
ORBIX
®

PROGRESS
®

OrbixSSL C++ Programmer’s and Administrator’s Guide
Version 3.3, SP11 March 2012



Progress Orbix v3.3.11

© 2012 Progress Software Corporation and/or its subsidiaries or affiliates. All rights 
reserved. 

These materials and all Progress® software products are copyrighted and all rights are 
reserved by Progress Software Corporation.  The information in these materials is subject to 
change without notice, and Progress Software Corporation assumes no responsibility for 
any errors that may appear therein.  The references in these materials to specific platforms 
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, Corticon, 
Corticon (and design), DataDirect (and design), DataDirect Connect, DataDirect 
Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery, 
DataXtend, Dynamic Routing Architecture, Empowerment Center, Fathom, Fuse Mediation 
Router, Fuse Message Broker, Fuse Services Framework, IONA, Making Software Work 
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, Pow-
erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empower-
ment, Progress Empowerment Center, Progress Empowerment Program, Progress 
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making 
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select, 
RulesCloud, RulesWorld, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, 
Sonic ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical 
Empowerment,  WebSpeed, Xcalia (and design), and Your Software, Our Technol-
ogy-Experience the Connection are registered trademarks of Progress Software Corporation 
or one of its affiliates or subsidiaries in the U.S. and/or other countries.  AccelEvent, Apama 
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, 
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, 
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, 
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore 
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade, 
Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event 
Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress 
RPM, Progress Responsive Cloud, Progress Responsive Process Management, Progress 
Software, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, 
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartCompo-
nent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, 
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic 
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Con-
tinuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML 
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or 
service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the 
U.S. and other countries.  Java is a registered trademark of Oracle and/or its affiliates.  Any 
other marks contained herein may be trademarks of their respective owners.



Third Party Acknowledgements: One or more products in the Progress Orbix v3.3.11 
release includes third party components covered by licenses that require that the following 
documentation notices be provided:

Progress Orbix v3.3.11 incorporates OpenSSL/SSLeay v0.9.8.i technology from 
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE 
ISSUES 
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL 
License and the original SSLeay license apply to the toolkit. See below for the actual 
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any 
license issues related to OpenSSL please contact openssl-core@openssl.org.
OpenSSL License
Copyright (c) 1998-2008 The OpenSSL Project.  All rights reserved. Redistribution and use 
in source and binary forms, with or without modification, are permitted provided that the 
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer. 
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided 
with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL 
Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or 
promote products derived from this software without prior written permission. For written 
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" 
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL 
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL 
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



================================================================
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).  
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
Original SSLeay License
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This pack-
age is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implemen-
tation was written so as to conform with Netscapes SSL. This library is free for commercial 
and non-commercial use as long as the following conditions are adhered to.  The following 
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., 
code; not just the SSL code.  The SSL documentation included with this distribution is cov-
ered by the same copyright terms except that the holder is Tim Hudson (tjh@crypt-
soft.com).
Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be 
removed. If this package is used in a product, Eric Young should be given attribution as the 
author of the parts of the library used. This can be in the form of a textual message at pro-
gram startup or in documentation (online or textual) provided with the package. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and 
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided 
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement:
"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library being used are not 
cryptographic related :-). 
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGE.



The licence and distribution terms for any publically available version or derivative of this 
code cannot be changed.  i.e. this code cannot simply be copied and put under another distri-
bution licence [including the GNU Public Licence.]

Progress Orbix v3.3.11 incorporates mcpp v2.6.4 from SourceForge (http://sourceforge.net/
softwaremap/index.php). Such technology is subject to the following terms and conditions:  
Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. 
This software including the files in this directory is provided under the following license. 
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met: 1. Redistributions of source code must 
retain the above copyright notice, this list of conditions and the following disclaimer. 2. 
Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided 
with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR 
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE.

Progress Orbix v3.3.11 incorporates IDL Compiler Front End v1.0 from Sun Microsystems. 
Such technology is subject to the following terms and conditions:  COPYRIGHT NOTICE 
on OMG IDL CFE: Copyright 1992 Sun Microsystems, Inc. Printed in the United States of 
America. All Rights Reserved. This product is protected by copyright and distributed under 
the following license restricting its use. The Interface Definition Language Compiler Front 
End (CFE) is made available for your use provided that you include this license and copy-
right notice on all media and documentation and the software program in which this product 
is incorporated in whole or part. You may copy and extend functionality (but may not 
remove functionality) of the Interface Definition Language CFE without charge, but you are 
not authorized to license or distribute it to anyone else except as part of a product or pro-
gram developed by you or with the express written consent of Sun Microsystems, Inc. 
("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may 
not be used in advertising or publicity pertaining to distribution of Interface Definition Lan-
guage CFE as permitted herein. This license is effective until terminated by Sun for failure 
to comply with this license. Upon termination, you shall destroy or return all code and doc-
umentation for the Interface Definition Language CFE. The Interface Definition Language 
CFE may not be exported outside the United States without first obtaining the appropriate 
government approvals. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS 
IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF 
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE, 
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR 
TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED 



WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR 
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC-
TION, MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES 
OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE 
DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN 
OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REV-
ENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL 
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as 
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software 
clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun 
logo are trademarks or registered trademarks of Sun Microsystems, Inc. SunSoft, Inc.  2550 
Garcia Avenue Mountain View, California 94043

Updated: 07-Mar-2012



Contents
 Preface 15
Audience 15
Organization of this Guide 16
Document Conventions 17

Part I

Introduction

Chapter 1   An Introduction to OrbixSSL 21
An Overview of OrbixSSL 21
An Overview of SSL Security 23

Authentication in SSL 23
Privacy of SSL Communications 26
Integrity of SSL Communications 26

Chapter 2   Getting Started with OrbixSSL 27
Overview of the Application 28

Running the Application without SSL 28
Running the Application with SSL 30
Modifying the Example Application 31

Providing Certificates for the Servers 32
Using the OrbixSSL Configuration File 33

Specifying which Certificates to Accept 35
Initializing OrbixSSL 36

Initializing OrbixSSL Configuration 37
Making Private Keys Available to Servers 37

Making a Private Key Available to a Server Program 38
Making a Private Key Available to OrbixNames 39
Making a Private Key Available to the Orbix Daemon 40

Review of the Development Steps 40
7



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Compiling the Application 41
Running the Application 42

Running the Server 42
Running the Client 44

Part II

OrbixSSL Administration

Chapter 3   Defining a Security Policy 49
Overview of OrbixSSL Configuration 50

Using the OrbixSSL Configuration File 50
Configuring Server Authentication 53

Specifying the Location of Certificates 53
Specifying Certificates to Accept 55

Configuring Client Authentication 57
Securing the Orbix Daemon 58

Configuring Orbix Daemon Communications 58
Configuring a Restricted Semi-Secure Daemon 61
Configuring the Orbix Daemon to Authenticate Clients 61

Securing the Orbix Interface Repository 62
Securing the Orbix Services 63
Configuring Ciphers 64
OrbixSSL Session Caching Configuration 65
Providing IORs with SSL Information 66

Using the putit SSL Parameters 67

Chapter 4   Managing Certificates 69
Creating Certificates for an Application 70

Overview of the OrbixSSL Demonstration Certificates 70
Choosing a Certification Authority 72

Commercial Certification Authorities 72
Private Certification Authorities 72
Creating a Self-Signed Certificate and Private Key 74

Publishing a Certification Authority Certificate 76
 8



Certificates Signed by Multiple Certification Authorities 76
Signing Application Certificates 77

Generating a Certificate Signing Request 78
Signing a Certificate 79

Example of Creating Certificates with OpenSSL 81
Managing Certificate Revocation Lists 86

Obtaining Certificate Revocation Lists 86
Using Certificate Revocation Lists 87
Specifying the Update Period for CRLs 87

Chapter 5   Managing Pass Phrases 89
Using a Central Repository for Servers 90

Overview of the Key Distribution Mechanism 90
Configuring the Key Distribution Mechanism 91
Running the Key Distribution Mechanism 94

Maintaining the Database 94
Verifying the Integrity of Server Executables 94
Using the Key Distribution Mechanism 95

Part III

OrbixSSL Programming

Chapter 6   Programming with OrbixSSL 99
Overview of the OrbixSSL API 100
Initializing OrbixSSL 101

Initializing the Configuration Scope 101
Setting the Private Key Pass Phrase 102
Specifying which Certificate to Use 104

Configuring OrbixSSL Application Types 106
Choosing Invocation Policies 107
Setting an Invocation Policy 107
How Invocation Policies Affect OrbixSSL Communications 108
Specifying Exceptions to an Invocation Policy 110

Configuring OrbixSSL 111
9



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Logging OrbixSSL Trace Information 112

Chapter 7   Validating Certificates 113
Overview of Certificate Validation 114
Introducing Additional Validation 116
Examining the Contents of a Certificate 118

Working with Distinguished Names 120
Working with X.509 Extensions 121

Example of a Certificate Validation Function 123
Using Certificate Revocation Lists 124

Examining the Contents of a Certificate Revocation List 125

Part IV

OrbixSSL C++ Reference

 Class IT_AVA 131
IT_AVA::convert() 131
IT_AVA::length() 133
IT_AVA::OID() 133
IT_AVA::getSet() 134

 Class IT_AVAList 135
IT_AVAList::convert() 135
IT_AVAList::getAVA() 137
IT_AVAList::getAVAByOIDTag() 137
IT_AVAList::getAVAByOID() 138
IT_AVAList::getNumAVAs() 138
IT_AVAList::length() 139

 Struct IT_CertError 141

 Class IT_CRL_List 143
IT_CRL_List::add() 143
IT_CRL_List::find() 144
 10



IT_CRL_List::openCRLFiles() 144
IT_CRL_List::PollForUpdates() 145
IT_CRL_List::remove() 145

 Class IT_Extension 147
IT_Extension::convert() 148
IT_Extension::critical() 149
IT_Extension::length() 149
IT_Extension::OID() 150

 Class IT_ExtensionList 151
IT_ExtensionList::convert() 152
IT_ExtensionList::getExtension() 153
IT_ExtensionList::getExtensionByOID() 153
IT_ExtensionList::getExtensionByOIDTag() 154
IT_ExtensionList::getNumExtensions() 155
IT_ExtensionList::length() 155

 Class IT_IntegerData 157
IT_IntegerData::convert() 157
IT_IntegerData::getLong() 158
IT_IntegerData::length() 159

 Struct IT_OID 161

 Enum IT_OIDTag 163

 Class IT_SSL 167
IT_SSL::getApplicationCert() 168
IT_SSL::getCacheOptions() 169
IT_SSL::getClientAuthentication() 169
IT_SSL::getCRLDir() 169
IT_SSL::getErrorString() 169
IT_SSL::getInvocationPolicy() 170
IT_SSL::getMaxChainDepth() 170
IT_SSL::getNegotiatedCipherSuite() 170
IT_SSL::getNegotiatedCipherSuite() 171
IT_SSL::getNegotiatedCipherSuite() 171
IT_SSL::getPassword() 172
11



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_SSL::getPeerCert() 172
IT_SSL::getPeerCert() 173
IT_SSL::getPeerCert() 174
IT_SSL::getSecurityName() 175
IT_SSL::hasPassword() 175
IT_SSL::init() 175
IT_SSL::initScope() 176
IT_SSL::setCacheOptions() 177
IT_SSL::setClientAuthentication() 177
IT_SSL::setInvocationPolicy() 178
IT_SSL::setMaxChainDepth() 180
IT_SSL::setPrivateKeyPassword() 181
IT_SSL::setRSAPrivateKeyFromDER() 181
IT_SSL::setRSAPrivateKeyFromFile() 182
IT_SSL::setSecurityName() 183
IT_SSL::setValidateClientCertCallback() 185
IT_SSL::setValidateServerCertCallback() 185
IT_SSL::setX509CertFromDER() 185
IT_SSL::setX509CertFromFile() 186
IT_SSL::specifyCipherSuites() 187
IT_SSL::specifySecurityForInterfaces() 188
IT_SSL::specifySecurityForServers() 189

 Struct IT_UTCTime 191

 Typedef IT_ValidateX509CertCB 193

 Class IT_X509_CRL_Info 195
IT_X509_CRL_Info::find() 196
IT_X509_CRL_Info::fromDERFile() 196
IT_X509_CRL_Info::getExtensions() 197
IT_X509_CRL_Info::getIssuer() 197
IT_X509_CRL_Info::getLastUpdate() 197
IT_X509_CRL_Info::getNextUpdate() 198
IT_X509_CRL_Info::getRevokedCerts() 198
IT_X509_CRL_Info::getSignatureAlgorithm() 198
IT_X509_CRL_Info::getVersion() 199
IT_X509_CRL_Info::openFile() 199
 12



 Class IT_X509_Revoked 201
IT_X509_CRL_Revoked::getExtensions() 201
IT_X509_CRL_Revoked::getRevocationDate() 202
IT_X509_CRL_Revoked::getSequence() 202
IT_X509_CRL_Revoked::getSerialNumber() 202

 Class IT_X509_RevokedList 203
IT_X509_RevokedList::getCount() 203
IT_X509_RevokedList::getRevoked() 203

 Class IT_X509Cert 205
IT_X509Cert::convert() 205
IT_X509Cert::getExtensions() 206
IT_X509Cert::getIssuer() 207
IT_X509Cert::getSerialNumber() 207
IT_X509Cert::getSubject() 208
IT_X509Cert::getVersion() 208
IT_X509Cert::length() 209
IT_X509Cert::getNotAfter 209
IT_X509Cert::getNotBefore() 210

 Class IT_X509CertChain 211
IT_X509CertChain::getCert() 211
IT_X509CertChain::getCurrentCert() 212
IT_X509CertChain::getCurrentDepth() 212
IT_X509CertChain::getErrorInfo() 213
IT_X509CertChain::numCerts() 213
13



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Part V

Appendices

Appendix A    
Security Recommendations 217

Appendix B    
OrbixSSL Configuration Variables 219

Appendix C    
OpenSSL Utilities 225

Appendix D    
Performance Characteristics of the SSL Protocol 239

Appendix E    
Troubleshooting OrbixSSL 243

 Index 247
 14



Preface
OrbixSSL integrates Orbix, Progress Software’s implementation of the CORBA 
standard, and the Secure Sockets Layer (SSL) version three protocol. This 
integration allows Orbix applications to communicate using SSL security.

This guide presents details of the integration between Orbix C++ Edition and 
SSL and explains how to add SSL security to Orbix applications.

Audience
This guide is aimed at system administrators who wish to set up a secure 
OrbixSSL environment and programmers who wish to develop Orbix C++ 
Edition applications that communicate using SSL security.

This guide does not assume that the reader has any knowledge of SSL security 
issues. This guide assumes that programmers have significant knowledge of 
Orbix programming.

Orbix documentation is periodically updated. New versions between releases are 
available at this site: 

http://communities.progress.com/pcom/docs/DOC-105220

If you need assistance with Orbix or any other Progress products, go to http://
www.progress.com/orbix/orbix-support.html. 

If you want to provide any comments on Progress documentation, go to http://
www.progress.com/en/about/contact.html.
15

http://communities.progress.com/pcom/docs/DOC-105220
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/en/about/contact.html
http://www.progress.com/en/about/contact.html


O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Organization of this Guide
This guide is divided into five parts:

Part I, “Introduction”

This part provides an overview of SSL security and describes how SSL integrates 
with Orbix. It then provides a tutorial example of how to add SSL security to an 
existing Orbix application. Read this part first.

Part II, “OrbixSSL Administration”

This part describes how system administrators can configure the use of SSL 
security in OrbixSSL applications. Both administrators and programmers should 
read this part.

Part III, “OrbixSSL Programming”

The part describes the OrbixSSL application programming interface (API) and 
how to implement common programming tasks using the API. This part is for 
programmers, but contains useful background information for administrators.

Part IV, “OrbixSSL C++ Reference”

This part provides a complete reference for OrbixSSL C++ programmers. It 
provides detailed information about the OrbixSSL API.

Part V, “Appendices”

This part provides supplemental information about OrbixSSL configuration and 
the SSL administration tools supplied with OrbixSSL.
 16



P r e f a c e
Document Conventions
This document uses the following typographical and keying conventions: 

This guide uses the following keying conventions: 

Constant width Constant width words or characters represent source code or 
system values you must use literally, such as commands, 
options, and path names.

Italic Italic words in normal text represent emphasis and new 
terms.

Italic words or characters in code and commands represent 
variable values you must supply, such as arguments or 
commands or path names for your particular system. 

... 

. 

. 

. 

Horizontal or vertical ellipses in format and syntax 
descriptions indicate that material has been eliminated to 
simplify a discussion.

[ ] Brackets enclose optional items in format and syntax 
descriptions.

{ } Braces enclose a list from which you must choose an item in 
format and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed in 
{ } (braces) in format and syntax descriptions.
17



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 18



Part I
Introduction





 1
An Introduction to OrbixSSL

OrbixSSL integrates Orbix with Secure Sockets Layer (SSL) 
security. Using OrbixSSL, distributed applications can transfer 
confidential data securely across a network.

An Overview of OrbixSSL
Secure Sockets Layer (SSL) provides data security for applications that 
communicate across networks. SSL is a transport layer security protocol layered 
between application protocols and TCP/IP.

Orbix applications communicate using the CORBA standard Internet Inter-ORB 
Protocol (IIOP) or Progress Software’s proprietary Orbix protocol. These 
application-level protocols are layered above the transport-level protocol  
TCP/IP. OrbixSSL applications communicate using IIOP or the Orbix protocol 
layered above SSL. Figure 1.1 on page 22 illustrates how the SSL protocol layer 
integrates with Orbix communications.

All OrbixSSL components, including the Orbix daemon and Orbix utilities, and 
all OrbixSSL applications can communicate using SSL. OrbixSSL imposes few 
requirements on administrators and programmers who wish to support SSL 
communications in Orbix applications.
21



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Figure 1.1: The Role of SSL in Orbix Client/Server Communications

OrbixSSL administrators use a single configuration file to configure a high-level 
security policy for a distributed system. OrbixSSL programmers develop standard 
Orbix applications that automatically communicate using SSL. The details of the 
SSL protocol are hidden, but programmers can use the OrbixSSL application 
programming interface (API) to customize SSL communications.
 22



A n  I n t r o d u c t i o n  t o  O r b i x S S L
OrbixSSL applications can be configured to support any or all of the following 
options:

• IIOP

• IIOP over SSL

• Orbix Protocol

• Orbix Protocol over SSL

OrbixSSL acts as a dynamic upgrade to Orbix C++ Edition and Orbix Java 
Edition. Existing applications continue to work as before.

An Overview of SSL Security
SSL provides authentication, privacy, and integrity for communications across 
TCP/IP connections. Authentication allows an application to verify the identity of 
another application with which it communicates. Privacy ensures that data 
transmitted between applications can not be eavesdropped on or understood by a 
third party. Integrity allows applications to detect if data was modified during 
transmission.

Authentication in SSL

SSL uses Rivest Shamir Adleman (RSA) public key cryptography for 
authentication. In public key cryptography, each application has an associated 
public key and private key. Data encrypted with the public key can be decrypted 
only with the private key. Data encrypted with the private key can be decrypted 
only with the public key.

Public key cryptography allows an application to prove its identity by encoding 
data with its private key. As no other application has access to this key, the 
encoded data must derive from the true application. Any application can check 
the content of the encoded data by decoding it with the application’s public key.
23



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The SSL Handshake Protocol

Consider the example of two applications, a client and a server. The client 
connects to the server and wishes to send some confidential data. Before sending 
application data, the client must ensure that it is connected to the required server 
and not to an impostor.

When the client connects to the server, it confirms the server identity using the 
SSL handshake protocol. A simplified explanation of how the client executes this 
handshake in order to authenticate the server is as follows:

1. The client initiates the SSL handshake by sending the initial SSL 
handshake message to the server.

2. The server responds by sending its certificate to the client. This certificate 
verifies the server's identity and contains its public key.

3. The client extracts the public key from the certificate and encrypts a 
symmetric encryption algorithm session key with the extracted public key.

4. The server uses its private key to decrypt the encrypted session key which 
it will use to encrypt and decrypt application data passing to and from the 
client. The client will also use the shared session key to encrypt and 
decrypt messages passing to and from the server.

For a complete description of the SSL handshake, refer to the Netscape 
Communications SSL V3.0 specification, available from www.netscape.com.

The SSL protocol permits a special optimized handshake in which a previously 
established session can be resumed. This has the advantage of not needing 
expensive public key computations. The SSL handshake also facilitates the 
negotiation of ciphers to be used in a connection.

The SSL protocol also allow the server to authenticate the client. Client 
authentication, which is supported by OrbixSSL, is optional in SSL 
communications.

As any application can have a public and private key pair, the transfer of the 
public key must be accompanied by additional information that proves the key is 
associated with the true server and not some other application. For this reason, the 
key is transmitted as part of a certificate.
 24



A n  I n t r o d u c t i o n  t o  O r b i x S S L
Certificates in SSL Authentication

The public key is transmitted as part of a certificate. A certificate is used to ensure 
that the public key submitted is in fact the public key which belongs to the 
submitter. For the certificate to be acceptable to the client, it must have been 
digitally signed by a certification authority (CA) that the client explicitly trusts. 

The International Telecommunications Union (ITU) recommendation X.509 
defines a standard format for certificates. SSL authentication uses X.509 
certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.

• The public key of the entity.

• The name of the certification authority that issued the certificate.

The role of a certificate is to match an entity name to a public key. A CA is a 
trusted authority that verifies the validity of the combination of entity name and 
public key in a certificate. You must specify trusted CAs in order to use 
OrbixSSL.

According to the SSL protocol, it is unnecessary for applications to have access to 
all certificates. Generally, each application only needs to access its own 
certificate and the corresponding issuing certificates. Clients and servers supply 
their certificates to applications that they want to contact during the SSL 
handshake. The nature of the SSL handshake is such that there is nothing insecure 
in receiving the certificate from an as yet untrusted peer. The certificate will be 
checked to make sure that it has been digitally signed by a trusted CA and the 
peer will have to prove its identity during the handshake.
25



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Privacy of SSL Communications

When a client authenticates a server, confidential data sent by the client can be 
encoded by the server’s public key. It is only the actual server application that 
will be able to decode this data, using the corresponding private key.

Immediately after authentication, an SSL client application sends an encoded data 
value to the server. This unique session encoded value is a key to a symmetric 
cryptographic algorithm.

A symmetric cryptographic algorithm is an algorithm in which a single key is 
used to encode and decode data. Once the server has received such a key from the 
client, all subsequent communications between the applications can be encoded 
using the agreed symmetric cryptographic algorithm. This feature strengthens 
SSL security.

Examples of symmetric cryptographic algorithms used to maintain privacy in 
SSL communications are the Data Encryption Standard (DES) and RC4.

Integrity of SSL Communications

The authentication and privacy features of SSL ensure that applications can 
exchange confidential data that cannot be understood by an intermediary. 
However, these features do not protect against the modification of encrypted 
messages transmitted between applications.

To detect if an application has received data modified by an intermediary, SSL 
adds a message authentication code (MAC) to each message. This code is 
computed by applying a function to the message content and the secret key used 
in the symmetric cryptographic algorithm.

An intermediary cannot compute the MAC for a message without knowing the 
secret key used to encrypt it. If the message is corrupted or modified during 
transmission, the message content will not match the MAC. SSL automatically 
detects this error and rejects corrupted messages.
 26



 2
Getting Started with OrbixSSL

OrbixSSL provides SSL security for communications between 
components of your CORBA applications. This chapter shows 
you how to introduce SSL security to an existing application.

Using OrbixSSL, your CORBA applications benefit from the authentication, 
privacy, and integrity of SSL communications. When you create an OrbixSSL 
application, you must supply the information necessary to complete the 
authentication process. OrbixSSL then ensures the privacy and integrity of your 
communications without any intervention from you.

The SSL handshake, described in Chapter 1, enables components of your 
OrbixSSL application to authenticate each other. To ensure every SSL handshake 
completes successfully, each authenticated component must be able to access its 
certificate and private key.

There are two ways to provide this information to OrbixSSL applications. 
Administrators can use the OrbixSSL configuration file. Programmers can use 
the OrbixSSL application programming interface (API). This chapter uses some 
basic administration and some basic programming to show how you can add SSL 
security to an existing Orbix demonstration application.
27



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Overview of the Application
The Orbix demos directory contains several demonstration programs, including a 
basic banking application, located in the banksimple subdirectory. In this 
application, an Orbix server creates a single object that implements the IDL 
interface Bank. 

The server uses OrbixNames to associate a name with the Bank object. To begin 
communicating with the server, a client gets a reference to the Bank object from 
OrbixNames.

The client uses the Bank object to create Account objects. An Account object 
allows a client to manipulate a single bank account; for example, to query the 
balance of the account or deposit money in the account.

The IDL definitions for this application are as follows:

module BankSimple {
typedef float CashAmount; 

interface Account;

interface Bank {
Account create_account (in string name); 
Account find_account (in string name); 

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance; 
void deposit (in CashAmount amount); 
void withdraw (in CashAmount amount);

};
};

Running the Application without SSL

Without SSL, this application runs as follows:

1. The server gets a reference to OrbixNames. Implicitly, the server contacts 
the Orbix daemon.

2. The server uses OrbixNames to associate a name with the Bank object.
 28



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
3. The client gets a reference to OrbixNames. Implicitly, the client contacts 
the Orbix daemon.

4. The client uses OrbixNames to get a reference to the Bank object.

5. The client calls operation create_account() on the Bank object. 
Implicitly, the client contacts the Orbix daemon over the connection that is 
already established. The client then contacts the server.

The server processes the call to create_account() and returns a 
reference to an Account object. 

6. The client calls operations on the Account object.

These steps are illustrated in Figure 2.1. When the application runs without SSL, 
all communications between parts of the application are insecure.

Figure 2.1: Running the Banking Application

Server Host

Client Host

Client

Orbix Daemon

Server

OrbixNames

1

2

3

4

5

6

29



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Running the Application with SSL

When using SSL, each component of the application that acts as a server must be 
able to prove its identity. On first contact with another component, a server must 
be able to supply its certificate and encrypt messages with its private key. In this 
example, there are three servers: the bank server, the Orbix daemon, and the 
OrbixNames server. 

With SSL, the application runs as shown in Figure 2.2:

1. The server gets a reference to OrbixNames. Implicitly, the server contacts 
the Orbix daemon. 

The Orbix daemon supplies its certificate to the server. The server uses 
this certificate to check the identity of the daemon. 

2. The server uses OrbixNames to associate a name with the Bank object. 

OrbixNames supplies its certificate to the server. The server checks the 
identity of OrbixNames.

3. The client gets a reference to OrbixNames. Implicitly, the client contacts 
the Orbix daemon. 

The Orbix daemon supplies its certificate to the client. The client checks 
the identity of the Orbix daemon.

4. The client uses OrbixNames to get a reference to the Bank object. 

OrbixNames supplies its certificate to the client. The client checks the 
identity of OrbixNames.

5. The client calls operation create_account() on the Bank object. 
Implicitly, the client contacts the Orbix daemon over the secure 
connection that is already established. The client then contacts the server.

The server supplies its certificate to the client. The client checks the 
identity of the server.

The server processes the call to create_account() and returns a 
reference to an Account object. 

6. The client calls operations on the Account object over a secure 
connection.

With SSL security, all the servers in the application can be identified and all 
communications between application components take place over secure 
connections.
 30



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
To run this example, you must: 

1. Provide each server with access to its certificate.

2. For each component that acts as a client, provide information about which 
certificates to accept.

3. Add OrbixSSL initialization code to the client and server programs.

4. Provide each server with access to its private key.

This chapter shows you how to implement steps 1 and 2 using OrbixSSL 
administration and steps 3 and 4 using the OrbixSSL API. 

Modifying the Example Application

Before continuing with this chapter, go to the demos directory of your Orbix 
installation. In this directory, copy the subdirectory banksimple to 
banksimplessl. When this chapter instructs you to modify source files from the 
banking example, use the files in banksimplessl.

Figure 2.2: Running the Banking Application with SSL Security

Server Host

Client Host

Orbix Daemon

Server

OrbixNames

1

2

3

4

5

6

Daemon
Certificate

Daemon
Certificate

OrbixNames
Certifcate

OrbixNames
Certifcate

Server Certifcate
Client
31



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Providing Certificates for the Servers
In the banking application, the servers use demonstration certificates installed 
with OrbixSSL. Each certificate has a corresponding file in the OrbixSSL 
certificates directory. The certificates for the banking application are shown 
in Table 2.1.

The orbix certificate is a general demonstration certificate for use with standard 
Orbix servers. The secure_bank_server certificate is a demonstration certificate 
specific to the bank server. Each of the demonstration certificates is signed by the 
OrbixSSL demonstration certificate authority (CA), called demo_ca_1. 

WARNING: These certificates are completely insecure. Use them for OrbixSSL 
demonstration programs only. Do not use them in a deployed 
system. In a deployed system, you must create your own 
customized certificates for components of your application. The 
certificates for a deployed system should be signed by a CA that 
you can trust. Never trust the CA demo_ca_1. The process of 
creating and signing certificates is described in detail in Chapter 4 
on page 69. 

Server Certificate File

Bank demos/secure_bank_server

OrbixNames services/orbix_names

Orbix daemon services/orbix

Table 2.1: Demonstration Certificates Used by the Banking Application
 32



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
Using the OrbixSSL Configuration File

The OrbixSSL configuration file, orbixssl.cfg, enables you to specify how 
your applications use SSL. By default, this application is located in the config 
directory of your installation.

The OrbixSSL configuration file assigns values to OrbixSSL configuration 
variables. To enable SSL security, ensure that the configuration file includes the 
following setting:

OrbixSSL {
IT_DISABLE_SSL = "FALSE";

};

If the value OrbixSSL.IT_DISABLE_SSL is set to TRUE, your system will not use 
SSL security.

Configuring All OrbixSSL Programs

Two OrbixSSL configuration variables allow a server to access its certificate:

• IT_CERTIFICATE_PATH specifies the directory in which the certificate file 
is stored in the file system.

• IT_CERTIFICATE_FILE specifies the name of the server’s certificate file. 
Usually, you specify that this file is stored relative to the 
IT_CERTIFICATE_PATH directory.

The OrbixSSL configuration file uses the standard Orbix configuration syntax. 
By default, the variable IT_CERTIFICATE_PATH is set to the location of the 
OrbixSSL certificates directory, in the configuration scope OrbixSSL, for 
example:

OrbixSSL {
IT_CERTIFICATE_PATH = 

"/opt/progress/OrbixSSL/certificates";
};

Variables set in the OrbixSSL configuration scope apply to all OrbixSSL 
applications, although you can override the values later in the configuration file.
33



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Configuring a Single Program

To set the value of IT_CERTIFICATE_FILE for the banking server, append the 
following text to the file orbixssl.cfg on the server host:

Finance {
BankingSystem {

IT_CERTIFICATE_FILE = 
OrbixSSL.IT_CERTIFICATE_PATH + 
"demos/secure_bank_server";

};
};

The configuration scope Finance.BankingSystem is a custom scope for use by 
the banking server. You can create any number of custom scopes for your 
applications in orbixssl.cfg.

“Initializing OrbixSSL Configuration” on page 37 describes how you associate a 
specific configuration scope with an OrbixSSL program. The program then uses 
the settings defined in that scope. If a variable is not defined in the program 
scope, the program reads the variable setting from the scope OrbixSSL.

Configuring OrbixNames

To set the value of IT_CERTIFICATE_FILE for the OrbixNames server, append the 
following text to the file orbixssl.cfg on the server host:

OrbixNames {
Server {

IT_SECURITY_POLICY = "SECURE";
IT_CERTIFICATE_FILE = 

OrbixSSL.IT_CERTIFICATE_PATH + 
"services/orbix_names";

};
};
 34



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
Configuring the Orbix Daemon

To set the value of IT_CERTIFICATE_FILE for the Orbix daemon, append the 
following text to the file orbixssl.cfg on the server host:

Orbix {
orbixd {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH + 
"services/orbix";

};
};

Specifying which Certificates to Accept
Every certificate is signed by a CA. When a client receives a certificate from a 
server, the client checks that the certificate is signed by a trusted CA. If the client 
trusts the CA, it accepts the certificate and connects to the server, otherwise it 
rejects the certificate.

When running an OrbixSSL application, you must specify a list of CAs that the 
application should trust. To do this, you first concatenate the certificate files for 
each trusted CA into a single file. You then use the OrbixSSL configuration 
variable IT_CA_LIST_FILE to specify the name and location of this file.

The banking example uses the insecure OrbixSSL demonstration CA, demo_ca_1. 
The CA certificate list file, which initially contains only the demo_ca_1 
certificate, is located in the OrbixSSL ca_lists directory. 

To specify that components of the banking example should accept certificates 
signed by demo_ca_1, add the following text to orbixssl.cfg on both the client 
and server hosts:

OrbixSSL {
IT_CA_LIST_FILE = "OrbixSSL directory/
ca_lists/demo_ca_list_1";

};

Replace OrbixSSL directory with the actual location of your OrbixSSL 
installation.
35



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Initializing OrbixSSL
An OrbixSSL program initializes OrbixSSL using the OrbixSSL API. To get 
access to the OrbixSSL API, include the file IT_SSL.h in your programs:

#include <IT_SSL.h>

The OrbixSSL API contains a single initialization function that your OrbixSSL 
programs can call. This function is IT_SSL::init() and is defined as follows:

class IT_SSL {
public:

virtual int init();
};

To call this function, use the globally available object OrbixSSL. For example, to 
initialize OrbixSSL in the banking client program, add the following code to the 
file client.cxx:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
cout << "OrbixSSL initialization failed."
     << endl;
return 1;

}
...

}
...

}

To initialize OrbixSSL in the banking server program, add the same code to the 
file server.cxx.

For OrbixSSL initialization to succeed, you must call the function 
IT_SSL::init() before your OrbixSSL program attempts to make any Orbix 
function calls. This includes calls to Orbix API functions that implicitly make 
remote calls, such as CORBA::ORB::impl_is_ready().
 36



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
Initializing OrbixSSL Configuration

As described in “Using the OrbixSSL Configuration File” on page 33, the 
example server uses the configuration scope Finance.BankingSystem. To 
specify that the server uses this scope, add the following code to server.cxx:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

// Call IT_SSL::init().
...

// Initialize configuration scope.
if (OrbixSSL.initScope(
"Finance.BankingSystem") != IT_SSL_SUCCESS)

return 1;
}
...

}

The OrbixSSL function IT_SSL::initScope() associates a custom scope in the 
OrbixSSL configuration file with you program.

Making Private Keys Available to Servers
By default, OrbixSSL expects the private key associated with a certificate to be 
appended to the certificate file. OrbixSSL expects the private key to be stored in 
encrypted Privacy Enhanced Mail (PEM) format; for example, all the OrbixSSL 
demonstration certificates have appended private keys in this format. 

When a private key is encrypted in this way, you can access it only using a 
corresponding pass phrase. Specifying this private key pass phrase is a very 
important part of making a private key available to a server program.
37



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Making a Private Key Available to a Server Program

The banking server uses the certificate file secure_bank_server in the 
OrbixSSL certificates/demos directory. This file has the associated private 
key appended, as expected by OrbixSSL.

When you run the server, it must supply its private key pass phrase to OrbixSSL. 
This allows OrbixSSL to read the private key and the server to encrypt data with 
this key, which is a critical part of SSL authentication.

The OrbixSSL API includes a single function that allows you to specify the pass 
phrase for your server. In the C++ API, this function is defined as:

class IT_SSL {
public:

virtual int 
setPrivateKeyPassword (char* password);

...
};

In the banking example, you can complete the server application by calling this 
function. To do this, add this function call to the server file server.cxx as 
follows:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
cout << "OrbixSSL initialization failed."
     << endl;
return 1;

}
if (OrbixSSL.setPrivateKeyPassword

("demopassword") != IT_SSL_SUCCESS) {
cout << "Private key pass phrase error."
     << endl;
return 1;

}
}
...

}

 38



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
In this example, the pass phrase is hard coded in the server program. In fact, this 
is insecure and useful only for demonstration purposes. In a deployed system, you 
must provide a secure mechanism for retrieving the server pass phrase. There are 
two fundamental approaches to this problem in OrbixSSL: an administrative 
approach, described in Chapter 5 on page 89 and a programmatic approach, 
described in Chapter 6 on page 99. 

Making a Private Key Available to OrbixNames

Unlike an OrbixSSL server program, OrbixNames requires that the private key 
associated with a certificate is available in a separate file. The private key can also 
be appended to the certificate file, but OrbixNames ignores this appended key.

The OrbixNames demonstration certificate is associated with the private key file 
orbix_names.jpk in the OrbixSSL certificates/services directory. To 
specify this, add the following text to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_PRIVATEKEY_FILE = 
OrbixSSL.IT_CERTIFICATE_PATH + 
"services/orbix_names.jpk";

};
};

This text assumes that you have already assigned the value of 
IT_CERTIFICATE_PATH in the OrbixSSL scope.

When you run the OrbixNames server, it requests that you input the pass phrase 
for its private key. Using the demonstration certificate, the pass phrase is 
demopassword. 
39



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Making a Private Key Available to the Orbix Daemon

As described in “Configuring the Orbix Daemon” on page 35, you can use the 
OrbixSSL configuration file to specify which certificate the Orbix daemon uses. 
When you run the Orbix daemon, it automatically uses the private key pass phrase 
associated with the demonstration certificate orbix. This pass phrase, 
demopassword, is established when you install OrbixSSL.

If you configure the daemon to use a different certificate, you must update the 
daemon executable with the pass phrase for the corresponding private key. To run 
the example described in this chapter, it is not necessary to do this. 

To update the daemon, use the OrbixSSL update command. For example, on 
UNIX use the following command:

update orbixd "passphrase" 0

On Windows, use the following command:

update orbixd.exe "passphrase" 0

Review of the Development Steps
At this stage in the example, the steps outlined in “Running the Application with 
SSL” on page 30 are complete. It was necessary to:

1. Provide each server with access to its certificate.

2. For each component that acts as a client, provide information about which 
certificates to accept.

3. Add OrbixSSL initialization code to the client and server programs.

4. Provide each server with access to its private key.

To implement steps 1 and 2, you added configuration variables to the file 
orbixssl.cfg. To implement steps 3 and 4, you used the OrbixSSL API in the 
client file client.cxx and the server file server.cxx.

The remainder of this chapter shows you how to compile your modified banking 
example and how to run the application.
 40



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
Compiling the Application
To use SSL security, your OrbixSSL program must be dynamically linked with 
the Orbix library and the OrbixSSL library. On each platform that Orbix supports, 
it provides two versions of the Orbix library: a single-threaded version and a 
multi-threaded version. Similarly, OrbixSSL provides a single-threaded library 
and a multi-threaded library. Table 2.1 describes the OrbixSSL library names on 
UNIX and Windows platforms.

On Windows, the OrbixSSL libraries are import libraries for the associated 
dynamic link libraries (DLLs). On UNIX, the library file names can include 
additional information about the OrbixSSL version number and the C++ compiler 
associated with the libraries.

If you link your application with the single-threaded Orbix library, use the single-
threaded OrbixSSL library also. Otherwise, use the multi-threaded OrbixSSL 
library.

To achieve this in the banking example, you must modify the makefile in your 
banksimplessl directory. The Orbix demonstration applications link with the 
multi-threaded Orbix library, so you must include the multi-threaded OrbixSSL 
library when linking the banking client and server programs.

On UNIX, edit the file Makefile in your banksimplessl directory. Add the 
multi-threaded OrbixSSL library to the client and server link lines as follows:

client: $(CLIENT_OBJS)
$(C++) $(C++FLAGS) -o client $(CLIENT_OBJS) \
$(LDFLAGS) $(ITORBIX) -lITtlsmt \
$(ITDEM) $(ITNAM) $(SYSLIBS)

server: $(SERVER_OBJS)
$(C++) $(C++FLAGS) -o server $(SERVER_OBJS) \
$(LDFLAGS) $(ITORBIX) -lITtlsmt \

Platform Single-Threaded Multi-Threaded

UNIX libITtls libITtlsmt

Windows ITLSI.lib ITLMI.lib

Table 2.2: OrbixSSL Library Names
41



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
$(ITDEM) $(ITNAM) $(SYSLIBS)

Compile the application using the make command.

On Windows, again edit the file Makefile in your banksimplessl directory. Add 
the multi-threaded OrbixSSL library to the client and server link lines as follows:

client.exe: $(CLIENT_OBJS) 
$(LINK) $(LINK_FLAGS_EXE) /OUT:$@ \ 
$(CLIENT_OBJS) $(LINK_LIBS) ITLMI.lib

server.exe: $(SERVER_OBJS)
$(LINK) $(LINK_FLAGS_EXE) /OUT:$@ 

$(SERVER_OBJS) $(LINK_LIBS) ITLMI.lib

Compile the application using the nmake command.

Running the Application
This section describes the steps required to run the server and client programs in 
the banking example.

Running the Server

To run the banking server, do the following on the server host:

1. Set the environment variable IT_IONA_CONFIG_FILE to the location of the 
Orbix configuration file, iona.cfg.

2. On UNIX, run the following update command to specify the location of 
the OrbixSSL configuration file, orbixssl.cfg:

update library OrbixSSL_directory 2

Run this command for each of the OrbixSSL libraries, replacing library 
with the library file name and OrbixSSL_directory with the location of 
orbixssl.cfg. 

On Windows, set the environment variable IT_SSL_CONFIG_PATH to the 
location of orbixssl.cfg.

3. Set the environment variable that locates dynamic libraries, for example 
PATH on Windows, LD_LIBRARY_PATH on Solaris, or SHLIB_PATH on  
HP-UX, to include the Orbix lib directory.
 42



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
4. Run the Orbix daemon, using the following command:

orbixd

5. Register the OrbixNames server in the Implementation Repository. For 
example, using putit as follows:

putit NS OrbixNames directory/server

Replace OrbixNames directory with the full path of the directory in which 
the OrbixNames server is located.

6. Register the banking server in the Implementation Repository with server 
name IT_Demo/banksimple/Bank. For example, you can do this using the 
following commands:

mkdirit IT_Demo
mkdirit IT_Demo/banksimple
putit IT_Demo/banksimple/Bank server directory/server

Replace server directory with the full path of the directory in which your 
server is located.

7. Run the OrbixNames server, using the following command:

ns -I nsior.ref

This causes the server to write its IOR to a file named nsior.ref. You 
must use this file when running clients of OrbixNames.

8. Run the OrbixNames server again, using the following command:

ns -secure

When OrbixNames requests a pass phrase, enter the string demopassword.

9. Edit the Orbix configuration file included in iona.cfg. Add the following 
text to this file:

Common {
Services {

NameService = "OrbixNames IOR";
};

};

Replace OrbixNames IOR with the full IOR string contained in 
nsior.ref. If you paste this string from nsior.ref, ensure that no 
additional characters are added, such as line breaks.
43



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
10. Set up the naming context IT_Demo.banksimple in the Naming Service. 
For example, you can do this using the following commands:

putnewncns IT_Demo
putnewncns IT_Demo.banksimple

11. Run the banking server as follows:

server -bindns -timeout 60000

The server should now be running as a secure SSL server.

Running the Client

When the server is running, do the following on the client host:

1. Set the environment variable IT_IONA_CONFIG_FILE to the location of the 
Orbix configuration file, iona.cfg.

2. On UNIX, run the following update command to specify the location of 
the OrbixSSL configuration file, orbixssl.cfg:

update library OrbixSSL_directory 2

Run this command for each of the OrbixSSL libraries, replacing library 
with the library file name and OrbixSSL_directory with the location of 
orbixssl.cfg. 

On Windows, set the environment variable IT_SSL_CONFIG_PATH to the 
location of orbixssl.cfg.

3. Edit the Orbix configuration file that is been included in iona.cfg. Add 
the following text to this file:

Common {
Services {

NameService = "OrbixNames IOR";
};

};

Replace OrbixNames IOR with the full IOR string contained in nsior.ref 
on the server host.

4. Set the environment variable that locates dynamic libraries, for example 
PATH on Windows, LD_LIBRARY_PATH on Solaris, or SHLIB_PATH on  
HP-UX, to include the Orbix lib directory.

5. Run the banking client as follows:

client
 44



G e t t i n g  S t a r t e d  w i t h  O r b i x S S L
The application now runs as in the normal Orbix banking example. However, all 
communications between components of the application take place over SSL 
connections. During server authentication, OrbixSSL takes responsibility for 
checking the validity of certificates.
45



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 46



Part II
OrbixSSL Administration





 3
Defining a Security Policy

Each installation of OrbixSSL includes a configuration file that 
allows you to specify how your applications use SSL security. 
This chapter describes how you can configure SSL security for 
each of your applications.

Defining a security policy means configuring your OrbixSSL applications to 
achieve the level of security required by your system. The OrbixSSL 
configuration file includes security settings that enable you to specify the location 
of certificates, which certificates programs should use, which certificates they 
should accept, and so on. You can apply OrbixSSL configuration settings to all 
your programs simultaneously, or to individual programs.

This chapter begins with an overview of OrbixSSL configuration. It then 
describes each of the configuration tasks required to define a comprehensive 
security policy.
49



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Overview of OrbixSSL Configuration
The OrbixSSL configuration file, orbixssl.cfg, defines the security policy for 
your system. This file allows you to assign values to a set of OrbixSSL 
configuration variables. These variables specify how your applications use SSL 
security.

Using the OrbixSSL Configuration File

When you install OrbixSSL, the configuration file is located in the Orbix config 
directory. To define a security policy for your system, you must do the following 
on each host:

1. Add the required configuration variables to the file.

2. Put the file in a location where all OrbixSSL applications on the host can 
read it. Ensure that the file is a local file.

3. Restrict write access to a single trusted user. For example, on UNIX only 
the superuser root should be able to modify this file.

4. Include orbixssl.cfg in the Orbix configuration file iona.cfg.

5. On Windows, set the environment variable IT_SSL_CONFIG_PATH to the 
location of orbixssl.cfg.

6. On UNIX, run the update command on each OrbixSSL library:

update library SSL_config_directory 2

Replace library with the library file name and SSL_config_directory with 
the location of orbixssl.cfg. 

Applications read the OrbixSSL configuration file only on startup. If you change 
the settings in the file, applications must be restarted to read the new settings.

This chapter shows you how to assign configuration values and describes some of 
the most commonly used variables. Appendix B on page 219 provides a complete 
list of the OrbixSSL configuration variables and, where appropriate, their default 
values.
 50



D e f i n i n g  a  S e c u r i t y  P o l i c y
Assigning Values to Configuration Variables

The OrbixSSL configuration file uses the standard Orbix configuration syntax, 
described in the Orbix C++ Administrator’s Guide. This syntax allows you to 
assign values to variables within configuration scopes. For example, in the Orbix 
configuration file iona.cfg, variables that are common to several Progress 
products are defined in the standard scope Common.

In a configuration file, the characters {...}; delimit a configuration scope. For 
example, you could assign the value of the most basic OrbixSSL configuration 
variable, IT_DISABLE_SSL, in the OrbixSSL scope as follows:

OrbixSSL {
IT_DISABLE_SSL = "FALSE";

};

If OrbixSSL.IT_DISABLE_SSL is set to TRUE, no application in your system can 
communicate using SSL. The default value for this variable is FALSE.

In OrbixSSL, the OrbixSSL scope enables you to configure SSL security for all 
your programs simultaneously. If a configuration variable value is the default for 
all programs, assign it in the OrbixSSL scope.

OrbixSSL also enables you to customize SSL support to meet the requirements of 
individual programs. You can override a configuration variable value, or assign a 
value to a new configuration variable in a scope that applies to a single program 
only.

By default, each server scope is defined with the standard scope 
OrbixSSL.ServerNames. For example, the default application scope for a server 
called Bank is OrbixSSL.ServerNames.Bank:

OrbixSSL {
ServerNames {

Bank {
...

};
};

};
51



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
If an application includes calls to OrbixSSL functions, you must define your own 
custom scope for that application. The OrbixSSL API enables the programmer to 
specify which scope the program uses. For example, the server Bank could use a 
custom scope, such as Finance.BankingSystem:

Finance {
BankingSystem {

...
};

};

If the programmer specifies that a program uses this scope, the program reads 
from the scope OrbixSSL any settings not defined in the custom scope. It ignores 
settings in the default application scope OrbixSSL.ServerNames.Bank.

To specify that a program uses a custom scope, a C++ programmer calls the 
method IT_SSL::initScope(), described on page 176. Use custom scopes for 
all servers that include OrbixSSL code. Use the default server scope 
OrbixSSL.ServerNames only for existing servers that do not contain any 
OrbixSSL code.

Including the OrbixSSL Configuration File

To include orbixssl.cfg in the file iona.cfg, use the include directive as 
follows:

# iona.cfg
ssl_dir = "SSL config directory";

include ssl_dir + "orbixssl.cfg";

The value SSL config directory should be the location of orbixssl.cfg in the 
local file system.
 52



D e f i n i n g  a  S e c u r i t y  P o l i c y
Configuring Server Authentication
Before running an OrbixSSL application, you must do the following to ensure 
that server authentication succeeds:

• Specify which certificate each server should use.

• Specify the private key pass phrase for each server.

• Specify which certificates each client should accept.

This section describes how to specify which certificate a server should use and 
which certificates a client should accept, using the OrbixSSL configuration file. 
To specify the private key pass phrase for a server, administrators can use the 
administration mechanism described in Chapter 5 on page 89, or programmers 
can use the OrbixSSL API.

For the purposes of SSL communications, a server is any Orbix program that can 
accept operation calls. This includes Orbix servers and clients that accept 
callbacks.

Specifying the Location of Certificates

To specify the location of your certificate files, add the following variable to 
orbixssl.cfg on the server host:

OrbixSSL {
IT_CERTIFICATE_PATH = "certificate directory";

};

In most cases, only a single directory on each host contains certificates for 
OrbixSSL applications. Consequently, you usually assign the value of 
IT_CERTIFICATE_PATH in the OrbixSSL scope.
53



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
To specify the certificate that an application should use, set the variable 
IT_CERTIFICATE_FILE in orbixssl.cfg. Set this variable in the application 
scope, for example:

Finance {
BankingSystem {

IT_CERTIFICATE_FILE = 
OrbixSSL.IT_CERTIFICATE_PATH + 
"server certificate file name";

};
};

Each Orbix service, such as OrbixNames or OrbixEvents, has its own 
configuration scope. For example, to set the value of IT_CERTIFICATE_FILE for 
OrbixNames, use the OrbixNames.Server scope:

OrbixNames {
Server {

IT_CERTIFICATE_FILE = 
OrbixSSL.IT_CERTIFICATE_PATH + 
"OrbixNames certificate file name";

};
};

To set the value of IT_CERTIFICATE_FILE for the Orbix daemon, use the 
configuration scope Orbix.orbixd:

Orbix {
orbixd {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH + 
"daemon certificate file name";

};
};

If you change the certificate associated with the Orbix daemon, you must run the 
OrbixSSL update command to provide the corresponding private key pass phrase 
to the daemon executable.
 54



D e f i n i n g  a  S e c u r i t y  P o l i c y
Running the OrbixSSL Update Utility

Orbix executable files, such as the Orbix daemon and Orbix utilities, include 
embedded information about the pass phrase associated with their private keys. If 
you change the private key associated with these files, you must modify the 
embedded information using the OrbixSSL update utility.

In the same way, the OrbixSSL libraries contain an embedded private key pass 
phrase and the location of the OrbixSSL configuration file. You can update both 
these values by running update on the library files.

When updating a pass phrase, the update command takes the following form:

update filename passphrase {0 | 1}

If the file specified by filename is an executable, the final argument should be 0. If 
the file is a library, the final argument should be 1.

When updating the OrbixSSL libraries with the location of the OrbixSSL 
configuration file, the command takes the following form:

update filename location 2

You can also use the update utility to change embedded information in files 
associated with Orbix services, such as OrbixNames or OrbixManager. Consult 
the documentation associated with the service for more information.

Specifying Certificates to Accept

The program that receives a certificate must validate it to ensure the identity of 
the server. OrbixSSL does some basic validation, and the programmer can add 
more. To enable OrbixSSL to do this basic validation, you provide some 
information about which certificates your programs should accept.

The OrbixSSL CA certificate list file includes certificates that identify each CA 
your applications accept. As described in Chapter 2, “Getting Started with 
OrbixSSL”, to specify the location of this file, you set the variable 
IT_CA_LIST_FILE, for example:

OrbixSSL {
IT_CA_LIST_FILE = 

IT_CERTIFICATE_PATH + "CA list file name";
};
55



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Usually, the value of IT_CA_LIST_FILE is the same for all applications on a 
single host. 

Each X.509 certificate is signed by a CA. A CA certificate, included in the list 
file, can in turn be signed by another CA. This process is known as certificate 
chaining. 

To ensure security of your OrbixSSL application, it is often necessary to limit the 
maximum number of certificates in a chain. To limit the maximum chain depth 
for each of your applications, assign a value to the variable 
IT_MAX_ALLOWED_CHAIN_DEPTH in the OrbixSSL scope, for example:

OrbixSSL {
IT_MAX_ALLOWED_CHAIN_DEPTH = "2";

};

You can then assign a maximum chain depth for a specific application in the 
application scope, using the variable IT_DEFAULT_MAX_CHAIN_DEPTH:

Finance {
BankingSystem {

IT_DEFAULT_MAX_CHAIN_DEPTH = "1";
};

};

The value for a specific application cannot be greater than the common maximum 
chain depth, specified by OrbixSSL.IT_MAX_ALLOWED_CHAIN_DEPTH. A chain 
depth of one indicates that a certificate can be signed by one trusted CA only. A 
chain depth of two indicates that the CA certificate can in turn be signed by a 
trusted CA. If any CA in the chain is trusted, the application certificate is 
considered valid by OrbixSSL.
 56



D e f i n i n g  a  S e c u r i t y  P o l i c y
Configuring Client Authentication
Some secure applications, for example Internet banking systems, require that 
clients can identify themselves to servers. These applications use an extended 
SSL handshake, in which the server validates the client certificate. Client 
authentication is optional in SSL security.

To specify that servers should authenticate clients by default, add the following to 
orbixssl.cfg:

OrbixSSL {
IT_AUTHENTICATE_CLIENTS = "TRUE";

};

You can then override this default value for a particular server, if necessary:

Finance {
BankingSystem {

IT_AUTHENTICATE_CLIENTS = "FALSE";
};

};

OrbixNames {
IT_AUTHENTICATE_CLIENTS = "FALSE";

};

Similarly, you could set the default value of IT_AUTHENTICATE_CLIENTS to 
FALSE and override it for servers that should authenticate clients.

Using IT_AUTHENTICATE_CLIENTS, you can enable or disable client 
authentication for a server. However, the server programmer can also enable or 
disable client authentication using the OrbixSSL API. The API overrides your 
configuration settings.

In some cases, you might wish to enforce client authentication for a server and 
prevent the API from overriding your configuration. To do this, use the variable 
IT_SERVERS_MUST_AUTHENTICATE_CLIENTS, for example:

OrbixSSL {
IT_SERVERS_MUST_AUTHENTICATE_CLIENTS = "TRUE";

};

This setting forces all servers to authenticate clients.
57



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Securing the Orbix Daemon
The Orbix daemon process is an important element of an Orbix system. This 
process is responsible for managing the Implementation Repository and 
activating Orbix servers in response to operation calls from clients. Because it 
activates server processes, it is imperative that you ensure the security of the 
daemon.

As part of your security policy, OrbixSSL allows you to specify how the daemon 
process should communicate with your OrbixSSL programs. In particular, you 
can specify:

• Whether the daemon accepts SSL communications, non-SSL 
communications, or both.

• Whether the daemon authenticates clients.

This section describes how you address each of these issues using the OrbixSSL 
configuration file.

Configuring Orbix Daemon Communications

Some OrbixSSL systems contain only applications that communicate securely. 
Others contain some secure and some insecure applications. When securing the 
Orbix daemon, you must specify which types of communication the daemon 
should accept.
 58



D e f i n i n g  a  S e c u r i t y  P o l i c y
OrbixSSL defines four Orbix daemon types:

• Secure daemon. This type of daemon communicates using SSL only.

• Restricted semi-secure daemon. This type of daemon supports SSL 
communication, and permits only a restricted set of operations to insecure 
clients.

• Semi-secure daemon. This type of daemon supports SSL and non-SSL 
communication. 

• Insecure daemon. This type of daemon does not support SSL 
communication.

A secure daemon does not accept communications from insecure applications and 
consequently prevents insecure clients from launching servers in your system. 
This daemon type is the most secure configuration and is recommended for 
systems in which all legitimate Orbix applications can communicate using SSL.

A restricted semi-secure Orbix daemon accepts communications from secure 
applications and insecure applications. However, insecure clients of the daemon 
can, by default, only cause servers to be launched.

A semi-secure Orbix daemon accepts communications from secure and insecure 
applications. This is useful for systems in which insecure Orbix applications 
coexist with secure applications and you wish to place no restrictions on insecure 
communications with the daemon.

An insecure daemon is recommended only for systems in which SSL security is 
completely disabled.

Specifying the Orbix Daemon Type

To specify which type of daemon should run on a particular host, add the 
following variable to oribxssl.cfg on that host:

OrbixSSL {
IT_DAEMON_POLICY = "daemon type";

};
59



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The legal values for daemon type correspond to the four available types of 
daemon:

• SECURE_DAEMON

• RESTRICTED_SEMI_SECURE_DAEMON

• SEMI_SECURE_DAEMON

• INSECURE_DAEMON

By default, the Orbix daemon uses the value SECURE_DAEMON. However, if 
IT_DISABLE_SSL is set to TRUE, the daemon type is INSECURE_DAEMON.

The INSECURE_DAEMON and SEMI_SECURE_DAEMON settings mean that insecure 
clients can connect to the daemon and call any operation on the daemon. This is 
not desirable in most situations.

Checking the Orbix Daemon Type

When you start the Orbix daemon, it displays a string describing its 
communication configuration. This string can tell you whether the daemon is 
using SSL security or not as follows:

• [orbixd: Server "IT_daemon" is now available to the network] 
[Configuration SSL-TCP/10666/Orbix-XDR]

SSL-TCP means that the daemon is fully secure and will only accept secure 
connections.

• [orbixd: Server "IT_daemon" is now available to the network] 
[Configuration TCP/10666/Orbix-XDR]

TCP means that the daemon is insecure and will not accept or initiate 
secure connections.

• [orbixd: Server "IT_daemon" is now available to the network] 
[Configuration [SSL] TCP/10666/Orbix-XDR]

[SSL] TCP means that the daemon is capable of accepting secure and 
insecure connections.

A similar communications string is displayed for OrbixSSL servers depending on 
their security capabilities.
 60



D e f i n i n g  a  S e c u r i t y  P o l i c y
Configuring a Restricted Semi-Secure Daemon

The Orbix daemon is an Orbix server program that implements the IDL interface 
IT_daemon, as described in the Orbix C++ Programmer’s Reference. A restricted 
semi-secure Orbix daemon accepts calls from insecure clients to a limited set of 
IDL operations on this interface. To specify which operations the daemon should 
accept, use the configuration variable IT_DAEMON_UNRESTRICTED_METHODS. 

For example, to allow insecure clients to call only the operations _IT_PING(), 
listServers(), listActiveServers(), getIIOPDetails(), and 
getImplementationDetails(), add the following to orbixssl.cfg:

OrbixSSL {
IT_DAEMON_UNRESTRICTED_METHODS = "_IT_PING,

listServers, listActiveServers, 
getIIOPDetails, getImplementationDetails";

};

If you do not set the value of IT_DAEMON_UNRESTRICTED_METHODS, a restricted 
semi-secure daemon accepts calls to the operations _IT_PING(), 
getIIOPDetails(), and getImplementationDetails(). Consequently, a 
restricted semi-secure daemon allows an insecure client only to launch and locate 
servers.

Configuring the Orbix Daemon to Authenticate Clients

The configuration variable IT_DAEMON_AUTHENTICATES_CLIENTS determines 
whether the daemon enforces client authentication for all clients that attempt to 
connect to it. This includes Orbix utilities, such as pingit or lsit, and clients or 
servers that contact the daemon directly.

Set the value of the variable IT_DAEMON_AUTHENTICATES_CLIENTS in the 
OrbixSSL scope, for example:

OrbixSSL {
IT_DAEMON_AUTHENTICATES_CLIENTS = "TRUE";

};
61



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The default value for this variable depends on the current value of 
IT_DAEMON_POLICY, as shown in Table 3.1.

If the Orbix daemon authenticates clients, programs that communicate with it 
must be able to supply certificates. This includes any applications that 
communicate with servers and the Orbix daemon utilities, such as putit, lsit, 
and mkdirit. To specify the certificate for these utilities, use the configuration 
scope Orbix.utilities in orbixssl.cfg:

Orbix {
utilities {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH + 
"utilities certificate file name";

};
};

Securing the Orbix Interface Repository
The Orbix Interface Repository is an Orbix server program that provides runtime 
information about IDL interfaces available in your system. Before running the 
Interface Repository, it is important to specify what type of communications it 
supports. To do this, set the configuration variable 
IT_ORBIX_BIN_SERVER_POLICY in the OrbixSSL configuration file as follows:

OrbixSSL {
IT_ORBIX_BIN_SERVER_POLICY = "policy type";

};

Daemon Policy Daemon Authenticates Clients

SECURE_DAEMON TRUE

RESTRICTED_SEMI_SECURE_DAEMON TRUE

SEMI_SECURE_DAEMON FALSE

INSECURE_DAEMON FALSE

Table 3.1: Default Values for Daemon Authentication of Clients
 62



D e f i n i n g  a  S e c u r i t y  P o l i c y
Replace policy type with one of the following values:

If the Interface Repository server policy is SECURE_SERVER or 
SEMI_SECURE_SERVER, you must specify which certificate the Interface 
Repository server uses. To do this, use the Orbix.utilities scope in 
orbixssl.cfg, as for the Orbix utilities:

Orbix {
utilities {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH + 
"utilities certificate file name";

};
};

Currently, the Interface Repository server must use the same certificate as the 
Orbix utilities.

Securing the Orbix Services
Each of the Orbix services, such as OrbixNames or OrbixManager, has an 
associated configuration scope in the OrbixSSL configuration file. For example, 
OrbixManager uses the following scope:

OrbixManager {
...

};

Each of the services requires specific settings in the OrbixSSL configuration file 
and may require additional action to fully enable SSL. For details of how to run a 
service in secure system, consult the documentation associated with that service.

SECURE_SERVER The server supports only secure communications.

SEMI_SECURE_SERVER The server supports both secure and insecure 
communications.

INSECURE_SERVER The server supports only insecure communications.
63



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Configuring Ciphers
OrbixSSL allows you to specify which ciphers should be used for SSL 
encryption. Two configuration variables determine these ciphers: 

The possible values for these configuration cipher variables are:

SSLV3_RSA_WITH_RC4_128_SHA
SSLV3_RSA_WITH_RC4_128_MD5
SSLV3_RSA_WITH_3DES_EDE_CBC_SHA
SSLV3_RSA_WITH_DES_CBC_SHA

SSLV3_RSA_EXPORT_WITH_DES40_CBC_SHA
SSLV3_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSLV3_RSA_EXPORT_WITH_RC4_40_MD5

All of these values comprise the following components:

• Specification of the key exchange algorithm. 

RSA certificates are useful for key exchanges as RSA is a widely used 
public-key algorithm that can be used for either encryption or digital 
signing.

• Specification of the cipher to be used. 

Permitted ciphers are taken from the following list: RC2, RC4, DES, 
3DES_EDE, CBC.

• Specification of the hash algorithm to be used. 

Permitted hashes include MD5 and SHA. 

Only specific combinations of these options are available as listed, and one 
combination is referred to as a cipher suite.

IT_CIPHERSUITES The value of this configuration variable 
determines the default list of ciphers that an 
OrbixSSL application uses. A space separated list 
of the possible values is given in order of 
preference.

IT_ALLOWED_CIPHERSUITES This variable defines an additional list of ciphers 
that a program can specify using the API method 
IT_SSL::specifyCipherSuite().
 64



D e f i n i n g  a  S e c u r i t y  P o l i c y
OrbixSSL Session Caching Configuration
SSL session caching allows the reuse of information previously agreed between a 
client and server thus enabling faster subsequent reconnection. This can 
significantly increase server throughput if clients repeatedly reconnect to the 
server. The IT_CACHE_OPTIONS configuration variable offers the following 
options for controlling the use of SSL session caching in OrbixSSL applications: 

It is important to note that for an OrbixSSL cache to be reused, SSL session 
caching has to be enabled for clients and servers. This applies to clients when they 
are receiving callbacks as well as to pure clients. 

NO_SESSION_CACHING This variable means that OribxSSL clients and 
servers will not use SSL session caching. That is, they 
cannot accept re-used SSL session IDs proffered by 
SSL clients, and will not offer to resume previously 
established SSL sessions when contacting servers for 
a second or subsequent time. 

CACHE_CLIENT This variable means that OrbixSSL client programs 
will cache any sessions that are successfully 
established with servers. However, if subsequent 
attempts are made to reconnect to the server, then the 
initial session will be offered for reuse to the server. 
Whether the session is actually reused or not depends 
on the server’s policy with respect to session caching. 
This applies to servers when they are acting as clients 
as well as pure clients.

CACHE_SERVER This variable means that servers of OrbixSSL will 
cache any sessions that are successfully established 
with clients. If subsequent attempts are made to 
reconnect by clients, then the previously established 
session that is being offered by the client will be 
accepted provided that it has not been flushed from 
the OrbixSSL session cache. 
65



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Providing IORs with SSL Information
When a non-Orbix client wants to obtain a server IOR from the Orbix daemon by 
means of IIOP, it is necessary to provide that IOR with SSL information. You can 
do this by means of the putit utility:

This is the full putit command syntax:

putit [-v] [-h <host>] [-per-client | -per-client-pid]
[ [-shared | -unshared] [-marker <marker>] ]
[ -j | -java [-classpath <classpath> | -addpath <path> ] ]
[ -oc <ORBclass> -os <ORBSingletonClass>] [ -jdk2]
| [-per-method [-method <method>] ]
[-port <iiop portnumber>]
[ -n <number of servers> ] [ -l ]
[ -ssl_secure | -ssl_semi_secure  [-ssl_client_auth]  [-
ssl_support_null_enc | -ssl_support_null_enc_only]  [-
ssl_support_null_auth | -ssl_support_null_auth_only] ] 
<serverName> [ <commandLine> | -persistent ]

The ssl parameters are described in Table 3.2. To use them, you must specify 
either –ssl_secure or –ssl_semi_secure first.

putit Flag Description

-ssl_client_auth Indicates that the server authenticates clients. 

-ssl_support_null_enc This indicates that the NULL encryption SSL ciphersuites 
(which do not support confidentiality) are supported by the 
server.

-ssl_support_null_enc_only This indicates that only the server supports the NULL 
encryption SSL ciphersuites..

-ssl_secure This is the minimal flag needed to indicate that the server 
is SSL enabled. If this flag or –ssl_semi_secure are not 
supplied then the server is insecure and no SSL related data 
should be written to the IR. One of these two flags must be 
supplied before any other SSL flag is acceptable. An error 
should be presented to the user if they are not.

Table 3.2: putit SSL Parameters
 66



D e f i n i n g  a  S e c u r i t y  P o l i c y
Using the putit SSL Parameters

There are four groups of SSL parameters. If you want to use them, you must use 
one from Group 1, followed by one or none from each of the other three groups:

Group 1

-ssl_secure
-ssl_semi_secure

Group 2

-ssl_support_null_enc
-ssl_support_null_enc_only

Group 3

-ssl_support_null_auth
-ssl_support_null_auth_only

-ssl_semi_secure This indicates a SEMI_SECURE server policy. If this flag or 
–ssl_secure are not supplied to putit then the policy is 
INSECURE and no SSL related stuff should be written to the 
IR. One of these two flags must be supplied before any 
other SSL flag is acceptable. An error should be presented 
to the user if they are not.

-ssl_support_null_auth This flag indicates that the server support null 
authentication. OrbixSSL servers do not currently support 
this.

-ssl_support_null_auth_only This flag indicates that the server support null 
authentication. OrbixSSL servers do not currently support 
this.

putit Flag Description

Table 3.2: putit SSL Parameters
67



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Group 4

-ssl_client_auth

As OrbixSSL supports per server process security policy settings, those settings 
specified by putit apply to all objects created by the server. 

The most common use cases are:

Putit –ssl_secure demo/grid grid.exe
Putit –ssl_secure –ssl_client_auth demo/grid grid.exe
Putit –ssl_semi_secure demo/grid grid.exe

The following might be less common:

Putit –ssl_semi_secure –ssl_client_auth demo/grid grid.exe
 68



 4
Managing Certificates

SSL authentication uses X.509 certificates. This chapter 
explains how you can create X.509 certificates that identify your 
OrbixSSL applications.

An X.509 certificate binds a name to a public key value. The role of a certificate 
is to guarantee that the public key can be used to verify the identity contained in 
the X.509 certificate.

Authentication of a secure application depends on the integrity of the public key 
value in the application’s certificate. If an impostor replaced the public key with 
its own public key, it could impersonate the true application and gain access to 
secure data.

To prevent this form of attack, all certificates must be signed by a certification 
authority (CA). A CA is a trusted node that confirms the integrity of the public 
key value in a certificate.

A CA signs a certificate by adding its digital signature to the certificate. A digital 
signature is a message encoded with the CA’s private key. The CA’s public key is 
made available to applications by distributing a certificate for the CA. 
Applications verify that certificates are validly signed by decoding the CA’s 
digital signature with the CA’s public key.

Most of the demonstration certificates supplied with OrbixSSL are signed by the 
CA demo_ca_1. This CA is completely insecure because anyone can access its 
private key. To secure your system, you must create new certificates signed by a 
trusted CA. This chapter describes the certificates required by an OrbixSSL 
application and shows you how to create those certificates.
69



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Creating Certificates for an Application
To set up a fully secure OrbixSSL system, you must generate a full set of 
certificates for the secure components of your system, such as server, 
authenticated clients, the Orbix daemon, Orbix services, and so on. There are 
three steps required to do this:

1. Set up a CA that you can trust.

2. Use the CA to create signed certificates.

3. Deploy the signed certificates.

If a component of your application must prove its identity during SSL 
authentication, that component requires a certificate signed by your chosen CA. 
In a secure system, this always includes the Orbix daemon, the Orbix utilities, the 
Orbix services, and your server programs. If you use client authentication, your 
clients also require certificates.

Overview of the OrbixSSL Demonstration Certificates

The OrbixSSL certificates directory contains a set of demonstration 
certificates that enable you to run the OrbixSSL example applications. The 
certificates contained in the certificates directory are described in Table 4.1.

Certificate Description

ca/demo_ca_1 
ca/demo_ca_2

Contains the certificates for the example CAs demo_ca_1 and 
demo_ca_2. The CA list file, demo_ca_list_1, in the 
OrbixSSL ca_lists directory, includes the certificate for 
demo_ca_1. Programs that set the value of IT_CA_LIST_FILE 
to this file accept only certificates signed by demo_ca_1.

Table 4.1: Demonstration Certificates Supplied with OrbixSSL
 70



M a n a g i n g  C e r t i f i c a t e s
The remainder of this chapter describes the steps involved in setting up a CA and 
signing certificates. As an example, it then shows you how to replace the 
demonstration certificates in the OrbixSSL certificates directory with your 
own, secure certificates.

demos/bad_guy 
demos/bank_customer_1 
demos/bank_customer_2 
demos/secure_bank_server 
demos/demo_client 
demos/demo_client_ca2 
demos/demo_server 
demos/demo_server_ca2 
...

Example certificates used in the OrbixSSL demonstration 
programs. These programs are contained in the OrbixSSL 
demos directory. These certificates are signed by demo_ca_1, 
with the exception of those with _ca2 appended to the file 
name, which are signed by demo_ca_2.

In the demonstration programs, the certificate bad_guy is used 
to represent a certificate for which the security has been 
compromised. This certificate is included in the certificate 
revocation list (CRL) crl.pem in the OrbixSSL crl directory. 
Refer to “Managing Certificate Revocation Lists” on page 86 
for information about CRLs.

services/kdm_client 
services/kdm_server

Example certificates used by the server key distribution 
mechanism (KDM) server and the KDM utilities, for example 
putkdm. Refer to Chapter 5 for further details.

services/orbix 
services/orbix_events 
services/orbix_manager 
services/orbix_names 
services/orbix_ots 
services/orbix_trader

Example certificates used by Orbix services and standard 
Orbix executable files, such as the Orbix daemon, the Orbix 
utilities, and the Interface Repository server.

Certificate Description

Table 4.1: Demonstration Certificates Supplied with OrbixSSL
71



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Choosing a Certification Authority
A CA must be trusted to keep its private key secure. When setting up an 
OrbixSSL system, it is important to choose a suitable CA, make the CA 
certificate available to all applications, and then use the CA to sign certificates for 
your applications.

There are two types of CA available. A commercial CA is a company that signs 
certificates for many systems. A private CA is a trusted node that you set up and 
use to sign certificates for your system only.

Commercial Certification Authorities

There are several commercial CAs available. The mechanism for signing a 
certificate using a commercial CA depends on which CA you choose.

An advantage of commercial CAs is that they are often trusted by a large number 
of people. If your applications are designed to be available to systems external to 
your organization, use a commercial CA to sign your certificates. If your 
applications are for use within an internal network, a private CA might be 
appropriate. 

Before choosing a CA, examine the certificate signing policies of some 
commercial CAs and, if your applications are designed to be available on an 
internal network only, review the potential costs of setting up a private CA. 

Private Certification Authorities

If you wish to take responsibility for signing certificates for your system, set up a 
private CA. To set up a private CA, you require access to a software package that 
provides utilities for creating and signing certificates. Several packages of this 
type are available. 

One software package that allows you to set up a private CA is OpenSSL. 
OpenSSL is an implementation of SSL developed by Eric Young of CryptSoft 
Pty. Ltd. The OpenSSL package includes basic command line utilities for 
generating and signing certificates and these utilities are available with every 
installation of OrbixSSL.
 72



M a n a g i n g  C e r t i f i c a t e s
To set up a private CA using OrbixSSL, do the following:

1. Choose a suitable host to act as CA.

2. Install OrbixSSL on the CA host.

3. Use the OpenSSL utilities to create a certificate and private key for the 
CA.

4. Copy the CA certificate and private key to the required directories on the 
CA host.

When you complete these steps, you can use the OpenSSL utilities to sign 
application certificates for your system.

Choosing a Host for a Private Certification Authority

Choosing a host is an important step in setting up a private CA. The level of 
security associated with the CA host determines the level of trust associated with 
certificates signed by the CA.

If you are setting up a CA for use in the development and testing of OrbixSSL 
applications, use any host that the application developers can access. However, 
when you create the CA certificate and private key, do not make the CA private 
key available on hosts where security-critical applications run.

If you are setting up a CA to sign certificates for applications that you are going to 
deploy, make the CA host as secure as possible. For example, take the following 
precautions to secure your CA:

• Do not connect the CA to a network.

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an RF-shield.

When you choose a suitable host to act as the CA host, install OrbixSSL and use 
the OpenSSL utilities to create the CA certificate and private key. 
73



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Creating a Self-Signed Certificate and Private Key

A self-signed certificate is a CA certificate in which the issuer and subject of the 
certificate are identical. It acts as the final authority in a certificate chain. To 
create a self-signed certificate and private key for your CA, use the OpenSSL 
utility openssl to run the command req as follows:

openssl req -config openssl_config_file -days 365 
-out ca_cert_file.pem -new -x509

The utility openssl is located in the OrbixSSL bin directory. Replace 
openssl_config_file with the fully qualified name of the OpenSSL configuration 
file openssl.cnf. By default, OrbixSSL installs this file in the config directory 
of your Orbix installation.

The req command requests information that identifies the CA, including your 
organization name, organization address, and so on. This information comprises 
the CA’s distinguished name.

This command also asks you to specify a pass phrase with which req will encrypt 
the private key for the CA. Note the pass phrase and guard it carefully.

The req command outputs two files. The first output file is ca_cert_file.pem, 
which contains the CA certificate in Privacy Enhanced Mail (PEM) format. The 
second output file is named privkey.pem (this default filename can be 
overridden using the -keyout option) and contains the encrypted private key for 
your CA in PEM format.

Note: The integrity of your private CA depends on the security of the pass 
phrase used to encrypt the CA’s private key and the integrity of the CA’s 
private key file. These should be available only to trusted users of the CA.
 74



M a n a g i n g  C e r t i f i c a t e s
An Example of Creating a Self-Signed Certificate and Private 
Key

Consider the example of creating a certificate and private key for a CA to be used 
in signing certificates within the finance department of Progress Software. 

If the openssl.cnf file is installed in the default directory, run req as follows:

openssl req -config openssl config file -days 365 
-X509 -new -out demo_ca_1 -keyout demo_ca_1.pk

The req command begins by generating the private key for your CA. req prompts 
you to enter a pass phrase, which is used to encrypt the private key:

Generating a 512bit private key
..............+++++
............+++++
writing new private key to 'privkey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

The default openssl.cnf file supplied with OrbixSSL configures the key length 
to 512 bits. This should be increased to 1024 bits for most live systems. When 
using 1024 bit keys, the initial SSL handshake is a number of times slower than 
for 512 bit keys, but the level of security obtained is very much greater.

The req command continues by requesting identification information for your 
CA:

Country Name (2 letter code) []: IE
State or Province Name (full name) []: Co. Dublin
Locality Name (eg, city) []: Dublin
Organization Name (eg, company) []: Progress Software
Organizational Unit Name (eg, section) []: Finance
Common Name (eg, YOUR name) []: Gordon Brown
Email Address []: gbrown@progress.com

The input for these identification fields should clearly identify the individual or 
group responsible for controlling the CA. 

As a result of this operation, the req command outputs two files in the local 
directory. The CA certificate file is called demo_ca_1. The CA private key file is 
called demo_ca_1.pk.
75



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Installing the Certificate and Private Key Files

To prepare the CA to sign certificates, do the following:

1. Ensure that the CA certificate file name matches the certificate value in 
the openssl.cnf file.

2. On the CA host, copy the CA certificate file to the root certificate directory. 
To locate this directory, consult the dir entry in openssl.cnf.

3. Ensure that the name of the CA private key file matches the private_key 
value in the openssl.cnf file.

4. On the CA host, copy the private key file to the directory specified by the 
private_key entry in openssl.cnf.

When you complete these steps, the CA is ready to sign application certificates.

Publishing a Certification Authority Certificate
To authenticate a certificate signed by a CA, an application requires access to the 
CA’s own certificate. 

To install a CA certificate on an OrbixSSL application host, add the CA 
certificate to the file specified by the IT_CA_LIST_FILE variable in the OrbixSSL 
configuration file on that host.

Certificates Signed by Multiple Certification Authorities

A CA certificate may be signed by another CA. For example, an application 
certificate may be signed by the CA for the finance department of Progress 
Software, which in turn is signed by a commercial CA.

This system of signing certificates is known as certificate chaining. An application 
can accept a signed certificate if the CA certificate for any CA in the signing 
chain is available in the certificate file in the local root certificate directory.
 76



M a n a g i n g  C e r t i f i c a t e s
To limit the length of certificate chains accepted by your applications, add the 
following settings to your orbixssl.cfg file:

• IT_DEFAULT_MAX_CHAIN_DEPTH

This configuration variable determines the default length of certificate 
chains which will be accepted by OrbixSSL clients and servers. 

• IT_MAX_ALLOWED_CHAIN_DEPTH

This configuration variable determines the maximum length of certificate 
chains which will be accepted by OrbixSSL for all OrbixSSL clients and 
servers that are using the security policy file.

Refer to “Configuring Server Authentication” on page 53 for more information 
about these configuration variables. Applications can also limit the maximum 
chain depth that they accept by using IT_SSL::setMaxChainDepth().

Signing Application Certificates
If using a commercial CA, you must follow the CA’s procedures for obtaining 
signed certificates.

If using a private CA, you can sign application certificates for use in your system. 
The process for generating a signed certificate is as follows:

1. An individual or group responsible for an application generates a 
certificate signing request (CSR).

2. The CSR is submitted to the CA for signing.

3. The CA signs and returns the new certificate.

4. The certificate file is copied to the OrbixSSL certificates directory on the 
host in which the application runs.

When this process is complete, the OrbixSSL application can use the signed 
certificate to prove its identity to other applications. 
77



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Generating a Certificate Signing Request

To generate a certificate signing request (CSR), run the OpenSSL command req 
as follows:

openssl req -config openssl config file -days 365 
-new -out csr_file.pem

The req command requests information that identifies your application. This 
information includes the components of the distinguished name for your 
organization. 

This command also asks you to specify a pass phrase which req will use to 
encrypt the private key for your application. Note the pass phrase and guard it 
carefully.

The req command outputs two files. The first output file is csr_file.pem, which 
contains the CSR for your application. The second output file is privkey.pem and 
contains the application private key.

The file csr_file.pem should now be transferred to the CA for signing.

An Example of Generating a Certificate Signing Request

Consider the example of generating a CSR for an OrbixSSL server application 
with server name Bank. Run req as follows:

openssl req -config openssl config file -days 365 
 -new -out Bank-csr.pem

The req command begins by generating a private key for your application:

Generating a 512 bit private key
....+++++
..........+++++
writing new private key to 'privkey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

The private key is encrypted using a pass phrase that you supply.
 78



M a n a g i n g  C e r t i f i c a t e s
The req command continues by requesting identification information for your 
certificate:

Country Name (2 letter code) []:IE
State or Province Name (full name) []: Co. Dublin
Locality Name (eg, city) []: Dublin
Organization Name (eg, company) []: Progress Software
Organizational Unit Name (eg, section) []: Finance
Common Name (eg, YOUR name) []: CORBA Server:Bank
Email Address []: info@progress.com

Your organization should define a clear policy for the format and content of the 
identification fields added to your application certificates. Enter the requested 
fields according to this policy.

Signing a Certificate

To sign a certificate, run the ca command as follows:

openssl ca -config openssl config file -days 365 
-in csr_file.pem > certname.pem

The ca command displays the identification information contained in the CSR. It 
is critically important that you check that this information is correct with respect 
to the application for which the CSR was generated. 

The ca command asks you if you wish to sign the application certificate. If you 
sign the certificate, the ca command outputs the certificate in PEM format to the 
file certname.pem. This certname.pem file is supplied to the originator of the 
certificate request.

To return the certificate to the person who issued the CSR, copy the file to disk 
and transfer this file from disk to a location accessible to that person. This 
certificate file can then be copied to the certificates directory on the application 
host. To locate this directory, consult the certs value in the local openssl.cnf 
file.

Upon receipt of the certificate, the originator of the request concatenates the 
output file certname.pem with the private key file privkey.pem, produced by the 
req command. On UNIX, this is as follows:

cat certname.pem privkey.pem > cert_file
79



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
On Windows NT, it is:

copy certname.pem privkey.pem cert_file

The concatenated file now contains the application certificate and encrypted 
private key.

An Example of Signing a Certificate

Consider the example CSR described in “An Example of Generating a Certificate 
Signing Request” on page 78. Sign this certificate by running ca (on the CA host) 
as follows:

openssl ca -config openssl config file 
-days 365 -in Bank-csr.pem -out Bank-cert.pem

The output from this command begins by requesting the pass phrase used to 
encode the CA private key:

Enter PEM pass phrase:

If you enter the correct pass phrase, ca displays the identification information 
contained in the CSR:

Check that the request matches the signature 
Signature ok

The Subjects Distinguished Name is as follows
countryName  :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName  :PRINTABLE:'Dublin'
organizationName   :PRINTABLE:'Progress Software'
organizationalUnitName :PRINTABLE:'Finance'
commonName :PRINTABLE:'CORBA Server:Bank'
emailAddress  :IA5STRING:'info@progress.com'

Certificate is to be certified until Dec 12 14:11:12 1998 
GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries 
Data Base Updated

Check that the identification information contained in the CSR is correct in 
accordance with the security policy of your organization. If the information is 
correct, sign the certificate and commit the operation when prompted.
 80



M a n a g i n g  C e r t i f i c a t e s
This command produces a signed application certificate in the file Bank-
cert.pem. Concatenate this file with the private key file produced by the req 
command. On UNIX, this is as follows:

cat Bank-cert.pem privkey.pem > Bank.pem

On Windows NT, it is:

copy Bank-cert.pem privkey.pem Bank.pem

Copy the file Bank.pem to the certificates directory on the host on which the Bank 
server runs.

Example of Creating Certificates with OpenSSL
In Chapter 2, “Getting Started with OrbixSSL”, the banking demonstration uses 
SSL security. However, this demonstration is not secure because it uses the 
OrbixSSL demonstration certificates. To make this demonstration secure, you 
must replace the demonstration certificates with certificates that are signed by a 
trusted CA.

To replace the demonstration certificates:

1. On the secure CA host, add the OrbixSSL bin directory to your path.

2. In any directory, create a new subdirectory, named newcerts, to store 
your new certificates.

3. In the Orbix config directory, edit the file openssl.cnf. Change the 
value of the dir setting to the absolute path of your newcerts directory. 
For example:

# openssl.cnf
dir = /progress/newcerts
...

4. Change directory to newcerts.

5. In the directory newcerts, create the following subdirectories to store 
your new versions of the demonstration certificates described in 
“Overview of the OrbixSSL Demonstration Certificates” on page 70:

ca
demos
services
81



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
6. In directory newcerts, initialize two files called serial and index.txt.

On UNIX:

echo "01" > serial
touch index.txt

On Windows:

echo 01 > serial
echo 2>index.txt

7. Create a new self-signed CA and private key:

openssl req -x509 -new -config  
Orbix config dir/openssl.cnf -days 365 -out ca/NewCA  
-keyout ca/NewCA.pk

This command prompts you for a pass phrase for the CA private key and 
details of the CA distinguished name:

Using configuration from /progress/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'NewCA.pk'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
-----
You are about to be asked to enter information 
that will be incorporated
into your certificate request.
What you are about to enter is what is called a 
Distinguished Name or a DN.
There are quite a few fields but you can leave 
some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:Progress 
Software
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@progress.com
 82



M a n a g i n g  C e r t i f i c a t e s
Note: The security of the CA depends on the security of the private key file and 
private key pass phrase used in this step.

8. Add the CA certificate to the file specified in the configuration variable 
IT_CA_LIST_FILE on each host that runs secure applications. Do not copy 
the CA private key to these hosts.

9. In the Orbix config directory, edit the file openssl.cnf. Change the 
values of the certificate and private_key settings to the location of the 
files NewCA and NewCA.pk respectively. In addition, change the value of 
new_certs_dir, database and serial, if necessary. For example:

# openssl.cnf
dir = /progress/newcerts
certs = $dir
certificate = $certs/ca/NewCA
private_key = $certs/ca/NewCA.pk
new_certs_dir = $certs
database = $certs/index.txt
serial = $certs/serial
...

You are now ready to sign certificates with your new CA.

10. Create a new CSR for the orbix certificate, which is used by the Orbix 
daemon:

openssl req -new -config Orbix config dir/openssl.cnf  
-days 365 -out ./orbix_csr.pem -keyout  
./orbix_pk.pem

This command prompts you for a pass phrase for the daemon’s private key 
and information about the certificate distinguished name:

Using configuration from /progress/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to './orbix_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
-----
You are about to be asked to enter information 
that will be incorporated
into your certificate request.
83



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
What you are about to enter is what is called a 
Distinguished Name or a DN.
There are quite a few fields but you can leave 
some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:Progress 
Software PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Orbix
Email Address []:info@progress.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:Progress

Some of the entries in the CSR distinguished name must be the same as 
those used in the CA certificate. These entries depend on the CA policy 
section of the file openssl.cnf. Refer to Appendix C for more 
information.

11. Sign the orbix CSR:

openssl ca -config Orbix config dir/openssl.cnf  
-days 365 -in Orbix_csr.pem -out orbix.pem

This command requires the pass phrase for the private key associated with 
CA NewCA:

Using configuration from ../openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName           :PRINTABLE:'IE'
stateOrProvinceName   :PRINTABLE:'Co. Dublin'
localityName          :PRINTABLE:'Dublin'
organizationName      :PRINTABLE:'Progress 
Software'
organizationalUnitName:PRINTABLE:'Systems'
 84



M a n a g i n g  C e r t i f i c a t e s
commonName            :PRINTABLE:'Orbix Binary 
Certificate'
emailAddress          
:IA5STRING:'info@progress.com'
Certificate is to be certified until May 24 
13:06:57 2000 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? 
[y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key 
pass phrase used in step 7.

12. Concatenate the certificate and private key files. On UNIX, do the 
following:

cat orbix.pem orbix_pk.pem > services/orbix

On Windows, use the following command:

copy orbix.pem orbix_pk.pem services\orbix

13. Copy the output file to each host that runs OrbixSSL applications.

14. If you change the certificate and private key associated with an Orbix 
executable or one of the Orbix services, it is important to run the 
OrbixSSL update command to register the pass phrase associated with the 
new private key. 

On UNIX, to register the pass phrase used in step 10 with the Orbix 
daemon, run update as follows:

update orbixd passphrase 0

On Windows, run this command as follows:

update orbixd.exe passphrase 0

Run this command on each host that runs OrbixSSL servers and uses the 
new Orbix daemon certificate.

15. Repeat steps 10 to 13, creating the other certificates described in 
“Overview of the OrbixSSL Demonstration Certificates” on page 70.

If you develop Java applications using OrbixSSL, you must convert the private 
key associated with each application certificate to the encrypted format required 
by OrbixSSL Java applications. To do this, use the utility keyenc, as described in 
the OrbixSSL Java Programmer’s and Administrator’s Guide.
85



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Managing Certificate Revocation Lists
In some cases, CAs revoke existing certificates. For example, this can happen 
when a replacement certificate is issued to correct an error in a previous one, or 
when the security of the corresponding private key has been compromised. 

A certificate revocation list (CRL) is a file, issued by a CA, that contains a list of 
certificates that are no longer valid, even though they have not yet expired. 
OrbixSSL supports CRLs. When checking the validity of a certificate, OrbixSSL 
implicitly checks the current CRL issued by the CA that signed the certificate. If 
the certificate has been revoked, OrbixSSL rejects it.

Obtaining Certificate Revocation Lists

How you obtain a CRL depends on which CAs your system uses. Commercial 
CAs have distinct procedures for the issuing of CRLs. If you use the OpenSSL 
utilities to set up a private CA, your CA can issue CRLs using the OpenSSL ca 
command with the -gencrl flag.

Each CRL is defined in a single file. Each file includes information identifying 
the issuer and a list of certificates that are no longer valid. The list contains the 
signature number of each revoked certificate and the date on which the certificate 
was revoked. A serial number is a unique identifier contained in every X.509 
certificate.

The OrbixSSL crl directory contains an example CRL issued by the 
demonstration CA demo_ca_1. The demonstration application in the OrbixSSL 
demos/crl directory uses this CRL. The CRL contains the serial number of the 
demonstration certificate bad_guy and the application illustrates how OrbixSSL 
rejects this revoked certificate.
 86



M a n a g i n g  C e r t i f i c a t e s
Using Certificate Revocation Lists

To instruct OrbixSSL to use CRLs, add the following setting to the OrbixSSL 
configuration file:

OrbixSSL {
IT_CRL_ENABLED = "TRUE";

};

You must then specify the location of the CRLs in your file system. For example, 
the OrbixSSL demonstration CRLs are stored in the OrbixSSL crl directory. To 
specify this CRL location, add the following to the OrbixSSL configuration file:

OrbixSSL {
IT_CRL_REPOSITORY =  

"OrbixSSL directory/crl";
};

Specifying the Update Period for CRLs

When you start an OrbixSSL program, OrbixSSL reads the CRLs from file and 
stores them in memory. By default, OrbixSSL does not read the information from 
the CRL files again. 

Using the OrbixSSL configuration file, you can instruct OrbixSSL to refresh the 
CRL information stored in memory at regular intervals. To do this, use the 
configuration variable IT_CRL_UPDATE_INTERVAL. This variable takes a numeric 
value, measured in seconds.

For example, to instruct OrbixSSL to read the CRL information every sixty 
seconds, add the following to the configuration file:

OrbixSSL {
IT_CRL_UPDATE_INTERVAL = "60";

};
87



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 88



 5
Managing Pass Phrases

Every server secured with OrbixSSL has an associated 
certificate and private key. To access its private key, and use it 
to encrypt messages, a server must retrieve the associated pass 
phrase. This chapter shows you how to use OrbixSSL 
administration to supply pass phrases to servers.

As described in Chapter 2, “Getting Started with OrbixSSL”, a programmer can 
use the OrbixSSL API to specify the pass phrase associated with the private key 
of any OrbixSSL program. For example, the programmer might request the pass 
phrase from the user and then supply this to OrbixSSL.

One problem with this approach is that many OrbixSSL servers are launched 
automatically by the Orbix daemon. Ideally, such servers would not require user 
intervention to obtain a pass phrase.

For this reason, OrbixSSL provides an administrative solution to the problem of 
providing private key pass phrases to servers. The OrbixSSL server key 
distribution mechanism (KDM) is a utility that enables you to supply pass phrases 
to servers at runtime.
89



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Using a Central Repository for Servers
The OrbixSSL server key distribution mechanism (KDM) allows an administrator 
to maintain a database of servers and their associated private key pass phrases. 
When the Orbix daemon launches an OrbixSSL server, OrbixSSL uses the KDM 
to retrieve the pass phrase.

This section describes the KDM in detail. It explains how the KDM works, how 
you can maintain the database of server pass phrases, and how you can replace the 
KDM with other key distribution systems.

Overview of the Key Distribution Mechanism

The KDM is a single process that runs on each server host in your secure system. 
The KDM stores an encrypted repository of server names and their associated 
pass phrases. When a client connects to an OrbixSSL server, the Orbix daemon 
uses the KDM to provide the correct pass phrase to the server.

Figure 5.1: Role of the Key Distribution Mechanism

Server Host

Client Host

Client

Orbix Daemon

Server

1 2

3

KDM
Repository

KDM

4

 90



M a n a g i n g  P a s s  P h r a s e s
As shown in Figure 5.1, the following events happen when a client connects to a 
server that uses the KDM:

1. The client contacts the Orbix daemon on the server host.

2. The Orbix daemon requests security details for the server from the KDM.

3. The Orbix daemon launches the server.

4. The Orbix daemon sends the pass phrase to the server.

All communications between the Orbix daemon and the KDM use SSL security. 
To ensure that only the Orbix daemon has access to server pass phrases, the KDM 
always uses client authentication. If another process requests a pass phrase from 
the KDM, this authentication fails.

Communications between the Orbix daemon and the server is secure. This 
ensures that an external process cannot read the server pass phrase when the 
daemon transfers it to the server process.

Configuring the Key Distribution Mechanism
Before running the KDM, add the following settings to the OrbixSSL 
configuration file on your server host:

OrbixSSL {
IT_KDM_ENABLED = "TRUE";
IT_KDM_REPOSITORY = "repository directory";
IT_KDM_SERVER_PORT = "server port";

};

KDM {
server {

IT_CERTIFICATE_FILE = 
OrbixSSL.IT_CERTIFICATE_PATH + 
"KDM server cert file";

};
putkdm {

IT_CERTIFICATE_FILE = 
OrbixSSL.IT_CERTIFICATE_PATH + 
"KDM client cert file";

};
};
91



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
These configuration settings do the following:

OrbixSSL.IT_KDM_ENABLED Enables the KDM. If the value of this 
variable is TRUE, all servers on the host 
use the KDM. Otherwise, no servers use 
the KDM.

OrbixSSL.IT_KDM_REPOSITORY Specifies the absolute path of the 
directory in which the KDM stores its 
database of pass phrases. The user that 
runs the KDM should have full read and 
write access to this directory.

OrbixSSL.IT_KDM_SERVER_PORT Specifies the port number on which the 
KDM listens for incoming 
communications. You can use any 
available port for this value.

KDM.server.IT_CERTIFICATE_FILE Specifies the certificate file that the 
KDM server should use to prove its 
identity. If you are using the OrbixSSL 
demonstration certificates, set this 
variable to the file  
services/kdm_server in the OrbixSSL 
certificates directory.

KDM.putkdm.IT_CERTIFICATE_FILE Specifies the certificate file that the 
KDM utility putkdm should use to prove 
its identity to the KDM server. If you are 
using the OrbixSSL demonstration 
certificates, set this variable to the file 
services/kdm_client in the OrbixSSL 
certificates directory.
 92



M a n a g i n g  P a s s  P h r a s e s
Configuring Client Authentication

To ensure that the KDM supplies accepts pass phrases from the putkdm utility 
only and supplies pass phrases to the Orbix daemon only, the KDM server always 
uses client authentication. To configure client authentication, add the following 
setting to the OrbixSSL configuration file:

OrbixSSL {
IT_KDM_CLIENT_COMMON_NAMES = 

"Orbix daemon CN, putkdm CN";
};

Replace Orbix daemon CN with the common name from the Orbix daemon 
certificate. Replace putkdm CN with the common name from the certificate used 
by putkdm. For example, if you are using the OrbixSSL demonstration 
certificates, the required values are as follows:

OrbixSSL {
IT_KDM_CLIENT_COMMON_NAMES = 

"Orbix, KDM Client";
};

If you have replaced the demonstration certificates, as described in Chapter 4, 
these common names must be the same as those you entered when creating your 
Orbix daemon and putkdm certificates.

Configuring the Transfer of a Pass Phrase to a Server

When the Orbix daemon transfers a pass phrase to a server, it uses one of two 
communication methods: the server environment or an operating system pipe. 
Using either method, the pass phrase is encrypted and the transfer is secure.

By default, the Orbix daemon transfers the pass phrase in the server environment. 
To enable the use of operating system pipes, set the following value in the 
OrbixSSL configuration file:

OrbixSSL {
IT_KDM_PIPES_ENABLED = "TRUE";

};
93



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Running the Key Distribution Mechanism
The KDM is an OrbixSSL server that the Orbix daemon contacts using an IDL 
interface. The KDM server executable is called kdm and is located in the bin 
directory of your installation.

Although the KDM is an OrbixSSL server, it is unlike a normal server in one 
respect: you run the KDM before running the Orbix daemon. To run the KDM:

1. Add the OrbixSSL bin directory to your path.

2. Run the following command:

kdm

3. The KDM requests the pass phrase associated with its certificate.

If the KDM server uses the demonstration certificate  
services/kdm_server, enter demopassword as the pass phrase. If the 
KDM uses another certificate, enter the pass phrase for the associated 
private key.

Maintaining the Database

Before the Orbix daemon launches a server that uses the KDM, you must ensure 
that the server has a corresponding entry in the KDM database. To add an entry to 
the database, use the putkdm command:

putkdm server_name pass_phrase

The server name must match the name used to register the server in the 
Implementation Repository. The private key pass phrase must be at least six 
characters in length.

Verifying the Integrity of Server Executables

As an optional feature, the KDM allows you to ensure that the Orbix daemon only 
supplies pass phrases to the correct server executables. This prevents a malicious 
user from replacing a server executable with another program.

To support this feature, OrbixSSL provides a command-line utility, called ccsit, 
that takes a server executable file as input and outputs a cryptographic checksum 
based on the contents of the file. If the file is changed, the checksum becomes 
invalid.
 94



M a n a g i n g  P a s s  P h r a s e s
Before running the ccsit utility, add the following settings to the OrbixSSL 
configuration file:

OrbixSSL {
IT_CHECKSUMS_ENABLED = "TRUE";
IT_CHECKSUMS_REPOSITORY = "checksums directory";

};

Replace checksums directory with a directory that can contain the checksums 
created by ccsit. In a production system, limit write access to your checksums 
directory to a single trusted user.

To register a checksum for a server, run the ccsit utility as follows:

ccsit server_file server_name

Replace server_file with the fully qualified name of the server executable. 
Replace server_name with the name used to register the server in the 
Implementation Repository. 

Using the Key Distribution Mechanism

When the Orbix daemon launches a server and supplies its pass phrase using the 
KDM, it is not necessary for the server to call the API function 
IT_SSL::setPrivateKeyPassword(). If the server calls this function, it 
overrides the value supplied by the KDM. For information about how to write 
server code that uses the KDM when available, but supplies a password explicitly 
when the KDM is not available, refer to “Setting the Private Key Pass Phrase” on 
page 102.
95



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 96



Part III
OrbixSSL Programming





 6
Programming with OrbixSSL

This chapter introduces the OrbixSSL application 
programming interface (API). It describes the main features of 
the API and how you can use it to customize SSL support in your 
applications.

The OrbixSSL C++ API is a set of C++ classes that provides you with access to 
the features of OrbixSSL when developing your applications. The API enables 
you to:

• Initialize OrbixSSL.

• Specify whether a program can make calls to secure servers, insecure 
servers, or both.

• Specify whether a program can accept calls from secure clients, insecure 
clients, or both.

• Read and write OrbixSSL configuration values.

• Read certificates and private key pass phrases from files.

• Configure the cipher suites used in SSL encryption.

• Customize certificate validation.

This chapter describes how to use the API to achieve some of these tasks. Part IV 
of this guide provides a complete reference for all the C++ classes in the 
OrbixSSL API. Refer to this part for more information about classes and methods 
introduced in this chapter.
99



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Overview of the OrbixSSL API
The OrbixSSL API is defined in the header file IT_SSL.h, located in the include 
directory of your OrbixSSL installation. To access the API in an OrbixSSL 
program, include this file:

#include <IT_SSL.h>
...

A program that uses the API must be linked with the OrbixSSL dynamic library, 
as described on page 41

The class IT_SSL, defined in IT_SSL.h, provides the core features of the 
OrbixSSL API. A globally available instance of this class, named OrbixSSL, 
provides access to its methods. For example, to call the method IT_SSL::init(), 
use the OrbixSSL object as follows: 

#include <IT_SSL.h>
...

OrbixSSL.init();

Many methods in the OrbixSSL API return a status value, of type int, that 
indicates whether the method is successful. For example, if an API call is 
successful, it returns IT_SSL_SUCCESS. Otherwise, it returns an error code.

For example, when calling the method IT_SSL::init(), you can check for 
success as follows:

#include <IT_SSL.h>
...

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
// Decide to continue or exit.

} 

The available error codes are defined in IT_SSL.h. Each error code name begins 
with the string IT_SSL_ERR_.

Most OrbixSSL code is transferable from application to application. For example, 
customized certificate validation is often identical for a group of related servers. 
Where possible, keep OrbixSSL API code separate from your main application 
code. In addition, factor this code and place it in a shared library file. This enables 
you to upgrade all applications easily if you wish to avail of new features added to 
a future version of the OrbixSSL API.
 100



P r o g r a m m i n g  w i t h  O r b i x S S L
Initializing OrbixSSL
The method IT_SSL::init() initializes SSL support in an OrbixSSL program. 
All OrbixSSL programs must call this method, for example:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

...
}

All the initialization methods described in this section must be called before any 
remote communications take place using Orbix.

Initializing the Configuration Scope

After a call to IT_SSL::init(), OrbixSSL reads its configuration file to 
determine the required settings for the program. If your program is a client, 
OrbixSSL reads only the settings in scope OrbixSSL. However, you can instruct 
OrbixSSL to also read the values in a custom scope by calling the method 
IT_SSL::initScope(). For example, if the client custom scope is 
Clients.BankClient, call this method as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS) 

return 1;

if (OrbixSSL.initScope("Clients.BankClient") != 
IT_SSL_SUCCESS)

return 1;
...

} 
101



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
If your program is a server, OrbixSSL reads the values in scope OrbixSSL and 
then reads the values in the scope associated with the server. By default, the 
server scope is defined within OrbixSSL.ServerNames, as described in 
“Configuring Server Authentication” on page 53. However, if you call 
IT_SSL::initScope(), OrbixSSL uses your custom scope instead.

All servers that include OrbixSSL API calls should use a custom configuration 
scope and call IT_SSL::initScope().

Setting the Private Key Pass Phrase

If an application has an associated certificate and private key, it must supply the 
private key pass phrase to OrbixSSL. This includes all OrbixSSL servers and all 
authenticated clients.

Setting the Pass Phrase for a Client

In an authenticated client, you supply the pass phrase by calling the method 
IT_SSL::setPrivateKeyPassword(). For example, if the pass phrase is 
password, call this method as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.setPrivateKeyPassword("password") 
!= IT_SSL_SUCCESS) 

return 1;

...
}

However, this code is not secure, because it is possible to examine the strings 
embedded in an executable file. For this reason, you should not hard code the pass 
phrase. Instead you should use some mechanism to retrieve the pass phrase and 
supply it as a parameter, of type const char *, to 
IT_SSL::setPrivateKeyPassword(). For example, the program could request 
the user to enter the password at runtime.
 102



P r o g r a m m i n g  w i t h  O r b i x S S L
Setting the Pass Phrase for a Server

There are two ways to supply the pass phrase for a server private key: using the 
KDM, as described in Chapter 5, or using IT_SSL::setPrivateKeyPassword(). 
A call to IT_SSL::setPrivateKeyPassword() overrides a pass phrase provided 
by the KDM.

Typically, a server checks the availability of a pass phrase from the KDM before 
calling IT_SSL::setPrivateKeyPassword(). To do this, call 
IT_SSL::hasPassword() as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.hasPassword() != IT_SSL_SUCCESS) {
if (OrbixSSL.setPrivateKeyPassword
("password") != IT_SSL_SUCCESS)

return 1;
}

...
}

If the server is launched manually, or the KDM is not running, 
IT_SSL::hasPassword() returns a false value and the server calls 
IT_SSL::setPrivateKeyPassword(). Otherwise, the server accepts the pass 
phrase supplied by the KDM and continues processing.
103



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Requesting the Pass Phrase from a User

There are many ways to request a pass phrase from a user. To make this task 
convenient, OrbixSSL provides a function, called IT_SSL::getPassword() that 
requests a password from the user and reads it into a variable of type char * in 
your program. This function must use a console to request user input, but is useful 
because it disables the console character echo when the user enters text.

For example, to use IT_SSL::getPassword() in a server application, you could 
do the following:

#include <IT_SSL.h>
...

int main () {
char* password;

if (OrbixSSL.init() != IT_SSL_SUCCESS)
return 1;

if (OrbixSSL.hasPassword() != IT_SSL_SUCCESS) {
password = 

OrbixSSL.getPassword("Enter password:");
if (OrbixSSL.setPrivateKeyPassword
(password) != IT_SSL_SUCCESS) {

delete[] password;
return 1;

}
}

...
}

Specifying which Certificate to Use

There are two ways to specify which certificate a program uses to identify itself: 
using the OrbixSSL configuration file, as described in “Configuring Server 
Authentication” on page 53, or using the method IT_SSL::setSecurityName(). 
Calling this method has the same effect as setting the value of the configuration 
variable IT_CERTIFICATE_FILE in the custom configuration scope for the 
program.
 104



P r o g r a m m i n g  w i t h  O r b i x S S L
For example, if a program uses the certificate Bank, call 
IT_SSL::setSecurityName() as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.hasPassword() != IT_SSL_SUCCESS) {
if (OrbixSSL.setPrivateKeyPassword 
("password") != IT_SSL_SUCCESS)

return 1;
}

if (OrbixSSL.setSecurityName("Bank") != 
IT_SSL_SUCCESS)

return 1;

...
}

If you call IT_SSL::setPrivateKeyPassword(), you must call it before calling 
IT_SSL::setSecurityName(), as shown in this example.

If the variable IT_CERTIFICATE_PATH is set in the configuration file, OrbixSSL 
searches in that directory for the certificate specified by 
IT_SSL::setSecurityName(). In addition, a call to 
IT_SSL::setSecurityName() always overrides a corresponding 
IT_CERTIFICATE_FILE value set in the configuration file. 
105



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Configuring OrbixSSL Application Types
Orbix defines two general application types: clients, which call IDL operations on 
CORBA objects, and servers, which contain those objects. However, these roles 
are sometimes reversed. For example, in many applications, servers make 
callbacks to objects located in clients.

In OrbixSSL, it is important to be aware that all programs can potentially act as 
clients and servers. For each program, OrbixSSL allows you to specify an 
invocation policy. This policy determines whether the program uses SSL when 
connecting to a server and whether it uses SSL when it accepts connection 
attempts from clients. An invocation policy is a combination of these two 
independent settings.

Possible settings for making connections are:

• Only make connections to servers using SSL.

• Only make connections to servers without using SSL.

• Make connections using SSL, but allow insecure connections to specified 
interfaces or servers.

• Make connections to servers using SSL or without using SSL, as required.

Possible setting for accepting connection attempts are:

• Accept only connection attempts that use SSL.

• Accept only connection attempts that do not use SSL.

• Accept either connection attempts that use SSL or attempts that do not. In 
this case, the client determines whether to use SSL.

This chapter describes how you set the invocation policy for an OrbixSSL 
program and how programs interact based on their policy settings.
 106



P r o g r a m m i n g  w i t h  O r b i x S S L
Choosing Invocation Policies

The most secure OrbixSSL system architecture is one in which all applications 
connect using SSL. If SSL security is available to all applications in your system, 
you should ensure that each application has a fully secure policy for making and 
accepting connections. This is the default setting for an OrbixSSL application.

The least secure system architecture is one in which no applications use SSL 
security. It is unlikely that your OrbixSSL system will consist of only insecure 
applications, but it may be acceptable for some of your applications to interact 
without using SSL.

For example, in a secure system it is sometimes necessary to accommodate 
existing applications that cannot communicate over SSL. In this case, your 
system could consist of a combination of fully secure applications, fully insecure 
applications, and applications that combine secure communications with insecure 
communications.

Setting an Invocation Policy

To specify the invocation policy for a program, call the method 
IT_SSL::setInvocationPolicy(). This method is defined as follows:

class IT_SSL {
public:

virtual int setInvocationPolicy(int pol);
...

};

The parameter pol specifies which invocation policy the application should use. 
This integer is a bitwise OR combination of the values defined in the enumerated 
type IT_SSLInvocationOptions. These values are:

IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT
IT_INSECURE_CONNECT
IT_SECURE_CONNECT
IT_SPECIFIED_INSECURE_CONNECT
IT_SPECIFIED_SECURE_CONNECT
107



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The values IT_SECURE_ACCEPT and IT_INSECURE_ACCEPT determine how the 
program behaves when accepting connection attempts from clients. The other 
values determine how the program behaves when establishing connections to 
servers.

For example, to specify that a program should be able to accept both secure and 
insecure connection attempts, but should establish only secure connections with 
servers, do the following:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.setInvocationPolicy( 
IT_SECURE_ACCEPT | IT_INSECURE_ACCEPT | 
IT_SECURE_CONNECT) != IT_SSL_SUCCESS)

return 1;

...
}

How Invocation Policies Affect OrbixSSL Communications

Table 6.1 describes the set of client and target invocation policies that 
communicate successfully and indicates the type of communications associated 
with each case. The first column of this table indicates the client policy of the 
application that calls an IDL operation, the second column indicates the target 
policy of the application that receives this operation call.
 108



P r o g r a m m i n g  w i t h  O r b i x S S L
 

Client Policy Target Policy Resulting 
Communications

IT_SECURE_CONNECT IT_SECURE_ACCEPT Secure.

IT_SECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Secure.

IT_SECURE_CONNECT IT_INSECURE_ACCEPT N/A.

IT_SPECIFIED_INSECURE_CONNECT IT_SECURE_ACCEPT Secure.

IT_SPECIFIED_INSECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Secure unless explicitly 
specified by client.

IT_SPECIFIED_INSECURE_CONNECT IT_INSECURE_ACCEPT Insecure only if explicitly 
specified by client; 
otherwise N/A.

IT_SPECIFIED_SECURE_CONNECT IT_SECURE_ACCEPT Secure only if explicitly 
specified by client; 
otherwise N/A.

IT_SPECIFIED_SECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Insecure unless explicitly 
specified by client; 
otherwise secure.

IT_SPECIFIED_SECURE_CONNECT IT_INSECURE_ACCEPT Insecure unless explicitly 
specified by client; 
otherwise N/A.

IT_INSECURE_CONNECT IT_SECURE_ACCEPT N/A.

IT_INSECURE_CONNECT IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

Insecure.

IT_INSECURE_CONNECT IT_INSECURE_ACCEPT Insecure.

Table 6.1: How Programs with Different Invocation Policies Communicate
109



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Limitations Imposed by Incompatible Invocation Policies

Because of incompatible security capabilities, limitations exist on the interaction 
between some programs. For example, an insecure client cannot communicate 
with a fully secure server. Such instances have the value N/A in the 
communications column of Table 6.1 on page 109.

If a secure client attempts to communicate securely with an insecure target, for 
example by resolving a reference to an object in the target program, the client 
application receives an SSL_FAILURE exception or a COMM_FAILURE exception.

If an insecure client attempts to communicate with a fully secure target, the client 
receives a NO_PERMISSION exception, or a COMM_FAILURE exception.

Specifying Exceptions to an Invocation Policy

If your program has a client policy of IT_SPECIFIED_INSECURE_CONNECT, it can 
make insecure calls only to specified interfaces or servers. To specify the list of 
interfaces, the client must call the function 
IT_SSL::specifySecurityForInterfaces(). To specify the list of servers, the 
client must call IT_SSL::specifySecurityForServers().

Similarly, if your program has a client policy of 
IT_SPECIFIED_SECURE_CONNECT, it can make secure calls only to specified 
interfaces or servers. The functions 
IT_SSL::specifySecurityForInterfaces() and 
IT_SSL::specifySecurityForServers() also allow a client to specify these 
interfaces and servers. Refer to “Class IT_SSL” on page 167 for more 
information.

It is important to limit use of IT_SPECIFIED_INSECURE_CONNECT or 
IT_SPECIFIED_SECURE_CONNECT, because it is not difficult for a program to 
change the server name or interface that it uses. If a client passes sensitive data to 
a server, it should always use IT_SECURE_CONNECT. If a client does not pass 
sensitive data to a server, but the server passes sensitive data to the client, the 
server should force the client to connect using SSL. 
 110



P r o g r a m m i n g  w i t h  O r b i x S S L
Configuring OrbixSSL
The OrbixSSL configuration file, described in Chapter 3, specifies the security 
policy for each of your applications. An OrbixSSL program can override some of 
the configuration values in this files using the OrbixSSL API.

Table 6.2 describes the configuration variables that you can read or write using 
the OrbixSSL API and the associated API functions for these variables. Refer to 
“Class IT_SSL” on page 167 for more information about each function.

Configuration  
Variable

Associated 
Functions

IT_AUTHENTICATE_CLIENTS_BY_DEFAULT IT_SSL::getClientAuthentication()

IT_SSL::setClientAuthentication()

IT_CA_LIST_FILE IT_SSL::getCAListFile()

IT_CACHE_OPTIONS IT_SSL::getCacheOptions()

IT_SSL::setCacheOptions()

IT_CERTIFICATE_FILE IT_SSL::getSecurityName()

IT_SSL::setSecurityName()

IT_CIPHERSUITES IT_SSL::getNegotiatedCipherSuite()

IT_SSL::specifyCipherSuites()

IT_CRL_REPOSITORY IT_SSL::getCRLDir()

IT_DEFAULT_MAX_CHAIN_DEPTH IT_SSL::getMaxChainDepth()

IT_SSL::setMaxChainDepth()

IT_INSECURE_REMOTE_INTERFACES IT_SSL::specifySecurityForInterfaces()

IT_INVOCATION_POLICY IT_SSL::getInvocationPolicy()

IT_SSL::setInvocationPolicy()

IT_SECURE_REMOTE_INTERFACES IT_SSL::specifySecurityForInterfaces()

Table 6.2: Read and Write Functions for OrbixSSL Configuration Variables
111



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Logging OrbixSSL Trace Information
The OrbixSSL configuration file, described in Chapter 3, allows you to add 
security trace information to OrbixSSL programs. Two configuration variables 
control this behaviour:

The variable IT_SSL_TRACEFILE has a large effect on performance. Set this 
variable only if diagnostic information is required. Once set, it causes the trace 
file to grow quickly. 

IT_SSL_TRACE_LEVEL When this variable is set to 1, programs affected by the 
variable output diagnostic information about the peer 
certificate chain during SSL authentication.

IT_SSL_TRACEFILE If you require additional trace information, set this 
variable to the full path name of the file that you want 
this information to be written to. This file should be 
associated with only one running process.
 112



 7
Validating Certificates

During SSL authentication, OrbixSSL checks the validity of an 
application’s certificate. This chapter describes how OrbixSSL 
validates a certificate and how you can use the OrbixSSL API 
to introduce additional validation to your applications.

The OrbixSSL API allows you to define functions that implement custom 
validation of certificates. During SSL authentication, OrbixSSL validates a 
certificate and then passes it to your custom validation function for examination. 
This functionality is very important in systems that log information about 
certificates or have application-specific requirements for the contents of each 
certificate.

An X.509 certificate contains information about the supplier and the CA that 
issued the certificate. The structure of a certificate is specified in Abstract Syntax 
Notation One (ASN.1), a standard syntax for describing messages that can be sent 
or received on a network.

OrbixSSL provides a set of C++ classes that enable you to extract the information 
from a certificate without a detailed understanding of the corresponding ASN.1 
definitions. When writing your certificate validation functions, you use these 
classes to examine the certificate contents.
113



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Overview of Certificate Validation
Figure 7.1 shows a server sending its certificate to a client during an SSL 
handshake. OrbixSSL code at the server reads the certificate from file and 
transmits it as part of the handshake. OrbixSSL code at the client reads the 
certificate from the network, checks the validity of its contents, and either accepts 
or rejects the certificate.

The default certificate validation in OrbixSSL checks:

• That the certificate is a validly constructed X.509 certificate.

• That the signature is correct for the certificate.

• That the certificate chain is validly constructed, consisting of the peer 
certificate plus valid issuer certificates up to the maximum allowed chain 
depth.

• That the certificate has not been revoked by the issuer. This check takes 
place only if enabled by OrbixSSL configuration.

For some applications, it is necessary to introduce additional validation. For 
example, your client programs might check that each server uses a specific, 
expected certificate.

Figure 7.1: OrbixSSL Validating a Certificate

Client

Application Code

OrbixSSL checks
certificate

OrbixSSL accepts
or rejects certificate

OrbixSSL Code
1

2

Server

Application Code

OrbixSSL Code
 114



V a l i d a t i n g  C e r t i f i c a t e s
Using OrbixSSL, you can register a function that carries out extra validation on 
certificates. When OrbixSSL receives a certificate, it validates it in the usual way 
and then passes it to your custom validation function, with an error code 
indicating whether the default validation succeeded or failed. You can then use 
the OrbixSSL API to examine the full contents of the certificate and instruct 
OrbixSSL whether to accept or reject it.

Figure 7.2 illustrates how a custom validation function interacts with OrbixSSL 
code during an SSL handshake.

Figure 7.2: Using a Custom Validation Function

Client Server

Application Code Application Code

OrbixSSL checks
certificate

OrbixSSL accepts
or rejects certificate

Validation 
function
accepts
or rejects 
certificate

Validation function
checks certificate

OrbixSSL Code

Validation Function OrbixSSL Code

1

23

4

115



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Introducing Additional Validation
OrbixSSL allows you to register two functions for additional certificate 
validation: one for validating certificates received from servers, and another for 
validating certificates received from clients. These two types of certificate often 
require different validation at the application level. 

To register a function for server certificate validation, call the function 
IT_SSL::setValidateServerCallback() on the OrbixSSL object. This 
function is defined as:

class IT_SSL {
public:

virtual void setValidateServerCallback(
IT_ValidateX509CertCB cb);
...

};

To register a function for server certificate validation, call the function 
IT_SSL::setValidateClientCallback() on the OrbixSSL object. This 
function is defined as:

class IT_SSL {
public:

virtual void setValidateClientCallback(
IT_ValidateX509CertCB cb);
...

};

A certificate validation function must have the following signature:

int function_name(IT_CertValidity ok, 
IT_X509CertChain& peerChain);
 116



V a l i d a t i n g  C e r t i f i c a t e s
When OrbixSSL calls your validation function, it supplies two parameters. The 
first parameter is of type IT_CertValidity. This parameter indicates whether the 
default certificate validation succeeded or failed. It takes one of the following 
values:

The second parameter is of type IT_X509CertChain&. This parameter provides 
access to the full certificate chain. “Examining the Contents of a Certificate” on 
page 118 describes how you use this parameter to examine the contents of the 
peer certificate.

Your custom validation function must return an int value. If this return value is 
IT_SSL_VALID_NO, OrbixSSL rejects the certificate. If the return value is 
IT_SSL_VALID_YES, OrbixSSL accepts the certificate. The return value has no 
effect if the first parameter passed to the function is IT_SSL_VALID_NO.

IT_SSL_VALID_YES Indicates that the default certificate 
validation succeeded.

IT_SSL_VALID_NO Indicates the default certificate validation 
failed, and the application must reject the 
certificate.

IT_SSL_VALID_NO_APP_DECISION Indicates the default certificate validation 
failed, but the application can chose whether 
to accept or reject the certificate.
117



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Examining the Contents of a Certificate
The role of a certificate is to associate an identity with a public key value. In more 
detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

• A common name that identifies the supplier.

• The public key associated with the common name.

• The name of the user who created the certificate, which is known as the 
subject name.

• Information about the certificate issuer.

• The signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 version three extensions. For example, an extension 
exists that distinguishes between CA certificates and end-entity 
certificates.

The second parameter to your custom validation function, of type 
IT_X509CertChain&, provides access to the certificate chain received by 
OrbixSSL. Class IT_X509CertChain is defined in IT_SSL.h as follows:

class IT_X509CertChain {
public:

...

virtual unsigned int numCerts();
virtual int getCert(unsigned int pos, 
IT_X509Cert& ret);
virtual int getErrorInfo(IT_CertError& ret);
virtual int getCurrentCert(IT_X509Cert& ret);
virtual int getCurrentDepth();

};

The function IT_X509CertChain::numCerts() indicates the number of 
certificates in the certificate chain. For example, if the peer certificate is signed by 
a single, self-signed CA, this function returns a value of two. The function 
 118



V a l i d a t i n g  C e r t i f i c a t e s
IT_X509CertChain::getCert() returns a certificate from a particular position in 
the chain, starting at one. Repeated calls to 
IT_X509CertChain::getCurrentCert() iterate through the certificate chain.

When you call IT_X509CertChain::getCert() or 
IT_X509CertChain::getCurrentCert(), you receive an object of type 
IT_X509Cert that represents the required certificate. Class IT_X509Cert is 
defined in IT_SSL.h as follows:

class IT_X509Cert {
public:

...

virtual int getVersion(unsigned int& ver);
virtual int getSerialNumber(IT_IntegerData& i);
virtual int getIssuer(IT_AVAList& l);
virtual int getSubject(IT_AVAList& l);
virtual int getExtensions(IT_ExtensionList& e);
virtual int getNotBefore(IT_UTCTime& t);
virtual int getNotAfter(IT_UTCTime& t);
virtual int getSignatureAlgorithm(IT_OID& oid);
virtual int length(IT_Format f);
virtual int convert(char *buf, IT_Format f);

};

Part IV of this guide provides detailed information about the member functions of 
this class. These member functions return C++ types corresponding to the ASN.1 
types of the certificate contents. For example, IT_X509Cert::getVersion() 
returns an unsigned integer value that indicates the X.509 version number in use. 
In accordance with the X.509 standard, a value of 0 corresponds to version one, 1 
corresponds to version two, and 2 corresponds to version three.
119



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Working with Distinguished Names

An X.509 certificate uses ASN.1 distinguished name structures to store 
information about the certificate issuer and subject. A distinguished name 
consists of a series of attribute value assertions (AVAs). Each AVA associates a 
value with a field from the distinguished name.

For example, the distinguished name for a certificate issuer could be represented 
in string format as follows:

/C=IE/ST=Co. Dublin/L=Dublin/O=Progress/OU=PD/
CN=Progress

In this example, AVAs are separated by the / character. The first field in the 
distinguished name is C, representing the country of the issuer, and the 
corresponding value is the country code IE. This example distinguished name 
contains six AVAs.

When you call the functions IT_X509Cert::getIssuer() or 
IT_X509Cert::getSubject(), OrbixSSL returns the corresponding 
distinguished name as an object of type IT_AVAList. Class IT_AVAList is 
defined as follows:

class IT_AVAList {
public:

virtual int convert(char* buf, IT_Format f);
virtual int getAVA(unsigned int pos, 

IT_AVA& retAVA);
virtual int getAVAByOID(IT_OID oid, 

IT_AVA& retAVA);
virtual int getAVAByOIDTag(IT_OID_Tag oid, 

IT_AVA& retAVA);
virtual unsigned int getNumAVAs();
virtual int length(IT_Format f);

};

To retrieve a particular AVA from a distinguished name, use the IT_AVAList 
object that represents the name. Each AVA in a distinguished name has an 
associated ASN.1 object identifier (OID). 
 120



V a l i d a t i n g  C e r t i f i c a t e s
You can retrieve a particular field using any one of the following three functions:

Each of these functions returns an object of type IT_AVA. You can then use the 
functions in class IT_AVA to convert the AVA to a number of different formats, 
such as string format or DER format, and retrieve the associated OID. Refer to 
class IT_AVA on page 131 for more details.

Working with X.509 Extensions

Some X.509 version three certificates include extensions. These extensions can 
contain several different types of information. If you wish to extract information 
from the extensions included in a certificate, call 
IT_X509Cert::getExtensions() on the certificate object.

This function returns an object of type of type IT_ExtensionList. This class is 
defined as follows:

class IT_ExtensionList {
public:

virtual int convert(char* buf, IT_Format f);
virtual unsigned int getNumExtensions();
virtual int getExtension(int pos, 

IT_Extension& retExt);
virtual int getExtensionByOID(IT_OID oid);

virtual int getExtensionByOIDTag(

getAVA() Returns an AVA from a particular position in the 
distinguished name. To use this, you must understand 
the contents of the distinguished name that you receive.

getAVAByOID() Returns an AVA associated with a particular OID. To 
use this, you must know the OID of the field you 
require.

getAVAByOIDTag() Returns an AVA associated with a particular OID, but 
uses the tags defined in type IT_OIDTag instead of the 
actual OID. Using this method, you can access some of 
the commonly required distinguished name fields 
without knowing the corresponding OIDs or positions 
in the distinguished name.
121



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_OID_Tag oid);
virtual int length(IT_Format f);

};

Like AVAs, each possible extension is associated with an ASN.1 OID. Given a 
list of extensions, you can retrieve the extension you require using any one of the 
following three functions:

Each of these functions returns an object of type IT_Extension. You can then use 
the functions in class IT_Extension to convert the extension information to a 
number of different formats, such as string format or DER format, and retrieve 
the associated OID. Refer to class IT_Extension on page 147 for more details.

getExtension() Returns an extension from a particular position in 
the extension list. To use this, you must understand 
the list of extensions included in the certificate.

getExtensionByOID() Returns an extension associated with a particular 
OID. To use this, you must know the OID of the 
extension you require. Use this function only when 
the extension you require is not available from 
getExtensionByOIDTag().

getExtensionByOIDTag() Returns an extension associated with a particular 
OID, but uses the tags defined in type IT_OIDTag 
instead of the actual OID. Using this method, you 
can access some extensions without knowing the 
corresponding OIDs or positions in the extension 
list.
 122



V a l i d a t i n g  C e r t i f i c a t e s
Example of a Certificate Validation Function
This section describes a simple validation function, registered in an OrbixSSL 
client, that prints the common name (CN) of a server to which the client connects. 
The code for this function is as follows:

int example_val_func(int ok, IT_X509CertChain& PeerCertChain) {
int ret = ok;

// Checks only the peer certificate. The current chain
// depth is zero for this certificate.
if(ok==IT_SSL_VALID_YES && PeerCertChain.getCurrentDepth()==0){

char *buf = NULL;
int len;
IT_X509Cert x;
IT_AVAList aval;
IT_AVA ava;

PeerCertChain.getCurrentCert(x);

// Get details about the subject.
1 x.getSubject(aval);

// Get the common name from the subject details.
2 aval.getAVAByOIDTag(IT_OIDT_commonName, ava);

3 if ((len = ava.length(IT_FMT_STRING)) <= 0) 
return 0;

buf = new char[len];
4 if (buf && (ava.convert(buf, IT_FMT_STRING)==

IT_SSL_SUCCESS)) 
cout << "The common name (CN) of the servers cert 
is:" << buf << endl;

delete[] buf;
}

return ret;
}

You can register this function using the following call:

OrbixSSL.setValidateServerCertCallback(example_val_func);
123



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The code is explained as follows:

1. The IT_X509Cert::getSubject() function returns the subject’s 
distinguished name field from an X.509 certificate.

2. A call to IT_AVAList::getAVAByOIDTag() extracts the common name 
field from the subject name. The common name field is the name of the 
entity for whom the certificate was issued.

3. A call IT_AVA::length() gets the amount of memory required to store 
the common name.

4. A call IT_AVA::convert() returns the common name in the supplied 
buffer.

The validation function is called once for each certificate in the peer certificate 
chain. However, you can restrict the function to just examining the peer 
certificate (that is, the server’s actual certificate) by checking if the current depth 
in the chain is zero, as shown in this example.

Using Certificate Revocation Lists
As described in “Managing Certificate Revocation Lists” on page 86, you can 
configure OrbixSSL to include Certificate Revocation List (CRL) checking when 
it validates certificates. This means that each time OrbixSSL checks the validity 
of a certificate, it examines the CRL associated with the certificate CA to ensure 
that the issuer has not revoked the certificate.

Using the OrbixSSL API, you can also access CRLs directly. For example, you 
can use the API to check the contents of CRLs located in a directory other than 
the CRL directory that you have configured OrbixSSL to use.

OrbixSSL represents a group of CRLs as an object of type IT_CRL_List. This 
class is defined as follows:

class IT_CRL_List {
public:

...

virtual int add(const IT_X509_CRL_Info& aCRL);
virtual int remove

(const IT_AVAList& lstIssuer);
 124



V a l i d a t i n g  C e r t i f i c a t e s
virtual int find(const IT_AVAList& lstIssuer, 
CORBA(Boolean)& bFound, 
IT_X509_CRL_Info& aCRL) const;

virtual int openCRLFiles(const char* szCRLDir);
virtual int PollForUpdates(

CORBA(Boolean)& bUpdated);
};

To examine a list of CRLs:

1. Create an object of type IT_CRL_List, for example:

IT_CRL_List extraCRLs = new IT_CRL_List();

2. On this object, call the function IT_CRL_List::openCRLFiles(), 
specifying the location in which your CRLs are stored:

extraCRLs.openCRLFiles("/local/crl");

3. Call the function IT_CRL_List::find() to access the CRL associated 
with a particular CA. This function returns the CRL as an object of type 
IT_X509_CRL_Info.

In addition to accessing a CRL from the list, you can use the functions 
IT_CRL_List::add() and IT_CRL_List::remove() to modify the list contents. 
However, these functions affect only the copy of the list stored in memory and 
not the files associated with the CRLs.

Examining the Contents of a Certificate Revocation List

OrbixSSL represents each CRL in the CRL list as an object of type 
IT_X509_CRL_Info. This class is defined as follows:

class IT_X509_CRL_Info {
public:

...

virtual int getSignatureAlgorithm(IT_OID& oid) 
const;

virtual int getVersion(unsigned int& nVer) 
const;

virtual int getIssuer
(IT_AVAList& lstIssuer) const;

virtual int getLastUpdate(IT_UTCTime& t) const;
virtual int getNextUpdate(IT_UTCTime& t) const;
125



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
virtual int getRevokedCerts
(IT_X509_RevokedList& r) const;

virtual int find(const IT_IntegerData& 
nSerialNum, CORBA(Boolean)& bFound, 
IT_X509_Revoked& r) const;

virtual int getExtensions(IT_ExtensionList& e) 
const;

virtual int fromDER(const char** pData);
virtual int openFile(const char* file, 

IT_Format fmt);
};

This class provides information about the CRL issuer, the CRL version number, 
when the CRL was last updated, and when the next update is expected. It also 
allows you to access the contents of the CRL. 

To retrieve information about the revoked certificates, call the function 
IT_X509_CRL_Info::getRevokedCerts(). This function returns the revoked 
certificate information as an object of type IT_X509_Revoked_List:

class IT_X509_RevokedList {
public:

...

virtual unsigned int getCount() const;
virtual int getRevoked(int nPos, 

IT_X509_Revoked& r) const;
};

Given an object of this type, call the function 
IT_X509_Revoked_List::getCount() to determine the number of revoked 
certificates in the list and use IT_X509_Revoked_List::getRevoked() to access 
information about an individual revoked certificate. 
 126



V a l i d a t i n g  C e r t i f i c a t e s
Function IT_X509_Revoked_List::getRevoked() returns the revoked 
certificate information as an object of type IT_X509_Revoked:

class IT_X509_Revoked {
public:

...

virtual int getSerialNumber
(IT_IntegerData& serialNum) const;

virtual int getRevocationDate(IT_UTCTime& t) 
const;

virtual int getExtensions
(IT_ExtensionList& e) const;

virtual int getSequence(int& n) const;
};

In a CRL, each certificate is identified by its serial number. The function 
IT_X509_Revoked::getSerialNumber() returns this identifier, which you can 
check against the serial number of an IT_X509Cert object. Call 
IT_X509::getSerialNumber() to retrieve the serial number from an object of 
this type. 

For more information about the OrbixSSL CRL support classes, refer to Part IV 
of this guide.
127



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 128



Part IV
OrbixSSL C++ Reference





Class IT_AVA
Synopsis As described in Chapter 7, “Validating Certificates”, an IT_AVAList is an 

abstraction of a distinguished name from a certificate. An IT_AVAList consists of 
a number of IT_AVA objects. 

Individual IT_AVA objects represent an element of the distinguished name such as 
the common name field (CN) or organization unit (OU). You can retrieve a 
desired IT_AVA object can using the IT_AVAList class. 

IT_AVA objects can be converted to a number of different forms such as string 
format or DER format. For more information on these formats, refer to 
IT_AVAList::convert() on page 135 and IT_AVAList::length() on 
page 139.

C++ class IT_AVA {
public:

virtual int convert(char* buf, IT_Format f);
virtual int length(IT_Format f);
virtual int OID(IT_OID& retOID);
virtual int getSet();

};

IT_AVA::convert()

Synopsis virtual int convert(char* buf, IT_Format f);

Description This function fills the supplied buffer with the requested format of data 
corresponding to the contents of the AVA object. For example, given an IT_AVA 
object that is part of a subject IT_AVAList, you could obtain the string form of 
the common name component of a distinguished name by using 
MyAVA.convert(buf, IT_FMT_STRING).
131



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Parameters

WARNING: This value provides access to low-level SSL Toolkit data structures, 
and is non-portable. Code that uses this feature will not work if the 
underlying SSL toolkit is changed. IT_FMT_INTERNAL allows direct 
access to the low-level SSL toolkit data representation of this AVA, 
thus allowing the user to directly call the toolkit API. Take extreme 
care if using this option.

Return Value Returns the number of bytes required to store the information associated with this 
AVA in the requested format. Returns -1 if the required conversion is not 
supported.

buf The user supplied buffer that must be of sufficient size to hold the 
requested conversion. To find the required length of buffer for a 
particular type, call IT_AVA::length().

f The format of the required conversion. The following IT_Format 
values are supported:

IT_FMT_DER. In this format, buf contains a sequence of bytes 
corresponding to the DER encoding of the AVA. This option is 
typically only used by applications that require special processing of 
the DER data.

IT_FMT_STRING. In this format, buf contains a null-terminated 
sequence of characters corresponding to the actual data of the AVA. 
The data is not modified in any way, and can include non-printable 
characters if present in the actual AVA data. This is a string for normal 
printable string fields.

IT_FMT_HEX_STRING. In this format, buf contains a formatted 
hexadecimal dump of the DER data of the AVA.

IT_FMT_INTERNAL. In this format, buf contains the value of a variable 
of the OpenSSL data type X509_NAME_ENTRY *.
 132



C l a s s  I T _ A V A
IT_AVA::length()

Synopsis virtual int length(IT_Format f);

Description This function is used to calculate how much storage is required to hold the result 
of a call to IT_AVA::convert() for a particular IT_Format value. Refer to 
IT_AVA::convert() for a list of the supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the conversion. Returns 
-1 if the required conversion is not supported.

IT_AVA::OID()

Synopsis virtual int OID(IT_OID& retOID);

Description This function obtains the IT_OID structure which represents the object identifier 
for this AVA.

Parameters

Return Value Returns IT_SSL_SUCCESS if IT_OID structure is successfully obtained. Returns 
IT_SSL_ERR_INVALID_OPERATION if the IT_AVA object has not yet been 
initialized.

See Also T_OID_Tag
IT_AVAList::getAVAByOID()
IT_Extension::OID()
IT_ExtensionList::getExtensionByOID()
IT_OID

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER

IT_FMT_STRING

IT_FMT_HEX_STRING

IT_FMT_INTERNAL

retOID The IT_OID variable that is to be updated.
133



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_AVA::getSet()

Synopsis virtual int getSet();

Description This function obtains the set that an AVA belongs to in an AVAList. It is required 
only in the rare case where you expect to parse certificates that have AVA sets 
with a cardinality greater than one in the RelativeDistinguishedName. 
Normally, there is only one element in each set. Most OrbixSSL developers never 
use this function.

Return Value Returns the set that an AVA belongs to in an AVAList.
 134



Class IT_AVAList
Synopsis An IT_AVA_List consists of a number of IT_AVA objects and is an abstraction of 

the distinguished name fields in a certificate. This class provides a number of 
methods for obtaining individual IT_AVA objects. 

A distinguished name is composed of a number of Attribute Value Assertions 
(AVAs). Each IT_AVA instance represents one component of the distinguished 
name. IT_AVA instances may be selected from an IT_AVAList using IT_OID_Tag 
values as keys, or by using an integer array that represents the ASN.1 object 
identifier. It is also possible to iterate over the list.

C++ class IT_AVAList {
public:

virtual int convert(char* buf, IT_Format f);
virtual int getAVA(unsigned int pos, IT_AVA& retAVA);
virtual int getAVAByOID(IT_OID oid, IT_AVA& retAVA);
virtual int getAVAByOIDTag(IT_OID_Tag oid, IT_AVA& retAVA);
virtual unsigned int getNumAVAs();
virtual int length(IT_Format f);

};

See Also IT_AVA
IT_OID_Tag

IT_AVAList::convert()

Synopsis virtual int convert (char* buf, IT_Format f);

Description This function fills the supplied buffer with the requested format of data 
corresponding to the contents of the AVAList object. For example, given an 
IT_AVAList object corresponding to the subject field, you can obtain the DER 
form of the name by calling MyAVAList.convert(buf, IT_FMT_DER).
135



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Parameters

WARNING: This value provides access to low-level SSL Toolkit data structures, 
and is non-portable. Code that uses this feature will not work if the 
underlying SSL toolkit is changed. IT_FMT_INTERNAL allows 
direct access to the low-level SSL toolkit data representation of 
this AVA, thus allowing the user to directly call the toolkit API. 
Take extreme care if using this option.

Return Value Returns an array of bytes that store the result of the conversion. Returns NULL if 
the required conversion is not supported.

buf A user-supplied buffer that must be of sufficient size to hold the 
requested conversion. To find the required length of buffer for a 
particular conversion type, call IT_AVAList::length().

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER. In this format, buf contains a sequence of bytes 
corresponding to the DER encoding of the AVA. This option is typically 
used only by applications that require special processing of the DER 
data.

IT_FMT_STRING. In this format, buf contains a null-terminated sequence 
of characters corresponding to a printable string which contains the text 
values of the AVAs concatenated together. Each AVA element is 
preceded by the short name description of the AVA. For example,  
"/C=IE/ST=Co. Dublin/L=Dublin/O=Progress Software PLC./
OU=PD/CN=Progress Software Test CA/
Email=info@progress.com".

IT_FMT_HEX_STRING. In this format, buf contains a null-terminated 
string which is a formatted hexadecimal dump of the DER data of the 
AVA.

IT_FMT_INTERNAL. In this format, buf contains the value of a variable of 
the OpenSSL data type X509_NAME *.
 136



C l a s s  I T _ A V A L i s t
IT_AVAList::getAVA()

Synopsis virtual int getAVA(unsigned int pos, IT_AVA& retAVA);

Description This function obtains the AVA at the specified index.

Parameters

Return Value Returns IT_AVA_SUCCESS if the AVA is successfully returned at the specified 
index.

Returns IT_SSL_ERR_INVALID_PARAMETER if the index position is invalid.

Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVAList is not initialized.

Returns IT_SSL_ERR_AVA_NOT_PRESENT if the specified AVA does not exist.

See Also IT_AVAList::getAVAByOID()
IT_AVAList::getAVAByOIDTag()

IT_AVAList::getAVAByOIDTag()

Synopsis virtual int getAVAByOIDTag(IT_OID_Tag t, IT_AVA& retAVA);

Description This function obtains the IT_AVA element of the IT_AVAList which corresponds 
to the requested IT_OID_Tag value.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_AVA element of the IT_AVAList is 
successfully returned.

Returns IT_SSL_ERR_AVA_NOT_PRESENT if the IT_AVA element of the 
IT_AVAList is not found.

Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVAList is not initialized.

pos The specified index position. The index ranges in value from 0 to 
the number of elements in the list minus 1.

retAVA The AVA object to be updated.

t The IT_OID_Tag value which identifies the AVA you want to 
retrieve.

retAVA The AVA object to be updated.
137



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
See Also enum IT_OID_Tag
IT_AVA::OID()
IT_AVAList::getAVAByOID()
struct IT_OID

IT_AVAList::getAVAByOID()

Synopsis virtual int getAVAByOID(int* seq, unsigned int n, IT_AVA& retAVA);

Description This function obtains the IT_AVA element of the IT_AVAList which has the 
requested object identifier.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_AVA element of the IT_AVAList is 
successfully returned.

Returns IT_SSL_ERR_AVA_NOT_PRESENT if the IT_AVA element of the 
IT_AVAList is not found.

Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVAList is not initialized.

See Also enum IT_OID_Tag
IT_AVA::OID()
IT_AVAList::getAVAByOIDTag()
struct IT_OID

IT_AVAList::getNumAVAs()

Synopsis virtual unsigned int getNumAVAs();

Description This function obtains the number of AVA elements contained in this IT_AVAList.

Return Value Returns the number of AVA elements.

See Also class IT_AVA

seq An array of integer values.

n The number of elements in the array.

retAVA The IT_AVA object to be updated.
 138



C l a s s  I T _ A V A L i s t
IT_AVAList::length()

Synopsis virtual int length(IT_Format f);

Description This function is used to calculate how much storage is required to hold the result 
of a call to IT_AVAList::convert() for a particular IT_Format value. Refer to 
IT_AVAList::convert() for a list of the supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the conversion. Returns 
-1 if the required conversion is not supported.

See Also IT_AVAList::convert()

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER

IT_FMT_STRING

IT_FMT_HEX_STRING

IT_FMT_INTERNAL

For more information, refer to IT_AVAList::convert() on page 135.
139



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 140



Struct IT_CertError
Synopsis Some API functions use the structure IT_CertError to return information 

gathered during certificate chain processing.

C++ struct IT_CertError {
public:

int depth;
int error;
int externalError;
int externalErrorDepth;
int externalErrorSet;

};

Description The structure IT_CertError contains the following fields:

See Also IT_X509CertChain::getErrorInfo()
IT_SSL::setClientCertValidationCB()
IT_SSL::setServerCertValidationCB()

depth The depth in the certificate chain at which point the 
error was encountered.

error The error code that OrbixSSL has associated with the 
certificate chain during validation of the certificate. 

externalErrorSet For diagnostic purposes, OrbixSSL provides direct 
access to the error code returned by the underlying SSL 
toolkit. This field is set to 1 if an external SSL toolkit 
error code is available. If externalErrorIsSet is 1, 
you can examine the externalError and 
externalErrorDepth fields to get more details about 
the error returned by the toolkit.

externalError This field contains the SSL toolkit’s internal error code. 
Examine this field only if the value of 
externalErrorIsSet is 1.

externalErrorDepth This field contains the depth in the peer certificate chain 
at which the external error was encountered.
141



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 142



Class IT_CRL_List
Synopsis This class represents a list of the certificate revocation lists (CRLs) available to 

an OrbixSSL program. CRLs are described in Chapter 4, “Managing 
Certificates” and Chapter 7, “Validating Certificates”.

Using class IT_CRL_List, you can open the CRLs located in any directory on 
your host, check for the presence of a specified certificate issuer in the CRLs, and 
add or remove CRLs.

C++ class IT_CRL_List {
public:

IT_CRL_List();
virtual ~IT_CRL_List();

virtual int add(const IT_X509_CRL_Info& aCRL);
virtual int remove(const IT_AVAList& lstIssuer);
virtual int find(const IT_AVAList& lstIssuer, 

CORBA(Boolean)& bFound, IT_X509_CRL_Info& aCRL) const;
virtual int openCRLFiles(const char* szCRLDir);
virtual int PollForUpdates(CORBA(Boolean)& bUpdated);

};

See Also IT_SSL::getCRLDir()
IT_X509_CRL_Info
IT_X509_Revoked
IT_X509_RevokedList

IT_CRL_List::add()

Synopsis virtual int add(const IT_X509_CRL_Info& aCRL);

Description This function adds a new CRL to the existing CRLs stored on the host. The CRL 
is represented as an object of type IT_X509_CRL_Info. The CRL is not written to 
file; it is represented in memory only.
143



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in adding the CRL. Otherwise, it returns 
zero.

IT_CRL_List::find()

Synopsis virtual int find(const IT_AVAList& lstIssuer, 
CORBA(Boolean)& bFound, IT_X509_CRL_Info& aCRL) const;

Description This function locates the CRL issued by a specified CA.

Parameters This function takes the following parameters:

Return Value Returns a non-zero value if it succeeds in finding the CRL. Otherwise, it returns 
zero.

IT_CRL_List::openCRLFiles()

Synopsis virtual int openCRLFiles(const char* szCRLDir)

Description This function opens the CRL files contained in a specified directory. You must 
call this function before using the other functions in this class.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in opening the CRL files. Otherwise, it 
returns zero.

aCRL An object that contains information about the CRL to be added.

1stIssuer An object of type IT_AVAList containing the distinguished name 
that identifies the issuer.

bFound A boolean value. Set to true if the CA has an associated CRL. 
Otherwise, this value is set to false.

aCRL An object that represents the CRL associated with the CA.

szCRLDir The directory that contains the CRL files.
 144



C l a s s  I T _ C R L _ L i s t
IT_CRL_List::PollForUpdates()

Synopsis virtual int PollForUpdates(CORBA(Boolean)& bUpdated);

Description Checks the open CRL files to determine if the CRLs have been updated since they 
were last read. If the files have been updated, the updates are read into memory.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in polling the files. Otherwise, it returns 
zero.

IT_CRL_List::remove()

Synopsis virtual int remove(const IT_AVAList& lstIssuer);

Description This function removes an existing CRL from the list of CRLs stored on the host. 
The CRL is represented as an object of type IT_X509_CRL_Info. The update is 
not written to file; it is represented in memory only.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in removing the CRL. Otherwise, it 
returns zero.

bUpdated This boolean value indicates whether the files have been updated. 
It is set to true if they have been updated. Otherwise, it is set to 
false.

1stIssuer An object of type IT_AVAList containing the distinguished name 
that identifies the issuer associated with the CRL to be removed.
145



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 146



Class IT_Extension
Synopsis The IT_Extension and IT_ExtensionList classes provide the OrbixSSL 

developer with an interface to any X.509 version three extensions that an X.509 
certificate can contain. IT_X509Cert::getExtensions() enables you to obtain 
an IT_ExtensionList object that has a number of member functions for 
retrieving individual extensions. 

The IT_Extension class provides an interface to accessing the data for one 
particular extension. Using the IT_Extension::convert() and 
IT_Extension::length() member functions, the data can be converted into a 
number of representations. Use of the IT_Extension and IT_ExtensionList 
classes is analogous to the use of the IT_AVA and IT_AVAList classes.

C++ class IT_Extension {
public:

virtual int convert(char* buf, IT_Format f);
virtual int critical();
virtual int length(IT_Format f);
virtual int OID(IT_OID& retOID);

};
147



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_Extension::convert()

Synopsis virtual int convert(char* buf, IT_Format f);

Description This function fills the supplied buffer with the requested format of data 
corresponding to the contents of the IT_Extension object.

Parameters

WARNING: This value provides access to low-level SSL Toolkit data structures, 
and is non-portable. Code that uses this feature will not work if the 
underlying SSL toolkit is changed. IT_FMT_INTERNAL allows 
direct access to the low-level SSL toolkit data representation of 
this AVA, thus allowing the user to directly call the toolkit API. 
Take extreme care if using this option.

buf The user supplied buffer that must be of sufficient size to hold the 
requested conversion. To find the required length of buffer for a 
particular conversion type, call the IT_Extension::length() 
function.

f The format of the required conversion. The following IT_Format 
values are supported:

IT_FMT_DER. In this format, buf contains a sequence of bytes 
corresponding to the DER encoding of the extension. This option 
is typically only used by applications that require special 
processing of the DER data.

IT_FMT_STRING. In this format, buf contains a null terminated 
sequence of characters corresponding to the actual data contained 
in the extension. This data has not been modified in any way, and 
may include non printable characters if present in the actual 
extension data. This is just a regular 'C' string for printable string 
fields.

IT_FMT_HEX_STRING. In this format, buf contains a formatted 
hexadecimal dump of the DER data of the extension.

IT_FMT_INTERNAL where buf will contain the value of a variable 
of the OpenSSL data type X509_EXTENSION *.
 148



C l a s s  I T _ E x t e n s i o n
Return Value Returns an array of bytes that store the result of the conversion. Returns NULL if 
the required conversion is not supported.

IT_Extension::critical()

Synopsis virtual int critical();

Description This function determines whether or not this extension has been designated as 
critical.

Return Value Returns the integer value of the critical field in the extension.

IT_Extension::length()

Synopsis virtual int length(IT_Format f);

Description This function is used to calculate how much storage is required to hold the result 
of a call to IT_Extension::convert() for a particular IT_Format value. 

Parameters

Return Value Returns the number of bytes required to store the result of the conversion. Returns 
-1 if the required conversion is not supported.

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER

IT_FMT_STRING

IT_FMT_HEX_STRING

IT_FMT_INTERNAL

For more information, refer to IT_Extension::convert() on page 148.
149



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_Extension::OID()

Synopsis virtual int OID(IT_OID& retOID);

Description This function obtains the IT_OID structure that represents the object identifier for 
this extension.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_OID element of the IT_Extension is 
successfully returned.

Returns IT_SSL_ERR_INVALID_OPERATION if the IT_OID element of the 
IT_Extension is invalid.

See Also IT_OID_Tag
IT_ExtensionList::getAVAByOID()
IT_OID

retOID The IT_OID variable that is to be updated.
 150



Class IT_ExtensionList
Synopsis The IT_Extension and IT_ExtensionList classes provide you with an interface 

to any X.509 version three extensions. IT_X509Cert::getExtensions() is used 
to obtain an IT_ExtensionList object that has a number of member functions 
for retrieving individual IT_Extension objects. 

The IT_Extension class provides an interface to accessing the data for one 
particular extension. Use of the IT_Extension and IT_ExtensionList classes is 
analogous to the use of the IT_AVA and IT_AVAList classes.

C++ class IT_ExtensionList {
public:

virtual int convert(char* buf, IT_Format f);
virtual unsigned int getNumExtensions();
virtual int getExtension(int pos, IT_Extension& retExt);
virtual int getExtensionByOID(IT_OID oid);
virtual int getExtensionByOIDTag(IT_OID_Tag oid);
virtual int length(IT_Format f);

};
151



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_ExtensionList::convert()

Synopsis virtual int convert (char* buf, IT_Format f);

Description This function fills the supplied buffer with the requested format of data 
corresponding to the contents of the IT_ExtensionList object.

Note: Generally convert() is called on the individual extensions. This function 
is not commonly used.

Parameters

WARNING: This value provides access to low-level SSL Toolkit data structures, 
and is non-portable. Code that uses this feature will not work if the 
underlying SSL toolkit is changed. IT_FMT_INTERNAL allows 
direct access to the low-level SSL toolkit data representation of 
this AVA, thus allowing the user to directly call the toolkit API. 
Take extreme care if using this option.

Return Value Returns an array of bytes that store the result of the conversion. Returns NULL if 
the required conversion is not supported.

See Also IT_Extension::length()

buf The user-supplied buffer that must be of sufficient size to hold the 
requested conversion. Call IT_Extension::length() to find the 
required length of buffer for a particular conversion type.

f The format of the required conversion. The following IT_Format value 
is supported:

IT_FMT_INTERNAL. In this format, buf contains the value of a variable 
of the OpenSSL data type X509_Extension *.
 152



C l a s s  I T _ E x t e n s i o n L i s t
IT_ExtensionList::getExtension()

Synopsis virtual int getExtension(int pos, IT_Extension& retExt);

Description This function obtains the extension at the specified index in the list.

Parameters

Return Value Returns IT_SSL_SUCCESS if the extension is successfully retrieved.

Returns IT_SSL_ERR_INVALID_OPERATION if the extension list is not initialized.

Returns IT_SSL_ERR_EXTENSION_NOT_PRESENT if the specified extension does 
not exist.

IT_ExtensionList::getExtensionByOID()

Synopsis virtual int getExtensionByOID
(int* seq, unsigned int n, IT_Extension& retExt);

Description This function obtains the IT_Extension element of the IT_ExtensionList 
which has the requested object identifier.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_Extension element of the 
IT_ExtensionList is successfully returned.

Returns IT_SSL_ERR_EXTENSION_NOT_PRESENT if the IT_Extension element of 
the IT_ExtensionList is not found.

Returns IT_SSL_ERR_INVALID_OPERATION if the IT_Extension element of the 
IT_ExtensionList is invalid.

See Also IT_OID_Tag
IT_Extension::OID()

pos The index position of the required extension in this list.

retExt The IT_Extension object to be updated. 

seq An array of integers representing the ASN.1 object identifier.

n The number of elements in the array.

retExt The IT_Extension object to be updated.
153



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_ExtensionList::getExtension()
IT_OID

IT_ExtensionList::getExtensionByOIDTag()

Synopsis virtual int getExtensionListByOIDTag
(IT_OID_Tag oid, IT_Extension& retExt);

Description This function obtains the IT_Extension element of the IT_ExtensionList, 
which corresponds to the supplied IT_OID_Tag value.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_Extension element of the 
IT_ExtensionList is successfully returned.

Returns IT_SSL_ERR_EXTENSION_NOT_PRESENT if the IT_Extension element of 
the IT_ExtensionList is not found. 

Returns IT_SSL_ERR_INVALID_OPERATION if the IT_Extension element of the 
IT_ExtensionList is invalid.

See Also enum IT_OID_Tag
IT_Extension::OID()
IT_ExtensionList::getExtension()
struct IT_OID

oid The IT_OID_Tag variable which identifies the extension we want to 
retrieve.

retExt The IT_Extension object to be updated.
 154



C l a s s  I T _ E x t e n s i o n L i s t
IT_ExtensionList::getNumExtensions()

Synopsis virtual unsigned int getNumExtensions();

Description This function obtains the number of extensions in this list.

Return Value Returns the number of extensions in this list.

IT_ExtensionList::length()

Synopsis virtual int length(IT_Format f);

Description This function is used to calculate how much storage is required to hold the result 
of a call to IT_ExtensionList::convert() for a particular IT_Format value. 
Refer to IT_ExtensionList::convert() for a list of the supported IT_Format 
values.

Parameters

Return Value Returns the number of bytes required to store the result of the conversion. Returns 
-1 if the required conversion is not supported.

See Also IT_ExtensionList::convert()

f The following IT_Format value is supported:

IT_FMT_INTERNAL

Refer to IT_ExtensionList::convert() on page 152, for more 
information.
155



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 156



Class IT_IntegerData
Synopsis Some OrbixSSL functions, such as IT_X509Cert::getSerialNumber(), return 

ASN.1 integers as out parameters. Class IT_IntegerData is the OrbixSSL 
abstraction for an ASN.1 integer.

OrbixSSL uses this class because some ASN.1 integers might be too big to be 
represented by the C++ long data type. Class IT_IntegerData allows you to 
determine the category of the integer and to access the DER data, if necessary.

C++ class IT_IntegerData {
public:

virtual int convert (char* buf, IT_format f);
virtual int getLong (long& retLong);
virtual int length (IT_format f);

};

IT_IntegerData::convert()

Synopsis virtual int convert (char* buf, IT_Format f);

Description This function fills the supplied buffer with the requested format of data 
corresponding to the contents of the IT_IntegerData object.

Parameters

buf The user-supplied buffer that must be of sufficient size to hold the 
requested conversion. To find the required length of buffer for a 
particular conversion type, call IT_IntegerData::length().
157



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
WARNING: This value provides access to low-level SSL Toolkit data structures, 
and is non-portable. Code that uses this feature will not work if the 
underlying SSL toolkit is changed. IT_FMT_INTERNAL allows 
direct access to the low-level SSL toolkit data representation of 
this AVA, thus allowing the user to directly call the toolkit API. 
Take extreme care if using this option.

Return Value Returns the requested format of data. Returns NULL if the required conversion is 
not supported.

IT_IntegerData::getLong()

Synopsis virtual int getLong(long& retLong);

Description This function obtains the long associated with this ASN.1 integer. It is important 
to examine the return value of this function.

Parameters

Return Value Returns 1 if the value can fit in long. Returns 0 otherwise.

If 0 is returned, do not use the value retLong. For large numbers, the application 
must use IT_IntegerData::convert() to obtain the DER data which can then 
be processed by the application.

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER. In this format, buf contains a sequence of bytes 
corresponding to the DER encoding of the ASN.1 integer. This option is 
typically only used by applications that require special processing of the 
DER data.

IT_FMT_HEX_STRING. In this format, buf contains a formatted 
hexadecimal dump of the DER encoding of the ASN.1 integer.

IT_FMT_INTERNAL. In this format, buf contains the value of a variable of 
the OpenSSL data type ASN1_INTEGER *.

retLong The long that is to be updated with the value of the ASN.1 integer.
 158



C l a s s  I T _ I n t e g e r D a t a
IT_IntegerData::length()

Synopsis virtual int length(IT_Format f);

Description This function is used to calculate the storage required to hold the result of a call to 
IT_IntegerData::convert() for a particular IT_Format value. Refer to 
IT_IntegerData::convert() for a list of the supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the conversion. Returns 
-1 if the required conversion is not supported.

See Also IT_IntegerData::convert()

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER

IT_FMT_HEX_STRING

IT_FMT_INTERNAL

For more information, refer to IT_IntegerData::convert() on 
page 157.
159



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 160



Struct IT_OID
Synopsis This structure is used by OrbixSSL to hold information identifying an ASN.1 

object. An ASN.1 object identifier is a sequence of integer values used to identify 
certificate components. ASN.1 is the low-level format in which X.509 certificates 
are stored. This structure holds information by maintaining an array of integers 
that map onto the ASN.1 sequence of integers which correspond to an object 
identifier (OID).

OrbixSSL handles object identifiers as follows:

1. It provides an enumerated type IT_OID_Tag which has values for a 
number of common objects. For example, IT_OIDT_commonName identifies 
the common name (CN) component of a subject field in a certificate. Use 
of this enumerated type is sufficient for most OrbixSSL developer 
requirements.

2. If the desired OIDs are not listed in the enumerated values for type 
IT_OID_Tag, you can directly supply the sequence of integers that 
represent the OID.

An explanation of the fields of struct IT_OID follows:

If the value of the tag field is IT_OIDT_UNDEF and the value of OIDLen is 0, no 
OID has been specified.

tag This field contains the value of the enumerated type IT_OID_Tag which 
represents the object. When OrbixSSL API functions return IT_OID 
structures, they will supply this field if possible as well as always 
returning values for the OID and OIDLen fields. If the value for this field 
is IT_OIDT_UNDEF, this means that either no object has been specified 
or that the OID has been directly specified using the other fields of the 
structure.

OID This array of integer values corresponds to the ASN.1 sequence of 
integers which represents an ASN.1 object identifier. This field should 
not be examined unless the OIDLen field of the same structure is > 0.

OIDLen This field represents the number of elements in the OID array field 
above.
161



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
An example of an IT_OID struct representing the common name field of a name 
component in a certificate could have the following values:

(1)  tag = IT_OIDT_commonName
 OIDLen = 0

(2)  tag = IT_OIDT_commonName
 OIDLen = 3
 OID = {0x55, 0x04, 0x03}

(3)  tag = IT_OIDT_UNDEF
 OIDLen = 3
 OID = {0x55, 0x04, 0x03}

An OrbixSSL developer will normally use the tag value where possible because it 
is easy to use. However, it is also faster to look up an IT_X509Extension or an 
IT_AVA using a supplied tag value rather than just the sequence of integers. When 
passing IT_OID objects to OrbixSSL API functions, it is not necessary to specify 
the integer sequence if the tag value has been specified.

C++ struct IT_OID {
IT_OID_Tag tag;
unsigned int OID[MAX_OID_CARDINALITY];
unsigned int OIDLEN;

};

See Also IT_OID_Tag
IT_AVA::OID()
IT_AVAList::getAVAByOID()
IT_Extension::OID()
IT_ExtensionList::getExtensionByOID()
 162



Enum IT_OIDTag
Synopsis The values of this enumerated data type are used to represent an ASN.1 object 

identifier (OID). Access to certificate components using the IT_OIDTag is faster 
than using the raw sequence of integers that correspond to the underlying ASN.1 
OID value.

enum IT_OID_Tag {
IT_OIDT_UNKNOWN = 0,

IT_OIDT_rsadsi,
IT_OIDT_pkcs,
IT_OIDT_md2,
IT_OIDT_md5,
IT_OIDT_rc4,
IT_OIDT_rsaEncryption,
IT_OIDT_md2WithRSAEncryption,
IT_OIDT_md5WithRSAEncryption,
IT_OIDT_pbeWithMD2AndDES_CBC,
IT_OIDT_pbeWithMD5AndDES_CBC,

IT_OIDT_X500,
IT_OIDT_X509,
IT_OIDT_commonName,
IT_OIDT_countryName,
IT_OIDT_localityName,
IT_OIDT_stateOrProvinceName,
IT_OIDT_organizationName,
IT_OIDT_organizationalUnitName,
IT_OIDT_rsa,

IT_OIDT_pkcs7,
IT_OIDT_pkcs7_data,
IT_OIDT_pkcs7_signed,
IT_OIDT_pkcs7_enveloped,
IT_OIDT_pkcs7_signedAndEnveloped,
IT_OIDT_pkcs7_digest,
IT_OIDT_pkcs7_encrypted,
IT_OIDT_pkcs3,
163



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_OIDT_dhKeyAgreement,
IT_OIDT_des_ecb,
IT_OIDT_des_cfb64,
IT_OIDT_des_cbc,
IT_OIDT_des_ede,
IT_OIDT_des_ede3,
IT_OIDT_idea_cbc,
IT_OIDT_idea_cfb64,
IT_OIDT_idea_ecb,

IT_OIDT_rc2_cbc,
IT_OIDT_rc2_ecb,
IT_OIDT_rc2_cfb64,
IT_OIDT_rc2_ofb64,
IT_OIDT_sha,
IT_OIDT_shaWithRSAEncryption,
IT_OIDT_des_ede_cbc,
IT_OIDT_des_ede3_cbc,
IT_OIDT_des_ofb64,
IT_OIDT_idea_ofb64,

IT_OIDT_pkcs9,
IT_OIDT_pkcs9_emailAddress,
IT_OIDT_pkcs9_unstructuredName,
IT_OIDT_pkcs9_contentType,
IT_OIDT_pkcs9_messageDigest,
IT_OIDT_pkcs9_signingTime,
IT_OIDT_pkcs9_countersignature,
IT_OIDT_pkcs9_challengePassword,
IT_OIDT_pkcs9_unstructuredAddress,
IT_OIDT_pkcs9_extCertAttributes,

IT_OIDT_netscape,
IT_OIDT_netscape_cert_extension,
IT_OIDT_netscape_data_type,
IT_OIDT_des_ede_cfb64,
IT_OIDT_des_ede3_cfb64,
IT_OIDT_des_ede_ofb64,
IT_OIDT_des_ede3_ofb64,
IT_OIDT_sha1,
IT_OIDT_sha1WithRSAEncryption,
IT_OIDT_dsaWithSHA,
IT_OIDT_dsa,
 164



E n u m  I T _ O I D T a g
IT_OIDT_pbeWithSHA1AndRC2_CBC,
IT_OIDT_pbeWithSHA1AndRC4,
IT_OIDT_dsaWithSHA1,
IT_OIDT_netscape_cert_type,
IT_OIDT_netscape_base_url,
IT_OIDT_netscape_revocation_url,
IT_OIDT_netscape_ca_revocation_url,
IT_OIDT_netscape_renewal_url,
IT_OIDT_netscape_ca_policy_url,
IT_OIDT_netscape_ssl_server_name,
IT_OIDT_netscape_comment,
IT_OIDT_netscape_cert_sequence,

IT_OIDT_desx_cbc,
IT_OIDT_ld_ce,
IT_OIDT_subject_key_identifier,
IT_OIDT_key_usage,
IT_OIDT_private_key_usage_period,
IT_OIDT_subject_alt_name,
IT_OIDT_issuer_alt_name,

IT_OIDT_basic_constraints,
IT_OIDT_crl_number,
IT_OIDT_certificate_policies,
IT_OIDT_authority_key_identifier,
IT_OIDT_bf_cbc,
IT_OIDT_bf_ecb,
IT_OIDT_bf_cfb64,
IT_OIDT_bf_ofb64,
IT_OIDT_mdc2,
IT_OIDT_mdc2WithRSA,

};

See Also IT_AVAList::getAVAByOIDTag()
IT_ExtensionList::getExtensionByOIDTag()
IT_OID
165



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 166



Class IT_SSL
Synopsis The IT_SSL class is the main OrbixSSL API interface consisting of basic API 

member functions, specific security policy and configuration member functions, 
and member functions for the custom retrieval of certificates and private keys.

class IT_SSL {
public:

// Toolkit initialization functions.
virtual int init();
virtual int initScope(const char* scope);
virtual char *getInitErrorString();

// Basic API member functions.
virtual int setSecurityName(const char *name);
virtual char *getSecurityName();  
virtual void setValidateServerCertCallback

(IT_ValidateX509CertCB cb);
virtual voidsetValidateClientCertCallback

(IT_ValidateX509CertCB cb);
virtual int getPeerCert(CORBA(Object_ptr) obj, 

IT_X509Cert& PeerCert);
virtual int getPeerCert(CORBA(Request)* req, 

IT_X509Cert& PeerCert);
virtual int getPeerCert(int fd, IT_X509Cert& PeerCert);
virtual int getApplicationCert(IT_X509Cert& cert);
virtual int setPrivateKeyPassword(char *password);
virtual char *getPassword(const char *prompt);
virtual int setInvocationPolicy(int pol);
virtual int getInvocationPolicy();
virtual int specifySecurityForInterfaces

(IT_CommsSecuritySpec *SpecList, unsigned int n); 
virtual int specifySecurityForServers

(IT_CommsSecuritySpec *SpecList, unsigned int n); 
virtual IT_SSLCipherSuite getNegotiatedCipherSuite

(CORBA(Object_ptr) obj);
virtual IT_SSLCipherSuite getNegotiatedCipherSuite

(CORBA(Request)* req);
167



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
virtual IT_SSLCipherSuite getNegotiatedCipherSuite(int fd);

// Policy and configuration member functions.
virtual int specifyCipherSuites

(const IT_SSLCipherSuites& suite, const unsigned int n,
IT_SSLCipherSuites& SetSuite, unsigned int& retn);

virtual int setCacheOptions(const int opts);
virtual int getCacheOptions();
virtual int setMaxChainDepth(unsigned int depth);
virtual int getMaxChainDepth();
virtual int setClientAuthentication(int f);
virtual int getClientAuthentication();

// Custom retrieval of certs and private keys member functions.
virtual int setRSAPrivateKeyFromDER 

(char *PrivateKey, unsigned int len);
virtual int setRSAPrivateKeyFromFile(char *file, IT_Format f);
virtual int setX509CertFromDER 

(char *derCert, unsigned int len);
virtual int setX509CertFromFile(const char *FileName,  

IT_Format f);
virtual char *getCRLDir();
virtual const char *getCAListFile(void) const;
virtual int hasPassword(void) const;

// The default scope used within init().
static const char *DEFAULT_CONFIG_SCOPE;

};

IT_SSL::getApplicationCert()

Synopsis int getApplicationCert(IT_X509Cert& cert);

Description This function obtains the certificate associated with the current application.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in obtaining the application certificate. 
Otherwise, it returns an error code.

cert The application certificate object.
 168



C l a s s  I T _ S S L
IT_SSL::getCacheOptions()

Synopsis int getCacheOptions();

Description This function obtains the current setting for the OrbixSSL cache options.

Return Value Returns the current setting for the OrbixSSL cache.

See Also IT_SSL::setCacheOptions()

IT_SSL::getClientAuthentication()

Synopsis int getClientAuthentication();

Description This function is used to determine whether the application is configured to 
authenticate clients.

Return Value This function returns 1 to signify that clients will be authenticated. Returns 0 
otherwise.

See Also IT_SSL::setClientAuthentication()

IT_SSL::getCRLDir()

Synopsis char *getCRLDir();

Description This function returns the directory in which the application expects certificate 
revocation lists (CRLs) to be stored. 

Return Value Returns the CRL directory for the application, if set using the 
IT_CRL_REPOSITORY configuration variable.

IT_SSL::getErrorString()

Synopsis char* getErrorString();

Description This method returns a description of an initialization error, if available.
169



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_SSL::getInvocationPolicy()

Synopsis int getInvocationPolicy();

Description This function obtains the invocation policy setting for an OrbixSSL application. 
The invocation policy for an OrbixSSL application specifies whether clients 
support or require SSL for incoming and outgoing connections.

Return Value Returns the current invocation policy value.

See Also IT_SSL::setInvocationPolicy()

IT_SSL::getMaxChainDepth()

Synopsis int getMaxChainDepth();

Description This function returns the maximum allowed depth of the certificate chain for this 
application. The maximum certificate chain length acceptable to OrbixSSL 
clients and servers using the policy file is set by IT_MAX_ALLOWED_CHAIN_DEPTH 
or IT_DEFAULT_MAX_CHAIN_DEPTH during configuration. Applications can 
change the maximum certificate chain length by calling 
IT_SSL::setMaxChainDepth(). However, they may only set the length of the 
certificate chain to be less than or equal to IT_MAX_ALLOWED_CHAIN_DEPTH.

Return Value Returns a numeric value specifying the maximum length of the certificate chain.

See Also IT_SSL::setMaxChainDepth()

IT_SSL::getNegotiatedCipherSuite()

Synopsis IT_SSLCipherSuite getNegotiatedCipherSuite
(CORBA(Object_ptr) obj);

Description This function allows OrbixSSL applications to query the specified cipher that was 
chosen for connection to the specified peer. It does this by returning the cipher 
suite associated with the specified remote object (obj). 

Parameters

Return Value Returns the chosen IT_SSLCipherSuite value.

obj A remote object.
 170



C l a s s  I T _ S S L
Returns IT_SSL_ERR_NO_CONNECTION to indicate that the object selected is not 
remote.

Returns IT_SSL_ERR_NO_CIPHER to indicate that the connection to the peer is 
insecure. In such a case, there is no associated cipher.

See Also IT_SSL::specifyCipherSuites()

IT_SSL::getNegotiatedCipherSuite()

Synopsis IT_SSLCipherSuite getNegotiatedCipherSuite
(CORBA (Object(Request)* req);

Description This function allows OrbixSSL applications to query the specified cipher that was 
chosen for connection to the specified peer. It does this by requesting the cipher 
suite associated with the specified connection (req).

Parameters

Return Value Returns the chosen IT_SSLCipherSuite value.

Returns IT_SSL_ERR_NO_CONNECTION to indicate that the connection selected is 
not remote.

Returns IT_SSL_ERR_NO_CIPHER to indicate that the connection to the peer is 
insecure. In such a case, there is no associated cipher.

See Also IT_SSL::specifyCipherSuites()

IT_SSL::getNegotiatedCipherSuite()

Synopsis IT_SSLCipherSuite getNegotiatedCipherSuite(int fd);

Description This function allows OrbixSSL applications to query the specified cipher that was 
chosen for connection to the specified peer. It does this by returning the cipher 
suite associated with the file descriptor (fd) for a particular connection.

Parameters

req A request object sent across the connection.

fd The file descriptor for a particular connection.
171



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Return Value Returns the chosen IT_SSLCipherSuite value.

Returns IT_SSL_ERR_NO_CONNECTION to indicate that the file descriptor is 
invalid.

Returns IT_SSL_ERR_NO_CIPHER to indicate that the connection to the peer is 
insecure. In such a case, there is no associated cipher.

See Also IT_SSL::specifyCipherSuites()

IT_SSL::getPassword()

Synopsis char* getPassword(const char* prompt);

Description This function requests the user to input a password and returns the password as a 
string. This is a console-based function. When it requests the user to enter the 
password, this function disables console echoing to prevent the password 
displaying on the user’s screen.

Parameters

Return Value Returns the string entered by the user.

IT_SSL::getPeerCert()

Synopsis int getPeerCert(CORBA(Object_ptr)& obj, IT_X509Cert& PeerCert);

Description This function allows OrbixSSL applications to query peer certificates. It retrieves 
the peer certificate information associated with a remote object (obj) and returns 
this information in the supplied IT_X509Cert object.

prompt A prompt to display when asking the user to input a password.
 172



C l a s s  I T _ S S L
Parameters

Return Value Returns IT_SSL_ERR_NO_CONNECTION to indicate that the object selected is not 
remote.

Returns IT_SSL_ERR_INSECURE_CONNECTION to indicate that the connection to 
the peer is insecure. This means that no certificate is available.

Returns IT_SSL_ERR_NO_CERT_AVAILABLE to indicate that the connection to the 
peer is secure but no certificate is available. For example, this can occur when 
client authentication is disabled. Secure servers will always have certificates.

See Also class IT_X509Cert

IT_SSL::getPeerCert()

Synopsis int getPeerCert(CORBA(Request)& req, IT_X509Cert& PeerCert);

Description This function allows an OrbixSSL application to request the certificate of a peer. 
It retrieves the peer certificate information associated with the specified 
connection (req) and returns this information in the supplied IT_X509Cert 
object.

Parameters

Return Value Returns IT_SSL_ERR_NO_CONNECTION to indicate that the specified connection is 
invalid.

Returns IT_SSL_ERR_INSECURE_CONNECTION to indicate that the connection to 
the peer is insecure. This means that no certificate is available.

obj A remote object.

PeerCert The IT_X509Cert object to be updated with the peer 
certificate information.

req A specified connection.

PeerCert The IT_X509Cert object to be updated with the peer 
certificate information.
173



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Returns IT_SSL_ERR_NO_CERT_AVAILABLE to indicate that the connection to the 
peer is secure but no certificate is available. This can occur when client 
authentication is disabled. Secure servers always have certificates.

See Also IT_X509Cert

IT_SSL::getPeerCert()

Synopsis int getPeerCert(int fd, IT_X509Cert& PeerCert);

Description This function allows OrbixSSL applications to query peer certificates. It retrieves 
the peer certificate information associated with the file descriptor (fd) for a 
particular connection and returns this information in the supplied IT_X509Cert 
object. 

Parameters

Return Value Returns IT_SSL_ERR_NO_CONNECTION to indicate that the file descriptor is 
invalid.

Returns IT_SSL_ERR_INSECURE_CONNECTION to indicate that the connection to 
the peer is insecure. This means that no certificate is available.

Returns IT_SSL_ERR_NO_CERT_AVAILABLE to indicate that the connection to the 
peer is secure but no certificate is available. This can occur when client 
authentication is disabled. Secure servers will always have certificates.

See Also class IT_X509Cert
CORBA::Object::_fd()
CORBA::Request::descriptor()

fd The file descriptor for a particular connection.

PeerCert The IT_X509Cert object to be updated with the peer 
certificate information.
 174



C l a s s  I T _ S S L
IT_SSL::getSecurityName()

Synopsis const char* getSecurityName();

Description This function returns the security name which the application is currently using. 
Refer to IT_SSL::setSecurityName() on page 183 for a detailed explanation of 
what the security name means.

Return Value Returns the security name string.

See Also IT_SSL::SetRSAPrivateKeyFromFile()
IT_SSL::SetRSAPrivateKeyFromDER()
IT_SSL::setSecurityName()

IT_SSL::hasPassword()

Synopsis int hasPassword(void) const;

Description If called in a server, this function indicates whether or not the server has received 
a private key pass phrase from the server key distribution mechanism (KDM). If 
the server has not yet received a pass phrase, you should call 
IT_SSL::setPrivateKeyPassword().

Return Value Returns IT_SSL_SUCCESS if the server has received a pass phrase. Otherwise, it 
returns an error.

See Also IT_SSL::getPassword()
IT_SSL::setPrivateKeyPassword()

IT_SSL::init()

Synopsis int init();

Description This function must be called by the application before any communications take 
place. It initializes the OrbixSSL component.

Return Value Returns IT_SSL_SUCCESS if initialization of the OrbixSSL component is 
successful.

Returns IT_SSL_ERR_SECURITY_INACTIVE if OrbixSSL is either not available in 
the runtime environment or disabled. For example, this could occur if a security 
policy file does not exist or if IT_DISABLE_SSL is set to TRUE in the security 
policy file.
175



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Returns IT_SSL_ERR_VAR_CERT_DIR if the certificate directory specified in the 
OrbixSSL configuration file is invalid.

Returns IT_SSL_ERR_VAR_CA if an invalid CA is specified.

Returns IT_SSL_ERR_UNKNOWN_CONFIG_VAR if an invalid configuration variable 
is specified in the OrbixSSL configuration file.

Returns IT_SSL_ERR_NO_CONFIG_VAL_SPEC if an OrbixSSL configuration 
variable is missing a value.

Returns IT_SSL_ERR_BAD_CONFIG_VAL if an invalid configuration value is 
specified.

Note: You can obtain a string describing the error by calling 
IT_SSL::getInitErrorString().

See Also IT_SSL::getInitErrorString()

IT_SSL::initScope()

Synopsis virtual int initScope(const char* scope);

Description This function instructs OrbixSSL to read the configuration settings for the 
application from a custom scope in the OrbixSSL configuration file. 
Configuration variables not specified in the custom scope are read from the scope 
OrbixSSL.

Return Value Returns IT_SSL_SUCCESS if initialization of the OrbixSSL component is 
successful. Otherwise, it returns an error.

See Also IT_SSL::getInitErrorString()
 176



C l a s s  I T _ S S L
IT_SSL::setCacheOptions()

Synopsis int setCacheOptions(IT_SSLCacheOptions opts);

Description This function sets the OrbixSSL cache option settings.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure reason.

See Also IT_SSL::getCacheOptions()

IT_SSL::setClientAuthentication()

Synopsis int setClientAuthentication(int f);

Description This function is used by an application to specify whether client authentication 
should be performed or not. This function is primarily used by servers, but can be 
used by clients to enforce client authentication on any non bi-directional 
callbacks that they receive.

Parameters

Return Value This function returns 1 if the value is allowed by the security policy. Returns 0 
otherwise.

See Also IT_SSL::getClientAuthentication()

opts This parameter is the bitwise OR combination of the following flags:

IT_SSL_CACHE_OFF. This option disables session caching. If this flag is 
specified, it must be the only flag used.

IT_SSL_CACHE_CLIENT. This option enables caching for clients.

IT_SSL_CACHE_SERVER. This option enables caching for servers.

f Setting this parameter to 1 signifies that client authentication should be 
performed.

Setting this parameter to 0 signifies that client authentication should not be 
performed.
177



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_SSL::setInvocationPolicy()

Synopsis int setInvocationPolicy(int pol);

Description This function is used by an OrbixSSL application to set the invocation policy for 
an application. The invocation policy for an OrbixSSL application controls 
whether the application supports or requires SSL communications for incoming 
or outgoing connections. Applications have separate control with respect to using 
OrbixSSL security to invoke operations and with respect to using OrbixSSL 
security to receive operation invocations. By default, an OrbixSSL application 
only allows secure incoming and outgoing connections.

Note: Clients can be servers when they receive callbacks; servers can also be 
clients of other servers, for example, the Orbix daemon.

Parameters

The options are explained as follows:

• IT_SECURE_ACCEPT

This option means that the server accepts SSL connections. If the 
IT_INSECURE_ACCEPT option is not also specified, it accepts only SSL 
connections and rejects non-SSL connections. It rejects non-SSL 
connections by sending a NO_PERMISSION exception to the initiator and 
closing the connection. In this case, an SSL_FAILURE exception is 
generated at the server application.

pol An integer value which is the bitwise OR combination of the 
IT::SSL_InvocationOptions flags detailed below:

IT_SECURE_ACCEPT

IT_INSECURE_ACCEPT

IT_SPECIFIED_INSECURE_CONNECT

IT_INSECURE_CONNECT

IT_SECURE_CONNECT

IT_SPECIFIED_SECURE_CONNECT
 178



C l a s s  I T _ S S L
• IT_INSECURE_ACCEPT

This option means that the server is capable of accepting connections from 
non-SSL clients. If IT_SECURE_ACCEPT and IT_INSECURE_ACCEPT are 
both specified, the server serves both secure and insecure clients. This type 
of server offers optional connection authentication, privacy and integrity 
to clients that wish to avail of it. It should not be specified for servers 
whose services are regarded as sensitive and to which access should be 
restricted.

• IT_SECURE_CONNECT

This means the client is capable of initiating SSL connections. If this 
connect option is set, your client will only connect securely to servers and 
will reject insecure servers. In this case, an SSL_FAILURE exception will be 
thrown.

• IT_SPECIFIED_INSECURE_CONNECT

For some secure client applications, it may be too restrictive to allow only 
secure connections to all servers; there may be one server (or a few) that 
you need to contact without using SSL. When this option is chosen, 
attempts to connect through specified insecure interfaces or to specified 
insecure servers will be allowed. For more information, refer to 
IT_SSL::specifySecurityForInterfaces() on page 188 and 
IT_SSL::specifySecurityForServers() on page 189.

• IT_SPECIFIED_SECURE_CONNECT

This option means that the client will generally try to communicate 
insecurely with all servers, except when connecting through explicitly 
specified secure interfaces, or explicitly specified secure servers. When 
this option is specified, the client will additionally attempt to use SSL 
when the server’s IOR indicates that it requires SSL.

Note: Currently, this is only possible if the client has an IOR from a server 
which contains the TAG_SSL_SEC_TRANS struct indicating that the server 
supports or requires SSL. OrbixSSL automatically includes this tag in 
IORs that are generated by SSL servers.
179



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
• IT_INSECURE_CONNECT

This option means that your client is capable of initiating insecure 
connections and that the client side of the application has no security 
requirements.

Return Value Returns IT_SSL_SUCCESS if successful in specifying security for an OrbixSSL 
application.

Returns IT_SSL_ERR_INVALID_OPT_COMBO if an illegal combination of flags has 
been specified (for example, more than one CONNECT flag).

Returns IT_SSL_ERR_POLICY_DISALLOWS if the settings chosen are disallowed by 
the security policy.

See Also IT_SSL::setClientAuthentication()
IT_SSL::specifyCipherSuites()
IT_SSL::specifySecurityForInterfaces()
IT_SSL::specifySecurityForServers()

IT_SSL::setMaxChainDepth()

Synopsis int setMaxChainDepth(unsigned int depth);

Description This function allows individual applications to set the length of the certificate 
chain. The maximum certificate chain length acceptable to OrbixSSL clients and 
servers using the policy file is set by IT_MAX_ALLOWED_CHAIN_DEPTH or 
IT_DEFAULT_MAX_CHAIN_DEPTH during configuration. Applications can only set 
the length of the certificate chain to be less than or equal to 
IT_MAX_ALLOWED_CHAIN_DEPTH.

Parameters

Return Value Returns IT_SSL_SUCCESS to accept numeric value specifying the maximum 
certificate chain length. Returns IT_SSL_ERR_USING_PRIVATE_KEY otherwise.

See Also IT_SSL::getMaxChainDepth()

depth Numeric value specifying the acceptable maximum certificate chain 
length.
 180



C l a s s  I T _ S S L
IT_SSL::setPrivateKeyPassword()

Synopsis int setPrivateKeyPassword(char* password);

Description This function sets the pass phrase for the private key of an OrbixSSL application. 
The private key for an OrbixSSL C++ application is encrypted in PEM format 
with a secret pass phrase and stored in the application certificate file. The private 
key pass phrase is generally chosen by the system administrator when creating the 
application certificate signing request (CSR).

An application needs to supply the pass phrase that protects the private key. If 
your private key is encrypted and you are not explicitly supplying your own 
private key using either setRSAPrivatekeyFromDER or 
setRSAPrivateKeyFromFile, call this function before calling 
IT_SSL::setSecurityName().

Parameters

Return Value Returns IT_SSL_SUCCESS if the pass phrase is accepted. Otherwise, it returns an 
error code indicating the failure reason.

See Also IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setSecurityName()

IT_SSL::setRSAPrivateKeyFromDER()

Synopsis int setRSAPrivateKeyFromDER(char* PrivateKey, unsigned int len);

Description setRSAPrivateKeyFromDER() is a member function allowing you to directly 
supply private keys to Orbix. Private keys are used by OrbixSSL applications for 
authentication purposes.

Given a PEM format private key file, you can convert it into the DER format 
using the following command line:

password A null-terminated string containing the pass phrase that was used 
to encrypt the private key.

If you use the OpenSSL utilities to create certificate requests, this 
corresponds to the pass phrase you enter when executing the 
openssl req command.
181



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
openssl rsa -in MyPrivateKeyFile.pem -inform PEM
-outform DER -out MyPrivateKeyFile.der

Parameters

Return Value Returns IT_SSL_SUCCESS if private key is successfully supplied. Returns 
IT_SSL_ERR_USING_PRIVATE_KEY otherwise.

See Also IT_SSL::setPrivateKeyPassword()
IT_SSL::setRSAPrivateKeyFromFile()

Note: You can supply a private key directly and still use setSecurityName(). 
However, if supplying a certificate directly, setSecurityName() cannot 
be used as you already have a certificate. For more information, refer to 
IT_SSL::setX509CertFromDER() on page 185.

IT_SSL::setRSAPrivateKeyFromFile()

Synopsis int setRSAPrivateKeyFromFile(char* file, IT_Format f);

Description setRSAPrivateKeyFromFile() is a member function allowing you to supply 
private keys directly to Orbix. Private keys are used by OrbixSSL applications for 
authentication purposes. If the private key is encrypted, you must call 
setPrivateKeyPassword() before calling this function.

Parameters

PrivateKey PrivateKey points to a user supplied buffer of length len that 
contains the DER format private key.

len Length of the buffer.

file The filename of the private key file.

f Format of the file. For example: 

IT_FMT_PEM (PEM format).

IT_FMT_DER (DER encoding).
 182



C l a s s  I T _ S S L
Return Value Returns IT_SSL_SUCCESS if successful in supplying a private key. Returns 
IT_SSL_ERR_USING_PRIVATE_KEY (that is, private key file was read but could not 
be used), or IT_SSL_FAILURE otherwise.

See Also IT_SSL::setPrivateKeyPassword()
IT_SSL::setRSAPrivateKeyFromFile()

IT_SSL::setSecurityName()

Synopsis int setSecurityName(const char* name);

Description This function is used to associate a particular certificate and private key with an 
OrbixSSL client or server application. OrbixSSL includes a certificate and private 
key retrieval mechanism.

Note: It is also possible for OrbixSSL developers to implement their own 
mechanism for retrieving certificates and private keys by supplying the 
private keys and certificates directly to OrbixSSL from memory or from 
file.

The parameter name is a string identifying the certificate to use. This string 
corresponds to the path of the certificate file relative to the directory specified by 
the IT_CERTIFICATE_PATH configuration variable. It is mapped onto the 
operating system’s directory structure. (Without changing the application code, 
future versions of OrbixSSL may change this underlying mapping.)

For example, for an unmodified OrbixSSL installation, consider the following 
call:

OrbixSSL.setSecurityName("demo/demoserver")

This causes the application to use the certificate file demoserver, which is located 
in the OrbixSSL demo subdirectory of the OrbixSSL certs directory. The default 
location of the certificate directory is the certs subdirectory of the OrbixSSL 
installation location.

The certificate file specified by the securityName parameter must be in PEM 
format. If the certificate is in DER format, you can use the OpenSSL utility x509 
to convert to PEM format. This certificate file can optionally contain the PEM 
format private key of the certificate, appended to the end of the PEM certificate. 
183



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
This private key is typically encrypted using the triple DES algorithm and a pass 
phrase unique to the certificate. Leaving the private key unencrypted is strongly 
discouraged.

Note: It is important to note that any person who gains access to unencrypted 
private keys would as a result be able to impersonate the entity for which 
the certificate was issued.

For OrbixSSL to use the private key, it needs to be aware of the pass phrase that 
was used to protect it. To make SSL aware of the pass phrase, call 
IT_SSL::setPrivateKeyPassword() before calling 
IT_SSL::setSecurityName(). It is not necessary to supply a pass phrase if the 
private key is not encrypted. This practice, however, is not encouraged. If the 
certificate file does not contain the private key, the application must supply 
OrbixSSL with the private key before calling IT_SSL::setSecurityName(). For 
more information, refer to IT_SSL::setRSAPrivateKeyFromDER() on page 181 
and IT_SSL::setRSAPrivateKeyFromFile() on page 182.

Parameters

Return Value Returns IT_SSL_SUCCESS if the certificate has been successfully loaded.

Returns IT_SSL_ERR_USING_PRIVATE_KEY if the private key file was read but 
could not be used. 

Returns IT_SSL_ERR_LOADING_CERT if unable to load the X.509 certificate.

See Also IT_SSL::getSecurityName()
IT_SSL::setPrivateKeyPassword()
IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setX509CertFromDer()
IT_SSL::setX509CertFromFile()

name The security name string that identifies the certificate to use.
 184



C l a s s  I T _ S S L
IT_SSL::setValidateClientCertCallback()

Synopsis void setValidateClientCertCallback(IT_ValidateX509CertCB cb);

Description This function is used to validate client certificates. The user can register functions 
to process server or client certificates separately, or the same function for both if 
desired.

Parameters

See Also IT_SSL::getPeerCert()
IT_SSL::setValidateServerCertCallback()
IT_ValidateX509CertCB

IT_SSL::setValidateServerCertCallback()

Synopsis void setValidateServerCertCallback(IT_ValidateX509CertCB cb);

Description This function is used to validate server certificates.

Parameters

See Also IT_SSL::getPeerCert()
IT_SSL::setValidateClientCertCallback()
IT_ValidateX509CertCB

IT_SSL::setX509CertFromDER()

Synopsis int setX509CertFromDER(char* derCert, unsigned int len);

Description The setSecurityName() member function is used to automatically retrieve and 
use specified certificates. However, this function allows an OrbixSSL application 
to supply the certificate associated with the application for authentication 
purposes. You must call either setRSAPrivateKeyFromDER() or 
setRSAPrivateKeyFromFile() before using this function.

cb A pointer to the user-supplied function which is used to validate peer 
certificates. 

cb A pointer to the user-supplied function which is used to validate peer 
certificates. 
185



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Parameters

Return Value Returns IT_SSL_SUCCESS if certificate is successfully supplied. Returns 
IT_SSL_ERR_FAILURE otherwise.

See Also IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setX509CertFromFile()

Note: The function IT_SSL::setRSAPrivateKeyFromFile() must be called 
before calling either IT_SSL::setX509CertFromDER() or 
IT_SSL::setX509CertFromFile(), if setting the certificate yourself.

IT_SSL::setX509CertFromFile()

Synopsis int setX509CertFromFile(const char* FileName, IT_Format f);

Description The setSecurityName() member function automatically retrieves and uses the 
specified certificate. However, this function allows you to supply the certificate 
that an OrbixSSL application uses for authentication purposes. The certificate is 
contained in the supplied file. You must call either 
setRSAPrivateKeyFromDER() or setRSAPrivateKeyFromFile() before using 
this function.

Parameters

Return Value Returns IT_SSL_SUCCESS if the certificate is successfully supplied. Returns 
IT_SSL_ERR_FAILURE or IT_SSL_ERR_USING_PRIVATE_KEY otherwise.

derCert A pointer to a user supplied buffer containing the DER bytes 
representing the X.509 certificate to be used.

len The number of bytes in the supplied buffer. 

FileName The filename where the certificate is held.

f Format of the file. For example: 

IT_FMT_PEM (PEM format).

IT_FMT_DER (DER encoding).
 186



C l a s s  I T _ S S L
See Also IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setX509CertFromDER()

Note: The function IT_SSL::setRSAPrivateKeyFromFile() must be called 
before calling either IT_SSL::setX509CertFromDER() or 
IT_SSL::setX509CertFromFile(), if setting the certificate yourself.

IT_SSL::specifyCipherSuites()

Synopsis int specifyCipherSuites(const IT_SSLCipherSuites& suite,
 const unsigned int n, IT_SSLCipherSuites&
 SetSuite, unsigned int& retn);

Description An application uses this function to customize the set of ciphers that it can use. 
Specification of the desired set of ciphers to be used is supplied in the suite 
parameter. This function operates within the constraints of the lists of ciphers 
allowed by the Security Policy configuration file which specifies that any ciphers 
that are preferred or allowed can be used. 

Ciphers that the application will actually use are returned in the SetSuite 
parameter. If all ciphers specified are disallowed, then the previously existing set 
of ciphers is used. The set of ciphers for the application is automatically 
initialized to the IT_PREFERRED_CIPHERS list at application start up. This means 
that this function need not be called by an application unless it wants to restrict or 
expand its cipher suite.

Parameters

Return Value If all ciphers specified in the suite parameter are allowed, IT_SSL_SUCCESS is 
returned and SetSuite is populated accordingly with these ciphers.

suite A list of ciphers. The application attempts to specify the ciphers 
according to preference.

n The number of ciphers in suite.

SetSuite The list of ciphers that the application will actually use.

retn The number of ciphers in SetSuite.
187



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
If all ciphers specified in the suite parameter are disallowed, 
IT_SSL_ERR_NO_CIPHERS_ALLOWED is returned. In this case the previously 
existing set of ciphers in SetSuite is used.

If some, but not all of the ciphers specified in the suite parameter are allowed, 
the ones that are allowed are set in SetSuite and 
IT_SSL_ERR_NOT_ALL_CIPHERS_ALLOWED is returned.

See Also IT_SSL::getNegotiatedCipherSuite()

IT_SSL::specifySecurityForInterfaces()

Synopsis int specifySecurityForInterfaces
(IT_CommsSecuritySpec* SpecList, unsigned int n);

Description This function allows clients and servers acting as clients to explicitly specify 
particular security requirements for servers. For example, if an otherwise secure 
client wishes to connect to an insecure server, it can do so using this function.

This function is only applicable when a connection to a server is initially being 
established. Once a connection to a server has been established, this connection 
can be used to access other interfaces in that server without reference to the list of 
specified interfaces. The main use anticipated for this member function is to 
provide a means to explicitly allow insecure connections to be established 
through a specified insecure interface.

The structure IT_CommsSecuritySpec datatype holds the following members:

struct IT_CommsSecuritySpec {
char* id;
IT_SecCommsCategory CommsCat;

};

The parameter id specifies the name of the target interface. The enumerated 
datatype CommsCat indicates whether the interface should be associated with 
secure or insecure communications. This type is defined as follows:

enum IT_SecCommsCategory {
IT_COMMS_CAT_INSECURE,
IT_COMMS_CAT_SECURE

};
 188



C l a s s  I T _ S S L
Parameters

Return Value Returns IT_SSL_SUCCESS if the security setting for the interface is accepted. 
Returns IT_SSL_ERR_POLICY_DISALLOWS if the OrbixSSL configuration file 
disallows this option.

See Also IT_SSL::SpecifySecurityForServers()

IT_SSL::specifySecurityForServers()

Synopsis int specifySecurityForServers
(IT_CommsSecuritySpec* SpecList, unsigned int n);

Description This function allows clients and servers acting as clients to explicitly specify 
particular security requirements for servers. For example, if an otherwise secure 
client wishes to connect to an insecure server, they may do so using this function.

The structure IT_CommsSecuritySpec holds the following members:

struct IT_CommsSecuritySpec {
char* id;
IT_SecCommsCategory CommsCat;

};

The parameter id specifies the target server name. The enumerated datatype 
CommsCat indicates whether the server should be associated with secure or 
insecure communications. It holds the following identifiers that you can assign to 
servers:

enum IT_SecCommsCategory {
IT_COMMS_CAT_INSECURE,
IT_COMMS_CAT_SECURE

};

SpecList Specifies an array of IT_CommsSecuritySpec structures that 
holds the name of the server in the id parameter, and the 
CommsCat parameter.

n Specifies the number of items in the array.
189



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Parameters

Return Value Returns IT_SSL_SUCCESS if security setting for interface is accepted. Returns 
IT_SSL_ERR_POLICY_DISALLOWS if the OrbixSSL configuration file disallows 
this option.

See Also IT_SSL::SpecifySecurityForInterfaces()

SpecList Specifies an array of IT_CommsSecuritySpec structures that 
holds the name of the server in the id parameter, and the 
CommsCat parameter.

n Specifies the number of items in the array.
 190



Struct IT_UTCTime
Synopsis The IT_UTCTime structure holds a null-terminated UTCTime format string. The 

UTCTime type denotes a “coordinated universal time” or Greenwich Mean Time 
(GMT) value. A UTCTime value includes the local time precise to either minutes 
or seconds, and an offset from GMT in hours and minutes. It takes any of the 
following forms:

1. YYMMDDhhmmZ

2. YYMMDDhhmm+hh‘mm’

3. YYMMDDhhmm-hh‘mm’

4. YYMMDDhhmmssZ

5. YYMMDDhhmmss+hh‘mm’

6. YYMMDDhhmmss-hh‘mm’

The elements in these time formats are:

• YY is the least significant two digits of the year.

• MM is the month (01 to 12).

• DD is the day (01 to 31).

• hh is the hour (00 to 23).

• mm are the minutes (00 to 59).

• ss are the seconds (00 to 59).

• Z indicates that local time is GMT, + indicates that the local time is later 
than GMT, and - indicates that the local time is earlier than GMT.

• hh is the absolute value of the offset from GMT in hours.

• mm is the absolute value of the offset from GMT in minutes.

The UTCTime type is used for signing times in a PKCS signing-time attribute and 
for certificate validity periods in the X.509 Validity type.
191



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Note: The ISO defines time fields in X.509 certificates as UTCTime if the date is 
before 2051, and as GeneralisedTime for later years. If your application 
is going to do any specific validation of the time fields, it should be aware 
that 00 for a year means the year 2000.

C++ struct IT_UTCTime {
char TimeString[MAX_UTCTIME_LEN+1];

};
 192



Typedef IT_ValidateX509CertCB
Synopsis typedef int (*IT_ValidationX509CertCB)

(IT_CertValidity ok, IT_X509CertChain& PeerCertChain);

Description IT_ValidateX509CertCB is the typedef that defines the user-supplied function 
passed to IT_SSL::setValidateClientCertCallback() or 
IT_SSL::setValidateServerCertCallback(). This function determines 
whether an OrbixSSL application accepts certificates it receives.

An example function declaration which matches this typedef would be the 
following:

int myValidationFunc(IT_CertValidity ok, 
IT_X509CertChain& chain);

Parameters

ok Specifies whether OrbixSSL thinks the certificate supplied is 
valid or not. The values for the ok parameter are as follows:

IT_VALID_YES indicates that OrbixSSL thinks the certificate 
is valid. To override OrbixSSL’s opinion of the certificate, 
the application can return IT_VALID_NO. Typically, this 
would be the case if some application level access control 
checking indicated that the peer was not authorized to 
connect to this application.

IT_SSL_VALID_NO_APP_DECESION indicates that OrbixSSL 
thinks the certificate is invalid. To override OrbixSSL’s 
opinion of the peer certificate chain and perform its own 
checking, the application can return 1. For more information 
about the nature of the error the application detected, the 
application can call IT_X509CertChain::getErrorInfo().

IT_SSL_VALID_NO indicates that OrbixSSL will not accept 
the certificate even if the application returns 1. This could 
happen if the certificate was in violation of parameters 
specified by the security policy file, for example if the 
maximum allowed chain depth is exceeded.
193



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Return Value Returns 1 to indicate acceptance of a certificate. Returns 0 to indicate rejection of 
a certificate.

See Also IT_X509CertChain()
IT_SSL::setValidateClientCertCallback()
IT_SSL::setValidateServerCertCallback()
IT_X509CertChain::getErrorInfo()

PeerCertChain This parameter is used to obtain information about the peer 
certificate and its issuer certificates. This information is 
needed to allow the application to do access checking and 
logging. 
 194



Class IT_X509_CRL_Info
Synopsis A Certificate Revocation List (CRL) is a list of certificates that are no longer 

valid, even though they have not yet reached their expiry dates. CAs issue CRLs 
to revoke certificates when the security of those certificates has been 
compromised or they are no longer in use. Each certificate in the CRL is 
identified by its unique serial number.

The class IT_X509_CRL_Info provides a C++ interface to a CRL.

C++ class IT_X509_CRL_Info {
public:

IT_X509_CRL_Info();
IT_X509_CRL_Info( const IT_X509_CRL_Info& crl );
virtual ~IT_X509_CRL_Info();
virtual IT_X509_CRL_Info& operator=(

const IT_X509_CRL_Info& crl );

virtual int getSignatureAlgorithm(IT_OID& oid) const;
virtual int getVersion(unsigned int& nVer) const;
virtual int getIssuer(IT_AVAList& lstIssuer) const;
virtual int getLastUpdate(IT_UTCTime& t) const;
virtual int getNextUpdate(IT_UTCTime& t) const;
virtual int getRevokedCerts(IT_X509_RevokedList& r) const;
virtual int find(const IT_IntegerData& nSerialNum, 

CORBA(Boolean)& bFound, IT_X509_Revoked& r) const;
virtual int getExtensions(IT_ExtensionList& e) const;
virtual int fromDER(const char** pData);
virtual int openFile(const char* file, IT_Format fmt);

};

See Also IT_CRL_List
IT_X509_Revoked
IT_X509_RevokedList
195



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_X509_CRL_Info::find()

Synopsis virtual int find(const IT_IntegerData& nSerialNum, 
CORBA(Boolean)& bFound, IT_X509_Revoked& r) const;

Description This function allows you to check if a specified certificate is included in the CRL. 

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

IT_X509_CRL_Info::fromDERFile()

Synopsis virtual int fromDER(const char** pData);

Description Converts CRL information stored in a file in DER format to an 
IT_X509_CRL_Info object.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

nSerialNum The serial number of the certificate to be checked.

bFound A boolean value that indicates whether the certificate was found 
in the CRL. This value is set to true if the certificate was found. 
Otherwise it is set to false.

r An object that represents information about the entry in the CRL 
associated with the specified certificate.

pData The name of the file containing the CRL information in DER format.
 196



C l a s s  I T _ X 5 0 9 _ C R L _ I n f o
IT_X509_CRL_Info::getExtensions()

Synopsis virtual int getExtensions(IT_ExtensionList& e) const;

Description Returns any X.509 version three extensions that the CRL includes.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

IT_X509_CRL_Info::getIssuer()

Synopsis virtual int getIssuer(IT_AVAList& lstIssuer) const;

Description This function returns a distinguished name that identifies the CA that issued the 
CRL.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

IT_X509_CRL_Info::getLastUpdate()

Synopsis virtual int getLastUpdate(IT_UTCTime& t) const;

Description This function returns the time at which the CRL was last updated.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

See Also IT_UTCTime

e The list of extensions included in the CRL.

1stIssuer Distinguished name identifying the CA that issued the CRL.

t The time of the last CRL update, represented as an IT_UTCTime object.
197



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_X509_CRL_Info::getNextUpdate()

Synopsis virtual int getNextUpdate(IT_UTCTime& t) const;

Description This function returns the time at which the CA will next update the CRL.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

See Also IT_UTCTime

IT_X509_CRL_Info::getRevokedCerts()

Synopsis virtual int getRevokedCerts(IT_X509_RevokedList& r) const;

Description This function provides access to the revoked certificate information stored in the 
CRL. The entries in the CRL are returned as an IT_X509_RevokedList object.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of the CRL. 
Otherwise, it returns an error.

See Also IT_X509_RevokedList

IT_X509_CRL_Info::getSignatureAlgorithm()

Synopsis virtual int getSignatureAlgorithm(IT_OID& oid) const;

Description This function returns information about the algorithm used to sign the CRL.

Parameters

t The time of the next CRL update, represented as an IT_UTCTime object.

r An IT_X509_RevokedList object containing information about each entry 
in the CRL.

oid The ASN.1 object identifier associated with the algorithm used to sign 
the CRL.
 198



C l a s s  I T _ X 5 0 9 _ C R L _ I n f o
Return Value Returns IT_SSL_SUCCESS if it succeeds in getting the CRL signing algorithm. 
Otherwise, it returns an error.

See Also IT_OID

IT_X509_CRL_Info::getVersion()

Synopsis virtual int getVersion(unsigned int& nVer) const;

Description This function returns the X.509 version associated with the CRL.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in getting the X.509 version number. 
Otherwise, it returns an error.

IT_X509_CRL_Info::openFile()

Synopsis virtual int openFile(const char* file, IT_Format fmt);

Description This function allows you to create an IT_X509_CRL_Info object that represents a 
CRL stored in a file.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in creating the CRL from file. Otherwise, 
it returns an error.

nVer This parameter specifies which version of X.509 the CRL uses. In 
accordance with the X.509 specification, a value of 0 indicates version 
one, a value of 1 indicates version two, and a value of 2 indicates 
version three.

file The name of the file that contains the CRL.

fmt The format in which the CRL is stored in the file. For example:

IT_FMT_PEM (PEM format).

IT_FMT_DER (DER encoding).
199



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 200



Class IT_X509_Revoked
Synopsis This class represents a single entry in a Certificate Revocation List (CRL). Each 

entry specifies a certificate that is no longer valid. An entry includes the 
certificate serial number and the date at which the certificate was revoked. An 
entry can also include X.509 version three extensions.

C++ class IT_X509_Revoked {
public:

IT_X509_Revoked();
IT_X509_Revoked(const IT_X509_Revoked& r);
virtual ~IT_X509_Revoked();
IT_X509_Revoked& operator=(const IT_X509_Revoked& r);

virtual int getSerialNumber(IT_IntegerData& serialNum) const;
virtual int getRevocationDate(IT_UTCTime& t) const;
virtual int getExtensions(IT_ExtensionList& e) const;
virtual int getSequence(int& n) const;

};

See Also IT_CRL_List
IT_X509_CRL_Info
IT_X509_RevokedList

IT_X509_CRL_Revoked::getExtensions()

Synopsis virtual int getExtensions(IT_ExtensionList& e) const;

Description If an entry in a CRL includes any X.509 version three extensions, you can use this 
function to retrieve them.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the extensions. Otherwise, it 
returns an error.

See Also IT_ExtensionList

e A list of the extensions included in the revocation record.
201



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_X509_CRL_Revoked::getRevocationDate()

Synopsis virtual int getRevocationDate(IT_UTCTime& t) const;

Description This function returns the date at which the certificate was revoked.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the revocation date. 
Otherwise, it returns an error.

See Also IT_UTCTime

IT_X509_CRL_Revoked::getSequence()

Synopsis virtual int getSequence(int& n) const;

Description This function returns the position of the revocation record within the CRL from 
which it was retrieved.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in getting the sequence number. 
Otherwise, it returns an error.

IT_X509_CRL_Revoked::getSerialNumber()

Synopsis virtual int getSerialNumber(IT_IntegerData& serialNum) const;

Description This function returns the serial number that uniquely identifies the revoked 
certificate.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the serial number. Otherwise, 
it returns an error.

t An IT_UTCTime object that represents the certificate revocation date.

n The sequence number of the record in the CRL.

serialNum The certificate serial number.
 202



Class IT_X509_RevokedList
Synopsis This class represents a list of revoked certificate entries extract from a Certificate 

Revocation List (CRL). Each individual record in this list is stored as an 
IT_X509_Revoked object.

C++ class IT_X509_RevokedList {
public:

IT_X509_RevokedList() { pImpl = NULL; }
IT_X509_RevokedList( const IT_X509_RevokedList& r );
virtual ~IT_X509_RevokedList();
virtual IT_X509_RevokedList& operator=(

const IT_X509_RevokedList& r);

virtual unsigned int getCount() const;
virtual int getRevoked(int nPos, IT_X509_Revoked& r) const;

};

See Also IT_CRL_List
IT_X509_CRL_Info
IT_X509_Revoked

IT_X509_RevokedList::getCount()

Synopsis virtual unsigned int getCount() const;

Description This function returns the number of revoked certificates in the list.

Return Value Returns the number of revoked certificates as an unsigned int value.

IT_X509_RevokedList::getRevoked()

Synopsis virtual int getRevoked(int nPos, IT_X509_Revoked& r) const;

Description This function returns the revocation record from a specified position in the list. 
203



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Parameters

Return Value This function returns IT_SSL_SUCCESS if it succeeds in returning the required 
record. Otherwise, it returns an error.

enPos The position in the list at which the required certificate entry is 
located. The first record is at position zero. The last record is at one 
below the return value of IT_X509_RevokedList::getCount().

r The certificate revocation record from the specified position.
 204



Class IT_X509Cert
Synopsis This class provides a high-level interface to an X.509 certificate. A number of 

member functions are provided to obtain information contained in the certificate. 
This class, along with other certificate interface classes, shields the OrbixSSL 
developer from having to know about the low-level details such as the encoding 
of X.509 certificates; although access to low-level DER information is provided 
if required.

C++ class IT_X509Cert {
public:

virtual int convert(char* buf, IT_Format f);
virtual int getExtensions(IT_ExtensionList& e);
virtual int getIssuer(IT_AVAList& l);
virtual int getSerialNumber(IT_IntegerData& i);
virtual int getSubject(IT_AVAList& l);
virtual int getVersion(unsigned int& ver);
virtual int length(IT_Format f);
virtual int getNotAfter(IT_UTCTime& t);
virtual int getNotBefore(IT_UTCTime& t);

};

IT_X509Cert::convert()

Synopsis virtul int convert(char* buf, IT_Format f);

Description This function fills the supplied buffer with the requested format of data 
corresponding to the contents of the X.509 certificate that the IT_X509Cert 
object represents.

Parameters

buf The user-supplied buffer that must be of sufficient size to hold the 
requested conversion. To find the required length of buffer for a 
particular conversion type, call IT_X509Cert::length().
205



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
WARNING: This value provides access to low-level SSL Toolkit data structures, 
and is non-portable. Code that uses this feature will not work if the 
underlying SSL toolkit is changed. IT_FMT_INTERNAL allows 
direct access to the low-level SSL toolkit data representation of 
this AVA, thus allowing the user to directly call the toolkit API. 
Take extreme care if using this option.

Return Value Returns IT_SSL_SUCCESS if the conversion was successful. Otherwise, it returns 
the error code IT_SSL_ERR_INVALID_PARAM.

See Also IT_X509Cert::length()

IT_X509Cert::getExtensions()

Synopsis virtual int getExtensions(IT_ExtensionList& e);

Description This function retrieves the list of X.509 version three extensions the certificate 
can include. Individual extensions may be retrieved from the returned 
IT_ExtensionList as IT_Extension instances.

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER. In this format, buf contains a sequence of bytes 
corresponding to the DER encoding of the X.509 certificate. Typically, 
you require this option only if you use your own certificate parsing 
routines.

IT_FMT_HEX_STRING. In this format, buf contains a null-terminated 
string which is a formatted hex dump of the DER data of the certificate.

IT_FMT_INTERNAL. In this format, buf contains the value of a variable of 
the OpenSSL data type X509 *.
 206



C l a s s  I T _ X 5 0 9 C e r t
Parameters

Return Value Returns a list of extensions.

IT_X509Cert::getIssuer()

Synopsis virtual int getIssuer(IT_AVAList& retAVAList);

Description This function retrieves the distinguished name of the certificate issuer as an 
IT_AVAList instance. Individual components of the distinguished name (for 
example, the common name or the organization name) can be retrieved from the 
IT_AVAList instance.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure reason.

See Also IT_AVA
IT_AVAList
IT_Extension
IT_ExtensionList

IT_X509Cert::getSerialNumber()

Synopsis virtual int getSerialNumber(IT_IntegerData& i);

Description This function obtains the serial number of the certificate.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure reason.

See Also class IT_IntegerData

e The IT_ExtensionList object to be updated.

retAVAList The IT_AVAList object to be updated.

i The supplied IT_IntegerData object. This object is initialized with the 
serial number data field of the X.509 certificate.
207



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_X509Cert::getSubject()

Synopsis virtual int getSubject(IT_AVAList& retAVAList);

Description This function retrieves the distinguished name corresponding to the subject field 
of this certificate as an IT_AVAList instance. Individual components of the 
distinguished name (for example, common name or organization name) can be 
retrieved from the IT_AVAList instance.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the error reason.

See Also IT_AVA
IT_AVAList
IT_Extension
IT_ExtensionList

IT_X509Cert::getVersion()

Synopsis virtual int getVersion(unsigned int& ver);

Description This function obtains the version number of the X.509 certificate.

Parameters

Return Value Returns IT_SSL_SUCCESS if an X.509 version of the certificate is successfully 
returned. Otherwise, it returns IT_SSL_FAILURE.

retAVAList The AVAList object to be updated with the subject 
information.

ver X.509 version certificate number. In accordance with the X.509 
specification, a value of 0 indicates version one, a value of 1 indicates 
version two, and a value of 2 indicates version three.
 208



C l a s s  I T _ X 5 0 9 C e r t
IT_X509Cert::length()

Synopsis virtual int length(IT_Format f);

Description This function is used to calculate how much storage is required to hold the result 
of a call to IT_X509Cert::convert() for a particular IT_Format value. Refer to 
IT_X509Cert::convert() for a list of the supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the conversion; returns 
minus 1 if the required conversion is not supported.

IT_X509Cert::getNotAfter

Synopsis virtual int getNotAfter(IT_UTCTime& t);

Description This function is used to extract the notAfter field from an X.509 certificate. This 
field is used in determining the date validity of a certificate in conjunction with 
the notBefore field. A certificate can be specified as not being valid until after 
some point in the future. The field is returned in the supplied IT_UTCTime 
variable which is passed as a parameter to the function.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful. Otherwise, it returns an error code 
indicating the failure reason.

See Also IT_X509Cert::getNotBefore()
IT_UTCTime

f The format of the required conversion. The following IT_Format values 
are supported:

IT_FMT_DER

IT_FMT_HEX_STRING

IT_FMT_INTERNAL

t The IT_UTCTime object to be updated with the notAfter field of this X.509 
certificate.
209



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
IT_X509Cert::getNotBefore()

Synopsis virtual int getNotBefore(IT_UTCTime& t);

Description This function is used to extract the notBefore field from an X.509 certificate. 
This field is used in determining the date validity of a certificate in conjunction 
with the notAfter field. A certificate can be specified as not being valid until 
some point in the future. The field is returned in the supplied IT_UTCTime 
variable which is passed as a parameter to the function.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful, or an error code indicating the failure 
reason.

See Also IT_X509Cert::getNotAfter()
IT_UTCTime

t The notBefore field in an X.509 certificate.
 210



Class IT_X509CertChain
Synopsis An instance of this class is supplied as a parameter to a certificate validation 

function. Using this class, you can obtain each certificate in a certificate chain. 
The first certificate in the chain is the certificate associated with the application 
that supplied the chain. This is referred to as the peer certificate. Each subsequent 
certificate is the issuer certificate for the previous one.

class IT_X509CertChain {
public:

IT_X509CertChain();

virtual unsigned int numCerts();
virtual int getCert(unsigned int pos, IT_X509Cert& ret);
virtual int getErrorInfo(IT_CertError& retErr);
virtual int getCurrentCert(IT_X509Cert& ret);
virtual int getCurrentDepth();

};

See Also IT_SSL::setValidateClientCertCallback()
IT_SSL::setValidateServerCertCallback()
IT_ValidateX509CertCB

IT_X509CertChain::getCert()

Synopsis virtual int getCert(unsigned int pos, IT_X509Cert& ret);

Description This function obtains the certificate at the specified index in the chain.

Parameters

pos The index position in the chain of the required certificate. The index 
ranges in value from 0 to the number of certificates minus 1.

ret The certificate that is returned.
211



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure reason.

See Also IT_SSL::getCurrentCert()
IT_SSL::getCurrentDepth()
IT_SSL::getErrorInfo()
IT_SSL::setClientCertCallback()
IT_SSL::setServerCertCallback()

IT_X509CertChain::getCurrentCert()

Synopsis virtual int getCurrentCert(IT_X509Cert& ret);

Description This function returns the current certificate in the certificate chain that is being 
validated. Functionally, this is equivalent to getCert(getCurrentDepth()).

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the certificate. Otherwise, it 
returns an error code indicating the failure reason.

See Also IT_SSL::getCert()
IT_SSL::getCurrentDepth()
IT_SSL::getErrorInfo()
IT_SSL::setValidateClientCertCallback()
IT_SSL::setValidateServerCertCallback()

IT_X509CertChain::getCurrentDepth()

Synopsis virtual int getCurrentDepth();

Description This function returns a value between 0 and the number of certificates minus one 
to indicate which certificate is currently being validated in the certificate chain.

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure reason.

See Also IT_SSL::getCert()
IT_SSL::getCurrentCert()
IT_SSL::setValidateServerCertCallback()
IT_SSL::setValidateClientCertCallback()

ret The certificate currently being validated.
 212



C l a s s  I T _ X 5 0 9 C e r t C h a i n
IT_X509CertChain::getErrorInfo()

Synopsis virtual int getErrorInfo(IT_CertError& retErr);

Description This function allows you to get error information associated with an 
IT_X509CertChain. This may be useful during certificate validation, for example 
when a value of IT_SSL_VALID_NO or IT_SSL_VALID_NO_APP_DECESION is 
supplied to the certificate validation function registered by your application.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure reason.

See Also IT_SSL::getCert()
IT_SSL::getCurrentCert()
IT_SSL::getCurrentDepth()
IT_SSL::setClientCertValidationCB()
IT_SSL::setServerCertValidationCB()
IT_SSL::setValidateServerCertCallback()
IT_SSL::setValidateClientCertCallback()
ITCertError
IT_ValidateX509CertCB

IT_X509CertChain::numCerts()

Synopsis virtual unsigned int numCerts();

Description This function returns the number of certificates in the chain represented by the 
IT_X509CertChain object.

Return Value Returns the number of certificates in the chain.

retErr The IT_CertError structure that contains the error information. 
213



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
 214



Part V
Appendices





Appendix A  
Security Recommendations

Some general recommendations for increasing the security of OrbixSSL 
applications are as follows:

• Use SSL security for every application where possible. This means 
specifying SECURE_DAEMON as your daemon policy, and using the default 
invocation policy for all OrbixSSL applications. Under these conditions, 
no unauthorized applications can access your servers or be accessed by 
your applications.

• Replace the demonstration certificates that are installed with OrbixSSL. 
These must be replaced by a set of certificates and private keys that have 
been securely generated. Refer to Chapter 4 on page 69 for more 
information. 

You should also change the pass phrases used to protect private keys. Do 
not reuse the pass phrases that were used for the example private keys.

• Do not set the IT_ENABLE_DEFAULT_CERT configuration variable, and do 
not issue a default certificate for live systems.

The use of a default certificate is generally not appropriate in a production 
system because access to the dynamic library of the OrbixSSL version 
installed on the system would allow any client to use the default 
certificate, even a client from another machine. The OrbixSSL dynamic 
libraries in effect contain the default pass phrase that protects the private 
key of the default certificate. The default value for the configuration 
variable IT_ENABLE_DEFAULT_CERT is FALSE.

• If your application requires some interoperability with insecure 
applications, only allow specifically listed servers and interfaces to be 
contacted insecurely by your clients. Use secure callbacks for clients 
wherever possible as this is the default setting for OrbixSSL.
217



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
• Where it is necessary for remote insecure clients to contact OrbixSSL 
servers that are capable of accepting secure and insecure connections, set 
the daemon policy to RESTRICTED_SEMI_SECURE_DAEMON (instead of 
SEMI_SECURE_DAEMON).

• The OrbixSSL installation modifies the existing Orbix binaries so that 
they can use the Orbix binary certificate for authentication purposes. The 
permissions on these binaries are readable only by root, but executable by 
everybody. Do not change the permissions to be readable by everybody.

• Use the 128 bit or triple DES cipher suites exclusively where possible. The 
extra time taken to perform the more secure bulk cipher computations does 
not impact the overall performance of OrbixSSL applications 
significantly. 

If some applications require export-level cryptography for interoperability 
with other applications, use the IT_ALLOWED_CIPHERS configuration 
variable and set the use of the export ciphers in the required applications 
explicitly. This is preferable to adding the export ciphers to all applications 
(by adding export ciphers to the IT_PREFERRED_CIPHERS configuration 
variable) which would effectively result in reducing the security of all 
applications that did not explicitly specify their own requirements. 

The security of an SSL application is only as strong as the weakest cipher 
suite that it is prepared to support. Consider the presence of stronger cipher 
suites as an optional service for more discerning applications that wish to 
communicate with your application.

• An RSA key size of at least 1024 bits is recommended for most secure 
applications. 1024 bit keys are significantly slower to use than 512 bit 
keys but they greatly increase the security of systems. The use of SSL 
session caching helps to minimize the number of public key computations.
 218



Appendix B  
OrbixSSL Configuration Variables

The OrbixSSL configuration file, orbixssl.cfg, uses configuration variables to 
specify a security policy for your applications. The following OrbixSSL 
configuration variables are available:

• IT_ALLOWED_CIPHERSUITES

This configuration variable defines a list of ciphers, supplemental to those 
defined by IT_CIPHERSUITES, that applications can optionally choose to 
support. Refer to “Configuring Ciphers” on page 64 for more information.

• IT_AUTHENTICATE_CLIENTS

Setting this value to TRUE enforces client authentication in all servers 
affected by the configuration scope. This value does not override 
IT_SERVERS_MUST_AUTHENTICATE_CLIENTS.

• IT_BIDIRECTIONAL_IIOP_BY_DEFAULT

This configuration variable is principally supplied to facilitate the 
migration of single-threaded Orbix programs that are the recipients of 
callbacks. Single-threaded clients using the IIOP protocol run the risk of 
encountering deadlock if callbacks are used. The use of bidirectional IIOP, 
however, resolves this issue. 

Setting this configuration variable to TRUE enables bidirectional IIOP 
support in all OrbixSSL servers and clients. This is directly equivalent to 
calling the Orbix function supportBidirectionalIIOP() with a true 
parameter value. For more information on the use of bidirectional IIOP, 
refer to the Orbix C++ Programmer’s Guide.

OrbixSSL calls supportBidirectionalIIOP() when the application 
calls IT_SSL::init(). After this call, calling 
supportBidirectionalIIOP() overrides the configuration setting. 
219



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
• IT_CA_LIST_FILE

This configuration variable gives the fully qualified file name of the file 
that contains certificates of all trusted certificate authorities (CAs). 
OrbixSSL uses this file when validating a certificate. The certificates of all 
trusted CAs are concatenated into this single file, in PEM format.

• IT_CACHE_OPTIONS

This variable configures the use of SSL session caching in OrbixSSL 
programs. Refer to “OrbixSSL Session Caching Configuration” on 
page 65 for more information.

• IT_CERTIFICATE_FILE

This variable specifies the fully qualified file name of the certificate 
associated with a program. Usually, this is specified relative to 
IT_CERTIFICATE_PATH, for example:

IT_CERTIFICATE_FILE = 
IT_CERTIFICATE_PATH + "demo/demo_server";

• IT_CERTIFICATE_PATH

This configuration variable gives the location of the directory used to store 
certificate files. 

• IT_CHECKSUMS_ENABLED

This configuration variable enables the use of cryptographic checksums 
for servers that use the server key distribution mechanism (KDM). Refer 
to “Verifying the Integrity of Server Executables” on page 94 for more 
information.

• IT_CHECKSUM_REPOSITORY

This configuration variable specifies the location in which OrbixSSL 
stores checksums calculated for servers that use the KDM. Refer to 
“Verifying the Integrity of Server Executables” on page 94 for more 
information.

• IT_CIPHERSUITES

This configuration variable determines the default list of ciphers that an 
OrbixSSL application uses. Refer to “Configuring Ciphers” on page 64 for 
more information.

• IT_CRL_ENABLED
 220



O r b i x S S L  C o n f i g u r a t i o n  V a r i a b l e s
Setting this variable to TRUE instructs OrbixSSL to check certificate 
revocation lists (CRLs) during authentication.

• IT_CRL_REPOSITORY

This variable specifies the fully qualified path of the directory used to 
store CRLs.

• IT_CRL_UPDATE_INTERVAL

This variable specifies the time period, in seconds, between checking the 
CRLs for updates.

• IT_DAEMON_AUTHENTICATES_CLIENTS

This variable controls whether the Orbix daemon authenticates SSL-
enabled clients or not. For more information, refer to “Configuring the 
Orbix Daemon to Authenticate Clients” on page 61.

• IT_DAEMON_POLICY

This variable specifies the types of communication accepted by the Orbix 
daemon. Refer to “Configuring a Restricted Semi-Secure Daemon” on 
page 61 for more information.

• IT_DAEMON_UNRESTRICTED_METHODS

This variable applies only when IT_DAEMON_POLICY is 
RESTRICTED_SEMI_SECURE_DAEMON. It specifies a comma-separated list of 
insecure operations supported by this type of daemon. Refer to 
“Configuring a Restricted Semi-Secure Daemon” on page 61 for more 
information.

• IT_DEFAULT_MAX_CHAIN_DEPTH

This configuration variable sets the maximum chain depth accepted by 
programs affected by the configuration scope. This value does not override 
IT_MAX_ALLOWED_CHAIN_DEPTH.

• IT_DISABLE_SSL

Setting this variable to TRUE disables SSL security in all programs affected 
by the configuration scope. The default value for this variable is FALSE.

• IT_ENABLE_DEFAULT_CERT

This configuration variable adds SSL security to programs that contain no 
OrbixSSL code. It allows these applications to use the OrbixSSL  
demos/default certificate. Take extreme care when setting this value to 
TRUE. It can disrupt running applications and is completely insecure. This 
221



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
variable is useful only for testing purposes, for example to quickly identify 
an application’s performance characteristics using SSL.

• IT_FILTER_BAD_CONNECTS_BY_DEFAULT

When set to TRUE, this variable has the effect of calling the Orbix function 
filterBadConnectAttempts() with a true parameter value, in all 
affected OrbixSSL programs. Orbix applications that do not call this 
function terminate unless they correctly handle an exception thrown when 
a client connection attempt fails. For example, this would be the case if a 
secure server was contacted by an insecure client. This configuration 
variable has no effect when set to FALSE, which is the default value. 

OrbixSSL calls filterBadConnectAttempts() when the application 
calls IT_SSL::init(). After calling IT_SSL::init(), you can override 
the configuration value by calling filterBadConnectAttempts().

• IT_INSECURE_REMOTE_INTERFACES

This variable allows you to specify the list of remote interfaces that a 
program with invocation policy IT_SPECIFIED_INSECURE_CONNECT can 
contact without using SSL. Refer to “Configuring OrbixSSL Application 
Types” on page 106 for more information.

• IT_INSECURE_SERVERS

This variable allows you to specify the list of remote servers that a 
program with invocation policy IT_SPECIFIED_INSECURE_CONNECT can 
contact without using SSL. Refer to “Configuring OrbixSSL Application 
Types” on page 106 for more information.

• IT_INVOCATION_POLICY

This variable sets the invocation policy associated with an application. It 
accepts a comma-separated list of the policy settings described in 
“Configuring OrbixSSL Application Types” on page 106.

• IT_KDM_CLIENT_COMMON_NAMES

The server key distribution mechanism (KDM) always uses client 
authentication. Only the Orbix daemon and the utility putkdm should be 
able to communicate with the KDM directly. This variable allows you to 
specify the common names used by the daemon and putkdm, so that the 
KDM can authenticate them successfully.

• IT_KDM_ENABLED
 222



O r b i x S S L  C o n f i g u r a t i o n  V a r i a b l e s
Setting this variable to TRUE enables use of the KDM in all OrbixSSL 
servers.

• IT_KDM_PIPES_ENABLED

When the Orbix daemon transfers a pass phrase from the KDM to a server, 
it can do so in one of two ways: using the server environment, or using an 
operating system pipe. Setting this value to TRUE enables the use of pipes. 
The default value is FALSE.

• IT_KDM_REPOSITORY

If using the KDM, you must set this value to the absolute path of the 
directory in which the KDM stores information about private key pass 
phrases for servers.

• IT_KDM_SERVER_PORT

This variable specifies the port number on which the KDM server listens 
for incoming communications.

• IT_MAX_ALLOWED_CHAIN_DEPTH

This configuration variable sets the absolute maximum chain depth that 
programs can choose to accept. This value limits the possible values that 
you can set for IT_DEFAULT_MAX_CHAIN_DEPTH.

• IT_ORBIX_BIN_SERVER_POLICY

This configuration variable allows you to control the communications 
used by server binaries installed with Orbix.

• IT_SECURE_REMOTE_INTERFACES

This variable allows you to specify the list of remote interfaces that a 
program with invocation policy IT_SPECIFIED_SECURE_CONNECT can 
contact without using SSL. Refer to “Configuring OrbixSSL Application 
Types” on page 106 for more information.

• IT_SECURE_SERVERS

This variable allows you to specify the list of remote servers that a 
program with invocation policy IT_SPECIFIED_SECURE_CONNECT can 
contact without using SSL. Refer to “Configuring OrbixSSL Application 
Types” on page 106 for more information.

• IT_SERVERS_MUST_AUTHENTICATE_CLIENTS
223



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Setting this value to TRUE forces client authentication in all servers 
affected by the configuration scope. This value cannot be overridden by 
IT_AUTHENTICATE_CLIENTS.
 224



Appendix C  
OpenSSL Utilities

OrbixSSL ships a version of the openssl program that is available from the 
OpenSSL project. OpenSSL is a publicly available implementation of the SSL 
protocol. Consult the OpenSSL.cpr file that is provided with OrbixSSL for 
information about the copyright terms of OpenSSL.

The openssl program consists of a large number of utilities that have been 
combined into one program. This appendix describes how you use the openssl 
program with OrbixSSL when managing X.509 certificates and private keys. 

A number of examples using openssl commands are described in Chapter 4, 
“Managing Certificates”. Read Chapter 4 before consulting this appendix.

This appendix describes four openssl utility commands:

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed 
certificates.

rsa Manipulates RSA private keys.

ca Implements a Certification Authority (CA).
225



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Using OpenSSL Utilities
An openssl utility command line takes the following form:

openssl command arguments

For example:

openssl x509 -in OrbixCA -text

Each command is individually described in this appendix. To get a list of the 
arguments associated with a particular command, use the -help option as 
follows:

openssl command -help

For example:

openssl x509 -help

The x509 Utility Command

In OrbixSSL the x509 utility command is mainly used for:

• Printing text details of certificates you wish to examine.

• Converting certificates to different formats.

The options supported by the openssl x509 utility command are as follows:

-inform arg - input format - default PEM  
(one of DER, NET or PEM)

-outform arg - output format - default PEM  
(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN
 226



O p e n S S L  U t i l i t i e s
-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate  
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object

-req - input is a certificate request, sign and 
output

-CA arg - set the CA certificate, must be PEM format

-CAkey arg - set the CA key, must be PEM format. If 
missing it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not 
exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/ 
-mdc2

- digest to do an RSA sign with
227



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Using the x509 Utility Command

To print the text details of an existing PEM-format X.509 certificate, use the x509 
utility command as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the x509 
utility command as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility 
command as follows:

openssl x509 -in MyCert.pem -inform PEM -outform 
DER -out MyCert.der

The req Utility Command

The req utility command is used to generate a self-signed certificate or a 
certificate signing request (CSR). A CSR contains details of a certificate to be 
issued by a CA. When creating a CSR, the req command prompts you for the 
necessary information from which a certificate request file and an encrypted 
private key file are produced. The certificate request is then submitted to a CA for 
signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted for a 
pass phrase which will be used to protect the private key.

Note: It is important to specify a validity period (using the -days parameter). If 
the certificate expires, applications that are using that certificate will not 
be authenticated successfully.
 228



O p e n S S L  U t i l i t i e s
The options supported by the openssl req utility command are as follows:

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken from 
CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2, mdc2)

-config file request template file

-new new request

-x509 output an x509 structure instead of a 
certificate req. (Used for creating self 
signed certificates)

-days number of days an x509 generated by -x509 is 
valid for

-asn1-kludge Output the ‘request’ in a format that is 
wrong but some CA’s have been reported as 
requiring [It is now always turned on but can 
be turned off with -no-asn1-kludge]
229



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Using the req Utility Command

To create a self signed certificate with an expiry date a year from now, the req 
utility command can be used as follows to create the certificate CA_cert.pem and 
the corresponding encrypted private key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365 
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem and the 
corresponding encrypted private key file MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

The rsa Utility Command

The rsa command is a useful utility for examining and modifying RSA private 
key files. Generally RSA keys are stored encrypted with a symmetric algorithm 
using a user-supplied pass phrase. The OpenSSL req command prompts the user 
for a pass phrase in order to encrypt the private key. By default, req uses the 
triple DES algorithm. The rsa command can be used to change the password that 
protects the private key and to convert the format of the private key. Any rsa 
command that involves reading an encrypted rsa private key will prompt for the 
PEM pass phrase used to encrypt it.
 230



O p e n S S L  U t i l i t i e s
The options supported by the openssl rsa utility command are as follows:

Using the rsa Utility Command

Converting a private key to PEM format from DER format involves using the rsa 
utility command as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM 
-out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves using 
the rsa utility command as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM 
-out MyKey.pem -des3

Removing encryption from the private key (which is not recommended) involves 
using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM 
-out MyKey2.pem

Note: Do not specify the same file for the -in and -out parameters, because this 
may corrupt the file.

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using 
168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus
231



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The ca Utility Command

You can use the ca command to create X.509 certificates by signing existing 
signing requests. It is imperative that you check the details of a certificate request 
before signing. Your organization should have a policy with respect to the issuing 
of certificates. Before implementing CAs, refer to Chapter 4 for more 
information.

The ca command is used to sign certificate requests thereby creating a valid 
X.509 certificate which can be returned to the request submitter. It can also be 
used to generate Certificate Revocation Lists (CRLS). For information on the ca 
-policy and -name options, refer to “The OpenSSL configuration file” on 
page 234.

To create a new CA using the openssl ca utility command, two files (serial and 
index.txt) need to be created in the location specified by the OpenSSL 
configuration file that you are using.

The options supported by the OpenSSL ca utility command are as follows:

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is 
encrypted

-cert - The CA certificate

-in file - The input PEM encoded certificate request(s)

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates

-infiles.... - The last argument, requests to process
 232



O p e n S S L  U t i l i t i e s
Note: Most of the above parameters have default values as defined in 
openssl.cnf.

Using the ca Utility Command

Converting a private key to PEM format from DER format involves using the ca 
utility command as shown in the following example. To sign the supplied CSR 
MyReq.pem to be valid for 365 days and create a new X.509 certificate in PEM 
format, use the ca utility as follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-spkac file - File contains DN and signed public key and 
challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos 
universal strings
233



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The OpenSSL configuration file
A number of OpenSSL commands (for example, req and ca) take a -config 
parameter that specifies the location of the OpenSSL configuration file. This 
section provides a brief description of the format of the configuration file and 
how it applies to the req and ca commands. An example configuration file is 
listed at the end of this section.

The openssl.cnf configuration file consists of a number of sections that specify 
a series of default values which are used by the OpenSSL commands.

[req] Variables

The req section contains the following settings:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

The default_bits setting is the default RSA key size that you wish to use. Other 
possible values are 512, 2048, 4096.

The default_keyfile value is default name for the private key file created by 
req.

The distinguished_name value specifies the section in the configuration file 
that defines the default values for components of the distinguished name field. 
The req_attributes variable specifies the section in the configuration file that 
defines defaults for certificate request attributes.
 234



O p e n S S L  U t i l i t i e s
[ca] Variables

You can configure the file openssl.cnf to support a number of CAs that have 
different policies for signing CSRs. The -name parameter to the ca command 
specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not supplied to the ca 
command, the CA section used is the one indicated by the default_ca variable. 
In the “Example openssl.cnf File” on page 237, this is set to CA_default (which 
is the name of another section listing the defaults for a number of settings 
associated with the ca command). Multiple different CAs can be supported in the 
configuration file, but there can be only one default CA.

Possible [ca] variables include the following:

dir: The location for the CA database

The database is a simple text database containing 
the following tab separated fields

status: A value of ‘R’ - revoked, ‘E’
-expired or ‘V’ valid

issued date: When the certificate was
certified

revoked date: When it was revoked, blank if not
revoked

serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial field should be unique as should the 
CN/status combination. The ca program checks these 
at startup.

certs: This is where all the previously
issued certificates are kept
235



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
[policy] Variables

The policy variable specifies the default policy section to be used if the -policy 
argument is not supplied to the ca command. The CA policy section of a 
configuration file identifies the requirements for the contents of a certificate 
request which must be met before it is signed by the CA.

There are 2 policies defined in the “Example openssl.cnf File” on page 237: 
policy_match and policy_anything.

Consider the following value:

countryName = match

This means that the country name must match the CA certificate.

Consider the following value:

organisationalUnitName  = optional

This means that the organisationalUnitName does not have to be present.

Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate request.

The policy_match section of the example openssl.cnf file specifies the order 
of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress
 236



O p e n S S L  U t i l i t i e s
Example openssl.cnf File

################################################################
# OpenSSL example configuration file.
# This is mostly used for generation of certificate requests.
#################################################################
[ ca ]
default_ca = CA_default # The default ca section
#################################################################

[ CA_default ]

dir  =/opt/progress/OrbixSSL1.0c/certs # Where everything is 
kept

certs  = $dir # Where the issued certs are kept
crl_dir  = $dir/crl # Where the issued crl are kept
database  = $dir/index.txt # database index file
new_certs_dir  = $dir/new_certs # default place for new certs
certificate  = $dir/CA/OrbixCA # The CA certificate
serial  = $dir/serial # The current serial number
crl  = $dir/crl.pem # The current CRL
private_key  = $dir/CA/OrbixCA.pk # The private key
RANDFILE  = $dir/.rand # private random number file
default_days  = 365 # how long to certify for
default_crl_days  = 30 # how long before next CRL
default_md  = md5 # which message digest to use
preserve  = no # keep passed DN ordering

# A few different ways of specifying how closely the request should
# conform to the details of the CA

policy  = policy_match

# For the CA policy [policy_match]

countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional
237



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
# For the ‘anything’ policy
# At this point in time, you must list all acceptable ‘object’
# types

[ policy_anything ]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[ req ]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[ req_distinguished_name ]
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
stateOrProvinceName = State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[ req_attributes ]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName = An optional company name
 238



Appendix D  
Performance Characteristics of the 
SSL Protocol

This appendix describes the performance characteristics of the SSL toolkit that 
OrbixSSL C++ uses, in order to give an understanding of the nature of the 
performance characteristics of SSL applications. This information is provided by 
the author of OpenSSL.

The program used to generate the results detailed in this chapter is a version of 
ssl/ssltest.c which is the OpenSSL SSL protocol testing program. It is a 
single process that talks to both sides of the SSL protocol using a non-blocking 
memory buffer interface.

The results displayed in this chapter were generated using OpenSSL on a pentium 
pro 200, running Linux. They give an indication of the SSL protocol and 
encryption overheads.
239



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
The results are as follows:

proto cipher number bytes new reuse
SSLv2 RC4-MD5 1000 x      1  12.83s   0.70s
SSLv3 NULL-MD5 1000 x      1  14.35s   1.47s
SSLv3 RC4-MD5 1000 x      1  14.46s   1.56s
SSLv3 RC4-MD5 1024 1000 x      1  51.93s   1.62s
SSLv3 RC4-SHA 1000 x      1  14.61s   1.83s
SSLv3 DES-CBC-SHA 1000 x      1  14.70s   1.89s
SSLv3 DES-CBC3-SHA 1000 x      1  15.16s   2.16s
SSLv2 RC4-MD5 1000 x   1024  13.72s   1.27s
SSLv3 NULL-MD5 1000 x   1024  14.79s   1.92s
SSLv3 RC4-MD5 1024 1000 x   1024  52.58s   2.29s
SSLv3 RC4-SHA 1000 x   1024  15.39s   2.67s
SSLv3 DES-CBC-SHA 1000 x   1024  16.45s   3.55s
SSLv3 DES-CBC3-SHA 1000 x   1024  18.21s   5.38s
SSLv2 RC4-MD5 1000 x  10240  18.97s   6.52s
SSLv3 NULL-MD5 1000 x  10240  17.79s   5.11s
SSLv3 RC4-MD5 1000 x  10240  20.25s   7.90s
SSLv3 RC4-MD5 1024 1000 x  10240  58.26s   8.08s
SSLv3 RC4-SHA 1000 x  10240  22.96s  11.44s
SSLv3 DES-CBC-SHA 1000 x  10240  30.65s  18.41s
SSLv3 DES-CBC3-SHA 1000 x  10240  47.04s  34.53s
SSLv2 RC4-MD5 1000 x 102400  70.22s  57.74s
SSLv3 NULL-MD5 1000 x 102400  43.73s  31.03s
SSLv3 RC4-MD5 1000 x 102400  71.32s  58.83s
SSLv3 RC4-MD5 1024 1000 x 102400 109.66s  59.20s
SSLv3 RC4-SHA 1000 x 102400  95.88s  82.21s
SSLv3 DES-CBC-SHA 1000 x 102400 173.22s 160.55s
SSLv3 DES-CBC3-SHA 1000 x 102400 336.61s 323.82s

Interpreting the Data

The first two columns identify the protocol and cipher used.

The next column (number) is the number of connections being made. The column 
bytes is the number of bytes exchanged between the client and server side of the 
protocol. This is the number of bytes that the client sends to the server, and the 
server returns. Because this all happens in one process, the data is encrypted, 
decrypted, encrypted and then decrypted again; it is a round trip of that number of 
 240



P e r f o r m a n c e  C h a r a c t e r i s t i c s  o f  t h e  S S L  P r o t o c o l
bytes. Because one process performs both the client and server sides of the 
protocol, this number is multiplied by four to generate the number of bytes 
encrypted, decrypted, and for which a MAC is calculated.

The new column lists the time value. That is, the number of seconds that have 
elapsed since initiation of a full SSL handshake. The reuse column lists the cost 
of one full handshake; the rest is session-id reuse.

For a server and client using RC4-MD5 and a 512bit server key, with no  
session-id reuse and a transfer size of 10240 bytes, a pentium pro 200 running 
linux can handle the SSLv3 protocol overheads of about 49 connections a second; 
and 126 with session-id reuse.

In comparison, using s_server and s_client (simple TCP programs) on the 
same machine, about 44 new connections a second can be handled; and 49 with 
reuse. Using a 1024 bit key, this drops to 16 new connections; and 49 with reuse. 
In theory, the limit is 17. TCP problems begin to diminish with larger CPU 
burdens. (When calculating these results, clients and servers were all on the same 
host.)

Important points to be aware of when interpreting this data:

• The new column is for 1000 full SSL handshakes. The reuse column is for 
1 full ssl handshake and 999 with session-id reuse. The RSA overheads for 
each exchange are one public and one private operation, but the protocol/
MAC/cipher cost is similar in both the client and server.

• The time measured is user time, but these numbers are not exact.

• Remember this is the cost of both client and server sides of the protocol.

• The TCP round trip latencies, while slowing individual connections, has a 
minimal impact on throughput.

• In the test program, instead of sending a 102400 byte buffer, an 8K buffer 
is sent until the required number of bytes is processed.

• The SSLv3 connections are SSLv2-compatible SSLv3 headers.

• A 512 bit server key is used except where noted.

• No server key verification is performed on the client side of the protocol. 
This would slow things down very little.

• The library used is OpenSSL 0.8.x. Using different cipher libraries or SSL 
implementations will modify these times.
241



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
• The normal measuring system consisted of commands as follows:

time ./ssltest -num 1000 -bytes 102400 -cipher
DES-CBC-SHA -reuse

Performance of Ciphers in OpenSSL

The general cipher performance results for the same platform are as follows 
(under Windows NT, they are significantly higher because Visual C is a much 
better x86 compiler than gcc):

OpenSSL 0.8.2a 04-Sep-1997
built on Fri Sep  5 17:37:05 EST 1997
options:bn(64,32) md2(int) rc4(idx,int) des(ptr,risc1,16,long) 
idea(int)
blowfish(ptr2)
C flags:gcc -DL_ENDIAN -DTERMIO -O3 -fomit-frame-pointer -m486
The ‘numbers’ are in 1000s of bytes per second processed.

type bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

md2   131.02k   368.41k   500.57k   549.21k   566.09k
mdc2   535.60k   589.10k   595.88k   595.97k   594.54k
md5  1801.53k  9674.77k 17484.03k 21849.43k 23592.96k
sha  1261.63k  5533.25k  9285.63k 11187.88k 11913.90k
sha1  1103.13k  4782.53k  7933.78k  9472.34k 10070.70k
rc4 10722.53k 14443.93k 15215.79k 15299.24k 15219.59k

des cbc  3286.57k  3827.73k  3913.39k  3931.82k  3926.70k
des ede3  1443.50k  1549.08k  1561.17k  1566.38k  1564.67k
idea cbc  2203.64k  2508.16k  2538.33k  2543.62k  2547.71k
rc2 cbc  1430.94k  1511.59k  1524.82k  1527.13k  1523.33k

blowfish cbc   4716.07k   5965.82k   6190.17k   6243.67k   
6234.11k

sign verify
rsa  512 bits 0.0100s 0.0011s
rsa 1024 bits 0.0451s 0.0012s
rsa 2048 bits 0.2605s 0.0086s
rsa 4096 bits 1.6883s 0.0302s
 242



Appendix E  
Troubleshooting OrbixSSL

This is a checklist to help you make sure that OrbixSSL is installed and 
configured correctly:

• Ensure that your application works without OrbixSSL, by disabling all 
OrbixSSL calls in the application. If the application does not work, 
OrbixSSL is not causing the problem.

• Check whether your application works using the Default Cert mechanism 
provided by OrbixSSL. Disable all OrbixSSL calls in the application and 
specify IT_ENABLE_DEFAULT_CERT TRUE in the itssl.cfg OrbixSSL 
policy file. If the application now works, any problem is likely to be 
caused by either OrbixSSL code in the application, or by the certificate or 
private key that your application is using.

The rest of the suggestions in this appendix assume that your OrbixSSL code is 
not disabled.

• Insure that IT_SSL::init() is called and the return value checked. Also 
ensure that the return value of all OrbixSSL functions is carefully 
examined.

• Set export IT_SSL_TRACE_LEVEL=1

This will give some high level handshake information.

• Set IT_SSL_TRACEFILE to point to a debug file for a process. The process 
can now write additional very detailed SSL debug information to this file. 
Set IT_SSL_TRACEFILE to a different file for each process, so that the 
output of two processes are not confused.
243



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
• Check that the certificates, private keys and passwords are correct. For 
example:

openssl x509 -in MyCert -text

This should display the text details of the certificate.

openssl rsa -in MyKey -text

This should display the text details of the private key, if the private key is 
encrypted (which it normally should be). You are asked for a pass-phrase –
input the pass-phrase that the OrbixSSL application is attempting to use to 
decrypt the private key.

• Investigate whether the openssl s_client or openssl s_server utilities 
provided with OrbixSSL can communicate using the same certificates and 
keys that they are trying to use with the OrbixSSL applications. If this is 
not the case then there is a problem with the keys, certificates, or pass-
phrases. The customer should recheck them. For example:

openssl s_client -ssl3 -host SomeHost 
-port SomeServerPort -CAfile SomeCAFile 
-cert SomeClientCert -debug

openssl s_server -accept MyServerPort -ssl3 -
CAfile SomeCAFile -cert SomeClientCert -debug -
Verify 2

The argument -Verify enforces client authentication. It is followed by an 
integer that determines the maximum chain depth allowed. You can also 
use -verify can be instead of -Verify which will not reject the 
connection if a client cert is not available.

If openssl_server is interrupted the port number it was using can 
become unavailable for a period of time. Simply use another port when 
trying again. The openssl s_client port parameter must change to 
match.

There is no support for SSL Version 2.0 in OrbixSSL. It supports SSL 
Version 3.0 only. It does not issue or accept Version 2.0 hello messages. 
This behavior can be simulated in openssl s_client and openssl 
s_server by the use of the -ssl3 parameter shown above.

You can also use openssl s_client and openssl s_server can be used 
to establish SSL connections with OrbixSSL servers. For example, you 
can specify the OrbixSSL server port to openssl s_client, and it then 
 244



T r o u b l e s h o o t i n g  O r b i x S S L
attempts to handshake with the OrbixSSL server.

You can also use s_server to simulate an OrbixSSL server by running it 
on the SSL port specified in the IOR that an OrbixSSL client uses. Use 
IORDump see the port.

• If you are an experienced progammer, examine the output of operating 
system diagnostic tools such as truss (Solaris) or trace (HP-UX) for the 
client, server and daemon separately.

Summary of Useful Output to Gather
If you have problems with OrbixSSL and must make a support call, he following 
can be very helpful:

• Separate files for the Daemon, client and server of the following output 
having specified IT_SSL_TRACE_LEVEL=1:

The stdout and stderr (for example, & on Unix)

daemon.out
client.out
server.out

• Separate IT_SSL_TRACE_FILE output for the daemon, client and server:

daemon.log
client.log
server.log

• Separate truss (or trace) output for the daemon, client and server. For 
Multi-threaded applications use trace -l on Solaris to show the system 
calls per thread.

daemon.trc
client.trc
server.trc

• The OrbixSSL Security config file itssl.cfg

• The root CA file that is referenced by itssl.cfg

• If appropriate the certificates and private key files with passwords can be 
useful, in order to attempt to reproduce the problem exactly.
245



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
Note: Do not send us the password and private keys for a Live system! 

• If possible the complete source for a minimal test case. 

• If this is not possible then include the excerpts of the client and server 
programs which make OrbixSSL calls.

• A core dump, and a text stack trace, if the problem causes the program to 
dump core.
 246



Index
A
application types 106
asymmetric cryptography 24
attribute value assertions 120
authentication 23

client 57, 61
AVAs 120

C
CA 25, 69

choosing a host 72, 73
commercial CAs 72
demonstration CAs 32
list file 35
multiple CAs 76
private CAs 72
publishing a certificate for 76
specifying trusted CAs 35

ca utility 79
caching, session 65
ccsit utility 95
certificates 24, 25

certificate signing request 78
chaining

setting maximum depth 56
classes 119
contents of 118
demonstration 32
files 104
installing 76
signing 77, 79, 80
specifying location of 53
validating 113–127

Certification Authority. See CA
chaining, certificate

setting maximum depth 56
checksums, cryptographic 94
ciphers 64
client authentication 57, 61

in the KDM 93
codes, error 100
common names 118
compiling applications 41
configuration file 33, 50
including in iona.cfg 52
configuration scopes 101
configuring 34, 111

applications 49–65
Orbix daemon client authentication 61
session caching 65

contents of certificates 118
creating

a certificate 74, 75
a private key 75

CRLs 124–127
cryptographic checksums 94
cryptography

asymmetric 24
RSA. See RSA cryptography
symmetric 24, 26

CSRs 78
custom scopes 101

D
daemon, Orbix 40, 58
Data Encryption Standard 26
demonstration CAs 32
demonstration certificates 32
DES 26
disabling SSL support 51
distinguished names 120

E
enabling SSL support 51, 99
error codes 100
extensions 121

F
file, configuration 33, 50

including in iona.cfg 52

G
getPassword() 104

H
handshake, SSL 24, 27
247



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
hashes 64
hasPassword() 103
header file 100

I
IIOP 21
init() 36, 100
initializing SSL support 36
initScope() 101
insecure daemon 59
INSECURE_DAEMON 60
installing

certificates 76
private key files 76

integrity 26
Interface Repository 62
International Telecommunications Union 25
Internet Inter-ORB Protocol. See IIOP
invocation policy 106
iona.cfg 52
IOR

providing SSL information 66
putit flags 66

IT_ALLOWED_CIPHERSUITES 64
IT_AUTHENTICATE_CLIENTS 57
IT_AVA 121

convert() 131
getSet() 134
length() 133
OID() 133

IT_AVAList 120
convert() 135
getAVA() 137
getAVAByOID() 138
getAVAByOIDTag() 137
getNumAVAs() 138
length() 139

IT_CA_LIST_FILE 35
IT_CERTIFICATE_FILE 33, 54
IT_CERTIFICATE_PATH 33, 53
IT_CHECKSUMS_ENABLED 95
IT_CHECKSUMS_REPOSITORY 95
IT_CIPHERSUITES 64
IT_DAEMON_POLICY 59
IT_DEFAULT_MAX_CHAIN_DEPTH 56, 77
IT_DISABLE_SSL 51
IT_Extension 122

convert() 148
critical() 149
length() 149
 248
OID() 150
IT_ExtensionList 121

convert() 152
getExtension() 153
getExtensionByOID() 153
getExtensionByOIDTag() 154
getNumExtensions() 155
length() 155

IT_INSECURE_ACCEPT 107
IT_INSECURE_CONNECT 107
IT_KDM_CLIENT_COMMON_NAMES 93
IT_KDM_ENABLED 91
IT_KDM_PIPES_ENABLED 93
IT_KDM_REPOSITORY 91
IT_KDM_SERVER_PORT 91
IT_MAX_ALLOWED_CHAIN_DEPTH 56, 77
IT_ORBIX_BIN_SERVER_POLICY 62
IT_PRIVATEKEY_FILE 39
IT_SECURE_ACCEPT 107
IT_SECURE_CONNECT 107
IT_SPECIFIED_INSECURE_CONNECT 107
IT_SPECIFIED_SECURE_CONNECT 107
IT_SSL 36

getApplicationCert() 168
getCacheOptions() 169
getClientAuthentication() 169
getCRLDir() 169
getErrorString() 169
getInvocationPolicy() 170
getMaxChainDepth() 170
getNegotiatedCipherSuite() 170, 171
getPassword() 104, 172
getPeerCert() 172, 173, 174
getSecurityName() 175
hasPassword() 103, 175
init() 36, 100, 175
initScope() 101
setCacheOptions() 177
setClientAuthentication() 177
setInvocationPolicy() 107, 178
setMaxChainDepth() 180
setPrivateKeyPassword() 38, 102, 181
setRSAPrivateKeyFromDER() 181
setRSAPrivateKeyFromFile() 182
setSecurityName() 104, 183
setValidateClientCertCallback() 185
setValidateServerCallback() 116
setValidateServerCertCallback() 185
setX509CertFromDER() 185
setX509CertFromFile() 186



I n d e x
specifyCipherSuites() 187
specifySecurityForInterfaces() 188
specifySecurityForServers() 189

IT_SSL_CONFIG_PATH 42, 44, 50
IT_SSL_SUCCESS 100
IT_SSL_TRACE_LEVEL 112
IT_SSL_TRACEFILE 112
IT_SSL.h 36, 100
IT_X509Cert 119

convert() 205
getExtensions() 206
getIssuer() 207
getNotAfter() 209
getNotBefore() 210
getSerialNumber() 207
getSubject() 208
getVersion() 208
length() 209

IT_X509CertChain 118
getCert() 211
getCurrentCert() 212
getCurrentDepth() 212
getErrorInfo() 213
numCerts() 213

ITU 25

K
KDM 89, 95, 103

client authentication 93
putkdm utility 94
server 94

key distribution mechanism. See KDM
key exchange algorithm 64
keys

private 24, 38, 89
public 24

keys, private 39, 95, 102

L
LD_LIBRARY_PATH 42, 44
libraries, OrbixSSL 41
linking applications 41

M
MAC 26
message authentication code 26
N
names, distinguished 120

O
Orbix daemon 40, 58

client authentication 61
OrbixNames 34, 39, 43, 54
OrbixSSL

certification authorities 73
orbixssl.cfg 33, 50

P
pass phrases 89, 95, 102, 103
PATH 42, 44
PEM 37
pipes, operating system 93
policy, invocation 106
privacy 26
private key

creating 74
private keys 24, 38, 39, 89, 95, 102
protocol, SSL handshake 24
public keys 24
putit flags 66
putkdm utility 94

R
RC4 26
req utility 74
restricted semi-secure daemon 59
RESTRICTED_SEMI_SECURE_DAEMON 60
Rivest Shamir Adleman cryptography. See RSA 

cryptography
RSA cryptography 23, 64

S
scopes, configuration 101
secure daemon 59
Secure Sockets Layer. See SSL
SECURE_DAEMON 60
SEMI_SECURE_DAEMON 60
semi-secure daemon 59
serial number 118
server, KDM 94
session caching 65
setInvocationPolicy() 107
setPrivateKeyPassword() 38, 102
setSecurityName 104
249



O r b i x S S L  C + +  P r o g r a m m e r ’ s  a n d  A d m i n i s t r a t o r ’ s  G u i d e
setValidateServerCallback() 116
SHLIB_PATH 42, 44
signing certificates 77, 79, 80
SSL

authentication 23
enabling 51
handshake 24, 27
initializing 36
integrity 26
overview 21
performance characteristics 239
privacy 26
trace information 112

SSLeay
utilities 225

ca 79
req 74

ssleay.cnf example file 237
subject name 118
suites, cipher 64
symmetric cryptography 26

T
TCP/IP 21
tracing SSL applications 112
trusted CAs 35
types, application 106

U
update utility 55
utilities 225

V
validating certificates 114
variables

LD_LIBRARY_PATH 42, 44
PATH 42, 44
SHLIB_PATH 42, 44

X
X.509 25

certificates. See certificates
extensions 121
 250


	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I
	Introduction
	An Introduction to OrbixSSL
	An Overview of OrbixSSL
	An Overview of SSL Security
	Authentication in SSL
	Privacy of SSL Communications
	Integrity of SSL Communications


	Getting Started with OrbixSSL
	Overview of the Application
	Running the Application without SSL
	Running the Application with SSL
	Modifying the Example Application

	Providing Certificates for the Servers
	Using the OrbixSSL Configuration File

	Specifying which Certificates to Accept
	Initializing OrbixSSL
	Initializing OrbixSSL Configuration

	Making Private Keys Available to Servers
	Making a Private Key Available to a Server Program
	Making a Private Key Available to OrbixNames
	Making a Private Key Available to the Orbix Daemon

	Review of the Development Steps
	Compiling the Application
	Running the Application
	Running the Server
	Running the Client



	Part II
	OrbixSSL Administration
	Defining a Security Policy
	Overview of OrbixSSL Configuration
	Using the OrbixSSL Configuration File

	Configuring Server Authentication
	Specifying the Location of Certificates
	Specifying Certificates to Accept

	Configuring Client Authentication
	Securing the Orbix Daemon
	Configuring Orbix Daemon Communications
	Configuring a Restricted Semi-Secure Daemon
	Configuring the Orbix Daemon to Authenticate Clients

	Securing the Orbix Interface Repository
	Securing the Orbix Services
	Configuring Ciphers
	OrbixSSL Session Caching Configuration
	Providing IORs with SSL Information
	Using the putit SSL Parameters


	Managing Certificates
	Creating Certificates for an Application
	Overview of the OrbixSSL Demonstration Certificates

	Choosing a Certification Authority
	Commercial Certification Authorities
	Private Certification Authorities
	Creating a Self-Signed Certificate and Private Key

	Publishing a Certification Authority Certificate
	Certificates Signed by Multiple Certification Authorities

	Signing Application Certificates
	Generating a Certificate Signing Request
	Signing a Certificate

	Example of Creating Certificates with OpenSSL
	Managing Certificate Revocation Lists
	Obtaining Certificate Revocation Lists
	Using Certificate Revocation Lists
	Specifying the Update Period for CRLs


	Managing Pass Phrases
	Using a Central Repository for Servers
	Overview of the Key Distribution Mechanism

	Configuring the Key Distribution Mechanism
	Running the Key Distribution Mechanism
	Maintaining the Database
	Verifying the Integrity of Server Executables
	Using the Key Distribution Mechanism



	Part III
	OrbixSSL Programming
	Programming with OrbixSSL
	Overview of the OrbixSSL API
	Initializing OrbixSSL
	Initializing the Configuration Scope
	Setting the Private Key Pass Phrase
	Specifying which Certificate to Use

	Configuring OrbixSSL Application Types
	Choosing Invocation Policies
	Setting an Invocation Policy
	How Invocation Policies Affect OrbixSSL Communications
	Specifying Exceptions to an Invocation Policy

	Configuring OrbixSSL
	Logging OrbixSSL Trace Information

	Validating Certificates
	Overview of Certificate Validation
	Introducing Additional Validation
	Examining the Contents of a Certificate
	Working with Distinguished Names
	Working with X.509 Extensions

	Example of a Certificate Validation Function
	Using Certificate Revocation Lists
	Examining the Contents of a Certificate Revocation List



	Part IV
	OrbixSSL C++ Reference
	Class IT_AVA
	Class IT_AVAList
	Struct IT_CertError
	Class IT_CRL_List
	Class IT_Extension
	Class IT_ExtensionList
	Class IT_IntegerData
	Struct IT_OID
	Enum IT_OIDTag
	Class IT_SSL
	Struct IT_UTCTime
	Typedef IT_ValidateX509CertCB
	Class IT_X509_CRL_Info
	Class IT_X509_Revoked
	Class IT_X509_RevokedList
	Class IT_X509Cert
	Class IT_X509CertChain

	Part V
	Appendices
	Appendix A Security Recommendations
	Appendix B OrbixSSL Configuration Variables
	Appendix C OpenSSL Utilities
	Appendix D Performance Characteristics of the SSL Protocol
	Appendix E Troubleshooting OrbixSSL
	Index


