
Orbix 3.3.17

OrbixSSL Programmer’s and
Administrator’s Guide C++ Edition

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2012-2021 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2021-03-18

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition i i i

Contents

Preface.. ix
Audience.. ix
Organization of this Guide .. ix
Document Conventions ... x
Contacting Micro Focus ... x

Part I Introduction
An Introduction to OrbixSSL... 3

An Overview of OrbixSSL .. 3
An Overview of SSL Security.. 4

Authentication in SSL ..4
Privacy of SSL Communications ..6
Integrity of SSL Communications ..6

Getting Started with OrbixSSL.. 7
Overview of the Application ... 7

Running the Application without SSL..8
Running the Application with SSL ..8
Modifying the Example Application .. 10

Providing Certificates for the Servers .. 10
Using the OrbixSSL Configuration File .. 11

Specifying which Certificates to Accept.. 12
Initializing OrbixSSL ... 13

Initializing OrbixSSL Configuration... 13
Making Private Keys Available to Servers ... 14

Making a Private Key Available to a Server Program..................................... 14
Making a Private Key Available to OrbixNames .. 15
Making a Private Key Available to the Orbix Daemon.................................... 15

Review of the Development Steps .. 16
Compiling the Application .. 16
Running the Application .. 17

Running the Server ... 17
Running the Client .. 18

Part II OrbixSSL Administration
Defining a Security Policy... 23

Overview of OrbixSSL Configuration.. 23
Using the OrbixSSL Configuration File .. 23

Configuring Server Authentication .. 25
Specifying Protocols .. 25
Specifying the Location of Certificates.. 26
Specifying Certificates to Accept ... 27

Configuring Client Authentication ... 28
Securing the Orbix Daemon... 29

Configuring Orbix Daemon Communications ... 29

iv OrbixSSL Programmer’s and Administrator ’s Guide C++ Edit ion

Configuring a Restricted Semi-Secure Daemon..31
Configuring the Orbix Daemon to Authenticate Clients..................................31

Securing the Orbix Interface Repository .. 32
Securing the Orbix Services ... 32
Configuring Ciphers .. 33
OrbixSSL Session Caching Configuration.. 34
Providing IORs with SSL Information... 35

Using the putit SSL Parameters ...36

Managing Certificates ... 37
Creating Certificates for an Application .. 37

Overview of the OrbixSSL Demonstration Certificates...................................37
Choosing a Certification Authority ... 38

Commercial Certification Authorities ..39
Private Certification Authorities ...39
Creating a Self-Signed Certificate and Private Key40

Publishing a Certification Authority Certificate .. 41
Certificates Signed by Multiple Certification Authorities.................................42

Signing Application Certificates... 42
Generating a Certificate Signing Request ..42
Signing a Certificate ..43

Example of Creating Certificates with OpenSSL... 45
Managing Certificate Revocation Lists.. 48

Obtaining Certificate Revocation Lists...48
Using Certificate Revocation Lists ..49
Specifying the Update Period for CRLs..49

Managing Pass Phrases .. 51
Using a Central Repository for Servers .. 51

Overview of the Key Distribution Mechanism ...51
Configuring the Key Distribution Mechanism... 52
Running the Key Distribution Mechanism ... 54

Maintaining the Database ...54
Verifying the Integrity of Server Executables...54
Using the Key Distribution Mechanism..55

Part III OrbixSSL Programming
Programming with OrbixSSL... 59

Overview of the OrbixSSL API .. 59
Initializing OrbixSSL ... 60

Initializing the Configuration Scope..60
Setting the Private Key Pass Phrase ...61
Specifying which Certificate to Use ..62

Configuring OrbixSSL Application Types ... 63
Choosing Invocation Policies ...64
Setting an Invocation Policy..64
How Invocation Policies Affect OrbixSSL Communications65
Specifying Exceptions to an Invocation Policy ..66

Configuring OrbixSSL.. 66
Logging OrbixSSL Trace Information ... 67

Validating Certificates... 69
Overview of Certificate Validation ... 69
Introducing Additional Validation .. 70

OrbixSSL Programmer’s and Administrator ’s Guide C++ Edit ion v

Examining the Contents of a Certificate... 71
Working with Distinguished Names.. 73
Working with X.509 Extensions... 74

Example of a Certificate Validation Function... 74
Using Certificate Revocation Lists ... 76

Examining the Contents of a Certificate Revocation List................................ 76

Part IV OrbixSSL Reference

Class IT_AVA...83
IT_AVA::convert() ... 83
IT_AVA::length() ... 84
IT_AVA::OID() .. 84
IT_AVA::getSet()... 85

Class IT_AVAList ...87
IT_AVAList::convert()... 87
IT_AVAList::getAVA()... 88
IT_AVAList::getAVAByOIDTag()... 89
IT_AVAList::getAVAByOID() .. 89
IT_AVAList::getNumAVAs() ... 90
IT_AVAList::length() .. 90

Struct IT_CertError ...91

Class IT_CRL_List..93
IT_CRL_List::add() .. 93
IT_CRL_List::find() .. 94
IT_CRL_List::openCRLFiles() ... 94
IT_CRL_List::PollForUpdates() ... 94
IT_CRL_List::remove() ... 95

Class IT_Extension ..97
IT_Extension::convert().. 97
IT_Extension::critical() ... 98
IT_Extension::length() ... 98
IT_Extension::OID()... 98

Class IT_ExtensionList ..101
IT_ExtensionList::convert()... 101
IT_ExtensionList::getExtension() ... 102
IT_ExtensionList::getExtensionByOID() .. 102
IT_ExtensionList::getExtensionByOIDTag() ... 103
IT_ExtensionList::getNumExtensions() ... 103
IT_ExtensionList::length()... 103

Class IT_IntegerData ..105
IT_IntegerData::convert() .. 105
IT_IntegerData::getLong().. 106
IT_IntegerData::length() .. 106

Struct IT_OID..107

vi OrbixSSL Programmer’s and Administrator ’s Guide C++ Edit ion

Enum IT_OIDTag .. 109

Class IT_SSL... 111
IT_SSL::getApplicationCert() ... 112
IT_SSL::getCacheOptions() ... 112
IT_SSL::getProtocols().. 112
IT_SSL::getClientAuthentication() .. 112
IT_SSL::getCRLDir()... 113
IT_SSL::getErrorString()... 113
IT_SSL::getInvocationPolicy().. 113
IT_SSL::getMaxChainDepth() .. 113
IT_SSL::getNegotiatedCipherSuite() ... 113
IT_SSL::getNegotiatedCipherSuite() ... 114
IT_SSL::getNegotiatedCipherSuite() ... 114
IT_SSL::getPassword() ... 114
IT_SSL::getPeerCert() .. 115
IT_SSL::getPeerCert() .. 115
IT_SSL::getPeerCert() .. 117
IT_SSL::getSecurityName()... 117
IT_SSL::hasPassword()... 117
IT_SSL::init() .. 118
IT_SSL::initScope() .. 118
IT_SSL::setCacheOptions() ... 119
IT_SSL::setProtocols().. 120
IT_SSL::setClientAuthentication()... 120
IT_SSL::setInvocationPolicy() .. 120
IT_SSL::setMaxChainDepth()... 122
IT_SSL::setPrivateKeyPassword()... 122
IT_SSL::setRSAPrivateKeyFromDER() ... 123
IT_SSL::setRSAPrivateKeyFromFile() .. 124
IT_SSL::setSecurityName() ... 124
IT_SSL::setValidateClientCertCallback() .. 125
IT_SSL::setValidateServerCertCallback()... 126
IT_SSL::setX509CertFromDER()... 126
IT_SSL::setX509CertFromFile().. 126
IT_SSL::specifyCipherSuites() ... 127
IT_SSL::specifySecurityForInterfaces() ... 129
IT_SSL::specifySecurityForServers()... 130

Struct IT_UTCTime ... 131

Typedef IT_ValidateX509CertCB....................................... 133

Class IT_X509_CRL_Info .. 135
IT_X509_CRL_Info::find() ... 135
IT_X509_CRL_Info::getExtensions() ... 136
IT_X509_CRL_Info::getIssuer() ... 136
IT_X509_CRL_Info::getLastUpdate() .. 136
IT_X509_CRL_Info::getNextUpdate().. 136
IT_X509_CRL_Info::getRevokedCerts()... 137
IT_X509_CRL_Info::getSignatureAlgorithm() ... 137
IT_X509_CRL_Info::getVersion().. 137
IT_X509_CRL_Info::openFile()... 138

Class IT_X509_Revoked ... 139

OrbixSSL Programmer’s and Administ rator ’s Guide C++ Edi t ion vii

IT_X509_CRL_Revoked::getExtensions() .. 139
IT_X509_CRL_Revoked::getRevocationDate() ... 139
IT_X509_CRL_Revoked::getSequence().. 140
IT_X509_CRL_Revoked::getSerialNumber() .. 140

Class IT_X509_RevokedList ..141
IT_X509_RevokedList::getCount() ... 141
IT_X509_RevokedList::getRevoked().. 141

Class IT_X509Cert...143
IT_X509Cert::convert() .. 143
IT_X509Cert::getExtensions() ... 144
IT_X509Cert::getIssuer() ... 144
IT_X509Cert::getSerialNumber() ... 144
IT_X509Cert::getSubject().. 146
IT_X509Cert::getVersion().. 146
IT_X509Cert::length().. 146
IT_X509Cert::getNotAfter ... 147
IT_X509Cert::getNotBefore() .. 147
IT_X509Cert::getSignatureAlgorithm() ... 147

Class IT_X509CertChain ..149
IT_X509CertChain::getCert() .. 149
IT_X509CertChain::getCurrentCert() .. 149
IT_X509CertChain::getCurrentDepth() ... 150
IT_X509CertChain::getErrorInfo().. 150
IT_X509CertChain::numCerts() ... 150

Part V Appendices

Security Recommendations ...153

OrbixSSL Configuration Variables......................................155

OpenSSL Utilities...159
Using OpenSSL Utilities ... 159

The x509 Utility Command... 160
The req Utility Command ... 162
The rsa Utility Command ... 164
The ca Utility Command... 165

The OpenSSL configuration file .. 166
[req] Variables ...167
[ca] Variables... 167
[policy] Variables.. 168
Example openssl.cnf File.. 168

Performance of Cryptographic Algorithms in OpenSSL171

Troubleshooting OrbixSSL ...173

Index.. 177

viii OrbixSSL Programmer’s and Administ rator ’s Guide C++ Edi t ion

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition ix

Preface
OrbixSSL integrates Orbix, a Micro Focus implementation of the
CORBA standard, and the Secure Sockets Layer (SSL) protocol. This
integration allows Orbix applications to communicate using SSL
security.

This guide presents details of the integration between Orbix C++
Edition and SSL and explains how to add SSL security to Orbix
applications.

Audience
This guide is aimed at system administrators who wish to set up a
secure OrbixSSL environment and programmers who wish to
develop Orbix C++ Edition applications that communicate using
SSL security.

This guide does not assume that the reader has any knowledge of
SSL security issues. This guide assumes that programmers have
significant knowledge of Orbix programming.

Organization of this Guide
This guide is divided into five parts:

Part I “Introduction”

This part provides an overview of SSL security and describes how
SSL integrates with Orbix. It then provides a tutorial example of
how to add SSL security to an existing Orbix application. Read this
part first.

Part II “OrbixSSL Administration”

This part describes how system administrators can configure the
use of SSL security in OrbixSSL applications. Both administrators
and programmers should read this part.

Part III “OrbixSSL Programming”

The part describes the OrbixSSL application programming
interface (API) and how to implement common programming
tasks using the API. This part is for programmers, but contains
useful background information for administrators.

Part IV “OrbixSSL Reference”

This part provides a complete reference for OrbixSSL C++
programmers. It provides detailed information about the OrbixSSL
API.

Part V “Appendices”

This part provides supplemental information about OrbixSSL
configuration and the SSL administration tools supplied with
OrbixSSL.

 x OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Document Conventions
This document uses the following typographical and keying
conventions:

This guide uses the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product Support
Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from

Constant width Constant width words or characters represent source
code or system values you must use literally, such as
commands, options, and path names.

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments or commands or path names for your
particular system.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

http://www.microfocus.com
http://www.microfocus.com

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition xi

another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

• The name and version number of all products that you think
might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
(trial software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx.
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/ne
wsletter-subscription.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 xii OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Part I
Introduction

In this part
This part contains the following:

An Introduction to OrbixSSL page 3

Getting Started with OrbixSSL page 7

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 3

An Introduction to
OrbixSSL
OrbixSSL integrates Orbix with Secure Sockets Layer (SSL)
security. Using OrbixSSL, distributed applications can transfer
confidential data securely across a network.

An Overview of OrbixSSL
Secure Sockets Layer (SSL) provides data security for applications
that communicate across networks. SSL is a transport layer
security protocol layered between application protocols and
TCP/IP.

Orbix applications communicate using the CORBA standard
Internet Inter-ORB Protocol (IIOP) or Micro Focus’s proprietary
Orbix protocol. These application-level protocols are layered above
the transport-level protocol TCP/IP. OrbixSSL applications
communicate using IIOP or the Orbix protocol layered above SSL.
Figure 1 on page 3 illustrates how the SSL protocol layer
integrates with Orbix communications.

All OrbixSSL components, including the Orbix daemon and Orbix
utilities, and all OrbixSSL applications can communicate using
SSL. OrbixSSL imposes few requirements on administrators and
programmers who wish to support SSL communications in Orbix
applications.

Figure 1 The Role of SSL in Orbix Client/Server Communications

 4 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

OrbixSSL administrators use a single configuration file to configure
a high-level security policy for a distributed system. OrbixSSL
programmers develop standard Orbix applications that
automatically communicate using SSL. The details of the SSL
protocol are hidden, but programmers can use the OrbixSSL
application programming interface (API) to customize SSL
communications.

OrbixSSL applications can be configured to support any or all of
the following options:

• IIOP

• IIOP over SSL

• Orbix Protocol

• Orbix Protocol over SSL

OrbixSSL acts as a dynamic upgrade to Orbix C++ EditionOrbix
Java Edition. Existing applications continue to work as before.

An Overview of SSL Security
SSL provides authentication, privacy, and integrity for
communications across TCP/IP connections. Authentication allows
an application to verify the identity of another application with
which it communicates. Privacy ensures that data transmitted
between applications can not be eavesdropped on or understood
by a third party. Integrity allows applications to detect if data was
modified during transmission.

Authentication in SSL
SSL uses Rivest Shamir Adleman (RSA) public key cryptography
for authentication. In public key cryptography, each application
has an associated public key and private key. Data encrypted with
the public key can be decrypted only with the private key. Data
encrypted with the private key can be decrypted only with the
public key.

Public key cryptography allows an application to prove its identity
by encoding data with its private key. As no other application has
access to this key, the encoded data must derive from the true
application. Any application can check the content of the encoded
data by decoding it with the application’s public key.

The SSL Handshake Protocol
Consider the example of two applications, a client and a server.
The client connects to the server and wishes to send some
confidential data. Before sending application data, the client must
ensure that it is connected to the required server and not to an
impostor.

When the client connects to the server, it confirms the server
identity using the SSL handshake protocol. A simplified
explanation of how the client executes this handshake in order to
authenticate the server is as follows:

1 The client initiates the SSL handshake by sending the initial SSL
handshake message to the server.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 5

2 The server responds by sending its certificate to the client. This
certificate verifies the server's identity and contains its public
key.

3 The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key with the
extracted public key.

4 The server uses its private key to decrypt the encrypted session
key which it will use to encrypt and decrypt application data
passing to and from the client. The client will also use the
shared session key to encrypt and decrypt messages passing to
and from the server.

For a complete description of the SSL handshake, refer to the TLS
v1.2 Specification (https://tools.ietf.org/html/rfc5246) or to the
TLS v1.3 Specification (https://tools.ietf.org/html/rfc8446) as
appropriate.
The SSL protocol permits a special optimized handshake in which
a previously established session can be resumed. This has the
advantage of not needing expensive public key computations. The
SSL handshake also facilitates the negotiation of ciphers to be
used in a connection.

The SSL protocol also allows the server to authenticate the client.
Client authentication, which is supported by OrbixSSL, is optional
in SSL communications.

As any application can have a public and private key pair, the
transfer of the public key must be accompanied by additional
information that proves the key is associated with the true server
and not some other application. For this reason, the key is
transmitted as part of a certificate.

Certificates in SSL Authentication
The public key is transmitted as part of a certificate. A certificate
is used to ensure that the public key submitted is in fact the public
key which belongs to the submitter. For the certificate to be
acceptable to the client, it must have been digitally signed by a
certification authority (CA) that the client explicitly trusts.

The International Telecommunications Union (ITU)
recommendation X.509 defines a standard format for certificates.
SSL authentication uses X.509 certificates to transfer information
about an application’s public key.

An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.

• The public key of the entity.

• The name of the certification authority that issued the
certificate.

The role of a certificate is to match an entity name to a public key.
A CA is a trusted authority that verifies the validity of the
combination of entity name and public key in a certificate. You
must specify trusted CAs in order to use OrbixSSL.

According to the SSL protocol, it is unnecessary for applications to
have access to all certificates. Generally, each application only
needs to access its own certificate and the corresponding issuing
certificates. Clients and servers supply their certificates to

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446

 6 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

applications that they want to contact during the SSL handshake.
The nature of the SSL handshake is such that there is nothing
insecure in receiving the certificate from an as yet untrusted peer.
The certificate will be checked to make sure that it has been
digitally signed by a trusted CA and the peer will have to prove its
identity during the handshake.

Privacy of SSL Communications
When a client authenticates a server, confidential data sent by the
client can be encoded by the server’s public key. It is only the
actual server application that will be able to decode this data,
using the corresponding private key.

Immediately after authentication, an SSL client application sends
an encoded data value to the server. This unique session encoded
value is a key to a symmetric cryptographic algorithm.

A symmetric cryptographic algorithm is an algorithm in which a
single key is used to encode and decode data. Once the server has
received such a key from the client, all subsequent
communications between the applications can be encoded using
the agreed symmetric cryptographic algorithm. This feature
strengthens SSL security.

Examples of symmetric cryptographic algorithms used to maintain
privacy in SSL communications are the Data Encryption Standard
(DES) and RC4.

Integrity of SSL Communications
The authentication and privacy features of SSL ensure that
applications can exchange confidential data that cannot be
understood by an intermediary. However, these features do not
protect against the modification of encrypted messages
transmitted between applications.

To detect if an application has received data modified by an
intermediary, SSL adds a message authentication code (MAC) to
each message. This code is computed by applying a function to
the message content and the secret key used in the symmetric
cryptographic algorithm.

An intermediary cannot compute the MAC for a message without
knowing the secret key used to encrypt it. If the message is
corrupted or modified during transmission, the message content
will not match the MAC. SSL automatically detects this error and
rejects corrupted messages.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 7

Getting Started with
OrbixSSL
OrbixSSL provides SSL security for communications between
components of your CORBA applications. This chapter shows you
how to introduce SSL security to an existing application.

Using OrbixSSL, your CORBA applications benefit from the
authentication, privacy, and integrity of SSL communications.
When you create an OrbixSSL application, you must supply the
information necessary to complete the authentication process.
OrbixSSL then ensures the privacy and integrity of your
communications without any intervention from you.

The SSL handshake, described in “An Introduction to OrbixSSL”,
enables components of your OrbixSSL application to authenticate
each other. To ensure every SSL handshake completes
successfully, each authenticated component must be able to
access its certificate and private key.

There are two ways to provide this information to OrbixSSL
applications. Administrators can use the OrbixSSL configuration
file. Programmers can use the OrbixSSL application programming
interface (API). This chapter uses some basic administration and
some basic programming to show how you can add SSL security
to an existing Orbix demonstration application.

Overview of the Application
The Orbix demos\common directory contains several demonstration
programs, including a basic banking application, located in the
banksimple subdirectory. In this application, an Orbix server
creates a single object that implements the IDL interface Bank.
The server uses OrbixNames to associate a name with the Bank
object. To begin communicating with the server, a client gets a
reference to the Bank object from OrbixNames.

The client uses the Bank object to create Account objects. An
Account object allows a client to manipulate a single bank account;
for example, to query the balance of the account or deposit money
in the account.

The IDL definitions for this application are as follows:
module BankSimple {

typedef float CashAmount;

interface Account;

interface Bank {
Account create_account (in string name);
Account find_account (in string name);

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;
void deposit (in CashAmount amount);

 8 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

void withdraw (in CashAmount amount);
};

};

Running the Application without SSL
Without SSL, this application runs as follows:

1 The server gets a reference to OrbixNames. Implicitly, the
server contacts the Orbix daemon.

2 The server uses OrbixNames to associate a name with the Bank
object.

3 The client gets a reference to OrbixNames. Implicitly, the client
contacts the Orbix daemon.

4 The client uses OrbixNames to get a reference to the Bank
object.

5 The client calls operation create_account() on the Bank object.
Implicitly, the client contacts the Orbix daemon over the
connection that is already established. The client then contacts
the server.

6 The server processes the call to create_account() and returns a
reference to an Account object.

7 The client calls operations on the Account object.

These steps are illustrated in Figure 2. When the application runs
without SSL, all communications between parts of the application
are insecure.

Figure 2 Running the Banking Application

Running the Application with SSL
When using SSL, each component of the application that acts as a
server must be able to prove its identity. On first contact with
another component, a server must be able to supply its certificate
and encrypt messages with its private key. In this example, there
are three servers: the bank server, the Orbix daemon, and the
OrbixNames server.

Server Host

Client Host

Client

Orbix Daemon

Server

OrbixNames

1

2

3

4

5

6

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 9

With SSL, the application runs as shown in Figure 3:

1 The server gets a reference to OrbixNames. Implicitly, the
server contacts the Orbix daemon.

2 The Orbix daemon supplies its certificate to the server. The
server uses this certificate to check the identity of the daemon.

3 The server uses OrbixNames to associate a name with the Bank
object.

4 OrbixNames supplies its certificate to the server. The server
checks the identity of OrbixNames.

5 The client gets a reference to OrbixNames. Implicitly, the client
contacts the Orbix daemon.

6 The Orbix daemon supplies its certificate to the client. The client
checks the identity of the Orbix daemon.

7 The client uses OrbixNames to get a reference to the Bank
object.

8 OrbixNames supplies its certificate to the client. The client
checks the identity of OrbixNames.

9 The client calls operation create_account() on the Bank object.
Implicitly, the client contacts the Orbix daemon over the secure
connection that is already established. The client then contacts
the server.

10 The server supplies its certificate to the client. The client checks
the identity of the server.

11 The server processes the call to create_account() and returns a
reference to an Account object.

12 The client calls operations on the Account object over a secure
connection.

With SSL security, all the servers in the application can be
identified and all communications between application
components take place over secure connections.

Figure 3 Running the Banking Application with SSL Security

Server Host

Client Host

Orbix Daemon

Server

OrbixNames

1

2

3

4

5

6

Daemon
Certificate

Daemon
Certificate

OrbixNames
Certifcate

OrbixNames
Certifcate

Server Certifcate
Client

 10 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

To run this example, you must:

1 Provide each server with access to its certificate.

2 For each component that acts as a client, provide information
about which certificates to accept.

3 Add OrbixSSL initialization code to the client and server
programs.

4 Provide each server with access to its private key.

This chapter shows you how to implement steps 1 and 2 using
OrbixSSL administration and steps 3 and 4 using the OrbixSSL
API.

Modifying the Example Application
Before continuing with this chapter, go to the demos\common
directory of your Orbix installation. In this directory, copy the
subdirectory banksimple to banksimplessl. When this chapter
instructs you to modify source files from the banking example, use
the files in banksimplessl.

Providing Certificates for the Servers
In the banking application, the servers use demonstration
certificates installed with OrbixSSL. Each certificate has a
corresponding file in the OrbixSSL certificates directory. The
certificates for the banking application are shown in Table 1.

The orbix certificate is a general demonstration certificate for use
with standard Orbix servers. The secure_bank_server certificate is a
demonstration certificate specific to the bank server. Each of the
demonstration certificates is signed by the OrbixSSL
demonstration certificate authority (CA), called demo_ca_1.

Table 1 Demonstration Certificates Used by the Banking
Application

Server Certificate File

Bank demos/secure_bank_server

OrbixNames services/orbix_names

Orbix daemon services/orbix

Note: These certificates are completely insecure. Use them for
OrbixSSL demonstration programs only. Do not use them in a
deployed system. In a deployed system, you must create your
own customized certificates for components of your application.
The certificates for a deployed system should be signed by a CA
that you can trust. Never trust the CA demo_ca_1. The process of
creating and signing certificates is described in detail in the
chapter “Managing Certificates”.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 11

Using the OrbixSSL Configuration File
The OrbixSSL configuration file, orbixssl.cfg, enables you to
specify how your applications use SSL. By default, this application
is located in the config directory of your installation.

The OrbixSSL configuration file assigns values to OrbixSSL
configuration variables. To enable SSL security, ensure that the
configuration file includes the following setting:

OrbixSSL {
IT_DISABLE_SSL = "FALSE";

};
If the value OrbixSSL.IT_DISABLE_SSL is set to TRUE, your system
will not use SSL security.

Configuring All OrbixSSL Programs
Two OrbixSSL configuration variables allow a server to access its
certificate:

• IT_CERTIFICATE_PATH specifies the directory in which the
certificate file is stored in the file system.

• IT_CERTIFICATE_FILE specifies the name of the server’s certificate
file. Usually, you specify that this file is stored relative to the
IT_CERTIFICATE_PATH directory.

The OrbixSSL configuration file uses the standard Orbix
configuration syntax. By default, the variable IT_CERTIFICATE_PATH
is set to the location of the OrbixSSL certificates directory, in the
configuration scope OrbixSSL, for example:

OrbixSSL {
IT_CERTIFICATE_PATH =

"/opt/microfocus/OrbixSSL/certificates";
};

Variables set in the OrbixSSL configuration scope apply to all
OrbixSSL applications, although you can override the values later
in the configuration file.

Configuring a Single Program
To set the value of IT_CERTIFICATE_FILE for the banking server,
append the following text to the file orbixssl.cfg on the server
host:

Finance {
BankingSystem {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"demos/secure_bank_server";

};
};

The configuration scope Finance.BankingSystem is a custom scope
for use by the banking server. You can create any number of
custom scopes for your applications in orbixssl.cfg.
“Initializing OrbixSSL Configuration” on page 13 describes how
you associate a specific configuration scope with an OrbixSSL
program. The program then uses the settings defined in that
scope. If a variable is not defined in the program scope, the
program reads the variable setting from the scope OrbixSSL.

 12 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Configuring OrbixNames
To set the value of IT_CERTIFICATE_FILE for the OrbixNames server,
append the following text to the file orbixssl.cfg on the server
host:

OrbixNames {
Server {

IT_SECURITY_POLICY = "SECURE";
IT_CERTIFICATE_FILE =

OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix_names";

};
};

Configuring the Orbix Daemon
To set the value of IT_CERTIFICATE_FILE for the Orbix daemon,
append the following text to the file orbixssl.cfg on the server
host:

Orbix {
orbixd {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix";

};
};

Specifying which Certificates to Accept
Every certificate is signed by a CA. When a client receives a
certificate from a server, the client checks that the certificate is
signed by a trusted CA. If the client trusts the CA, it accepts the
certificate and connects to the server, otherwise it rejects the
certificate.

When running an OrbixSSL application, you must specify a list of
CAs that the application should trust. To do this, you first
concatenate the certificate files for each trusted CA into a single
file. You then use the OrbixSSL configuration variable
IT_CA_LIST_FILE to specify the name and location of this file.

The banking example uses the insecure OrbixSSL demonstration
CA, demo_ca_1. The CA certificate list file, which initially contains
only the demo_ca_1 certificate, is located in the OrbixSSL ca_lists
directory.

To specify that components of the banking example should accept
certificates signed by demo_ca_1, add the following text to
orbixssl.cfg on both the client and server hosts:

OrbixSSL {
IT_CA_LIST_FILE = "OrbixSSL directory/
ca_lists/demo_ca_list_1";

};
Replace OrbixSSL directory with the actual location of your
OrbixSSL installation.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 13

Initializing OrbixSSL
An OrbixSSL program initializes OrbixSSL using the OrbixSSL API.
To get access to the OrbixSSL API, include the file IT_SSL.h in your
programs:

#include <IT_SSL.h>
The OrbixSSL API contains a single initialization function that your
OrbixSSL programs can call. This function is IT_SSL::init() and is
defined as follows:

class IT_SSL {
public:

virtual int init();
};

To call this function, use the globally available object OrbixSSL. For
example, to initialize OrbixSSL in the banking client program, add
the following code to the file client.cxx:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
cout << "OrbixSSL initialization failed."
 << endl;
return 1;

}
...

}
...

}
To initialize OrbixSSL in the banking server program, add the
same code to the file server.cxx.
For OrbixSSL initialization to succeed, you must call the function
IT_SSL::init() before your OrbixSSL program attempts to make
any Orbix function calls. This includes calls to Orbix API functions
that implicitly make remote calls, such as
CORBA::ORB::impl_is_ready().

Initializing OrbixSSL Configuration
As described in “Using the OrbixSSL Configuration File” on
page 11, the example server uses the configuration scope
Finance.BankingSystem. To specify that the server uses this scope,
add the following code to server.cxx:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

// Call IT_SSL::init().
...

// Initialize configuration scope.
if (OrbixSSL.initScope(
"Finance.BankingSystem") != IT_SSL_SUCCESS)

return 1;

 14 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

}
...

}
The OrbixSSL function IT_SSL::initScope() associates a custom
scope in the OrbixSSL configuration file with your program.

Making Private Keys Available to Servers
By default, OrbixSSL expects the private key associated with a
certificate to be appended to the certificate file. OrbixSSL expects
the private key to be stored in encrypted Privacy Enhanced Mail
(PEM) format; for example, all the OrbixSSL demonstration
certificates have appended private keys in this format.

Note

Note that when using a DSA certificate or an elliptic curve
certificate, the private key must be in PKCS12 format, rather than
PEM format.

When a private key is encrypted in this way, you can access it only
using a corresponding pass phrase. Specifying this private key
pass phrase is a very important part of making a private key
available to a server program.

Making a Private Key Available to a
Server Program
The banking server uses the certificate file secure_bank_server in
the OrbixSSL certificates/demos directory. This file has the
associated private key appended, as expected by OrbixSSL.

When you run the server, it must supply its private key pass
phrase to OrbixSSL. This allows OrbixSSL to read the private key
and the server to encrypt data with this key, which is a critical
part of SSL authentication.

The OrbixSSL API includes a single function that allows you to
specify the pass phrase for your server. In the C++ API, this
function is defined as:

class IT_SSL {
public:

virtual int
setPrivateKeyPassword (char* password);

...
};

In the banking example, you can complete the server application
by calling this function. To do this, add this function call to the
server file server.cxx as follows:

#include <IT_SSL.h>
...

int main (int argc, char *argv[]) {
try {

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
cout << "OrbixSSL initialization failed."
 << endl;
return 1;

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 15

}
if (OrbixSSL.setPrivateKeyPassword

("demopassword") != IT_SSL_SUCCESS) {
cout << "Private key pass phrase error."
 << endl;
return 1;

}
}
...

}
In this example, the pass phrase is hard coded in the server
program. In fact, this is insecure and useful only for
demonstration purposes. In a deployed system, you must provide
a secure mechanism for retrieving the server pass phrase. There
are two fundamental approaches to this problem in OrbixSSL: an
administrative approach, described in the chapter “Managing Pass
Phrases” and a programmatic approach, described in
“Programming with OrbixSSL”.

Making a Private Key Available to
OrbixNames
Unlike an OrbixSSL server program, OrbixNames requires that the
private key associated with a certificate is available in a separate
file. The private key can also be appended to the certificate file,
but OrbixNames ignores this appended key.

The OrbixNames demonstration certificate is associated with the
private key file orbix_names.jpk in the OrbixSSL
certificates/services directory. To specify this, add the following
text to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_PRIVATEKEY_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"services/orbix_names.jpk";

};
};

This text assumes that you have already assigned the value of
IT_CERTIFICATE_PATH in the OrbixSSL scope.

When you run the OrbixNames server, it requests that you input
the pass phrase for its private key. Using the demonstration
certificate, the pass phrase is demopassword.

Making a Private Key Available to the
Orbix Daemon
As described in “Configuring the Orbix Daemon” on page 12, you
can use the OrbixSSL configuration file to specify which certificate
the Orbix daemon uses. When you run the Orbix daemon, it
automatically uses the private key pass phrase associated with the
demonstration certificate orbix. This pass phrase, demopassword, is
established when you install OrbixSSL.

If you configure the daemon to use a different certificate, you
must update the daemon executable with the pass phrase for the

 16 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

corresponding private key. To run the example described in this
chapter, it is not necessary to do this.

To update the daemon, use the OrbixSSL update command. For
example, on UNIX use the following command:

update orbixd "passphrase" 0
On Windows, use the following command:

update orbixd.exe "passphrase" 0

Review of the Development Steps
At this stage in the example, the steps outlined in “Running the
Application with SSL” on page 8 are complete. It was necessary
to:

1 Provide each server with access to its certificate.

2 For each component that acts as a client, provide information
about which certificates to accept.

3 Add OrbixSSL initialization code to the client and server
programs.

4 Provide each server with access to its private key.

To implement steps 1 and 2, you added configuration variables to
the file orbixssl.cfg. To implement steps 3 and 4, you used the
OrbixSSL API in the client file client.cxx and the server file
server.cxx.
The remainder of this chapter shows you how to compile your
modified banking example and how to run the application.

Compiling the Application
To use SSL security, your OrbixSSL program must be dynamically
linked with the Orbix library and the OrbixSSL library. On each
platform that Orbix supports, it provides two versions of the Orbix
library: a single-threaded version and a multi-threaded version.
Similarly, OrbixSSL provides a single-threaded library and a
multi-threaded library. Table 1 describes the OrbixSSL library
names on UNIX and Windows platforms.

On Windows, the OrbixSSL libraries are import libraries for the
associated dynamic link libraries (DLLs). On UNIX, the library file
names can include additional information about the OrbixSSL
version number and the C++ compiler associated with the
libraries.

If you link your application with the single-threaded Orbix library,
use the single-threaded OrbixSSL library also. Otherwise, use the
multi-threaded OrbixSSL library.

Table 2 OrbixSSL Library Names

Platform Single-Threaded Multi-Threaded

UNIX libITtls libITtlsmt

Windows ITLSI.lib ITLMI.lib

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 17

To achieve this in the banking example, you must modify the
makefile in your banksimplessl directory. The Orbix demonstration
applications link with the multi-threaded Orbix library, so you
must include the multi-threaded OrbixSSL library when linking the
banking client and server programs.

On UNIX, edit the file Makefile in your banksimplessl directory. Add
the multi-threaded OrbixSSL library to the client and server link
lines as follows:

client: $(CLIENT_OBJS)
$(C++) $(C++FLAGS) -o client $(CLIENT_OBJS) \
$(LDFLAGS) $(ITORBIX) -lITtlsmt \
$(ITDEM) $(ITNAM) $(SYSLIBS)

server: $(SERVER_OBJS)
$(C++) $(C++FLAGS) -o server $(SERVER_OBJS) \
$(LDFLAGS) $(ITORBIX) -lITtlsmt \
$(ITDEM) $(ITNAM) $(SYSLIBS)

Compile the application using the make command.

On Windows, again edit the file Makefile in your banksimplessl
directory. Add the multi-threaded OrbixSSL library to the client
and server link lines as follows:

client.exe: $(CLIENT_OBJS)
$(LINK) $(LINK_FLAGS_EXE) /OUT:$@ \
$(CLIENT_OBJS) $(LINK_LIBS) ITLMI.lib

server.exe: $(SERVER_OBJS)
$(LINK) $(LINK_FLAGS_EXE) /OUT:$@ $(SERVER_OBJS)

$(LINK_LIBS) ITLMI.lib
Compile the application using the nmake command.

Running the Application
This section describes the steps required to run the server and
client programs in the banking example.

Running the Server
To run the banking server, do the following on the server host:

1 Set the environment variable IT_IONA_CONFIG_FILE to the
location of the Orbix configuration file, iona.cfg.

2 On UNIX, run the following update command to specify the
location of the OrbixSSL configuration file, orbixssl.cfg:
update library OrbixSSL_directory 2

3 Run this command for each of the OrbixSSL libraries, replacing
library with the library file name and OrbixSSL_directory with
the location of orbixssl.cfg.

4 On Windows, set the environment variable IT_SSL_CONFIG_PATH
to the location of orbixssl.cfg.

5 Set the environment variable that locates dynamic libraries, for
example PATH on Windows, LD_LIBRARY_PATH on Solaris, or
SHLIB_PATH on HP-UX, to include the Orbix lib directory.

6 Run the Orbix daemon, using the following command:
orbixd

 18 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

7 Register the OrbixNames server in the Implementation
Repository. For example, using putit as follows:
putit NS OrbixNames directory/server

8 Replace OrbixNames directory with the full path of the directory
in which the OrbixNames server is located.

9 Register the banking server in the Implementation Repository
with server name IT_Demo/banksimple/Bank. For example, you
can do this using the following commands:
mkdirit IT_Demo
mkdirit IT_Demo/banksimple
putit IT_Demo/banksimple/Bank server directory/server

10 Replace server directory with the full path of the directory in
which your server is located.

11 Run the OrbixNames server, using the following command:
ns -I nsior.ref

12 This causes the server to write its IOR to a file named
nsior.ref. You must use this file when running clients of
OrbixNames.

13 Run the OrbixNames server again, using the following
command:
ns -secure

14 When OrbixNames requests a pass phrase, enter the string
demopassword.

15 Edit the Orbix configuration file included in iona.cfg. Add the
following text to this file:
Common {

Services {
NameService = "OrbixNames IOR";

};
};

16 Replace OrbixNames IOR with the full IOR string contained in
nsior.ref. If you paste this string from nsior.ref, ensure that
no additional characters are added, such as line breaks.

17 Set up the naming context IT_Demo.banksimple in the Naming
Service. For example, you can do this using the following
commands:
putnewncns IT_Demo
putnewncns IT_Demo.banksimple

18 Run the banking server as follows:
server -bindns -timeout 60000

The server should now be running as a secure SSL server.

Running the Client
When the server is running, do the following on the client host:

1 Set the environment variable IT_IONA_CONFIG_FILE to the
location of the Orbix configuration file, iona.cfg.

2 On UNIX, run the following update command to specify the
location of the OrbixSSL configuration file, orbixssl.cfg:
update library OrbixSSL_directory 2

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 19

3 Run this command for each of the OrbixSSL libraries, replacing
library with the library file name and OrbixSSL_directory with
the location of orbixssl.cfg.

4 On Windows, set the environment variable IT_SSL_CONFIG_PATH
to the location of orbixssl.cfg.

5 Edit the Orbix configuration file that is been included in
iona.cfg. Add the following text to this file:
Common {

Services {
NameService = "OrbixNames IOR";

};
};

6 Replace OrbixNames IOR with the full IOR string contained in
nsior.ref on the server host.

7 Set the environment variable that locates dynamic libraries, for
example PATH on Windows, LD_LIBRARY_PATH on Solaris, or
SHLIB_PATH on HP-UX, to include the Orbix lib directory.

8 Run the banking client as follows:
client

The application now runs as in the normal Orbix banking example.
However, all communications between components of the
application take place over SSL connections. During server
authentication, OrbixSSL takes responsibility for checking the
validity of certificates.

 20 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Part II
OrbixSSL

Administration
In this part
This part contains the following:

Defining a Security Policy page 23

Managing Certificates page 37

Managing Pass Phrases page 51

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 23

Defining a Security
Policy
Each installation of OrbixSSL includes a configuration file that allows
you to specify how your applications use SSL security. This chapter
describes how you can configure SSL security for each of your
applications.

Defining a security policy means configuring your OrbixSSL
applications to achieve the level of security required by your
system. The OrbixSSL configuration file includes security settings
that enable you to specify the location of certificates, which
certificates programs should use, which certificates they should
accept, and so on. You can apply OrbixSSL configuration settings
to all your programs simultaneously, or to individual programs.

This chapter begins with an overview of OrbixSSL configuration. It
then describes each of the configuration tasks required to define a
comprehensive security policy.

Overview of OrbixSSL Configuration
The OrbixSSL configuration file, orbixssl.cfg, defines the security
policy for your system. This file allows you to assign values to a
set of OrbixSSL configuration variables. These variables specify
how your applications use SSL security.

Using the OrbixSSL Configuration File
When you install OrbixSSL, the configuration file is located in the
Orbix config directory. To define a security policy for your system,
you must do the following on each host:

1 Add the required configuration variables to the file.

2 Put the file in a location where all OrbixSSL applications on the
host can read it. Ensure that the file is a local file.

3 Restrict write access to a single trusted user. For example, on
UNIX only the superuser root should be able to modify this file.

4 Include orbixssl.cfg in the Orbix configuration file iona.cfg.
5 On Windows, set the environment variable IT_SSL_CONFIG_PATH

to the location of orbixssl.cfg.
6 On UNIX, run the update command on each OrbixSSL library:

update library SSL_config_directory 2
7 Replace library with the library file name and

SSL_config_directory with the location of orbixssl.cfg.
Applications read the OrbixSSL configuration file only on startup.
If you change the settings in the file, applications must be
restarted to read the new settings.

This chapter shows you how to assign configuration values and
describes some of the most commonly used variables. The
appendix “OrbixSSL Configuration Variables” provides a complete

 24 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

list of the OrbixSSL configuration variables and, where
appropriate, their default values.

Assigning Values to Configuration Variables
The OrbixSSL configuration file uses the standard Orbix
configuration syntax, described in the Orbix Administrator’s
Guide C++ Edition. This syntax allows you to assign values to
variables within configuration scopes. For example, in the Orbix
configuration file iona.cfg, variables that are common to several
Micro Focus products are defined in the standard scope Common.
In a configuration file, the characters {...}; delimit a
configuration scope. For example, you could assign the value of
the most basic OrbixSSL configuration variable, IT_DISABLE_SSL, in
the OrbixSSL scope as follows:

OrbixSSL {
IT_DISABLE_SSL = "FALSE";

};
If OrbixSSL.IT_DISABLE_SSL is set to TRUE, no application in your
system can communicate using SSL. The default value for this
variable is FALSE.
In OrbixSSL, the OrbixSSL scope enables you to configure SSL
security for all your programs simultaneously. If a configuration
variable value is the default for all programs, assign it in the
OrbixSSL scope.

OrbixSSL also enables you to customize SSL support to meet the
requirements of individual programs. You can override a
configuration variable value, or assign a value to a new
configuration variable in a scope that applies to a single program
only.

By default, each server scope is defined with the standard scope
OrbixSSL.ServerNames. For example, the default application scope
for a server called Bank is OrbixSSL.ServerNames.Bank:

OrbixSSL {
ServerNames {

Bank {
...

};
};

};
If an application includes calls to OrbixSSL functions, you must
define your own custom scope for that application. The OrbixSSL
API enables the programmer to specify which scope the program
uses. For example, the server Bank could use a custom scope, such
as Finance.BankingSystem:

Finance {
BankingSystem {

...
};

};
If the programmer specifies that a program uses this scope, the
program reads from the scope OrbixSSL any settings not defined in
the custom scope. It ignores settings in the default application
scope OrbixSSL.ServerNames.Bank.
To specify that a program uses a custom scope, a C++
programmer calls the method IT_SSL::initScope(). Use custom

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 25

scopes for all servers that include OrbixSSL code. Use the default
server scope OrbixSSL.ServerNames only for existing servers that do
not contain any OrbixSSL code.

Including the OrbixSSL Configuration File
To include orbixssl.cfg in the file iona.cfg, use the include
directive as follows:

iona.cfg
ssl_dir = "SSL config directory";

include ssl_dir + "orbixssl.cfg";
The value SSL config directory should be the location of
orbixssl.cfg in the local file system.

Configuring Server Authentication
Before running an OrbixSSL application, you must do the following
to ensure that server authentication succeeds:

• Specify which protocols are to be used

• Specify which certificate each server should use.

• Specify the private key pass phrase for each server.

• Specify which certificates each client should accept.

This section describes how to specify which certificate a server
should use and which certificates a client should accept, using the
OrbixSSL configuration file. To specify the private key pass phrase
for a server, administrators can use the administration mechanism
described in the chapter “Managing Pass Phrases”, or
programmers can use the OrbixSSL API.

For the purposes of SSL communications, a server is any Orbix
program that can accept operation calls. This includes Orbix
servers and clients that accept callbacks.

Specifying Protocols
You can specify the security transport protocol version used by
setting the configuration variable OrbixSSL.IT_PROTOCOLS. The
OrbixSSL.IT_PROTOCOLS configuration variable is a
comma-separated list of security transports that the product will
try to use. Valid values are the strings:

• SSL_V3 for SSLv3 (no longer supported by default)
• TLS_V1 for TLS v1
• TLS_V1_1 for TLS v1.1
• TLS_V1_2 for TLS v1.2
• TLS_V1_3 for TLS v1.3

 26 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

The default security transport protocols are TLS v1, TLS v1.1, TLS
v1.2 and TLS v1.3 (whichever are supported). This represents a
change from previous versions of Orbix 3.3, where the default was
TLSv1 or SSLv3.

Specifying the Location of Certificates
To specify the location of your certificate files, add the following
variable to orbixssl.cfg on the server host:

OrbixSSL {
IT_CERTIFICATE_PATH = "certificate directory";

};
In most cases, only a single directory on each host contains
certificates for OrbixSSL applications. Consequently, you usually
assign the value of IT_CERTIFICATE_PATH in the OrbixSSL scope.

To specify the certificate that an application should use, set the
variable IT_CERTIFICATE_FILE in orbixssl.cfg. Set this variable in
the application scope, for example:

Finance {
BankingSystem {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"server certificate file name";

};
};

Each Orbix service, such as OrbixNames, has its own configuration
scope. For example, to set the value of IT_CERTIFICATE_FILE for
OrbixNames, use the OrbixNames.Server scope:

OrbixNames {
Server {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"OrbixNames certificate file name";

};
};

To set the value of IT_CERTIFICATE_FILE for the Orbix daemon, use
the configuration scope Orbix.orbixd:

Orbix {

Note: If you need to interoperate with previous Orbix versions,
it will be necessary to add SSLv3 to the list of enabled security
protocol versions in the orbixssl.cfg file. It is recommended that
you also specify the list of TLSV1 protocols as these are more
secure protocols and will be used unless there is a specific need
to drop down to the older SSLv3 protocol.

An updated protocol list entry for orbixssl.cfg might look
something like the following:

orbixssl.cfg for Orbix SSL C++ and Orbix SSL Java

OrbixSSL {
[SNIP…]

IT_PROTOCOLS = "TLS_V1_3, TLS_V1_2, TLS_V1_1,
 TLS_V1, SSL_V3";

}

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 27

orbixd {
IT_CERTIFICATE_FILE =

OrbixSSL.IT_CERTIFICATE_PATH +
"daemon certificate file name";

};
};

If you change the certificate associated with the Orbix daemon,
you must run the OrbixSSL update command to provide the
corresponding private key pass phrase to the daemon executable.

Running the OrbixSSL Update Utility
Orbix executable files, such as the Orbix daemon and Orbix
utilities, include embedded information about the pass phrase
associated with their private keys. If you change the private key
associated with these files, you must modify the embedded
information using the OrbixSSL update utility.

In the same way, the OrbixSSL libraries contain an embedded
private key pass phrase and the location of the OrbixSSL
configuration file. You can update both these values by running
update on the library files.

When updating a pass phrase, the update command takes the
following form:

update filename passphrase {0 | 1}
If the file specified by filename is an executable, the final
argument should be 0. If the file is a library, the final argument
should be 1.
When updating the OrbixSSL libraries with the location of the
OrbixSSL configuration file, the command takes the following
form:

update filename location 2
You can also use the update utility to change embedded
information in files associated with Orbix services, such as
OrbixNames or OrbixManager. Consult the documentation
associated with the service for more information.

Specifying Certificates to Accept
The program that receives a certificate must validate it to ensure
the identity of the server. OrbixSSL does some basic validation,
and the programmer can add more. To enable OrbixSSL to do this
basic validation, you provide some information about which
certificates your programs should accept.

The OrbixSSL CA certificate list file includes certificates that
identify each CA your applications accept. As described in the
chapter “Getting Started with OrbixSSL”, to specify the location of
this file, you set the variable IT_CA_LIST_FILE, for example:

OrbixSSL {
IT_CA_LIST_FILE =

IT_CERTIFICATE_PATH + "CA list file name";
};

Usually, the value of IT_CA_LIST_FILE is the same for all
applications on a single host.

 28 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Each X.509 certificate is signed by a CA. A CA certificate, included
in the list file, can in turn be signed by another CA. This process is
known as certificate chaining.

To ensure security of your OrbixSSL application, it is often
necessary to limit the maximum number of certificates in a chain.
To limit the maximum chain depth for each of your applications,
assign a value to the variable IT_MAX_ALLOWED_CHAIN_DEPTH in the
OrbixSSL scope, for example:

OrbixSSL {
IT_MAX_ALLOWED_CHAIN_DEPTH = "2";

};
You can then assign a maximum chain depth for a specific
application in the application scope, using the variable
IT_DEFAULT_MAX_CHAIN_DEPTH:

Finance {
BankingSystem {

IT_DEFAULT_MAX_CHAIN_DEPTH = "1";
};

};
The value for a specific application cannot be greater than the
common maximum chain depth, specified by
OrbixSSL.IT_MAX_ALLOWED_CHAIN_DEPTH. A chain depth of one
indicates that a certificate can be signed by one trusted CA only. A
chain depth of two indicates that the CA certificate can in turn be
signed by a trusted CA. If any CA in the chain is trusted, the
application certificate is considered valid by OrbixSSL.

Configuring Client Authentication
Some secure applications, for example Internet banking systems,
require that clients can identify themselves to servers. These
applications use an extended SSL handshake, in which the server
validates the client certificate. Client authentication is optional in
SSL security.

To specify that servers should authenticate clients by default, add
the following to orbixssl.cfg:

OrbixSSL {
IT_AUTHENTICATE_CLIENTS = "TRUE";

};
You can then override this default value for a particular server, if
necessary:

Finance {
BankingSystem {

IT_AUTHENTICATE_CLIENTS = "FALSE";
};

};

OrbixNames {
IT_AUTHENTICATE_CLIENTS = "FALSE";

};
Similarly, you could set the default value of
IT_AUTHENTICATE_CLIENTS to FALSE and override it for servers that
should authenticate clients.

Using IT_AUTHENTICATE_CLIENTS, you can enable or disable client
authentication for a server. However, the server programmer can

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 29

also enable or disable client authentication using the OrbixSSL
API. The API overrides your configuration settings.

In some cases, you might wish to enforce client authentication for
a server and prevent the API from overriding your configuration.
To do this, use the variable IT_SERVERS_MUST_AUTHENTICATE_CLIENTS,
for example:

OrbixSSL {
IT_SERVERS_MUST_AUTHENTICATE_CLIENTS = "TRUE";

};
This setting forces all servers to authenticate clients.

Securing the Orbix Daemon
The Orbix daemon process is an important element of an Orbix
system. This process is responsible for managing the
Implementation Repository and activating Orbix servers in
response to operation calls from clients. Because it activates
server processes, it is imperative that you ensure the security of
the daemon.

As part of your security policy, OrbixSSL allows you to specify how
the daemon process should communicate with your OrbixSSL
programs. In particular, you can specify:

• Whether the daemon accepts SSL communications, non-SSL
communications, or both.

• Whether the daemon authenticates clients.

This section describes how you address each of these issues using
the OrbixSSL configuration file.

Configuring Orbix Daemon
Communications
Some OrbixSSL systems contain only applications that
communicate securely. Others contain some secure and some
insecure applications. When securing the Orbix daemon, you must
specify which types of communication the daemon should accept.

OrbixSSL defines four Orbix daemon types:

• Secure daemon. This type of daemon communicates using SSL
only.

• Restricted semi-secure daemon. This type of daemon supports
SSL communication, and permits only a restricted set of
operations to insecure clients.

• Semi-secure daemon. This type of daemon supports SSL and
non-SSL communication.

• Insecure daemon. This type of daemon does not support SSL
communication.

A secure daemon does not accept communications from insecure
applications and consequently prevents insecure clients from
launching servers in your system. This daemon type is the most
secure configuration and is recommended for systems in which all
legitimate Orbix applications can communicate using SSL.

 30 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

A restricted semi-secure Orbix daemon accepts communications
from secure applications and insecure applications. However,
insecure clients of the daemon can, by default, only cause servers
to be launched.

A semi-secure Orbix daemon accepts communications from secure
and insecure applications. This is useful for systems in which
insecure Orbix applications coexist with secure applications and
you wish to place no restrictions on insecure communications with
the daemon.

An insecure daemon is recommended only for systems in which
SSL security is completely disabled.

Specifying the Orbix Daemon Type
To specify which type of daemon should run on a particular host,
add the following variable to oribxssl.cfg on that host:

OrbixSSL {
IT_DAEMON_POLICY = "daemon type";

};
The legal values for daemon type correspond to the four available
types of daemon:

• SECURE_DAEMON
• RESTRICTED_SEMI_SECURE_DAEMON
• SEMI_SECURE_DAEMON
• INSECURE_DAEMON
By default, the Orbix daemon uses the value SECURE_DAEMON.
However, if IT_DISABLE_SSL is set to TRUE, the daemon type is
INSECURE_DAEMON.
The INSECURE_DAEMON and SEMI_SECURE_DAEMON settings mean that
insecure clients can connect to the daemon and call any operation
on the daemon. This is not desirable in most situations.

Checking the Orbix Daemon Type
When you start the Orbix daemon, it displays a string describing
its communication configuration. This string can tell you whether
the daemon is using SSL security or not as follows:

• [orbixd: Server "IT_daemon" is now available to the network]
[Configuration SSL-TCP/10666/Orbix-XDR]

• SSL-TCP means that the daemon is fully secure and will only
accept secure connections.

• [orbixd: Server "IT_daemon" is now available to the network]
[Configuration TCP/10666/Orbix-XDR]

• TCP means that the daemon is insecure and will not accept or
initiate secure connections.

• [orbixd: Server "IT_daemon" is now available to the network]
[Configuration [SSL] TCP/10666/Orbix-XDR]

• [SSL] TCP means that the daemon is capable of accepting secure
and insecure connections.

A similar communications string is displayed for OrbixSSL servers
depending on their security capabilities.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 31

Configuring a Restricted Semi-Secure
Daemon
The Orbix daemon is an Orbix server program that implements the
IDL interface IT_daemon, as described in the Orbix Programmer’s
Reference C++ Edition. A restricted semi-secure Orbix daemon
accepts calls from insecure clients to a limited set of IDL
operations on this interface. To specify which operations the
daemon should accept, use the configuration variable
IT_DAEMON_UNRESTRICTED_METHODS.
For example, to allow insecure clients to call only the operations
_IT_PING(), listServers(), listActiveServers(), getIIOPDetails(),
and getImplementationDetails(), add the following to orbixssl.cfg:

OrbixSSL {
IT_DAEMON_UNRESTRICTED_METHODS = "_IT_PING,

listServers, listActiveServers,
getIIOPDetails, getImplementationDetails";

};
If you do not set the value of IT_DAEMON_UNRESTRICTED_METHODS, a
restricted semi-secure daemon accepts calls to the operations
_IT_PING(), getIIOPDetails(), and getImplementationDetails().
Consequently, a restricted semi-secure daemon allows an insecure
client only to launch and locate servers.

Configuring the Orbix Daemon to
Authenticate Clients
The configuration variable IT_DAEMON_AUTHENTICATES_CLIENTS
determines whether the daemon enforces client authentication for
all clients that attempt to connect to it. This includes Orbix
utilities, such as pingit or lsit, and clients or servers that contact
the daemon directly.

Set the value of the variable IT_DAEMON_AUTHENTICATES_CLIENTS in
the OrbixSSL scope, for example:

OrbixSSL {
IT_DAEMON_AUTHENTICATES_CLIENTS = "TRUE";

};
The default value for this variable depends on the current value of
IT_DAEMON_POLICY, as shown in Table 3.

If the Orbix daemon authenticates clients, programs that
communicate with it must be able to supply certificates. This
includes any applications that communicate with servers and the
Orbix daemon utilities, such as putit, lsit, and mkdirit. To specify

Table 3 Default Values for Daemon Authentication of Clients

Daemon Policy Daemon Authenticates Clients

SECURE_DAEMON TRUE

RESTRICTED_SEMI_SECURE_DAEMON TRUE

SEMI_SECURE_DAEMON FALSE

INSECURE_DAEMON FALSE

 32 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

the certificate for these utilities, use the configuration scope
Orbix.utilities in orbixssl.cfg:

Orbix {
utilities {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"utilities certificate file name";

};
};

Securing the Orbix Interface Repository
The Orbix Interface Repository is an Orbix server program that
provides runtime information about IDL interfaces available in
your system. Before running the Interface Repository, it is
important to specify what type of communications it supports. To
do this, set the configuration variable IT_ORBIX_BIN_SERVER_POLICY
in the OrbixSSL configuration file as follows:

OrbixSSL {
IT_ORBIX_BIN_SERVER_POLICY = "policy type";

};
Replace policy type with one of the following values:

If the Interface Repository server policy is SECURE_SERVER or
SEMI_SECURE_SERVER, you must specify which certificate the
Interface Repository server uses. To do this, use the
Orbix.utilities scope in orbixssl.cfg, as for the Orbix utilities:

Orbix {
utilities {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"utilities certificate file name";

};
};

Currently, the Interface Repository server must use the same
certificate as the Orbix utilities.

Securing the Orbix Services
Each of the Orbix services, such as OrbixNames or OrbixManager,
has an associated configuration scope in the OrbixSSL
configuration file. For example, OrbixManager uses the following
scope:

OrbixManager {
...

};
Each of the services requires specific settings in the OrbixSSL
configuration file and may require additional action to fully enable
SSL. For details of how to run a service in secure system, consult
the documentation associated with that service.

SECURE_SERVER The server supports only secure communications.

SEMI_SECURE_SERVER The server supports both secure and insecure
communications.

INSECURE_SERVER The server supports only insecure communications.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 33

Configuring Ciphers
OrbixSSL allows you to specify which ciphers should be used for
SSL encryption. Two configuration variables determine these
ciphers:

The possible values for these configuration cipher variables are:
RSA_WITH_RC4_128_SHA
RSA_WITH_RC4_128_MD5
RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_DES_CBC_SHA

RSA_WITH_AES_128_CBC_SHA
RSA_WITH_AES_256_CBC_SHA
RSA_WITH_AES_128_CBC_SHA256
RSA_WITH_AES_256_CBC_SHA256

RSA_WITH_AES_128_GCM_SHA256
RSA_WITH_AES_256_GCM_SHA384

DHE_RSA_WITH_AES_128_GCM_SHA256
DHE_RSA_WITH_AES_256_GCM_SHA384

DHE_DSS_WITH_AES_128_GCM_SHA256
DHE_DSS_WITH_AES_256_GCM_SHA384

ECDHE_RSA_WITH_RC4_128_SHA
ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
ECDHE_RSA_WITH_AES_128_CBC_SHA
ECDHE_RSA_WITH_AES_256_CBC_SHA
ECDHE_RSA_WITH_AES_128_CBC_SHA256
ECDHE_RSA_WITH_AES_256_CBC_SHA384
ECDHE_RSA_WITH_AES_128_GCM_SHA256
ECDHE_RSA_WITH_AES_256_GCM_SHA384

ECDHE_ECDSA_WITH_RC4_128_SHA
ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
ECDHE_ECDSA_WITH_AES_128_CBC_SHA
ECDHE_ECDSA_WITH_AES_256_CBC_SHA
ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_GCM_SHA256
TLS_AES_128_CCM_8_SHA256
TLS_AES_128_CCM_SHA256

IT_CIPHERSUITES The value of this configuration variable
determines the default list of ciphers that an
OrbixSSL application uses. A space separated
list of the possible values is given in order of
preference.

IT_ALLOWED_CIPHERSUITES This variable defines an additional list of
ciphers that a program can specify using the
API method IT_SSL::specifyCipherSuite().

 34 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

All of these values comprise the following components:

• Specification of the key exchange algorithm.

• RSA certificates are useful for key exchanges as RSA is a widely
used public-key algorithm that can be used for either encryption
or digital signing.

• DHE_RSA, DHE_DSS, ECDHE_RSA, and ECDHE_ECDSA are also
supported. Note that DHE_DSS requires a DSA private key, and
ECDHE_ECDSA requires an elliptic curve private key.
Certificates with DSA private keys and certificates with elliptic
curve private keys must be in PKCS12 format

• Specification of the cipher to be used.

• Permitted ciphers are taken from the following list: RC2, RC4, DES,
3DES_EDE, AES_128 and AES_256.

• Specification of the hash algorithm to be used.

• Permitted hashes include MD5, SHA, SHA256 and SHA384. Note that
the SHA256 and SHA384 hashes can only be used with the AES
ciphers (128 and 256-bit), and in addition the SHA256 and
SHA384 ciphers will only work with the TLS v1.2 protocol.

Only specific combinations of these options are available as listed,
and one combination is referred to as a cipher suite.

If no cipher suites are configured, then all available cipher suites
will be used as a default.

OrbixSSL Session Caching Configuration
SSL session caching allows the reuse of information previously
agreed between a client and server thus enabling faster
subsequent reconnection. This can significantly increase server
throughput if clients repeatedly reconnect to the server. The
IT_CACHE_OPTIONS configuration variable offers the following options
for controlling the use of SSL session caching in OrbixSSL
applications:

NO_SESSION_CACHING This variable means that OribxSSL clients and
servers will not use SSL session caching. That is,
they cannot accept re-used SSL session IDs
proffered by SSL clients, and will not offer to
resume previously established SSL sessions
when contacting servers for a second or
subsequent time.

CACHE_CLIENT This variable means that OrbixSSL client
programs will cache any sessions that are
successfully established with servers. However,
if subsequent attempts are made to reconnect to
the server, then the initial session will be offered
for reuse to the server. Whether the session is
actually reused or not depends on the server’s
policy with respect to session caching. This
applies to servers when they are acting as clients
as well as pure clients.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 35

It is important to note that for an OrbixSSL cache to be reused,
SSL session caching has to be enabled for clients and servers. This
applies to clients when they are receiving callbacks as well as to
pure clients.

Providing IORs with SSL Information
When a non-Orbix client wants to obtain a server IOR from the
Orbix daemon by means of IIOP, it is necessary to provide that
IOR with SSL information. You can do this by means of the putit
utility:

This is the full putit command syntax:
putit [-v] [-h <host>] [-per-client |
-per-client-pid]
[[-shared | -unshared] [-marker <marker>]]
[-j | -java [-classpath <classpath> | -addpath
<path>]]
[-oc <ORBclass> -os <ORBSingletonClass>] [-jdk2]
| [-per-method [-method <method>]]
[-port <iiop portnumber>]
[-n <number of servers>] [-l]
[-ssl_secure | -ssl_semi_secure
[-ssl_client_auth] [-ssl_support_null_enc |
-ssl_support_null_enc_only]
[-ssl_support_null_auth |
-ssl_support_null_auth_only]]
<serverName> [<commandLine> | -persistent]

The ssl parameters are described in Table 4. To use them, you
must specify either –ssl_secure or –ssl_semi_secure first.

CACHE_SERVER This variable means that servers of OrbixSSL will
cache any sessions that are successfully
established with clients. If subsequent attempts
are made to reconnect by clients, then the
previously established session that is being
offered by the client will be accepted provided
that it has not been flushed from the OrbixSSL
session cache.

Table 4 putit SSL Parameters

putit Flag Description

-ssl_client_auth Indicates that the server authenticates clients.

-ssl_support_null_enc This indicates that the NULL encryption SSL
ciphersuites (which do not support confidentiality) are
supported by the server.

-ssl_support_null_enc_only This indicates that only the server supports the NULL
encryption SSL ciphersuites.

-ssl_secure This is the minimal flag needed to indicate that the
server is SSL enabled. If this flag or
–ssl_semi_secure are not supplied then the server is
insecure and no SSL related data should be written to
the IR. One of these two flags must be supplied before
any other SSL flag is acceptable. An error should be
presented to the user if they are not.

 36 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Using the putit SSL Parameters
There are four groups of SSL parameters. If you want to use
them, you must use one from Group 1, followed by one or none
from each of the other three groups:

Group 1
-ssl_secure
-ssl_semi_secure

Group 2
-ssl_support_null_enc
-ssl_support_null_enc_only

Group 3
-ssl_support_null_auth
-ssl_support_null_auth_only

Group 4
-ssl_client_auth

As OrbixSSL supports per server process security policy settings,
those settings specified by putit apply to all objects created by the
server.

The most common use cases are:
Putit –ssl_secure demo/grid grid.exe
Putit –ssl_secure –ssl_client_auth demo/grid
grid.exe
Putit –ssl_semi_secure demo/grid grid.exe

The following might be less common:
Putit –ssl_semi_secure –ssl_client_auth demo/grid
grid.exe

-ssl_semi_secure This indicates a SEMI_SECURE server policy. If this flag
or –ssl_secure are not supplied to putit then the
policy is INSECURE and no SSL related stuff should be
written to the IR. One of these two flags must be
supplied before any other SSL flag is acceptable. An
error should be presented to the user if they are not.

-ssl_support_null_auth This flag indicates that the server support null
authentication. OrbixSSL servers do not currently
support this.

-ssl_support_null_auth_only This flag indicates that the server support null
authentication. OrbixSSL servers do not currently
support this.

Table 4 putit SSL Parameters

putit Flag Description

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 37

Managing Certificates
SSL authentication uses X.509 certificates. This chapter explains
how you can create X.509 certificates that identify your OrbixSSL
applications.

An X.509 certificate binds a name to a public key value. The role
of a certificate is to guarantee that the public key can be used to
verify the identity contained in the X.509 certificate.

Authentication of a secure application depends on the integrity of
the public key value in the application’s certificate. If an impostor
replaced the public key with its own public key, it could
impersonate the true application and gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms
the integrity of the public key value in a certificate.

A CA signs a certificate by adding its digital signature to the
certificate. A digital signature is a message encoded with the CA’s
private key. The CA’s public key is made available to applications
by distributing a certificate for the CA. Applications verify that
certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

Most of the demonstration certificates supplied with OrbixSSL are
signed by the CA demo_ca_1. This CA is completely insecure
because anyone can access its private key. To secure your
system, you must create new certificates signed by a trusted CA.
This chapter describes the certificates required by an OrbixSSL
application and shows you how to create those certificates.

Creating Certificates for an Application
To set up a fully secure OrbixSSL system, you must generate a full
set of certificates for the secure components of your system, such
as server, authenticated clients, the Orbix daemon, Orbix
services, and so on. There are three steps required to do this:

1 Set up a CA that you can trust.

2 Use the CA to create signed certificates.

3 Deploy the signed certificates.

If a component of your application must prove its identity during
SSL authentication, that component requires a certificate signed
by your chosen CA. In a secure system, this always includes the
Orbix daemon, the Orbix utilities, the Orbix services, and your
server programs. If you use client authentication, your clients also
require certificates.

Overview of the OrbixSSL Demonstration
Certificates
The OrbixSSL certificates directory contains a set of
demonstration certificates that enable you to run the OrbixSSL

 38 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

example applications. The certificates contained in the
certificates directory are described in Table 5.

The remainder of this chapter describes the steps involved in
setting up a CA and signing certificates. As an example, it then
shows you how to replace the demonstration certificates in the
OrbixSSL certificates directory with your own, secure
certificates.

Choosing a Certification Authority
A CA must be trusted to keep its private key secure. When setting
up an OrbixSSL system, it is important to choose a suitable CA,
make the CA certificate available to all applications, and then use
the CA to sign certificates for your applications.

There are two types of CA available. A commercial CA is a
company that signs certificates for many systems. A private CA is
a trusted node that you set up and use to sign certificates for your
system only.

Table 5 Demonstration Certificates Supplied with OrbixSSL

Certificate Description

ca/demo_ca_1
ca/demo_ca_2
ca/demo_ca_sha256
ca/demo_ca_dsa
ca/ demo_ca_ec

Contains the certificates for the example CAs demo_ca_1,
demo_ca_2, demo_ca_sha256, demo_ca_dsa and
demo_ca_ec. The CA list file, demo_ca_list_1, in the
OrbixSSL ca_lists directory, includes the certificate for
demo_ca_1. Programs that set the value of
IT_CA_LIST_FILE to this file accept only certificates signed
by demo_ca_1.

demos/bad_guy
demos/bank_customer_1
demos/bank_customer_1_ec.p12
demos/bank_customer_2
demos/secure_bank_server
demos/secure_bank_server_ec.p12
demos/demo_client
demos/demo_client_ca2
demos/demo_server
demos/demo_server_ca2
...

Example certificates used in the OrbixSSL demonstration
programs. These programs are contained in the
demos/OrbixSSL directory. These certificates are signed by
demo_ca_1, with the exception of those with _ca2
appended to the file name, which are signed by demo_ca_2.
The certificates with _ec.p12 appended to the file name
are elliptic curve certificates, which are signed by
demo_ca_ec.
In the demonstration programs, the certificate bad_guy is
used to represent a certificate for which the security has
been compromised. This certificate is included in the
certificate revocation list (CRL) crl.pem in the OrbixSSL
crl directory. Refer to “Managing Certificate Revocation
Lists” on page 48 for information about CRLs.

services/kdm_client
services/kdm_server

Example certificates used by the server key distribution
mechanism (KDM) server and the KDM utilities, for
example putkdm. Refer to the chapter “Managing Pass
Phrases” for further details.

services/orbix
services/orbix_manager
services/orbix_names
services/orbix_trader

Example certificates used by Orbix services and standard
Orbix executable files, such as the Orbix daemon, the
Orbix utilities, and the Interface Repository server.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 39

Commercial Certification Authorities
There are several commercial CAs available. The mechanism for
signing a certificate using a commercial CA depends on which CA
you choose.

An advantage of commercial CAs is that they are often trusted by
a large number of people. If your applications are designed to be
available to systems external to your organization, use a
commercial CA to sign your certificates. If your applications are
for use within an internal network, a private CA might be
appropriate.

Before choosing a CA, examine the certificate signing policies of
some commercial CAs and, if your applications are designed to be
available on an internal network only, review the potential costs of
setting up a private CA.

Private Certification Authorities
If you wish to take responsibility for signing certificates for your
system, set up a private CA. To set up a private CA, you require
access to a software package that provides utilities for creating
and signing certificates. Several packages of this type are
available.

One software package that allows you to set up a private CA is
OpenSSL. OpenSSL is an implementation of SSL developed by Eric
Young of CryptSoft Pty. Ltd. The OpenSSL package includes basic
command line utilities for generating and signing certificates and
these utilities are available with every installation of OrbixSSL.

To set up a private CA using OrbixSSL, do the following:

1 Choose a suitable host to act as CA.

2 Install OrbixSSL on the CA host.

3 Use the OpenSSL utilities to create a certificate and private key
for the CA.

4 Copy the CA certificate and private key to the required
directories on the CA host.

When you complete these steps, you can use the OpenSSL utilities
to sign application certificates for your system.

Choosing a Host for a Private Certification Authority
Choosing a host is an important step in setting up a private CA.
The level of security associated with the CA host determines the
level of trust associated with certificates signed by the CA.

If you are setting up a CA for use in the development and testing
of OrbixSSL applications, use any host that the application
developers can access. However, when you create the CA
certificate and private key, do not make the CA private key
available on hosts where security-critical applications run.

If you are setting up a CA to sign certificates for applications that
you are going to deploy, make the CA host as secure as possible.
For example, take the following precautions to secure your CA:

• Do not connect the CA to a network.

 40 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an
RF-shield.

When you choose a suitable host to act as the CA host, install
OrbixSSL and use the OpenSSL utilities to create the CA certificate
and private key.

Creating a Self-Signed Certificate and
Private Key
A self-signed certificate is a CA certificate in which the issuer and
subject of the certificate are identical. It acts as the final authority
in a certificate chain. To create a self-signed certificate and private
key for your CA, use the OpenSSL utility openssl to run the
command req as follows:

openssl req -config openssl_config_file -days 365
-out ca_cert_file.pem -new -x509

The utility openssl is located in the OrbixSSL bin directory. Replace
openssl_config_file with the fully qualified name of the OpenSSL
configuration file openssl.cnf. By default, OrbixSSL installs this file
in the config directory of your Orbix installation.

The req command requests information that identifies the CA,
including your organization name, organization address, and so
on. This information comprises the CA’s distinguished name.

This command also asks you to specify a pass phrase with which
req will encrypt the private key for the CA. Note the pass phrase
and guard it carefully.

The req command outputs two files. The first output file is
ca_cert_file.pem, which contains the CA certificate in Privacy
Enhanced Mail (PEM) format. The second output file is named
privkey.pem (this default filename can be overridden using the
-keyout option) and contains the encrypted private key for your CA
in PEM format.

Note

The integrity of your private CA depends on the security of the
pass phrase used to encrypt the CA’s private key and the integrity
of the CA’s private key file. These should be available only to
trusted users of the CA.

An Example of Creating a Self-Signed Certificate and Private
Key
Consider the example of creating a certificate and private key for
a CA to be used in signing certificates within the finance
department of ABigBank.

If the openssl.cnf file is installed in the default directory, run req
as follows:

openssl req -config openssl config file -days 365
-X509 -new -out demo_ca_1 -keyout

demo_ca_1.pk
The req command begins by generating the private key for your
CA. req prompts you to enter a pass phrase, which is used to
encrypt the private key:

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 41

Generating a 512bit private key
..............+++++
............+++++
writing new private key to 'privkey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

The default openssl.cnf file supplied with OrbixSSL configures the
key length to 512 bits. This should be increased to 1024 bits for
most live systems. When using 1024 bit keys, the initial SSL
handshake is a number of times slower than for 512 bit keys, but
the level of security obtained is very much greater.

The req command continues by requesting identification
information for your CA:

Country Name (2 letter code) []: IE
State or Province Name (full name) []: Co.

Dublin
Locality Name (eg, city) []: Dublin
Organization Name (eg, company) []: ABigBank

plc
Organizational Unit Name (eg, section) []:

Finance
Common Name (eg, YOUR name) []: Gordon Brown
Email Address []: gbrown@abigbank.com

The input for these identification fields should clearly identify the
individual or group responsible for controlling the CA.

As a result of this operation, the req command outputs two files in
the local directory. The CA certificate file is called demo_ca_1. The
CA private key file is called demo_ca_1.pk.

Installing the Certificate and Private Key Files
To prepare the CA to sign certificates, do the following:

1 Ensure that the CA certificate file name matches the certificate
value in the openssl.cnf file.

2 On the CA host, copy the CA certificate file to the root certificate
directory. To locate this directory, consult the dir entry in
openssl.cnf.

3 Ensure that the name of the CA private key file matches the
private_key value in the openssl.cnf file.

4 On the CA host, copy the private key file to the directory
specified by the private_key entry in openssl.cnf.

When you complete these steps, the CA is ready to sign
application certificates.

Publishing a Certification Authority Certificate
To authenticate a certificate signed by a CA, an application
requires access to the CA’s own certificate.

To install a CA certificate on an OrbixSSL application host, add the
CA certificate to the file specified by the IT_CA_LIST_FILE variable
in the OrbixSSL configuration file on that host.

 42 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Certificates Signed by Multiple
Certification Authorities
A CA certificate may be signed by another CA. For example, an
application certificate may be signed by the CA for the finance
department of ABigBank which in turn is signed by a commercial
CA.

This system of signing certificates is known as certificate chaining.
An application can accept a signed certificate if the CA certificate
for any CA in the signing chain is available in the certificate file in
the local root certificate directory.

To limit the length of certificate chains accepted by your
applications, add the following settings to your orbixssl.cfg file:

• IT_DEFAULT_MAX_CHAIN_DEPTH
• This configuration variable determines the default length of

certificate chains which will be accepted by OrbixSSL clients and
servers.

• IT_MAX_ALLOWED_CHAIN_DEPTH
• This configuration variable determines the maximum length of

certificate chains which will be accepted by OrbixSSL for all
OrbixSSL clients and servers that are using the security policy
file.

Refer to “Configuring Server Authentication” for more information
about these configuration variables. Applications can also limit the
maximum chain depth that they accept by using
IT_SSL::setMaxChainDepth().

Signing Application Certificates
If using a commercial CA, you must follow the CA’s procedures for
obtaining signed certificates.

If using a private CA, you can sign application certificates for use
in your system. The process for generating a signed certificate is
as follows:

1 An individual or group responsible for an application generates
a certificate signing request (CSR).

2 The CSR is submitted to the CA for signing.

3 The CA signs and returns the new certificate.

4 The certificate file is copied to the OrbixSSL certificates
directory on the host in which the application runs.

When this process is complete, the OrbixSSL application can use
the signed certificate to prove its identity to other applications.

Generating a Certificate Signing Request
To generate a certificate signing request (CSR), run the OpenSSL
command req as follows:

openssl req -config openssl config file -days 365
-new -out csr_file.pem

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 43

The req command requests information that identifies your
application. This information includes the components of the
distinguished name for your organization.

This command also asks you to specify a pass phrase which req
will use to encrypt the private key for your application. Note the
pass phrase and guard it carefully.

The req command outputs two files. The first output file is
csr_file.pem, which contains the CSR for your application. The
second output file is privkey.pem and contains the application
private key.

The file csr_file.pem should now be transferred to the CA for
signing.

An Example of Generating a Certificate Signing Request
Consider the example of generating a CSR for an OrbixSSL server
application with server name Bank. Run req as follows:

openssl req -config openssl config file -days 365
 -new -out Bank-csr.pem

The req command begins by generating a private key for your
application:

Generating a 512 bit private key
....+++++
..........+++++
writing new private key to 'privkey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

The private key is encrypted using a pass phrase that you supply.

The req command continues by requesting identification
information for your certificate:

Country Name (2 letter code) []:IE
State or Province Name (full name) []: Co.

Dublin
Locality Name (eg, city) []: Dublin
Organization Name (eg, company) []: ABigBank

plc
Organizational Unit Name (eg, section) []:

Finance
Common Name (eg, YOUR name) []: CORBA

Server:Bank
Email Address []: info@abigbank.com

Your organization should define a clear policy for the format and
content of the identification fields added to your application
certificates. Enter the requested fields according to this policy.

Signing a Certificate
To sign a certificate, run the ca command as follows:

openssl ca -config openssl config file -days 365
-in csr_file.pem > certname.pem

The ca command displays the identification information contained
in the CSR. It is critically important that you check that this
information is correct with respect to the application for which the
CSR was generated.

 44 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

The ca command asks you if you wish to sign the application
certificate. If you sign the certificate, the ca command outputs the
certificate in PEM format to the file certname.pem. This
certname.pem file is supplied to the originator of the certificate
request.

To return the certificate to the person who issued the CSR, copy
the file to disk and transfer this file from disk to a location
accessible to that person. This certificate file can then be copied to
the certificates directory on the application host. To locate this
directory, consult the certs value in the local openssl.cnf file.

Upon receipt of the certificate, the originator of the request
concatenates the output file certname.pem with the private key file
privkey.pem, produced by the req command. On UNIX, this is as
follows:

cat certname.pem privkey.pem > cert_file
On Windows, it is:

copy certname.pem privkey.pem cert_file
The concatenated file now contains the application certificate and
encrypted private key.

An Example of Signing a Certificate
Consider the example CSR described in “An Example of
Generating a Certificate Signing Request”. Sign this certificate by
running ca (on the CA host) as follows:

openssl ca -config openssl config file
-days 365 -in Bank-csr.pem -out Bank-cert.pem

The output from this command begins by requesting the pass
phrase used to encode the CA private key:

Enter PEM pass phrase:
If you enter the correct pass phrase, ca displays the identification
information contained in the CSR:

Check that the request matches the signature
Signature ok

The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName:PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'ABigBank plc'
organizationalUnitName :PRINTABLE:'Finance'
commonName :PRINTABLE:'CORBA Server:Bank'
emailAddress :IA5STRING:'info@abigbank.com'

Certificate is to be certified until Dec 12
14:11:12 2016

GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified,

commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Check that the identification information contained in the CSR is
correct in accordance with the security policy of your organization.
If the information is correct, sign the certificate and commit the
operation when prompted.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 45

This command produces a signed application certificate in the file
Bank-cert.pem. Concatenate this file with the private key file
produced by the req command. On UNIX, this is as follows:

cat Bank-cert.pem privkey.pem > Bank.pem
On Windows, it is:

copy Bank-cert.pem privkey.pem Bank.pem
Copy the file Bank.pem to the certificates directory on the host on
which the Bank server runs.

Example of Creating Certificates with OpenSSL
In the chapter, “Getting Started with OrbixSSL”, the banking
demonstration uses SSL security. However, this demonstration is
not secure because it uses the OrbixSSL demonstration
certificates. To make this demonstration secure, you must replace
the demonstration certificates with certificates that are signed by
a trusted CA.

To replace the demonstration certificates:

1 On the secure CA host, add the OrbixSSL bin directory to your
path.

2 In any directory, create a new subdirectory, named newcerts, to
store your new certificates.

3 In the Orbix config directory, edit the file openssl.cnf. Change
the value of the dir setting to the absolute path of your
newcerts directory. For example:
openssl.cnf
dir = /abigbank/newcerts
...

4 Change directory to newcerts.
5 In the directory newcerts, create the following subdirectories to

store your new versions of the demonstration certificates
described in “Overview of the OrbixSSL Demonstration
Certificates” on page 37:
ca
demos
services

6 In directory newcerts, initialize two files called serial and
index.txt.

7 On UNIX:
echo "01" > serial
touch index.txt

8 On Windows:
echo 01 > serial
echo 2> index.txt

9 Create a new self-signed CA and private key:
openssl req -x509 -new -config
Orbix config dir/openssl.cnf -days 365 -out ca/NewCA
-keyout ca/NewCA.pk

10 This command prompts you for a pass phrase for the CA private
key and details of the CA distinguished name:
Using configuration from /abigbank/openssl.cnf
Generating a 512 bit RSA private key

 46 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

....+++++

.+++++
writing new private key to 'NewCA.pk'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will
be incorporated
into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some
blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:ABigBank plc
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@abigbank.com

Note

The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.

1 Add the CA certificate to the file specified in the configuration
variable IT_CA_LIST_FILE on each host that runs secure
applications. Do not copy the CA private key to these hosts.

2 In the Orbix config directory, edit the file openssl.cnf. Change
the values of the certificate and private_key settings to the
location of the files NewCA and NewCA.pk respectively. In addition,
change the value of new_certs_dir, database and serial, if
necessary. For example:
openssl.cnf
dir = /abigbank/newcerts
certs = $dir
certificate = $certs/ca/NewCA
private_key = $certs/ca/NewCA.pk
new_certs_dir = $certs
database = $certs/index.txt
serial = $certs/serial
...

3 You are now ready to sign certificates with your new CA.

4 Create a new CSR for the orbix certificate, which is used by the
Orbix daemon:
openssl req -new -config Orbix config dir/openssl.cnf
-days 365 -out ./orbix_csr.pem -keyout
./orbix_pk.pem

5 This command prompts you for a pass phrase for the daemon’s
private key and information about the certificate distinguished
name:
Using configuration from /abigbank/openssl.cnf
Generating a 512 bit RSA private key
.+++++

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 47

.+++++
writing new private key to './orbix_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will
be incorporated
into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some
blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:ABigBank plc
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Orbix
Email Address []:info@abigbank.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:ABigBank

6 Some of the entries in the CSR distinguished name must be the
same as those used in the CA certificate. These entries depend
on the CA policy section of the file openssl.cnf. Refer to the
appendix “OpenSSL Utilities” for more information.

7 Sign the orbix CSR:
openssl ca -config Orbix config dir/openssl.cnf
-days 365 -in Orbix_csr.pem -out orbix.pem

8 This command requires the pass phrase for the private key
associated with CA NewCA:
Using configuration from ../openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'ABigBAnk plc'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Orbix Binary Certificate'
emailAddress :IA5STRING:'info@abigbank.com'
Certificate is to be certified until May 24 13:06:57
2000 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit?
[y/n]y
Write out database with 1 new entries
Data Base Updated

9 To sign the certificate successfully, you must enter the CA
private key pass phrase used in step 7.

 48 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

10 Concatenate the certificate and private key files. On UNIX, do
the following:
cat orbix.pem orbix_pk.pem > services/orbix

11 On Windows, use the following command:
copy orbix.pem orbix_pk.pem services\orbix

12 Copy the output file to each host that runs OrbixSSL
applications.

13 If you change the certificate and private key associated with an
Orbix executable or one of the Orbix services, it is important to
run the OrbixSSL update command to register the pass phrase
associated with the new private key.

14 On UNIX, to register the pass phrase used in step 10 with the
Orbix daemon, run update as follows:
update orbixd passphrase 0

15 On Windows, run this command as follows:
update orbixd.exe passphrase 0

16 Run this command on each host that runs OrbixSSL servers and
uses the new Orbix daemon certificate.

17 Repeat steps 10 to 13, creating the other certificates described
in “Overview of the OrbixSSL Demonstration Certificates” on
page 37.

If you develop Java applications using OrbixSSL, you must convert
the private key associated with each application certificate to the
encrypted format required by OrbixSSL Java applications. To do
this, use the utility keyenc, as described in the OrbixSSL
Programmer’s and Administrator’s Guide Java Edition.

Managing Certificate Revocation Lists
In some cases, CAs revoke existing certificates. For example, this
can happen when a replacement certificate is issued to correct an
error in a previous one, or when the security of the corresponding
private key has been compromised.

A certificate revocation list (CRL) is a file, issued by a CA, that
contains a list of certificates that are no longer valid, even though
they have not yet expired. OrbixSSL supports CRLs. When
checking the validity of a certificate, OrbixSSL implicitly checks
the current CRL issued by the CA that signed the certificate. If the
certificate has been revoked, OrbixSSL rejects it.

Obtaining Certificate Revocation Lists
How you obtain a CRL depends on which CAs your system uses.
Commercial CAs have distinct procedures for the issuing of CRLs.
If you use the OpenSSL utilities to set up a private CA, your CA
can issue CRLs using the OpenSSL ca command with the -gencrl
flag.

Each CRL is defined in a single file. Each file includes information
identifying the issuer and a list of certificates that are no longer
valid. The list contains the signature number of each revoked
certificate and the date on which the certificate was revoked. A
serial number is a unique identifier contained in every X.509
certificate.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 49

The OrbixSSL crl directory contains an example CRL issued by the
demonstration CA demo_ca_1. The demonstration application in the
demos/OrbixSSL/crl directory uses this CRL. The CRL contains the
serial number of the demonstration certificate bad_guy and the
application illustrates how OrbixSSL rejects this revoked
certificate.

Using Certificate Revocation Lists
To instruct OrbixSSL to use CRLs, add the following setting to the
OrbixSSL configuration file:

OrbixSSL {
IT_CRL_ENABLED = "TRUE";

};
You must then specify the location of the CRLs in your file system.
For example, the OrbixSSL demonstration CRLs are stored in the
demos/OrbixSSL/crl directory. To specify this CRL location, add the
following to the OrbixSSL configuration file:

OrbixSSL {
IT_CRL_REPOSITORY =

"OrbixSSL directory/crl";
};

Specifying the Update Period for CRLs
When you start an OrbixSSL program, OrbixSSL reads the CRLs
from file and stores them in memory. By default, OrbixSSL does
not read the information from the CRL files again.

Using the OrbixSSL configuration file, you can instruct OrbixSSL to
refresh the CRL information stored in memory at regular intervals.
To do this, use the configuration variable IT_CRL_UPDATE_INTERVAL.
This variable takes a numeric value, measured in seconds.

For example, to instruct OrbixSSL to read the CRL information
every sixty seconds, add the following to the configuration file:

OrbixSSL {
IT_CRL_UPDATE_INTERVAL = "60";

};

 50 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 51

Managing Pass Phrases
Every server secured with OrbixSSL has an associated certificate
and private key. To access its private key, and use it to encrypt
messages, a server must retrieve the associated pass phrase. This
chapter shows you how to use OrbixSSL administration to supply
pass phrases to servers.

As described in the chapter “Getting Started with OrbixSSL”, a
programmer can use the OrbixSSL API to specify the pass phrase
associated with the private key of any OrbixSSL program. For
example, the programmer might request the pass phrase from the
user and then supply this to OrbixSSL.

One problem with this approach is that many OrbixSSL servers are
launched automatically by the Orbix daemon. Ideally, such
servers would not require user intervention to obtain a pass
phrase.

For this reason, OrbixSSL provides an administrative solution to
the problem of providing private key pass phrases to servers. The
OrbixSSL server key distribution mechanism (KDM) is a utility that
enables you to supply pass phrases to servers at runtime.

Using a Central Repository for Servers
The OrbixSSL server key distribution mechanism (KDM) allows an
administrator to maintain a database of servers and their
associated private key pass phrases. When the Orbix daemon
launches an OrbixSSL server, OrbixSSL uses the KDM to retrieve
the pass phrase.

This section describes the KDM in detail. It explains how the KDM
works, how you can maintain the database of server pass phrases,
and how you can replace the KDM with other key distribution
systems.

Overview of the Key Distribution
Mechanism
The KDM is a single process that runs on each server host in your
secure system. The KDM stores an encrypted repository of server
names and their associated pass phrases. When a client connects

 52 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

to an OrbixSSL server, the Orbix daemon uses the KDM to provide
the correct pass phrase to the server.

Figure 4 Role of the Key Distribution Mechanism

As shown in Figure 4, the following events happen when a client
connects to a server that uses the KDM:

1 The client contacts the Orbix daemon on the server host.

2 The Orbix daemon requests security details for the server from
the KDM.

3 The Orbix daemon launches the server.

4 The Orbix daemon sends the pass phrase to the server.

All communications between the Orbix daemon and the KDM use
SSL security. To ensure that only the Orbix daemon has access to
server pass phrases, the KDM always uses client authentication. If
another process requests a pass phrase from the KDM, this
authentication fails.

Communications between the Orbix daemon and the server is
secure. This ensures that an external process cannot read the
server pass phrase when the daemon transfers it to the server
process.

Configuring the Key Distribution Mechanism
Before running the KDM, add the following settings to the
OrbixSSL configuration file on your server host:

OrbixSSL {
IT_KDM_ENABLED = "TRUE";
IT_KDM_REPOSITORY = "repository directory";
IT_KDM_SERVER_PORT = "server port";

};

KDM {
server {

IT_CERTIFICATE_FILE =
OrbixSSL.IT_CERTIFICATE_PATH +
"KDM server cert file";

};

Server Host

Client Host

Client

Orbix Daemon

Server

1 2

3

KDM
Repository

KDM

4

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 53

putkdm {
IT_CERTIFICATE_FILE =

OrbixSSL.IT_CERTIFICATE_PATH +
"KDM client cert file";

};
};

These configuration settings do the following:

Configuring Client Authentication
To ensure that the KDM accepts pass phrases from the putkdm
utility only and supplies pass phrases to the Orbix daemon only,
the KDM server always uses client authentication. To configure
client authentication, add the following setting to the OrbixSSL
configuration file:

OrbixSSL {
IT_KDM_CLIENT_COMMON_NAMES =

"Orbix daemon CN, putkdm CN";
};

Replace Orbix daemon CN with the common name from the Orbix
daemon certificate. Replace putkdm CN with the common name
from the certificate used by putkdm. For example, if you are using
the OrbixSSL demonstration certificates, the required values are
as follows:

OrbixSSL {
IT_KDM_CLIENT_COMMON_NAMES =

"Orbix, KDM Client";
};

If you have replaced the demonstration certificates, as described
in the chapter “Managing Certificates”, these common names

OrbixSSL.IT_KDM_ENABLED Enables the KDM. If the value of this
variable is TRUE, all servers on the
host use the KDM. Otherwise, no
servers use the KDM.

OrbixSSL.IT_KDM_REPOSITORY Specifies the absolute path of the
directory in which the KDM stores its
database of pass phrases. The user
that runs the KDM should have full
read and write access to this
directory.

OrbixSSL.IT_KDM_SERVER_PORT Specifies the port number on which
the KDM listens for incoming
communications. You can use any
available port for this value.

KDM.server.IT_CERTIFICATE_FILE Specifies the certificate file that the
KDM server should use to prove its
identity. If you are using the
OrbixSSL demonstration certificates,
set this variable to the file
services/kdm_server in the
OrbixSSL certificates directory.

KDM.putkdm.IT_CERTIFICATE_FILE Specifies the certificate file that the
KDM utility putkdm should use to
prove its identity to the KDM server.
If you are using the OrbixSSL
demonstration certificates, set this
variable to the file
services/kdm_client in the
OrbixSSL certificates directory.

 54 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

must be the same as those you entered when creating your Orbix
daemon and putkdm certificates.

Configuring the Transfer of a Pass Phrase to a Server
When the Orbix daemon transfers a pass phrase to a server, it
uses one of two communication methods: the server environment
or an operating system pipe. Using either method, the pass
phrase is encrypted and the transfer is secure.

By default, the Orbix daemon transfers the pass phrase in the
server environment. To enable the use of operating system pipes,
set the following value in the OrbixSSL configuration file:

OrbixSSL {
IT_KDM_PIPES_ENABLED = "TRUE";

};

Running the Key Distribution Mechanism
The KDM is an OrbixSSL server that the Orbix daemon contacts
using an IDL interface. The KDM server executable is called kdm
and is located in the bin directory of your installation.

Although the KDM is an OrbixSSL server, it is unlike a normal
server in one respect: you run the KDM before running the Orbix
daemon. To run the KDM:

1 Add the OrbixSSL bin directory to your path.

2 Run the following command:
kdm

3 The KDM requests the pass phrase associated with its
certificate.

4 If the KDM server uses the demonstration certificate
services/kdm_server, enter demopassword as the pass phrase. If
the KDM uses another certificate, enter the pass phrase for the
associated private key.

Maintaining the Database
Before the Orbix daemon launches a server that uses the KDM,
you must ensure that the server has a corresponding entry in the
KDM database. To add an entry to the database, use the putkdm
command:

putkdm server_name pass_phrase

The server name must match the name used to register the server
in the Implementation Repository. The private key pass phrase
must be at least six characters in length.

Verifying the Integrity of Server
Executables
As an optional feature, the KDM allows you to ensure that the
Orbix daemon only supplies pass phrases to the correct server
executables. This prevents a malicious user from replacing a
server executable with another program.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 55

To support this feature, OrbixSSL provides a command-line utility,
called ccsit, that takes a server executable file as input and
outputs a cryptographic checksum based on the contents of the
file. If the file is changed, the checksum becomes invalid.

Before running the ccsit utility, add the following settings to the
OrbixSSL configuration file:

OrbixSSL {
IT_CHECKSUMS_ENABLED = "TRUE";
IT_CHECKSUMS_REPOSITORY = "checksums directory";

};
Replace checksums directory with a directory that can contain the
checksums created by ccsit. In a production system, limit write
access to your checksums directory to a single trusted user.

To register a checksum for a server, run the ccsit utility as
follows:

ccsit server_file server_name

Replace server_file with the fully qualified name of the server
executable. Replace server_name with the name used to register
the server in the Implementation Repository.

Using the Key Distribution Mechanism
When the Orbix daemon launches a server and supplies its pass
phrase using the KDM, it is not necessary for the server to call the
API function IT_SSL::setPrivateKeyPassword(). If the server calls
this function, it overrides the value supplied by the KDM. For
information about how to write server code that uses the KDM
when available, but supplies a password explicitly when the KDM
is not available, refer to “Setting the Private Key Pass Phrase”.

 56 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Part III
OrbixSSL Programming

In this part
This part contains the following:

Programming with OrbixSSL page 59

Validating Certificates page 69

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 59

Programming with
OrbixSSL
This chapter introduces the OrbixSSL application programming
interface (API). It describes the main features of the API and how
you can use it to customize SSL support in your applications.

The OrbixSSL C++ API is a set of C++ classes that provides you
with access to the features of OrbixSSL when developing your
applications. The API enables you to:

• Initialize OrbixSSL.

• Specify whether a program can make calls to secure servers,
insecure servers, or both.

• Specify whether a program can accept calls from secure clients,
insecure clients, or both.

• Read and write OrbixSSL configuration values.

• Read certificates and private key pass phrases from files.

• Configure the cipher suites used in SSL encryption.

• Customize certificate validation.

This chapter describes how to use the API to achieve some of
these tasks. Part IV of this guide provides a complete reference
for all the C++ classes in the OrbixSSL API. Refer to this part for
more information about classes and methods introduced in this
chapter.

Overview of the OrbixSSL API
The OrbixSSL API is defined in the header file IT_SSL.h, located in
the include directory of your OrbixSSL installation. To access the
API in an OrbixSSL program, include this file:

#include <IT_SSL.h>
...

A program that uses the API must be linked with the OrbixSSL
dynamic library, as described on page 16

The class IT_SSL, defined in IT_SSL.h, provides the core features of
the OrbixSSL API. A globally available instance of this class,
named OrbixSSL, provides access to its methods. For example, to
call the method IT_SSL::init(), use the OrbixSSL object as follows:

#include <IT_SSL.h>
...

OrbixSSL.init();
Many methods in the OrbixSSL API return a status value, of type
int, that indicates whether the method is successful. For example,
if an API call is successful, it returns IT_SSL_SUCCESS. Otherwise, it
returns an error code.

For example, when calling the method IT_SSL::init(), you can
check for success as follows:

#include <IT_SSL.h>

 60 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

...

if (OrbixSSL.init() != IT_SSL_SUCCESS) {
// Decide to continue or exit.

}
The available error codes are defined in IT_SSL.h. Each error code
name begins with the string IT_SSL_ERR_.
Most OrbixSSL code is transferable from application to application.
For example, customized certificate validation is often identical for
a group of related servers. Where possible, keep OrbixSSL API
code separate from your main application code. In addition, factor
this code and place it in a shared library file. This enables you to
upgrade all applications easily if you wish to avail of new features
added to a future version of the OrbixSSL API.

Initializing OrbixSSL
The method IT_SSL::init() initializes SSL support in an OrbixSSL
program. All OrbixSSL programs must call this method, for
example:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

...
}

All the initialization methods described in this section must be
called before any remote communications take place using Orbix.

Initializing the Configuration Scope
After a call to IT_SSL::init(), OrbixSSL reads its configuration file
to determine the required settings for the program. If your
program is a client, OrbixSSL reads only the settings in scope
OrbixSSL. However, you can instruct OrbixSSL to also read the
values in a custom scope by calling the method
IT_SSL::initScope(). For example, if the client custom scope is
Clients.BankClient, call this method as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.initScope("Clients.BankClient") !=
IT_SSL_SUCCESS)

return 1;
...

}
If your program is a server, OrbixSSL reads the values in scope
OrbixSSL and then reads the values in the scope associated with
the server. By default, the server scope is defined within

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 61

OrbixSSL.ServerNames, as described in “Configuring Server
Authentication”. However, if you call IT_SSL::initScope(),
OrbixSSL uses your custom scope instead.

All servers that include OrbixSSL API calls should use a custom
configuration scope and call IT_SSL::initScope().

Setting the Private Key Pass Phrase
If an application has an associated certificate and private key, it
must supply the private key pass phrase to OrbixSSL. This
includes all OrbixSSL servers and all authenticated clients.

Setting the Pass Phrase for a Client
In an authenticated client, you supply the pass phrase by calling
the method IT_SSL::setPrivateKeyPassword(). For example, if the
pass phrase is password, call this method as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.setPrivateKeyPassword("password")
!= IT_SSL_SUCCESS)

return 1;

...
}

However, this code is not secure, because it is possible to examine
the strings embedded in an executable file. For this reason, you
should not hard code the pass phrase. Instead you should use
some mechanism to retrieve the pass phrase and supply it as a
parameter, of type const char *, to
IT_SSL::setPrivateKeyPassword(). For example, the program could
request the user to enter the password at runtime.

Setting the Pass Phrase for a Server
There are two ways to supply the pass phrase for a server private
key: using the KDM, as described in the chapter “Managing Pass
Phrases”, or using IT_SSL::setPrivateKeyPassword(). A call to
IT_SSL::setPrivateKeyPassword() overrides a pass phrase provided
by the KDM.

Typically, a server checks the availability of a pass phrase from
the KDM before calling IT_SSL::setPrivateKeyPassword(). To do
this, call IT_SSL::hasPassword() as follows:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.hasPassword() != IT_SSL_SUCCESS) {
if (OrbixSSL.setPrivateKeyPassword
("password") != IT_SSL_SUCCESS)

 62 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

return 1;
}

...
}

If the server is launched manually, or the KDM is not running,
IT_SSL::hasPassword() returns a false value and the server calls
IT_SSL::setPrivateKeyPassword(). Otherwise, the server accepts
the pass phrase supplied by the KDM and continues processing.

Requesting the Pass Phrase from a User
There are many ways to request a pass phrase from a user. To
make this task convenient, OrbixSSL provides a function, called
IT_SSL::getPassword() that requests a password from the user and
reads it into a variable of type char * in your program. This
function must use a console to request user input, but is useful
because it disables the console character echo when the user
enters text.

For example, to use IT_SSL::getPassword() in a server application,
you could do the following:

#include <IT_SSL.h>
...

int main () {
char* password;

if (OrbixSSL.init() != IT_SSL_SUCCESS)
return 1;

if (OrbixSSL.hasPassword() != IT_SSL_SUCCESS) {
password =

OrbixSSL.getPassword("Enter password:");
if (OrbixSSL.setPrivateKeyPassword
(password) != IT_SSL_SUCCESS) {

delete[] password;
return 1;

}
}

...
}

Specifying which Certificate to Use
There are two ways to specify which certificate a program uses to
identify itself: using the OrbixSSL configuration file, as described
in “Configuring Server Authentication”, or using the method
IT_SSL::setSecurityName(). Calling this method has the same
effect as setting the value of the configuration variable
IT_CERTIFICATE_FILE in the custom configuration scope for the
program.

For example, if a program uses the certificate Bank, call
IT_SSL::setSecurityName() as follows:

#include <IT_SSL.h>
...

int main () {

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 63

if (OrbixSSL.init() != IT_SSL_SUCCESS)
return 1;

if (OrbixSSL.hasPassword() != IT_SSL_SUCCESS) {
if (OrbixSSL.setPrivateKeyPassword
("password") != IT_SSL_SUCCESS)

return 1;
}

if (OrbixSSL.setSecurityName("Bank") !=
IT_SSL_SUCCESS)

return 1;

...
}

If you call IT_SSL::setPrivateKeyPassword(), you must call it before
calling IT_SSL::setSecurityName(), as shown in this example.

If the variable IT_CERTIFICATE_PATH is set in the configuration file,
OrbixSSL searches in that directory for the certificate specified by
IT_SSL::setSecurityName(). In addition, a call to
IT_SSL::setSecurityName() always overrides a corresponding
IT_CERTIFICATE_FILE value set in the configuration file.

Configuring OrbixSSL Application Types
Orbix defines two general application types: clients, which call IDL
operations on CORBA objects, and servers, which contain those
objects. However, these roles are sometimes reversed. For
example, in many applications, servers make callbacks to objects
located in clients.

In OrbixSSL, it is important to be aware that all programs can
potentially act as clients and servers. For each program, OrbixSSL
allows you to specify an invocation policy. This policy determines
whether the program uses SSL when connecting to a server and
whether it uses SSL when it accepts connection attempts from
clients. An invocation policy is a combination of these two
independent settings.

Possible settings for making connections are:

• Only make connections to servers using SSL.

• Only make connections to servers without using SSL.

• Make connections using SSL, but allow insecure connections to
specified interfaces or servers.

• Make connections to servers using SSL or without using SSL, as
required.

Possible setting for accepting connection attempts are:

• Accept only connection attempts that use SSL.

• Accept only connection attempts that do not use SSL.

• Accept either connection attempts that use SSL or attempts that
do not. In this case, the client determines whether to use SSL.

This chapter describes how you set the invocation policy for an
OrbixSSL program and how programs interact based on their
policy settings.

 64 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Choosing Invocation Policies
The most secure OrbixSSL system architecture is one in which all
applications connect using SSL. If SSL security is available to all
applications in your system, you should ensure that each
application has a fully secure policy for making and accepting
connections. This is the default setting for an OrbixSSL
application.

The least secure system architecture is one in which no
applications use SSL security. It is unlikely that your OrbixSSL
system will consist of only insecure applications, but it may be
acceptable for some of your applications to interact without using
SSL.

For example, in a secure system it is sometimes necessary to
accommodate existing applications that cannot communicate over
SSL. In this case, your system could consist of a combination of
fully secure applications, fully insecure applications, and
applications that combine secure communications with insecure
communications.

Setting an Invocation Policy
To specify the invocation policy for a program, call the method
IT_SSL::setInvocationPolicy(). This method is defined as follows:

class IT_SSL {
public:

virtual int setInvocationPolicy(int pol);
...

};
The parameter pol specifies which invocation policy the application
should use. This integer is a bitwise OR combination of the values
defined in the enumerated type IT_SSLInvocationOptions. These
values are:

IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT
IT_INSECURE_CONNECT
IT_SECURE_CONNECT
IT_SPECIFIED_INSECURE_CONNECT
IT_SPECIFIED_SECURE_CONNECT

The values IT_SECURE_ACCEPT and IT_INSECURE_ACCEPT determine
how the program behaves when accepting connection attempts
from clients. The other values determine how the program
behaves when establishing connections to servers.

For example, to specify that a program should be able to accept
both secure and insecure connection attempts, but should
establish only secure connections with servers, do the following:

#include <IT_SSL.h>
...

int main () {
if (OrbixSSL.init() != IT_SSL_SUCCESS)

return 1;

if (OrbixSSL.setInvocationPolicy(
IT_SECURE_ACCEPT | IT_INSECURE_ACCEPT |
IT_SECURE_CONNECT) != IT_SSL_SUCCESS)

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 65

return 1;

...
}

How Invocation Policies Affect OrbixSSL
Communications
Table 6 describes the set of client and target invocation policies
that communicate successfully and indicates the type of
communications associated with each case. The first column of
this table indicates the client policy of the application that calls an
IDL operation, the second column indicates the target policy of the
application that receives this operation call.

Limitations Imposed by Incompatible Invocation Policies
Because of incompatible security capabilities, limitations exist on
the interaction between some programs. For example, an insecure
client cannot communicate with a fully secure server. Such
instances have the value N/A in the communications column of
Table 6.

Table 6 How Programs with Different Invocation Policies Communicate

Client Policy Target Policy Resulting Communications

IT_SECURE_CONNECT IT_SECURE_ACCEPT Secure.

IT_SECURE_CONNECT IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT

Secure.

IT_SECURE_CONNECT IT_INSECURE_ACCEPT N/A.

IT_SPECIFIED_INSECURE_CONNECT IT_SECURE_ACCEPT Secure.

IT_SPECIFIED_INSECURE_CONNECT IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT

Secure unless explicitly specified by
client.

IT_SPECIFIED_INSECURE_CONNECT IT_INSECURE_ACCEPT Insecure only if explicitly specified
by client; otherwise N/A.

IT_SPECIFIED_SECURE_CONNECT IT_SECURE_ACCEPT Secure only if explicitly specified by
client; otherwise N/A.

IT_SPECIFIED_SECURE_CONNECT IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT

Insecure unless explicitly specified
by client; otherwise secure.

IT_SPECIFIED_SECURE_CONNECT IT_INSECURE_ACCEPT Insecure unless explicitly specified
by client; otherwise N/A.

IT_INSECURE_CONNECT IT_SECURE_ACCEPT N/A.

IT_INSECURE_CONNECT IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT

Insecure.

IT_INSECURE_CONNECT IT_INSECURE_ACCEPT Insecure.

 66 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

If a secure client attempts to communicate securely with an
insecure target, for example by resolving a reference to an object
in the target program, the client application receives an
SSL_FAILURE exception or a COMM_FAILURE exception.

If an insecure client attempts to communicate with a fully secure
target, the client receives a NO_PERMISSION exception, or a
COMM_FAILURE exception.

Specifying Exceptions to an Invocation
Policy
If your program has a client policy of
IT_SPECIFIED_INSECURE_CONNECT, it can make insecure calls only to
specified interfaces or servers. To specify the list of interfaces, the
client must call the function
IT_SSL::specifySecurityForInterfaces(). To specify the list of
servers, the client must call IT_SSL::specifySecurityForServers().
Similarly, if your program has a client policy of
IT_SPECIFIED_SECURE_CONNECT, it can make secure calls only to
specified interfaces or servers. The functions
IT_SSL::specifySecurityForInterfaces() and
IT_SSL::specifySecurityForServers() also allow a client to specify
these interfaces and servers. Refer to “Class IT_SSL” on page 111
for more information.

It is important to limit use of IT_SPECIFIED_INSECURE_CONNECT or
IT_SPECIFIED_SECURE_CONNECT, because it is not difficult for a
program to change the server name or interface that it uses. If a
client passes sensitive data to a server, it should always use
IT_SECURE_CONNECT. If a client does not pass sensitive data to a
server, but the server passes sensitive data to the client, the
server should force the client to connect using SSL.

Configuring OrbixSSL
The OrbixSSL configuration file, described in the chapter “Defining
a Security Policy”, specifies the security policy for each of your
applications. An OrbixSSL program can override some of the
configuration values in this files using the OrbixSSL API.

Table 7 describes the configuration variables that you can read or
write using the OrbixSSL API and the associated API functions for
these variables. Refer to “Class IT_SSL” on page 111 for more
information about each function.

Table 7 Read and Write Functions for OrbixSSL Configuration Variables

Configuration Variable Associated Functions

IT_AUTHENTICATE_CLIENTS_BY_DEFA
ULT

IT_SSL::getClientAuthentication()

IT_SSL::setClientAuthentication()

IT_CA_LIST_FILE IT_SSL::getCAListFile()

IT_CACHE_OPTIONS IT_SSL::getCacheOptions()

IT_SSL::setCacheOptions()

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 67

Logging OrbixSSL Trace Information
The OrbixSSL configuration file, described in the chapter “Defining
a Security Policy”, allows you to add security trace information to
OrbixSSL programs. Two configuration variables control this
behaviour:

The variable IT_SSL_TRACEFILE has a large effect on performance.
Set this variable only if diagnostic information is required. Once
set, it causes the trace file to grow quickly.

IT_CERTIFICATE_FILE IT_SSL::getSecurityName()

IT_SSL::setSecurityName()

IT_CIPHERSUITES IT_SSL::getNegotiatedCipherSuite()

IT_SSL::specifyCipherSuites()

IT_CRL_REPOSITORY IT_SSL::getCRLDir()

IT_DEFAULT_MAX_CHAIN_DEPTH IT_SSL::getMaxChainDepth()

IT_SSL::setMaxChainDepth()

IT_INSECURE_REMOTE_INTERFACES IT_SSL::specifySecurityForInterfaces()

IT_INVOCATION_POLICY IT_SSL::getInvocationPolicy()
IT_SSL::setInvocationPolicy()

IT_SECURE_REMOTE_INTERFACES IT_SSL::specifySecurityForInterfaces()

Table 7 Read and Write Functions for OrbixSSL Configuration Variables

Configuration Variable Associated Functions

IT_SSL_TRACE_LEVEL When this variable is set to 1, programs affected by
the variable output diagnostic information about the
peer certificate chain during SSL authentication.

IT_SSL_TRACEFILE If you require additional trace information, set this
variable to the full path name of the file that you
want this information to be written to. This file
should be associated with only one running process.

 68 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 69

Validating Certificates
During SSL authentication, OrbixSSL checks the validity of an
application’s certificate. This chapter describes how OrbixSSL
validates a certificate and how you can use the OrbixSSL API to
introduce additional validation to your applications.

The OrbixSSL API allows you to define functions that implement
custom validation of certificates. During SSL authentication,
OrbixSSL validates a certificate and then passes it to your custom
validation function for examination. This functionality is very
important in systems that log information about certificates or
have application-specific requirements for the contents of each
certificate.

An X.509 certificate contains information about the supplier and
the CA that issued the certificate. The structure of a certificate is
specified in Abstract Syntax Notation One (ASN.1), a standard
syntax for describing messages that can be sent or received on a
network.

OrbixSSL provides a set of C++ classes that enable you to extract
the information from a certificate without a detailed understanding
of the corresponding ASN.1 definitions. When writing your
certificate validation functions, you use these classes to examine
the certificate contents.

Overview of Certificate Validation
Figure 5 shows a server sending its certificate to a client during an
SSL handshake. OrbixSSL code at the server reads the certificate
from file and transmits it as part of the handshake. OrbixSSL code
at the client reads the certificate from the network, checks the
validity of its contents, and either accepts or rejects the
certificate.

Figure 5 OrbixSSL Validating a Certificate

The default certificate validation in OrbixSSL checks:

• That the certificate is a validly constructed X.509 certificate.

• That the signature is correct for the certificate.

Client

Application Code

OrbixSSL checks
certificate

OrbixSSL accepts
or rejects certificate

OrbixSSL Code
1

2

Server

Application Code

OrbixSSL Code

 70 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

• That the certificate chain is validly constructed, consisting of the
peer certificate plus valid issuer certificates up to the maximum
allowed chain depth.

• That the certificate has not been revoked by the issuer. This
check takes place only if enabled by OrbixSSL configuration.

For some applications, it is necessary to introduce additional
validation. For example, your client programs might check that
each server uses a specific, expected certificate.

Using OrbixSSL, you can register a function that carries out extra
validation on certificates. When OrbixSSL receives a certificate, it
validates it in the usual way and then passes it to your custom
validation function, with an error code indicating whether the
default validation succeeded or failed. You can then use the
OrbixSSL API to examine the full contents of the certificate and
instruct OrbixSSL whether to accept or reject it.

Figure 6 illustrates how a custom validation function interacts with
OrbixSSL code during an SSL handshake.

Figure 6 Using a Custom Validation Function

Introducing Additional Validation
OrbixSSL allows you to register two functions for additional
certificate validation: one for validating certificates received from
servers, and another for validating certificates received from
clients. These two types of certificate often require different
validation at the application level.

To register a function for server certificate validation, call the
function IT_SSL::setValidateServerCallback() on the OrbixSSL
object. This function is defined as:

class IT_SSL {
public:

virtual void setValidateServerCallback(
IT_ValidateX509CertCB cb);
...

};

Client Server

Application Code Application Code

OrbixSSL checks
certificate

OrbixSSL accepts
or rejects certificate

Validation
function
accepts
or rejects
certificate

Validation function
checks certificate

OrbixSSL Code

Validation Function OrbixSSL Code

1

23

4

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 71

To register a function for client certificate validation, call the
function IT_SSL::setValidateClientCallback() on the OrbixSSL
object. This function is defined as:

class IT_SSL {
public:

virtual void setValidateClientCallback(
IT_ValidateX509CertCB cb);
...

};
A certificate validation function must have the following signature:

int function_name(IT_CertValidity ok,
IT_X509CertChain& peerChain);

When OrbixSSL calls your validation function, it supplies two
parameters. The first parameter is of type IT_CertValidity. This
parameter indicates whether the default certificate validation
succeeded or failed. It takes one of the following values:

The second parameter is of type IT_X509CertChain&. This
parameter provides access to the full certificate chain. “Examining
the Contents of a Certificate” on page 71 describes how you use
this parameter to examine the contents of the peer certificate.

Your custom validation function must return an int value. If this
return value is IT_SSL_VALID_NO, OrbixSSL rejects the certificate. If
the return value is IT_SSL_VALID_YES, OrbixSSL accepts the
certificate. The return value has no effect if the first parameter
passed to the function is IT_SSL_VALID_NO.

Examining the Contents of a Certificate
The role of a certificate is to associate an identity with a public key
value. In more detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

• A common name that identifies the supplier.

• The public key associated with the common name.

• The name of the user who created the certificate, which is
known as the subject name.

• Information about the certificate issuer.

• The signature of the issuer.

• Information about the algorithm used to sign the certificate.

IT_SSL_VALID_YES Indicates that the default certificate
validation succeeded.

IT_SSL_VALID_NO Indicates the default certificate
validation failed, and the application
must reject the certificate.

IT_SSL_VALID_NO_APP_DECISI
ON

Indicates the default certificate
validation failed, but the application can
chose whether to accept or reject the
certificate.

 72 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

• Some optional X.509 version three extensions. For example, an
extension exists that distinguishes between CA certificates and
end-entity certificates.

The second parameter to your custom validation function, of type
IT_X509CertChain&, provides access to the certificate chain received
by OrbixSSL. Class IT_X509CertChain is defined in IT_SSL.h as
follows:

class IT_X509CertChain {
public:

...

virtual unsigned int numCerts();
virtual int getCert(unsigned int pos,
IT_X509Cert& ret);
virtual int getErrorInfo(IT_CertError& ret);
virtual int getCurrentCert(IT_X509Cert& ret);
virtual int getCurrentDepth();

};

The function IT_X509CertChain::numCerts() indicates the number of
certificates in the certificate chain. For example, if the peer
certificate is signed by a single, self-signed CA, this function
returns a value of two. The function IT_X509CertChain::getCert()
returns a certificate from a particular position in the chain, starting
at one. Repeated calls to IT_X509CertChain::getCurrentCert()
iterate through the certificate chain.

When you call IT_X509CertChain::getCert() or
IT_X509CertChain::getCurrentCert(), you receive an object of type
IT_X509Cert that represents the required certificate. Class
IT_X509Cert is defined in IT_SSL.h as follows:

class IT_X509Cert {
public:

...

virtual int getVersion(unsigned int& ver);
virtual int getSerialNumber(IT_IntegerData& i);
virtual int getIssuer(IT_AVAList& l);
virtual int getSubject(IT_AVAList& l);
virtual int getExtensions(IT_ExtensionList& e);
virtual int getNotBefore(IT_UTCTime& t);
virtual int getNotAfter(IT_UTCTime& t);
virtual int getSignatureAlgorithm(IT_OID& oid);
virtual int length(IT_Format f);
virtual int convert(char *buf, IT_Format f);

};

Part IV of this guide provides detailed information about the
member functions of this class. These member functions return
C++ types corresponding to the ASN.1 types of the certificate
contents. For example, IT_X509Cert::getVersion() returns an
unsigned integer value that indicates the X.509 version number in
use. In accordance with the X.509 standard, a value of 0
corresponds to version one, 1 corresponds to version two, and 2
corresponds to version three.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 73

Working with Distinguished Names
An X.509 certificate uses ASN.1 distinguished name structures to
store information about the certificate issuer and subject. A
distinguished name consists of a series of attribute value
assertions (AVAs). Each AVA associates a value with a field from
the distinguished name.

For example, the distinguished name for a certificate issuer could
be represented in string format as follows:

/C=IE/ST=Co.
Dublin/L=Dublin/O=ABigBank/OU=PD/CN=ABigBank

In this example, AVAs are separated by the / character. The first
field in the distinguished name is C, representing the country of
the issuer, and the corresponding value is the country code IE.
This example distinguished name contains six AVAs.

When you call the functions IT_X509Cert::getIssuer() or
IT_X509Cert::getSubject(), OrbixSSL returns the corresponding
distinguished name as an object of type IT_AVAList. Class
IT_AVAList is defined as follows:

class IT_AVAList {
public:

virtual int convert(char* buf, IT_Format f);
virtual int getAVA(unsigned int pos,

IT_AVA& retAVA);
virtual int getAVAByOID(IT_OID oid,

IT_AVA& retAVA);
virtual int getAVAByOIDTag(IT_OID_Tag oid,

IT_AVA& retAVA);
virtual unsigned int getNumAVAs();
virtual int length(IT_Format f);

};
To retrieve a particular AVA from a distinguished name, use the
IT_AVAList object that represents the name. Each AVA in a
distinguished name has an associated ASN.1 object identifier
(OID).

You can retrieve a particular field using any one of the following
three functions:

Each of these functions returns an object of type IT_AVA. You can
then use the functions in class IT_AVA to convert the AVA to a
number of different formats, such as string format or DER format,

getAVA() Returns an AVA from a particular position in the
distinguished name. To use this, you must
understand the contents of the distinguished name
that you receive.

getAVAByOID() Returns an AVA associated with a particular
OID. To use this, you must know the OID of
the field you require.

getAVAByOIDTag() Returns an AVA associated with a particular
OID, but uses the tags defined in type
IT_OIDTag instead of the actual OID. Using this
method, you can access some of the
commonly required distinguished name fields
without knowing the corresponding OIDs or
positions in the distinguished name.

 74 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

and retrieve the associated OID. Refer to class IT_AVA on page 83
for more details.

Working with X.509 Extensions
Some X.509 version three certificates include extensions. These
extensions can contain several different types of information. If
you wish to extract information from the extensions included in a
certificate, call IT_X509Cert::getExtensions() on the certificate
object.

This function returns an object of type of type IT_ExtensionList.
This class is defined as follows:

class IT_ExtensionList {
public:

virtual int convert(char* buf, IT_Format f);
virtual unsigned int getNumExtensions();
virtual int getExtension(int pos,

IT_Extension& retExt);
virtual int getExtensionByOID(IT_OID oid);

virtual int getExtensionByOIDTag(
IT_OID_Tag oid);

virtual int length(IT_Format f);
};

Like AVAs, each possible extension is associated with an ASN.1
OID. Given a list of extensions, you can retrieve the extension you
require using any one of the following three functions:

Each of these functions returns an object of type IT_Extension. You
can then use the functions in class IT_Extension to convert the
extension information to a number of different formats, such as
string format or DER format, and retrieve the associated OID.
Refer to Class IT_Extension for more details.

Example of a Certificate Validation Function
This section describes a simple validation function, registered in
an OrbixSSL client, that prints the common name (CN) of a server

getExtension() Returns an extension from a particular
position in the extension list. To use this, you
must understand the list of extensions
included in the certificate.

getExtensionByOID() Returns an extension associated with a
particular OID. To use this, you must know
the OID of the extension you require. Use this
function only when the extension you require
is not available from
getExtensionByOIDTag().

getExtensionByOIDTag() Returns an extension associated with a
particular OID, but uses the tags defined in
type IT_OIDTag instead of the actual OID.
Using this method, you can access some
extensions without knowing the corresponding
OIDs or positions in the extension list.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 75

to which the client connects. The code for this function is as
follows:

int example_val_func(int ok, IT_X509CertChain&
PeerCertChain) {

int ret = ok;

// Checks only the peer certificate. The current
chain

// depth is zero for this certificate.
if(ok==IT_SSL_VALID_YES &&

PeerCertChain.getCurrentDepth()==0){
char *buf = NULL;
int len;
IT_X509Cert x;
IT_AVAList aval;
IT_AVA ava;

PeerCertChain.getCurrentCert(x);

// Get details about the subject.
1 x.getSubject(aval);

// Get the common name from the subject
details.

2 aval.getAVAByOIDTag(IT_OIDT_commonName, ava);

3 if ((len = ava.length(IT_FMT_STRING)) <= 0)
return 0;

buf = new char[len];
4 if (buf && (ava.convert(buf, IT_FMT_STRING)==

IT_SSL_SUCCESS))
cout << "The common name (CN) of the servers

cert
is:" << buf << endl;

delete[] buf;
}

return ret;
}

You can register this function using the following call:
OrbixSSL.setValidateServerCertCallback(example_val
_func);

The code is explained as follows:

1 The IT_X509Cert::getSubject() function returns the subject’s
distinguished name field from an X.509 certificate.

2 A call to IT_AVAList::getAVAByOIDTag() extracts the common
name field from the subject name. The common name field is
the name of the entity for whom the certificate was issued.

3 A call IT_AVA::length() gets the amount of memory required to
store the common name.

4 A call IT_AVA::convert() returns the common name in the
supplied buffer.

The validation function is called once for each certificate in the
peer certificate chain. However, you can restrict the function to
just examining the peer certificate (that is, the server’s actual

 76 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

certificate) by checking if the current depth in the chain is zero, as
shown in this example.

Using Certificate Revocation Lists
As described in “Managing Certificate Revocation Lists” on
page 48, you can configure OrbixSSL to include Certificate
Revocation List (CRL) checking when it validates certificates. This
means that each time OrbixSSL checks the validity of a certificate,
it examines the CRL associated with the certificate CA to ensure
that the issuer has not revoked the certificate.

Using the OrbixSSL API, you can also access CRLs directly. For
example, you can use the API to check the contents of CRLs
located in a directory other than the CRL directory that you have
configured OrbixSSL to use.

OrbixSSL represents a group of CRLs as an object of type
IT_CRL_List. This class is defined as follows:

class IT_CRL_List {
public:

...

virtual int add(const IT_X509_CRL_Info& aCRL);
virtual int remove

(const IT_AVAList& lstIssuer);

virtual int find(const IT_AVAList& lstIssuer,
CORBA(Boolean)& bFound,
IT_X509_CRL_Info& aCRL) const;

virtual int openCRLFiles(const char* szCRLDir);
virtual int PollForUpdates(

CORBA(Boolean)& bUpdated);
};

To examine a list of CRLs:

1 Create an object of type IT_CRL_List, for example:
IT_CRL_List extraCRLs = new IT_CRL_List();

2 On this object, call the function IT_CRL_List::openCRLFiles(),
specifying the location in which your CRLs are stored:
extraCRLs.openCRLFiles("/local/crl");

3 Call the function IT_CRL_List::find() to access the CRL
associated with a particular CA. This function returns the CRL as
an object of type IT_X509_CRL_Info.

In addition to accessing a CRL from the list, you can use the
functions IT_CRL_List::add() and IT_CRL_List::remove() to modify
the list contents. However, these functions affect only the copy of
the list stored in memory and not the files associated with the
CRLs.

Examining the Contents of a Certificate
Revocation List
OrbixSSL represents each CRL in the CRL list as an object of type
IT_X509_CRL_Info. This class is defined as follows:

class IT_X509_CRL_Info {

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 77

public:
...

virtual int getSignatureAlgorithm(IT_OID& oid)
const;

virtual int getVersion(unsigned int& nVer)
const;

virtual int getIssuer
(IT_AVAList& lstIssuer) const;

virtual int getLastUpdate(IT_UTCTime& t) const;
virtual int getNextUpdate(IT_UTCTime& t) const;

virtual int getRevokedCerts
(IT_X509_RevokedList& r) const;

virtual int find(const IT_IntegerData&
nSerialNum, CORBA(Boolean)& bFound,
IT_X509_Revoked& r) const;

virtual int getExtensions(IT_ExtensionList& e)
const;

virtual int openFile(const char* file,
IT_Format fmt);

};
This class provides information about the CRL issuer, the CRL
version number, when the CRL was last updated, and when the
next update is expected. It also allows you to access the contents
of the CRL.

To retrieve information about the revoked certificates, call the
function IT_X509_CRL_Info::getRevokedCerts(). This function
returns the revoked certificate information as an object of type
IT_X509_Revoked_List:

class IT_X509_RevokedList {
public:

...

virtual unsigned int getCount() const;
virtual int getRevoked(int nPos,

IT_X509_Revoked& r) const;
};

Given an object of this type, call the function
IT_X509_Revoked_List::getCount() to determine the number of
revoked certificates in the list and use
IT_X509_Revoked_List::getRevoked() to access information about an
individual revoked certificate.

Function IT_X509_Revoked_List::getRevoked() returns the revoked
certificate information as an object of type IT_X509_Revoked:

class IT_X509_Revoked {
public:

...

virtual int getSerialNumber
(IT_IntegerData& serialNum) const;

virtual int getRevocationDate(IT_UTCTime& t)
const;

virtual int getExtensions
(IT_ExtensionList& e) const;

virtual int getSequence(int& n) const;
};

 78 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

In a CRL, each certificate is identified by its serial number. The
function IT_X509_Revoked::getSerialNumber() returns this identifier,
which you can check against the serial number of an IT_X509Cert
object. Call IT_X509::getSerialNumber() to retrieve the serial
number from an object of this type.

For more information about the OrbixSSL CRL support classes,
refer to Part IV of this guide.

Part IV
OrbixSSL Reference

In this part
This part contains the following:

Class IT_AVA page 83

Class IT_AVAList page 87

Struct IT_CertError page 91

Class IT_CRL_List page 93

Class IT_Extension page 97

Class IT_ExtensionList page 101

Class IT_IntegerData page 105

Struct IT_OID page 107

Enum IT_OIDTag page 109

Class IT_SSL page 111

Struct IT_UTCTime page 131

Typedef IT_ValidateX509CertCB page 133

Class IT_X509_CRL_Info page 135

Class IT_X509_Revoked page 139

Class IT_X509_RevokedList page 141

Class IT_X509Cert page 143

Class IT_X509CertChain page 149

 82 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 83

Class IT_AVA
Synopsis As described in the chapter “Validating Certificates”, an IT_AVAList

is an abstraction of a distinguished name from a certificate. An
IT_AVAList consists of a number of IT_AVA objects.
Individual IT_AVA objects represent an element of the
distinguished name such as the common name field (CN) or
organization unit (OU). You can retrieve a desired IT_AVA object
can using the IT_AVAList class.
IT_AVA objects can be converted to a number of different forms
such as string format or DER format. For more information on
these formats, refer to IT_AVAList::convert() on page 87 and
IT_AVAList::length() on page 90.

C++ class IT_AVA {
public:

virtual int convert(char* buf, IT_Format f);
virtual int length(IT_Format f);
virtual int OID(IT_OID& retOID);
virtual int getSet();

};

IT_AVA::convert()

Synopsis virtual int convert(char* buf, IT_Format f);
Description This function fills the supplied buffer with the requested format of

data corresponding to the contents of the AVA object. For
example, given an IT_AVA object that is part of a subject
IT_AVAList, you could obtain the string form of the common name
component of a distinguished name by using MyAVA.convert(buf,
IT_FMT_STRING).

Parameters

buf The user supplied buffer that must be of sufficient size to
hold the requested conversion. To find the required length
of buffer for a particular type, call IT_AVA::length().

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER. In this format, buf contains a sequence of
bytes corresponding to the DER encoding of the AVA. This
option is typically only used by applications that require
special processing of the DER data.
IT_FMT_STRING. In this format, buf contains a
null-terminated sequence of characters corresponding to
the actual data of the AVA. The data is not modified in any
way, and can include non-printable characters if present
in the actual AVA data. This is a string for normal
printable string fields.
IT_FMT_HEX_STRING. In this format, buf contains a
formatted hexadecimal dump of the DER data of the AVA.

 84 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Return Value Returns the number of bytes required to store the information
associated with this AVA in the requested format. Returns -1 if the
required conversion is not supported.

IT_AVA::length()

Synopsis virtual int length(IT_Format f);
Description This function is used to calculate how much storage is required to

hold the result of a call to IT_AVA::convert() for a particular
IT_Format value. Refer to IT_AVA::convert() for a list of the
supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

IT_AVA::OID()

Synopsis virtual int OID(IT_OID& retOID);
Description This function obtains the IT_OID structure which represents the

object identifier for this AVA.

Parameters

Return Value Returns IT_SSL_SUCCESS if IT_OID structure is successfully obtained.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVA object has not
yet been initialized.

See Also T_OID_Tag
IT_AVAList::getAVAByOID()
IT_Extension::OID()
IT_ExtensionList::getExtensionByOID()
IT_OID

IT_FMT_INTERNAL. In this format, buf contains the value of a
variable of the OpenSSL data type X509_NAME_ENTRY *.
WARNING: This value provides access to low-level SSL
Toolkit data structures, and is non-portable. Code that
uses this feature will not work if the underlying SSL toolkit
is changed. IT_FMT_INTERNAL allows direct access to the
low-level SSL toolkit data representation of this AVA, thus
allowing the user to directly call the toolkit API. Take
extreme care if using this option.

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER
IT_FMT_STRING
IT_FMT_HEX_STRING
IT_FMT_INTERNAL

retOID The IT_OID variable that is to be updated.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 85

IT_AVA::getSet()

Synopsis virtual int getSet();
Description This function obtains the set that an AVA belongs to in an AVAList.

It is required only in the rare case where you expect to parse
certificates that have AVA sets with a cardinality greater than one
in the RelativeDistinguishedName. Normally, there is only one
element in each set. Most OrbixSSL developers never use this
function.

Return Value Returns the set that an AVA belongs to in an AVAList.

 86 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 87

Class IT_AVAList
Synopsis An IT_AVA_List consists of a number of IT_AVA objects and is an

abstraction of the distinguished name fields in a certificate. This
class provides a number of methods for obtaining individual IT_AVA
objects.
A distinguished name is composed of a number of Attribute Value
Assertions (AVAs). Each IT_AVA instance represents one
component of the distinguished name. IT_AVA instances may be
selected from an IT_AVAList using IT_OID_Tag values as keys, or by
using an integer array that represents the ASN.1 object identifier.
It is also possible to iterate over the list.

C++ class IT_AVAList {
public:

virtual int convert(char* buf, IT_Format f);
virtual int getAVA(unsigned int pos, IT_AVA& retAVA);
virtual int getAVAByOID(IT_OID oid, IT_AVA& retAVA);
virtual int getAVAByOIDTag(IT_OID_Tag oid, IT_AVA& retAVA);
virtual unsigned int getNumAVAs();
virtual int length(IT_Format f);

};
See Also IT_AVA

IT_OID_Tag

IT_AVAList::convert()

Synopsis virtual int convert (char* buf, IT_Format f);
Description This function fills the supplied buffer with the requested format of

data corresponding to the contents of the AVAList object. For
example, given an IT_AVAList object corresponding to the subject
field, you can obtain the DER form of the name by calling
MyAVAList.convert(buf, IT_FMT_DER).

Parameters

buf A user-supplied buffer that must be of sufficient size to hold
the requested conversion. To find the required length of
buffer for a particular conversion type, call
IT_AVAList::length().

 88 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Return Value Returns an array of bytes that store the result of the conversion.
Returns NULL if the required conversion is not supported.

IT_AVAList::getAVA()

Synopsis virtual int getAVA(unsigned int pos, IT_AVA& retAVA);
Description This function obtains the AVA at the specified index.

Parameters

Return Value Returns IT_AVA_SUCCESS if the AVA is successfully returned at the
specified index.
Returns IT_SSL_ERR_INVALID_PARAMETER if the index position is
invalid.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVAList is not
initialized.
Returns IT_SSL_ERR_AVA_NOT_PRESENT if the specified AVA does not
exist.

See Also IT_AVAList::getAVAByOID()
IT_AVAList::getAVAByOIDTag()

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER. In this format, buf contains a sequence of bytes
corresponding to the DER encoding of the AVA. This option is
typically used only by applications that require special
processing of the DER data.
IT_FMT_STRING. In this format, buf contains a null-terminated
sequence of characters corresponding to a printable string
which contains the text values of the AVAs concatenated
together. Each AVA element is preceded by the short name
description of the AVA. For example,
"/C=IE/ST=Co. Dublin/L=Dublin/O=ABigBank PLC.
/OU=PD/CN=ABigBank PLC Software Test
CA/Email=info@abigbank.com".
IT_FMT_HEX_STRING. In this format, buf contains a
null-terminated string which is a formatted hexadecimal
dump of the DER data of the AVA.
IT_FMT_INTERNAL. In this format, buf contains the value of a
variable of the OpenSSL data type X509_NAME *.
WARNING: This value provides access to low-level SSL
Toolkit data structures, and is non-portable. Code that uses
this feature will not work if the underlying SSL toolkit is
changed. IT_FMT_INTERNAL allows direct access to the low-level
SSL toolkit data representation of this AVA, thus allowing the
user to directly call the toolkit API. Take extreme care if using
this option.

pos The specified index position. The index ranges in value
from 0 to the number of elements in the list minus 1.

retAVA The AVA object to be updated.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 89

IT_AVAList::getAVAByOIDTag()

Synopsis virtual int getAVAByOIDTag(IT_OID_Tag t, IT_AVA& retAVA);
Description This function obtains the IT_AVA element of the IT_AVAList which

corresponds to the requested IT_OID_Tag value.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_AVA element of the IT_AVAList is
successfully returned.
Returns IT_SSL_ERR_AVA_NOT_PRESENT if the IT_AVA element of the
IT_AVAList is not found.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVAList is not
initialized.

See Also enum IT_OID_Tag
IT_AVA::OID()
IT_AVAList::getAVAByOID()
struct IT_OID

IT_AVAList::getAVAByOID()

Synopsis virtual int getAVAByOID(int* seq, unsigned int n, IT_AVA&
retAVA);

Description This function obtains the IT_AVA element of the IT_AVAList which
has the requested object identifier.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_AVA element of the IT_AVAList is
successfully returned.
Returns IT_SSL_ERR_AVA_NOT_PRESENT if the IT_AVA element of the
IT_AVAList is not found.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_AVAList is not
initialized.

See Also enum IT_OID_Tag
IT_AVA::OID()
IT_AVAList::getAVAByOIDTag()
struct IT_OID

t The IT_OID_Tag value which identifies the AVA you want
to retrieve.

retAVA The AVA object to be updated.

seq An array of integer values.
n The number of elements in the array.
retAVA The IT_AVA object to be updated.

 90 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_AVAList::getNumAVAs()

Synopsis virtual unsigned int getNumAVAs();
Description This function obtains the number of AVA elements contained in

this IT_AVAList.
Return Value Returns the number of AVA elements.

See Also class IT_AVA

IT_AVAList::length()

Synopsis virtual int length(IT_Format f);
Description This function is used to calculate how much storage is required to

hold the result of a call to IT_AVAList::convert() for a particular
IT_Format value. Refer to IT_AVAList::convert() for a list of the
supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

See Also IT_AVAList::convert()

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER
IT_FMT_STRING
IT_FMT_HEX_STRING
IT_FMT_INTERNAL
For more information, refer to IT_AVAList::convert() on
page 87.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 91

Struct IT_CertError
Synopsis Some API functions use the structure IT_CertError to return

information gathered during certificate chain processing.

C++ struct IT_CertError {
int depth;
int error;
int externalError;
int externalErrorDepth;
int externalErrorSet;

};
Description The structure IT_CertError contains the following fields:

See Also IT_X509CertChain::getErrorInfo()
IT_SSL::setClientCertValidationCB()
IT_SSL::setServerCertValidationCB()

depth The depth in the certificate chain at which
point the error was encountered.

error The error code that OrbixSSL has associated
with the certificate chain during validation of
the certificate.

externalErrorSet For diagnostic purposes, OrbixSSL provides
direct access to the error code returned by the
underlying SSL toolkit. This field is set to 1 if
an external SSL toolkit error code is available.
If externalErrorIsSet is 1, you can examine
the externalError and externalErrorDepth
fields to get more details about the error
returned by the toolkit.

externalError This field contains the SSL toolkit’s internal
error code. Examine this field only if the value
of externalErrorIsSet is 1.

externalErrorDepth This field contains the depth in the peer
certificate chain at which the external error
was encountered.

 92 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 93

Class IT_CRL_List
Synopsis This class represents a list of the certificate revocation lists (CRLs)

available to an OrbixSSL program. CRLs are described in the
chapters, “Managing Certificates” and “Validating Certificates”.
Using class IT_CRL_List, you can open the CRLs located in any
directory on your host, check for the presence of a specified
certificate issuer in the CRLs, and add or remove CRLs.

C++ class IT_CRL_List {
public:

IT_CRL_List();
IT_CRL_List(const IT_CRL_List& lstCRL);
virtual ~IT_CRL_List();

virtual int add(const IT_X509_CRL_Info& aCRL);
virtual int remove(const IT_AVAList& lstIssuer);
virtual int find(const IT_AVAList& lstIssuer,

CORBA(Boolean)& bFound, IT_X509_CRL_Info& aCRL) const;
virtual int openCRLFiles(const char* szCRLDir);
virtual int PollForUpdates(CORBA(Boolean)& bUpdated);

};
See Also IT_SSL::getCRLDir()

IT_X509_CRL_Info
IT_X509_Revoked
IT_X509_RevokedList

IT_CRL_List::add()

Synopsis virtual int add(const IT_X509_CRL_Info& aCRL);
Description This function adds a new CRL to the existing CRLs stored on the

host. The CRL is represented as an object of type
IT_X509_CRL_Info. The CRL is not written to file; it is represented in
memory only.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in adding the CRL.
Otherwise, it returns zero.

aCRL An object that contains information about the CRL to be
added.

 94 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_CRL_List::find()

Synopsis virtual int find(const IT_AVAList& lstIssuer,
CORBA(Boolean)& bFound, IT_X509_CRL_Info& aCRL) const;

Description This function locates the CRL issued by a specified CA.

Parameters This function takes the following parameters:

Return Value Returns a non-zero value if it succeeds in finding the CRL.
Otherwise, it returns zero.

IT_CRL_List::openCRLFiles()

Synopsis virtual int openCRLFiles(const char* szCRLDir)
Description This function opens the CRL files contained in a specified directory.

You must call this function before using the other functions in this
class.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in opening the CRL files.
Otherwise, it returns zero.

IT_CRL_List::PollForUpdates()

Synopsis virtual int PollForUpdates(CORBA(Boolean)& bUpdated);
Description Checks the open CRL files to determine if the CRLs have been

updated since they were last read. If the files have been updated,
the updates are read into memory.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in polling the files.
Otherwise, it returns zero.

1stIssuer An object of type IT_AVAList containing the
distinguished name that identifies the issuer.

bFound A boolean value. Set to true if the CA has an
associated CRL. Otherwise, this value is set to false.

aCRL An object that represents the CRL associated with the
CA.

szCRLDir The directory that contains the CRL files.

bUpdated This boolean value indicates whether the files have
been updated. It is set to true if they have been
updated. Otherwise, it is set to false.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 95

IT_CRL_List::remove()

Synopsis virtual int remove(const IT_AVAList& lstIssuer);
Description This function removes an existing CRL from the list of CRLs stored

on the host. The CRL is represented as an object of type
IT_X509_CRL_Info. The update is not written to file; it is
represented in memory only.

Parameters This function takes the following parameter:

Return Value Returns a non-zero value if it succeeds in removing the CRL.
Otherwise, it returns zero.

1stIssuer An object of type IT_AVAList containing the
distinguished name that identifies the issuer
associated with the CRL to be removed.

 96 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 97

Class IT_Extension
Synopsis The IT_Extension and IT_ExtensionList classes provide the

OrbixSSL developer with an interface to any X.509 version three
extensions that an X.509 certificate can contain.
IT_X509Cert::getExtensions() enables you to obtain an
IT_ExtensionList object that has a number of member functions
for retrieving individual extensions.
The IT_Extension class provides an interface to accessing the data
for one particular extension. Using the IT_Extension::convert()
and IT_Extension::length() member functions, the data can be
converted into a number of representations. Use of the
IT_Extension and IT_ExtensionList classes is analogous to the use
of the IT_AVA and IT_AVAList classes.

C++ class IT_Extension {
public:

virtual int convert(char* buf, IT_Format f);
virtual int critical();
virtual int length(IT_Format f);
virtual int OID(IT_OID& retOID);

};

IT_Extension::convert()

Synopsis virtual int convert(char* buf, IT_Format f);
Description This function fills the supplied buffer with the requested format of

data corresponding to the contents of the IT_Extension object.

Parameters

buf The user supplied buffer that must be of sufficient size to
hold the requested conversion. To find the required length
of buffer for a particular conversion type, call the
IT_Extension::length() function.

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER. In this format, buf contains a sequence of bytes
corresponding to the DER encoding of the extension. This
option is typically only used by applications that require
special processing of the DER data.
IT_FMT_STRING. In this format, buf contains a null
terminated sequence of characters corresponding to the
actual data contained in the extension. This data has not
been modified in any way, and may include non printable
characters if present in the actual extension data. This is
just a regular 'C' string for printable string fields.
IT_FMT_HEX_STRING. In this format, buf contains a formatted
hexadecimal dump of the DER data of the extension.

 98 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Return Value Returns an array of bytes that store the result of the conversion.
Returns NULL if the required conversion is not supported.

IT_Extension::critical()

Synopsis virtual int critical();
Description This function determines whether or not this extension has been

designated as critical.

Return Value Returns the integer value of the critical field in the extension.

IT_Extension::length()

Synopsis virtual int length(IT_Format f);
Description This function is used to calculate how much storage is required to

hold the result of a call to IT_Extension::convert() for a particular
IT_Format value.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

IT_Extension::OID()

Synopsis virtual int OID(IT_OID& retOID);
Description This function obtains the IT_OID structure that represents the

object identifier for this extension.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_OID element of the IT_Extension is
successfully returned.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_OID element of the
IT_Extension is invalid.

IT_FMT_INTERNAL where buf will contain the value of a
variable of the OpenSSL data type X509_EXTENSION *.
WARNING: This value provides access to low-level SSL
Toolkit data structures, and is non-portable. Code that uses
this feature will not work if the underlying SSL toolkit is
changed. IT_FMT_INTERNAL allows direct access to the
low-level SSL toolkit data representation of this AVA, thus
allowing the user to directly call the toolkit API. Take
extreme care if using this option.

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER
IT_FMT_STRING
IT_FMT_HEX_STRING
IT_FMT_INTERNAL
For more information, refer to IT_Extension::convert().

retOID The IT_OID variable that is to be updated.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 99

See Also IT_OID_Tag
IT_ExtensionList::getAVAByOID()
IT_OID

 100 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 101

Class IT_ExtensionList
Synopsis The IT_Extension and IT_ExtensionList classes provide you with an

interface to any X.509 version three extensions.
IT_X509Cert::getExtensions() is used to obtain an IT_ExtensionList
object that has a number of member functions for retrieving
individual IT_Extension objects.
The IT_Extension class provides an interface to accessing the data
for one particular extension. Use of the IT_Extension and
IT_ExtensionList classes is analogous to the use of the IT_AVA and
IT_AVAList classes.

C++ class IT_ExtensionList {
public:

virtual int convert(char* buf, IT_Format f);
virtual unsigned int getNumExtensions();
virtual int getExtension(int pos, IT_Extension& retExt);
virtual int getExtensionByOID(int* seq, unsigned int n,

 IT_Extension& retExt);
virtual int getExtensionListByOIDTag(IT_OID_Tag oid,

 IT_Extension& retExt);
virtual int length(IT_Format f);

};

IT_ExtensionList::convert()

Synopsis virtual int convert (char* buf, IT_Format f);
Description This function fills the supplied buffer with the requested format of

data corresponding to the contents of the IT_ExtensionList object.

Note: Generally convert() is called on the individual extensions. This
function is not commonly used.

Parameters

Return Value Returns an array of bytes that store the result of the conversion.
Returns NULL if the required conversion is not supported.

See Also IT_Extension::length()

buf The user-supplied buffer that must be of sufficient size to
hold the requested conversion. Call IT_Extension::length()
to find the required length of buffer for a particular
conversion type.

f The format of the required conversion. The following
IT_Format value is supported:
IT_FMT_INTERNAL. In this format, buf contains the value of a
variable of the OpenSSL data type X509_Extension *.
WARNING: This value provides access to low-level SSL
Toolkit data structures, and is non-portable. Code that uses
this feature will not work if the underlying SSL toolkit is
changed. IT_FMT_INTERNAL allows direct access to the
low-level SSL toolkit data representation of this AVA, thus
allowing the user to directly call the toolkit API. Take
extreme care if using this option.

 102 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_ExtensionList::getExtension()

Synopsis virtual int getExtension(int pos, IT_Extension& retExt);
Description This function obtains the extension at the specified index in the

list.

Parameters

Return Value Returns IT_SSL_SUCCESS if the extension is successfully retrieved.
Returns IT_SSL_ERR_INVALID_OPERATION if the extension list is not
initialized.
Returns IT_SSL_ERR_EXTENSION_NOT_PRESENT if the specified
extension does not exist.

IT_ExtensionList::getExtensionByOID()

Synopsis virtual int getExtensionByOID
(int* seq, unsigned int n, IT_Extension&

retExt);
Description This function obtains the IT_Extension element of the

IT_ExtensionList which has the requested object identifier.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_Extension element of the
IT_ExtensionList is successfully returned.
Returns IT_SSL_ERR_EXTENSION_NOT_PRESENT if the IT_Extension
element of the IT_ExtensionList is not found.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_Extension element
of the IT_ExtensionList is invalid.

See Also IT_OID_Tag
IT_Extension::OID()
IT_ExtensionList::getExtension()
IT_OID

pos The index position of the required extension in this list.
retExt The IT_Extension object to be updated.

seq An array of integers representing the ASN.1 object
identifier.

n The number of elements in the array.
retExt The IT_Extension object to be updated.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 103

IT_ExtensionList::getExtensionByOIDTag()

Synopsis virtual int getExtensionListByOIDTag
(IT_OID_Tag oid, IT_Extension& retExt);

Description This function obtains the IT_Extension element of the
IT_ExtensionList, which corresponds to the supplied IT_OID_Tag
value.

Parameters

Return Value Returns IT_SSL_SUCCESS if the IT_Extension element of the
IT_ExtensionList is successfully returned.
Returns IT_SSL_ERR_EXTENSION_NOT_PRESENT if the IT_Extension
element of the IT_ExtensionList is not found.
Returns IT_SSL_ERR_INVALID_OPERATION if the IT_Extension element
of the IT_ExtensionList is invalid.

See Also enum IT_OID_Tag
IT_Extension::OID()
IT_ExtensionList::getExtension()
struct IT_OID

IT_ExtensionList::getNumExtensions()

Synopsis virtual unsigned int getNumExtensions();
Description This function obtains the number of extensions in this list.

Return Value Returns the number of extensions in this list.

IT_ExtensionList::length()

Synopsis virtual int length(IT_Format f);
Description This function is used to calculate how much storage is required to

hold the result of a call to IT_ExtensionList::convert() for a
particular IT_Format value. Refer to IT_ExtensionList::convert()
for a list of the supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

See Also IT_ExtensionList::convert()

oid The IT_OID_Tag variable which identifies the extension we
want to retrieve.

retExt The IT_Extension object to be updated.

f The following IT_Format value is supported:
IT_FMT_INTERNAL
Refer to IT_ExtensionList::convert() on page 101, for more
information.

 104 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 105

Class IT_IntegerData
Synopsis Some OrbixSSL functions, such as IT_X509Cert::getSerialNumber(),

return ASN.1 integers as out parameters. Class IT_IntegerData is
the OrbixSSL abstraction for an ASN.1 integer.
OrbixSSL uses this class because some ASN.1 integers might be
too big to be represented by the C++ long data type. Class
IT_IntegerData allows you to determine the category of the integer
and to access the DER data, if necessary.

C++ class IT_IntegerData {
public:

virtual int convert (char* buf, IT_Format f);
virtual int getLong (long& retLong);
virtual int length (IT_Format f);

};

IT_IntegerData::convert()

Synopsis virtual int convert (char* buf, IT_Format f);
Description This function fills the supplied buffer with the requested format of

data corresponding to the contents of the IT_IntegerData object.

Parameters

Return Value Returns the requested format of data. Returns NULL if the required
conversion is not supported.

buf The user-supplied buffer that must be of sufficient size to
hold the requested conversion. To find the required length
of buffer for a particular conversion type, call
IT_IntegerData::length().

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER. In this format, buf contains a sequence of bytes
corresponding to the DER encoding of the ASN.1 integer.
This option is typically only used by applications that
require special processing of the DER data.
IT_FMT_HEX_STRING. In this format, buf contains a formatted
hexadecimal dump of the DER encoding of the ASN.1
integer.
IT_FMT_INTERNAL. In this format, buf contains the value of a
variable of the OpenSSL data type ASN1_INTEGER *.
WARNING: This value provides access to low-level SSL
Toolkit data structures, and is non-portable. Code that uses
this feature will not work if the underlying SSL toolkit is
changed. IT_FMT_INTERNAL allows direct access to the
low-level SSL toolkit data representation of this AVA, thus
allowing the user to directly call the toolkit API. Take
extreme care if using this option.

 106 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_IntegerData::getLong()

Synopsis virtual int getLong(long& retLong);
Description This function obtains the long associated with this ASN.1 integer.

It is important to examine the return value of this function.

Parameters

Return Value Returns 1 if the value can fit in long. Returns 0 otherwise.
If 0 is returned, do not use the value retLong. For large numbers,
the application must use IT_IntegerData::convert() to obtain the
DER data which can then be processed by the application.

IT_IntegerData::length()

Synopsis virtual int length(IT_Format f);
Description This function is used to calculate the storage required to hold the

result of a call to IT_IntegerData::convert() for a particular
IT_Format value. Refer to IT_IntegerData::convert() for a list of the
supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion. Returns -1 if the required conversion is not supported.

See Also IT_IntegerData::convert()

retLong The long that is to be updated with the value of the ASN.1
integer.

f The format of the required conversion. The following IT_Format
values are supported:
IT_FMT_DER
IT_FMT_HEX_STRING
IT_FMT_INTERNAL
For more information, refer to IT_IntegerData::convert() on
page 105.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 107

Struct IT_OID
Synopsis This structure is used by OrbixSSL to hold information identifying

an ASN.1 object. An ASN.1 object identifier is a sequence of
integer values used to identify certificate components. ASN.1 is
the low-level format in which X.509 certificates are stored. This
structure holds information by maintaining an array of integers
that map onto the ASN.1 sequence of integers which correspond
to an object identifier (OID).
OrbixSSL handles object identifiers as follows:
1. It provides an enumerated type IT_OID_Tag which has values

for a number of common objects. For example,
IT_OIDT_commonName identifies the common name (CN)
component of a subject field in a certificate. Use of this
enumerated type is sufficient for most OrbixSSL developer
requirements.

2. If the desired OIDs are not listed in the enumerated values for
type IT_OID_Tag, you can directly supply the sequence of
integers that represent the OID.

An explanation of the fields of struct IT_OID follows:

If the value of the tag field is IT_OIDT_UNDEF and the value of OIDLen
is 0, no OID has been specified.
An example of an IT_OID struct representing the common name
field of a name component in a certificate could have the following
values:

(1) tag = IT_OIDT_commonName
 OIDLen = 0

(2) tag = IT_OIDT_commonName
 OIDLen = 3
 OID = {0x55, 0x04, 0x03}

(3) tag = IT_OIDT_UNDEF
 OIDLen = 3
 OID = {0x55, 0x04, 0x03}

tag This field contains the value of the enumerated type
IT_OID_Tag which represents the object. When OrbixSSL
API functions return IT_OID structures, they will supply this
field if possible as well as always returning values for the
OID and OIDLen fields. If the value for this field is
IT_OIDT_UNDEF, this means that either no object has been
specified or that the OID has been directly specified using
the other fields of the structure.

OID This array of integer values corresponds to the ASN.1
sequence of integers which represents an ASN.1 object
identifier. This field should not be examined unless the
OIDLen field of the same structure is > 0.

OIDLen This field represents the number of elements in the OID
array field above.

 108 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

An OrbixSSL developer will normally use the tag value where
possible because it is easy to use. However, it is also faster to look
up an IT_X509Extension or an IT_AVA using a supplied tag value
rather than just the sequence of integers. When passing IT_OID
objects to OrbixSSL API functions, it is not necessary to specify
the integer sequence if the tag value has been specified.

C++ struct IT_OID {
IT_OID_Tag tag;
unsigned int OID[MAX_OID_CARDINALITY];
unsigned int OIDLEN;

};
See Also IT_OID_Tag

IT_AVA::OID()
IT_AVAList::getAVAByOID()
IT_Extension::OID()
IT_ExtensionList::getExtensionByOID()

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 109

Enum IT_OIDTag
Synopsis The values of this enumerated data type are used to represent an

ASN.1 object identifier (OID). Access to certificate components
using the IT_OIDTag is faster than using the raw sequence of
integers that correspond to the underlying ASN.1 OID value.
enum IT_OID_Tag {

IT_OIDT_UNKNOWN = 0,

IT_OIDT_rsadsi,
IT_OIDT_pkcs,
IT_OIDT_md2,
IT_OIDT_md5,
IT_OIDT_rc4,
IT_OIDT_rsaEncryption,
IT_OIDT_md2WithRSAEncryption,
IT_OIDT_md5WithRSAEncryption,
IT_OIDT_pbeWithMD2AndDES_CBC,
IT_OIDT_pbeWithMD5AndDES_CBC,

IT_OIDT_X500,
IT_OIDT_X509,
IT_OIDT_commonName,
IT_OIDT_countryName,
IT_OIDT_localityName,
IT_OIDT_stateOrProvinceName,
IT_OIDT_organizationName,
IT_OIDT_organizationalUnitName,
IT_OIDT_rsa,

IT_OIDT_pkcs7,
IT_OIDT_pkcs7_data,
IT_OIDT_pkcs7_signed,
IT_OIDT_pkcs7_enveloped,
IT_OIDT_pkcs7_signedAndEnveloped,
IT_OIDT_pkcs7_digest,
IT_OIDT_pkcs7_encrypted,
IT_OIDT_pkcs3,
IT_OIDT_dhKeyAgreement,
IT_OIDT_des_ecb,
IT_OIDT_des_cfb64,
IT_OIDT_des_cbc,
IT_OIDT_des_ede,
IT_OIDT_des_ede3,
IT_OIDT_idea_cbc,
IT_OIDT_idea_cfb64,
IT_OIDT_idea_ecb,

IT_OIDT_rc2_cbc,
IT_OIDT_rc2_ecb,
IT_OIDT_rc2_cfb64,
IT_OIDT_rc2_ofb64,
IT_OIDT_sha,
IT_OIDT_shaWithRSAEncryption,
IT_OIDT_des_ede_cbc,
IT_OIDT_des_ede3_cbc,
IT_OIDT_des_ofb64,

 110 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_OIDT_idea_ofb64,

IT_OIDT_pkcs9,
IT_OIDT_pkcs9_emailAddress,
IT_OIDT_pkcs9_unstructuredName,
IT_OIDT_pkcs9_contentType,
IT_OIDT_pkcs9_messageDigest,
IT_OIDT_pkcs9_signingTime,
IT_OIDT_pkcs9_countersignature,
IT_OIDT_pkcs9_challengePassword,
IT_OIDT_pkcs9_unstructuredAddress,
IT_OIDT_pkcs9_extCertAttributes,

IT_OIDT_netscape,
IT_OIDT_netscape_cert_extension,
IT_OIDT_netscape_data_type,
IT_OIDT_des_ede_cfb64,
IT_OIDT_des_ede3_cfb64,
IT_OIDT_des_ede_ofb64,
IT_OIDT_des_ede3_ofb64,
IT_OIDT_sha1,
IT_OIDT_sha1WithRSAEncryption,
IT_OIDT_dsaWithSHA,
IT_OIDT_dsa,
IT_OIDT_pbeWithSHA1AndRC2_CBC,
IT_OIDT_pbeWithSHA1AndRC4,
IT_OIDT_dsaWithSHA1,
IT_OIDT_netscape_cert_type,
IT_OIDT_netscape_base_url,
IT_OIDT_netscape_revocation_url,
IT_OIDT_netscape_ca_revocation_url,
IT_OIDT_netscape_renewal_url,
IT_OIDT_netscape_ca_policy_url,
IT_OIDT_netscape_ssl_server_name,
IT_OIDT_netscape_comment,
IT_OIDT_netscape_cert_sequence,

IT_OIDT_desx_cbc,
IT_OIDT_ld_ce,
IT_OIDT_subject_key_identifier,
IT_OIDT_key_usage,
IT_OIDT_private_key_usage_period,
IT_OIDT_subject_alt_name,
IT_OIDT_issuer_alt_name,

IT_OIDT_basic_constraints,
IT_OIDT_crl_number,
IT_OIDT_certificate_policies,
IT_OIDT_authority_key_identifier,
IT_OIDT_bf_cbc,
IT_OIDT_bf_ecb,
IT_OIDT_bf_cfb64,
IT_OIDT_bf_ofb64,
IT_OIDT_mdc2,
IT_OIDT_mdc2WithRSA,

};
See Also IT_AVAList::getAVAByOIDTag()

IT_ExtensionList::getExtensionByOIDTag()
IT_OID

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 111

Class IT_SSL
Synopsis The IT_SSL class is the main OrbixSSL API interface consisting of

basic API member functions, specific security policy and
configuration member functions, and member functions for the
custom retrieval of certificates and private keys.
class IT_SSL {
public:

// Toolkit initialization functions.
virtual int init();
virtual int initScope(const char* scope);
virtual char *getInitErrorString();

// Basic API member functions.
virtual int setSecurityName(const char *name);
virtual char *getSecurityName();
virtual void setValidateServerCertCallback

(IT_ValidateX509CertCB cb);
virtual void setValidateClientCertCallback

(IT_ValidateX509CertCB cb);
virtual int getPeerCert(CORBA(Object_ptr) obj,

IT_X509Cert& PeerCert);
virtual int getPeerCert(CORBA(Request)* req,

IT_X509Cert& PeerCert);
virtual int getPeerCert(int fd, IT_X509Cert& PeerCert);
virtual int getApplicationCert(IT_X509Cert& cert);
virtual int setPrivateKeyPassword(char *password);
virtual char *getPassword(const char *prompt);
virtual int setInvocationPolicy(int pol);
virtual int getInvocationPolicy();
virtual int specifySecurityForInterfaces

(IT_CommsSecuritySpec *SpecList, unsigned int n);
virtual int specifySecurityForServers

(IT_CommsSecuritySpec *SpecList, unsigned int n);
virtual IT_SSLCipherSuite getNegotiatedCipherSuite

(CORBA(Object_ptr) obj);
virtual IT_SSLCipherSuite getNegotiatedCipherSuite

(CORBA(Request)* req);
virtual IT_SSLCipherSuite getNegotiatedCipherSuite(int fd);

// Policy and configuration member functions.
virtual int specifyCipherSuites

(const IT_SSLCipherSuites& suite, const unsigned int n,
IT_SSLCipherSuites& SetSuite, unsigned int& retn);

virtual int setCacheOptions(const int opts);
virtual int getCacheOptions();
virtual int setProtocols(const int opts);
virtual int getProtocols();
virtual int setMaxChainDepth(unsigned int depth);
virtual int getMaxChainDepth();
virtual int setClientAuthentication(int f);
virtual int getClientAuthentication();

 112 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

// Custom retrieval of certs and private keys member
functions.
virtual int setRSAPrivateKeyFromDER

(char *PrivateKey, unsigned int len);
 virtual int setRSAPrivateKeyFromFile(char *file, IT_Format f);

virtual int setX509CertFromDER
(char *derCert, unsigned int len);

virtual int setX509CertFromFile(const char *FileName,
IT_Format f);

virtual char *getCRLDir();
virtual const char *getCAListFile(void) const;
virtual int hasPassword(void) const;

// The default scope used within init().
static const char *DEFAULT_CONFIG_SCOPE;

};

IT_SSL::getApplicationCert()

Synopsis int getApplicationCert(IT_X509Cert& cert);
Description This function obtains the certificate associated with the current

application.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in obtaining the application
certificate. Otherwise, it returns an error code.

IT_SSL::getCacheOptions()

Synopsis int getCacheOptions();
Description This function obtains the current setting for the OrbixSSL cache

options.

Return Value Returns the current setting for the OrbixSSL cache.

See Also IT_SSL::setCacheOptions()

IT_SSL::getProtocols()

Synopsis int getProtocols();
Description This function obtains the current OrbixSSL protocols.

Return Value Returns the current OrbixSSL protocols.

See Also IT_SSL::setProtocols()

IT_SSL::getClientAuthentication()

Synopsis int getClientAuthentication();
Description This function is used to determine whether the application is

configured to authenticate clients.

Return Value This function returns 1 to signify that clients will be authenticated.
Returns 0 otherwise.

See Also IT_SSL::setClientAuthentication()

cert The application certificate object.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 113

IT_SSL::getCRLDir()

Synopsis char *getCRLDir();
Description This function returns the directory in which the application expects

certificate revocation lists (CRLs) to be stored.

Return Value Returns the CRL directory for the application, if set using the
IT_CRL_REPOSITORY configuration variable.

IT_SSL::getErrorString()

Synopsis char* getErrorString();
Description This method returns a description of an initialization error, if

available.

IT_SSL::getInvocationPolicy()

Synopsis int getInvocationPolicy();
Description This function obtains the invocation policy setting for an OrbixSSL

application. The invocation policy for an OrbixSSL application
specifies whether clients support or require SSL for incoming and
outgoing connections.

Return Value Returns the current invocation policy value.

See Also IT_SSL::setInvocationPolicy()

IT_SSL::getMaxChainDepth()

Synopsis int getMaxChainDepth();
Description This function returns the maximum allowed depth of the certificate

chain for this application. The maximum certificate chain length
acceptable to OrbixSSL clients and servers using the policy file is
set by IT_MAX_ALLOWED_CHAIN_DEPTH or IT_DEFAULT_MAX_CHAIN_DEPTH
during configuration. Applications can change the maximum
certificate chain length by calling IT_SSL::setMaxChainDepth().
However, they may only set the length of the certificate chain to
be less than or equal to IT_MAX_ALLOWED_CHAIN_DEPTH.

Return Value Returns a numeric value specifying the maximum length of the
certificate chain.

See Also IT_SSL::setMaxChainDepth()

IT_SSL::getNegotiatedCipherSuite()

Synopsis IT_SSLCipherSuite getNegotiatedCipherSuite
(CORBA(Object_ptr) obj);

Description This function allows OrbixSSL applications to query the specified
cipher that was chosen for connection to the specified peer. It
does this by returning the cipher suite associated with the
specified remote object (obj).

Parameters

Return Value Returns the chosen IT_SSLCipherSuite value.

obj A remote object.

 114 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Returns IT_SSL_ERR_NO_CONNECTION to indicate that the object
selected is not remote.
Returns IT_SSL_ERR_NO_CIPHER to indicate that the connection to the
peer is insecure. In such a case, there is no associated cipher.

See Also IT_SSL::specifyCipherSuites()

IT_SSL::getNegotiatedCipherSuite()

Synopsis IT_SSLCipherSuite getNegotiatedCipherSuite
(CORBA (Object(Request)* req);

Description This function allows OrbixSSL applications to query the specified
cipher that was chosen for connection to the specified peer. It
does this by requesting the cipher suite associated with the
specified connection (req).

Parameters

Return Value Returns the chosen IT_SSLCipherSuite value.
Returns IT_SSL_ERR_NO_CONNECTION to indicate that the connection
selected is not remote.
Returns IT_SSL_ERR_NO_CIPHER to indicate that the connection to
the peer is insecure. In such a case, there is no associated cipher.

See Also IT_SSL::specifyCipherSuites()

IT_SSL::getNegotiatedCipherSuite()

Synopsis IT_SSLCipherSuite getNegotiatedCipherSuite(int fd);
Description This function allows OrbixSSL applications to query the specified

cipher that was chosen for connection to the specified peer. It
does this by returning the cipher suite associated with the file
descriptor (fd) for a particular connection.

Parameters

Return Value Returns the chosen IT_SSLCipherSuite value.
Returns IT_SSL_ERR_NO_CONNECTION to indicate that the file
descriptor is invalid.
Returns IT_SSL_ERR_NO_CIPHER to indicate that the connection to
the peer is insecure. In such a case, there is no associated cipher.

See Also IT_SSL::specifyCipherSuites()

IT_SSL::getPassword()

Synopsis char* getPassword(const char* prompt);
Description This function requests the user to input a password and returns

the password as a string. This is a console-based function. When it
requests the user to enter the password, this function disables
console echoing to prevent the password displaying on the user’s
screen.

req A request object sent across the connection.

fd The file descriptor for a particular connection.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 115

Parameters

Return Value Returns the string entered by the user.

IT_SSL::getPeerCert()

Synopsis int getPeerCert(CORBA(Object_ptr)& obj, IT_X509Cert& PeerCert);
Description This function allows OrbixSSL applications to query peer

certificates. It retrieves the peer certificate information associated
with a remote object (obj) and returns this information in the
supplied IT_X509Cert object.

Parameters

Return Value Returns IT_SSL_ERR_NO_CONNECTION to indicate that the object
selected is not remote.
Returns IT_SSL_ERR_INSECURE_CONNECTION to indicate that the
connection to the peer is insecure. This means that no certificate
is available.
Returns IT_SSL_ERR_NO_CERT_AVAILABLE to indicate that the
connection to the peer is secure but no certificate is available. For
example, this can occur when client authentication is disabled.
Secure servers will always have certificates.

See Also class IT_X509Cert

IT_SSL::getPeerCert()

Synopsis int getPeerCert(CORBA(Request)& req, IT_X509Cert& PeerCert);
Description This function allows an OrbixSSL application to request the

certificate of a peer. It retrieves the peer certificate information
associated with the specified connection (req) and returns this
information in the supplied IT_X509Cert object.

Parameters

Return Value Returns IT_SSL_ERR_NO_CONNECTION to indicate that the specified
connection is invalid.
Returns IT_SSL_ERR_INSECURE_CONNECTION to indicate that the
connection to the peer is insecure. This means that no certificate
is available.
Returns IT_SSL_ERR_NO_CERT_AVAILABLE to indicate that the
connection to the peer is secure but no certificate is available. This
can occur when client authentication is disabled. Secure servers
always have certificates.

prompt A prompt to display when asking the user to input a
password.

obj A remote object.
PeerCert The IT_X509Cert object to be updated with the peer

certificate information.

req A specified connection.
PeerCert The IT_X509Cert object to be updated with the peer

certificate information.

 116 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

See Also IT_X509Cert

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 117

IT_SSL::getPeerCert()

Synopsis int getPeerCert(int fd, IT_X509Cert& PeerCert);
Description This function allows OrbixSSL applications to query peer

certificates. It retrieves the peer certificate information associated
with the file descriptor (fd) for a particular connection and returns
this information in the supplied IT_X509Cert object.

Parameters

Return Value Returns IT_SSL_ERR_NO_CONNECTION to indicate that the file
descriptor is invalid.
Returns IT_SSL_ERR_INSECURE_CONNECTION to indicate that the
connection to the peer is insecure. This means that no certificate
is available.
Returns IT_SSL_ERR_NO_CERT_AVAILABLE to indicate that the
connection to the peer is secure but no certificate is available. This
can occur when client authentication is disabled. Secure servers
will always have certificates.

See Also class IT_X509Cert
CORBA::Object::_fd()
CORBA::Request::descriptor()

IT_SSL::getSecurityName()

Synopsis const char* getSecurityName();
Description This function returns the security name which the application is

currently using. Refer to IT_SSL::setSecurityName() on page 124
for a detailed explanation of what the security name means.

Return Value Returns the security name string.

See Also IT_SSL::SetRSAPrivateKeyFromFile()
IT_SSL::SetRSAPrivateKeyFromDER()
IT_SSL::setSecurityName()

IT_SSL::hasPassword()

Synopsis int hasPassword(void) const;
Description If called in a server, this function indicates whether or not the

server has received a private key pass phrase from the server key
distribution mechanism (KDM). If the server has not yet received
a pass phrase, you should call IT_SSL::setPrivateKeyPassword().

Return Value Returns IT_SSL_SUCCESS if the server has received a pass phrase.
Otherwise, it returns an error.

See Also IT_SSL::getPassword()
IT_SSL::setPrivateKeyPassword()

fd The file descriptor for a particular connection.
PeerCert The IT_X509Cert object to be updated with the peer

certificate information.

 118 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_SSL::init()

Synopsis int init();
Description This function must be called by the application before any

communications take place. It initializes the OrbixSSL component.

Return Value Returns IT_SSL_SUCCESS if initialization of the OrbixSSL component
is successful.
Returns IT_SSL_ERR_SECURITY_INACTIVE if OrbixSSL is either not
available in the runtime environment or disabled. For example,
this could occur if a security policy file does not exist or if
IT_DISABLE_SSL is set to TRUE in the security policy file.
Returns IT_SSL_ERR_VAR_CERT_DIR if the certificate directory
specified in the OrbixSSL configuration file is invalid.
Returns IT_SSL_ERR_VAR_CA if an invalid CA is specified.
Returns IT_SSL_ERR_UNKNOWN_CONFIG_VAR if an invalid configuration
variable is specified in the OrbixSSL configuration file.
Returns IT_SSL_ERR_NO_CONFIG_VAL_SPEC if an OrbixSSL
configuration variable is missing a value.
Returns IT_SSL_ERR_BAD_CONFIG_VAL if an invalid configuration value
is specified.

Note: You can obtain a string describing the error by calling
IT_SSL::getInitErrorString().

See Also IT_SSL::getInitErrorString()

IT_SSL::initScope()

Synopsis virtual int initScope(const char* scope);
Description This function instructs OrbixSSL to read the configuration settings

for the application from a custom scope in the OrbixSSL
configuration file. Configuration variables not specified in the
custom scope are read from the scope OrbixSSL.

Return Value Returns IT_SSL_SUCCESS if initialization of the OrbixSSL component
is successful. Otherwise, it returns an error.

See Also IT_SSL::getInitErrorString()

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 119

IT_SSL::setCacheOptions()

Synopsis int setCacheOptions(IT_SSLCacheOptions opts);
Description This function sets the OrbixSSL cache option settings.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

See Also IT_SSL::getCacheOptions()

opts This parameter is the bitwise OR combination of the
following flags:
IT_SSL_CACHE_OFF. This option disables session caching. If
this flag is specified, it must be the only flag used.
IT_SSL_CACHE_CLIENT. This option enables caching for
clients.
IT_SSL_CACHE_SERVER. This option enables caching for
servers.

 120 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_SSL::setProtocols()

Synopsis int setProtocols(const int opts);
Description This function sets the OrbixSSL protocols.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

See Also IT_SSL::getProtocols()

IT_SSL::setClientAuthentication()

Synopsis int setClientAuthentication(int f);
Description This function is used by an application to specify whether client

authentication should be performed or not. This function is
primarily used by servers, but can be used by clients to enforce
client authentication on any non bi-directional callbacks that they
receive.

Parameters

Return Value This function returns 1 if the value is allowed by the security
policy. Returns 0 otherwise.

See Also IT_SSL::getClientAuthentication()

IT_SSL::setInvocationPolicy()

Synopsis int setInvocationPolicy(int pol);
Description This function is used by an OrbixSSL application to set the

invocation policy for an application. The invocation policy for an
OrbixSSL application controls whether the application supports or
requires SSL communications for incoming or outgoing
connections. Applications have separate control with respect to
using OrbixSSL security to invoke operations and with respect to
using OrbixSSL security to receive operation invocations. By
default, an OrbixSSL application only allows secure incoming and
outgoing connections.

Note: Clients can be servers when they receive callbacks; servers can
also be clients of other servers, for example, the Orbix daemon.

opts The OrbixSSL protocols to set.

f Setting this parameter to 1 signifies that client authentication
should be performed.
Setting this parameter to 0 signifies that client authentication
should not be performed.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 121

Parameters

The options are explained as follows:

• IT_SECURE_ACCEPT
This option means that the server accepts SSL connections. If
the IT_INSECURE_ACCEPT option is not also specified, it accepts
only SSL connections and rejects non-SSL connections. It
rejects non-SSL connections by sending a NO_PERMISSION
exception to the initiator and closing the connection. In this
case, an SSL_FAILURE exception is generated at the server
application.

• IT_INSECURE_ACCEPT
This option means that the server is capable of accepting
connections from non-SSL clients. If IT_SECURE_ACCEPT and
IT_INSECURE_ACCEPT are both specified, the server serves both
secure and insecure clients. This type of server offers optional
connection authentication, privacy and integrity to clients that
wish to avail of it. It should not be specified for servers whose
services are regarded as sensitive and to which access should
be restricted.

• IT_SECURE_CONNECT
This means the client is capable of initiating SSL connections.
If this connect option is set, your client will only connect
securely to servers and will reject insecure servers. In this
case, an SSL_FAILURE exception will be thrown.

• IT_SPECIFIED_INSECURE_CONNECT
For some secure client applications, it may be too restrictive
to allow only secure connections to all servers; there may be
one server (or a few) that you need to contact without using
SSL. When this option is chosen, attempts to connect through
specified insecure interfaces or to specified insecure servers
will be allowed. For more information, refer to
IT_SSL::specifySecurityForInterfaces() on page 129 and
IT_SSL::specifySecurityForServers() on page 130.

• IT_SPECIFIED_SECURE_CONNECT
This option means that the client will generally try to
communicate insecurely with all servers, except when
connecting through explicitly specified secure interfaces, or
explicitly specified secure servers. When this option is
specified, the client will additionally attempt to use SSL when
the server’s IOR indicates that it requires SSL.

pol An integer value which is the bitwise OR combination of the
IT::SSL_InvocationOptions flags detailed below:
IT_SECURE_ACCEPT
IT_INSECURE_ACCEPT
IT_SPECIFIED_INSECURE_CONNECT
IT_INSECURE_CONNECT
IT_SECURE_CONNECT
IT_SPECIFIED_SECURE_CONNECT

 122 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Note: Currently, this is only possible if the client has an IOR from a
server which contains the TAG_SSL_SEC_TRANS struct indicating that
the server supports or requires SSL. OrbixSSL automatically
includes this tag in IORs that are generated by SSL servers.

• IT_INSECURE_CONNECT
This option means that your client is capable of initiating
insecure connections and that the client side of the application
has no security requirements.

Return Value Returns IT_SSL_SUCCESS if successful in specifying security for an
OrbixSSL application.
Returns IT_SSL_ERR_INVALID_OPT_COMBO if an illegal combination of
flags has been specified (for example, more than one CONNECT
flag).
Returns IT_SSL_ERR_POLICY_DISALLOWS if the settings chosen are
disallowed by the security policy.

See Also IT_SSL::setClientAuthentication()
IT_SSL::specifyCipherSuites()
IT_SSL::specifySecurityForInterfaces()
IT_SSL::specifySecurityForServers()

IT_SSL::setMaxChainDepth()

Synopsis int setMaxChainDepth(unsigned int depth);
Description This function allows individual applications to set the length of the

certificate chain. The maximum certificate chain length acceptable
to OrbixSSL clients and servers using the policy file is set by
IT_MAX_ALLOWED_CHAIN_DEPTH or IT_DEFAULT_MAX_CHAIN_DEPTH during
configuration. Applications can only set the length of the
certificate chain to be less than or equal to
IT_MAX_ALLOWED_CHAIN_DEPTH.

Parameters

Return Value Returns IT_SSL_SUCCESS to accept numeric value specifying the
maximum certificate chain length. Returns
IT_SSL_ERR_USING_PRIVATE_KEY otherwise.

See Also IT_SSL::getMaxChainDepth()

IT_SSL::setPrivateKeyPassword()

Synopsis int setPrivateKeyPassword(char* password);
Description This function sets the pass phrase for the private key of an

OrbixSSL application. The private key for an OrbixSSL C++
application is encrypted in PEM format with a secret pass phrase
and stored in the application certificate file. The private key pass
phrase is generally chosen by the system administrator when
creating the application certificate signing request (CSR).

depth Numeric value specifying the acceptable maximum
certificate chain length.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 123

An application needs to supply the pass phrase that protects the
private key. If your private key is encrypted and you are not
explicitly supplying your own private key using either
setRSAPrivatekeyFromDER or setRSAPrivateKeyFromFile, call this
function before calling IT_SSL::setSecurityName().

Parameters

Return Value Returns IT_SSL_SUCCESS if the pass phrase is accepted. Otherwise,
it returns an error code indicating the failure reason.

See Also IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setSecurityName()

IT_SSL::setRSAPrivateKeyFromDER()

Synopsis int setRSAPrivateKeyFromDER(char* PrivateKey, unsigned int len);
Description setRSAPrivateKeyFromDER() is a member function allowing you to

directly supply private keys to Orbix. Private keys are used by
OrbixSSL applications for authentication purposes.
Given a PEM format private key file, you can convert it into the
DER format using the following command line:

openssl rsa -in MyPrivateKeyFile.pem -inform PEM
-outform DER -out MyPrivateKeyFile.der

Parameters

Return Value Returns IT_SSL_SUCCESS if private key is successfully supplied.
Returns IT_SSL_ERR_USING_PRIVATE_KEY otherwise.

See Also IT_SSL::setPrivateKeyPassword()
IT_SSL::setRSAPrivateKeyFromFile()

Note: You can supply a private key directly and still use
setSecurityName(). However, if supplying a certificate directly,
setSecurityName() cannot be used as you already have a
certificate. For more information, refer to
IT_SSL::setX509CertFromDER().

password A null-terminated string containing the pass phrase
that was used to encrypt the private key.
If you use the OpenSSL utilities to create certificate
requests, this corresponds to the pass phrase you
enter when executing the openssl req command.

PrivateKey PrivateKey points to a user supplied buffer of length
len that contains the DER format private key.

len Length of the buffer.

 124 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_SSL::setRSAPrivateKeyFromFile()

Synopsis int setRSAPrivateKeyFromFile(char* file, IT_Format f);
Description setRSAPrivateKeyFromFile() is a member function allowing you to

supply private keys directly to Orbix. Private keys are used by
OrbixSSL applications for authentication purposes. If the private
key is encrypted, you must call setPrivateKeyPassword() before
calling this function.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful in supplying a private key.
Returns IT_SSL_ERR_USING_PRIVATE_KEY (that is, private key file was
read but could not be used), or IT_SSL_FAILURE otherwise.

See Also IT_SSL::setPrivateKeyPassword()
IT_SSL::setRSAPrivateKeyFromFile()

IT_SSL::setSecurityName()

Synopsis int setSecurityName(const char* name);
Description This function is used to associate a particular certificate and

private key with an OrbixSSL client or server application. OrbixSSL
includes a certificate and private key retrieval mechanism.

Note: It is also possible for OrbixSSL developers to implement their own
mechanism for retrieving certificates and private keys by
supplying the private keys and certificates directly to OrbixSSL
from memory or from file.
The parameter name is a string identifying the certificate to use.
This string corresponds to the path of the certificate file relative to
the directory specified by the IT_CERTIFICATE_PATH configuration
variable. It is mapped onto the operating system’s directory
structure. (Without changing the application code, future versions
of OrbixSSL may change this underlying mapping.)
For example, for an unmodified OrbixSSL installation, consider the
following call:

OrbixSSL.setSecurityName("demo/demoserver")
This causes the application to use the certificate file demoserver,
which is located in the OrbixSSL demo subdirectory of the OrbixSSL
certs directory. The default location of the certificate directory is
the certs subdirectory of the OrbixSSL installation location.
The certificate file specified by the securityName parameter must
be in PEM format. If the certificate is in DER format, you can use
the OpenSSL utility x509 to convert to PEM format. This certificate
file can optionally contain the PEM format private key of the
certificate, appended to the end of the PEM certificate. This private
key is typically encrypted using the triple DES algorithm and a
pass phrase unique to the certificate. Leaving the private key
unencrypted is strongly discouraged.

file The filename of the private key file.
f Format of the file. For example:

IT_FMT_PEM (PEM format).
IT_FMT_DER (DER encoding).

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 125

Note: It is important to note that any person who gains access to
unencrypted private keys would as a result be able to impersonate
the entity for which the certificate was issued.
For OrbixSSL to use the private key, it needs to be aware of the
pass phrase that was used to protect it. To make SSL aware of the
pass phrase, call IT_SSL::setPrivateKeyPassword() before calling
IT_SSL::setSecurityName(). It is not necessary to supply a pass
phrase if the private key is not encrypted. This practice, however,
is not encouraged. If the certificate file does not contain the
private key, the application must supply OrbixSSL with the private
key before calling IT_SSL::setSecurityName(). For more
information, refer to IT_SSL::setRSAPrivateKeyFromDER() and
IT_SSL::setRSAPrivateKeyFromFile().

Parameters

Return Value Returns IT_SSL_SUCCESS if the certificate has been successfully
loaded.
Returns IT_SSL_ERR_USING_PRIVATE_KEY if the private key file was
read but could not be used.
Returns IT_SSL_ERR_LOADING_CERT if unable to load the X.509
certificate.

See Also IT_SSL::getSecurityName()
IT_SSL::setPrivateKeyPassword()
IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setX509CertFromDer()
IT_SSL::setX509CertFromFile()

IT_SSL::setValidateClientCertCallback()

Synopsis void setValidateClientCertCallback(IT_ValidateX509CertCB cb);
Description This function is used to validate client certificates. The user can

register functions to process server or client certificates
separately, or the same function for both if desired.

Parameters

See Also IT_SSL::getPeerCert()
IT_SSL::setValidateServerCertCallback()
IT_ValidateX509CertCB

name The security name string that identifies the certificate to
use.

cb A pointer to the user-supplied function which is used to
validate peer certificates.

 126 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_SSL::setValidateServerCertCallback()

Synopsis void setValidateServerCertCallback(IT_ValidateX509CertCB cb);
Description This function is used to validate server certificates.

Parameters

See Also IT_SSL::getPeerCert()
IT_SSL::setValidateClientCertCallback()
IT_ValidateX509CertCB

IT_SSL::setX509CertFromDER()

Synopsis int setX509CertFromDER(char* derCert, unsigned int len);
Description The setSecurityName() member function is used to automatically

retrieve and use specified certificates. However, this function
allows an OrbixSSL application to supply the certificate associated
with the application for authentication purposes. You must call
either setRSAPrivateKeyFromDER() or setRSAPrivateKeyFromFile()
before using this function.

Parameters

Return Value Returns IT_SSL_SUCCESS if certificate is successfully supplied.
Returns IT_SSL_ERR_FAILURE otherwise.

See Also IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setX509CertFromFile()

Note: The function IT_SSL::setRSAPrivateKeyFromFile() must be called
before calling either IT_SSL::setX509CertFromDER() or
IT_SSL::setX509CertFromFile(), if setting the certificate yourself.

IT_SSL::setX509CertFromFile()

Synopsis int setX509CertFromFile(const char* FileName, IT_Format f);
Description The setSecurityName() member function automatically retrieves

and uses the specified certificate. However, this function allows
you to supply the certificate that an OrbixSSL application uses for
authentication purposes. The certificate is contained in the
supplied file. You must call either setRSAPrivateKeyFromDER() or
setRSAPrivateKeyFromFile() before using this function.
This API call can also be used to specify the following:
• A certificate with an elliptic curve private key
• A certificate with a DSA private key
The FileName must be in PKCS12 format. The PKCS12 file should
contain the private key and certificate. It may optionally contain
the CA, but the CA will be ignored by this API call. Use the

cb A pointer to the user-supplied function which is used to
validate peer certificates.

derCert A pointer to a user supplied buffer containing the DER
bytes representing the X.509 certificate to be used.

len The number of bytes in the supplied buffer.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 127

IT_CA_LIST_FILE configuration item to specify the CAs. Since the
PKCS12 file contains both the certificate and private key, there is
no need for a separate API call before this API call to set the
private key.

Parameters

Return Value Returns IT_SSL_SUCCESS if the certificate is successfully supplied.
Returns IT_SSL_ERR_FAILURE or IT_SSL_ERR_USING_PRIVATE_KEY
otherwise.

See Also IT_SSL::setRSAPrivateKeyFromDER()
IT_SSL::setRSAPrivateKeyFromFile()
IT_SSL::setX509CertFromDER()

Note: The function IT_SSL::setRSAPrivateKeyFromFile() must be called
before calling either IT_SSL::setX509CertFromDER() or
IT_SSL::setX509CertFromFile(), if setting the certificate yourself.

IT_SSL::specifyCipherSuites()

Synopsis int specifyCipherSuites(const IT_SSLCipherSuites& suite,
 const unsigned int n,

IT_SSLCipherSuites&
 SetSuite, unsigned int& retn);

Description An application uses this function to customize the set of ciphers
that it can use. Specification of the desired set of ciphers to be
used is supplied in the suite parameter. This function operates
within the constraints of the lists of ciphers allowed by the
Security Policy configuration file which specifies that any ciphers
that are preferred or allowed can be used.
Ciphers that the application will actually use are returned in the
SetSuite parameter. If all ciphers specified are disallowed, then
the previously existing set of ciphers is used. The set of ciphers for
the application is automatically initialized to the
IT_PREFERRED_CIPHERS list at application start up. This means that
this function need not be called by an application unless it wants
to restrict or expand its cipher suite.

Parameters

Return Value If all ciphers specified in the suite parameter are allowed,
IT_SSL_SUCCESS is returned and SetSuite is populated accordingly
with these ciphers.

FileName The filename where the certificate is held.
f Format of the file. For example:

IT_FMT_PEM (PEM format).
IT_FMT_DER (DER encoding).
IT_FMT_PKCS12 (PKCS12 format).

suite A list of ciphers. The application attempts to specify
the ciphers according to preference.

n The number of ciphers in suite.
SetSuite The list of ciphers that the application will actually use.
retn The number of ciphers in SetSuite.

 128 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

If all ciphers specified in the suite parameter are disallowed,
IT_SSL_ERR_NO_CIPHERS_ALLOWED is returned. In this case the
previously existing set of ciphers in SetSuite is used.
If some, but not all of the ciphers specified in the suite parameter
are allowed, the ones that are allowed are set in SetSuite and
IT_SSL_ERR_NOT_ALL_CIPHERS_ALLOWED is returned.

See Also IT_SSL::getNegotiatedCipherSuite()

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 129

IT_SSL::specifySecurityForInterfaces()

Synopsis int specifySecurityForInterfaces
(IT_CommsSecuritySpec* SpecList, unsigned int n);

Description This function allows clients and servers acting as clients to
explicitly specify particular security requirements for servers. For
example, if an otherwise secure client wishes to connect to an
insecure server, it can do so using this function.
This function is only applicable when a connection to a server is
initially being established. Once a connection to a server has been
established, this connection can be used to access other interfaces
in that server without reference to the list of specified interfaces.
The main use anticipated for this member function is to provide a
means to explicitly allow insecure connections to be established
through a specified insecure interface.
The structure IT_CommsSecuritySpec datatype holds the following
members:

struct IT_CommsSecuritySpec {
char* id;
IT_SecCommsCategory CommsCat;

};
The parameter id specifies the name of the target interface. The
enumerated datatype CommsCat indicates whether the interface
should be associated with secure or insecure communications.
This type is defined as follows:

enum IT_SecCommsCategory {
IT_COMMS_CAT_INSECURE,
IT_COMMS_CAT_SECURE

};
Parameters

Return Value Returns IT_SSL_SUCCESS if the security setting for the interface is
accepted. Returns IT_SSL_ERR_POLICY_DISALLOWS if the OrbixSSL
configuration file disallows this option.

See Also IT_SSL::SpecifySecurityForServers()

SpecList Specifies an array of IT_CommsSecuritySpec
structures that holds the name of the server in the
id parameter, and the CommsCat parameter.

n Specifies the number of items in the array.

 130 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_SSL::specifySecurityForServers()

Synopsis int specifySecurityForServers
(IT_CommsSecuritySpec* SpecList, unsigned int n);

Description This function allows clients and servers acting as clients to
explicitly specify particular security requirements for servers. For
example, if an otherwise secure client wishes to connect to an
insecure server, they may do so using this function.
The structure IT_CommsSecuritySpec holds the following members:

struct IT_CommsSecuritySpec {
char* id;
IT_SecCommsCategory CommsCat;

};
The parameter id specifies the target server name. The
enumerated datatype CommsCat indicates whether the server
should be associated with secure or insecure communications. It
holds the following identifiers that you can assign to servers:

enum IT_SecCommsCategory {
IT_COMMS_CAT_INSECURE,
IT_COMMS_CAT_SECURE

};
Parameters

Return Value Returns IT_SSL_SUCCESS if security setting for interface is accepted.
Returns IT_SSL_ERR_POLICY_DISALLOWS if the OrbixSSL configuration
file disallows this option.

See Also IT_SSL::SpecifySecurityForInterfaces()

SpecList Specifies an array of IT_CommsSecuritySpec
structures that holds the name of the server in the
id parameter, and the CommsCat parameter.

n Specifies the number of items in the array.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 131

Struct IT_UTCTime
Synopsis The IT_UTCTime structure holds a null-terminated UTCTime format

string. The UTCTime type denotes a “coordinated universal time” or
Greenwich Mean Time (GMT) value. A UTCTime value includes the
local time precise to either minutes or seconds, and an offset from
GMT in hours and minutes. It takes any of the following forms:
1. YYMMDDhhmmZ
2. YYMMDDhhmm+hh‘mm’
3. YYMMDDhhmm-hh‘mm’
4. YYMMDDhhmmssZ
5. YYMMDDhhmmss+hh‘mm’
6. YYMMDDhhmmss-hh‘mm’
The elements in these time formats are:

• YY is the least significant two digits of the year.
• MM is the month (01 to 12).
• DD is the day (01 to 31).
• hh is the hour (00 to 23).
• mm are the minutes (00 to 59).
• ss are the seconds (00 to 59).
• Z indicates that local time is GMT, + indicates that the local

time is later than GMT, and - indicates that the local time is
earlier than GMT.

• hh is the absolute value of the offset from GMT in hours.
• mm is the absolute value of the offset from GMT in minutes.
The UTCTime type is used for signing times in a PKCS signing-time
attribute and for certificate validity periods in the X.509 Validity
type.

Note: The ISO defines time fields in X.509 certificates as UTCTime if the
date is before 2051, and as GeneralisedTime for later years. If your
application is going to do any specific validation of the time fields,
it should be aware that 00 for a year means the year 2000.

C++ struct IT_UTCTime {
char TimeString[MAX_UTCTIME_LEN+1];

};

 132 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 133

Typedef IT_ValidateX509CertCB
Synopsis typedef int (*IT_ValidationX509CertCB)

(IT_CertValidity ok, IT_X509CertChain& PeerCertChain);
Description IT_ValidateX509CertCB is the typedef that defines the user-supplied

function passed to IT_SSL::setValidateClientCertCallback() or
IT_SSL::setValidateServerCertCallback(). This function determines
whether an OrbixSSL application accepts certificates it receives.
An example function declaration which matches this typedef would
be the following:

int myValidationFunc(IT_CertValidity ok,
IT_X509CertChain& chain);

Parameters

Return Value Returns 1 to indicate acceptance of a certificate. Returns 0 to
indicate rejection of a certificate.

See Also IT_X509CertChain()
IT_SSL::setValidateClientCertCallback()
IT_SSL::setValidateServerCertCallback()
IT_X509CertChain::getErrorInfo()

ok Specifies whether OrbixSSL thinks the certificate
supplied is valid or not. The values for the ok
parameter are as follows:
IT_SSL_VALID_YES indicates that OrbixSSL thinks
the certificate is valid. To override OrbixSSL’s
opinion of the certificate, the application can
return IT_SSL_VALID_NO. Typically, this would be
the case if some application level access control
checking indicated that the peer was not
authorized to connect to this application.
IT_SSL_VALID_NO_APP_DECESION indicates that
OrbixSSL thinks the certificate is invalid. To
override OrbixSSL’s opinion of the peer certificate
chain and perform its own checking, the
application can return 1. For more information
about the nature of the error the application
detected, the application can call
IT_X509CertChain::getErrorInfo().
IT_SSL_VALID_NO indicates that OrbixSSL will not
accept the certificate even if the application
returns 1. This could happen if the certificate was
in violation of parameters specified by the security
policy file, for example if the maximum allowed
chain depth is exceeded.

PeerCertChain This parameter is used to obtain information
about the peer certificate and its issuer
certificates. This information is needed to allow
the application to do access checking and logging.

 134 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 135

Class IT_X509_CRL_Info
Synopsis A Certificate Revocation List (CRL) is a list of certificates that are

no longer valid, even though they have not yet reached their
expiry dates. CAs issue CRLs to revoke certificates when the
security of those certificates has been compromised or they are no
longer in use. Each certificate in the CRL is identified by its unique
serial number.
The class IT_X509_CRL_Info provides a C++ interface to a CRL.

C++ class IT_X509_CRL_Info {
public:

IT_X509_CRL_Info();
IT_X509_CRL_Info(const IT_X509_CRL_Info& crl);
virtual ~IT_X509_CRL_Info();
virtual IT_X509_CRL_Info& operator=(

const IT_X509_CRL_Info& crl);

virtual int getSignatureAlgorithm(IT_OID& oid) const;
virtual int getVersion(unsigned int& nVer) const;
virtual int getIssuer(IT_AVAList& lstIssuer) const;
virtual int getLastUpdate(IT_UTCTime& t) const;
virtual int getNextUpdate(IT_UTCTime& t) const;
virtual int getRevokedCerts(IT_X509_RevokedList& r) const;
virtual int find(const IT_IntegerData& nSerialNum,

CORBA(Boolean)& bFound, IT_X509_Revoked& r) const;
virtual int getExtensions(IT_ExtensionList& e) const;
virtual int openFile(const char* file, IT_Format fmt);

};
See Also IT_CRL_List

IT_X509_Revoked
IT_X509_RevokedList

IT_X509_CRL_Info::find()

Synopsis virtual int find(const IT_IntegerData& nSerialNum,
CORBA(Boolean)& bFound, IT_X509_Revoked& r) const;

Description This function allows you to check if a specified certificate is
included in the CRL.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of
the CRL. Otherwise, it returns an error.

nSerialNum The serial number of the certificate to be checked.
bFound A boolean value that indicates whether the certificate

was found in the CRL. This value is set to true if the
certificate was found. Otherwise it is set to false.

r An object that represents information about the entry
in the CRL associated with the specified certificate.

 136 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_X509_CRL_Info::getExtensions()

Synopsis virtual int getExtensions(IT_ExtensionList& e) const;
Description Returns any X.509 version three extensions that the CRL includes.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of
the CRL. Otherwise, it returns an error.

IT_X509_CRL_Info::getIssuer()

Synopsis virtual int getIssuer(IT_AVAList& lstIssuer) const;
Description This function returns a distinguished name that identifies the CA

that issued the CRL.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of
the CRL. Otherwise, it returns an error.

IT_X509_CRL_Info::getLastUpdate()

Synopsis virtual int getLastUpdate(IT_UTCTime& t) const;
Description This function returns the time at which the CRL was last updated.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of
the CRL. Otherwise, it returns an error.

See Also IT_UTCTime

IT_X509_CRL_Info::getNextUpdate()

Synopsis virtual int getNextUpdate(IT_UTCTime& t) const;
Description This function returns the time at which the CA will next update the

CRL.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of
the CRL. Otherwise, it returns an error.

See Also IT_UTCTime

e The list of extensions included in the CRL.

1stIssuer Distinguished name identifying the CA that issued the
CRL.

t The time of the last CRL update, represented as an IT_UTCTime
object.

t The time of the next CRL update, represented as an
IT_UTCTime object.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 137

IT_X509_CRL_Info::getRevokedCerts()

Synopsis virtual int getRevokedCerts(IT_X509_RevokedList& r) const;
Description This function provides access to the revoked certificate

information stored in the CRL. The entries in the CRL are returned
as an IT_X509_RevokedList object.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in checking the contents of
the CRL. Otherwise, it returns an error.

See Also IT_X509_RevokedList

IT_X509_CRL_Info::getSignatureAlgorithm()

Synopsis virtual int getSignatureAlgorithm(IT_OID& oid) const;
Description This function returns information about the algorithm used to sign

the CRL.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in getting the CRL signing
algorithm. Otherwise, it returns an error.

See Also IT_OID

IT_X509_CRL_Info::getVersion()

Synopsis virtual int getVersion(unsigned int& nVer) const;
Description This function returns the X.509 version associated with the CRL.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in getting the X.509 version
number. Otherwise, it returns an error.

r An IT_X509_RevokedList object containing information about
each entry in the CRL.

oid The ASN.1 object identifier associated with the algorithm
used to sign the CRL.

nVer This parameter specifies which version of X.509 the CRL
uses. In accordance with the X.509 specification, a value
of 0 indicates version one, a value of 1 indicates version
two, and a value of 2 indicates version three.

 138 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_X509_CRL_Info::openFile()

Synopsis virtual int openFile(const char* file, IT_Format fmt);
Description This function allows you to create an IT_X509_CRL_Info object that

represents a CRL stored in a file.

Parameters

Return Value Returns IT_SSL_SUCCESS if it succeeds in creating the CRL from file.
Otherwise, it returns an error.

file The name of the file that contains the CRL.
fmt The format in which the CRL is stored in the file. For

example:
IT_FMT_PEM (PEM format).
IT_FMT_DER (DER encoding).

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 139

Class IT_X509_Revoked
Synopsis This class represents a single entry in a Certificate Revocation List

(CRL). Each entry specifies a certificate that is no longer valid. An
entry includes the certificate serial number and the date at which
the certificate was revoked. An entry can also include X.509
version three extensions.

C++ class IT_X509_Revoked {
public:

IT_X509_Revoked() { pImpl=NULL; }
IT_X509_Revoked(const IT_X509_Revoked& r);
virtual ~IT_X509_Revoked();
IT_X509_Revoked& operator=(const IT_X509_Revoked& r);

virtual int getSerialNumber(IT_IntegerData& serialNum)
const;
virtual int getRevocationDate(IT_UTCTime& t) const;
virtual int getExtensions(IT_ExtensionList& e) const;
virtual int getSequence(int& n) const;

};
See Also IT_CRL_List

IT_X509_CRL_Info
IT_X509_RevokedList

IT_X509_CRL_Revoked::getExtensions()

Synopsis virtual int getExtensions(IT_ExtensionList& e) const;
Description If an entry in a CRL includes any X.509 version three extensions,

you can use this function to retrieve them.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the extensions.
Otherwise, it returns an error.

See Also IT_ExtensionList

IT_X509_CRL_Revoked::getRevocationDate()

Synopsis virtual int getRevocationDate(IT_UTCTime& t) const;
Description This function returns the date at which the certificate was

revoked.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the revocation
date. Otherwise, it returns an error.

See Also IT_UTCTime

e A list of the extensions included in the revocation record.

t An IT_UTCTime object that represents the certificate revocation
date.

 140 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_X509_CRL_Revoked::getSequence()

Synopsis virtual int getSequence(int& n) const;
Description This function returns the position of the revocation record within

the CRL from which it was retrieved.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in getting the sequence
number. Otherwise, it returns an error.

IT_X509_CRL_Revoked::getSerialNumber()

Synopsis virtual int getSerialNumber(IT_IntegerData& serialNum) const;
Description This function returns the serial number that uniquely identifies the

revoked certificate.

Parameters This function takes the following parameter:

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the serial
number. Otherwise, it returns an error.

n The sequence number of the record in the CRL.

serialNum The certificate serial number.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 141

Class IT_X509_RevokedList
Synopsis This class represents a list of revoked certificate entries extract

from a Certificate Revocation List (CRL). Each individual record in
this list is stored as an IT_X509_Revoked object.

C++ class IT_X509_RevokedList {
public:

IT_X509_RevokedList() { pImpl = NULL; }
IT_X509_RevokedList(const IT_X509_RevokedList& r);
virtual ~IT_X509_RevokedList();
virtual IT_X509_RevokedList& operator=(

const IT_X509_RevokedList& r);

virtual unsigned int getCount() const;
virtual int getRevoked(int nPos, IT_X509_Revoked& r) const;

};
See Also IT_CRL_List

IT_X509_CRL_Info
IT_X509_Revoked

IT_X509_RevokedList::getCount()

Synopsis virtual unsigned int getCount() const;
Description This function returns the number of revoked certificates in the list.

Return Value Returns the number of revoked certificates as an unsigned int
value.

IT_X509_RevokedList::getRevoked()

Synopsis virtual int getRevoked(int nPos, IT_X509_Revoked& r) const;
Description This function returns the revocation record from a specified

position in the list.

Parameters

Return Value This function returns IT_SSL_SUCCESS if it succeeds in returning the
required record. Otherwise, it returns an error.

enPos The position in the list at which the required certificate
entry is located. The first record is at position zero. The
last record is at one below the return value of
IT_X509_RevokedList::getCount().

r The certificate revocation record from the specified
position.

 142 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 143

Class IT_X509Cert
Synopsis This class provides a high-level interface to an X.509 certificate. A

number of member functions are provided to obtain information
contained in the certificate. This class, along with other certificate
interface classes, shields the OrbixSSL developer from having to
know about the low-level details such as the encoding of X.509
certificates; although access to low-level DER information is
provided if required.

C++ class IT_X509Cert {
public:

IT_X509Cert();
IT_X509Cert(const IT_X509Cert&);
virtual int convert(char* buf, IT_Format f);
virtual int getExtensions(IT_ExtensionList& e);
virtual int getIssuer(IT_AVAList& l);
virtual int getSerialNumber(IT_IntegerData& i);
virtual int getSubject(IT_AVAList& l);
virtual int getVersion(unsigned int& ver);
virtual int length(IT_Format f);
virtual int getNotAfter(IT_UTCTime& t);
virtual int getNotBefore(IT_UTCTime& t);
virtual int getSignatureAlgorithm(IT_OID& oid);

};

IT_X509Cert::convert()

Synopsis virtul int convert(char* buf, IT_Format f);
Description This function fills the supplied buffer with the requested format of

data corresponding to the contents of the X.509 certificate that
the IT_X509Cert object represents.

Parameters

buf The user-supplied buffer that must be of sufficient size to
hold the requested conversion. To find the required length of
buffer for a particular conversion type, call
IT_X509Cert::length().

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER. In this format, buf contains a sequence of bytes
corresponding to the DER encoding of the X.509 certificate.
Typically, you require this option only if you use your own
certificate parsing routines.
IT_FMT_HEX_STRING. In this format, buf contains a
null-terminated string which is a formatted hex dump of the
DER data of the certificate.
IT_FMT_INTERNAL. In this format, buf contains the value of a
variable of the OpenSSL data type X509 *.

 144 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Return Value Returns IT_SSL_SUCCESS if the conversion was successful.
Otherwise, it returns the error code IT_SSL_ERR_INVALID_PARAM.

See Also IT_X509Cert::length()

IT_X509Cert::getExtensions()

Synopsis virtual int getExtensions(IT_ExtensionList& e);
Description This function retrieves the list of X.509 version three extensions

the certificate can include. Individual extensions may be retrieved
from the returned IT_ExtensionList as IT_Extension instances.

Parameters

Return Value Returns a list of extensions.

IT_X509Cert::getIssuer()

Synopsis virtual int getIssuer(IT_AVAList& retAVAList);
Description This function retrieves the distinguished name of the certificate

issuer as an IT_AVAList instance. Individual components of the
distinguished name (for example, the common name or the
organization name) can be retrieved from the IT_AVAList instance.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

See Also IT_AVA
IT_AVAList
IT_Extension
IT_ExtensionList

IT_X509Cert::getSerialNumber()

Synopsis virtual int getSerialNumber(IT_IntegerData& i);
Description This function obtains the serial number of the certificate.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

WARNING: This value provides access to low-level SSL
Toolkit data structures, and is non-portable. Code that uses
this feature will not work if the underlying SSL toolkit is
changed. IT_FMT_INTERNAL allows direct access to the
low-level SSL toolkit data representation of this AVA, thus
allowing the user to directly call the toolkit API. Take
extreme care if using this option.

e The IT_ExtensionList object to be updated.

retAVAList The IT_AVAList object to be updated.

i The supplied IT_IntegerData object. This object is initialized with
the serial number data field of the X.509 certificate.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 145

See Also class IT_IntegerData

 146 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

IT_X509Cert::getSubject()

Synopsis virtual int getSubject(IT_AVAList& retAVAList);
Description This function retrieves the distinguished name corresponding to

the subject field of this certificate as an IT_AVAList instance.
Individual components of the distinguished name (for example,
common name or organization name) can be retrieved from the
IT_AVAList instance.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the error
reason.

See Also IT_AVA
IT_AVAList
IT_Extension
IT_ExtensionList

IT_X509Cert::getVersion()

Synopsis virtual int getVersion(unsigned int& ver);
Description This function obtains the version number of the X.509 certificate.

Parameters

Return Value Returns IT_SSL_SUCCESS if an X.509 version of the certificate is
successfully returned. Otherwise, it returns IT_SSL_FAILURE.

IT_X509Cert::length()

Synopsis virtual int length(IT_Format f);
Description This function is used to calculate how much storage is required to

hold the result of a call to IT_X509Cert::convert() for a particular
IT_Format value. Refer to IT_X509Cert::convert() for a list of the
supported IT_Format values.

Parameters

Return Value Returns the number of bytes required to store the result of the
conversion; returns minus 1 if the required conversion is not
supported.

retAVAList The AVAList object to be updated with the subject
information.

ver X.509 version certificate number. In accordance with the
X.509 specification, a value of 0 indicates version one, a
value of 1 indicates version two, and a value of 2 indicates
version three.

f The format of the required conversion. The following
IT_Format values are supported:
IT_FMT_DER
IT_FMT_HEX_STRING
IT_FMT_INTERNAL

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 147

IT_X509Cert::getNotAfter

Synopsis virtual int getNotAfter(IT_UTCTime& t);
Description This function is used to extract the notAfter field from an X.509

certificate. This field is used in determining the date validity of a
certificate in conjunction with the notBefore field. A certificate can
be specified as not being valid until after some point in the future.
The field is returned in the supplied IT_UTCTime variable which is
passed as a parameter to the function.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful. Otherwise, it returns an error
code indicating the failure reason.

See Also IT_X509Cert::getNotBefore()
IT_UTCTime

IT_X509Cert::getNotBefore()

Synopsis virtual int getNotBefore(IT_UTCTime& t);
Description This function is used to extract the notBefore field from an X.509

certificate. This field is used in determining the date validity of a
certificate in conjunction with the notAfter field. A certificate can
be specified as not being valid until some point in the future. The
field is returned in the supplied IT_UTCTime variable which is passed
as a parameter to the function.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful, or an error code indicating
the failure reason.

See Also IT_X509Cert::getNotAfter()
IT_UTCTime

IT_X509Cert::getSignatureAlgorithm()

Synopsis virtual int getSignatureAlgorithm(IT_OID& oid);
Description Returns the signature algorithm for a given IT_OID.

Parameters

Return Value Returns IT_SSL_SUCCESS if successful, or an error code indicating
the failure reason.

t The IT_UTCTime object to be updated with the notAfter field of
this X.509 certificate.

t The notBefore field in an X.509 certificate.

oid The IT_OID variable which identifies the signature algorithm we
want to retrieve.

 148 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 149

Class IT_X509CertChain
Synopsis An instance of this class is supplied as a parameter to a certificate

validation function. Using this class, you can obtain each
certificate in a certificate chain. The first certificate in the chain is
the certificate associated with the application that supplied the
chain. This is referred to as the peer certificate. Each subsequent
certificate is the issuer certificate for the previous one.
class IT_X509CertChain {
public:

IT_X509CertChain();
virtual ~IT_X509CertChain();

virtual unsigned int numCerts();
virtual int getCert(unsigned int pos, IT_X509Cert& ret);
virtual int getErrorInfo(IT_CertError& retErr);
virtual int getCurrentCert(IT_X509Cert& ret);
virtual int getCurrentDepth();

};
See Also IT_SSL::setValidateClientCertCallback()

IT_SSL::setValidateServerCertCallback()
IT_ValidateX509CertCB

IT_X509CertChain::getCert()

Synopsis virtual int getCert(unsigned int pos, IT_X509Cert& ret);
Description This function obtains the certificate at the specified index in the

chain.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

See Also IT_SSL::getCurrentCert()
IT_SSL::getCurrentDepth()
IT_SSL::getErrorInfo()
IT_SSL::setClientCertCallback()
IT_SSL::setServerCertCallback()

IT_X509CertChain::getCurrentCert()

Synopsis virtual int getCurrentCert(IT_X509Cert& ret);
Description This function returns the current certificate in the certificate chain

that is being validated. Functionally, this is equivalent to
getCert(getCurrentDepth()).

Parameters

pos The index position in the chain of the required certificate.
The index ranges in value from 0 to the number of
certificates minus 1.

ret The certificate that is returned.

ret The certificate currently being validated.

 150 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Return Value Returns IT_SSL_SUCCESS if it succeeds in returning the certificate.
Otherwise, it returns an error code indicating the failure reason.

See Also IT_SSL::getCert()
IT_SSL::getCurrentDepth()
IT_SSL::getErrorInfo()
IT_SSL::setValidateClientCertCallback()
IT_SSL::setValidateServerCertCallback()

IT_X509CertChain::getCurrentDepth()

Synopsis virtual int getCurrentDepth();
Description This function returns a value between 0 and the number of

certificates minus one to indicate which certificate is currently
being validated in the certificate chain.

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

See Also IT_SSL::getCert()
IT_SSL::getCurrentCert()
IT_SSL::setValidateServerCertCallback()
IT_SSL::setValidateClientCertCallback()

IT_X509CertChain::getErrorInfo()

Synopsis virtual int getErrorInfo(IT_CertError& retErr);
Description This function allows you to get error information associated with

an IT_X509CertChain. This may be useful during certificate
validation, for example when a value of IT_SSL_VALID_NO or
IT_SSL_VALID_NO_APP_DECESION is supplied to the certificate
validation function registered by your application.

Parameters

Return Value Returns IT_SSL_SUCCESS or an error code indicating the failure
reason.

See Also IT_SSL::getCert()
IT_SSL::getCurrentCert()
IT_SSL::getCurrentDepth()
IT_SSL::setClientCertValidationCB()
IT_SSL::setServerCertValidationCB()
IT_SSL::setValidateServerCertCallback()
IT_SSL::setValidateClientCertCallback()
ITCertError
IT_ValidateX509CertCB

IT_X509CertChain::numCerts()

Synopsis virtual unsigned int numCerts();
Description This function returns the number of certificates in the chain

represented by the IT_X509CertChain object.

Return Value Returns the number of certificates in the chain.

retErr The IT_CertError structure that contains the error
information.

Part V
Appendices

In this part
This part contains the following:

Security Recommendations page 153

OrbixSSL Configuration Variables page 155

OpenSSL Utilities page 159

Performance of Cryptographic Algorithms in OpenSSL
page 171

Troubleshooting OrbixSSL page 173

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 153

Security
Recommendations
Some general recommendations for increasing the security of
OrbixSSL applications are as follows:

• Use SSL security for every application where possible. This
means specifying SECURE_DAEMON as your daemon policy, and
using the default invocation policy for all OrbixSSL
applications. Under these conditions, no unauthorized
applications can access your servers or be accessed by your
applications.

• Replace the demonstration certificates that are installed with
OrbixSSL. These must be replaced by a set of certificates and
private keys that have been securely generated. Refer to the
chapter “Managing Certificates” for more information.
You should also change the pass phrases used to protect
private keys. Do not reuse the pass phrases that were used
for the example private keys.

• Do not set the IT_ENABLE_DEFAULT_CERT configuration variable,
and do not issue a default certificate for live systems.
The use of a default certificate is generally not appropriate in
a production system because access to the dynamic library of
the OrbixSSL version installed on the system would allow any
client to use the default certificate, even a client from another
machine. The OrbixSSL dynamic libraries in effect contain the
default pass phrase that protects the private key of the
default certificate. The default value for the configuration
variable IT_ENABLE_DEFAULT_CERT is FALSE.

• If your application requires some interoperability with
insecure applications, only allow specifically listed servers and
interfaces to be contacted insecurely by your clients. Use
secure callbacks for clients wherever possible as this is the
default setting for OrbixSSL.

• Where it is necessary for remote insecure clients to contact
OrbixSSL servers that are capable of accepting secure and
insecure connections, set the daemon policy to
RESTRICTED_SEMI_SECURE_DAEMON (instead of SEMI_SECURE_DAEMON).

• The OrbixSSL installation modifies the existing Orbix binaries
so that they can use the Orbix binary certificate for
authentication purposes. The permissions on these binaries
are readable only by root, but executable by everybody. Do
not change the permissions to be readable by everybody.

• Use the 256 bit, 128 bit or triple DES cipher suites exclusively
where possible. The extra time taken to perform the more
secure bulk cipher computations does not impact the overall
performance of OrbixSSL applications significantly.
The security of an SSL application is only as strong as the
weakest cipher suite that it is prepared to support. Consider
the presence of stronger cipher suites as an optional service

 154 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

for more discerning applications that wish to communicate
with your application.

• An RSA key size of at least 1024 bits is recommended for
most secure applications. 2048 bit key sizes can also be used.
1024/2048 keys are significantly slower to use than 512 bit
keys but they greatly increase the security of systems. The
use of SSL session caching helps to minimize the number of
public key computations.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 155

OrbixSSL Configuration
Variables
The OrbixSSL configuration file, orbixssl.cfg, uses configuration
variables to specify a security policy for your applications. The
following OrbixSSL configuration variables are available:

• IT_ALLOWED_CIPHERSUITES
This configuration variable defines a list of ciphers,
supplemental to those defined by IT_CIPHERSUITES, that
applications can optionally choose to support. Refer to
“Configuring Ciphers” on page 33 for more information.

• IT_AUTHENTICATE_CLIENTS
Setting this value to TRUE enforces client authentication in all
servers affected by the configuration scope. This value does
not override IT_SERVERS_MUST_AUTHENTICATE_CLIENTS.

• IT_BIDIRECTIONAL_IIOP_BY_DEFAULT
This configuration variable is principally supplied to facilitate
the migration of single-threaded Orbix programs that are the
recipients of callbacks. Single-threaded clients using the IIOP
protocol run the risk of encountering deadlock if callbacks are
used. The use of bidirectional IIOP, however, resolves this
issue.
Setting this configuration variable to TRUE enables bidirectional
IIOP support in all OrbixSSL servers and clients. This is
directly equivalent to calling the Orbix function
supportBidirectionalIIOP() with a true parameter value. For
more information on the use of bidirectional IIOP, refer to the
Orbix Programmer’s Guide C++ Edition.
OrbixSSL calls supportBidirectionalIIOP() when the
application calls IT_SSL::init(). After this call, calling
supportBidirectionalIIOP() overrides the configuration
setting.

• IT_CA_LIST_FILE
This configuration variable gives the fully qualified file name of
the file that contains certificates of all trusted certificate
authorities (CAs). OrbixSSL uses this file when validating a
certificate. The certificates of all trusted CAs are concatenated
into this single file, in PEM format.

• IT_CACHE_OPTIONS
This variable configures the use of SSL session caching in
OrbixSSL programs. Refer to “OrbixSSL Session Caching
Configuration” on page 34 for more information.

• IT_CERTIFICATE_FILE
This variable specifies the fully qualified file name of the
certificate associated with a program. Usually, this is specified
relative to IT_CERTIFICATE_PATH, for example:
IT_CERTIFICATE_FILE =

IT_CERTIFICATE_PATH + "demo/demo_server";

 156 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

• IT_CERTIFICATE_PATH
This configuration variable gives the location of the directory
used to store certificate files.

• IT_CHECKSUMS_ENABLED
This configuration variable enables the use of cryptographic
checksums for servers that use the server key distribution
mechanism (KDM). Refer to “Verifying the Integrity of Server
Executables” for more information.

• IT_CHECKSUM_REPOSITORY
This configuration variable specifies the location in which
OrbixSSL stores checksums calculated for servers that use the
KDM. Refer to “Verifying the Integrity of Server Executables”
for more information.

• IT_CIPHERSUITES
This configuration variable determines the default list of
ciphers that an OrbixSSL application uses. Refer to
“Configuring Ciphers” for more information.

• IT_CRL_ENABLED
Setting this variable to TRUE instructs OrbixSSL to check
certificate revocation lists (CRLs) during authentication.

• IT_CRL_REPOSITORY
This variable specifies the fully qualified path of the directory
used to store CRLs.

• IT_CRL_UPDATE_INTERVAL
This variable specifies the time period, in seconds, between
checking the CRLs for updates.

• IT_DAEMON_AUTHENTICATES_CLIENTS
This variable controls whether the Orbix daemon
authenticates SSL-enabled clients or not. For more
information, refer to “Configuring the Orbix Daemon to
Authenticate Clients”.

• IT_DAEMON_POLICY
This variable specifies the types of communication accepted
by the Orbix daemon. Refer to “Configuring a Restricted
Semi-Secure Daemon” for more information.

• IT_DAEMON_UNRESTRICTED_METHODS
This variable applies only when IT_DAEMON_POLICY is
RESTRICTED_SEMI_SECURE_DAEMON. It specifies a
comma-separated list of insecure operations supported by this
type of daemon. Refer to “Configuring a Restricted
Semi-Secure Daemon” for more information.

• IT_DEFAULT_MAX_CHAIN_DEPTH
This configuration variable sets the maximum chain depth
accepted by programs affected by the configuration scope.
This value does not override IT_MAX_ALLOWED_CHAIN_DEPTH.

• IT_DISABLE_SSL
Setting this variable to TRUE disables SSL security in all
programs affected by the configuration scope. The default
value for this variable is FALSE.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 157

• IT_ENABLE_DEFAULT_CERT
This configuration variable adds SSL security to programs that
contain no OrbixSSL code. It allows these applications to use
the demos/OrbixSSL/demos/default certificate. Take extreme
care when setting this value to TRUE. It can disrupt running
applications and is completely insecure. This variable is useful
only for testing purposes, for example to quickly identify an
application’s performance characteristics using SSL.

• IT_FILTER_BAD_CONNECTS_BY_DEFAULT
When set to TRUE, this variable has the effect of calling the
Orbix function filterBadConnectAttempts() with a true
parameter value, in all affected OrbixSSL programs. Orbix
applications that do not call this function terminate unless
they correctly handle an exception thrown when a client
connection attempt fails. For example, this would be the case
if a secure server was contacted by an insecure client. This
configuration variable has no effect when set to FALSE, which
is the default value.
OrbixSSL calls filterBadConnectAttempts() when the
application calls IT_SSL::init(). After calling IT_SSL::init(),
you can override the configuration value by calling
filterBadConnectAttempts().

• IT_INSECURE_REMOTE_INTERFACES
This variable allows you to specify the list of remote interfaces
that a program with invocation policy
IT_SPECIFIED_INSECURE_CONNECT can contact without using SSL.
Refer to “Configuring OrbixSSL Application Types” for more
information.

• IT_INSECURE_SERVERS
This variable allows you to specify the list of remote servers
that a program with invocation policy
IT_SPECIFIED_INSECURE_CONNECT can contact without using SSL.
Refer to “Configuring OrbixSSL Application Types” for more
information.

• IT_INVOCATION_POLICY
This variable sets the invocation policy associated with an
application. It accepts a comma-separated list of the policy
settings described in “Configuring OrbixSSL Application
Types”.

• IT_KDM_CLIENT_COMMON_NAMES
The server key distribution mechanism (KDM) always uses
client authentication. Only the Orbix daemon and the utility
putkdm should be able to communicate with the KDM directly.
This variable allows you to specify the common names used
by the daemon and putkdm, so that the KDM can authenticate
them successfully.

• IT_KDM_ENABLED
Setting this variable to TRUE enables use of the KDM in all
OrbixSSL servers.

• IT_KDM_PIPES_ENABLED
When the Orbix daemon transfers a pass phrase from the
KDM to a server, it can do so in one of two ways: using the

 158 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

server environment, or using an operating system pipe.
Setting this value to TRUE enables the use of pipes. The default
value is FALSE.

• IT_KDM_REPOSITORY
If using the KDM, you must set this value to the absolute path
of the directory in which the KDM stores information about
private key pass phrases for servers.

• IT_KDM_SERVER_PORT
This variable specifies the port number on which the KDM
server listens for incoming communications.

• IT_MAX_ALLOWED_CHAIN_DEPTH
This configuration variable sets the absolute maximum chain
depth that programs can choose to accept. This value limits
the possible values that you can set for
IT_DEFAULT_MAX_CHAIN_DEPTH.

• IT_ORBIX_BIN_SERVER_POLICY
This configuration variable allows you to control the
communications used by server binaries installed with Orbix.

• IT_SECURE_REMOTE_INTERFACES
This variable allows you to specify the list of remote interfaces
that a program with invocation policy
IT_SPECIFIED_SECURE_CONNECT can contact without using SSL.
Refer to “Configuring OrbixSSL Application Types” for more
information.

• IT_SECURE_SERVERS
This variable allows you to specify the list of remote servers
that a program with invocation policy
IT_SPECIFIED_SECURE_CONNECT can contact without using SSL.
Refer to “Configuring OrbixSSL Application Types” for more
information.

• IT_SERVERS_MUST_AUTHENTICATE_CLIENTS
Setting this value to TRUE forces client authentication in all
servers affected by the configuration scope. This value cannot
be overridden by IT_AUTHENTICATE_CLIENTS.

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 159

OpenSSL Utilities
OrbixSSL ships a version of the openssl program that is available
from the OpenSSL project. OpenSSL is a publicly available
implementation of the SSL protocol. Consult the notices.txt file
that is provided with OrbixSSL for information about the copyright
terms of OpenSSL.
The openssl program consists of a large number of utilities that
have been combined into one program. This appendix describes
how you use the openssl program with OrbixSSL when managing
X.509 certificates and private keys.
A number of examples using openssl commands are described in
the chapter “Managing Certificates”. Read that chapter before
consulting this appendix.
This appendix describes four openssl utility commands:

Using OpenSSL Utilities
An openssl utility command line takes the following form:

openssl command arguments
For example:

openssl x509 -in OrbixCA -text
Each command is individually described in this appendix. To get a
list of the arguments associated with a particular command, use
the -help option as follows:

openssl command -help
For example:

openssl x509 -help

x509 Manipulates X.509 certificates.
req Creates and manipulates certificate signing requests, and

self-signed certificates.
rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

 160 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

The x509 Utility Command
In OrbixSSL the x509 utility command is mainly used for:

• Printing text details of certificates you wish to examine.
• Converting certificates to different formats.
The options supported by the openssl x509 utility command are as
follows:

-inform arg - input format; default PEM
(one of DER, NET or PEM)

-outform arg - output format; default PEM
(one of DER, NET or PEM)

-keyform arg - private key format; default PEM
-CAform arg - CA format; default PEM
-CAkeyform arg - CA key format; default PEM
-in arg - input file; default stdin
-out arg - output file; default stdout
-passin arg - private key password source
-serial - print serial number value
-subject_hash - print subject has value
-subject_hash_old - print old-style (MD5) subject hash value
-issuer_hash - print issuer hash value
-issuer_hash_old - print old-style (MD5) issuer hash value
-hash - print serial number value
-subject - print subject DN
-issuer - print issuer DN
-startdate - notBefore field
-enddate - notAfter field
-purpose - print out certificate purposes
-dates - both Before and After dates
-modulus - print the RSA key modulus
-pubkey - output the public key
-fingerprint - print the certificate fingerprint
-alias - output certificate alias
-noout - no certificate output
-ocspid - print OCSP hash values for the subject name

and public key
-ocsp_uri - print OCSP Responder URL(s)
-trustout - output a "trusted" certificate
-clrtrust - clear all trusted purposes
-clrreject - clear all rejected purposes
-addtrust arg - trust certificate for a given purpose
-addreject arg - reject certificate for a given purpose
-setalias arg - set certificate alias

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 161

-checkend arg - check whether the cert expires in the next arg
seconds: exit 1 if so, 0 if not

-days arg - How long till expiry of a signed certificate;
default is 30 days

-signkey arg - self sign cert with arg
-x509toreq - output a certification request object
-req - input is a certificate request, sign and output
-CA arg - set the CA certificate, must be PEM format
-CAkey arg - set the CA key, must be PEM format. If

missing it is assumed to be in the CA file
-CAcreateserial - create serial number file if it does not exist
-CAserial - serial file
-setserial - serial number to use
-text - print the certificate in text form
-C - print out C code forms
-md2/-md5/-sha1/
-mdc2

- digest to do an RSA sign with

-extfile - configuration file with X509V3 extensions to
add

-extensions - section from config file with X509V3
extensions to add

-clrext - delete extensions before signing and input
certificate

-nameopt arg - various certificate name options
-engine e - use engine e, possibly a hardware device
-certopt arg - various certificate text options
-checkhost host - check certificate matches "host"
-checkemail email - check certificate matches "email"
-checkip ipaddr - check certificate matches "ipaddr"

 162 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Using the x509 Utility Command
To print the text details of an existing PEM-format X.509
certificate, use the x509 utility command as follows:

openssl x509 -in MyCert.pem -inform PEM -text
To print the text details of an existing DER-format X.509
certificate, use the x509 utility command as follows:

openssl x509 -in MyCert.der -inform DER -text
To change a certificate from PEM format to DER format, use the
x509 utility command as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER
-out MyCert.der

The req Utility Command
The req utility command is used to generate a self-signed
certificate or a certificate signing request (CSR). A CSR contains
details of a certificate to be issued by a CA. When creating a CSR,
the req command prompts you for the necessary information from
which a certificate request file and an encrypted private key file
are produced. The certificate request is then submitted to a CA for
signing.
If the -nodes (no DES) parameter is not supplied to req, you are
prompted for a pass phrase which will be used to protect the
private key.

Note: It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using
that certificate will not be authenticated successfully.
The options supported by the openssl req utility command are as
follows:

-inform arg input format - one of DER, TXT, or PEM
-outform arg output format - one of DER, TXT, or PEM
-in arg inout file
-out arg output file
-text text form of request
-pubkey output public key
-noout do not output REQ
-verify verify signature on REQ
-modulus RSA modulus
-nodes do not encrypt the output key
-engine e use engine e, possibly a hardware device
-subject output the request’s subject
-passin private key password source
-key file use the private key contained in file
-keyform arg key file format
-keyout arg file to send the key to
-rand file:file:... load the file (or the files in the directory) into

the random number generator

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 163

Using the req Utility Command
To create a self signed certificate with an expiry date a year from
now, the req utility command can be used as follows to create the
certificate CA_cert.pem and the corresponding encrypted private
key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem
and the corresponding encrypted private key file
MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-newkey rsa:bits generate a new RSA key of bits in size
-newkey dsa:file generate a new DSA key, parameters taken

from CA in file
-newkey ec:file generate a new EC key, parameters taken

from CA in file
-[digest] Digest to sign with (md5, sha1, md2, mdc2)
-config file request template file
-subj arg set or modify request subject
-multivalue-rdn enable support for multivalued RDNs
-new new request
-batch do not ask anything during request generation
-x509 output an x509 structure instead of a

certificate req. (Used for creating self-signed
certificates)

-days number of days an x509 generated by -x509
is valid for

-set serial serial number to use for a certificate
generated by -509

-newhdr output "NEW" in the header lines
-asn1-kludge Output the request in a format that is wrong,

but which some CAs have been reported as
requiring. [This option is now always turned
on but can be turned off with -no-asn1-kludge]

-extensions specify certificate extension section (override
value in config file)

-reqexts specify request extension section (override
value in config file)

-utf input characters are UTF8 (default ASCII)
-nameopt arg various certificate name options
-reqopt arg various request text options

 164 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

The rsa Utility Command
The rsa command is a useful utility for examining and modifying
RSA private key files. Generally RSA keys are stored encrypted
with a symmetric algorithm using a user-supplied pass phrase.
The OpenSSL req command prompts the user for a pass phrase in
order to encrypt the private key. By default, req uses the triple
DES algorithm. The rsa command can be used to change the
password that protects the private key and to convert the format
of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase
used to encrypt it.
The options supported by the openssl rsa utility command are as
follows:

Using the rsa Utility Command
Converting a private key to PEM format from DER format involves
using the rsa utility command as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out
MyKey.pem

Changing the pass phrase which is used to encrypt the private key
involves using the rsa utility command as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey.pem -des3

-inform arg input format - one of DER, TXT, or PEM
-outform arg output format - one of DER, TXT, or PEM
-in arg inout file
-sgckey use IIS SGC key format
-passin arg input file pass phrase source
-out arg output file
-passout arg output file pass phrase source
-des encrypt PEM output with cbc des
-des3 encrypt PEM output with ede cbc des using

168 bit key
-seed encrypt PEM output with cbc seed
-aes128, -aes192,
-aes256

encrypt PEM output with cbc aes

-camellia128,
-camellia192,
-camellia256

encrypt PEM output with cbc camellia

-text print the key in text
-noout do not print key out
-modulus print the RSA key modulus
-check verify key consistency
-pubin expect a public key in input file
-pubout output a public key
-engine e use engine e, possibly a hardware device

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 165

Removing encryption from the private key (which is not
recommended) involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey2.pem

Note: Do not specify the same file for the -in and -out parameters,
because this may corrupt the file.

The ca Utility Command
You can use the ca command to create X.509 certificates by
signing existing signing requests. It is imperative that you check
the details of a certificate request before signing. Your
organization should have a policy with respect to the issuing of
certificates. Before implementing CAs, refer to the chapter
“Managing Certificates” for more information.
The ca command is used to sign certificate requests thereby
creating a valid X.509 certificate which can be returned to the
request submitter. It can also be used to generate Certificate
Revocation Lists (CRLS). For information on the ca -policy and
-name options, refer to “The OpenSSL configuration file” on
page 166.
To create a new CA using the openssl ca utility command, two files
(serial and index.txt) need to be created in the location specified
by the OpenSSL configuration file that you are using.
The options supported by the OpenSSL ca utility command are as
follows:

-verbose - talk a lot while doing things
-config file - a config file
-name arg - the particular CA definition to use
-gencrl - generate a new CRL
-crldays days - days is when the next CRL is due
-crlhours hours - hours is when the next CRL is due
-startdate
YYMMDDHHMMSSZ

- certificate validity notBefore

-enddate
YYMMDDHHMMSSZ

- certificate validity notAfter (overrides -days)

-days arg - number of days to certify the certificate for
-md arg - md to use, one of md2, md5, sha or sha1
-policy arg - the CA policy to support
-keyfile arg - PEM private key file
-keyform arg - private key file format (PEM or ENGINE)
-key arg - key to decode the private key if it is encrypted
-cert - the CA certificate
-selfsign - sign a certificate with the key associated with

it
-in file - the input PEM-encoded certificate request(s)
-out file - where to put the output file(s)

 166 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

Note: Most of the above parameters have default values as defined in
openssl.cnf.
Using the ca Utility Command
Converting a private key to PEM format from DER format involves
using the ca utility command as shown in the following example.
To sign the supplied CSR MyReq.pem to be valid for 365 days and
create a new X.509 certificate in PEM format, use the ca utility as
follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

The OpenSSL configuration file
A number of OpenSSL commands (for example, req and ca) take a
-config parameter that specifies the location of the OpenSSL
configuration file. This section provides a brief description of the
format of the configuration file and how it applies to the req and ca
commands. An example configuration file is listed at the end of
this section.
The openssl.cnf configuration file consists of a number of sections
that specify a series of default values which are used by the
OpenSSL commands.

-outdir dir - where to put output certificates
-infiles.... - the last argument, requests to process
-spkac file - file contains DN and signed public key and

challenge
-ss_cert file - file contains a self-signed certificate to sign
-preserveDN - do not re-order the DN
-noemailDN - do not add the EMAIL field into the certificate's

subject
-batch - do not ask questions
-msie_hack - msie modifications to handle all those

universal strings
-revoke file - revoke a certificate (given in file)
-subj arg - use arg instead of the request's subject
-utf8 - input characters are UTF8 (by default,

characters are ASCII)
-multivalue -rdn - enable support for multivalued RDNs
-extensions - extension section (overrides the value in the

config file)
-extfile file - configuration file with X509v3 extensions to

add
-crlexts - CRL extension section (overrides the value in

the config file)
-engine e - use engine e, possibly a hardware device.
-status serial - shows certificate status given the serial

number
-updatedb - updates db for expired certificates

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 167

[req] Variables
The req section contains the following settings:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

The default_bits setting is the default RSA key size that you wish
to use. Other possible values are 512, 2048, 4096.
The default_keyfile value is default name for the private key file
created by req.
The distinguished_name value specifies the section in the
configuration file that defines the default values for components of
the distinguished name field. The req_attributes variable specifies
the section in the configuration file that defines defaults for
certificate request attributes.

[ca] Variables
You can configure the file openssl.cnf to support a number of CAs
that have different policies for signing CSRs. The -name parameter
to the ca command specifies which CA section to use. For
example:

openssl ca -name MyCa ...
This command refers to the CA section [MyCa]. If -name is not
supplied to the ca command, the CA section used is the one
indicated by the default_ca variable. In the “Example openssl.cnf
File” on page 168, this is set to CA_default (which is the name of
another section listing the defaults for a number of settings
associated with the ca command). Multiple different CAs can be
supported in the configuration file, but there can be only one
default CA.
Possible [ca] variables include the following:

dir: The location for the CA database

The database is a simple text database containing the
following tab separated fields

status: A value of ‘R’ - revoked, ‘E’
-expired or ‘V’ valid

issued date: When the certificate was
certified

revoked date: When it was revoked, blank if not
revoked

serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial field should be unique as should the
CN/status combination. The ca program checks these at
startup.

certs: This is where all the previously
issued certificates are kept

 168 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

[policy] Variables
The policy variable specifies the default policy section to be used if
the -policy argument is not supplied to the ca command. The CA
policy section of a configuration file identifies the requirements for
the contents of a certificate request which must be met before it is
signed by the CA.
There are 2 policies defined in the “Example openssl.cnf File” on
page 168: policy_match and policy_anything.
Consider the following value:

countryName = match
This means that the country name must match the CA certificate.
Consider the following value:

organisationalUnitName = optional
This means that the organisationalUnitName does not have to be
present.
Consider the following value:

commonName = supplied
This means that the commonName must be supplied in the certificate
request.
The policy_match section of the example openssl.cnf file specifies
the order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

Example openssl.cnf File
##
OpenSSL example configuration file.
This is mostly used for generation of certificate requests.
##

#
[ca]
default_ca = CA_default # The default ca section
##

#

[CA_default]

dir =/opt/microfocus/OrbixSSL1.0c/certs # Where everything is
kept

certs = $dir # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file
new_certs_dir = $dir/new_certs # default place for new

certs
certificate = $dir/CA/OrbixCA # The CA certificate
serial = $dir/serial # The current serial number

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 169

crl = $dir/crl.pem # The current CRL
private_key = $dir/CA/OrbixCA.pk # The private key
RANDFILE = $dir/.rand # private random number file
default_days = 365 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = md5 # which message digest to use
preserve = no # keep passed DN ordering

A few different ways of specifying how closely the request
should conform to the details of the CA

policy = policy_match

For the CA policy [policy_match]

countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
stateOrProvinceName = State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg,

 section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName = An optional company name

 170 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 171

Performance of
Cryptographic
Algorithms in OpenSSL
This section describes the performance characteristics of
cryptographic algorithms in OpenSSL.
The following cryptographic performance test was run on a
Windows platform using the "openssl speed" command:

OpenSSL 1.0.2j 26 Sep 2016
built on: reproducible build, date unspecified
options:bn(64,32) rc4(idx,int) des(idx,cisc,2,long) aes(partial) blowfish(idx)
compiler: cl -DOPENSSL_NO_HEARTBEATS /MD /Ox /O2 /Ob2 -DDSO_WIN32
-DOPENSSL_NO_HEARTBEATS -W3 -Gs0 -GF -Gy -nologo -DOPENSSL_SYSNAME_WIN32
-DWIN32_LEAN_AND_MEAN -DL_ENDIAN -D_CRT_SECURE_NO_DEPRECATE -DOPENSSL_USE_APPLINK
-I. -DOPENSSL_NO_IDEA -DOPENSSL_NO_RC5 -DOPENSSL_NO_MD2 -DOPENSSL_NO_MDC2
-DOPENSSL_NO_SSL2 -DOPENSSL_NO_KRB5 -DOPENSSL_NO_JPAKE -DOPENSSL_NO_WEAK_SSL_CIPHERS
-DOPENSSL_NO_STATIC_ENGINE

The numbers are in thousands of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

md2 0.00 0.00 0.00 0.00 0.00
mdc2 0.00 0.00 0.00 0.00 0.00
md4 52578.41k 161402.94k 380235.25k 573230.86k 672958.42k
md5 39248.39k 114737.41k 250136.94k 355425.76k 407348.41k
hmac(md5) 28837.67k 90514.80k 218062.28k 335952.36k 401909.22k
sha1 41228.80k 113994.22k 237403.01k 321743.24k 361653.20k
rmd160 27971.85k 68497.82k 128417.04k 163966.13k 176773.89k
rc4 411038.04k 456602.99k 488212.77k 496723.20k 502487.04k
des cbc 66507.68k 69218.94k 69491.97k 70321.94k 70743.39k
des ede3 25301.52k 25813.70k 26034.36k 25917.84k 26045.65k
seed cbc 65143.65k 66438.84k 66873.08k 67167.77k 66971.10k
rc2 cbc 38632.13k 39990.62k 40183.16k 40005.74k 40358.03k
rc5-32/12 cbc 0.00 0.00 0.00 0.00 0.00
aes-128 cbc 179038.61k 195611.69k 197684.25k 199567.27k 201262.30k
aes-192 cbc 158396.50k 169691.09k 171459.58k 172938.04k 172804.16k
aes-256 cbc 140922.49k 149414.07k 151905.86k 152843.12k 152414.08k
sha256 29823.53k 66622.07k 115811.65k 142328.76k 152042.79k
aes-128 ige 173290.72k 192148.66k 195667.93k 198071.55k 198901.97k
aes-192 ige 152789.86k 166266.14k 170059.34k 171402.32k 171378.44k
aes-256 ige 135845.59k 147978.94k 150672.20k 151644.16k 151126.55k
ghash 0.00 0.00 0.00 0.00 0.00
blowfish cbc 105389.35k 111428.69k 114079.10k 114665.93k 114112.62k
sha512 10419.24k 42423.59k 59080.48k 79599.27k 89063.36k
camellia-128 cbc 102666.90k 108586.21k 109194.51k 109602.80k 110527.84k
camellia-192 cbc 80734.35k 83547.86k 84518.43k 84715.01k 84526.05k
camellia-256 cbc 78964.39k 83894.57k 84382.11k 84318.93k 84993.64k

 172 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

sign verify sign/s verify/s

rsa 512 bits 0.000434s 0.000030s 2306.6 33860.4
rsa 1024 bits 0.002451s 0.000097s 407.9 10275.0
rsa 2048 bits 0.015432s 0.000384s 64.8 2604.4
rsa 4096 bits 0.103411s 0.001416s 9.7 706.0
dsa 512 bits 0.000410s 0.000437s 2437.8 2289.5
dsa 1024 bits 0.001286s 0.001411s 777.7 708.7
dsa 2048 bits 0.004472s 0.004887s 223.6 204.6
160 bit ecdsa (secp160r1) 0.0003s 0.0009s 3891.2 1158.8
192 bit ecdsa (nistp192) 0.0003s 0.0009s 3592.8 1164.5
224 bit ecdsa (nistp224) 0.0004s 0.0011s 2684.9 870.9
256 bit ecdsa (nistp256) 0.0004s 0.0014s 2222.4 707.7
384 bit ecdsa (nistp384) 0.0012s 0.0036s 835.9 276.1
521 bit ecdsa (nistp521) 0.0031s 0.0096s 325.4 104.7
163 bit ecdsa (nistk163) 0.0004s 0.0016s 2351.1 636.7
233 bit ecdsa (nistk233) 0.0009s 0.0031s 1157.8 321.0
283 bit ecdsa (nistk283) 0.0013s 0.0058s 744.2 172.6
409 bit ecdsa (nistk409) 0.0034s 0.0136s 293.2 73.6
571 bit ecdsa (nistk571) 0.0083s 0.0314s 121.0 31.9
163 bit ecdsa (nistb163) 0.0004s 0.0017s 2366.0 588.3
233 bit ecdsa (nistb233) 0.0009s 0.0035s 1146.5 288.4
283 bit ecdsa (nistb283) 0.0013s 0.0064s 743.4 155.4
409 bit ecdsa (nistb409) 0.0034s 0.0155s 293.3 64.5
571 bit ecdsa (nistb571) 0.0082s 0.0360s 121.6 27.8

op op/s

160 bit ecdh (secp160r1) 0.0007s 1396.6
192 bit ecdh (nistp192) 0.0007s 1416.7
224 bit ecdh (nistp224) 0.0010s 1050.2
256 bit ecdh (nistp256) 0.0012s 840.8
384 bit ecdh (nistp384) 0.0030s 334.1
521 bit ecdh (nistp521) 0.0079s 127.1
163 bit ecdh (nistk163) 0.0008s 1289.0
233 bit ecdh (nistk233) 0.0015s 654.6
283 bit ecdh (nistk283) 0.0029s 350.4
409 bit ecdh (nistk409) 0.0067s 148.2
571 bit ecdh (nistk571) 0.0156s 63.9
163 bit ecdh (nistb163) 0.0008s 1195.8
233 bit ecdh (nistb233) 0.0017s 592.4
283 bit ecdh (nistb283) 0.0032s 312.3
409 bit ecdh (nistb409) 0.0077s 129.1
571 bit ecdh (nistb571) 0.0180s 55.6

 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 173

Troubleshooting
OrbixSSL
This is a checklist to help you make sure that OrbixSSL is installed
and configured correctly:

• Ensure that your application works without OrbixSSL, by
disabling all OrbixSSL calls in the application. If the
application does not work, OrbixSSL is not causing the
problem.

• Check whether your application works using the Default Cert
mechanism provided by OrbixSSL. Disable all OrbixSSL calls
in the application and specify IT_ENABLE_DEFAULT_CERT TRUE in
the orbixssl.cfg OrbixSSL policy file. If the application now
works, any problem is likely to be caused by either OrbixSSL
code in the application, or by the certificate or private key that
your application is using.

The rest of the suggestions in this appendix assume that your
OrbixSSL code is not disabled.

• Insure that IT_SSL::init() is called and the return value
checked. Also ensure that the return value of all OrbixSSL
functions is carefully examined.

• Set export IT_SSL_TRACE_LEVEL=1
This will give some high level handshake information.

• Set IT_SSL_TRACEFILE to point to a debug file for a process. The
process can now write additional very detailed SSL debug
information to this file. Set IT_SSL_TRACEFILE to a different file
for each process, so that the output of two processes are not
confused.

• Check that the certificates, private keys and passwords are
correct. For example:
openssl x509 -in MyCert -text
This should display the text details of the certificate.
openssl rsa -in MyKey -text
This should display the text details of the private key, if the
private key is encrypted (which it normally should be). You
are asked for a pass-phrase; input the pass-phrase that the
OrbixSSL application is attempting to use to decrypt the
private key.

• Investigate whether the openssl s_client or openssl s_server
utilities provided with OrbixSSL can communicate using the
same certificates and keys that they are trying to use with the
OrbixSSL applications. If this is not the case then there is a
problem with the keys, certificates, or pass-phrases. The
customer should recheck them. For example:
openssl s_client -ssl3 -host SomeHost
-port SomeServerPort -CAfile SomeCAFile
-cert SomeClientCert -debug

openssl s_server -accept MyServerPort -ssl3 -CAfile
SomeCAFile -cert SomeClientCert -debug -Verify 2

 174 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

The argument -Verify enforces client authentication. It is
followed by an integer that determines the maximum chain
depth allowed. You can also use -verify can be instead of
-Verify which will not reject the connection if a client cert is
not available.
If openssl_server is interrupted the port number it was using
can become unavailable for a period of time. Simply use
another port when trying again. The openssl s_client port
parameter must change to match.
There is no support for SSL Version 2.0 in OrbixSSL. It
supports SSL Version 3.0 only. It does not issue or accept
Version 2.0 hello messages. This behavior can be simulated in
openssl s_client and openssl s_server by the use of the -ssl3
parameter shown above.
You can also use openssl s_client and openssl s_server can be
used to establish SSL connections with OrbixSSL servers. For
example, you can specify the OrbixSSL server port to openssl
s_client, and it then attempts to handshake with the
OrbixSSL server.
You can also use s_server to simulate an OrbixSSL server by
running it on the SSL port specified in the IOR that an
OrbixSSL client uses. Use IORDump see the port.

• If you are an experienced programmer, examine the output of
operating system diagnostic tools such as truss (Solaris) or
trace (HP-UX) for the client, server and daemon separately.

Summary of Useful Output to Gather
If you have problems with OrbixSSL and must make a support
call, the following can be very helpful:

• Separate files for the Daemon, client and server of the
following output having specified IT_SSL_TRACE_LEVEL=1:
The stdout and stderr (for example, & on Unix)
daemon.out
client.out
server.out

• Separate IT_SSL_TRACE_FILE output for the daemon, client and
server:
daemon.log
client.log
server.log

• Separate truss (or trace) output for the daemon, client and
server. For Multi-threaded applications use trace -l on Solaris
to show the system calls per thread.
daemon.trc
client.trc
server.trc

• The OrbixSSL Security config file orbix.cfg
• The root CA file that is referenced by orbix.cfg
• If appropriate the certificates and private key files with

passwords can be useful, in order to attempt to reproduce the
problem exactly.

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 175

Note: Do not send us the password and private keys for a Live system!

• If possible send the complete source for a minimal test case.
• If this is not possible then include the excerpts of the client

and server programs which make OrbixSSL calls.
• A core dump, and a text stack trace, if the problem causes the

program to dump core.

 176 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 177

Index

A
application types 63
asymmetric cryptography 5
attribute value assertions 73
authentication 4

client 28, 31
AVAs 73

C
CA 5, 37

choosing a host 38, 39
commercial CAs 39
demonstration CAs 10
list file 12
multiple CAs 42
private CAs 39
publishing a certificate for 41
specifying trusted CAs 12

caching, session 34
ccsit utility 55
certificates 5

certificate signing request 42
chaining

setting maximum depth 28
classes 72
contents of 71
demonstration 10
files 62
installing 41
signing 42, 43, 44
specifying location of 26
validating 69–78

Certification Authority. See CA
chaining, certificate

setting maximum depth 28
checksums, cryptographic 55
ciphers 33
client authentication 28, 31

in the KDM 53
codes, error 59
common names 71
compiling applications 16
configuration file 11, 23

including in iona.cfg 25
configuration scopes 60
configuring 12, 66

applications 23–35
Orbix daemon client authentication 31
session caching 34

contents of certificates 71
creating

a certificate 40
a private key 40

CRLs 76–78
cryptographic checksums 55
cryptography

asymmetric 5
RSA. See RSA cryptography
symmetric 5, 6

CSRs 42
custom scopes 60

D
daemon, Orbix 15, 29
Data Encryption Standard 6
demonstration CAs 10
demonstration certificates 10
DES 6
disabling SSL support 24
distinguished names 73
documentation

.pdf format xi
updates on the web xi

E
enabling SSL support 24, 59
error codes 59
extensions 74

F
file, configuration 11, 23

including in iona.cfg 25

G
getPassword() 62

H
handshake, SSL 4–5, 7
hashes 34
hasPassword() 61
header file 59

I
IIOP 3
init() 13, 59
initializing SSL support 13
initScope() 60
INSECURE_DAEMON 30
insecure daemon 29
installing

certificates 41
private key files 41

integrity 6
Interface Repository 32

 178 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

International Telecommunications
Union 5

Internet Inter-ORB Protocol. See IIOP
invocation policy 63
iona.cfg 25
IOR

providing SSL information 35
putit flags 35

IT_ALLOWED_CIPHERSUITES 33
IT_AUTHENTICATE_CLIENTS 28
IT_AVA 73

convert() 83
getSet() 85
length() 84
OID() 84

IT_AVAList 73
convert() 87
getAVA() 88
getAVAByOID() 89
getAVAByOIDTag() 89
getNumAVAs() 90
length() 90

IT_CA_LIST_FILE 12
IT_CERTIFICATE_FILE 11, 26
IT_CERTIFICATE_PATH 11, 26
IT_CHECKSUMS_ENABLED 55
IT_CHECKSUMS_REPOSITORY 55
IT_CIPHERSUITES 33
IT_DAEMON_POLICY 30
IT_DEFAULT_MAX_CHAIN_DEPTH 28, 42
IT_DISABLE_SSL 24
IT_Extension 74

convert() 97
critical() 98
length() 98
OID() 98

IT_ExtensionList 74
convert() 101
getExtension() 102
getExtensionByOID() 102
getExtensionByOIDTag() 103
getNumExtensions() 103
length() 103

IT_INSECURE_ACCEPT 64
IT_INSECURE_CONNECT 64
IT_KDM_CLIENT_COMMON_NAMES 53
IT_KDM_ENABLED 52
IT_KDM_PIPES_ENABLED 54
IT_KDM_REPOSITORY 52
IT_KDM_SERVER_PORT 52
IT_MAX_ALLOWED_CHAIN_DEPTH 28, 42
IT_ORBIX_BIN_SERVER_POLICY 32
IT_PRIVATEKEY_FILE 15
IT_SECURE_ACCEPT 64
IT_SECURE_CONNECT 64
IT_SPECIFIED_INSECURE_CONNECT 64
IT_SPECIFIED_SECURE_CONNECT 64
IT_SSL 13

getApplicationCert() 112
getCacheOptions() 112
getClientAuthentication() 112
getCRLDir() 113

getErrorString() 113
getInvocationPolicy() 113
getMaxChainDepth() 113
getNegotiatedCipherSuite() 113, 114
getPassword() 62, 114
getPeerCert() 115, 117
getProtocols() 112
getSecurityName() 117
hasPassword() 61, 117
init() 13, 59, 118
initScope() 60
setCacheOptions() 119
setClientAuthentication() 120
setInvocationPolicy() 64, 120
setMaxChainDepth() 122
setPrivateKeyPassword() 14, 61, 122
setProtocols() 120
setRSAPrivateKeyFromDER() 123
setRSAPrivateKeyFromFile() 124
setSecurityName() 62, 124
setValidateClientCertCallback() 125
setValidateServerCallback() 70
setValidateServerCertCallback() 126
setX509CertFromDER() 126
setX509CertFromFile() 126
specifyCipherSuites() 127
specifySecurityForInterfaces() 129
specifySecurityForServers() 130

IT_SSL.h 13, 59
IT_SSL_CONFIG_PATH 17, 19, 23
IT_SSL_SUCCESS 59
IT_SSL_TRACEFILE 67
IT_SSL_TRACE_LEVEL 67
ITU 5
IT_X509Cert 72

convert() 143
getExtensions() 144
getIssuer() 144
getNotAfter() 147
getNotBefore() 147
getSerialNumber() 144
getSignatureAlgorithm() 147
getSubject() 146
getVersion() 146
length() 146

IT_X509CertChain 72
getCert() 149
getCurrentCert() 149
getCurrentDepth() 150
getErrorInfo() 150
numCerts() 150

K
KDM 51, 55, 61

client authentication 53
putkdm utility 54
server 54

key distribution mechanism. See KDM
key exchange algorithm 34
keys

private 5, 14, 51

OrbixSSL Programmer’s and Administrator’s Guide C++ Edition 179

public 5
keys, private 15, 55, 61

L
LD_LIBRARY_PATH 17, 19
libraries, OrbixSSL 16
linking applications 16

M
MAC 6
message authentication code 6

N
names, distinguished 73

O
openssl.cnf example file 168
Orbix daemon 15, 29

client authentication 31
OrbixNames 12, 15, 18, 26
OrbixSSL

certification authorities 39
orbixssl.cfg 11, 23

P
pass phrases 51, 55, 61
PATH 17, 19
PEM 14
pipes, operating system 54
policy, invocation 63
privacy 6
private key

creating 40
private keys 5, 14, 15, 51, 55, 61
protocol, SSL handshake 4–5
public keys 5
putit flags 35
putkdm utility 54

R
RC4 6
RESTRICTED_SEMI_SECURE_DAEMON 30
restricted semi-secure daemon 29
Rivest Shamir Adleman cryptography.
See RSA cryptography

RSA cryptography 4, 34

S
scopes, configuration 60
SECURE_DAEMON 30
secure daemon 29
Secure Sockets Layer. See SSL
SEMI_SECURE_DAEMON 30
semi-secure daemon 29
serial number 71
server, KDM 54
session caching 34
setInvocationPolicy() 64
setPrivateKeyPassword() 14, 61
setSecurityName 62

setValidateServerCallback() 70
SHLIB_PATH 17, 19
signing certificates 42, 43, 44
Specifying Protocols 25
SSL

authentication 4
enabling 24
handshake 4–5, 7
initializing 13
integrity 6
overview 3
performance of cryptographic
algorithms 171

privacy 6
trace information 67

SSLv3 26
subject name 71
suites, cipher 33
symmetric cryptography 6

T
TCP/IP 3
TLSv1 26
tracing SSL applications 67
trusted CAs 12
types, application 63

U
update utility 27
utilities 159

V
validating certificates 69
variables

LD_LIBRARY_PATH 17, 19
PATH 17, 19
SHLIB_PATH 17, 19

X
X.509 5

certificates. See certificates
extensions 74

 180 OrbixSSL Programmer’s and Administrator’s Guide C++ Edition

	Preface
	Audience
	Organization of this Guide
	Document Conventions
	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Introduction
	An Introduction to OrbixSSL
	An Overview of OrbixSSL
	An Overview of SSL Security
	Authentication in SSL
	Privacy of SSL Communications
	Integrity of SSL Communications

	Getting Started with OrbixSSL
	Overview of the Application
	Running the Application without SSL
	Running the Application with SSL
	Modifying the Example Application

	Providing Certificates for the Servers
	Using the OrbixSSL Configuration File

	Specifying which Certificates to Accept
	Initializing OrbixSSL
	Initializing OrbixSSL Configuration

	Making Private Keys Available to Servers
	Making a Private Key Available to a Server Program
	Making a Private Key Available to OrbixNames
	Making a Private Key Available to the Orbix Daemon

	Review of the Development Steps
	Compiling the Application
	Running the Application
	Running the Server
	Running the Client

	OrbixSSL Administration
	Defining a Security Policy
	Overview of OrbixSSL Configuration
	Using the OrbixSSL Configuration File

	Configuring Server Authentication
	Specifying Protocols
	Specifying the Location of Certificates
	Specifying Certificates to Accept

	Configuring Client Authentication
	Securing the Orbix Daemon
	Configuring Orbix Daemon Communications
	Configuring a Restricted Semi-Secure Daemon
	Configuring the Orbix Daemon to Authenticate Clients

	Securing the Orbix Interface Repository
	Securing the Orbix Services
	Configuring Ciphers
	OrbixSSL Session Caching Configuration
	Providing IORs with SSL Information
	Using the putit SSL Parameters

	Managing Certificates
	Creating Certificates for an Application
	Overview of the OrbixSSL Demonstration Certificates

	Choosing a Certification Authority
	Commercial Certification Authorities
	Private Certification Authorities
	Creating a Self-Signed Certificate and Private Key

	Publishing a Certification Authority Certificate
	Certificates Signed by Multiple Certification Authorities

	Signing Application Certificates
	Generating a Certificate Signing Request
	Signing a Certificate

	Example of Creating Certificates with OpenSSL
	Managing Certificate Revocation Lists
	Obtaining Certificate Revocation Lists
	Using Certificate Revocation Lists
	Specifying the Update Period for CRLs

	Managing Pass Phrases
	Using a Central Repository for Servers
	Overview of the Key Distribution Mechanism

	Configuring the Key Distribution Mechanism
	Running the Key Distribution Mechanism
	Maintaining the Database
	Verifying the Integrity of Server Executables
	Using the Key Distribution Mechanism

	OrbixSSL Programming
	Programming with OrbixSSL
	Overview of the OrbixSSL API
	Initializing OrbixSSL
	Initializing the Configuration Scope
	Setting the Private Key Pass Phrase
	Specifying which Certificate to Use

	Configuring OrbixSSL Application Types
	Choosing Invocation Policies
	Setting an Invocation Policy
	How Invocation Policies Affect OrbixSSL Communications
	Specifying Exceptions to an Invocation Policy

	Configuring OrbixSSL
	Logging OrbixSSL Trace Information

	Validating Certificates
	Overview of Certificate Validation
	Introducing Additional Validation
	Examining the Contents of a Certificate
	Working with Distinguished Names
	Working with X.509 Extensions

	Example of a Certificate Validation Function
	Using Certificate Revocation Lists
	Examining the Contents of a Certificate Revocation List

	OrbixSSL Reference
	Class IT_AVA
	Class IT_AVAList
	Struct IT_CertError
	Class IT_CRL_List
	Class IT_Extension
	Class IT_ExtensionList
	Class IT_IntegerData
	Struct IT_OID
	Enum IT_OIDTag
	Class IT_SSL
	Struct IT_UTCTime
	Typedef IT_ValidateX509CertCB
	Class IT_X509_CRL_Info
	Class IT_X509_Revoked
	Class IT_X509_RevokedList
	Class IT_X509Cert
	Class IT_X509CertChain

	Appendices
	Security Recommendations
	OrbixSSL Configuration Variables
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility Command
	The req Utility Command
	The rsa Utility Command
	The ca Utility Command

	The OpenSSL configuration file
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Performance of Cryptographic Algorithms in OpenSSL
	Troubleshooting OrbixSSL
	Index

