
Orbix 3.3.17

Migrating Orbix Applications
to Orbix 3.3

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017-2021. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2021-03-17

 Migrating Orbix Applications to Orbix 3.3 i i i

Contents

Preface ... v
Contacting Micro Focus .. vi

Introduction ... 1
Upgrading Orbix ...1
Migration Resources ...1
Migration Options ...1

Migrating to Orbix 3.3 ...1
Mixed Deployment ...2

Migration to Orbix 3.3 .. 3

Java Security Toolkit .. 5
Security Protocols ..5
Cipher Suites ...5
Known issues ..6
Impact on APIs ..7

Changes to APIs and Features .. 11
Modifications to _bind() / bind() in C++ and Java ... 11

Unsupported Forms of _bind() / bind() .. 11
Fully Qualified _bind() / bind() ... 12
C++ Function Signatures for _bind() .. 13
Java Method Signatures for bind() .. 13

Locator ... 13
The CORBA::LocatorClass ... 13
The Locator Files and Associated Utilities ... 14

Non-Native C++ Exceptions ... 14
Example 1 .. 14
Example 2 .. 15
Throwing Exceptions .. 16
Exception Handling in Filters .. 16

CORBA::ORB::useNativeExceptions .. 16
Class CORBA::NatExcResetter .. 16
CORBA::Object Class .. 16
Thread Model .. 17

New Internal Thread Model ... 17
New Thread API ... 17
Functions Dropped from the Old Thread API .. 18
New IOCallback Functions ... 18
Lock Model .. 19

CORBA::ORB::defaultTxTimeout .. 20
CORBA::Environment Class ... 20

Accessing Data Members .. 20
Member Functions Removed .. 21

CORBA::CollocateResetter Class ... 21
Fixed Data Type ... 21
Processing CORBA.h ... 22
DEF_TIE and TIE macros ... 23

iv Migrat ing Orbix Appl icat ions to Orbix 3.3

Index ..25

 Migrating Orbix Applications to Orbix 3.3 v

Preface
This document explains how to migrate applications from the
discontinued OrbixWeb products, and earlier versions of Orbix 3,
to Orbix 3.3.

Audience
This document is aimed at C++ or Java programmers who are
already familiar with Micro Focus’s Orbix or OrbixWeb product and
who now want to migrate all or part of a system to use Orbix 3.3.

Parts of this document are relevant also to administrators familiar
with Orbix (and the older OrbixWeb) administration.

Typographical Conventions
This guide uses the following typographical conventions:

Keying Conventions
This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer to
the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on
the screen. For example:
#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:
% cd /users/your_name
Note: some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is
replaced with italic words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX
command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command that
requires root privileges.

> The notation > represents the Windows
command prompt.

 vi Migrating Orbix Applications to Orbix 3.3

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product Support
Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

• The name and version number of all products that you think
might be causing a problem.

• Your computer make and model.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{} Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in {} (braces) in format
and syntax descriptions.

http://www.microfocus.com
http://www.microfocus.com

Migrating Orbix Applications to Orbix 3.3 vii

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
(trial software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx.
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/ne
wsletter-subscription.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Migrating Orbix Applications to Orbix 3.3

Introduction
Orbix 3.3 is the current version of Micro Focus’ established Orbix 3
product.

This chapter discusses the following topics:

• Upgrading Orbix

• Migration Resources

• Migration Options

Upgrading Orbix
The recommended path for customers upgrading to a new version
of Orbix is to move to Orbix 6. Because Orbix 6 is a CORBA
2.6-compliant ORB, it offers many new features. However, Orbix
3.3 is for those Orbix customers who have deployed applications
in the field and who want to stay with a CORBA 2.1-based system.

Migration Resources
Micro Focus is committed to assisting you with your migration
effort to ensure that it proceeds as easily and rapidly as possible.
The following resources are currently available:

• This migration guide.

This technical document provides detailed guidance on
converting source code to Orbix 3.3. The document aims to
provide comprehensive coverage of migration issues, and to
demonstrate how features supported in earlier Orbix versions
can be mapped to Orbix 3.3 features.

Migration Options
The possible migration options are:

• Migrating to Orbix 3.3

• Mixed Deployment

Migrating to Orbix 3.3
Migrating to Orbix 3.3 is appropriate in some cases, where the
effort of migration to Orbix 6 is not justified. For example, Orbix
3.3 might be an appropriate migration choice for CORBA
applications that are approaching the end of their deployed
lifespan. Micro Focus Customer Support are available to advise
you on the most appropriate migration strategy for your system.

Orbix 3.3 is the current release of Micro Focus's CORBA 2.1-based
ORB technology. The Orbix 3.3 product includes both a C++ ORB,
formerly Orbix, and a Java ORB, formerly OrbixWeb, in a single
package. A number of services are bundled with the Orbix 3.3
 Migrating Orbix Applications to Orbix 3.3 1

product, including, the CORBA Naming Service and the CORBA
Security Service (OrbixSSL).

If you choose the migration path to Orbix 3.3, chances are that
you will need to deploy Orbix in a mixed Orbix 3.3 / Orbix 6
environment at some point in the future. Consequently, Orbix 3.3
has been optimized to achieve the best possible degree of
on-the-wire interoperability with Orbix 6.

The main issue for migration to Orbix 3.3 (affecting both Orbix
and OrbixWeb legacy code) is that _bind() calls must be modified
to use the fully qualified form of _bind(). This is described in detail
in the section “Modifications to _bind() / bind() in C++ and Java”
in “Changes to APIs and Features”.

Mixed Deployment
Mixed Deployment is appropriate when a number of CORBA
applications are in deployment simultaneously. Some applications
might be upgraded to use Orbix 6 whilst others continue to use
Orbix 3.x and OrbixWeb 3.x. This kind of mixed environment
requires on-the-wire compatibility between the generation 3
products and Orbix 6. Extensive testing has been done to ensure
interoperability with Orbix 6.

On-the-Wire Interoperability
Both Orbix 3.3 and Orbix 6 have been modified to achieve an
optimum level of on-the-wire compatibility between the two
products. For more information on interoperability, see the
Interoperability section of the Migrating from Orbix 3.3 to
Orbix 6.3 manual, in the Orbix 6 documentation set.

Note: A number of additional services, including the CORBA
Events Service, a DCOM bridge (OrbixCOMet), and an IIOP
firewall (Orbix Wonderwall) were available with earlier versions
of Orbix 3.3 but are no longer supported (as of Orbix 3.3 SP13).
 2 Migrating Orbix Applications to Orbix 3.3

Migration to Orbix 3.3
This chapter discusses the issues involved in migrating from Orbix
3.0 to Orbix 3.3.

Issues for migrating from Orbix 3.0 to Orbix 3.3 can be broken
down into the following categories:

1 The replacement of the Baltimore Security Toolkit in the Orbix
3.3 SP13 Java runtime. See “Java Security Toolkit” for details.

2 Other APIs and features in Orbix 3.0 that have been eliminated
or affected by changes in Orbix 3.3. See “Changes to APIs and
Features” for details.

3 Considerations for interoperating with other Orbix systems,
especially in a heterogeneous environment involving a mixture
of Orbix 3.0, 3.3, 6.x, and 2000 clients and servers. See see the
Interoperability section of the Migrating from Orbix 3.3 to
Orbix 6.3 manual, in the Orbix 6 documentation set, for
details.

Many necessary changes are flagged as compile-time errors. It is
relatively easy to find and correct these kinds of error and make
the function calls conform to the new APIs. A few items have to be
searched for manually, because they do not generate
compile-time errors. For each of the changed items, the following
sections indicate whether the compiler detects the API change or
whether a manual search is required.

Note: Most of the improvements made to Orbix 3.3 to improve
interoperability with Orbix 2000 (item 2 above), were retrofitted
into Orbix 3.0.1 at patch 20.
 Migrating Orbix Applications to Orbix 3.3 3

 4 Migrating Orbix Applications to Orbix 3.3

Java Security Toolkit
This chapter discusses changes resulting from the replacement of
the Baltimore Security Toolkit in the Java runtime

The Baltimore security toolkit which was provided in earlier
Orbix 3.3 releases is replaced with the JCA/JSSE Java Security
Toolkit (JSSE), introduced in Orbix 3.3.13.

Security Protocols
By default Orbix 3.3.13 supports the following TLS protocols:

• TLS v1.0
• TLS v1.1
• TLS v1.2
• TLS v1.3

Cipher Suites
Specify the cipher suites that you wish to use, by setting the
IT_CIPHERSUITES and IT_ALLOWED_CIPHERSUITES configuration
variables.

An example of setting the cipher suites in configuration is as
follows:

IT_CIPHERSUITES =
"RSA_WITH_AES_128_CBC_SHA,RSA_WITH_AES_256_CBC_SHA,RSA_
WITH_AES_128_CBC_SHA256,RSA_WITH_AES_256_CBC_SHA256";

If you are using any of the following cipher suites, note that your
JDK must have the JCE Unlimited Strength Jurisdiction Policy Files
installed:

• IT_SSLCipherSuite.IT_RSA_WITH_AES_256_CBC_SHA
• IT_SSLCipherSuite.IT_RSA_WITH_AES_256_CBC_SHA256
• IT_SSLCipherSuite.IT_RSA_WITH_AES_256_GCM_SHA384
• IT_SSLCipherSuite.IT_DHE_RSA_WITH_AES_256_GCM_SHA384
• IT_SSLCipherSuite.IT_DHE_DSS_WITH_AES_256_GCM_SHA384
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_256_CBC_SHA
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_256_CBC_SHA384
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Note: Due to various security vulnerabilities, the SSLv3 protocol
is disabled by default in Orbix 3.3.13. Use of the SSL protocol
should be avoided in favor of TLS. It is possible, though strongly
not recommended, to enable the SSLv3 protocol to interoperate
with endpoints that only support the SSLv3 protocol. This can be
achieved by setting the OrbixSSL.IT_PROTOCOLS configuration
variable.
 Migrating Orbix Applications to Orbix 3.3 5

Known issues
• On HPUX 11iv3 (B.11.31) 64 bit, PKCS12 certificates generated

by Netscape might not be readable by Orbix.

• Certificates that are signed with MD5 (MD5WithRSA) are not
permitted under IBM Java versions 7 or 8. This is not an issue
with other JCA implementations (Oracle and HP), nor with
versions of the TLS protocols lower than TLS 1.2.

Micro Focus highly recommends that any certificates used in
secure Orbix applications that are signed with an MD5 digest
signature are regenerated to use at least a SHA-1 digest
signature.

• If a private key is in PEM encoding and contains data similar to
the following, then Orbix Java is unable to read the key:
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,FE4CB4E10993F9D1

Some workarounds are:

• Convert the private key to DER encoding.

• Convert the private key to PKC12 encoding.

• If the KEY must be in PEM encoding, then generate the
private key so it does not contain the data above. For
example, using OpenSSL use:

openssl genrsa -out private_key.pem 2048
Note that Orbix Java does not support PKCS8 encoded private
keys.

• The Baltimore toolkit provided a means for caching sessions.
The equivalent functionality is not provided by JSSE.

• The certificate verification performed by the Baltimore toolkit
differs from that provided by JSSE. The exceptions thrown by
certificate verification may differ from those thrown when the
Baltimore toolkit was used.

Note: Some normally supported cipher suites cannot be used
with specific versions of Java:

• When using the IBM JDK on AIX, the following cipher suites are
not permitted with TLSv1, TLSv1.1, or TLSV1.2 when using
the JCE unlimited strength jurisdiction policy files:

♦ SSL_RSA_WITH_RC4_128_MD5
♦ SSL_RSA_WITH_RC4_128_SHA

• Java 8 may not provide support for some of the cipher suites
supported by Orbix 3.3. For example, Java 8 may fail to
handshake when using:

♦ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
♦ SSL_RSA_EXPORT_WITH_RC4_40_MD5
 6 Migrating Orbix Applications to Orbix 3.3

Impact on APIs
The change in security toolkits has an impact on the behavior of
some of the APIs described in the OrbixSSL Programmer’s and
Administrator’s Guide C++ Edition and the OrbixSSL
Programmer’s and Administrator’s Guide Java Edition.

Function Description

IE.Iona.OrbixWeb.SSL.IT_AVA.convert
()

The byte array returned to the caller is generated from the
JSSE X509Certificate class. This array differs from the
array returned when it was generated using a Baltimore
class.

IE.Iona.OrbixWeb.SSL.IT_X509Cert.get
Extensions()

When using JSSE, the number of extensions returned as
well as the content of the extension data may differ from
the Baltimore toolkit.

IE.Iona.OrbixWeb.SSL.IT_X509Cert.get
Issuer()

The value in the returned IT_AVAList when using JSSE
differs from the Baltimore toolkit. In particular, the DER
value for each IT_AVA in the IT_AVA_LIST will be for the
entire issuer.

IE.Iona.OrbixWeb.SSL.IT_X509Cert.get
Subject()

The value in the returned IT_AVAList when using JSSE
differs from the Baltimore toolkit. In particular, the DER
value for each IT_AVA in the IT_AVA_LIST will be for the
entire subject

IE.Iona.OrbixWeb.SSL.IT_X509Cert.get
Version()

When using the Baltimore toolkit, the version returned was
the value in the certificate. For example, a version 1
certificate has a value of 0, so 0 is returned on the call.

With JSSE, the actual version number is returned. For a
version 1 certificate, the value 1 is returned.

IE.Iona.OrbixWeb.SSL.IT_X509Cert.
parseExtensions()

When using JSSE, the number of extensions returned may
differ from the Baltimore toolkit.
Migrating Orbix Applications to Orbix 3.3 7

IE.Iona.OrbixWeb.SSL.IT_SSL.
getNegotiatedCipherSuite()

If the following cipher suites are set with a call to
IE.Iona.OrbixWeb.SSL.IT_SSL.specifyCipherSuites():
• IT_SSLCipherSuite.IT_RSA_WITH_AES_128_CBC_SHA
• IT_SSLCipherSuite.IT_RSA_WITH_AES_256_CBC_SHA
• IT_SSLCipherSuite.IT_RSA_WITH_AES_128_CBC_SHA256
• IT_SSLCipherSuite.IT_RSA_WITH_AES_256_CBC_SHA256
• IT_SSLCipherSuite.IT_RSA_WITH_AES_128_GCM_SHA256
• IT_SSLCipherSuite.IT_RSA_WITH_AES_256_GCM_SHA384
• IT_SSLCipherSuite.IT_DHE_RSA_WITH_AES_128_GCM_

SHA256
• IT_SSLCipherSuite.IT_DHE_RSA_WITH_AES_256_GCM_

SHA384
• IT_SSLCipherSuite.IT_DHE_DSS_WITH_AES_128_GCM_

SHA256
• IT_SSLCipherSuite.IT_DHE_DSS_WITH_AES_256_GCM_

SHA384
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_RC4_128_SHA
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_3DES_EDE_CBC_

SHA
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_128_CBC_

SHA
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_256_CBC_

SHA
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_RC4_128_SHA
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_3DES_EDE_CBC_

SHA
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_128_CBC_SHA
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_256_CBC_SHA
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_128_CBC_

SHA256
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_256_CBC_

SHA384
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_128_GCM_

SHA256
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_128_CBC_

SHA256
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_256_CBC_

SHA384
• IT_SSLCipherSuite.IT_ECDHE_ECDSA_WITH_AES_256_GCM_

SHA384
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_128_GCM_

SHA256
• IT_SSLCipherSuite.IT_ECDHE_RSA_WITH_AES_256_GCM_

SHA384
• IT_SSLCipherSuite.IT_AES_256_GCM_SHA384
• IT_SSLCipherSuite.IT_AES_128_GCM_SHA256

Function Description
 8 Migrating Orbix Applications to Orbix 3.3

The IT_SSLCipherSuite .name() value returned by
getNegotiatedCipherSuite() will be:

• TLS_RSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_256_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_256_CBC_SHA256
• TLS_RSA_WITH_AES_128_GCM_SHA256
• TLS_RSA_WITH_AES_256_GCM_SHA384
• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
• TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
• TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
• TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
• TLS_ECDHE_RSA_WITH_RC4_128_SHA
• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
• TLS_AES_256_GCM_SHA384
• TLS_AES_128_GCM_SHA256
However, when using an IBM JDK, the values will be:

• SSL_RSA_WITH_AES_128_CBC_SHA
• SSL_RSA_WITH_AES_256_CBC_SHA
• SSL_RSA_WITH_AES_128_CBC_SHA256
• SSL_RSA_WITH_AES_256_CBC_SHA256
• SSL_RSA_WITH_AES_128_GCM_SHA256
• SSL_RSA_WITH_AES_256_GCM_SHA384
• SSL_DHE_RSA_WITH_AES_128_GCM_SHA256
• SSL_DHE_RSA_WITH_AES_256_GCM_SHA384
• SSL_DHE_DSS_WITH_AES_128_GCM_SHA256
• SSL_DHE_DSS_WITH_AES_256_GCM_SHA384
• SSL_ECDHE_ECDSA_WITH_RC4_128_SHA
• SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
• SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
• SSL_ECDHE_RSA_WITH_RC4_128_SHA
• SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
• SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA
• SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA
• SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
• SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384
• SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• SSL_ECDHE_RSA_WITH_AES_256_GCM_SHA384
• SSL_AES_256_GCM_SHA384

Function Description
Migrating Orbix Applications to Orbix 3.3 9

• SSL_AES_128_GCM_SHA256

IE.Iona.OrbixWeb.SSL.IT_SSL.
setPrivateKeyFromFile()

Set the private key for:

• Certificates with an elliptic curve private key

• Certificates with a DSA private key

The private key must be in PKCS12 format.

Function Description
 10 Migrating Orbix Applications to Orbix 3.3

Changes to APIs and
Features
Support for some long-deprecated functions and features has been
dropped from Orbix 3.3. Other features have been changed to
improve compatibility and interoperability with Orbix 2000.

Modifications to _bind() / bind() in C++ and Java
The _bind function is generated for each class representing an IDL
interface. _bind() / bind() provides a primitive,
non-CORBA-compliant, way to connect an initial client proxies
with a server object. However, the preferred, CORBA-compliant
approaches for establishing initial client proxies are to use
resolve_initial_references(), the Naming Service, Trader Service,
or an application-level factory/finder interface. The _bind()
function has been deprecated for some time.

In Orbix 3.3, _bind has been significantly changed, but not
altogether eliminated. _bind had various complex and esoteric
forms, which have been eliminated. The most common and
straightforward use of _bind, called fully qualified _bind, can still
be used. For functionality beyond fully qualified _bind, you need to
change code to use fully qualified _bind or one of the preferred
alternative approaches.

The _bind function takes three arguments, and implies a fourth.
For example:

CORBA::Object_var a = Account::_bind("M:S", "H");
supplies the following four pieces of data to the ORB runtime:

• Account is the name of the target object interface, or parent
interface. The result can be stored in an Account_var or a base
class pointer of Account (for example Object_var).

• M is the marker of the target object.

• S is the name of the CORBA server in which to look for the target
object.

• H is the host name of the machine on which to look for the
CORBA server.

Unsupported Forms of _bind() / bind()
In Orbix 3.0, some _bind arguments could be omitted, leading to
various _bind modes. All of these partially qualified _bind modes
have been eliminated.

• Polymorphic bind—The interface name could be any base
interface of the target object.

• Anonymous bind—The marker could be omitted, implying that
the ORB could choose any object that satisfied the other
criteria.
 Migrating Orbix Applications to Orbix 3.3 11

• Implied server bind—The server name could be omitted,
implying that the ORB would use the interface name as the
server name (Account in this case).

• Locator bind—The host name could be omitted, implying that
the ORB would use the Locator to examine the host or
hostgroup files (or a user algorithm) to determine the host the
server might be running on.

The above forms of _bind could even be combined, such as
anonymous polymorphic _bind, or anonymous locator _bind, and
so on.

Fully Qualified _bind() / bind()
Fully qualified _bind is the only mode supported in Orbix 3.3. It
requires the following:

1 The interface name is exactly the most derived interface of the
target object.

2 The marker is specified for the target object.

3 The server is specified for the target object.

4 The host is specified for the target object.

With fully qualified _bind, it is generally necessary to set the
marker explicitly. Look for where objects are instantiated in the
server, with either the BOA or TIE approach, and confirm that a
marker string is supplied to the constructor or used in a call to
_marker().
It is important to understand what functionality occurs on the
client and what functionality occurs on the server:

• The marker, server, and host parameters are verified on the
client. If an Orbix 3.3 client calls _bind without a marker, server
or host, _bind throws a CORBA::BAD_PARAM SystemException.

• The interface type is verified on the server. If the interface is not
specified correctly, an Orbix 3.3 server throws a
CORBA::INV_OBJREF SystemException.

These semantics have an impact on mixed environments, where
Orbix 3.0 / OrbixWeb 3.2 (or earlier) interoperates with Orbix 3.3.
When interoperating with an Orbix 3.3 server, an Orbix 3.0 /
OrbixWeb 3.2 (or earlier) client:

1 Can use fully qualified bind, without modifying the client.

2 Can omit the host name and server name without modifying the
client, because these parameters are resolved on the client.

3 Can omit the marker (anonymous bind) without modifying the
client, provided the Orbix.ENABLE_ANON_BIND_SUPPORT environment
variable is set to TRUE on the server (default is TRUE). Setting
this environment variable to FALSE improves the Orbix 3.3
speed.

The anonymous bind is the most common of the esoteric bind
modes. This switchable backwards compatibility eases
migration while allowing you, eventually, to take advantage of
the Orbix 3.3 performance improvements related to fully
qualified _bind.
 12 Migrating Orbix Applications to Orbix 3.3

4 Cannot use polymorphic bind. The Orbix 3.3 server would
return a CORBA::INV_OBJREF system exception in this case. This
case requires the client to be modified.

If CORBA::ORB::collocated is set to TRUE, the fully qualified bind
requirements are reduced to specifying only the marker and exact
interface. Because an inprocess object lookup is going to be
performed, the host is ignored and the server name can be
omitted. Alternatively, if the server name is present, it must be
the server name associated with the current server process.

C++ Function Signatures for _bind()
The IDL compiler generates a set of overloaded _bind functions to
handle the various forms of _bind. Some of these have changed
because they are no longer needed:

• _bind(const char* markerServer, const char* host, const
CORBA::Context& ctx) remains unchanged.

• _bind() is removed.

• _bind(const char* markerServer = 0, const char* host = 0) is
changed to the following (no longer has default args):
_bind(const char* markerServer, const char* host)

When explicitly binding to the Orbix daemon, orbixd, use a 0
(zero) marker value:
IT_daemon::_bind("0:IT_daemon", host);
When explicitly binding to the IFR, use a marker of the IDL type
for the repository object (all IFR object markers are IFR type
names):
Repository::_bind("IDL\\:iona.com/Repository:IFR", host);

Java Method Signatures for bind()
The idlj compiler also generates a set of overloaded bind()
methods to handle the various bind forms. The following have
been removed and the remaining bind() calls remain the same.

• bind () is removed.

• bind(org.omg.CORBA.ORB orb) is removed.

Locator
The Orbix locator is a non-CORBA-compliant feature that resolves
the host name in _bind when no host name is explicitly provided.
This functionality is no longer needed with fully qualified _bind.
The Orbix Locator is actually a set of features, which have
changed as described in the following sections.

The CORBA::LocatorClass
The CORBA::LocatorClass has been removed because it is not
needed, now that bind is fully qualified. If you have legacy code
that uses a CORBA::LocatorClass to provide host resolution logic,
you should move that logic to an independent class, and invoke
the behavior to resolve the host name before calling _bind.
Alternatively, you can use configuration variables to specify the
Migrating Orbix Applications to Orbix 3.3 13

host or, preferably, the IOR, of well-known server objects:

IT_<ServiceName>_HOST = ". . .";
Common.Services.ServiceName = "IOR: . . .";

These objects are accessed through the CORBA-compliant
CORBA::ORB::resolve_initial_references() function, instead of
_bind.

The Locator Files and Associated Utilities
The files associated with the locator, Orbix.hst and Orbix.grp, are
of limited usefulness in Orbix 3.3 because they are no longer used
by _bind(). However, these files are still accessible through
operations defined on the IT_daemon IDL interface—for example
lookUp(), addHostsToServer(), addHostsToGroup() and so on.

The utilities that edit the locator files, serverhosts, servergroups,
grouphosts, lhosts, are no longer provided with Orbix 3.3. The
Orbix.hst and Orbix.grp files can be edited using a regular text
editor instead.

It is no longer meaningful to have an IT_daemon entry in the
locator files.

Non-Native C++ Exceptions
Only native C++ exceptions are supported. This means that the
TRY/CATCH macros are no longer supported and exceptions are not
raised via the CORBA::Environment variable argument. However,
the CORBA::Environment variable can still be used as the
mechanism to pass a per-call timeout value, if such functionality is
needed.

You should search your client and server source code for TRY/CATCH
macros and convert it to use C++ try/catch. Code with TRY/CATCH
macros will no longer compile. The following example shows a
code fragment before and after being migrated to use TRY/CATCH .

Example 1
Consider the following original code, which uses the TRY/CATCH
macros to handle an exception raised by an Account::withdraw()
operation:

Original Code
Account_var a = . . .;
TRY
{

a->withdraw(100.00, IT_X);
}
CATCH(Bank::InsufficientFunds, e)
{

cout << "insufficient funds" << endl;
}
ENDTRY

The TRY/CATCH macros declare and use a variable named IT_X,
which is used to propagate exception information.
 14 Migrating Orbix Applications to Orbix 3.3

Compare the original code with the following revised code, which
has been modified to use the native C++ try/catch:

Revised Code
Account_var a = . . .;
try
{

a->withdraw(100.00);
}
catch (const Bank::InsufficientFunds& e)
{

cout << "insufficient funds" << endl;
}

Example 2
Another possibility is that the client exception-handling code is
written directly, using the CORBA::Environment variable without the
TRY/CATCH macros. This typically means the exception handling
logic is an if-block, testing the CORBA::Environment variable. For
example:

Original Code
Account_var a = . . .;
CORBA::Environment e;
a->withdraw(100.00, e);
if (e.is_exception("Bank::InsufficientFunds"))
{

cout << "insufficient funds" << endl;
}

Compare this with the following revised code, which has been
modified to use the native C++ try/catch:

Revised Code
Account_var a = . . .;
try
{

a->withdraw(100.00);
}
catch (Bank::InsufficientFunds& e)
{

cout << "insufficient funds" << endl;
}

The second example (using CORBA::Environment) is not as easy to
search for as the first example (using TRY/CATCH macros), because
there are no TRY/CATCH macros to search for. It is best also to
search for explicit usages of CORBA::Environment and is_exception.

The impact of not changing the code in the second example can be
severe. If the call to withdraw() raises an exception, in the original
code the C++ runtime looks for the nearest enclosing try/catch
block and does not consider the subsequent if statement.

Note: The second example still compiles in its original
form. It is valid to declare and use CORBA::Environment, but
it cannot be used for exceptions.
Migrating Orbix Applications to Orbix 3.3 15

Throwing Exceptions
Throwing an exception within a server is not done by setting the
CORBA::Environment variable, but using a C++ throw.

Exception Handling in Filters
The CORBA::Environment variable can still be used to test and set
exceptions within filters, as in Orbix 3.0.

CORBA::ORB::useNativeExceptions
Because only native C++ exceptions are supported, the following
functions have been removed:

CORBA::Boolean CORBA::ORB::nativeExceptions()
CORBA::Boolean
CORBA::ORB::nativeExceptions(Boolean)

Code that formerly depended on these functions can assume that
nativeExceptions() always returns TRUE. For example:

Original Code
if (CORBA::Orbix.nativeExceptions())
{

... //code for native exceptions being TRUE
}
else
{

... //code for native exceptions being FALSE
}

Revised Code
... //code for native exceptions being TRUE

Class CORBA::NatExcResetter
Because only native C++ exceptions are supported, the
CORBA::NatExcResetter() class has been removed, as it is no longer
meaningful. Code that uses the CORBA::NatExcResetter() class
should be deleted.

CORBA::Object Class
The following functions have been removed from CORBA::Object, as
they are no longer meaningful. CORBA::Object is the base class of
all generated classes for IDL interfaces. The following were never
documented APIs, so, in general, should not have been used by
Orbix developers. Any code that uses the following functions,
should be deleted.

• void CORBA::Object::_restate()
• void CORBA::Object::_marshall()
• void CORBA::Object::_unmarshall()
• void CORBA::Object::_fixOnAccess()
• CORBA::PPTR* CORBA::Object:_makeDummyPptr()
 16 Migrating Orbix Applications to Orbix 3.3

• Enumeration CORBA::Object::OBJECT_STATE
• CORBA::Object::Object(const Object*)

Thread Model
The internal thread model has been updated in Orbix 3.3. This has
no direct impact on application-level threads, but has some
implications for Orbix configuration.

• New Internal Thread Model—replaces the old internal thread
model for monitoring the network.

• New Thread API—controls the number of threads and file
descriptors (FDs) used for network connections.

• Functions Dropped from the Old Thread API—functions
associated with the old internal thread model are no longer
supported.

• New IOCallback Functions—warn when a process is running low
on FDs or has reached a hard FD limit (all FDs used).

• Lock Model—The mt.h and ThreadArch.cxx source files are no
longer supplied with Orbix 3.3.

New Internal Thread Model
The internal thread model for Orbix has been re-designed. This
has no effect on the application level thread model that the user
interacts with via the CORBA::ThreadFilter class. All ThreadFilter
models, such as per-request, per-object, per-client, and so on, are
still usable. The internal thread model is used by Orbix to listen for
network connections from clients and to read and write network
messages on established connections. One visible advantage of
the new thread model is that it is easier for you to configure.

When you run an Orbix application, Orbix starts a number of
internal threads in a thread pool. These threads work together to
listen for incoming connection attempts from clients and read
requests from the network. Ultimately, requests are processed by
an application thread, using a thread model written by the user.

The internal network threads use a leader-follower design. This
means that one thread in the pool is blocked on a call to the
low-level TCP/IP poll(), and when activity occurs, this thread
processes it. Simultaneously another thread is dispatched from
the pool to perform another low-level TCP/IP poll(). When a
thread completes its current task, it is returned to the pool.

New Thread API
The size of the internal network thread pool is controlled by the
IT_DEF_NUM_NW_THREADS configuration parameter. The default value
is 1. The user can change this default if a larger initial internal
network thread pool is needed.

Note: CORBA::Object::Object(const CORBA::Object&) is still
available. However, CORBA::Object::operator=(const
CORBA::Object&) is not available.
Migrating Orbix Applications to Orbix 3.3 17

The following new function can be used to control the number of
threads in the internal thread pool:

CORBA::Boolean CORBA::ORB::add_nw_threads(
CORBA::ULong num_threads

)

The add_nw_threads() function can be used to increase the number
of threads in the internal network thread pool at any time. The
num_threads parameter specifies the number of threads to add to
the thread pool—the size of the thread pool can only be increased,
not reduced.

The default thread pool size, 1, is the best setting for most
applications. A network thread is responsible for only a little bit of
work, which consists of reading the TCP/IP buffer and depositing
the message on an event queue for processing by an application
thread.

In general terms, the number of network threads should only be
increased if both of the following conditions hold:

1 There are lots of simultaneous requests/replies to a process.

2 A single network thread has insufficient capacity to service the
TCP/IP buffers.

Functions Dropped from the Old Thread
API
The following API functions associated with the old thread model
have been removed:

• void CORBA::ORB::maxConnectionThreads(CORBA::ULong max)
• CORBA::ULong CORBA::ORB::maxConnectionThreads() const
• void CORBA::ORB::maxFDsPerConnectionThread(CORBA::ULong max)
• CORBA::ULong CORBA::ORB::maxFDsPerConnectionThread() const

New IOCallback Functions
As Orbix opens and closes connections, it consumes file
descriptors. File descriptions (FDs) are process-level resources,

Note: The network thread is also responsible for re-combining
any IIOP-fragment messages (that is, what the network thread
hands off is a complete IIOP message). However, IIOP fragments
are rarely used—in particular, in Orbix 3, they are never
generated (Orbix 3 has the ability to process IIOP fragments but
not generate them). It is also important to note that
unmarshalling the IIOP message occurs in the application thread,
after the hand off from the network thread. So network threads
do very little work. The cost of additional network thread on a
single-processor machine is a context switch (which is relatively
expensive); on multi-processor machines, the network threads
could be distributed, across the processors. Of course, with any
system, increasing the number of threads is not a guaranteed
increase in performance, and depends on hardware and
operating system.
 18 Migrating Orbix Applications to Orbix 3.3

and are also used for non-Orbix activities, such as file I/O,
database access, and so on. The number of FDs in a process is a
limited resource, and in general Orbix cannot assume that all
available FDs can be used by Orbix (for example, some may need
to be reserved for database activity).

Orbix allows a client or server to receive a callback for certain
connection and file descriptor (FD) events. Callbacks exist for
opening and closing a connection to another Orbix program. For
the new thread model, additional callbacks have been developed
to allow the user to monitor the consumption of FDs. The user can
specify both soft and hard limits on the number of FDs Orbix can
use.

To receive the new callbacks, define a class that inherits from the
Orbix CORBA::IT_IOCallback class. The CORBA::IT_IOCallback class
has been extended with three new callback events that allow the
user to monitor the consumption of FDs:

// C++
class IT_IOCallback
{
public:

...
// The following functions are called when the number
// of FDs used by Orbix hits a soft or hard limit set
// by the user.
// The low-watermark (soft limit) has been reached
virtual void AtOrbixFDLowLimit(int numFDsUsed);
// The hard limit has been reached.
// This implies that Orbix is no longer listening for
// new connections (which would consume another FD).
virtual void StopListeningAtFDHigh(int numFDsUsed);
// Orbix has resumed listening after the number of FDs
// has gone below the hard limit.
virtual void ResumeListeningBelowFDHigh(
int numFDsUsed
);

};

The AtOrbixFDLowLimit(), StopListeningAtFDHigh(), and
ResumeListeningBelowFDHigh() functions, combined with new
configuration variables IT_FD_WARNING_NUMBER and
IT_FD_STOP_LISTENING_POINT, give users flexibility to monitor
consumption of FDs:

• When the number of Orbix FDs reaches IT_FD_WARNING_NUMBER,
either on the way up or the way down, AtOrbixFDLowLimit() is
called.

• When the number of Orbix FDs reaches
IT_FD_STOP_LISTENING_POINT, StopListeningAtFDHigh() is called.

• When an Orbix FD is freed up or the number of FDs made
available to Orbix is increased, ResumeListeningBelowFDHigh() is
called.

Lock Model
The internal lock model has been changed to use the Orbix 2000
lock classes. The mt.h and ThreadArch.cxx files are no longer
supplied with Orbix 3.3. Legacy code that uses the classes in mt.h
Migrating Orbix Applications to Orbix 3.3 19

must use the previous versions of these files (and consider it
application code, not Orbix code), or change the code to use a
different mechanism.

CORBA::ORB::defaultTxTimeout
The single CORBA::ORB::defaultTxTimeout() function has been
replaced by two functions. Originally, the function signature was:

// C++
// Original 'defaultTxTimeout()' signature
CORBA::ULong
CORBA::ORB::defaultTxTimeout(
CORBA::ULong val = CORBA::INIFINITE_TIMEOUT,
CORBA::Environment& env = CORBA::IT_chooseDefaultEnv

);

This has been replaced by two functions, one that is an accessor
and one that is a mutator:

// C++
// Accessor function
CORBA::Ulong
CORBA::ORB::defaultTxTimeout();

// Mutator function
CORBA::ULong
CORBA::ORB::defaultTxTimeout(
CORBA::ULong val,
CORBA::Environment& env = CORBA::IT_chooseDefaultEnv

);

The original accessor-like functionality would also mutate the
timeout to CORBA::INFINITE_TIMEOUT, for example:

CORBA::ULong t = CORBA::Orbix.defaultTxTimeout();
Accessing the value and changing it are now clearly separated. It
is unlikely that this change affects any client code, but you should
verify this by searching for all calls to defaultTxTimeout().

CORBA::Environment Class
Changes have been made to the CORBA::Environment class that
affect some data members and member functions.

Accessing Data Members
Data members of the CORBA::Environment class that used to be
public have been made private. The data members are now
accessed using accessor/mutator function pairs. For example, the
m_request data member:

// C++
CORBA::Request* CORBA::Environment::m_request

is now accessed using the following functions:
// C++
CORBA::Request* CORBA::Environment::request();
void CORBA::Environment::request(CORBA::Request*);
 20 Migrating Orbix Applications to Orbix 3.3

The m_timeout data member:
// C++
CORBA::ULong CORBA::Environment::m_timeout

is now accessed using the following functions:
// C++
CORBA::ULong CORBA::Environment::timeout() const;
void CORBA::Environment::timeout(CORBA::ULong
val);

Attempting to access the m_request or m_timeout member
variables directly generates compiler errors. Your code should be
changed to use the accessor/mutator functions instead.

Member Functions Removed
Three CORBA::Environment functions, which were only needed to
support the TRY/CATCH macros, have been removed:

// C++
void CORBA::Environment::propagate()
void CORBA::Environment::acknowledge()
CORBA::Boolean CORBA::Environment::uncaught()

The following function has been removed:
// C++
void Request::mk_arg(CORBA::TypeCode_ptr, void*)

It was supplied only on NT, and was redundant. This should not
affect your code.

CORBA::CollocateResetter Class
The default CORBA::Environment parameter in the CollocateResetter
constructor has been removed. The function signature is now:

// C++
CORBA::CollocateResetter::CollocateResetter(Boolea
n tmpSetting)

This is unlikely to affect your code. Any occurrences will be flagged
as compiler errors, which can be easily fixed by removing the
CORBA::Environment argument passed to the constructor.

Fixed Data Type
Orbix 3.0 and 3.3 support the IDL fixed data type. This data type
maps to a C++ class. The function signatures for the Orbix 3.0
fixed data type class conform to the original OMG specification,
but it turns out there were errors in the specification. Orbix 3.3
corrects these errors by changing the function signatures.

The changes primarily concern the use of references in return
types. For example, the original specification uses:

// C++
template<unsigned short d, short s>
class CORBA_Fixed<d, s>
{
public:
template<unsigned short d, short s>
CORBA_Fixed<d, s> operator= (const CORBA_Fixed<d, s>& val);

};
Migrating Orbix Applications to Orbix 3.3 21

which defines operator=() with the wrong return type. A basic
assignment would work, but complex (rarely coded) expressions
would potentially fail. For example, consider the following
assignment statement:

// C++
CORBA_Fixed<d, s> x = 0;
CORBA_Fixed<d, s> y = 0;

(x = y)++; //expect x equal to 1, y equal to 0;
 //in reality x would be 0, and y would
be 0.

The expression fails, because the assignment return value is a
new (temporary) instance of CORBA_Fixed<d, s>, instead of a
CORBA_Fixed<d, s>& reference to the left-hand side, x, of the
expression.

The operator=() assignment operator should have the following
signature:

// C++
template<unsigned short d, short s>
CORBA_Fixed<d, s>& operator=(const CORBA_Fixed<d,
s>& val
);

The implementation of the fixed data type class now throws a
CORBA::DATA_CONVERSION system exception whenever the attempted
operation would exceed the bounds described by the IDL fixed
data type.

Processing CORBA.h
The CORBA.h header aggregates the various CORBA header files.
The included class declarations have been segmented into more
files, resulting in a greater number of files, although the total
number of declarations in those files has decreased. The increased
segmentation should help you to locate specific header files more
easily (for example, when confirming an API signature).

Access to the runtime API is provided by a single #include
<CORBA.h> line, as before—no changes are needed as a result of
this reorganization.

In Orbix 3.0, users have to #define EXCEPTIONS to use the full
range of CORBA system exceptions. This is no longer necessary in
Orbix 3.3. Continuing to #define EXCEPTIONS does no harm (code
still compiles and runs), but it is superfluous.

In Orbix 3.0, users have to #define WANT_ORBIX_FDS to use the full
range of APIs for Orbix internal file descriptors. This is no longer
necessary in Orbix 3.3.

Continuing to #define WANT_ORBIX_FDS does no harm (code still
compiles and runs), but it is superfluous.

Some operating system header files conflict with CORBA.h. This
problem occurred in Orbix 3.0 as well, but in Orbix 3.3 the user
has more control over the mechanism for resolving the conflict.
For example, some operating systems headers have a line,
 22 Migrating Orbix Applications to Orbix 3.3

#define minor, in them. But minor is used as a function name on
the exception class. Since the preprocessor makes the macro
substitution first, this creates an error in the code. Orbix 3.0 would
#undef the conflicting macros. This is still done in Orbix 3.3.
However, all of the #undefs have been grouped together in
CORBA.h, and are controlled by an ORBIX_DONT_UNDEF macro, for
example:

// In CORBA.h
#ifndef ORBIX_DONT_UNDEF
#undef minor
. . .
#endif

Nothing needs to be done if you want the standard symbols to be
#undef’ed as they always have been. However, if you want more
control over this (for example, to #undef the symbols yourself, and
then re-#define them later) you can #define ORBIX_DONT_UNDEF prior
to #include <CORBA.h>.

DEF_TIE and TIE macros
The original versions of the DEF_TIE and TIE macros were
superseded by new versions in Orbix 2.0. The original macros
have been removed from Orbix 3.3. Legacy code using the original
macros should be modified to use the newer macros. This requires
a straightforward search-and-replace.

For an IDL interface, Account, and an implementation class,
Account_i, the original DEF_TIE and TIE macros were of the
following form, taking both the interface name and
implementation class name as parameters:

DEF_TIE(Account, Account_i)
TIE(Account, Account_i)

The newer DEF_TIE and TIE macros (introduced in Orbix 2.0) use
the interface name as part of the macro name, and only have the
implementation class name as a parameter:

DEF_TIE_Account(Account_i)
TIE_Account(Account_i)

Your code should be searched for TIE, and any occurrences of the
old macros changed to the newer form. The old macros generate a
compile-time error in Orbix 3.3.
Migrating Orbix Applications to Orbix 3.3 23

 24 Migrating Orbix Applications to Orbix 3.3

Index
B
Baltimore Security Toolkit 3, 5
_bind 13
_bind, fully qualified 12
_bind() 2

C
C++ Exceptions 14
CORBA::CollocateResetter Class 21
CORBA::Environment 16
CORBA::Environment Class 20
CORBA::LocatorClass 13
CORBA::NatExcResetter 16
CORBA::Object Class 16
CORBA::ORB::defaultTxTimeout 20
CORBA::ORB::useNativeExceptions 16
CORBA.h 22
CORBA Events Service 2

D
DEF_TIE 23
documentation

.pdf format vii
updates on the web vii

E
Exception Handling in Filters 16

F
Fixed Data Type 21

I
IT_ALLOWED_CIPHERSUITES 5
IT_CIPHERSUITES 5

J
JCA/JSSE Java Security Toolkit 5
JSSE 5, 6

M
Migrating to Orbix 3.3 1
Mixed Deployment 2

O
Orbix 6 1
OrbixCOMet 2
OrbixWeb 1, 2
Orbix Wonderwall 2

P
PKCS12 certificates 6
T
Thread Model 17
TIE 23
TLS protocols 5
Migrating Orbix Applications to Orbix 3.3 25

 26 Migrating Orbix Applications to Orbix 3.3

	Preface
	Contacting Micro Focus

	Introduction
	Upgrading Orbix
	Migration Resources
	Migration Options
	Migrating to Orbix 3.3
	Mixed Deployment
	On-the-Wire Interoperability

	Migration to Orbix 3.3
	Java Security Toolkit
	Security Protocols
	Cipher Suites
	Known issues
	Impact on APIs

	Changes to APIs and Features
	Modifications to _bind() / bind() in C++ and Java
	Unsupported Forms of _bind() / bind()
	Fully Qualified _bind() / bind()
	C++ Function Signatures for _bind()
	Java Method Signatures for bind()

	Locator
	The CORBA::LocatorClass
	The Locator Files and Associated Utilities

	Non-Native C++ Exceptions
	Example 1
	Original Code
	Revised Code

	Example 2
	Original Code
	Revised Code

	Throwing Exceptions
	Exception Handling in Filters

	CORBA::ORB::useNativeExceptions
	Original Code
	Revised Code

	Class CORBA::NatExcResetter
	CORBA::Object Class
	Thread Model
	New Internal Thread Model
	New Thread API
	Functions Dropped from the Old Thread API
	New IOCallback Functions
	Lock Model

	CORBA::ORB::defaultTxTimeout
	CORBA::Environment Class
	Accessing Data Members
	Member Functions Removed

	CORBA::CollocateResetter Class
	Fixed Data Type
	Processing CORBA.h
	DEF_TIE and TIE macros

	Index

