPushConsumer

	Supplying Events
	Attaching a Consumer
	Getting a Reference to a ProxyPushSupplier
	Connecting to a ProxyPushSupplier

	Consuming Events
	Extending the StockWatch Example
	Initializing the StockWatch Server
	Initializing the StockWatch Consumers

	The Object Transaction Service
	Example of a Distributed Transaction
	One OTS Client Invoking on Two OTS Servers
	One Ordinary Client Invoking on Two OTS Servers.
	One OTS Client Invoking on One OTS Server.
	StockWatch Example

	Modification of StockWatch IDL for OTS
	Controlling Database Transactions
	Embedded SQL
	Database Native Interface
	XA Interface

	The OTS as Transaction Manager
	Format of the Open String
	Format of the Close String

	Writing an OTS Server
	Initializing a Transactional Server
	Implementing a Transactional Class

	Writing an OTS Client
	Initializing a Transactional Client
	Making a Transactional Invocation

	Implicit Indirect and Explicit Direct Modes
	Two-Phase Commit Protocol
	Recoverability and Log Files
	Threading and Concurrency
	Programming in Multithreaded Mode

	Security
	OrbixSSL Concepts
	Authentication in SSL
	Certificates in SSL Authentication

	Privacy of SSL Communications
	Integrity of SSL Communications
	Validation of Certificates
	Certificate Revocation List (CRL)
	Installing OrbixSSL
	Enabling SSL Security
	Extending the StockWatch Example for SSL
	Making the Server Secure
	Making the Client Secure

	Administration of OrbixSSL

	Load Balancing
	Object Groups in OrbixNames
	Creating an Object Group in OrbixNames
	Modifications to the Client
	Modifications to the Server
	Enabling Load Balancing

	Index

