
Security Guide
Version 6.1, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 04-Jul-2005

M 3 1 2 9

Contents

List of Tables xiii

List of Figures xv

Preface xix
What is Covered in this Book xix
Who Should Read this Book xix
Organization of this guide xix
Related Documentation xx
Additional Resources for Information xx
Typographical Conventions xx
Keying Conventions xxii

Part I Introducing Security

Chapter 1 Getting Started with Security 3
Creating a Secure Domain 4
Security Demonstrations 11

Running a Secure CORBA Demonstration 12
Where do I go from here? 16

Chapter 2 Orbix Security Framework 19
Introduction to the iSF 20

iSF Features 21
Example of an iSF System 22
Security Standards 24

Orbix Security Service 25
Orbix Security Service Architecture 26
iSF Server Development Kit 28

Secure Applications 29
ART Security Plug-Ins 30
iii

CONTENTS
Secure CORBA Applications 32
Administering the iSF 34

Overview of iSF Administration 35
Secure ASP Services 37

Chapter 3 Transport Layer Security 39
What does Orbix Provide? 40
How TLS Provides Security 42

Authentication in TLS 43
Certificates in TLS Authentication 45
Privacy of TLS Communications 46
Integrity of TLS Communications 47

Obtaining Credentials from X.509 Certificates 48
Obtaining Certificate Credentials from a File 49
Obtaining Certificate Credentials from a Smart Card 52

Chapter 4 Securing CORBA Applications 57
Overview of CORBA Security 58
Securing Communications with SSL/TLS 60
Specifying Fixed Ports for SSL/TLS Connections 70
Securing Two-Tier CORBA Systems with CSI 72
Securing Three-Tier CORBA Systems with CSI 78
X.509 Certificate-Based Authentication 84
Caching of Credentials 90

Chapter 5 Single Sign-On for CORBA Applications 93
SSO and the Login Service 94
Username/Password-Based SSO 97
Three Tier Example with Identity Assertion 105
X.509 Certificate-Based SSO 109
Enabling Re-Authentication at Each Tier 117
SSO Sample Configurations 121

Chapter 6 Securing Web Services 127
Create a Secure Web Services Domain 128
Configure Server-Side Security 132
Configure Client-Side Security 134
Secure the Deploy Service 136
 iv

CONTENTS
Add the HTTPBasicAuthHandler to a Web Service 138
Build and Run a Secure Client 140

Part II Orbix Security Framework Administration

Chapter 7 Configuring the Orbix Security Service 145
Configuring the File Adapter 146
Configuring the LDAP Adapter 148
Additional Security Configuration 154

Configuring Single Sign-On Properties 155
Configuring the Log4J Logging 157

Chapter 8 Managing Users, Roles and Domains 159
Introduction to Domains and Realms 160

iSF Security Domains 161
iSF Authorization Realms 163
Example Domain and Realms 168
Domain and Realm Terminology 172

Managing a File Security Domain 174
Managing an LDAP Security Domain 177

Chapter 9 Managing Access Control Lists 179
CORBA ACLs 180

Overview of CORBA ACL Files 181
CORBA Action-Role Mapping ACL 182

Chapter 10 Securing Orbix Services 187
Introduction to Securing Services 188
File-Based and CFR Domains 189
Customizing a Secure Domain 193

Configuring a Typical Orbix Service 194
Configuring the Security Service 202

Default Access Control Lists 205
Configuration Repository ACL 206
Locator ACL 211
Node Daemon ACL 213
v

CONTENTS
Naming Service ACL 215
Trader Service ACL 216
Event Service ACL 219
Notification Service ACL 223
Basic Log Service ACL 231
Event Log Service ACL 233
Notify Log Service ACL 236

Part III SSL/TLS Administration

Chapter 11 Choosing an SSL/TLS Toolkit 247
Toolkit Replaceability 248
Baltimore Toolkit for C++ and Java 249
Schannel Toolkit for C++ 250
JSSE/JCE Architecture 252

Chapter 12 Managing Certificates 257
What are X.509 Certificates? 258
Certification Authorities 260

Commercial Certification Authorities 261
Private Certification Authorities 262

Certificate Chaining 263
PKCS#12 Files 265
Using the Demonstration Certificates 266
Creating Your Own Certificates 268

Set Up Your Own CA 269
Use the CA to Create Signed Certificates 272

Deploying Certificates 275
Overview of Certificate Deployment 276
Providing a List of Trusted Certificate Authorities 277
Deploying Application Certificates 279
Deploying Certificates in Smart Cards 281
Deploying Orbix Service Certificates 283
Deploying itadmin Certificates 286

Deploying Certificates with Schannel 289
Schannel Certificate Store 290
Deploying Trusted Certificate Authorities 295
 vi

CONTENTS
Deploying Application Certificates 296
Deploying Certificates in Smart Cards 299

Chapter 13 Configuring SSL/TLS Secure Associations 301
Overview of Secure Associations 302
Setting Association Options 304

Secure Invocation Policies 305
Association Options 306
Choosing Client Behavior 308
Choosing Target Behavior 310
Hints for Setting Association Options 312

Specifying Cipher Suites 317
Supported Cipher Suites 318
Setting the Mechanism Policy 320
Constraints Imposed on Cipher Suites 322

Caching TLS Sessions 325

Chapter 14 Configuring SSL/TLS Authentication 327
Requiring Authentication 328

Target Authentication Only 329
Target and Client Authentication 332

Specifying Trusted CA Certificates 335
Specifying an Application’s Own Certificate 337
Providing a Pass Phrase or PIN 341

Providing a Certificate Pass Phrase 342
Providing a Smart Card PIN 346

Advanced Configuration Options 348
Setting a Maximum Certificate Chain Length 349
Applying Constraints to Certificates 350
Delaying Credential Gathering 352

Chapter 15 Automatic Activation of Secure Servers 355
Managing Server Pass Phrases 356
Protecting against Server Imposters 359
How the KDM Activates a Secure Server 361
KDM Administration 363
Setting Up the KDM 366
Registering a Secure Server 368
vii

CONTENTS
Part IV CSIv2 Administration

Chapter 16 Introduction to CSIv2 373
CSIv2 Features 374
Basic CSIv2 Scenarios 376

CSIv2 Authentication over Transport Scenario 377
CSIv2 Identity Assertion Scenario 378

Integration with the Orbix Security Framework 380

Chapter 17 Configuring CSIv2 Authentication over Transport 383
CSIv2 Authentication Scenario 384
SSL/TLS Prerequisites 388
Requiring CSIv2 Authentication 390
Providing an Authentication Service 393
Providing a Username and Password 394
Sample Configuration 398

Sample Client Configuration 399
Sample Server Configuration 401

Chapter 18 Configuring CSIv2 Identity Assertion 403
CSIv2 Identity Assertion Scenario 404
SSL/TLS Prerequisites 408
Enabling CSIv2 Identity Assertion 410
Sample Configuration 412

Sample Client Configuration 413
Sample Intermediate Server Configuration 415
Sample Target Server Configuration 417

Part V CORBA Security Programming

Chapter 19 Programming Policies 421
Setting Policies 422
Programmable SSL/TLS Policies 425

Introduction to SSL/TLS Policies 426
The QOPPolicy 428
 viii

CONTENTS
The EstablishTrustPolicy 429
The InvocationCredentialsPolicy 430
Interaction between Policies 431

Programmable CSIv2 Policies 432

Chapter 20 Authentication 435
Using the Principal Authenticator 436

Introduction to the Principal Authenticator 437
Creating SSL/TLS Credentials 440
Creating CSIv2 Credentials 444

Using a Credentials Object 449
Retrieving Own Credentials 451

Retrieving Own Credentials from the Security Manager 452
Parsing SSL/TLS Own Credentials 454
Parsing CSIv2 Own Credentials 456

Retrieving Target Credentials 457
Retrieving Target Credentials from an Object Reference 458
Parsing SSL/TLS Target Credentials 461

Retrieving Received Credentials 463
Retrieving Received Credentials from the Current Object 464
Parsing SSL/TLS Received Credentials 466
Parsing CSIv2 Received Credentials 468

Chapter 21 Validating Certificates 473
Overview of Certificate Validation 474
The Contents of an X.509 Certificate 477
Parsing an X.509 Certificate 478
Controlling Certificate Validation 480

Certificate Constraints Policy 481
Certificate Validation Policy 485

Obtaining an X.509 Certificate 489

Part VI Web Services Security Programming

Chapter 22 Web Services Security API 493
Secure Client API 494
ix

CONTENTS
Web Services Client Demonstration 495

Part VII iSF Programming

Chapter 23 Developing an iSF Adapter 499
iSF Security Architecture 500
iSF Server Module Deployment Options 504
iSF Adapter Overview 506
Implementing the IS2Adapter Interface 507
Deploying the Adapter 517

Configuring iSF to Load the Adapter 518
Setting the Adapter Properties 519
Loading the Adapter Class and Associated Resource Files 520

Appendix A Security 523
Applying Constraints to Certificates 525
initial_references 527
 plugins:atli2_tls 528
plugins:baltimore_toolkit 529
plugins:csi 530
plugins:gsp 531
plugins:https 535
plugins:iiop_tls 536
plugins:is2_authorization 540
plugins:kdm 541
plugins:kdm_adm 543
plugins:locator 544
plugins:schannel 545
plugins:schannel_toolkit 546
plugins:security 547
policies 548
policies:csi 554
policies:https 557
policies:iiop_tls 562
principal_sponsor 571
principal_sponsor:csi 575
 x

CONTENTS
Appendix B iSF Configuration 579
Properties File Syntax 580
iSF Properties File 581
Cluster Properties File 597
log4j Properties File 599

Appendix C ASN.1 and Distinguished Names 603
ASN.1 604
Distinguished Names 605

Appendix D Association Options 609
Association Option Semantics 610

Appendix E Action-Role Mapping DTD 613

Appendix F OpenSSL Utilities 619
Using OpenSSL Utilities 620

The x509 Utility 621
The req Utility 623
The rsa Utility 625
The ca Utility 627

The OpenSSL Configuration File 629
[req] Variables 630
[ca] Variables 631
[policy] Variables 632
Example openssl.cnf File 633

Appendix G Security Recommendations 635
General Recommendations 636
Orbix Services 637

Appendix H License Issues 639
OpenSSL License 640

Index 643
xi

CONTENTS
 xii

List of Tables

Table 1: Terminology Describing Secure Client Sample Configurations 61

Table 2: Terminology Describing Secure Server Sample Configurations 62

Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope 152

Table 4: Domain and Realm Terminology Comparison 172

Table 5: Locator Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 211

Table 6: Node Daemon Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 213

Table 7: Naming Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 215

Table 8: Trader Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 217

Table 9: Event Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 221

Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 225

Table 11: Basic Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 232

Table 12: Event Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 234

Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 239

Table 14: Demonstration Certificates and Passwords 266

Table 15: Demonstration Certificate for the Orbix Services 267

Table 16: Description of Different Types of Association Option 313

Table 17: Setting EstablishTrustInTarget and EstablishTrustInClient Association Options 314

Table 18: Setting Quality of Protection Association Options 314

Table 19: Setting the NoProtection Association Option 316
xiii

LIST OF TABLES
Table 20: Cipher Suite Definitions 319

Table 21: Association Options Supported by Cipher Suites 323

Table 22: The kdm_adm Administration Command 364

Table 23: The checksum Administration Command 365

Table 24: Prefixes for KDM Configuration Variables 365

Table 25: Policy Management Objects 422

Table 26: Mechanism Policy Cipher Suites 550

Table 27: Mechanism Policy Cipher Suites 559

Table 28: Mechanism Policy Cipher Suites 565

Table 29: Commonly Used Attribute Types 606

Table 30: AssociationOptions for Client and Target 610
 xiv

List of Figures

Figure 1: The itconfigure Introduction Window 5

Figure 2: The License Dialog Box 6

Figure 3: The itconfigure Domain Settings Window 7

Figure 4: The itconfigure Services Settings Window 8

Figure 5: The itconfigure Summary Window 9

Figure 6: Finishing Configuration 10

Figure 7: CORBA Secure Demonstration Overview 12

Figure 8: Example System with a Standalone Orbix Security Service 22

Figure 9: Security Plug-Ins in a CORBA Application 32

Figure 10: Creating Credentials for a Client Application Using PKCS#12 49

Figure 11: Using PKCS#12 Credentials to Authenticate a Client to a Server 51

Figure 12: Creating Credentials for a Client Application Using PKCS#11 52

Figure 13: Using PKCS#11 Credentials to Authenticate a Client to a Server 54

Figure 14: A Secure CORBA Application within the iSF 58

Figure 15: Two-Tier CORBA System in the iSF 72

Figure 16: Three-Tier CORBA System in the iSF 78

Figure 17: Overview of iSF Certificate-Based Authentication 84

Figure 18: Client Requesting an SSO Token from the Login Service 94

Figure 19: Overview of GSSUP Authentication without SSO 97

Figure 20: Overview of GSSUP Authentication with SSO 98

Figure 21: Single Sign-On Scenario with Piggybacking Roles and Realms 105

Figure 22: Overview of Certificate-Based Authentication without SSO 109

Figure 23: Overview of Certificate-Based Authentication with SSO 110

Figure 24: Single Sign-On Scenario without Piggybacking Roles and Realms 118

Figure 25: The Domain Settings Screen from itconfigure 129

Figure 26: The Services Settings Screen from itconfigure 130
xv

LIST OF FIGURES
Figure 27: Internet Explorer Warning for an Untrusted CA Certificate 133

Figure 28: Architecture of an iSF Security Domain 161

Figure 29: Server View of iSF Authorization Realms 164

Figure 30: Role View of iSF Authorization Realms 165

Figure 31: Assignment of Realms and Roles to Users Janet and John 166

Figure 32: Overview of a Secure File-Based Domain 189

Figure 33: Overview of a Secure CFR Domain 190

Figure 34: A Certificate Chain of Depth 2 263

Figure 35: A Certificate Chain of Depth 3 264

Figure 36: Overview of Certificates in a Typical Deployed System 276

Figure 37: The Microsoft Management Console 291

Figure 38: The Add/Remove Snap-In Dialog Box 292

Figure 39: The Add Standalone Snap-In Dialog Box 293

Figure 40: Microsoft Management Console with Certificates Snap-In 294

Figure 41: Certificate Dialog Showing the Certificate’s Subject DN. 297

Figure 42: Configuration of a Secure Association 303

Figure 43: Constraining the List of Cipher Suites 322

Figure 44: Target Authentication Only 329

Figure 45: Target and Client Authentication 332

Figure 46: Elements in a PKCS#12 File 338

Figure 47: Java Dialog Window for Certificate Pass Phrase 343

Figure 48: Java Dialog Window for Certificate PIN 346

Figure 49: Schannel Dialog Window for Certificate PIN 347

Figure 50: The KDM Architecture 357

Figure 51: Automatic Activation of a Secure Server 361

Figure 52: Using itadmin to Manage the KDM Server 363

Figure 53: Basic CSIv2 Authentication over Transport Scenario 377

Figure 54: Basic CSIv2 Identity Assertion Scenario 378

Figure 55: CSIv2 in the Orbix Security Framework 381
 xvi

LIST OF FIGURES
Figure 56: CSIv2 Authentication Over Transport Scenario 385

Figure 57: Java Dialog Window for GSSUP Username and Password 395

Figure 58: CSIv2 Identity Assertion Scenario 405

Figure 59: Validating a Certificate 474

Figure 60: Using a CertValidator Callback 476

Figure 61: Overview of the Orbix Security Service 501

Figure 62: iSF Server Module Deployed as a CORBA Service 504
xvii

LIST OF FIGURES
 xviii

Preface
What is Covered in this Book
This book is a guide to administering and programming secure applications
in Orbix, covering both secure CORBA applications and secure Web services
applications.

The IONA security framework (iSF) provides the underlying security
infrastructure for performing authentication and authorization.

Who Should Read this Book
This guide is intended for the following audience:

• Security administrators.

• CORBA C++ developers.

• CORBA Java developers.

• Web services developers.

A prior knowledge of CORBA, or Web services is assumed.

Organization of this guide
This guide is divided into the following parts:

Part I “Introducing Security”

This part describes how TLS provides security, and how Orbix works.

Part II “Orbix Security Framework Administration”

This part describes how to administer the Orbix Security Framework.

Part III “SSL/TLS Administration”

This part explains how to configure and manage Orbix in detail.
xix

PREFACE
Part IV “CSIv2 Administration”

This part explains how to configure and manage CSIv2 in detail.

Part V “CORBA Security Programming”

This part explains how to program the SSL/TLS and CSIv2 APIs in your
security-aware CORBA applications.

Part VI “Web Services Security Programming”

This part explains how to program Web service security using an
IONA-proprietary API.

Appendices

The appendices list further technical details.

Related Documentation
The CORBA Programmer’s Guide and CORBA Programmer’s Reference
provide details about developing Orbix applications in C++ and Java.

The complete set of documentation for Orbix E2A ASP is available online at:

http://www.iona.com/docs/e2a/asp/6.0

The latest updates to the Orbix documentation can be found at http://
www.iona.com/docs.

Additional Resources for Information
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

The IONA knowledge base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical Conventions
This book uses the following typographical conventions:
 xx

http://www.iona.com/docs/e2a/asp/6.0
http://www.iona.com/docs
http://www.iona.com/docs
http://www.iona.com/support/kb/
http://www.iona.com/support/update/
mailto:support@iona.com

PREFACE
Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xxi

PREFACE
Keying Conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xxii

Part I
Introducing Security

In this part This part contains the following chapters:

Getting Started with Security page 3

Orbix Security Framework page 19

Transport Layer Security page 39

Securing CORBA Applications page 57

Single Sign-On for CORBA Applications page 93

Securing Web Services page 127

CHAPTER 1

Getting Started
with Security
This chapter focuses on getting some security demonstrations
up and running quickly. The details and background of the
various security features are not discussed at this stage.

In this chapter This chapter discusses the following topics:

Creating a Secure Domain page 4

Security Demonstrations page 11

Where do I go from here? page 16
3

CHAPTER 1 | Getting Started with Security
Creating a Secure Domain

Overview This section describes how to create a secure configuration domain,
secure-domain, which is required for the security demonstrations. This
domain deploys a minimal set of Orbix services.

Prerequisites Before creating a secure domain, the following prerequisites must be
satisfied:

• Orbix E2A ASP is installed.

• Your license allows you to use the security features of Orbix.

• Some basic system variables are set up (in particular, the
IT_PRODUCT_DIR, IT_LICENSE_FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not already set
in your environment, you can set it now.

Steps To create a secure configuration domain, secure-domain, perform the
following steps:

1. Run itconfigure.

2. Specify the license location.

3. Choose expert mode and specify domain settings.

4. Specify services settings.

5. Review the summary window.

6. Finish configuration.

WARNING: The secure domain created using this procedure is not fully
secure, because the X.509 certificates used in this domain are insecure
demonstration certificates. This secure domain must be properly
customized before deploying in a production environment.
 4

Creating a Secure Domain
Run itconfigure To begin creating a new configuration domain, enter itconfigure at a
command prompt. An Introduction window appears, as shown in Figure 1.

Specify the license location If you have not already specified the license location by setting the
IT_LICENSE_FILE environment variable (see “Licensing” on page 4), specify
the location now by clicking the License button on the Introduction window
(Figure 1 on page 5).

Figure 1: The itconfigure Introduction Window
5

CHAPTER 1 | Getting Started with Security
A License dialog box appears, as shown in Figure 2. Enter the license file
location in the License File text field or use the Browse button to select the
license file, then click OK.

Choose expert mode and specify
domain settings

From the Introduction window (Figure 1 on page 5), click Expert to begin
creating a configuration domain in expert mode. A Domain Settings window
appears, as shown in Figure 3.

In the Domain Name text field, type secure-domain. Select the File Based
Domain option.

Select the Allow Secure Communication option and deselect the Allow
Insecure Communication option.

Figure 2: The License Dialog Box
 6

Creating a Secure Domain
Click Next> to continue.

Specify services settings A Services Settings window appears, as shown in Figure 4.

In the Services Settings window, select the following services and
components for inclusion in the configuration domain: Location, Node
daemon, Management, CORBA Interface Repository, CORBA Naming,
Web Services Container, IONA Security, and Demos.

Figure 3: The itconfigure Domain Settings Window
7

CHAPTER 1 | Getting Started with Security
Click Next> to continue.

Review the summary window You now have the opportunity to review the configuration settings in the
Summary window, Figure 5. If necessary, you can use the <Back button to
make corrections.

Figure 4: The itconfigure Services Settings Window
 8

Creating a Secure Domain
Click Next> to create the configuration domain and progress to the next
window.

Finish configuration The itconfigure utility now creates and deploys the secure-domain
configuration domain, writing files into the ASPInstallDir/etc/bin,
ASPInstallDir/etc/domain, ASPInstallDir/etc/log, and ASPInstallDir/var
directories.

If the configuration domain is created successfully, you should see a
Complete window with a message similar to that shown in Figure 6.

Figure 5: The itconfigure Summary Window
9

CHAPTER 1 | Getting Started with Security
Click Finish to quit the itconfigure utility.

Figure 6: Finishing Configuration
 10

Security Demonstrations
Security Demonstrations

Overview This section describes how to build and run security demonstrations that are
configured to work within the Orbix Security Framework.

In this section This section contains the following subsections:

Running a Secure CORBA Demonstration page 12
11

CHAPTER 1 | Getting Started with Security
Running a Secure CORBA Demonstration

Overview This section describes how to run the secure CORBA demonstration, which
is a three-tier application that illustrates the SSL/TLS, username/password
authentication, and identity assertion features.

Prerequisites Before running this demonstration, you must have created a secure-domain
configuration domain—see “Creating a Secure Domain” on page 4.

Demonstration location The secure CORBA demonstration is located in the following directory:

ASPInstallDir/asp/6.1/demos/common/is2

Where ASPInstallDir is the directory where Orbix is installed.

Demonstration overview Figure 7 gives an overview of the secure CORBA demonstration.

Steps To build and run the secure CORBA demonstration, perform the following
steps:

1. Build the demonstration.

2. Start the Orbix services.

3. Run the target server.

Figure 7: CORBA Secure Demonstration Overview

retrieve realms
and roles

IIOP/TLS

Orbix Security
Service

Intermediate
Server

Target
Server

Client
Login

IIOP/TLS

authenticate
user

propagate username/password propagate user identity
 12

Security Demonstrations
4. Run the intermediate server.

5. Run the client.

Build the demonstration To build the demonstration, open a new command prompt and enter the
following commands:

Windows
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> itant

UNIX
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% itant

Start the Orbix services To start the Orbix services, enter the following command at the command
prompt:

Windows
> ASPInstallDir\etc\bin\start_secure-domain_services.bat

UNIX
% ASPInstallDir/etc/bin/start_secure-domain_services

Run the target server To run the target server, open a new command prompt and enter the
following commands:

Windows and J2SE (JDK) 1.3.x
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> java -classpath .\java\classes;"%CLASSPATH%" is2.Server

Windows and J2SE (JDK) 1.4.x
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> java -Djava_endorsed.dirs="ASPInstallDir\\lib\\art\\omg\\5"

-classpath .\java\classes;"%CLASSPATH%" is2.Server

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% java -classpath ./java/classes:$CLASSPATH is2.Server
13

CHAPTER 1 | Getting Started with Security
UNIX and J2SE (JDK) 1.4.x
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath

./java/classes:$CLASSPATH is2.Server

Run the intermediate server To run the intermediate server, open a new command prompt and enter the
following commands:

Windows and J2SE (JDK) 1.3.x
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> java -classpath .\java\classes;"%CLASSPATH%"

is2.IntermediateServer

Windows and J2SE (JDK) 1.4.x
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> java -Djava_endorsed.dirs="ASPInstallDir\\lib\\art\\omg\\5"

-classpath .\java\classes;"%CLASSPATH%" is2.IntermediateServer

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% java -classpath ./java/classes:$CLASSPATH is2.IntermediateServer

UNIX and J2SE (JDK) 1.4.x
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath

./java/classes:$CLASSPATH is2.IntermediateServer

Run the client To run the client, open a new command prompt and enter the following
commands:

Windows and J2SE (JDK) 1.3.x
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> java -classpath .\java\classes;"%CLASSPATH%" is2.Client -user

alice

Note: The intermediate server must run in the same directory as the
target server.
 14

Security Demonstrations
Windows and J2SE (JDK) 1.4.x
> ASPInstallDir\etc\bin\secure-domain_env.bat
> cd ASPInstallDir\asp\6.1\demos\common\is2
> java -Djava_endorsed.dirs="ASPInstallDir\\lib\\art\\omg\\5"

-classpath .\java\classes;"%CLASSPATH%" is2.Client -user alice

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% java -classpath ./java/classes:$CLASSPATH is2.Client -user alice

UNIX and J2SE (JDK) 1.4.x
% . ASPInstallDir/etc/bin/secure-domain_env.sh
% cd ASPInstallDir/asp/6.1/demos/common/is2
% java -Djava_endorsed.dirs=ASPInstallDir/lib/art/omg/5 -classpath

./java/classes:$CLASSPATH is2.Client -user alice

Note: The client must run in the same directory as the target and
intermediate servers.
15

CHAPTER 1 | Getting Started with Security
Where do I go from here?

Overview To help you get started in the wide-ranging field of security, you might find it
helpful to focus on one of the following fundamental tasks:

• I want to customize the sample domain to make it fully secure.

• I want to security-enable a CORBA application.

• I want to write a security-aware CORBA application.

• I want to integrate a third-party enterprise security system.

• I want to replace the default SSL/TLS toolkit.

I want to customize the sample
domain to make it fully secure

The sample configuration domains generated by the itconfigure utility are
not fully secure, because the X.509 certificates used by the Orbix services
are insecure demonstration certificates. To perform basic customization of a
secure configuration domain, see the following reference:

• “Securing Orbix Services” on page 187.

I want to security-enable a
CORBA application

To security-enable a CORBA application, see the following reference:

• “Securing CORBA Applications” on page 57.

I want to write a security-aware
CORBA application

To write a security-aware CORBA application, see the following references:

• “Programming Policies” on page 421.

• “Authentication” on page 435.

• “Validating Certificates” on page 473.

I want to integrate a third-party
enterprise security system

The Orbix Security Framework provides a facility for integrating with
third-part enterprise security systems, such as LDAP, through a pluggable
system of security adapters. For details of how this works, see the following
reference:

• “Configuring the Orbix Security Service” on page 145.

For details of how to write your own custom adapter, see the following
reference:

• “Developing an iSF Adapter” on page 269.
 16

Where do I go from here?
I want to replace the default
SSL/TLS toolkit

By default, Orbix uses the SSL/TLS tookit from Baltimore Technologies.
IONA’s SSL/TLS toolkit replaceability feature enables you to replace the
underlying SSL/TLS toolkit used by an Orbix applications. For details, see
the following chapter:

• “Choosing an SSL/TLS Toolkit” on page 247.
17

CHAPTER 1 | Getting Started with Security
 18

CHAPTER 2

Orbix Security
Framework
The Orbix Security Framework provides the common
underlying security framework for all types of applications in
Orbix, including CORBA and Web services applications. This
chapter provides an introduction to the main features of the
iSF.

In this chapter This chapter discusses the following topics:

Introduction to the iSF page 20

Orbix Security Service page 25

Secure Applications page 29

Administering the iSF page 34
19

CHAPTER 2 | Orbix Security Framework
Introduction to the iSF

Overview This section provides a brief overview of and introduction to the Orbix
Security Framework, which provides a common security framework for all
components of Orbix.

In this section This section contains the following subsections:

iSF Features page 21

Example of an iSF System page 22

Security Standards page 24
 20

Introduction to the iSF
iSF Features

Overview The Orbix Security Framework is a scalable, standards-based security
framework with the following features:

• Pluggable integration with third-party enterprise security systems.

• Out-of-the-box integration with flat file, or LDAP security systems.

• Centralized management of user accounts.

• Role-Based Access Control.

• Role-to-permission mapping supported by access control lists.

• Unified security platform works across CORBA and Web services.

• Security platform is ART-based.

• Logging.
21

CHAPTER 2 | Orbix Security Framework
Example of an iSF System

Overview Figure 8 shows an example of an iSF system that features a standalone
Orbix security service, which can service remote requests for security-related
functions.

Orbix security service The Orbix security service is the central component of the Orbix Security
Framework, providing an authentication service, an authorization service
and a repository of user information and credentials. When the Orbix
security service is deployed in standalone mode, all kinds of application,
including CORBA applications and Web services, can call it remotely.

Figure 8: Example System with a Standalone Orbix Security Service

Web
Services
Container

CORBA
Server

CORBA on
OS/390

CORBA
Server

Enterprise Security Service

Orbix Security Service

HTTPS
IIOP/TLS

IIOP/TLS
 22

Introduction to the iSF
Enterprise security service The Orbix security service is designed to integrate with a third-party
enterprise security service (ESS), which acts as the primary repository for
user information and credentials. Integration with an ESS is supported by a
variety of iSF adapters. The following adapters are currently supported by
iSF:

• LDAP adapter.

The following adapter is provided for use in simple demonstrations (but is
not supported in production environments):

• File adapter.

In addition, it is possible to build your own adapters using the iSF Adapter
SDK—see “iSF Server Development Kit” on page 28.

Propagating security credentials The example in Figure 8 on page 22 assumes that a user’s credentials can
be propagated from one application to another. There are fundamentally two
different layers that can propagate security credentials between processes in
an iSF distributed system:

• Transport layer.

• Application layer.

Transport layer Security at the transport layer enables security information to be exchanged
during the security handshake, which happens while the connection is being
established. For example, the SSL/TLS standard enables X.509 certificates
to be exchanged between a client and a server during a security handshake.

Application layer Security at the application layer enables security information to be
propagated after connection establishment, using a protocol layered above
the transport. For example, the CORBA common secure interoperability
v2.0 (CSIv2) protocol propagates security information by embedding
security data in IIOP messages, which are layered above TCP/IP.

The CSIv2 protocol can be used to propagate any of the following kinds of
credential:

• Username/password/domain.

• Username only.

• Single-sign on (SSO) token.
23

CHAPTER 2 | Orbix Security Framework
Security Standards

Overview One of the goals of the iSF is to base the security framework on established
security standards, thereby maximizing the ability of iSF to integrate and
interoperate with other secure systems. This section lists the security
standards currently supported by the iSF.

Standards supported by iSF The following security standards are supported by iSF:

• HTTP login mechanisms—that is, HTTP basic authentication and
HTTP form-based authentication.

• Secure Sockets Layer / Transport Layer Security (SSL/TLS), from the
Internet Engineering Task Force, which provides data security for
applications that communicate across networks.

• CCITT X.509, which governs the form of security certificates based on
public (asymmetric) key systems)

• OMG Common Secure Interoperability specification (CSIv2)

• The XML Key management Specification (XKMS), which specifies the
protocols for distributing and registering public keys. XKMS is
composed of the XML Key Information Service Specification (X-KISS),
and the XML Key Registration Service Specification (X-KRSS). XKMS
provides the Public Key Infrastructure (PKI) support in iSF.

• Security Assertion Markup Language (SAML) from the Organization for
the Advancement of Structured Information Standards (OASIS), which
is the XML security standard for exchanging authentication and
authorization information. The SAML specification provides bindings
for various transport protocols including HTTP/HTTPS and SOAP.

• Secure Multipurpose Internet Mail Extensions (S/MIME), which is a
specification for secure electronic mail, and is designed to add security
to e-mail messages in MIME format.

• WS-Security, which a proposed standard from Microsoft, IBM, and
VeriSign. It defines a standard set of SOAP extensions, or message
headers, that can be used to implement integrity and confidentiality in
Web services applications.

• Java Authentication and Authorization Service (JAAS)
 24

Orbix Security Service
Orbix Security Service

Overview The Orbix security service is the central component of the Orbix Security
Framework. This section provides an overview of the main Orbix security
service features.

In this section This section contains the following subsections:

Orbix Security Service Architecture page 26

iSF Server Development Kit page 28
25

CHAPTER 2 | Orbix Security Framework
Orbix Security Service Architecture

iSF client API The GSP plug-in access the Orbix security service through the iSF client API,
which is a private IONA-proprietary API. This API exposes general security
operations, such as authenticating a username and password, retrieving a
user’s roles, and so on. Two language versions of the iSF client API are used
internally by Orbix:

• C++.

• Java.

Remote connections to the Orbix
security service

Orbix plug-ins can communicate with the Orbix security service through an
IIOP/TLS connection.

Standalone or embedded
deployment

The iSF server module can be packaged in the following different ways:

• Standalone deployment (default)—the iSF server module is packaged
as a standalone server process, the Orbix security service, that services
requests through a CORBA interface (IIOP or IIOP/TLS).

• Embedded deployment—the iSF server module is packaged as a JAR
library that can be loaded directly into a Java application. In this case,
service requests are made as local calls.

iSF adapter API Integration with third-party enterprise security systems is facilitated by the
iSF adapter API that enables the Orbix security service to delegate security
operations to other security systems.

iSF adapters IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following adapters are available:

• LDAP adapter.

• File adapter (demonstration only—not supported in production
environments).
 26

Orbix Security Service
Optional iSF components The Orbix security service includes the following optional components that
can be enabled to provide additional security features:

• Single sign-on.

Single sign-on Single sign-on means that once an application has authenticated a
particular user, it is relatively easy for other secure applications to access
that user’s security data.

When single sign-on is enabled, the Orbix security service creates an
association between an SSO token and a user session. Any application that
has the user’s SSO token can then use it to access the user’s session data.

Note: While the single-sign on feature is supported by the iSF client SDK,
it is currently not used by the iSF.
27

CHAPTER 2 | Orbix Security Framework
iSF Server Development Kit

Overview The iSF server development kit (SDK) enables you to implement custom
extensions to the iSF. The iSF SDK is divided into the following parts:

• iSF adapter SDK.

• iSF client SDK.

iSF adapter SDK The iSF adapter SDK provides an API implementing custom iSF adapters.
Using this API, you can integrate any enterprise security system with the
iSF.

This API is available in both C++ and Java.

iSF client SDK The iSF client SDK provides an API for Orbix to access the iSF server
module’s core functionality directly (usually through remote calls).

This is a private API intended only for internal use by Orbix.
 28

Secure Applications
Secure Applications

Overview This section explains how applications from various technology domains are
integrated into the Orbix Security Framework.

In this section This section contains the following subsections:

ART Security Plug-Ins page 30

Secure CORBA Applications page 32
29

CHAPTER 2 | Orbix Security Framework
ART Security Plug-Ins

Overview To participate in the Orbix Security Framework, applications load one or
more of the ART security plug-ins. Because Orbix is built using a common
ART platform, an identical set of security plug-ins are used across the
different technology domains of CORBA and Web services. This has the
advantage of ensuring maximum security compatibility between these
different technology domains.

What is ART? IONA’s Adaptive Runtime Technology (ART) is a modular framework for
constructing distributed systems, based on a lightweight core and an
open-ended set of plug-ins. ART is the underlying technology in Orbix.

Security plug-ins An application can load any of the following security plug-ins to enable
particular security features and participate in the Orbix Security Framework:

• IIOP/TLS.

• HTTPS.

• CSIv2.

• GSP.

IIOP/TLS The IIOP/TLS plug-in provides applications with the capability to establish
secure connections using IIOP over a TLS transport. Authentication is also
performed using X.509 certificates. For example, this plug-in is used by
CORBA applications.

HTTPS The HTTPS plug-in provides the capability to establish secure connections
using HTTP over a TLS transport. Authentication is also performed using
X.509 certificates. For example, this plug-in is used by the Web container to
enable secure communications with Web clients.

CSIv2 The Common Secure Interoperability (CSIv2) plug-in provides support for
authentication based on a username and password. The CSIv2 plug-in also
enables applications to forward usernames or security tokens to other
applications over an IIOP or IIOP/TLS connection.
 30

Secure Applications
GSP The GSP plug-in provides an authorization capability for the iSF—that is,
the capability to restrict access to certain methods, operations, or attributes,
based on the configuration values stored in an external action-role mapping
XML file. The GSP plug-in works in tandem with the Orbix security service to
realize a complete system of role-based access control.
31

CHAPTER 2 | Orbix Security Framework
Secure CORBA Applications

Overview Figure 9 shows how the security plug-ins in a CORBA application cooperate
to provide security for the application.

IIOP/TLS plug-in in CORBA a
application

The IIOP/TLS plug-in enables the CORBA application to establish
connections secured by SSL/TLS. This layer of security is essential for
providing data encryption.

CSIv2 plug-in in a CORBA
application

The CSIv2 plug-in provides CORBA applications with the following features:

• The capability to log in with a username and password.

• Screening incoming IIOP invocations by making sure that the
username/password combination is correct.

• Transmission of a username/password/domain combination to other
applications.

• Transmission of a username or security token to other applications.

Figure 9: Security Plug-Ins in a CORBA Application

Orbix Secure Service

IIOP/TLS

CORBA Application

IIOP/
TLS

CSIv2 and GSP

ACL

Authentication

Action-role
mapping file

Authorization
 32

Secure Applications
GSP plug-in in a CORBA
application

The GSP plug-in restricts access to a CORBA server’s operations and
attributes, only allowing user’s with certain specified roles to proceed with
an invocation.
33

CHAPTER 2 | Orbix Security Framework
Administering the iSF

Overview This section provides an overview of the main aspects of configuring and
administering the iSF.

In this section This section contains the following subsections:

Overview of iSF Administration page 35

Secure ASP Services page 37
 34

Administering the iSF
Overview of iSF Administration

Overview There are several different aspects of iSF administration to consider, as
follows:

• Orbix configuration file.

• iSF properties file.

• Enterprise security service administration.

• Access control lists.

Orbix configuration file The Orbix configuration file, DomainName.cfg (or, alternatively, the CFR
service), is used to configure the security policies for all of the applications
and services in a particular location domain. For example, the following
kinds of security policy are specified in the Orbix configuration file:

• The list of security plug-ins to be loaded by an application.

• Whether an application accepts both secure and insecure connections,
or secure connections only.

• The name of the iSF authorization realm to which an application
belongs.

These are just some of the security policies that can be configured—see
“Security Configuration” on page 485.

iSF properties file The iSF properties file is used to configure the core properties of the Orbix
security service. This file primarily configures the properties of an iSF
adapter that connects to an enterprise security backend. This file also
configures the optional single sign-on and authorization manager features.

See “iS2 Configuration” on page 513 for details.

Enterprise security service
administration

Because the Orbix security service is capable of integrating with a
third-party enterprise security service, you can continue to use the native
third-party administration tools for your chosen enterprise security service.
These tools would be used to administer user accounts, including such data
as usernames, passwords, user groups, and roles.
35

CHAPTER 2 | Orbix Security Framework
Access control lists To complete a system of role-based access control, it is necessary to provide
individual applications with an access control list (ACL) file that is
responsible for mapping user roles to particular permissions.

For example, the ACL associated with a CORBA server could specify that
only a specified set of roles are allowed to invoke a particular IDL operation.

There is one type of ACL file used within the iSF, as follows:

• Action-role mapping (proprietary format).
 36

Administering the iSF
Secure ASP Services

Overview When you create a secure location domain, all of the standard ASP services
are secure by default. The default configuration can be used to test sample
applications, but is not genuinely secure. Before the ASP services can be
used in a real deployment, it is necessary to customize the security
configuration.

Customizing the security
configuration

For a real deployment, certain aspects of the security configuration for ASP
services would be customized, as follows:

• X.509 certificates associated with ASP services—the sample
certificates initially associated with the ASP services must all be
replaced, because they are not secure.

• Default security policies—for the ASP services might need to be
changed before deployment.
37

CHAPTER 2 | Orbix Security Framework
 38

CHAPTER 3

Transport Layer
Security
Transport Layer Security provides encryption and
authentication mechanisms for your Orbix system.

In this chapter This chapter discusses the following topics:

What does Orbix Provide? page 40

How TLS Provides Security page 42

Obtaining Credentials from X.509 Certificates page 48
39

CHAPTER 3 | Transport Layer Security
What does Orbix Provide?

Security plug-ins Orbix provides the core security infrastructure to a distributed system based
on IONA’s Adaptive Runtime Technology (ART). It is implemented as a
symmetric set of plug-ins for Orbix (C++ and Java). When the security
plug-ins are installed in an application, the communication layers consist of
the CORBA standard Internet Inter-ORB Protocol (IIOP), layered above TLS
and TCP/IP.

Transport Layer Security Transport Layer Security (TLS) is an IETF Open Standard. It is based on,
and is the successor to, Secure Sockets Layer (SSL), long the standard for
secure communications.

The TLS Protocol provides the most critical security features to help you
preserve the privacy and integrity of your system:

• Authentication (based on RSA with X.509v3 certificates).

• Encryption (based on DES, Triple DES, RC4, IDEA).

• Message integrity (based on SHA1, MD5).

• A framework that allows new cryptographic algorithms to be
incorporated into the TLS specification.

CORBA Security Level 2 Orbix is based on the CORBA Security Level 2 policies and API’s (RTF 1.7).
It implements a set of policies from the CORBA specification that enable you
to control encryption and authentication at a fine level.

Added-value policies and APIs Orbix also has added-value policies and APIs that provide more control for
SSL/TLS applications than provided by CORBA Security.

SSL/TLS toolkit replaceability Orbix has an SSL/TLS toolkit replaceability feature that enables you to
replace completely the underlying toolkit that implements SSL/TLS in Orbix.
Currently, you have a choice between the Baltimore toolkit (all platforms)
and the Schannel toolkit (Windows only).
 40

What does Orbix Provide?
Security-unaware and
security-aware applications

There are two basic approaches to using security in your applications:

• Security-unaware applications—Modify the Orbix configuration to
enable and configure security for your application. This approach to
security is completely transparent to the application, requiring no code
changes or recompilation.

• Security-aware applications—In addition to modifying the Orbix
configuration to enable security, you can customize application security
using both the standard CORBA security API and the Orbix
added-value APIs.
41

CHAPTER 3 | Transport Layer Security
How TLS Provides Security

Basic TLS security features TLS provides the following security for communications across TCP/IP
connections:

In this section This section contains the following subsections:

Authentication This allows an application to verify the identity of
another application with which it communicates.

Privacy This ensures that data transmitted between
applications can not be eavesdropped on or understood
by a third party.

Integrity This allows applications to detect if data was modified
during transmission.

Authentication in TLS page 43

Certificates in TLS Authentication page 45

Privacy of TLS Communications page 46

Integrity of TLS Communications page 47
 42

How TLS Provides Security
Authentication in TLS

Public key cryptography TLS uses Rivest Shamir Adleman (RSA) public key cryptography for
authentication. In public key cryptography, each application has an
associated public key and private key. Data encrypted with the public key
can be decrypted only with the private key. Data encrypted with the private
key can be decrypted only with the public key.

Public key cryptography allows an application to prove its identity by
encoding data with its private key. As no other application has access to this
key, the encoded data must derive from the true application. Any
application can check the content of the encoded data by decoding it with
the application’s public key.

The TLS Handshake Protocol Consider the example of two applications, a client and a server. The client
connects to the server and wishes to send some confidential data. Before
sending application data, the client must ensure that it is connected to the
required server and not to an impostor.

When the client connects to the server, it confirms the server identity using
the TLS handshake protocol. A simplified explanation of how the client
executes this handshake in order to authenticate the server is as follows:

Stage Description

1 The client initiates the TLS handshake by sending the initial
TLS handshake message to the server.

2 The server responds by sending its certificate to the client. This
certificate verifies the server's identity and contains the
certificate’s public key.

3 The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key with the
extracted public key.
43

CHAPTER 3 | Transport Layer Security
Optimized handshake The TLS protocol permits a special optimized handshake in which a
previously established session can be resumed. This has the advantage of
not needing expensive private key computations. The TLS handshake also
facilitates the negotiation of ciphers to be used in a connection.

Client authentication The TLS protocol also allows the server to authenticate the client. Client
authentication, which is supported by Orbix, is optional in TLS
communications.

4 The server uses its private key to decrypt the encrypted session
key which it will use to encrypt and decrypt application data
passing to and from the client. The client will also use the
shared session key to encrypt and decrypt messages passing to
and from the server.

Stage Description
 44

How TLS Provides Security
Certificates in TLS Authentication

Purpose of certificates A public key is transmitted as part of a certificate. The certificate is used to
ensure that the submitted public key is, in fact, the public key that belongs
to the submitter. The client checks that the certificate has been digitally
signed by a certification authority (CA) that the client explicitly trusts.

Certification authority A CA is a trusted authority that verifies the validity of the combination of
entity name and public key in a certificate. You must specify trusted CAs in
order to use Orbix.

X.509 certificate format The International Telecommunications Union (ITU) recommendation,
X.509, defines a standard format for certificates. TLS authentication uses
X.509 certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.

• The public key of the entity.

• The name of the certification authority that issued the certificate.

The role of a certificate is to match an entity name to a public key.

Access to certificates According to the TLS protocol, it is unnecessary for applications to have
access to all certificates. Generally, each application only needs to access its
own certificate and the corresponding issuing certificates. Clients and
servers supply their certificates to applications that they want to contact
during the TLS handshake. The nature of the TLS handshake is such that
there is nothing insecure in receiving the certificate from an as yet untrusted
peer. The certificate will be checked to make sure that it has been digitally
signed by a trusted CA and the peer will have to prove its identity during the
handshake.
45

CHAPTER 3 | Transport Layer Security
Privacy of TLS Communications

Establishing a symmetric key Immediately after authentication, the client sends an encoded data value to
the server (using the server’s public key). This unique session encoded value
is a key to a symmetric cryptographic algorithm. Only the server is able to
decode this data (using the corresponding private key).

Symmetric cryptography A symmetric cryptographic algorithm is an algorithm in which a single key is
used to encode and decode data. Once the server has received such a key
from the client, all subsequent communications between the applications
can be encoded using the agreed symmetric cryptographic algorithm. This
feature strengthens TLS security.

Examples of symmetric cryptographic algorithms used to maintain privacy in
TLS communications are the Data Encryption Standard (DES) and RC4.
 46

How TLS Provides Security
Integrity of TLS Communications

Message authentication code The authentication and privacy features of TLS ensure that applications can
exchange confidential data that cannot be understood by an intermediary.
However, these features do not protect against the modification of encrypted
messages transmitted between applications.

To detect if an application has received data modified by an intermediary,
TLS adds a message authentication code (MAC) to each message. This code
is computed by applying a function to the message content and the secret
key used in the symmetric cryptographic algorithm.

Guaranteeing message integrity An intermediary cannot compute the MAC for a message without knowing
the secret key used to encrypt it. If the message is corrupted or modified
during transmission, the message content will not match the MAC. TLS
automatically detects this error and rejects corrupted messages.
47

CHAPTER 3 | Transport Layer Security
Obtaining Credentials from X.509 Certificates

Obtaining own credentials This section discusses how an application’s own credentials are initially
obtained from an X.509 certificate. An application’s own credentials are the
credentials that the application normally uses to identify itself to other
applications.

Comparison of PKCS#12 and
PKCS#11

Two mechanisms for obtaining own credentials are described in this section:

• PKCS#12—credentials obtained from a PKCS#12 file.

• PKCS#11—credentials obtained from a smart card. Orbix uses the
PKCS#11 interface to communicate with the smart card.

In this section This section contains the following subsections:

Obtaining Certificate Credentials from a File page 49

Obtaining Certificate Credentials from a Smart Card page 52
 48

Obtaining Credentials from X.509 Certificates
Obtaining Certificate Credentials from a File

Creating credentials using the
principal sponsor

The simplest way for a client to obtain certificate credentials is to configure
an SSL/TLS principal sponsor for the client application. This principal
sponsor can be initialized by editing the Orbix configuration—see
“Specifying an Application’s Own Certificate” on page 337.

Creating credentials from a
PKCS#12 file

Figure 10 illustrates how the principal sponsor creates credentials from a
PKCS#12 file.

Figure 10: Creating Credentials for a Client Application Using PKCS#12

Client

ORB

Principal Sponsor

Principal Authenticator

Config
File

PKCS#12
File

own credentials

private key cache

Creates

Own credentials list

1 2

5

4

3 authenticate()

Prompt user for
pass phrase

Load PKCS#12 file
49

CHAPTER 3 | Transport Layer Security
Steps for creating credentials The principal sponsor automates the steps to create credentials, as follows:

1. The principal sponsor reads the client configuration file to discover
which authentication method to use.

2. If the authentication method is PKCS#12, the principal sponsor
obtains the pass phrase to decrypt the client’s certificate chain and
private key. The pass phrase is obtained either by running a login
utility that prompts the user for the pass phrase, or by reading the
client configuration file—see “Providing a Certificate Pass Phrase” on
page 342.

3. The principal sponsor requests the principal authenticator to generate
credentials for the client by invoking the authenticate() operation,
passing the following data as parameters:

♦ Pass phrase,

♦ PKCS#12 file name.

4. The principal authenticator loads the PKCS#12 file to obtain the client
identity. The PKCS#12 file contains an encrypted X.509 certificate
chain and an encrypted private key.

5. If the authentication step is successful, the principal authenticator
creates an own credentials object, of SecurityLevel2::Credentials
type. The own credentials object is cached in memory along with its
private key.
 50

Obtaining Credentials from X.509 Certificates
How PKCS#12 credentials are
used in an SSL/TLS handshake

Figure 11 illustrates how PKCS#12 credentials are used during an SSL/TLS
handshake, showing only the portion of the handshake where the server
verifies the client’s identity.

PKCS#12 handshake steps During an SSL/TLS handshake, the client authenticates itself to the server as
follows:

1. At a certain point during the SSL/TLS handshake, the client sends an
X.509 certificate chain (which has been cached in an own credentials
object) to the server.

2. The server sends a challenge message, encrypted using the client’s
public key.

3. The client uses the private key (cached in memory) to decrypt the
challenge message.

4. Having successfully answered the server challenge, the client proceeds
to the next stage of the handshake (not shown).

Figure 11: Using PKCS#12 Credentials to Authenticate a Client to a
Server

Client

private key cache

Own credentials list

2

1

3

Server

Challenge client

Send certificate chain
own credentials

Use private
key to
decrypt
challenge

SSL/TLS Secure Handshake
51

CHAPTER 3 | Transport Layer Security
Obtaining Certificate Credentials from a Smart Card

Creating credentials using the
PKCS#11 interface

Figure 12 illustrates how the SSL/TLS principal sponsor creates certificate
credentials using the PKCS#11 interface—see “Specifying an Application’s
Own Certificate” on page 337.

Figure 12: Creating Credentials for a Client Application Using PKCS#11

Client

ORB

Principal Sponsor

Principal Authenticator

Config
File

own credentialsCreates

Own credentials list

1 2

5

4

3 authenticate()

Prompt user for
password/PIN

Load certificate chain

Smart Card

PKCS#11 Interface
 52

Obtaining Credentials from X.509 Certificates
Steps for creating credentials The principal sponsor automates the steps to create credentials, as follows:

1. The principal sponsor reads the client configuration file to discover
which authentication method to use.

2. If the authentication method is PKCS#11, the principal sponsor
obtains the smart card’s PIN to gain access to the smart card. The PIN
is obtained either by running a login utility that prompts the user for
the PIN, or by reading the client configuration file—see “Providing a
Smart Card PIN” on page 346.

3. The principal sponsor requests the principal authenticator to generate
credentials for the client by invoking the authenticate() operation,
passing the following data:

♦ Provider name,

♦ Slot number,

♦ PIN or pass phrase.

4. The principal authenticator communicates with the smart card using
the PKCS#11 interface to obtain the client identity. The principal
authenticator uploads only the X.509 certificate chain. The private key
is left on the smart card.

5. If the authentication step is successful, the principal authenticator
creates an own credentials object, of SecurityLevel2::Credentials
type. The own credentials object is cached in memory but its private
key is not stored in memory.
53

CHAPTER 3 | Transport Layer Security
How PKCS#11 credentials are
used in an SSL/TLS handshake

Figure 13 illustrates how PKCS#11 credentials are used during an SSL/TLS
handshake, showing only the portion of the handshake where the server
verifies the client’s identity.

PKCS#11 handshake steps During an SSL/TLS handshake, the client authenticates itself to the server as
follows:

1. At a certain point during the SSL/TLS handshake, the client sends an
X.509 certificate chain (which has been cached in an own credentials
object) to the server.

2. The server sends a challenge message, encrypted using the client’s
public key.

Figure 13: Using PKCS#11 Credentials to Authenticate a Client to a
Server

Client

Own credentials list

2

1

3

Server

Challenge client

Send certificate chain
own credentials

Delegate private key
operations to smart card.

Smart Card

PKCS#11 Interface

SSL/TLS Secure Handshake
 54

Obtaining Credentials from X.509 Certificates
3. The client delegates the challenge message to the smart card, using
the PKCS#11 interface. The smart card uses the appropriate private
key to decrypt the challenge message. Because the smart card has a
built-in processor, it is able to perform the private key calculations in
place. The private key never leaves the smart card.

4. Having successfully answered the server challenge, the client proceeds
to the next stage of the handshake (not shown).

Note: At no point during the handshake is the smart card’s private
key loaded into memory.
55

CHAPTER 3 | Transport Layer Security
 56

CHAPTER 4

Securing CORBA
Applications
This chapter describes how to enable security in the context
of the Orbix Security Framework for CORBA applications and
services.

In this chapter This chapter discusses the following topics:

Overview of CORBA Security page 58

Securing Communications with SSL/TLS page 60

Specifying Fixed Ports for SSL/TLS Connections page 70

Securing Two-Tier CORBA Systems with CSI page 72

Securing Three-Tier CORBA Systems with CSI page 78

X.509 Certificate-Based Authentication page 84

Caching of Credentials page 90
57

CHAPTER 4 | Securing CORBA Applications
Overview of CORBA Security

Overview There are two main components of security for CORBA applications: IIOP
over SSL/TLS (IIOP/TLS), which provides secure communication between
client and server; and the iSF, which is concerned with higher-level security
features such as authentication and authorization.

The following combinations are recommended:

• IIOP/TLS only—for a pure SSL/TLS security solution.

• IIOP/TLS and iSF—for a highly scalable security solution, based on
username/password client authentication.

CORBA applications and iSF Figure 14 shows the main features of a secure CORBA application in the
context of the iSF.

Figure 14: A Secure CORBA Application within the iSF

Orbix Secure Service

IIOP/TLS

CORBA Application

IIOP/
TLS

CSIv2 and GSP

ACL

Authentication

Action-role
mapping file

Authorization
 58

Overview of CORBA Security
Security plug-ins Within the iSF, a CORBA application becomes fully secure by loading the
following plug-ins:

• IIOP/TLS plug-in

• CSIv2 plug-in

• GSP plug-in

IIOP/TLS plug-in The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to transmit
and receive IIOP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing Communications with SSL/TLS” on page 60 for details on
how to enable IIOP/TLS in a CORBA application.

CSIv2 plug-in The CSIv2 plug-in, csi, provides a client authentication mechanism for
CORBA applications. The authentication mechanism is based on a
username and a password. When the CSIv2 plug-in is configured for use
with the iSF, the username and password are forwarded to a central Orbix
security service to be authenticated. This plug-in is needed to support the
iSF.

GSP plug-in The GSP plug-in, gsp, provides authorization by checking a user’s roles
against the permissions stored in an action-role mapping file. This plug-in is
needed to support the iSF.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSIv2 authentication mechanisms are independent of each other and can
be used simultaneously.
59

CHAPTER 4 | Securing CORBA Applications
Securing Communications with SSL/TLS

Overview This section describes how to configure an application to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain (generated by the itconfigure utility with
security enabled—see “Creating a Secure Domain” on page 4).

Configuration samples If a location domain, DomainName, is generated with security enabled and
demonstration configurations enabled, the domain will include several
sample configurations that can be used as templates for configuring
SSL/TLS. Within the default domain configuration (either in the
DomainName.cfg file or in the CFR service), you can find the following
sample SSL/TLS configuration scopes:

• demos.tls.secure_client_with_no_cert

• demos.tls.secure_client_with_cert

• demos.tls.semi_secure_client_with_cert

• demos.tls.semi_secure_client_with_no_cert

• demos.tls.secure_server_no_client_auth

• demos.tls.secure_server_request_client_auth

• demos.tls.secure_server_enforce_client_auth

• demos.tls.semi_secure_server_no_client_auth

• demos.tls.semi_secure_server_request_client_auth

• demos.tls.semi_secure_server_enforce_client_auth

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.
 60

Securing Communications with SSL/TLS
Secure client terminology The terminology used to describe the preceding client configuration scopes
is explained in Table 1.

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_client The client opens only secure SSL/TLS connections to the server. If the server does
not support secure connections, the connection attempt will fail.

semi_secure_client The type of connection opened by the client depends on the disposition of the
server:

• If the server is insecure (listening only on an insecure IIOP port), an insecure
connection is established.

• If the server is secure (listening only on a secure IIOP/TLS port), a secure
SSL/TLS connection is established.

• If the server is semi-secure (listening on both an IIOP port and on an
IIOP/TLS port), the type of connection established depends on the client’s
binding:client_binding_list.

♦ If, in the client’s binding:client_binding_list, a binding with the
IIOP interceptor appears before a binding with the IIOP_TLS
interceptor, an insecure connection is established.

♦ Conversely, if a binding with the IIOP_TLS interceptor appears before a
binding with the IIOP interceptor, a secure connection is established.

with_no_cert No X.509 certificate is associated with the client (at least, not through
configuration).

with_cert An X.509 certificate is associated with the client by setting the principal sponsor
configuration variables.
61

CHAPTER 4 | Securing CORBA Applications
Secure server terminology The terminology used to describe the preceding server configuration scopes
is explained in Table 2.

Table 2: Terminology Describing Secure Server Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_server The server accepts only secure SSL/TLS connection attempts. If a remote client
does not support secure connections, the connection attempt will fail.

semi_secure_server The server accepts both secure and insecure connection attempts by remote
clients.

no_client_auth The server does not support client authentication over SSL/TLS. That is, during an
SSL/TLS handshake, the server will not request the client to send an X.509
certificate.

request_client_auth The server allows a connecting client the option of either authenticating itself or
not authenticating itself using an X.509 certificate.

enforce_client_auth The server requires a connecting client to authenticate itself using an X.509
certificate.
 62

Securing Communications with SSL/TLS
Outline of a sample configuration
scope

For example, the demos.tls.secure_server_no_client_auth configuration
defines a server configuration that is secured by SSL/TLS but does not
expect clients to authenticate themselves. This configuration has the
following outline:

Three significant groups of configuration variables contribute to the
secure_server_no_client_auth configuration, as follows:

1. General configuration at root scope—these configuration settings are
common to all applications, whether secure or insecure.

2. Common SSL/TLS configuration settings—specify the basic settings
for SSL/TLS security. In particular, the orb_plugins list defined in this
scope includes the iiop_tls plug-in.

3. Specific server configuration settings—define the settings specific to
the secure_server_no_client_auth configuration.

Orbix Configuration File
...
General configuration at root scope.
...
demos {
 ...
 tls {
 # Common SSL/TLS configuration settings.
 ...
 secure_server_no_client_auth {
 # Specific server configuration settings.
 ...
 };
 };
};
...
63

CHAPTER 4 | Securing CORBA Applications
Sample client configuration For example, consider a secure SSL/TLS client whose configuration is
modelled on the demos.tls.secure_client_with_no_cert configuration.
Example 1 shows how to configure such a sample client.

Example 1: Sample SSL/TLS Client Configuration

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 # (copied from ’demos.tls’)

1 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];

2 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP", "OTS+GIOP+IIOP_TLS",
"GIOP+IIOP_TLS"];

3 policies:trusted_ca_list_policy =
"ASPInstallDir\asp\6.0\etc\tls\x509\trusted_ca_lists\ca_list1.
pem";

4 policies:mechanism_policy:protocol_version = "SSL_V3";
 policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

5 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific SSL/TLS client configuration settings
 # (copied from ’demos.tls.secure_client_with_no_cert’)

6 principal_sponsor:use_principal_sponsor = "false";

7 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 };
};
...
 64

Securing Communications with SSL/TLS
The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope
includes the iiop_tls plug-in.

If you plan to use the full Orbix Security Framework, you should
include the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with CSI” on page 72.

2. Make sure that the binding:client_binding_list variable includes
bindings with the IIOP_TLS interceptor. You can use the value of the
binding:client_binding_list shown here.

If you plan to use the full Orbix Security Framework, you should use
the binding:client_binding_list as shown in “Client configuration”
on page 73 instead.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You must, therefore, edit the
policies:trusted_ca_list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 335.

4. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 317.

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure IIOP) from the ORB plug-ins list. This renders the
application incapable of making insecure IIOP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the iiop_tls plug-in in the ORB plug-ins list.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.
65

CHAPTER 4 | Securing CORBA Applications
5. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

6. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal_sponsor:use_principal_sponsor to
false.

7. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

♦ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.
Hence, the sample server described here is a hybrid of the following two
demonstration configurations:

• demos.tls.secure_server_request_client_auth

• demos.tls.secure_client_with_cert

Example 2 shows how to configure such a sample server.

Example 2: Sample SSL/TLS Server Configuration

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 # (copied from ’demos.tls’)
 ...
 66

Securing Communications with SSL/TLS
The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 64

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

♦ Supported options—all of the target association options are
supported.

 my_server {
 # Specific SSL/TLS server configuration settings
 # (from ’demos.tls.secure_server_request_client_auth’)

2 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "pkcs12_file";
5 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\bank
_server.p12"];

 # Specific SSL/TLS client configuration settings
 # (copied from ’demos.tls.secure_client_with_cert’)

6 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...

Example 2: Sample SSL/TLS Server Configuration
67

CHAPTER 4 | Securing CORBA Applications
3. A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 337.

5. Replace the X.509 certificate, by editing the filename option in the
principal_sponsor:auth_method_data configuration variable to point
at a custom X.509 certificate. The filename value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 337 for more
details.

For details of how to specify the certificate’s pass phrase, see
“Providing a Pass Phrase or PIN” on page 341.

6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

♦ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the principal_sponsor:auth_method_id value must be
security_label instead of pkcs12_file.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the label option instead of the filename option
in the principal_sponsor:auth_method_data configuration variable.
The label specifies the common name (CN) from the application
certificate’s subject DN.
 68

Securing Communications with SSL/TLS
Mixed security configurations Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 66. Then configure the
client role by adding (or modifying) the following lines to the
my_secure_apps.my_server configuration scope:

The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure IIOP) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

Customizing SSL/TLS security
policies

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

• “Configuring SSL/TLS Secure Associations” on page 301.

• “Configuring SSL/TLS Authentication” on page 327.

Key distribution management It is possible to configure your CORBA server so that the certificate pass
phrase is supplied automatically by the key distribution management (KDM)
service. For details, see the following reference:

• “Automatic Activation of Secure Servers” on page 355.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection"];
69

CHAPTER 4 | Securing CORBA Applications
Specifying Fixed Ports for SSL/TLS
Connections

Overview Orbix allows you to specify a fixed IP port on which a server listens for
SSL/TLS connections. This subsection provides an overview of the
programming and configuration requirements for setting IIOP/TLS fixed
ports.

POA policies required for setting
fixed ports

The main prerequisite for configuring fixed ports is that a CORBA developer
programs the application to create a POA instance with the following
policies:

• PortableServer::LifespanPolicy—the value of this POA policy
should be set to PERSISTENT, indicating that the objects managed by
this POA can outlive the server process.

• IT_CORBA::WellKnownAddressingPolicy—the value of this POA policy
is a string that defines a well-known addressing prefix, <wka_prefix>,
for host/port configuration variables that an administrator can edit in
the Orbix configuration.

• IT_PortableServer::PersistenceModePolicy—the value of this POA
policy can be set to either of the following values:

♦ DIRECT_PERSISTENCE, indicating that the POA is configured to
receive connection attempts directly from clients. The server
listens on the fixed port (well-known address) and exports IORs
containing its own host and fixed port.

♦ INDIRECT_PERSISTENCE, indicating that connection attempts will
be redirected to the server by the locator service. The server
listens on the fixed port (well-known address), but exports IORs
containing the locator’s host and port.

Programming the required POA
policies

For details of how to program POA policies, see the CORBA Programmer’s
Guide.
 70

Specifying Fixed Ports for SSL/TLS Connections
Fixed port configuration variables The following IIOP/TLS configuration variables can be set for a POA that
supports the well-known addressing policy with the <wka_prefix> prefix:

<wka_prefix>:iiop_tls:host = "<host>";

Specifies the hostname, <host>, to publish in the IIOP/TLS profile of
server-generated IORs.

<wka_prefix>:iiop_tls:port = "<port>";

Specifies the fixed IP port, <port>, on which the server listens for
incoming IIOP/TLS messages. This port value is also published in the
IIOP/TLS profile of generated IORs.

<wka_prefix>:iiop_tls:listen_addr = "<host>";

Restricts the IIOP/TLS listening point to listen only on the specified
host, <host>. It is generally used on multi-homed hosts to limit
incoming connections to a particular network interface.

<wka_prefix>:iiop_tls:addr_list =
["<optional_plus_sign><host>:<port>", ...];

In the context of server clustering, this configuration variable specifies
a list of host and port combinations, <host>:<port>, for the
<wka_prefix> persistent POA instance.

One of the host and port combinations, <host>:<port> (lacking a +
prefix), specifies the POA’s own listening point. The other host and port
combinations, +<host>:<port> (including a + prefix), specify the
listening points for other servers in the cluster.

Note: The *:addr_list variable takes precedence over the other
host/port configuration variables (*:host, *:port, and
*:listen_addr).
71

CHAPTER 4 | Securing CORBA Applications
Securing Two-Tier CORBA Systems with CSI

Overview This section describes how to secure a two-tier CORBA system using the
iSF. The client supplies username/password authentication data which is
then authenticated on the server side. The following configurations are
described in detail:

• Client configuration.

• Target configuration.

Two-tier CORBA system Figure 15 shows a basic two-tier CORBA system in the iSF, featuring a
client and a target server.

Figure 15: Two-Tier CORBA System in the iSF

Request + u/p/d

Orbix Secure
Service

1 2

3

Client
authentication
token

TargetClient
u/p/d

User login
Propagate
authentication
token

authenticate() 4
Retrieve user's
realms and roles

5
Apply access
control
 72

Securing Two-Tier CORBA Systems with CSI
Scenario description The scenario shown in Figure 15 can be described as follows:

Client configuration The CORBA client from Example 15 on page 72 can be configured as
shown in Example 3.

Stage Description

1 The user enters a username, password, and domain name on
the client side (user login).

Note: The domain name can either be an empty string (acts
as a wildcard) or must match the value of the
policies:csi:auth_over_transport:server_domain_name
configuration variable set on the server side.

2 When the client makes a remote invocation on the server, the
iSF transmits the username/password/domain authentication
data to the target along with the invocation request.

3 The server authenticates the received username and password
by calling out to the external Orbix security service.

4 If authentication is successful, the Orbix security service returns
the user’s realms and roles.

5 The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.

Example 3: Configuration of a CORBA client in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "ots", "gsp"];
73

CHAPTER 4 | Securing CORBA Applications
The preceding client configuration can be explained as follows:

1. The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing Communications with SSL/TLS” on
page 60 for details of the SSL/TLS configuration.

2. Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_tls and the gsp plug-ins in the order shown.

3. Make sure that the binding:client_binding_list variable includes
bindings with the CSI interceptor. Your can use the value of the
binding:client_binding_list shown here.

4. Make sure that the binding:server_binding_list variable includes
bindings with both the CSI and GSP interceptors. Your can use the
value of the binding:server_binding_list shown here.

5. The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing Communications with SSL/TLS” on
page 60.

3 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

4 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 ...
 my_client {

5 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

6 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

7 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
...

Example 3: Configuration of a CORBA client in the iSF
 74

Securing Two-Tier CORBA Systems with CSI
6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

7. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user’s authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

For more details on the CSI principal sponsor, see “Providing a
Username and Password” on page 394.

Target configuration The CORBA target server from Figure 15 on page 72 can be configured as
shown in Example 4.

Example 4: Configuration of a Second-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_two_tier_target {

1 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

2 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

3 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";
75

CHAPTER 4 | Securing CORBA Applications
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing Communications with
SSL/TLS” on page 60.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name. The domain name embedded in a
received CSIv2 credential must match the value of the
server_domain_name variable on the server side or could be an empty
string (acts as a wildcard).

5. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs. For more details about iSF
authorization realms, see “iSF Authorization Realms” on page 163.

6. The action_role_mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 182.

7 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 4: Configuration of a Second-Tier Target Server in the iSF
 76

Securing Two-Tier CORBA Systems with CSI
7. You should also set iSF client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with iSF, you might need to perform
related administration tasks, for example:

• See “Managing Users, Roles and Domains” on page 159.

• See “CORBA Action-Role Mapping ACL” on page 182.
77

CHAPTER 4 | Securing CORBA Applications
Securing Three-Tier CORBA Systems with CSI

Overview This section describes how to secure a three-tier CORBA system using the
iSF. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

• Intermediate configuration.

• Target configuration.

Three-tier CORBA system Figure 16 shows a basic three-tier CORBA system in the iSF, featuring a
client, an intermediate server and a target server.

Figure 16: Three-Tier CORBA System in the iSF

Request + u/p/d

Orbix Secure
Service

1
2

u

Client
authentication
token

Identity token

Request + uIntermediate
Server

Target
Server

Client
u/p/d

Set own identity

Propagate identity

3
Obtain user's
realms and roles

4
Apply access
control
 78

Securing Three-Tier CORBA Systems with CSI
Scenario description The second stage of the scenario shown in Figure 16 (intermediate server
invokes an operation on the target server) can be described as follows:

Client configuration The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 73.

Intermediate configuration The CORBA intermediate server from Figure 16 on page 78 can be
configured as shown in Example 5.

Stage Description

1 The intermediate server sets its own identity by extracting the
user identity from the received username/password credentials.
Hence, the intermediate server assumes the same identity as
the client.

2 When the intermediate server makes a remote invocation on
the target server, the iSF also transmits the user identity data to
the target.

3 The target server then obtains the user’s realms and roles.

4 The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
79

CHAPTER 4 | Securing CORBA Applications
The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing
Communications with SSL/TLS” on page 60.

2. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

3. This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

4. This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

 my_three_tier_intermediate {
1 # Specific SSL/TLS configuration settings.

 ...
 # Specific iSF configuration settings.

2 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

3 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

5 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

6 plugins:gsp:authorization_realm = "AuthzRealm";
7 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";

8 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF
 80

Securing Three-Tier CORBA Systems with CSI
5. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name. The domain name embedded in a
received CSIv2 credential must match the value of the
server_domain_name variable on the server side or could be an empty
string (acts as a wildcard).

6. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs. For more details about iSF
authorization realms, see “iSF Authorization Realms” on page 163.

7. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 182.

8. You should also set iSF client configuration variables in the
intermediate server configuration scope, because a secure server
application usually behaves as a secure client of the core CORBA
services. For example, almost all CORBA servers need to contact both
the locator service and the CORBA naming service.

Target configuration The CORBA target server from Figure 16 on page 78 can be configured as
shown in Example 6.

Example 6: Configuration of a Third-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
81

CHAPTER 4 | Securing CORBA Applications
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing Communications with
SSL/TLS” on page 60.

2. It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

You can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

 my_three_tier_target {
 # Specific SSL/TLS configuration settings.

1 ...
2 policies:iiop_tls:target_secure_invocation_policy:requires

= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

3 policies:iiop_tls:certificate_constraints_policy =
[ConstraintString1, ConstraintString2, ...];

 # Specific iSF configuration settings.
4 policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";

7 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 6: Configuration of a Third-Tier Target Server in the iSF
 82

Securing Three-Tier CORBA Systems with CSI
3. In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 350.

4. This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

5. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs. For more details about iSF
authorization realms, see “iSF Authorization Realms” on page 163.

6. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml.

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 182.

7. You should also set iSF client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with iSF, you might need to perform
related administration tasks, for example:

• See “Managing Users, Roles and Domains” on page 159.

• See “CORBA Action-Role Mapping ACL” on page 182.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.
83

CHAPTER 4 | Securing CORBA Applications
X.509 Certificate-Based Authentication

Overview This section describes how to enable X.509 certificate authentication with
the iSF, based on a simple two-tier client/server scenario. In this scenario,
the Orbix security service authenticates the client’s certificate and retrieves
roles and realms based on the identity of the certificate subject. When iSF
certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:

• SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by Orbix configuration settings
and programmable SSL/TLS policies.

• iSF-level authentication and authorization—this authentication step
occurs after the SSL/TLS handshake and is performed by the Orbix
security service working in tandem with the gsp plug-in.

Certificate-based authentication
scenario

Figure 17 shows an example of a two-tier system, where authentication of
the client’s X.509 certificate is integrated with iSF.

Figure 17: Overview of iSF Certificate-Based Authentication

Orbix Security Service

TargetClient

User login
5 Apply access

control

4
Retrieve user's
realms and roles

2 authenticate()
X.509

X.509

3

Check certificate

1 SSL/TLS-level
authentication
 84

X.509 Certificate-Based Authentication
Scenario description The scenario shown in Figure 17 can be described as follows:

Stage Description

1 When the client opens a connection to the server, the client
sends its X.509 certificate as part of the SSL/TLS handshake.
The server then performs SSL/TLS-level authentication,
checking the certificate as follows:

• The certificate is checked against the server’s trusted CA
list to ensure that it is signed by a trusted certification
authority.

• If a certificate constraints policy is set, the certificate is
checked to make sure it satisfies the specified constraints.

• If a certificate validator policy is set (by programming),
the certificate is also checked by this policy.

2 The server then performs iSF-level authentication by calling
authenticate() on the Orbix security service, passing the
client’s X.509 certificate as the argument.

3 The Orbix security service authenticates the client’s X.509
certificate by checking it against a cached copy of the
certificate. The type of checking performed depends on the
particular third-party enterprise security service that is
plugged into the Orbix security service.

4 If authentication is successful, the Orbix security service returns
the user’s realms and roles.

5 The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.
85

CHAPTER 4 | Securing CORBA Applications
Client configuration Example 7 shows a sample client configuration that you can use for the iSF
certificate-based authentication scenario (Figure 17 on page 84).

The preceding client configuration is a typical SSL/TLS configuration. The
only noteworthy feature is that the client must have an associated X.509
certificate. Hence, the principal_sponsor settings are initialized with the
location of an X.509 certificate (provided in the form of a PKCS#12 file).

Example 7: Client Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 client_x509
 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 };
};
 86

X.509 Certificate-Based Authentication
For a discussion of these client SSL/TLS settings, see “Sample client
configuration” on page 64 and “Deploying Application Certificates” on
page 279.

Target configuration Example 8 shows a sample server configuration that you can use for the iSF
certificate-based authentication scenario (Figure 17 on page 84).

Example 8: Server Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 server
 {
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
["filename=OrbixInstallDir\etc\tls\x509\certs\demos\bank_server
.p12", "password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI",
"GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn
";
87

CHAPTER 4 | Securing CORBA Applications
The preceding server configuration can be explained as follows:

1. As is normal for an SSL/TLS server, you must provide the server with
its own certificate. The simplest way to do this is to specify the location
of a PKCS#12 file using the principal sponsor.

2. This configuration setting specifies the location of an action-role
mapping file, which controls access to the server’s interfaces and
operations.

3. The plugins:gsp:enable_security_service_cert_authentication
variable is the key to enabling iSF certificate-based authentication. By
setting this variable to true, you cause the server to perform iSF-level
certificate authentication.

4. The IIOP/TLS target secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the iSF-level authentication.

2 plugins:is2_authorization:action_role_mapping =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping_with_interfaces.xml";

 auth_x509
 {

3
plugins:gsp:enable_security_service_cert_authentication =
"true";

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

4
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 };
 };
};

Example 8: Server Configuration for iSF Certificate-Based Authentication
 88

X.509 Certificate-Based Authentication
Related administration tasks When using X.509 certificate-based authentication, it is necessary to add
the appropriate user data to your enterprise security system (which is
integrated with the Orbix security service through an iSF adapter), as
follows:

• File adapter (do not use in deployed systems)—see “Certificate-based
authentication for the file adapter” on page 176

• LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 177.
89

CHAPTER 4 | Securing CORBA Applications
Caching of Credentials

Overview To improve the performance of servers within the Orbix Security Framework,
the GSP plug-in implements caching of credentials (that is, the
authentication and authorization data received from the Orbix security
service).

The GSP credentials cache reduces a server’s response time by reducing the
number of remote calls to the Orbix security service. On the first call from a
given user, the server calls the Orbix security service and caches the
received credentials. On subsequent calls from the same user, the cached
credentials are used, thereby avoiding a remote call to the Orbix security
service.

Cache time-out The cache can be configured to time-out credentials, forcing the server to
call the Orbix security service again after using cached credentials for a
certain period.

Cache size The cache can also be configured to limit the number of stored credentials.
 90

Caching of Credentials
Configuration variables The following variables configure the credentials cache in the context of the
Orbix Security Framework:

plugins:gsp:authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:gsp:authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Orbix security service on the next call from
that user. The cache timeout should be configured to be smaller than
the timeout set in the is2.properties file (by default, that setting is
is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.
91

CHAPTER 4 | Securing CORBA Applications
 92

CHAPTER 5

Single Sign-On for
CORBA
Applications
Single sign-on (SSO) is an Orbix security feature which
minimizes the exposure of usernames and passwords to
snooping. After initially signing on, a client communicates with
other applications by passing an SSO token in place of the
original username and password. This chapter describes how
to configure CORBA applications to use the Orbix single
sign-on feature.

In this chapter This chapter discusses the following topics:

SSO and the Login Service page 94

Username/Password-Based SSO page 97

Three Tier Example with Identity Assertion page 105

X.509 Certificate-Based SSO page 109

Enabling Re-Authentication at Each Tier page 117

SSO Sample Configurations page 121
93

CHAPTER 5 | Single Sign-On for CORBA Applications
SSO and the Login Service

Overview The SSO feature is implemented by the following elements of Orbix:

• Login service—a central service which can authenticate
username/password combinations and generate SSO tokens.

• GSP plug-in—the generic security plug-in, which is embedded in a
client application, is responsible for contacting the login service to
obtain an SSO token.

Advantages of SSO SSO greatly increases the security of an application in the Orbix Security
Framework, offering the following advantages:

• Password visibility is restricted to the Login Service.

• Clients use SSO tokens to communicate with servers.

• Clients can be configured to use SSO with no code changes.

• SSO tokens are configured to expire after a specified length of time.

• When an SSO token expires, the CORBA client automatically requests
a new token from the login service. No additional user code is required.

Embedded login service Figure 18 shows an overview of the login service which, by default, is
embedded in the same process as the Orbix security service. The client ORB
automatically requests an SSO token by sending a username and a
password to the login service. If the username and password are
successfully authenticated, the login service returns an SSO token.

Figure 18: Client Requesting an SSO Token from the Login Service

Client

User login

login(<username>,<password>)

<token>

Orbix
Security
Service

Login
Service
 94

SSO and the Login Service
SSO token The SSO token is a compact key that the Orbix security service uses to
access a user’s session details, which are stored in a cache.

SSO token expiry The Orbix security service is configured to impose the following kinds of
timeout on an SSO token:

• SSO session timeout—this timeout places an absolute limit on the
lifetime of an SSO token. When the timeout is exceeded, the token
expires.

• SSO session idle timeout—this timeout places a limit on the amount
of time that elapses between authentication requests involving the SSO
token. If the central Orbix security service receives no authentication
requests in this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 155.

Automatic token refresh In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a CORBA::NO_PERMISSION exception
whenever an SSO token expires. In practice, however, when SSO is enabled,
the GSP plug-in catches the NO_PERMISSION exception on the client side and
contacts the login service again to refresh the SSO token automatically. The
GSP plug-in then automatically retries the failed operation invocation.

Connection to the login server It is imperative that a connection to the login service is strongly protected by
SSL/TLS, in order to avoid exposing usernames and passwords to snooping.
Hence, by default, the client-to-login service connection is protected by
strong SSL/TLS security policies and the IIOP/TLS client secure invocation
policy requires the following association options:

["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

This protection remains in force, irrespective of the association options set
explicitly by the SSL/TLS client secure invocation policy.

Note: The only way to reduce the level of protection on login service
connections is to set the
plugins:gsp:enforce_secure_comms_to_sso_server variable to false.
95

CHAPTER 5 | Single Sign-On for CORBA Applications
Standalone login service It is possible, in principle, to reconfigure the login service as a standalone
server (that is, a standalone process that runs independently of the Orbix
security service). Currently, however, the itconfigure utility can only
generate domains with an embedded login service.

Please contact IONA Professional Services for more details:

http://www.iona.com/info/services/consulting/welcome.htm
 96

http://www.iona.com/info/services/consulting/welcome.htm

Username/Password-Based SSO
Username/Password-Based SSO

Overview This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password (that is, SSO is used in
conjunction with the CSI authentication over transport mechanism).

CSI layers The CSIv2 standard defines two layers for transmitting credentials:

• CSI authentication over transport (GSSUP authentication)—this layer
is used to transmit username, password, and domain data which can
then be authenticated on the server side.

• CSI identity assertion—this layer is used to transmit just a username
(asserted identity). It is not needed for the scenarios in this section.

GSSUP authentication without
SSO

Figure 19 gives an overview of Generic Security Service Username/Password
(GSSUP) based authentication without SSO. In this case, the username,
<username>, and password, <password>, are passed directly to the
target server, which then contacts the Orbix security service to authenticate
the username/password combination.

Figure 19: Overview of GSSUP Authentication without SSO

Orbix Secure
Service

TargetClient
CSI auth layer

User login

Retrieve user's
realms and roles

Authenticate username
and password

username = <username>
password = <password>
97

CHAPTER 5 | Single Sign-On for CORBA Applications
GSSUP authentication with SSO Figure 20 gives an overview of username/password-based (GSSUP)
authentication when SSO is enabled.

Prior to contacting the target server for the first time, the client ORB sends
the username, <username>, and password, <password>, to the login
server, getting an SSO token, <token> in return. The client ORB then
includes a CSIv2 service context in the next request to the target server,
sending the special string, _SSO_TOKEN_, instead of a username and the SSO
token, <token>, instead of a password. The target server’s ORB contacts
the Orbix security service to authenticate the username/password
combination and to obtain the user’s authorization data.

Figure 20: Overview of GSSUP Authentication with SSO

Orbix
Security
Service

TargetClient
CSI auth layer

User login
username = _SSO_TOKEN_
password = <token>

Login
Service

login(<username>,<password>)

<token> Retrieve user's
realms and roles

Authenticate username
and password

Note: The target server is not aware whether the client has used the login
service or not. It is the Orbix security service that knows to treat the
_SSO_TOKEN_ username in a special way.
 98

Username/Password-Based SSO
Related configuration variables The following variables are relevant to username/password-based SSO:

plugins:gsp:enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when
set to true.

plugins:gsp:sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. This policy is
used to ensure that sensitive password information is seen only by a
specific login server. For details on the syntax of certificate constraints,
see “Applying Constraints to Certificates” on page 350.

Client configuration Example 9 shows a typical configuration for an SSO client that employs
GSSUP authentication.

Example 9: Client Configuration for Username/Password-Based SSO

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

1 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 sso_client_gssup
 {

2 principal_sponsor:use_principal_sponsor = "false";
99

CHAPTER 5 | Single Sign-On for CORBA Applications
The preceding client configuration can be described as follows:

1. The plugins:gsp:sso_server_certificate_constraints variable
specifies certificate constraints that apply only to the X.509 certificate
from the login server. If the login server’s certificate fails to match
these constraints, a CORBA::NO_PERMISSION exception is thrown on the
client side.

2. In this example, the SSL/TLS principal sponsor is not used (the
SSL/TLS principal sponsor is used to specify an application’s own
X.509 certificate credentials).

3
policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

4 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

5 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=paulh", "password=password", "domain=PCGROUP"];

6 plugins:gsp:enable_gssup_sso = "true";
 };
};

Example 9: Client Configuration for Username/Password-Based SSO
 100

Username/Password-Based SSO
3. In this example, the client requires a secure SSL/TLS connection and
requires the target server to authenticate itself with an X.509
certificate.

4. The CSI authentication over transport policy must support
EstablishTrustInClient to enable the sending of usernames and
passwords in CSIv2 service contexts.

5. The CSI principal sponsor, which specifies an application’s own CSI
credentials, can be enabled as shown here (alternatively, you could
specify CSI credentials by programming; see “Creating CSIv2
Credentials” on page 444).

In a deployed system, it is better to omit the password entry from the
principal_sponsor:csi:auth_method_data setting. When omitted,
the principal sponsor will prompt the user to enter a username and
password as the client application starts up. The domain must be set
to match the value of the
policies:csi:auth_over_transport:server_domain_name variable on
the server side.

6. The plugins:gsp:enable_gssup_sso variable is set to true to enable
the GSSUP single sign-on behavior.

Note: Irrespective of the level of security required by the these
configuration settings, the SSO client always requires the the login
server connection to be secure and authenticated by an X.509
certificate. The only way you can reduce the level of security required
by the login server connection is by setting the
plugins:gsp:enforce_secure_comms_to_sso_server variable to
false.

Note: Alternatively, you can specify the domain as an empty string,
which would match any domain on the server side.
101

CHAPTER 5 | Single Sign-On for CORBA Applications
Target configuration Example 10 shows a typical configuration for a target server that accepts
connections from clients that authenticate themselves using GSSUP.

Example 10:Target Configuration for Username/Password-Based SSO

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 server
 {
 policies:csi:auth_over_transport:authentication_service =

"com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
["filename=W:\art\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn
";
 102

Username/Password-Based SSO
The preceding target configuration can be described as follows:

1. As usual for an SSL/TLS server, the SSL/TLS principal sponsor is used
to specify the location of the server’s own X.509 certificate.

2. The action_role_mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server.

3. In this example, the server requires a secure SSL/TLS connection, but
does not require the client to authenticate itself with an X.509
certificate.

4. It is essential for the target server to require and support the
EstablishTrustInClient option for CSI authentication over transport.
This ensures that the server receives a username and a password from
the client in a CSIv2 service context.

2 plugins:is2_authorization:action_role_mapping =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping_with_interfaces.xml";

 plugins:gsp:authorization_realm = "AuthzRealm";
 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";

 auth_csi
 {

3
policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };
 };
};

Example 10:Target Configuration for Username/Password-Based SSO
103

CHAPTER 5 | Single Sign-On for CORBA Applications
Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 155.
 104

Three Tier Example with Identity Assertion
Three Tier Example with Identity Assertion

Overview This section describes what happens when the two-tier
username/password-based SSO example is extended by a third tier, which
uses the CSI identity assertion mechanism.

This scenario has the following essential features:

• Client to second tier—the CSI authentication over transport
mechanism (GSSUP authentication) is enabled and the client is
configured to use single sign-on.

• Second tier to third tier—the CSI identity assertion mechanism is
enabled between these tiers. SAML data (containing details of the
client user’s roles and realms) is propagated between these tiers.

Three-tier scenario with
piggybacking

Figure 21 shows the outline of a single sign-on scenario where SAML role
and realm data is piggybacked between the second and third tiers..

Figure 21: Single Sign-On Scenario with Piggybacking Roles and Realms

Orbix Security Service

Received
credentials

Client

CSI auth layer

4

5

1

Effective
credentials

CSI identity layer

Received
credentials

Login
Service

u/p/d

u/p/d

t

t

t SAML+

2

Retrieve user's
realms and roles

Authenticate
SSO token

SAML

t SAML+

3

105

CHAPTER 5 | Single Sign-On for CORBA Applications
Steps The operation invocations performed on behalf of the client shown in
Figure 21 on page 105 can be described as follows:

Stage Description

1 When single sign-on is enabled, the client calls out to the login
service, passing in the client’s GSSUP credentials, u/p/d, in
order to obtain a single sign-on token, t.

2 When the client invokes an operation on the second-tier server,
the SSO token, t, is sent as the password in the GSSUP
authentication data. The GSSUP username has the reserved
value _SSO_TOKEN_.

The client SSO token, t, is now accessible through the
IT_CORBASEC::ExtendedReceivedCredentials interface.

3 When the SSO token is received by the middle-tier server, it
calls out to the Orbix security service to authenticate the client
token and retrieve the SAML authorization data containing the
user’s complete role and realm data.

4 If the second tier now invokes an operation on the third tier, the
effective credentials for the invocation are constructed as
follows:

• The client username is used as the asserted identity (to be
propagated through the CSI identity assertion
mechanism).

• The client SSO token, t, from the received credentials is
inserted into an IONA-proprietary service context.

 106

Three Tier Example with Identity Assertion
Configuration notes The most important policy settings for this three-tier scenario with SAML
piggybacking are briefly described here.

Client to Second Tier

The client is configured to support CSI authentication over transport and
single sign-on with the following configuration settings (the
sso_server_certificate_constraints setting would have to be
customised to match your login server’s X.509 certificate):

The second tier is configured to support CSI authentication over transport
from incoming connections with the following settings:

5 When the request message is sent to the third tier, the asserted
identity is sent through the CSI identity layer, and the single
sign-on token, t, is sent in an IONA-proprietary service context,
accompanied by the SAML role and realm data.

In the third tier, no call-out to the Orbix Security Service is
required, because the SAML data includes all of the
information needed for an authorization check.

WARNING: It is essential that an adequate degree of trust is
established between the third-tier server and the second-tier
server. In this scenario, the third tier is completely dependent
on the second tier to perform authentication on its behalf.

Stage Description

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient];

plugins:gsp:enable_gssup_sso = "true";
plugins:gsp:sso_server_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient];
107

CHAPTER 5 | Single Sign-On for CORBA Applications
Second Tier to Third Tier

The second tier is configured to support CSI identity assertion for outgoing
connections with the following configuration settings:

The third tier is configured to support CSI identity assertion from incoming
connections with the following settings:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];
 108

X.509 Certificate-Based SSO
X.509 Certificate-Based SSO

Overview Normally, during certificate-based authentication, a client transmits its
X.509 certificate during the SSL/TLS handshake. This certificate is then
used for the authentication step with the Orbix security service (see “X.509
Certificate-Based Authentication” on page 84).

In contrast to this, in the SSO case a client transmits an SSO token through
the CSI security layer (using CSI authentication over transport), having
previously obtained the SSO token by authenticating its own certificate with
the login server. The client’s certificate might also be propagated directly to
the target, in addition to the SSO token, but this would not be the usual
case.

Certificate-based authentication
without SSO

Figure 22 gives an overview of ordinary certificate-based authentication
without SSO. In this case, the client’s X.509 certificate is passed directly to
the target server (during the SSL/TLS handshake). The target server then
contacts the Orbix security service to authenticate the certificate.

Figure 22: Overview of Certificate-Based Authentication without SSO

Orbix Security Service

TargetClient

User login

Retrieve user's
realms and roles

authenticate(<X509Cert>)

SSL/TLS layer
109

CHAPTER 5 | Single Sign-On for CORBA Applications
Certificate-based authentication
with SSO

Figure 23 gives an overview of certificate-based authentication when SSO is
enabled.

Prior to contacting the target server for the first time, the client ORB invokes
the login() operation on the login server. The login server retrieves the
client’s X.509 certificate from the SSL/TLS received credentials,
authenticates the certificate, and sends back an SSO token, <token> in
return.

The client then sends a request to the target server, including the special
username, _SSO_TOKEN_, and the password, <token>, in a CSIv2 service
context. The target server contacts the Orbix security service to authenticate
the username/password combination and to retrieve the user’s authorization
data (realms and roles).

Difference between
username/password-based SSO
and certificate-based SSO

The key difference between username/password-based SSO (Figure 20 on
page 98) and certificate-based SSO (Figure 23) lies in the communication
with the login server. In the username/password-based case, the client
sends GSSUP data to be authenticated to the login service; whereas in the
certificate-based case, the client sends an X.509 certificate to be
authenticated to the login service.

There is no difference in the nature of the communication between the client
and the target, however. In both cases, an SSO token is transmitted through
the CSI authorization over transport layer.

Figure 23: Overview of Certificate-Based Authentication with SSO

Target

Orbix
Security
Service

Client

User login

username = _SSO_TOKEN_
password = <token>

Login
Service

login()

<token>

CSI auth layer

Retrieve user's
realms and roles

Authenticate
SSO token
 110

X.509 Certificate-Based SSO
Related configuration variables The following variables are relevant to certificate-based SSO:

plugins:gsp:enable_x509_sso

Enables certificate-based SSO when set to true.

plugins:gsp:sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details on
the syntax of certificate constraints, see “Applying Constraints to
Certificates” on page 350.

Typical scenario The most likely scenario where you might need certificate-based SSO is
where an existing server is configured to require username/password
credentials, but you want to connect to the server using clients that have
only X.509 certificate credentials. By enabling SSO on the client side, the
clients acquire username/password credentials which the target server can
then use for the purpose of authentication and authorization.

Client configuration Example 11 shows a typical configuration for an SSO client that employs
certificate-based authentication.

Example 11:Client Configuration for Certificate-Based Authentication

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

1 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];
111

CHAPTER 5 | Single Sign-On for CORBA Applications
 sso_client_x509
 {

2
policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

4 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

5 plugins:gsp:enable_x509_sso = "true";
 };
};

Example 11:Client Configuration for Certificate-Based Authentication
 112

X.509 Certificate-Based SSO
The preceding client configuration can be described as follows:

1. The plugins:gsp:sso_server_certificate_constraints variable
specifies certificate constraints that apply only to the X.509 certificate
from the login server. If the login server’s certificate fails to match
these constraints, a CORBA::NO_PERMISSION exception is thrown on the
client side.

2. In this example, the client requires a secure SSL/TLS connection and
requires the target server to authenticate itself with an X.509
certificate. The client also supports the SSL/TLS
EstablishTrustInClient option.

3. The client must have its own X.509 certificate to authenticate itself to
the target. In this example, the SSL/TLS principal sponsor is used to
specify the location of a PKCS#12 file containing the client’s
certificate.

4. The CSI authentication over transport policy must support
EstablishTrustInClient to enable the sending of usernames and
passwords in CSIv2 service contexts.

5. The plugins:gsp:enable_x509_sso variable is set to true to enable
the X.509 single sign-on behavior.

Note: Irrespective of the level of security required by the these
configuration settings, the SSO client always requires the the login
server connection to be secure and authenticated by an X.509
certificate. The only way you can reduce the level of security required
by the login server connection is by setting the
plugins:gsp:enforce_secure_comms_to_sso_server variable to
false.
113

CHAPTER 5 | Single Sign-On for CORBA Applications
Target configuration Example 12 shows the configuration for a target server that requires GSSUP
username/password credentials, but can also accept connections from
clients that use X.509 certificate-based SSO.

Example 12:Target Configuration for Certificate-Based Authentication

Orbix Configuration File
corba_login_server_test_with_tls
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 server
 {
 policies:csi:auth_over_transport:authentication_service =

"com.iona.corba.security.csi.AuthenticationService";

1 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn
";
 114

X.509 Certificate-Based SSO
The preceding target configuration can be described as follows:

1. As usual for an SSL/TLS server, the SSL/TLS principal sponsor is used
to specify the location of the server’s own X.509 certificate.

2. The action_role_mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server.

3. The server requires a secure SSL/TLS connection, but does not require
the client to authenticate itself with an X.509 certificate.

4. Because the target server requires the EstablishTrustInClient option
for CSI authentication over transport, clients must supply GSSUP
username/password credentials. This condition is also satisfied by
clients that use X.509 certificate-based SSO, because this results in
the generation of GSSUP username/password credentials.

2 plugins:is2_authorization:action_role_mapping =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping_with_interfaces.xml";

 plugins:gsp:authorization_realm = "AuthzRealm";
 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";

 require_gssup_support_x509_with_sso
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

3
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };
 };
};

Example 12:Target Configuration for Certificate-Based Authentication
115

CHAPTER 5 | Single Sign-On for CORBA Applications
Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 155.
 116

Enabling Re-Authentication at Each Tier
Enabling Re-Authentication at Each Tier

Overview This section describes a three-tier SSO scenario where piggybacking of
SAML data (containing details of the client user’s roles and realms) is
disabled. This forces an SSO token to be re-authenticated at each tier in a
multi-tier system, because the servers in each tier need to contact the Orbix
security service to obtain the SAML data.

Advantages of enabling
re-authentication

Re-enabling authentication at each tier has the following potential
advantages:

• If your distributed application crosses different security domains, it
might be necessary to re-authenticate credentials in a new domain.

• Sometimes, if the quantity of SAML data is very large, it might be more
efficient for servers to retrieve the SAML data directly from the Orbix
security service.

Disabling SAML piggybacking There are two configuration variables that control SAML piggybacking.

plugins:gsp:assert_authorization_info

If false, SAML data is not sent on outgoing connections. Default is true.

plugins:gsp:accept_asserted_authorization_info

If false, SAML data is not read from incoming connections. Default is true.
117

CHAPTER 5 | Single Sign-On for CORBA Applications
Three-tier scenario without
piggybacking

Figure 24 shows the outline of a single sign-on scenario where the
propagation of SAML role and realm data is disabled.

Steps The operation invocations performed on behalf of the client shown in
Figure 24 on page 118 can be described as follows:

Figure 24: Single Sign-On Scenario without Piggybacking Roles and
Realms

Orbix Security Service

Received
credentials

Client

CSI auth layer

4

5

1

Effective
credentials

CSI identity layer

Received
credentials

Login
Service

u/p/d

u/p/d

t SAML

t

t SAMLt

6

2

3

Stage Description

1 When single sign-on is enabled, the client calls out to the login
service, passing in the client’s GSSUP credentials, u/p/d, in
order to obtain a single sign-on token, t.

2 When the client invokes an operation on the second-tier server,
the SSO token, t, is sent as the password in the GSSUP
username/password credentials.

3 The second tier re-authenticates the client’s SSO token, t, by
calling out to the Orbix Security Service. The return value
contains the SAML role and realm data for the token.
 118

Enabling Re-Authentication at Each Tier
Configuration notes The most important policy settings for this three-tier scenario without SAML
piggybacking are briefly described here.

Client to Second Tier

The client is configured to support CSI authentication over transport and
single sign-on without SAML piggybacking, with the following configuration
settings (the sso_server_certificate_constraints setting would have to
be customised to match your login server’s X.509 certificate):

4 If the second tier now invokes an operation on the third tier, the
effective credentials for the invocation are constructed as
follows:

• The client username is used as the asserted identity (to be
propagated through the CSI identity assertion
mechanism).

• The client SSO token, t, from the received credentials is
inserted into an IONA-proprietary service context.

5 When the request message is sent to the third tier, only the
asserted identity and the single sign-on token, t, are included.
Propagation of the SAML authorization data is disabled.

6 The third tier re-authenticates the client’s SSO token, t, by
calling out to the Orbix Security Service. The return value
contains the SAML role and realm data for the token.

Stage Description

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient];

plugins:gsp:enable_gssup_sso = "true";
plugins:gsp:sso_server_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

plugins:gsp:assert_authorization_info = "false";
119

CHAPTER 5 | Single Sign-On for CORBA Applications
The second tier is configured to support CSI authentication over transport
from incoming connections, but not to accept SAML data, with the following
settings:

Second Tier to Third Tier

The second tier is configured to support CSI identity assertion for outgoing
connections, but not to send SAML data, with the following configuration
settings:

The third tier is configured to support CSI identity assertion from incoming
connections, but not to accept SAML data, with the following settings:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient];

plugins:gsp:accept_asserted_authorization_info = "false";

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

plugins:gsp:assert_authorization_info = "false";

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

plugins:gsp:accept_asserted_authorization_info = "false";
 120

SSO Sample Configurations
SSO Sample Configurations

Overview This section provides SSO sample configurations that show how to configure
the client side and the server side in a variety of different ways.

Client SSO configurations The following client configurations appear in Example 13:

• sso_client_x509—configuration for an SSO client that uses X.509
certificate-based SSO credentials to authenticate itself to the server.

• sso_client_gssup—configuration for an SSO client that provides
username and password (GSSUP)-based SSO credentials to
authenticate itself to the server.

• sso_client_gssup_x509—configuration for an SSO client that can
authenticate itself to a server using either username/password-based
SSO credentials or X.509 certificate-based SSO credentials, depending
on the requirements of the server.

Server SSO configurations The following server configurations appear in Example 13:

• auth_csi—configuration for a server that requires the client to provide
credentials over CSI. Three client scenarios are supported by this server
configuration, as follows:

♦ Client with username/password credentials (SSO not enabled).

♦ Client with username/password-based SSO credentials.

♦ Client with X.509 certificate-based SSO credentials.

• auth_csi_and_x509—configuration for a server that requires both
X.509 certificate credentials (over SSL/TLS) and username/password
credentials (over CSIv2). The following client scenarios are supported
by this server configuration:

♦ Client with both X.509 certificate credentials and
username/password credentials (SSO not enabled).

♦ Client with X.509 certificate-based SSO credentials.

♦ Client with both X.509 certificate credentials and
username/password-based SSO credentials.
121

CHAPTER 5 | Single Sign-On for CORBA Applications
♦ Client with both X.509 certificate-based SSO credentials and
username/password-based SSO credentials (for example, the
sso_client_gssup_x509 configuration scope). In this case, the
client would store three different kinds of credentials: X.509
certificate credentials, X.509 certificate-based SSO credentials,
and username/password-based SSO credentials. Only two of the
stored credentials would actually be used when communicating
with the server (X.509 certificate credentials over SSL/TLS, and
one of the SSO credentials over CSIv2).

SSO configuration examples Example 13 shows a series of sample configurations suitable for SSO clients
and SSO servers, supporting either GSSUP authentication, or X.509
certificate authentication, or both.

Example 13:SSO Client and Server Configuration Examples

Orbix Configuration File
corba_login_server_test_with_tls
{
 principal_sponsor:use_principal_sponsor = "false";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 plugins:gsp:sso_server_certificate_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services*"];

 sso_client_x509
 {
 122

SSO Sample Configurations

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 plugins:gsp:enable_x509_sso = "true";
 };

 sso_client_gssup
 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=paulh", "password=password", "domain=PCGROUP"];

 plugins:gsp:enable_gssup_sso = "true";
 };

Example 13:SSO Client and Server Configuration Examples
123

CHAPTER 5 | Single Sign-On for CORBA Applications
 sso_client_gssup_x509
 {

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=paulh", "password=password", "domain=PCGROUP"];

 plugins:gsp:enable_gssup_sso = "true";
 plugins:gsp:enable_x509_sso = "true";
 };

 server
 {
 policies:csi:auth_over_transport:authentication_service =

"com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bank_server.p12",
"password=bankserverpass"];

 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

Example 13:SSO Client and Server Configuration Examples
 124

SSO Sample Configurations
 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn
";

 plugins:is2_authorization:action_role_mapping =
"file://W:\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
lemapping_with_interfaces.xml";

 plugins:gsp:authorization_realm = "AuthzRealm";
 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";

 auth_csi
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };

 auth_csi_and_x509
 {

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

Example 13:SSO Client and Server Configuration Examples
125

CHAPTER 5 | Single Sign-On for CORBA Applications
 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 };
 };
};

Example 13:SSO Client and Server Configuration Examples
 126

CHAPTER 6

Securing Web
Services
This chapter describes how to configure a Web services
container and its client applications.

In this chapter This chapter discusses the following topics:

Create a Secure Web Services Domain page 128

Configure Server-Side Security page 132

Configure Client-Side Security page 134

Secure the Deploy Service page 136

Add the HTTPBasicAuthHandler to a Web Service page 138

Build and Run a Secure Client page 140
127

CHAPTER 6 | Securing Web Services
Create a Secure Web Services Domain

Overview To use Web services with security, you must create a domain which has
both security and Web services enabled. This subsection describes gives an
example of how to create such a domain.

Step 1—Start itconfigure At a command line, enter itconfigure to start the domain configuration
utility. In the first screen of itconfigure, choose the Expert option.
 128

Create a Secure Web Services Domain
Step 2—Domain Settings In the Domain Settings screen, enter the domain name in the Domain
Name text field. To make this a secure domain, check the Allow Secure
Communication box and clear the Allow Insecure Communication box. The
sample settings for this screen are shown in Figure 25.

Click Next to advance to the next screen.

Figure 25: The Domain Settings Screen from itconfigure
129

CHAPTER 6 | Securing Web Services
Step 3—Services Settings In the Services Settings screen, select the services and components as
shown in Figure 26.

The following services are selected in Figure 26:

• Web Services Container.

• IONA Security.

• Demos.

• Location.

• Node daemon.

• Management.

• CORBA Interface Repository.

Figure 26: The Services Settings Screen from itconfigure
 130

Create a Secure Web Services Domain
Click Next to advance to the next screen.

Step 4—Summary The Summary screen appears. At this point, you have the opportunity to
review the settings before creating the domain.

Click Next to create the new domain.

Step 5—Complete After domain creation is complete, click Finish to exit the itconfigure
utility.
131

CHAPTER 6 | Securing Web Services
Configure Server-Side Security

Overview This subsection describes how to configure the Web services container.

Step 1—Generate an X.509
certificate

Generate an X.509 certificate for the Web services container, which satisfies
the following conditions:

• The common name (CN) from the certificate subject’s distinguished
name (DN) must match the host name of the machine where the Web
service container is running (that is, the host name that would appear
in an URL identifying a Web service endpoint).

• The certificate must be signed by a certificate authority (CA) that you
trust.

• The certificate is in PKCS#12 format.

For detailed instructions on how to generate X.509 certificates, see
“Creating Your Own Certificates” on page 268.

Step 2—Deploy the certificate Deploy the certificate generated in the previous step by setting the
principal_sponsor:auth_method_data configuration variable in the
web_services scope of the domain configuration file. For example:

Note: This condition is enforced by most HTTP clients, including
standard Web browsers and the itws_builder utility.

Orbix Configuration File
...
web_services
{
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=CertDir/CertFile.p12",
"password_file=CertDir/PasswordFile.pwf"];

 ...
};
 132

Configure Server-Side Security
Where CertDir is the directory containing your certificates, CertFile.p12 is
the newly generated certificate, and PasswordFile.pwf is a file containing
the certificate’s password.

Step 3—Test the connection If not already running, start the services for this domain using the
start_Domain_services script.

From a web browser make sure you can access the following URL:

https://WSHost:53206/xmlbus/Deploy/DeployService/DeployPort/

Where WSHost should match the host name embedded in the CN of the
Web service container’s certificate.

If your Web browser does not trust the CA you used to sign the certificate, a
warning dialog will pop up. For example, with Internet Explorer, you could
expect to see a warning like the following:

Note: If you omit the password_file attribute, the Web service container
will prompt you for the certificate password as it starts up.

Figure 27: Internet Explorer Warning for an Untrusted CA Certificate
133

CHAPTER 6 | Securing Web Services
Configure Client-Side Security

Overview This subsection describes how to configure clients of the Web services
container.

Java-based clients The following Java-based clients can connect to the Web services container:

• The itws_builder utility—connects to the Web services container, for
example, when deploying a Web service.

• Java clients generated by the Generate option in the Web service
builder.

The preceding client types rely on the security infrastructure provided by the
Java platform. Hence, it is necessary to configure Java security for these
clients, as described in this subsection.

Browser clients Web browsers have their own security infrastructure, which is independent
of Java security. Hence, you also need to configure security for your Web
browser, to avoid encountering warning dialogs whenever you access the
Web services container.

Typically, all that you need to do to configure a Web browser is to add the
CA certificate that signed the Web service container’s certificate to the
browser’s list of trusted CA certificates.

For example, to import a CA certificate into the Internet Explorer browser,
select the Tools|Internet Options... menu option, click on the Content tab,
and click Certificates... on this panel. The Certificates... dialog then
appears. Click on the Trusted Root Certification Authorities tab to start
importing a CA certificate into the browser.

Configuring Java security To configure Java security, perform the following steps:

• Step 1—Configure Java security.

WARNING: You should exercise caution when it comes to adding CA
certificates to your Web browser. If you add an untrustworthy CA
certificate to your Web browser, this can open a security hole.
 134

Configure Client-Side Security
• Step 2—Import the CA certificate

Step 1—Configure Java security Configure Java security by editing the
JAVA_HOME/jre/lib/security/java.security file to use the following
security providers:

Step 2—Import the CA certificate Import the CA certificate that signed the Web services container certificate,
so that your Java clients can trust the Web service’s container server. At a
command line, enter the following:

Windows
JAVA_HOME\bin\keytool -import -keystore

JAVA_HOME\jre\lib\security\cacerts -storepass changeit
-alias CertHandle -file PathToCACertFileInPEMFormat

UNIX
JAVA_HOME/bin/keytool -import -keystore

JAVA_HOME/jre/lib/security/cacerts -storepass changeit
-alias CertHandle -file PathToCACertFileInPEMFormat

Where JAVA_HOME is the root directory of the J2SE (or JDK) installation
that you will use to run your clients.

The keytool -import command takes the following options:

• The -keystore option specifies the jre/lib/security/cacerts key
store, which contains the list of CA certificates trusted by Java.

• The -storepass option specifies the password that unlocks the
cacerts key store—the default password is changeit.

• The -alias option specifies a convenient handle that you can use to
access the certificate later.

• The -file option specifies the location of the CA certificate that you
used to sign the Web service container’s certificate. The CA certificate
must be in PEM format (see “Creating Your Own Certificates” on
page 268).

List of providers and their preference orders (see above):

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
135

CHAPTER 6 | Securing Web Services
Secure the Deploy Service

Overview This subsection describes how to secure the deploy and undeploy operations
by adding a HTTPBasicAuthHandler to the deploy service.

Step 1—Start the Web service
builder

Start the Web service builder utility in one of the following ways:

• From the IONA central toolbar, or

• By entering itws_builder at a command line.

Step 2—Add the Deploy XAR to a
project

Use the Project|Add XAR menu option in the Web service builder to add
the deploy XAR file to any project, ProjectName. The Deploy.xar file is
located in the following directory:

OrbixInstallDir/var/Domain/dbs/webservices/xar/private

Step 3—Select the DeployPort
port

Select ProjectName/Deploy/DeployService/DeployPort in the left hand
tree view and click the Add button from the Handlers tab.

Step 4—Add
HTTPBasicAuthHandler to the
handler chain

To add the HTTPBasicAuthHandler to the deploy port’s handler chain, do the
following:

• Select the Handler Sequence tab. In the left-hand column of the
Handler Sequence panel, ensure that the MessageHandler handler
type is selected.

• Highlight the HTTPBasicAuthHandler listed in the Available Handlers.

• Click the add handler button, >.

• Move the JavaHandler below the HTTPBasicAuthHandler by clicking
the down button, V.

Step 5—Restart the Web service
builder

Exit the Web service builder and start it up again. This ensures that the
changes made to the Deploy service take effect.
 136

Secure the Deploy Service
Note: The first deploy/undeploy operation that you perform after
restarting the Web service builder might fail with an Error: Unable to
communicate with the server message. If you get this error, try the
deploy/undeploy operation one more time.
137

CHAPTER 6 | Securing Web Services
Add the HTTPBasicAuthHandler to a Web
Service

Overview This subsection describes how to protect a Web service by adding support
for HTTP Basic Authentication. After the HTTPBasicAuthHandler handler is
added to a port’s message handler chain, clients will be required to identify
themselves by providing a username and password to the Web service.

Default username and password
database

The default database of usernames and passwords recognized by the Web
service container is stored in the following file:

OrbixInstallDir/etc/domains/Domain/is2_user_password_role_file.txt

This file is read by the iSF file adapter. By default, the Orbix security service
is configured to use the file adapter as its repository of secure user data.

Step 1—Start the Web service
builder

Start the Web service builder utility in one of the following ways:

• From the IONA central toolbar, or

• By entering itws_builder at a command line.

Step 2—Select a port Select ProjectName/XARName/ServiceName/PortName in the left hand
tree view and click the Add button from the Handlers tab. (For example, if
you have already followed the steps in the Web Service Tutorial, you could
select the
MyProjects/TempConverter/TempConverterService/TempConverterPort
port.)

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment. For details of how to replace the file adapter by a third-party
enterprise security service, see “Configuring the Orbix Security Service” on
page 145.
 138

Add the HTTPBasicAuthHandler to a Web Service
Step 3—Add
HTTPBasicAuthHandler to the
handler chain

To add the HTTPBasicAuthHandler to the port’s handler chain, do the
following:

• Select the Handler Sequence tab. In the left-hand column of the
Handler Sequence panel, ensure that the MessageHandler handler
type is selected.

• Highlight the HTTPBasicAuthHandler listed in the Available Handlers.

• Click the add handler button, >.

• Move the JavaHandler below the HTTPBasicAuthHandler by clicking
the down button, V.

Step 4—Deploy the Web service To deploy the Web service application, do the following:

• Select the application XAR you want to deploy,
ProjectName/XARName, in the left-hand tree view. (For example, if
you have followed the steps in the Web Service Tutorial, you could
select the MyProjects/TempConverter application XAR.)

• Select Application|Deploy from the menu. The Deploy a XAR dialog
opens up.

• In the Deploy a XAR dialog, enter the username, admin, and password,
admin, (or one of the other username/password combinations from the
is2_user_password_role_file.txt or equivalent file). If you do not
enter a valid name/password you will see a message box displaying
SOAPFaultException.

Note: If you have not installed the HTTPBasicAuthHandler into the
Deploy service the username and password are ignored here. See the
previous subsection, “Secure the Deploy Service” on page 136.
139

CHAPTER 6 | Securing Web Services
Build and Run a Secure Client

Overview This subsection describes how to build and run a secure client that connects
to a Web service using the HTTPS protocol and authenticates itself to the
Web service using HTTP Basic Authentication.

Step 1—Generate a J2SE client Generate a J2SE client for the targeted secure web service by selecting the
Generate|Generate a Client from a XAR menu option.

For example, if you have already followed the steps in the Web Service
Tutorial, you could select the MyProjects/TempConverter XAR.

Step 2—Uncomment the security
code

Edit the generated XARNameProxyDemo class and search for the word
uncomment. Following the instructions in the code, uncomment the following
lines:

Step 3—Set the client
environment

Open a command prompt and set the client environment by running
itws_clientenv (Windows) or by sourcing itws_clientenv (UNIX).

Step 4—Compile the client Compile the J2SE client. For example, in the TempConverter client directory,
enter:

JAVA_HOME/bin/javac *.java

Step 5—Run the client Run the client. For example, in the TempConverter client directory, enter:

// Java
...
ClientSecurity security =

WebServiceProxy.getClientSecurity(proxy);
security.setUserName("admin");
security.setPassword("admin");
 140

Build and Run a Secure Client
JAVA_HOME/bin/java TempConverterProxyDemo getFahrenheit 35

Step 6—Test an authorization
failure

To test that an authorized user is not allowed access to the web service,
change the value for the username in the ProxyDemo class, recompile and
rerun the J2SE client. If the authorization fails, you should see a message
like the following:

2003-12-16 16:23:57,334 ERROR soap.message.MessageBuilder:1543,
Unable to DeSerialize Fault Response. Can't find a wsdl:fault
associated to null

FaultCode: SOAP-ENV:Server
FaultActor: null
FaultString: Could not authorize user:

Note: You must be sure that the java command invoked here belongs to
the J2SE installation that you secured as described in “Configure
Client-Side Security” on page 134. Hence, it is a good idea to enter the full
pathname for the java command here.
141

CHAPTER 6 | Securing Web Services
 142

Part II
Orbix Security Framework

Administration

In this part This part contains the following chapters:

Configuring the Orbix Security Service page 145

Managing Users, Roles and Domains page 159

Managing Access Control Lists page 179

Securing Orbix Services page 187

CHAPTER 7

Configuring the
Orbix Security
Service
This chapter describes how to configure the properties of the
Orbix security service and, in particular, how to configure a
variety of adapters that can integrate the Orbix security service
with third-party enterprise security back-ends (for example,
LDAP).

In this chapter This chapter discusses the following topics:

Configuring the File Adapter page 146

Configuring the LDAP Adapter page 148

Additional Security Configuration page 154
145

CHAPTER 7 | Configuring the Orbix Security Service
Configuring the File Adapter

Overview The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iSF file adapter.

File locations The following files configure the iSF file adapter:

• is2.properties file—the default location of the iSF properties file is as
follows:
ASPInstallDir/etc/domains/DomainName/is2.properties
See “iS2 Properties File” on page 515 for details of how to customize
the default iSF properties file location.

• Security information file—this file’s location is specified by the
com.iona.isp.adapter.file.param.filename property in the
is2.properties file.

File adapter properties Example 14 shows the properties to set for a file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Example 14:Sample File Adapter Properties

1 com.iona.isp.adapters=file

##
##
Demo File Adapter Properties
##
##

2 com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter

3 com.iona.isp.adapter.file.param.filename=ASPInstallDir/etc/domain
s/DomainName/is2_user_password_role_file.txt
 146

Configuring the File Adapter
The necessary properties for a file adapter are described as follows:

1. Set com.iona.isp.adapters=file to instruct the Orbix security service
to load the file adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the iSF file adapter.

3. The com.iona.isp.adapter.file.param.filename property specifies
the location of the security information file, which contains information
about users and roles.

See “Managing a File Security Domain” on page 174 for details of how
to create or modify the security information file.

4. (Optionally) You might also want to edit the general Orbix security
service properties.

See “Additional Security Configuration” on page 154 for details.

##
General Orbix Security Service Properties
##

4 # ... Generic properties not shown here ...

Example 14:Sample File Adapter Properties
147

CHAPTER 7 | Configuring the Orbix Security Service
Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

• Prerequisites

• File location.

• Minimal LDAP configuration.

• Basic LDAP properties.

• LDAP.param properties.

• LDAP server replicas.

• Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Orbix E2A Application Server Platform, but you can use the Orbix security
service’s LDAP adapter with any LDAP v.3 compatible system.

File location The following file configures the LDAP adapter:

• is2.properties file—the default location of the iSF properties file is as
follows:
ASPInstallDir/etc/domains/DomainName/is2.properties
See “iS2 Properties File” on page 515 for details of how to customize
the default iSF properties file location.
 148

Configuring the LDAP Adapter
Minimal LDAP configuration Example 15 shows the minimum set of iSF properties that can be used to
configure an LDAP adapter.

The necessary properties for an LDAP adapter are described as follows:

1. Set com.iona.isp.adapters=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

Example 15:A Sample LDAP Adapter Configuration File

1 com.iona.isp.adapters=LDAP
##

LDAP Adapter Properties
##
##

2 com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda
p.LdapAdapter

3 com.iona.isp.adapter.LDAP.param.host.1=10.81.1.400
com.iona.isp.adapter.LDAP.param.port.1=389

4 com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPe

rson
com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

5 com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn
com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

6 com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquena

mes
com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB
com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

7 com.iona.isp.adapter.LDAP.param.version=3
149

CHAPTER 7 | Configuring the Orbix Security Service
3. For each LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host.1 and port.1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as
follows:

See “iS2 Properties File” on page 515 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as
follows:

UserNameAttr The attribute type whose corresponding value
uniquely identifies the user.

UserBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

UserObjectClass The attribute type for the object class that
stores users.

UserSearchScope The user search scope specifies the search
depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

UserRoleDNAttr The attribute type that stores a user’s role DN.

RoleNameAttr The attribute type that the LDAP server uses
to store the role name.

GroupNameAttr The attribute type whose corresponding
attribute value gives the name of the user
group.

GroupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

GroupObjectClass The object class that applies to user group
entries in the LDAP directory structure.
 150

Configuring the LDAP Adapter
See “iS2 Properties File” on page 515 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

Basic LDAP properties The following properties must always be set as part of the LDAP adapter
configuration:

com.iona.isp.adapters=LDAP
com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap

.LdapAdapter

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com.iona.isp.adapter.LDAP.param.

GroupSearchScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

MemberDNAttr The attribute type that is used to retrieve
LDAP group members.
151

CHAPTER 7 | Configuring the Orbix Security Service
LDAP.param properties Table 3 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param scope. Required properties are shown
in bold:

LDAP server replicas The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host.<Index> and
port.<Index> include a replica index as part of the parameter name.

For example, host.1 and port.1 refer to the host and port of the primary
LDAP server, while host.2 and port.2 would refer to the host and port of an
LDAP backup server.

Logging on to an LDAP server The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope

LDAP Server Properties LDAP User/Role Configuration
Properties

host.<Index>
port.<Index>
SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>
PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchScope
UserSearchFilter
UserRoleDNAttr
RoleNameAttr
UserCertAttrName

LDAP Group/Member
Configuration Properties

Other LDAP Properties

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr
MemberFilter

MaxConnectionPoolSize
version
UseGroupAsRole
RetrieveAuthInfo
CacheSize
CacheTimeToLive
 152

Configuring the LDAP Adapter
The properties need only be set if the LDAP server is configured to require
username/password authentication.

Secure connection to an LDAP
server

The following properties can be used to configure SSL/TLS security for the
connection between the Orbix security service and the <Index> LDAP
server replica:

SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

iSF properties reference For more details about the Orbix security service properties, see “iS2
Configuration” on page 513.
153

CHAPTER 7 | Configuring the Orbix Security Service
Additional Security Configuration

Overview This section describes how to configure optional features of the Orbix
security service, such as single sign-on and the authorization manager.
These features can be combined with any iSF adapter type.

In this section This section contains the following subsections:

Configuring Single Sign-On Properties page 155

Configuring the Log4J Logging page 157
 154

Additional Security Configuration
Configuring Single Sign-On Properties

Overview The Orbix Security Framework provides an optional single sign-on (SSO)
feature. If you want to use SSO with your applications, you must configure
the Orbix security service as described in this section. SSO offers the
following advantages:

• User credentials can easily be propagated between applications in the
form of an SSO token.

• Performance is optimized, because the authentication step only needs
to be performed once within a distributed system.

• Because the user’s session is tracked centrally by the Orbix security
service, it is possible to impose timeouts on the user sessions and
these timeouts are effective throughout the distributed system.

SSO tokens The login service generates an SSO token in response to an authentication
operation. The SSO token is a compact key that the Orbix security service
uses to access a user’s session details, which are stored in a cache.

SSO properties Example 16 shows the iSF properties needed for SSO:

The SSO properties are described as follows:

1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifespan of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

Example 16:Single Sign-On Properties

iSF Properties File
...
###
Single Sign On Session Info
###

1 is2.sso.enabled=yes
2 is2.sso.session.timeout=6000
3 is2.sso.session.idle.timeout=300
4 is2.sso.cache.size=10000
155

CHAPTER 7 | Configuring the Orbix Security Service
3. The SSO session idle timeout sets the maximum length of time for
which an SSO session can remain idle, in units of seconds. If the Orbix
security service registers no activity against a particular session for this
amount of time, the session and its token expire.

4. The size of the SSO cache, in units of number of sessions.

Related administration tasks For details of how to configure CORBA applications to use SSO, see “Single
Sign-On for CORBA Applications” on page 93.
 156

Additional Security Configuration
Configuring the Log4J Logging

Overview log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the Orbix
security service’s logging is based on log4j, it is possible to configure the
output of Orbix security service logging using a standard log4j properties file.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

Enabling log4j logging To enable log4j logging, you can specify the location of the log4j properties
file in either of the following ways:

• In the CLASSPATH.

• In the is2.properties file.

In the CLASSPATH You can specify the location of the log4j properties file by adding the file to
your CLASSPATH. For example, you could add an
/is2_config/log4j.properties file to your CLASSPATH as follows:

Windows
set CLASSPATH=C:\is2_config\log4j.properties;%CLASSPATH%

UNIX (Bourne shell)
export CLASSPATH=/is2_config/log4j.properties:$CLASSPATH;

In the is2.properties file You can specify the location of the log4j properties file in the
is2.properties file as follows:

iSF Properties File, for Server ID=1
...
###
log4j Logging
###
log4j.configuration=C:/is2_config/log4j.properties
...
157

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 7 | Configuring the Orbix Security Service
Configuring the log4j properties
file

The following example shows how to configure the log4j properties to
perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

log4j Properties File
log4j.rootCategory=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x

- %m%n
 158

CHAPTER 8

Managing Users,
Roles and
Domains
The Orbix security service provides a variety of adapters that
enable you to integrate the IONA Security Framework with
third-party enterprise security products. This allows you to
manage users and roles using a third-party enterprise security
product.

In this chapter This chapter discusses the following topics:

Introduction to Domains and Realms page 160

Managing a File Security Domain page 174

Managing an LDAP Security Domain page 177
159

CHAPTER 8 | Managing Users, Roles and Domains
Introduction to Domains and Realms

Overview This section introduces the concepts of an iSF security domain and an iSF
authorization realm, which are fundamental to the administration of the
IONA Security Framework. Within an iSF security domain, you can create
user accounts and within an iSF authorization realm you can assign roles to
users.

In this section This section contains the following subsections:

iSF Security Domains page 161

iSF Authorization Realms page 163

Example Domain and Realms page 168

Domain and Realm Terminology page 172
 160

Introduction to Domains and Realms
iSF Security Domains

Overview This subsection introduces the concept of an iSF security domain.

iSF security domain An iSF security domain is a particular security system, or namespace within
a security system, designated to authenticate a user.

Here are some specific examples of iSF security domains:

• LDAP security domain—authentication provided by an LDAP security
backend, accessed through the Orbix security service.

Domain architecture Figure 28 shows the architecture of an iSF security domain. The iSF security
domain is identified with an enterprise security service that plugs into the
Orbix security service through an iSF adapter. User data needed for
authentication, such as username and password, are stored within the
enterprise security service. The Orbix security service provides a central
access point to enable authentication within the iSF security domain.

Figure 28: Architecture of an iSF Security Domain

Web
Services

CORBA
Server

CORBA on
OS/390

Enterprise Security Service

Orbix Security Service

iSF Security Domain

Authentication data

authenticate authenticate authenticate
161

CHAPTER 8 | Managing Users, Roles and Domains
Creating an iSF security domain Effectively, you create an iSF security domain by configuring the Orbix
security service to link to an enterprise security service through an iSF
adapter (such as an LDAP adapter). The enterprise security service is the
implementation of the iSF security domain.

Creating a user account Because user account data is stored in a third-party enterprise security
service, you use the standard tools from the third-party enterprise security
product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 174.
 162

Introduction to Domains and Realms
iSF Authorization Realms

Overview This subsection introduces the concept of an iSF authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

iSF authorization realm An iSF authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

Role-based access control The IONA security framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1. User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest, administrator, and so on, in a realm,
Engineering). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the Orbix
security service, which returns the set of realms and roles assigned to a
user when required.

2. Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, CORBA
servers in the iSF use an XML action-role mapping file to control access
to IDL interfaces, operation, and attributes.
163

CHAPTER 8 | Managing Users, Roles and Domains
Servers and realms From a server’s perspective, an iSF authorization realm is a way of grouping
servers with similar authorization requirements. Figure 29 shows two iSF
authorization realms, Engineering and Finance, each containing a
collection of server applications.

Adding a server to a realm To add a server to a realm, add or modify the
plugins:gsp:authorization_realm configuration variable within the
server’s configuration scope (either in the DomainName.cfg file or in the
CFR server).

For example, if your server’s configuration is defined in the my_server_scope
scope, you can set the iSF authorization realm to Engineering as follows:

Figure 29: Server View of iSF Authorization Realms

IONAGlobalRealm

Srv1 Srv2

Srv3 Srv4

Engineering

Srv5 Srv6

Srv7 Srv8

Finance

Orbix configuration file
...
my_server_scope {
 plugins:gsp:authorization_realm = "Engineering";
 ...
};
 164

Introduction to Domains and Realms
Roles and realms From the perspective of role-based authorization, an iSF authorization realm
acts as a namespace for roles. For example, Figure 30 shows two iSF
authorization realms, Engineering and Finance, each associated with a set
of roles.

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the Orbix security service through an
adapter. Not every enterprise security system supports realms and roles,
however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles. See also
“Assigning realms and roles to the example users” on page 168.

Assigning realms and roles to
users

The assignment of realms and roles to users is administered from within the
enterprise security system that is plugged into the Orbix security service. For
example, Figure 31 shows how two users, Janet and John, are assigned
roles within the Engineering and Finance realms.

• Janet works in the engineering department as a developer, but
occasionally logs on to the Finance realm with guest permissions.

Figure 30: Role View of iSF Authorization Realms

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO
165

CHAPTER 8 | Managing Users, Roles and Domains
• John works as an accountant in finance, but also has guest
permissions with the Engineering realm.

Special realms and roles The following special realms and roles are supported by the IONA Security
Framework:

• IONAGlobalRealm realm—a special realm that encompasses every iSF
authorization realm. Roles defined within the IONAGlobalRealm are
valid within every iSF authorization realm.

• UnauthenticatedUserRole—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the UnauthenticatedUserRole role are also
accessible to authenticated users.

The UnauthenticatedUserRole can be used only in action-role
mapping files.

Figure 31: Assignment of Realms and Roles to Users Janet and John

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO

iSF Security Domain (users)

Janet John
 166

Introduction to Domains and Realms
167

CHAPTER 8 | Managing Users, Roles and Domains
Example Domain and Realms

Overview This subsection presents an example of how to set up an iSF security
domain using a file domain. Sample iSF authorization realms, roles, and
users are created, and the authorization process is explained by example.

File domain In this example, the iSF security domain is configured to be a file domain. A
file domain is a simple file-based security domain that can be used for tests
or demonstrations. The user data is then stored in an XML security file.

For details of how to configure a file domain, see “Managing a File Security
Domain” on page 174.

Example users The following users are created in the file domain for this example:

• Janet—with username, Janet, and password, JanetPass.

• John—with username, John, and password, JohnPass.

• SuperUser—with username, SuperUser, and password, BigSecret.

Assigning realms and roles to the
example users

The following realms and roles are assigned to the users, Janet, John, and
SuperUser (where realms and roles are notated in the format RealmA {
roleA1, roleA2, ..., roleAn}):

• Janet—is assigned the following realms and roles:

♦ Engineering {developer, admin}

♦ IONAGlobalRealm {guest}

• John—is assigned the following realms and roles:

♦ Finance {accountant}

♦ IONAGlobalRealm {guest}

• SuperUser—is assigned the following realm and role:

♦ IONAGlobalRealm {admin}
 168

Introduction to Domains and Realms
Sample security file for the file
domain

Within a file domain, you specify the user authentication data (username
and password) as well as the realm/role assignments within the same XML
security file. The preceding user data can be specified in a security file as
follows:

<?xml version="1.0" encoding="utf-8" ?>
<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
 <users>
 <user name="Janet" password="JanetPass"
 description="Developer">
 <realm name="Engineering">
 <role name="developer"/>
 <role name="admin"/>
 </realm>
 <realm name="IONAGlobalRealm" description="All realms">
 <role name="guest"/>
 </realm>
 </user>
 <user name="John" password="JohnPass"
 description="Accountant">
 <realm name="Finance">
 <role name="accountant"/>
 </realm>
 <realm name="IONAGlobalRealm" description="All realms">
 <role name="guest"/>
 </realm>
 </user>
 <user name="SuperUser" password="BigSecret"
 description="All powerful user!">
 <realm name="IONAGlobalRealm" description="All realms">
 <role name="admin" description="All actions"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>
169

CHAPTER 8 | Managing Users, Roles and Domains
Sample server configuration Consider, for example, the CORBA naming service in the Engineering iSF
authorization realm. To configure this naming service, edit the variables in
the iona_services.naming scope in the DomainName.cfg configuration
file. Set the authorization realm to Engineering and specify the location of
the action-role mapping file, as follows:

Sample ACL file The eng_naming_arm.xml action-role mapping file, which specifies
permissions for the naming service in the Engineering domain, could be
defined as follows:

Orbix configuration file
...
iona_services {
 ...
 naming {
 plugins:gsp:authorization_realm = "Engineering";
 plugins:is2_authorization:action_role_mapping =
 "file:///security/eng_naming_arm.xml";
 ...
 };
};

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM

"actionrolemapping_with_interfaces.dtd">
<secure-system>
 <allow-unlisted-interfaces>true</allow-unlisted-interfaces>
 <action-role-mapping>
 <server-name>iona_services.naming</server-name>
 <interface>
 <name>IDL:omg.org/CosNaming/NamingContext:1.0</name>
 <action-role>
 <action-name>*</action-name>
 <role-name>developer</role-name>
 </action-role>
 <action-role>
 <action-name>resolve</action-name>
 <action-name>list</action-name>
 <role-name>guest</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>
 170

Introduction to Domains and Realms
Authorization process When user John attempts to invoke an operation on the CORBA naming
service in the Engineering domain, authorization proceeds as follows:

Stage Description

1 The naming service contacts the Orbix security service remotely
to authenticate John’s username and password.

2 If authentication is successful, the Orbix security service returns
the complete list of realms and roles assigned to John. In the
current example, the following realms and roles would be
returned:

• Finance {accountant}

• IONAGlobalRealm {guest}

3 The naming service determines which roles are applicable to
John in the current iSF authorization realm. Because the
naming service belongs to the Engineering realm, only the
guest role from the IONAGlobalRealm is applicable here.

4 The naming service now checks the eng_naming_arm.xml
action-role mapping file and finds that only the resolve and
list actions are permitted on the CosNaming::NamingContext
IDL interface for the guest role.

On the other hand, if the user, John, attempts to call an
operation (or attribute) on any other naming service interface,
the call would be permitted, because the
<allow-unlisted-interfaces> option is true in the action-role
mapping file.

Note: The special <allow-unlisted-interfaces> tag is a
useful shortcut, but you should use it carefully to avoid opening
a security hole.
171

CHAPTER 8 | Managing Users, Roles and Domains
Domain and Realm Terminology

Overview The terms domain and realm appear in several security technology
specifications with different (and sometimes contradictory) meanings. This
subsection attempts to clarify some of the domain and realm terminology
and provides a comparison with the IONA Security Framework terms.

Comparison of terminology To clarify the terminology used by different technology specifications (all of
which are embraced by the iSF) Table 4 lists the generic iSF terms against
their technology-specific equivalents:

1. The term, J2EE security policy domain, appears in both rows because
it is a general term that embodies both an authentication domain and
an authorization domain.

2. J2EE realm means the same thing as J2EE security policy domain.

J2EE security technology domain The J2EE specification defines a J2EE security technology domain as
follows:

The scope over which a single security mechanism is used to enforce a
security policy. Multiple security policy domains can exist within a single
technology domain.

Table 4: Domain and Realm Terminology Comparison

Generic iSF Term Technology-Specific Equivalents

iSF security domain J2EE security technology domain

J2EE security policy domain (1)

J2EE realm (2)

JAAS authentication realm

CSIv2 authentication domain

HTTP login realm

iSF authorization realm J2EE security policy domain (1)

J2EE realm (2)
 172

Introduction to Domains and Realms
J2EE security policy domain The J2EE specification defines a J2EE security policy domain as follows:

A realm, also called a security policy domain or security domain in the J2EE
specification, is a scope over which a common security policy is defined and
enforced by the security administrator of the security service

J2EE realm A J2EE realm is the same thing as J2EE security policy domain.

JAAS authentication realm A Java Authentication and Authorization Service (JAAS) authentication
realm is a namespace for JAAS principals.

CSIv2 authentication domain A CSIv2 authentication domain is a named domain in which CSIv2
authentication data (for example, username and password) is authenticated.

HTTP login realm When a user logs on to a Web client through a standard HTTP login
mechanism (for example, HTTP basic authentication or HTTP form-based
authentication), the user is prompted for a username, password, and login
realm name. The login realm name, along with the user’s username and
password, is the sent to the Web server.
173

CHAPTER 8 | Managing Users, Roles and Domains
Managing a File Security Domain

Overview The file security domain is active if the Orbix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 146). The main purpose of the iSF file adapter is to provide a
lightweight security domain for demonstration purposes. A realistic deployed
system, however, would use one of the other adapters (LDAP or custom)
instead.

Location of file The location of the security information file is specified by the
com.iona.isp.adapter.file.param.filename property in the Orbix security
service’s is2.properties file.

Example Example 17 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Example 17:Sample Security Information File for an iSF File Domain

<?xml version="1.0" encoding="utf-8" ?>

1 <ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
2 <users>
3 <user name="IONAAdmin" password="admin"

 description="Default IONA admin user">
4 <realm name="IONA" description="All IONA applications"/>

 </user>
 <user name="admin" password="admin" description="Old admin

user; will not have the same default privileges as
IONAAdmin.">

 <realm name="Corporate">
 <role name="Administrator"/>
 </realm>
 </user>
 <user name="alice" password="dost1234">
 174

Managing a File Security Domain
1. The <ns:securityInfo> tag can contain a nested <users> tag.

2. The <users> tag contains a sequence of <user> tags.

3. Each <user> tag defines a single user. The <user> tag’s name and
password attributes specify the user’s username and password. Within
the scope of the <user> tag, you can list the realms and roles with
which the user is associated.

4. When a <realm> tag appears within the scope of a <user> tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <realm> must have a name and can optionally have a
description attribute.

5. A realm can optionally be associated with one or more roles by
including <role> elements within the <realm> scope.

5 <realm name="Financials"
 description="Financial Department">
 <role name="Manager" description="Department Manager" />
 <role name="Clerk"/>
 </realm>
 </user>
 <user name="bob" password="dost1234">
 <realm name="Financials">
 <role name="Clerk"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

Example 17:Sample Security Information File for an iSF File Domain
175

CHAPTER 8 | Managing Users, Roles and Domains
Certificate-based authentication
for the file adapter

When performing certificate-based authentication, the file adapter compares
the certificate to be authenticated with a cached copy of the user’s
certificate.

To configure the file adapter to support X.509 certificate-based
authentication, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location that
is accessible to the file adapter.

2. Make the following type of entry for each user with a certificate:

The user’s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 529). The certificate attribute specifies the location of this
user’s X.509 certificate, CertFile.pem.

Example 18:File Adapter Entry for Certificate-Based Authentication

...
<user name="CNfromSubjectDN" certificate="CertFile.pem"

description="User certificate">
 <realm name="RealmName">
 ...
 </realm>
</user>
 176

Managing an LDAP Security Domain
Managing an LDAP Security Domain

Overview The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and any of them can be integrated with the Orbix
security service by configuring the LDAP adapter.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

Configuring the LDAP adapter A prerequisite for using LDAP within the IONA Security Framework is that
the Orbix security service be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 148.

Certificate-based authentication
for the LDAP adapter

When performing certificate-based authentication, the LDAP adapter
compares the certificate to be authenticated with a cached copy of the
user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based
authentication, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location that
is accessible to the LDAP adapter.

2. The user’s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 529).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.
177

CHAPTER 8 | Managing Users, Roles and Domains
 178

CHAPTER 9

Managing
Access Control
Lists
The Orbix Security Framework defines access control lists
(ACLs) for mapping roles to resources. The ACLs are specific
to particular technology domains, such as CORBA, and thus
are not stored centrally in the Orbix security service.

In this chapter This chapter discusses the following topics:

CORBA ACLs page 180
179

CHAPTER 9 | Managing Access Control Lists
CORBA ACLs

Overview This section discusses the ACL files that control access to IDL operations
and attributes in a CORBA server. The ACL files for CORBA servers provide
role-based access control with granularity down to the level of IDL
operations, and attributes.

In this section This section contains the following subsections:

Overview of CORBA ACL Files page 181

CORBA Action-Role Mapping ACL page 182
 180

CORBA ACLs
Overview of CORBA ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific IDL operations and attributes).

GSP plug-in The GSP plug-in is a component of the iSF that provides support for
action-role mapping. This plug-in must be loaded in order to use the
action-role mapping ACL file (see “Security Configuration” on page 485 for
details of how to configure the GSP plug-in).
181

CHAPTER 9 | Managing Access Control Lists
CORBA Action-Role Mapping ACL

Overview This subsection explains how to configure the action-role mapping ACL file
for CORBA applications. Using an action-role mapping file, you can specify
that access to IDL operations and attributes is restricted to specific roles.

File location In your Orbix configuration file, the
plugins:is2_authorization:action_role_mapping configuration variable
specifies the location URL of the action-role mapping file,
action_role_mapping.xml, for a CORBA server. For example:

Example IDL For example, consider how to set the operation and attribute permissions for
the IDL interface shown in Example 19.

Orbix Configuration File
...
my_server_scope {
 plugins:is2_authorization:action_role_mapping =
 "file:///security_admin/action_role_mapping.xml";
};

Example 19:Sample IDL for CORBA ACL Example

// IDL
module Simple
{
 interface SimpleObject
 {
 void call_me();
 attribute string foo;
 };
};
 182

CORBA ACLs
Example action-role mapping Example 20 shows how you might configure an action-role mapping file for
the Simple::SimpleObject interface given in the preceding Example 19 on
page 182.

The preceding action-role mapping example can be explained as follows:

1. If the directory containing the actionrolemapping.dtd file includes
spaces, the spaces should be replaced by %20 in the <!DOCTYPE> tag.

2. The <allow-unlisted-interfaces> tag specifies the default access
that applies to interfaces not explicitly listed in the action-role mapping
file. The tag contents can have the following values:

♦ true—for any interfaces not listed, access is allowed for all roles.
If the remote user is unauthenticated (in the sense that no GSSUP
credentials are sent by the client), access is also allowed.

Example 20:CORBA Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
1 <!DOCTYPE secure-system SYSTEM

"InstallDir/etc/domains/Domain/actionrolemapping.dtd">
<secure-system>

2 <allow-unlisted-interfaces>false</allow-unlisted-interfaces>

3 <action-role-mapping>
4 <server-name>gsp_basic_test.server</server-name>
5 <interface>
6 <name>IDL:Simple/SimpleObject:1.0</name>

 <action-role>
7 <action-name>call_me</action-name>

 <role-name>corba-developer</role-name>
 <role-name>guest</role-name>
 </action-role>
 <action-role>

8 <action-name>_get_foo</action-name>
 <role-name>corba-developer</role-name>
 <role-name>guest</role-name>
 </action-role>
 </interface>

 </action-role-mapping>
</secure-system>
183

CHAPTER 9 | Managing Access Control Lists
♦ false—for any interfaces not listed, access is denied for all roles.
Unauthenticated users are also denied access. This is the default.

3. The <action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

4. The <server-name> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly.

5. The <interface> tag contains all of the access permissions for one
particular IDL interface.

6. The <name> tag identifies the IDL interface using the interface’s OMG
repository ID. The repository ID normally consists of the characters
IDL: followed by the fully scoped name of the interface (using /
instead of :: as the scoping character), followed by the characters
:1.0. Hence, the Simple::SimpleObject IDL interface is identified by
the IDL:Simple/SimpleObject:1.0 repository ID.

7. The call_me action name corresponds to the call_me() operation in
the Simple::SimpleObject interface. The action name corresponds to
the GIOP on-the-wire form of the operation name (usually the same as
it appears in IDL).

8. The _get_foo action name corresponds to the foo attribute accessor.
In general, any read/write attribute, AttributeName, has the following
action names:

♦ _get_AttributeName—for the attribute accessor, and

♦ _set_AttributeName—for the attribute modifier.

Note: The ORB name also determines which configuration scopes
are read by the server. See the Administrator’s Guide for details.

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.

For example, the CosNaming::NamingContext interface in the naming
service module, which uses the omg.org prefix, has the following
repository ID: IDL:omg.org/CosNaming/NamingContext:1.0
 184

CORBA ACLs
In general, the accessor or modifier action names correspond to the
GIOP on-the-wire form of the attribute accessor or modifier.

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 533 for details.
185

CHAPTER 9 | Managing Access Control Lists
 186

CHAPTER 10

Securing Orbix
Services
This chapter describes how to enable security in the context
of the Orbix Security Framework for the Orbix services.

In this chapter This chapter discusses the following topics:

Introduction to Securing Services page 188

File-Based and CFR Domains page 189

Customizing a Secure Domain page 193

Default Access Control Lists page 205
187

CHAPTER 10 | Securing Orbix Services
Introduction to Securing Services

Overview In a secure system, all Orbix services should be capable of servicing secure
connections. A typical secure system includes an Orbix security service and
enables SSL/TLS on all of the Orbix services.

Configuring the Orbix services Before deploying the Orbix services in a live system, you must customize the
security configuration, replacing demonstration certificates by custom
certificates and so on. The procedure for securing Orbix services is similar to
the procedure for securing regular CORBA applications (see “Securing
CORBA Applications” on page 57).

Configuring the Orbix security
service

The Orbix security service is a special case because, in addition to setting
configuration variables in the Orbix configuration, you also need to perform
the following basic administration tasks:

• Edit the properties in the is2.properties file—see “Configuring the
Orbix Security Service” on page 145.

• Change the secure user data (usernames, passwords, and so on)
stored in the Orbix security service’s user database—see “Managing
Users, Roles and Domains” on page 159.

Access control lists for Orbix
services

Fine-grained access to the Orbix services is controlled by the access control
lists (ACLs) in the Orbix action-role mapping files. Default ACLs are
generated automatically when you run itconfigure to create a secure
domain. See “Default Access Control Lists” on page 205 for a detailed
discussion of the default ACLs for the Orbix services.
 188

File-Based and CFR Domains
File-Based and CFR Domains

Overview This section provides an overview and comparison of a secure file-based
domain and a secure CFR domain. There are some significant differences
between the two types of domain. In particular, a secure CFR domain is
designed in such a way as to avoid creating a circular dependency between
the Orbix security service and the CFR service.

File-based domain overview Figure 32 shows an overview of a secure file-based domain. In this
example, the Orbix security service runs on a host, S1, and the other core
Orbix services run on a different host, S2.

Figure 32: Overview of a Secure File-Based Domain

Locator

Config

Node
Daemon

Naming

Domain.cfg

Host S2

iS2

Domain.cfg

Config

Host S1

Server A

Domain.cfg

Config

Host A

Server B1

Domain.cfg

Config

Host B

Server B2 Client C1

Domain.cfg

Config

Host C

Client C2
189

CHAPTER 10 | Securing Orbix Services
Domain.cfg in a file-based domain In a secure file-based domain, the Orbix configuration file, Domain.cfg,
contains all of the configuration data for the CORBA system. In particular,
the Domain.cfg file can contain security credentials for your applications
and the core Orbix services (for example, certificate locations and password
file locations).

When deploying a domain across multiple hosts (as, for example, in
Figure 32), it is advisable to customize the Domain.cfg file on each host.
Each copy of Domain.cfg should include security credentials only for the
applications running on that particular host.

CFR domain overview Figure 33 shows an overview of a secure CFR domain. In this example, the
Orbix security service runs on a host, S1, and the other core Orbix services
run on a different host, S2.

WARNING: Any domain configuration files containing security-related
data must be stored securely by the operating system.

Figure 33: Overview of a Secure CFR Domain

Locator

Config

Node
Daemon

Naming

Domain.cfg

Config

Host S2

iS2 CFR

cfr-Domain.cfg

Config

CFR Data secure-Domain.cfg

ACL

Host S1

Access
Control

Server A

Domain.cfg

Config

Host A

Server B1

Domain.cfg

Config

Host B

Server B2 Client C1

Domain.cfg

Config

Host C

Client C2
 190

File-Based and CFR Domains
Secure CFR domain files A secure CFR domain uses the following different kinds of domain
configuration files:

• Domain.cfg in a CFR domain.

• secure-Domain.cfg.

• cfr-Domain.cfg.

Domain.cfg in a CFR domain In a secure CFR domain, the Domain.cfg file contains just enough
configuration information to bootstrap an application and enable it to
retrieve the rest of its configuration from the CFR service.The following kinds
of settings are contained in this file:

• Generic security settings—for example, basic settings for the iiop_tls
and gsp plugins.

• CFR handler plug-in settings—these settings tell the application to
retrieve its configuration from the CFR service.

• Credentials used by an internal ORB—the internal ORB settings
enable the Orbix management service to monitor the status of a server
application.

secure-Domain.cfg The secure-Domain.cfg file is used only by the core Orbix services (except
the Orbix security service and the CFR service). It is generated only if the
CFR and the Orbix security service are both deployed. Hence, in Figure 33
on page 190, the secure-Domain.cfg file appears only on the host where
the Orbix services are deployed. The secure-Domain.cfg contains the
following:

• All of the settings in Domain.cfg—the contents of the Domain.cfg are
included using an include directive.

• Credentials for the core services—this includes credentials set by the
IIOP/TLS principal sponsor and the CSIv2 principal sponsor.

WARNING: The secure-Domain.cfg file contains sensitive data and
therefore it must be stored securely by the operating system.
191

CHAPTER 10 | Securing Orbix Services
cfr-Domain.cfg The cfr-Domain.cfg file is used only by the Orbix security service and the
CFR service (see Figure 33 on page 190) and it contains the complete
configuration details for these two services. It is necessary to leave the
configuration of these two services entirely file-based in order to avoid
creating a circular dependency.

In a typical deployment, you need to customize the credentials for the Orbix
security service and the CFR service, which are set in cfr-Domain.cfg.

CFR action-role mapping Like any of the other Orbix services, in a secure or semi-secure domain the
CFR has an associated action-role mapping file. It is usually necessary to
customize this action-role mapping in order to define which configuration
scopes are accessible to ordinary users and which configuration scopes are
reserved for the administrator.

For more details, see “Configuration Repository ACL” on page 206.

WARNING: The cfr-Domain.cfg file contains sensitive data and
therefore it must be stored securely by the operating system.
 192

Customizing a Secure Domain
Customizing a Secure Domain

Overview This section describes how to customize the configuration of secure domains
generated using the itconfigure utility. When generating a domain, the
itconfigure utility allows you to choose between two different levels of
security:

• Secure—only secure connections are accepted.

• Semi-secure—both secure and insecure connections are accepted.

In the subsections that follow, the differences between a secure domain and
a semi-secure domain are described in detail.

The itconfigure utility also allows you to choose between a file-based
domain and a CFR-based domain. The examples in this section are all
based on a file domain. Similar comments apply, though, to the analogous
settings in a CFR domain.

In this section This section contains the following subsections:

WARNING: It is essential to customize a secure domain generated by the
itconfigure utility. The secure domain created using itconfigure is not
fully secure, because the X.509 certificates used by the domain are
demonstration certificates, which are identical for all installations of Orbix.

Configuring a Typical Orbix Service page 194

Configuring the Security Service page 202
193

CHAPTER 10 | Securing Orbix Services
Configuring a Typical Orbix Service

Overview This section describes how to configure a typical Orbix service—such as
naming, trading, events, and so on—running in a domain with an Orbix
security service. Details of the Orbix security service configuration are
discussed in the next subsection “Configuring the Security Service” on
page 202.

To configure a typical Orbix service, there are two groups of configuration
settings that are relevant:

• Configuration settings for the application ORB—these settings
configure the behavior of Orbix at the application level.

• Configuration settings for the internal ORB—these settings configure
an internal ORB that allows the server process to be monitored by the
Orbix management service.

Configuration settings for the
application ORB

Example 21 shows the configuration settings for a typical Orbix service (not
the security service itself). These settings configure the application ORB—
that is, these settings determine the ordinary runtime behavior of the
service.

Example 21:Typical Service Configuration for the Application ORB

Orbix Configuration File
...
General configuration at root scope.

1 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:mechanism_policy:protocol_version = "SSL_V3";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

3 policies:trusted_ca_list_policy =
"/vob/art/etc/tls/x509/trusted_ca_lists/ca_list1.pem";

...
 194

Customizing a Secure Domain
iona_services
{
 # Common SSL/TLS security settings.

4 principal_sponsor:use_principal_sponsor = "true";
5 principal_sponsor:auth_method_id = "pkcs12_file";
6 principal_sponsor:auth_method_data =

["filename=/vob/art/etc/tls/x509/certs/services/administrator
.p12",
"password_file=/vob/art/etc/tls/x509/certs/services/administr
ator.pwf"];

7 policies:target_secure_invocation_policy:requires =
["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

8 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

9 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 Service {
 # Service-specific security configuration.
 ...

10 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls", "ots", "gsp"];

11 plugins:Service:iiop_tls:port = "0";
 plugins:Service:iiop_tls:host = "ServiceHost";

 # Configuration of CSI and GSP plug-ins.
12 policies:csi:auth_over_transport:target_requires =

"EstablishTrustInClient";
 policies:csi:auth_over_transport:target_supports =

"EstablishTrustInClient";

Example 21:Typical Service Configuration for the Application ORB
195

CHAPTER 10 | Securing Orbix Services
The preceding service configuration can be explained as follows:

1. Make sure that the binding:client_binding_list variable includes
bindings with the IIOP_TLS and CSI interceptors. You can use the
value of the binding:client_binding_list shown here.

2. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 317.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You should edit the
policies:trusted_ca_list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 335.

 policies:csi:auth_over_transport:server_domain_name =
"IONA";

 policies:csi:auth_over_transport:client_supports =
"EstablishTrustInClient";

13 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=IONAServiceAdmin", "password=service",
"domain=IONA"];

14 plugins:is2_authorization:action_role_mapping =
"file:///vob/art/etc/domains/filedomain-secure-is2-tls/allow_
all_authenticated_clients_action_role_mapping.xml";

15 plugins:gsp:authorization_realm = "IONAGlobalRealm";
 ...
 };
 ...
};

Example 21:Typical Service Configuration for the Application ORB

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.
 196

Customizing a Secure Domain
4. The Orbix services all require an X.509 certificate. Hence, this line
enables the SSL/TLS principal sponsor, which specifies a certificate for
the application.

5. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 337.

6. Replace the X.509 certificate, by editing the filename option in the
principal_sponsor:auth_method_data configuration variable to point
at a custom X.509 certificate. The filename value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 337 for more
details.

7. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, which
is a secure domain, the target policies specify that the application will
accept secure connections only.

Alternatively, in a semi-secure domain the target secure invocation
policy would be set as follows:

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the principal_sponsor:auth_method_id value must be
security_label instead of pkcs12_file.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the label option instead of the filename option
in the principal_sponsor:auth_method_data configuration variable.
The label specifies the common name (CN) from the application
certificate’s subject DN.

policies:target_secure_invocation_policy:requires =
["NoProtection"];

policies:target_secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"EstablishTrustInTarget", "EstablishTrustInClient",
"DetectMisordering", "DetectReplay", "Integrity"];
197

CHAPTER 10 | Securing Orbix Services
8. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, which
is a secure domain, the client policies require the connection to open
secure connections only.

Alternatively, in a semi-secure domain the client secure invocation
policy would be set as follows:

9. Make sure that the binding:server_binding_list variable includes
bindings with the CSI and GSP interceptors. You can use the value of
the binding:server_binding_list shown here.

10. Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_tls plug-in and the gsp plug-in.

11. The IIOP/TLS IP port is set to 0 in this example, because the node
daemon is responsible for allocating the port dynamically (on demand
activation). Services that are not activated on demand (for example,
the locator) will be allocated a specific IP port.

12. In this example (secure domain), the CSI policies are set up in such a
way that clients are required to provide a username and password to
log on to the service.

Alternatively, in a semi-secure domain the
policies:csi:auth_over_transport:target_requires variable is set

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"EstablishTrustInTarget", "EstablishTrustInClient",
"DetectMisordering", "DetectReplay", "Integrity"];

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure IIOP) from the ORB plug-ins list. This renders the
application incapable of making insecure IIOP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the iiop_tls plug-in in the ORB plug-ins list.
 198

Customizing a Secure Domain
to an empty string, "", implying that clients are not required to provide
a username and password to the service. For example:

13. The CSI principal sponsor sets a username, a password and a domain,
which the server uses when acting in a client role to connect to other
applications. The principal_sponsor:csi:auth_method_data variable
is set as follows:

♦ username—has the value IONAServiceAdmin. When using the
default ACLs (see “Default Access Control Lists” on page 205),
the IONAServiceAdmin user enjoys unrestricted access to all of the
core Orbix services.

♦ password—in this example, the CSI password is provided directly
in the configuration file. For alternative ways of specifying the CSI
password, see “Providing a Username and Password” on
page 394.

♦ domain—has the value IONA. The CSI authentication domain
must match the target server’s domain name, as specified by the
policies:csi:auth_over_transport:server_domain_name
configuration variable, or could be an empty string (acts as a
wildcard).

14. The action_role_mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 182.

policies:csi:auth_over_transport:server_domain_name =
"IONA";

policies:csi:auth_over_transport:target_supports =
"EstablishTrustInClient";

policies:csi:auth_over_transport:target_requires = "";
policies:csi:auth_over_transport:client_supports =

"EstablishTrustInClient";
199

CHAPTER 10 | Securing Orbix Services
15. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs (the default is
IONAGlobalRealm). For more details about iSF authorization realms,
see “iSF Authorization Realms” on page 163.

Configuration settings for the
internal ORB

Example 22 shows the configuration settings for the internal ORB. These
settings enable the management service to monitor the Orbix services. All of
the settings for the internal ORB are intended to configure the server end of
a connection. The internal ORB does not open any connections to other
processes.

Example 22:Typical Service Configuration for the Internal ORB

Orbix Configuration File
...
IT_POAInternalORB
{
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
"%{SERVICES_AUTH_METHOD_DATA}";

 policies:target_secure_invocation_policy:requires =

["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 policies:csi:auth_over_transport:target_requires =
"EstablishTrustInClient";
 200

Customizing a Secure Domain
The preceding internal ORB configuration can be explained as follows:

1. The internal ORB’s principal sponsor should be configured with an
X.509 certificate suitable for a secure Orbix service.

2. Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_tls plug-in and the gsp plug-in.

3. The internal ORB uses the
allow_all_authenticated_clients_action_role_mapping.xml file for
access control. This configuration gives unrestricted access to all
authenticated clients.

 policies:csi:auth_over_transport:target_supports =
"EstablishTrustInClient";

 policies:csi:auth_over_transport:server_domain_name =
"IONA";

 iona_services
 {
 Service
 {

2 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls", "ots", "gsp"];

 plugins:local_log_stream:filename =
"/vob/art/var/filedomain-secure-is2-tls/logs/IT_POAInternalOR
Bifr.log";

3 plugins:is2_authorization:action_role_mapping =
"file:///vob/art/etc/domains/filedomain-secure-is2-tls/allow_
all_authenticated_clients_action_role_mapping.xml";

 };
 ...
 };
};

Example 22:Typical Service Configuration for the Internal ORB

Note: Instead of using the principal sponsor here, you could set the
plugins:security:share_credentials_across_orbs configuration
variable instead. See “Security Configuration” on page 485.
201

CHAPTER 10 | Securing Orbix Services
Configuring the Security Service

Overview This section describes how to configure the Orbix security service. This
service is configured somewhat differently from the others. For example,
because the gsp plug-in contacts the security service to perform
authentication, the gsp plug-in must be excluded from the security service’s
own orb_plugins list in order to avoid a circular dependency.

Configuration settings for
application ORB

Example 23 shows the configuration settings for the Orbix security service.
These settings configure the application ORB—that is, these settings
determine the ordinary runtime behavior of the service.

Example 23:Security Service Configuration for the Application ORB

Orbix Configuration File
...

1 # General configuration at root scope.
...

2 initial_references:IT_SecurityService:reference = "IOR: ...";
...
iona_services {

3 # Common SSL/TLS security settings.
 ...
 security
 {
 ...
 iS2Host {
 ...

4 plugins:security:iiop_tls:port = "53112";
 plugins:security:iiop_tls:host = "iS2Host";

5 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls"];

6
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];
 202

Customizing a Secure Domain
The preceding security service configuration can be explained as follows:

1. The security service’s root configuration settings are the same as in
Example 21 on page 194.

2. The IT_SecurityService initial reference specifies the IOR that
CORBA applications use to talk to the security service.

3. The common configuration settings (in the iona_services scope) are
the same as in Example 21 on page 194.

4. The plugins:security:iiop_tls:port variable specifies the IP port
where the security service listens for secure connections.

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 server
 {

7 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls", "it_servlet_binding_manager",
"it_deployer", "it_servlet_context", "it_http_sessions",
"it_servlet_filters", "http", "https", "it_servlet_dispatch",
"it_exception_mapping", "it_naming_context",
"it_web_security", "it_web_app_activator",
"it_default_servlet_binding", "it_character_encoding",
"it_locale", "it_classloader_mapping"];

 };
 };
 ...
 };
};

Example 23:Security Service Configuration for the Application ORB

Note: If you want to change the security service’s listening port, you
would also have to update the IOR in the
initial_references:IT_SecurityService:reference setting. You
could regenerate the IOR by re-running the itconfigure utility.
203

CHAPTER 10 | Securing Orbix Services
5. This orb_plugins setting is required here for technical reasons.

Specifically, the Orbix security service is bootstrapped in two stages, as
follows:

i. In the first stage, the generic server (implemented in C++)
instantiates an ORB with the iona_services.security.iS2Host
configuration scope, loading a minimal set of ORB plug-ins (this
orb_plugins setting).

ii. In the second stage, the generic server spawns a Java process,
which instantiates an ORB with the
iona_services.security.iS2Host.server configuration scope,
loading the full set of ORB plug-ins.

6. The IIOP/TLS target secure invocation policy requires a strong quality
of protection for incoming connections.

7. Make sure that the orb_plugins variable in this configuration scope
includes the iiop_tls plug-in.

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure IIOP) and the http plug-in (insecure HTTP) from the
ORB plug-ins list. This renders the application incapable of making
insecure IIOP connections and insecure HTTP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the iiop_tls plug-in in the ORB plug-ins list.
 204

Default Access Control Lists
Default Access Control Lists

Overview When you use the itconfigure utility to generate a secure domain,
SecureDomain, a collection of default action-role mapping files are
generated in the etc/domains/SecureDomain directory. Each of the core
Orbix services, Service, is associated with an action-role mapping file as
follows:

• Service_action_role_mapping.xml—for a secure domain.

• Service_semi_secure_action_role_mapping.xml—for a semi-secure
domain.

Two basic levels of access are defined in these ACLs: IONAUserRole for
ordinary users; and IONAServiceRole for administrators.

In this section This section contains the following subsections:

Note: It is recommended that you check whether the default ACLs
provide the level of security you need before deploying the core Orbix
services in a real system.

Configuration Repository ACL page 206

Locator ACL page 211

Node Daemon ACL page 213

Naming Service ACL page 215

Trader Service ACL page 216

Event Service ACL page 219

Notification Service ACL page 223

Basic Log Service ACL page 231

Event Log Service ACL page 233

Notify Log Service ACL page 236
205

CHAPTER 10 | Securing Orbix Services
Configuration Repository ACL

Overview The configuration repository (CFR) ACL is a special case, because it requires
access control of parameter values in the IDL operations. To enable
parameter-based access control, the CFR includes a special subsystem, a
requst to action mapper, which is responsible for parsing the operation
parameters. In the CFR, the following kinds of parameter can be subjected
to access control:

• Configuration scopes.

• Namespaces.

Configuration scopes Similarly to a file domain, the CFR uses a configuration scope to group
together related configuration settings. Configuration scopes can be nested
as shown in the following example:

To reference a nested configuration scope, the period character (.) is used
as a delimiter. For example, demos.tls.secure_client_with_cert refers to
the innermost configuration scope of the preceding example.

Note: It is recommended that you check whether the default
configuration repository ACL provides the level of security you need before
deploying it in a real system.

Orbix Configuration File
demos {
 tls {
 secure_client_with_cert {
 ...
 };
 };
};
 206

Default Access Control Lists
Namespaces The CFR uses namespaces to represent compound variable names. For
example, the principal_sponsor:csi:auth_method_id variable name is
built up as follows:

To represent compound names composed of namespaces, the colon
character (:) is used as a delimiter.

IT_CFR module The IT_CFR module defines some of the CFR’s remotely accessible
interfaces and operations (the CFR also implements the IDL modules
defined in cfr_replication.idl). The IDL for the IT_CFR module is
available in the following file:

OrbixInstallDir/asp/Version/idl/orbix_pdk/cfr.idl

For example, the itadmin utility calls operations from the IT_CFR module in
order to read from and update the configuration repository. Example 24
shows an overview of the interfaces defined in the IT_CFR module.

CompoundName type The IT_CFR::CompoundName type is defined as follows:

principal_sponsor Namespace.

principal_sponsor:csi Namespace.

principal_sponsor:csi:auth_method_id Variable name.

Example 24:The IT_CFR Module

// IDL
...
module IT_CFR {
 interface ConfigScope { ... };
 interface Namespace { ... };
 interface ConfigRepository { ... };
 interface Listener { ... };
 interface ListenerRegistration { ... };
};

// IDL
module IT_CFR {
 typedef sequence<string> CompoundName;
};
207

CHAPTER 10 | Securing Orbix Services
The CompoundName type represents configuration scopes and namespaces as
follows:

• Configuration scope—is converted into a CompoundName by recognizing
the period character (.) as a delimiter. For example, the
demos.tls.secure_client_with_cert scope is converted to the
following sequence of strings: demos, tls, secure_client_with_cert.

• Namespace—is converted into a CompoundName by recognizing the
colon character (:) as a delimiter. For example, the
principal_sponsor:csi:auth_method_id variable name is converted
to the following sequence of strings: principal_sponsor, csi,
auth_method_id.

Parameter-based access control In order to provide a meaningful level of access control for the CFR, it is
necessary to control access at the level of operation parameters;
operation-based access control would not be sufficient.

For example, consider the following destroy_subscope() operation from the
IT_CFR module:

Ordinary users should not have permission to destroy critical configuration
scopes such as iona_services (which holds the configuration settings for
the core Orbix services). But ordinary users do need full access to at least
one scope, for example demos, in order to configure their own applications.
Parameter-based access control enables you to control access based on the
value of the name parameter in the preceding operation.

// IDL
module IT_CFR {
 interface ConfigScope
 {
 ConfigScope destroy_subscope(
 in CompoundName name
) raises (CFRException);
 };
};
 208

Default Access Control Lists
To control access based on the destroy_scope() operation’s name
parameter, you could use the following fragment in an action-role mapping
file:

This ensures that ordinary users (represented by IONAUserRole) can only
destroy the demos scope and its subscopes.

ACL for configuration scope
operations

Example 25, which is extracted from the default
cfr_action_role_mapping.xml file, shows how access control is configured
for the IT_CFR::ConfigScope interface.

 <interface>
 <name>IDL:iona.com/IT_CFR/ConfigScope:1.0</name>
 ...
 <action-role>
 <action-name>destroy_subscope</action-name>
 <parameter-control>
 <parameter name="name" value="demos.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 ...
 <role-name>IONAServiceRole</role-name>
 </action-role>
 </interface>

Example 25:ACL for the IT_CFR::ConfigScope Interface

 <interface>
 <name>IDL:iona.com/IT_CFR/ConfigScope:1.0</name>
 <action-role>
 <action-name>*get*</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>scope_lookup</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>create_subscope</action-name>
 <parameter-control>
 <parameter name="name"

value="_it_cfr_root_scope.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <parameter-control>
209

CHAPTER 10 | Securing Orbix Services
 <parameter name="name" value="demos.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <parameter-control>
 <parameter name="name" value="multicast_demo.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <role-name>IONAServiceRole</role-name>
 </action-role>
 <action-role>
 <action-name>destroy_subscope</action-name>
 <parameter-control>
 <parameter name="name" value="demos.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <parameter-control>
 <parameter name="name" value="multicast_demo.*"/>
 <role-name>IONAUserRole</role-name>
 </parameter-control>
 <role-name>IONAServiceRole</role-name>
 </action-role>
 <action-role>
 <action-name>*</action-name>
 <role-name>IONAServiceRole</role-name>
 </action-role>
 </interface>

Example 25:ACL for the IT_CFR::ConfigScope Interface
 210

Default Access Control Lists
Locator ACL

Overview This subsection describes which interfaces and operations are accessible
through the default locator ACL. The following alternative ACL files are
generated by itconfigure for the locator service:

• locator_action_role_mapping.xml (secure domain).

• locator_semi_secure_action_role_mapping.xml (semi-secure
domain).

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the locator interfaces and operations shown
in Table 5 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 5 in semi-secure domains only.

Note: It is recommended that you check whether the default locator ACL
provides the level of security you need before deploying it in a real system.

Table 5: Locator Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_Location::Locator All All

IT_IMRAdmin::Process All All

IT_IMRAdmin::ProcessRegistry All All

IT_IMRAdmin::Process All All

IT_IMRAdmin::ORBRegistry All All
211

CHAPTER 10 | Securing Orbix Services
IT_IMRAdmin::ORB All All

IT_NamedKey::NamedKeyRegistry All All

IT_POAIMRAdmin::POA All All

IT_POAIMRAdmin::POARegistry All All

IT_LocatorAdmin::ActiveORBRegistry All All

IT_LocatorAdmin::ActiveProcessRegistry All All

IT_POALocatorAdmin::ActivePOARegistry All All

IT_POAIMRAdmin::ActivePOA All All

IT_POAIMRAdmin::POAActiveORB All All

IT_POAIMRAdmin::CachedPOA All All

IT_POAIMRAdmin::POA All All

IT_POAIMRAdmin::POACache All All

IT_NodeDaemon::NodeDaemonRegistry All All

IT_NodeDaemon::NodeDaemon None None

IT_NodeDaemon::DynamicStateRegistry None None

IT_ServerLocation::ServerValidator None None

IT_ServerLocation::EndpointCache None None

IT_LocatorAdmin::ActiveProcess None None

Table 5: Locator Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 212

Default Access Control Lists
Node Daemon ACL

Overview This subsection describes which interfaces and operations are accessible
through the default node daemon ACL. The following alternative ACL files
are generated by itconfigure for the node daemon service:

• node_daemon_action_role_mapping.xml (secure domain).

• node_daemon_semi_secure_action_role_mapping.xml (semi-secure
domain).

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the node daemon interfaces and operations
shown in Table 6 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 6 in semi-secure domains only.

Note: It is recommended that you check whether the default node
daemon ACL provides the level of security you need before deploying it in a
real system.

Table 6: Node Daemon Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_NodeDaemon::NodeDaemon shutdown
shutdown_complete
register_process

shutdown
shutdown_complete
register_process

IT_NodeDaemon::ORBStateRegistry None None

IT_NodeDaemon::EndpointRegistry None None

IT_NodeDaemon::ProcessRegistry None None
213

CHAPTER 10 | Securing Orbix Services
IT_NodeDaemon::DynamicStateRegistry All All

Table 6: Node Daemon Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 214

Default Access Control Lists
Naming Service ACL

Overview This subsection describes which interfaces and operations are accessible
through the default naming service ACL. The following alternative ACL files
are generated by itconfigure for the naming service:

• naming_action_role_mapping.xml (secure domain).

• naming_semi_secure_action_role_mapping.xml (semi-secure
domain).

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the naming service interfaces and operations
shown in Table 7 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 7 in semi-secure domains only.

Note: It is recommended that you check whether the default naming ACL
provides the level of security you need before deploying it in a real system.

Table 7: Naming Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_Naming::IT_NamingContextExt All All

IT_NamingReplication::IT_MasterNamingAd

min
shutdown shutdown

IT_NamingAdmin::NamingAdmin shutdown shutdown

CosNaming::NamingContextExt None None

CosNaming::BindingIterator All All
215

CHAPTER 10 | Securing Orbix Services
Trader Service ACL

Overview The default action-role mappings for the trader service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

• Secure domain—both intrusive and non-intrusive access to the trader
service is restricted to authenticated applications only.

• Semi-secure domain—non-intrusive access to the trader service is
available to both authenticated and unauthenticated applications.
Intrusive access is limited to authenticated applications only.

Secure domain In a secure domain, the trader’s action-role mapping file is:

etc/DomainName/trader_action_role_mapping.xml

Only authorized applications can add service types and service offers. This
ensures that unauthorized peers will not be able to add to the repository
references to malicious applications designed to mimic the behavior and
appearance of expected service offers.

Applications that need to obtain references to existing service offers must
also be authenticated. This prevents unauthorized client applications from
looking up services they are not allowed to use.

Access to administrative operation that could endanger the integrity of the
database if accessed by unauthorized parties is restricted to roles normally
used by administrators (that is, IONAServiceRole and IONAAdminRole).

Note: It is recommended that you check whether the default trader ACL
provides the level of security you need before deploying it in a real system.

Note: This precaution alone is not sufficient to protect server applications
from unauthorized access, because querying the trader service is not the
only way to obtain references to server applications. Sensitive applications
must incorporate their own security mechanisms, or be protected by the
security service as well.
 216

Default Access Control Lists
Semi-secure domain In a semi-secure domain, the trader’s action-role mapping file is:

etc/DomainName/trader_semi_secure_action_role_mapping.xml

This mapping relaxes the settings from the secure domain, so that
unauthenticated users (using either secure or insecure transports) are
allowed to invoke any operations that perform read only queries.

Only authenticated users are allowed to invoke operations that require write
access to the Trader’s database. This ensures that no malicious application
will be able to export unauthorized service types or offers (for example,
server applications that mimic legitimate service offers, but instead collect
information passed to them by client applications).

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the trader service interfaces and operations
shown in Table 8 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 8 in semi-secure domains only.

Table 8: Trader Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

CosTradingRepos::ServiceTypeRepository add_type
list_types
describe_type
fully_describe_type

list_types
describe_type

fully_describe_type

CosTradingDynamic::DynamicPropEval All All

IT_Trading::IT_LookupExt All All

IT_TradingAdmin::TradingAdmin None None

CosTrading::Lookup All All
217

CHAPTER 10 | Securing Orbix Services
CosTrading::Register export
withdraw
describe
modify
withdraw_using_constraint

None

CosTrading::Link None None

CosTrading::Proxy All None

CosTrading::Admin None None

CosTrading::OfferIterator All All

CosTrading::OfferIdIterator None None

Table 8: Trader Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 218

Default Access Control Lists
Event Service ACL

Overview The default action-role mappings for the event service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

• Secure domain—intrusive access to the event service is restricted to
authenticated applications only.

• Semi-secure domain—intrusive access to the event service is available
to both authenticated and unauthenticated applications.

Secure domain In a secure domain, the event service’s action-role mapping file is:

etc/DomainName/event_action_role_mapping.xml

Only authenticated applications can connect to the event service for the
purpose of sending or receiving events. With this security scheme in place,
consumers connected to the service can trust that the events they receive
are legitimate (because they are known to originate from authenticated
suppliers). Suppliers that send events through the event service can trust
that their events reach only legitimate consumers (because consumers are
also authenticated).

Note: It is recommended that you check whether the default events ACL
provides the level of security you need before deploying it in a real system.
219

CHAPTER 10 | Securing Orbix Services
Semi-secure domain In a semi-secure domain, the event service’s action-role mapping file is:

etc/DomainName/event_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very permissive, because
all applications have full access to the service by default. The scheme could
be made more secure by restricting the role of unauthenticated applications
to simple listeners (by denying them the privilege of connecting suppliers to
event channels).

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

WARNING: The semi-secure scheme should not be used if events can
carry security-sensitive information, because the identity of neither the
suppliers nor the consumers can be guaranteed.
 220

Default Access Control Lists
IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the event service interfaces and operations
shown in Table 9 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 9 in semi-secure domains only.

Table 9: Event Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_EventChannelAdminInternal::

EventChannelFactory
_get_name
_get_host
shutdown
create_channel
find_channel
find_channel_by_id
list_channels
create_typed_channel
find_typed_channel
find_typed_channel_by_id
list_typed_channels
create
find
findByRef
list
createTyped
findTyped
findByTypedRef
listTyped

_get_name
_get_host
shutdown
create_channel
find_channel
find_channel_by_id
list_channels
create_typed_channel
find_typed_channel
find_typed_channel_by_id
list_typed_channels
create
find
findByRef
list
createTyped
findTyped
findByTypedRef
listTyped

CosEventChannelAdmin::EventChannel All All

CosTypedEventChannelAdmin::
TypedEventChannel

All All

CosEventChannelAdmin::SupplierAdmin All All

CosTypedEventChannelAdmin::

TypedSupplierAdmin
All All

CosEventChannelAdmin::ConsumerAdmin All All
221

CHAPTER 10 | Securing Orbix Services
CosTypedEventChannelAdmin::

TypedConsumerAdmin
All All

CosEventChannelAdmin::ProxyPushConsumer All All

CosTypedEventChannelAdmin::

TypedProxyPushConsumer
All All

CosEventChannelAdmin::ProxyPushSupplier All All

CosEventChannelAdmin::ProxyPullSupplier All All

CosEventChannelAdmin::ProxyPullConsumer All All

Table 9: Event Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 222

Default Access Control Lists
Notification Service ACL

Overview The default action-role mappings for the notification service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

• Secure domain—both intrusive and non-intrusive access to the
notification service are restricted to authenticated applications only.

• Semi-secure domain—non-intrusive access to the notification service
is available to both authenticated and unauthenticated applications.
Intrusive access is limited to authenticated applications only.

Secure domain In a secure domain, the event service’s action-role mapping file is:

etc/DomainName/notify_action_role_mapping.xml

Only authenticated applications can connect to the notification service for
the purpose of sending or receiving notifications. With this security scheme
in place, consumers connected to the service can trust that the events they
receive are legitimate (because they are known to originate from
authenticated suppliers). Suppliers that send events through the notification
service can trust that their events reach only legitimate consumers (because
consumers are also authenticated).

Authenticated applications are allowed to create and apply event filters and
mapping filters, as normal.

Authenticated applications are allowed to alter the behavior of the
notification service by setting Quality of Service properties at any level of the
service. The operations that administer the notification service are also
protected by access control. Hence, these adminstration operations can only
be called by authenticated applications and utilities.

Note: It is recommended that you check whether the default notification
ACL provides the level of security you need before deploying it in a real
system.
223

CHAPTER 10 | Securing Orbix Services
Semi-secure domain In a semi-secure domain, the event service’s action-role mapping file is:

etc/DomainName/notify_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain forces all event suppliers to
authenticate with the notification service. However any consumer, even
non-authenticated consumers, can connect to the service and receive
events.

Under this security model, consumers can trust the notifications they receive
to be legitimate (because they are known to originate from authenticated
applications only). On the other hand, suppliers do not know whether the
events they send will reach authenticated or unauthenticated consumers.

Operations that could potentially compromise the integrity or the
functionality of the notification service are restricted to authenticated
applications only.

Only authenticated peers are allowed to apply filters to objects other than
proxy consumers or suppliers, since filters set at any other level could
potentially be used by malicious applications to prevent events from
reaching they legitimate targets.

Unauthenticated consumers have the right to decide which events they
want to receive: they can still apply filters to their proxy supplier. Similarly,
they have read-only access to filters set at the channel administration level
(so that they can interpret the filtration logic of the events they receive).

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

WARNING: The semi-secure scheme should not be used if notifications
can carry security-sensitive information, because suppliers have no way of
knowing the identity of consumers. Also, an insecure transport might be
used to carry events to the consumers.
 224

Default Access Control Lists
IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the notification service interfaces and
operations shown in Table 10 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 10 in semi-secure domains only.

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_NotifyFilterInternal::Filter All All

IT_NotifyFilterInternal::MappingFilter All All

IT_NotifyFilterInternal::FilterFactory All All

IT_NotifyComm::GroupNotifyPublish None None

IT_NotifyComm::GroupPushConsumer All All

IT_NotifyComm::

GroupStructuredPushConsumer
All All

IT_NotifyComm::

GroupSequencePushConsumer
All All

IT_NotifyChannelAdmin::IT_ProxySupplier All All

IT_NotifyChannelAdmin::

NotifyProxySupplier
All All

IT_NotifyChannelAdmin::

ProxyPushSupplier
All All

IT_NotifyChannelAdmin::

StructuredProxyPushSupplier
All All

IT_NotifyChannelAdmin::

SequenceProxyPushSupplier
All All

IT_NotifyChannelAdmin::

ProxyPullSupplier
All All
225

CHAPTER 10 | Securing Orbix Services
IT_NotifyChannelAdmin::

StructuredProxyPullSupplier
All All

IT_NotifyChannelAdmin::

SequenceProxyPullSupplier
All All

IT_NotifyChannelAdmin::IT_ProxyConsumer All All

IT_NotifyChannelAdmin::

NotifyProxyConsumer
All All

IT_NotifyChannelAdmin::

ProxyPushConsumer
All All

IT_NotifyChannelAdmin::

StructuredProxyPushConsumer
All All

IT_NotifyChannelAdmin::

SequenceProxyPushConsumer
All All

IT_NotifyChannelAdmin::

ProxyPullConsumer
All All

IT_NotifyChannelAdmin::

StructuredProxyPullConsumer
All All

IT_NotifyChannelAdmin::

SequenceProxyPullConsumer
All All

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 226

Default Access Control Lists
IT_NotifyChannelAdmin::ConsumerAdmin get_bridge_proxy_supplier
obtain_subscription_types

_for_admin
_get_bridge_pull_supplier

s
_get_bridge_push_supplier

s
get_proxy_supplier
obtain_notification_pull_

supplier
obtain_notification_push_

supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
destroy
_set_priority_filter
_set_lifetime_filter
set_qos
subscription_change
add_filter
remove_filter
remove_all_filters

get_bridge_proxy_supplier
obtain_subscription_types

_for_admin
_get_bridge_pull_supplier

s
_get_bridge_push_supplier

s
get_proxy_supplier
obtain_notification_pull_

supplier
obtain_notification_push_

supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier

subscription_change

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
227

CHAPTER 10 | Securing Orbix Services
IT_NotifyChannelAdmin::SupplierAdmin get_bridge_proxy_consumer
obtain_offered_types_for_

admin
_get_bridge_pull_consumer

s
_get_bridge_push_consumer

s
_get_MyID
_get_MyChannel
_get_MyOperator
get_qos
validate_qos
get_filter
get_all_filters
obtain_typed_notification

_pull_consumer
obtain_typed_notification

_push_consumer
get_proxy_consumer
obtain_notification_pull_

consumer
obtain_notification_push_

consumer
destroy
_get_pull_consumers
_get_push_consumers
set_qos
offer_change
add_filter
remove_filter
remove_all_filters
obtain_push_consumer
obtain_pull_consumer

get_bridge_proxy_consumer
obtain_offered_types_for_

admin
_get_bridge_pull_consumer

s
_get_bridge_push_consumer

s
_get_MyID
_get_MyChannel
_get_MyOperator
get_qos
validate_qos
get_filter
get_all_filters

IT_NotifyChannelAdmin::Manager None None

IT_NotifyChannelAdmin::

GroupProxyPushSupplier
All All

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 228

Default Access Control Lists
IT_NotifyChannelAdmin::

GroupStructuredProxyPushSupplier
All All

IT_NotifyChannelAdmin::

GroupSequenceProxyPushSupplier
All All

IT_NotifyChannelAdminInternal::

EventChannel
All obtain_offered_types

obtain_subscribed_types
_get_event_info
get_consumeradmin
get_supplieradmin
get_all_consumeradmins
get_all_supplieradmins
_get_MyFactory
_get_default_consumer_adm

in
_get_default_supplier_adm

in
_get_default_filter_facto

ry
get_qos
validate_qos
get_admin
for_consumers
new_for_consumers_delegat

e
new_for_consumers

IT_NotifyChannelAdminInternal::

EventChannelFactory
All _get_default_filter_facto

ry
find_channel
find_channel_by_id
list_channels
_get_manager
get_all_channels
get_event_channel
create_named_channel
create_channel

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
229

CHAPTER 10 | Securing Orbix Services
IT_NotifyChannelAdminInternal::

BridgeProxyPushSupplier
All None

IT_NotifyChannelAdminInternal::

BridgeProxyPushConsumer
All None

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 230

Default Access Control Lists
Basic Log Service ACL

Overview The default action-role mappings for the basic log service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

• Secure domain—intrusive access to the basic log service is restricted
to authenticated applications only.

• Semi-secure domain—intrusive access to the basic log service is
available to both authenticated and unauthenticated applications.

Secure domain In a secure domain, the basic log service’s action-role mapping file is:

etc/DomainName/basic_log_action_role_mapping.xml

Only authenticated applications can connect to the basic log service.
Authenticated applications can create new logs, retreive existing logs, or
delete logs. They also have unlimited access to all of the operations related
to records.

Authenticated applications also have full access to the administrative
functions of the logs (for example, setting the quality of service properties on
the log, changing the maximum log size, disabling a log, and so on).

Semi-secure domain In a semi-secure domain, the basic log service’s action-role mapping file is:

etc/DomainName/basic_log_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very permissive, because
all applications have full access to the service by default. The scheme could
be made more secure by denying unauthenticated peers access to some of
the write operations of the services (such as log creation or deletion).

Note: It is recommended that you check whether the default basic log
ACL provides the level of security you need before deploying it in a real
system.
231

CHAPTER 10 | Securing Orbix Services
IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the basic log service interfaces and operations
shown in Table 11 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 11 in semi-secure domains only.

Table 11: Basic Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_BasicLogAdmin::BasicLogFactory _get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id

IT_MessagingAdmin::Manager _get_name
_get_host
shutdown

_get_name
_get_host
shutdown

DsLogAdmin::BasicLog All Alla

DsLogAdmin::Iterator get
destroy

get
destroy

a. Security could be tightened at this level by removing access to the destroy operation, for example, or to some of the
operations used to access log records (see operations inherited from the DsLogAdmin::Log interface).
 232

Default Access Control Lists
Event Log Service ACL

Overview The default action-role mappings for the event log service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

• Secure domain—intrusive access to the event log service is restricted
to authenticated applications only.

• Semi-secure domain—intrusive access to the event log service is
available to both authenticated and unauthenticated applications.

Secure domain In a secure domain, the event log service’s action-role mapping file is:

etc/DomainName/event_log_action_role_mapping.xml

Only authenticated applications can connect to the event log service. With
this security scheme in place, consumers connected to the built-in event
channel can trust that the events they receive are legitimate (because they
are known to originate from authenticated suppliers). Event suppliers can
trust that their events will be sent only to legitimate consumers (because
consumers are also authenticated).

Authenticated applications can create new logs, retreive existing logs, or
delete logs.

Authenticated applications also have full access to the administrative
functions of the logs (for example, setting the quality of service properties on
the log, changing the maximum log size, disabling a log, and so on).

Note: It is recommended that you check whether the default event log
ACL provides the level of security you need before deploying it in a real
system.
233

CHAPTER 10 | Securing Orbix Services
Semi-secure domain In a semi-secure domain, the event log service’s action-role mapping file is:

etc/DomainName/event_log_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain is very permissive, since by
default all applications have full access to the service. This scheme could be
made more secure by restricting the role of unauthenticated applications to
simple listeners (by denying them the privilege of connecting supliers to the
event channel as well as restricting write access to the logs and log records).

The semi-secure scheme should not be used if events carry
security-sensitive information, because the identity of neither the suppliers
or the consumer can be guaranteed. The integrity of the logs cannot be
guaranteed since unauthenticated peers have access to all of the write
operations and can alter the content of the logs.

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the event log service interfaces and
operations shown in Table 12 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 12 in semi-secure domains only.

Table 12: Event Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_EventLogAdmin::EventLogFactory _get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id
obtain_push_supplier
obtain_pull_supplier

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id
obtain_push_supplier
obtain_pull_supplier
 234

Default Access Control Lists
IT_MessagingAdmin::Manager _get_name
_get_host
shutdown

_get_name
_get_host
shutdown

DsEventLogAdmin::EventLog All All

DsLogAdmin::Iterator get
destroy

get
destroy

CosEventChannelAdmin::ConsumerAdmin All All

CosEventChannelAdmin::SupplierAdmin All All

CosEventChannelAdmin::ProxyPushSupplier All All

CosEventChannelAdmin::ProxyPullConsumer All All

CosEventChannelAdmin::ProxyPullSupplier All All

CosEventChannelAdmin::ProxyPushConsumer All All

Table 12: Event Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
235

CHAPTER 10 | Securing Orbix Services
Notify Log Service ACL

Overview The default action-role mappings for the notify log service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

• Secure domain—both intrusive and non-intrusive access to the notify
log service are restricted to authenticated applications only.

• Semi-secure domain—non-intrusive access to the notify log service is
available to both authenticated and unauthenticated applications.
Intrusive access is limited to authenticated applications only.

Secure domain In a secure domain, the notify log service’s action-role mapping file is:

etc/DomainName/notify_log_action_role_mapping.xml

Only authenticated applications can connect to the notify log service. With
this security scheme in place, consumers connected to the built-in event
channel can trust that the events they receive are legitimate (because they
are known to originate from authenticated suppliers). Suppliers that send
events through the notification service can trust that their events will reach
only legitimate consumers (because consumers are also authenticated).

Authenticated applications can create new logs, retreive existing logs, or
delete logs.

Authenticated applications also have full access to the administrative
functions of the logs (for example,setting the quality of service properties on
the log, changing the maximum log size, disabling a log, and so on).

Authenticated applications are allowed to create and apply both types of
filters supported by the service: log filters (which decide which events get
logged) and notification-style filters (which decide which kind of events pass
through the built-in event channel).

Note: It is recommended that you check whether the default notify log
ACL provides the level of security you need before deploying it in a real
system.
 236

Default Access Control Lists
Semi-secure domain In a semi-secure domain, the notify log service’s action-role mapping file is:

etc/DomainName/notify_log_semi_secure_action_role_mapping.xml

The security scheme for the semi-secure domain requires event suppliers
(applications that create logs or write log records) to authenticate with the
notify log service. Any consumer (even if unauthenticated) can connect to
the service, however, in order to receive events and access the logs.

Only authenticated applications (normally event suppliers) can create new
logs or alter the list of existing logs (for example, by removing logs). This
ensures that unauthenticated applications are not able to interfere with the
logging logic or alter critical information by tampering with the service's
database (by removing log entries, for example).

With this semi-secure scheme, consumers are able to trust the notifications
they receive from the built-in event channel to be legitimate (because the
events must have originated from an authenticated application). Consumers
can also trust all logs to be genuine. On the other hand, suppliers do not
know whether the events they send and/or the logs they create will reach
authenticated and/or unauthenticated consumers.

Unauthenticated applications have unlimited read-only access to all the
properties of the service and the logs. They can receive events from the
built-in channel, access the list of existing logs and obtain records from any
existing log. Unauthenticated applications can also examine, but not
change, the filtering logic applied to the service. However, even
unauthenticated consumers can decide which events they want to receive
by applying filters to their proxy supplier.

IONAServiceRole The IONAServiceRole can access all interfaces and operations in both
secure and semi-secure domains.

Note: This semi-secure scheme allows unauthenticated applications to
create filters. This is a safe policy, because the unauthenticated
applications cannot apply the newly created filters in places they are not
supposed to.
237

CHAPTER 10 | Securing Orbix Services
IONAUserRole and
UnauthenticatedUserRole

The IONAUserRole can access the notify log service interfaces and
operations shown in Table 13 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
UnauthenticatedUserRole in the action-role mapping file) can access the
interfaces and operations shown in Table 13 in semi-secure domains only.
 238

Default Access Control Lists
Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)

IT_NotifyLogAdmin::NotifyLog All _non_existent
obtain_offered_types
obtain_subscribed_types
get_filter
my_factory
id
get_log_qos
get_max_record_life
get_max_size
get_current_size
get_n_records
get_log_full_action
get_administrative_state
get_forwarding_state
get_operational_state
get_interval
get_availability_status
get_capacity_alarm_thresh

olds
get_week_mask
query
retrieve
match
get_record_attribute
get_consumeradmin
get_supplieradmin
get_all_consumeradmins
get_all_supplieradmins
_get_MyFactory
_get_default_consumer_adm

in
_get_default_supplier_adm

in
_get_default_filter_facto

ry
get_qos
validate_qos
get_admin
for_consumers
new_for_consumers
239

CHAPTER 10 | Securing Orbix Services
IT_NotifyLogAdmin::NotifyLogFactory _get_default_filter_facto
ry

_get_manager
create
create_with_id
list_logs
find_log
list_logs_by_id
get_proxy_supplier
obtain_notification_pull_

supplier
obtain_notification_push_

supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
destroy
_set_priority_filter
_set_lifetime_filter
set_qos
subscription_change
add_filter
remove_filter
remove_all_filters

_get_default_filter_facto
ry

_get_manager

list_logs
find_log
list_logs_by_id
get_proxy_supplier
obtain_notification_pull_

supplier
obtain_notification_push_

supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier

subscription_change

IT_MessagingAdmin::Manager All None

DsLogAdmin::Iterator get
destroy

get
destroy

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 240

Default Access Control Lists
IT_NotifyChannelAdmin::ConsumerAdmin All get_bridge_proxy_supplier
obtain_subscription_types

_for_admin
_get_bridge_pull_supplier

s
_get_bridge_push_supplier

s
get_proxy_supplier
obtain_notification_pull_

supplier
obtain_notification_push_

supplier
_get_MyID
_get_MyChannel
_get_MyOperator
_get_priority_filter
_get_lifetime_filter
_get_pull_suppliers
_get_push_suppliers
get_qos
validate_qos
get_filter
get_all_filters
obtain_push_supplier
obtain_pull_supplier
subscription_change

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
241

CHAPTER 10 | Securing Orbix Services
IT_NotifyChannelAdmin::SupplierAdmin All get_bridge_proxy_consumer
obtain_offered_types_for_

admin
_get_bridge_pull_consumer

s
_get_bridge_push_consumer

s
_get_MyID
_get_MyChannel
_get_MyOperator
get_qos
validate_qos
get_filter
get_all_filters

IT_NotifyChannelAdmin::

ProxyPushSupplier
All All

IT_NotifyChannelAdmin::

StructuredProxyPushSupplier
All All

IT_NotifyChannelAdmin::

SequenceProxyPushSupplier
All All

IT_NotifyChannelAdmin::

ProxyPullSupplier
All All

IT_NotifyChannelAdmin::

StructuredProxyPullSupplier
All All

IT_NotifyChannelAdmin::

SequenceProxyPullSupplier
All All

IT_NotifyChannelAdmin::

ProxyPushConsumer
All All

IT_NotifyChannelAdmin::

StructuredProxyPushConsumer
All All

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
 242

Default Access Control Lists
IT_NotifyChannelAdmin::

SequenceProxyPushConsumer
All All

IT_NotifyChannelAdmin::

ProxyPullConsumer
All All

IT_NotifyChannelAdmin::

StructuredProxyPullConsumer
All All

IT_NotifyChannelAdmin::

SequenceProxyPullConsumer
All All

IT_NotifyChannelAdmin::

GroupProxyPushSupplier
All All

IT_NotifyChannelAdmin::

GroupStructuredProxyPushSupplier
All All

IT_NotifyChannelAdmin::

GroupSequenceProxyPushSupplier
All All

IT_NotifyFilterInternal::

Filter
All All

IT_NotifyFilterInternal::

MappingFilter
All All

IT_NotifyFilterInternal::

FilterFactory
All All

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations

(Semi-secure only)
243

CHAPTER 10 | Securing Orbix Services
 244

Part III
SSL/TLS Administration

In this part This part contains the following chapters:

Choosing an SSL/TLS Toolkit page 247

Managing Certificates page 257

Configuring SSL/TLS Secure Associations page 301

Configuring SSL/TLS Authentication page 327

Automatic Activation of Secure Servers page 355

CHAPTER 11

Choosing an
SSL/TLS Toolkit
This chapter describes the SSL/TLS toolkit replaceability
feature, which enables you to replace the underlying
third-party toolkit that implements the SSL/TLS protocol for
Orbix applications.

In this chapter This chapter contains the following sections:

Toolkit Replaceability page 248

Baltimore Toolkit for C++ and Java page 249

Schannel Toolkit for C++ page 250

JSSE/JCE Architecture page 252
247

CHAPTER 11 | Choosing an SSL/TLS Toolkit
Toolkit Replaceability

Overview In Orbix, the underlying SSL/TLS security layer is provided by a third-party
security toolkit. The Orbix security configuration variables and programming
APIs wrap the third-party toolkit in order to integrate it with CORBA
technology.

Orbix provides a toolkit replaceability feature by exploiting IONA’s Adaptive
Runtime Technology (ART) to encapsulate third-party SSL/TLS toolkits in an
ART plug-in. Using this modular approach, you can replace the SSL/TLS
security layer underlying Orbix by specifying a different ART plug-in to load
at runtime.

Toolkits for C++ applications The following SSL/TLS toolkits are currently available for use with Orbix
C++ applications:

• “Baltimore Toolkit for C++ and Java” on page 249.

• “Schannel Toolkit for C++” on page 250.

JSSE/JCE architecture for Java
applications

To replace the SSL/TLS toolkit underlying your Orbix Java applications, you
can configure Orbix to use the JSSE toolkit option. For details, see:

• “JSSE/JCE Architecture” on page 252.

Custom toolkit plug-in for C++ Orbix also provides an option to develop a custom toolkit plug-in for C++
applications, using the Orbix plug-in development kit (PDK). You can use
this feature to integrate any third-party SSL/TLS toolkit with Orbix.

Please contact IONA Professional Services for more details:

http://www.iona.com/info/services/consulting/welcome.htm
 248

http://www.iona.com/info/services/consulting/welcome.htm

Baltimore Toolkit for C++ and Java
Baltimore Toolkit for C++ and Java

Overview This section describes how to configure Orbix to use the SSL/TLS toolkit
from Baltimore technologies.

Default SSL/TLS toolkit Orbix applications use the Baltimore SSL/TLS toolkit by default. Hence,
there is no need to alter your Orbix configuration to use this toolkit.

Choosing the Baltimore toolkit for
C++ applications

To ensure that Orbix uses the Baltimore toolkit for C++ applications, you
can optionally add the settings shown in Example 26 to your Orbix
configuration. These settings are not necessary, however, because the
Baltimore toolkit is used by default.

Choosing the Baltimore toolkit for
Java applications

To ensure that Orbix uses the Baltimore toolkit for Java applications, you
can optionally add the setting shown in Example 27 to your Orbix
configuration. This setting is not necessary, however, because the Baltimore
toolkit is used by default.

References You can find out more about Baltimore Technologies’ security products from
their Web site: http://www.baltimore.com/.

Example 26:Configuring Orbix to use the Baltimore Toolkit in C++

Orbix configuration file
initial_references:IT_TLS_Toolkit:plugin = "baltimore_toolkit";
plugins:baltimore_toolkit:shlib_name = "it_tls_baltimore";

Example 27:Configuring Orbix to use the Baltimore Toolkit in Java

Orbix configuration file
plugins:atli2_tls:use_jsse_tk = "false";
249

http://www.baltimore.com/

CHAPTER 11 | Choosing an SSL/TLS Toolkit
Schannel Toolkit for C++

Overview This section describes how to configure Orbix to use the Schannel toolkit
from Microsoft. Schannel is a software implementation of the SSL/TLS
security protocol which uses the Microsoft Crypto API (MS CAPI) to
implement the cryptographic functionality required by SSL/TLS.

The following special features are available to C++ applications that use
the Schannel toolkit:

• Smart cards.

• Schannel certificate stores.

Smart cards Because almost all smart card hardware vendors make their devices
available as an MS CAPI Cryptographic Service Provider (CSP), applications
that use Schannel can access a very wide range of cyptographic devices and
smart cards.

Schannel certificate stores With Schannel, application certificates and trusted CA certificates are stored
in the standard Windows certificate store, thus simplifying the
administration of certificates on Windows platforms.

Choosing the Schannel toolkit You can specify that Orbix uses the Schannel toolkit by adding the settings
shown in Example 26 to your Orbix configuration.

Note: The Schannel toolkit is available only on Windows platforms for the
purpose of securing C++ applications.

Example 28:Configuring Orbix to use the Schannel Toolkit

Orbix configuration file
initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
 250

Schannel Toolkit for C++
Administration impact of
switching to Schannel

Orbix toolkit replaceability is designed to be as transparent as possible to
the user. Nevertheless, there are some aspects of administration that are
affected by the switch to using Schannel, as follows:

• “Deploying Trusted Certificate Authorities” on page 295.

• “Deploying Application Certificates” on page 296.

• “Deploying Certificates in Smart Cards” on page 299.

• “Providing a Pass Phrase or PIN” on page 341.

Programming impact of switching
to Schannel

The following aspects of security programming are affected by the switch to
using Schannel:

• “Creating SSL/TLS Credentials” on page 440.
251

CHAPTER 11 | Choosing an SSL/TLS Toolkit
JSSE/JCE Architecture

Overview The Java Cryptography Extension (JCE) is a pluggable framework that
allows you to replace the Java security implementation with arbitrary
third-party toolkits, known as security providers.

By default, Orbix does not use the JSSE/JCE framework (it accesses the
Baltimore toolkit directly instead). It is possible, however, to configure Orbix
to use the JSSE/JCE architecture, as described in this section.

Prerequisites The following prerequisites must be satisfied to use the JSSE/JCE
architecture with Orbix:

1. Install J2SE (JDK) 1.4.x—the JSSE API used internally by Orbix has
changed between J2SE 1.3 and 1.4. To support the existing Orbix TLS
functionality, it is necessary to use the newer JSSE/TLS API from J2SE
1.4. Security providers must support this new API in order to be
compatible with Orbix.

2. Install the unlimited strength JCE policy files—these files allow you to
use security providers that implement strong cryptography. See the
following reference:

http://java.sun.com/products/jce/#UnlimitedDownload

Using JSSE/JCE with Orbix To use the JSSE/JCE architecture with your Orbix Java applications and to
install a third-party security provider, perform the following steps:

Note: Security providers that implement custom APIs might not
work with Orbix.

Step Action

1 Configure Orbix to use JSSE/JCE.

2 Configure the java.security file.

3 Install the provider JAR files.
 252

http://java.sun.com/products/jce/#UnlimitedDownload

JSSE/JCE Architecture
Configure Orbix to use JSSE/JCE To configure Orbix to use JSSE/JCE, add the setting shown in Example 29 to
your Orbix configuration.

Configure the java.security file JCE security providers are selected by specifying a list of security provider
classes in the java.security file, which is found at the following location:

JAVA_HOME/lib/security/java.security

For example, to use the Sun JSSE security implementation you would
configure java.security as shown in Example 30.

The properties in Example 30 are organized as a prioritized list. When JCE
looks for the implementation of a Java security interface, it first checks the
class specified by security.provider.1 and then proceeds to the higher
positions until it finds an interface implementation. Hence, it is possible for
different aspects of security to be implemented by different security
providers.

For more details, see Configuring the Provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#
Configuring).

Install the provider JAR files Generally, you need to add the third-party JAR files to your CLASSPATH to
make a security provider accessible to Orbix. Please follow the installation
instructions provided by your third-party security provider.

For more details about installing the provider classes, see:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#I
nstallProv

Example 29:Configuring Orbix to use JSSE/JCE

Orbix configuration file
plugins:atli2_tls:use_jsse_tk = "true";

Example 30:Sample Java Security File

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
253

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#Configuring

CHAPTER 11 | Choosing an SSL/TLS Toolkit
Add a provider by programming The JCE architecture provides an API that enables you to add a security
provider by programming—see Configuring the Provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#I
nstallProv). The java.security.Security API can be used instead of or in
addition to configuring the java.security file.

java.security.Security.addProvider()

Add a security provider to the next available position.

java.security.Security.insertProviderAt()

Add a security provider to the specified position. The succeeding security
providers are shifted down by one position.

For more details, see the java.security.Security reference page:

http://java.sun.com/j2se/1.4.2/docs/api/java/security/Security.html

Logging When using the JSSE/JCE architecture with Orbix, the log records which
security provider performs an action. This is a useful debugging aid when
multiple security providers are installed.

For example, the following is a log extract for an application that uses the
Bouncy Castle security provider to read PKCS#12 files (PKCS12 BC) and the
IAIK security provider to read PKCS#11 smart card credentials (PKCS11
IAIK PKCS#11:1).

11:24:15 2/20/2003
[_it_orb_id_1@yogibear.dublin.emea.iona.com/10.2.3.6]
(IT_ATLI_TLS:250) I - "Using the following provider: PKCS12
BC"

11:24:21 2/20/2003
[_it_orb_id_1@yogibear.dublin.emea.iona.com/10.2.3.6]
(IT_TLS:201) I - Authentication succeeded using the
IT_TLS_AUTH_METH_PKCS12_FILE method

11:24:15 2/20/2003 [_it_orb_id_1@yogibear/10.2.3.58]
(IT_ATLI_TLS:250) I - "Using the following provider: PKCS11
IAIK PKCS#11:1"

11:24:15 2/20/2003 [_it_orb_id_1@yogibear/10.2.3.58]
(IT_TLS:201) I - Authentication succeeded using the
IT_TLS_AUTH_METH_PKCS11 method
 254

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Security.html

JSSE/JCE Architecture
Troubleshooting At the time of writing, the JSSE/JCE architecture is a relatively new
technology and some of the third-party security providers have specific
limitations or bugs. One approach to working around these problems is by
using a combination of security providers, with different security providers
implementing different aspects of security.

For example, the following general security features could be implemented
by distinct security providers:

• PKCS#12 functionality—loading credentials from PKCS#12 files.

• PKCS#11 functionality—loading credentials from a smart card.

• SSL/TLS encryption.

References For more information about Sun’s JSSE/JCE architecture, see the following
links:

• Java Cryptography Extension
(http://java.sun.com/products/jce/index-14.html).

• J2SE (JDK) 1.4.2 Security
(http://java.sun.com/j2se/1.4.2/docs/guide/security/).

• JCE Reference Guide
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.ht
ml).

• How to implement a security provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/HowToImplAJC
EProvider.html).

• Installing JCE providers
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.ht
ml#InstallProvider).
255

http://java.sun.com/products/jce/index-14.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/HowToImplAJCEProvider.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProvider

CHAPTER 11 | Choosing an SSL/TLS Toolkit
 256

CHAPTER 12

Managing
Certificates
TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Orbix applications.

In this chapter This chapter contains the following sections:

What are X.509 Certificates? page 258

Certification Authorities page 260

Certificate Chaining page 263

PKCS#12 Files page 265

Using the Demonstration Certificates page 266

Creating Your Own Certificates page 268

Deploying Certificates page 275

Deploying Certificates with Schannel page 289
257

CHAPTER 12 | Managing Certificates
What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

The contents of an X.509
certificate

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

WARNING: Most of the demonstration certificates supplied with Orbix are
signed by the CA abigbank_ca.pem. This CA is completely insecure
because anyone can access its private key. To secure your system, you
must create new certificates signed by a trusted CA. This chapter
describes the set of certificates required by an Orbix application and shows
you how to replace the default certificates.
 258

What are X.509 Certificates?
• A serial number that uniquely identifies the certificate.

• A subject DN that identifies the certificate owner.

• The public key associated with the subject.

• An issuer DN that identifies the CA that issued the certificate.

• The digital signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

Distinguished names A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See Appendix C on page 529 for more details about DNs.
259

CHAPTER 12 | Managing Certificates
Certification Authorities

Choice of CAs A CA must be trusted to keep its private key secure. When setting up an
Orbix system, it is important to choose a suitable CA, make the CA
certificate available to all applications, and then use the CA to sign
certificates for your applications.

There are two types of CA you can use:

• A commercial CA is a company that signs certificates for many
systems.

• A private CA is a trusted node that you set up and use to sign
certificates for your system only.

In this section This section contains the following subsections:

Commercial Certification Authorities page 261

Private Certification Authorities page 262
 260

Certification Authorities
Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

• What are the certificate-signing policies of the commercial CAs?

• Are your applications designed to be available on an internal network
only?

• What are the potential costs of setting up a private CA?
261

CHAPTER 12 | Managing Certificates
Private Certification Authorities

Choosing a CA software package If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

OpenSSL software package One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in Appendix H on page 557. The
OpenSSL package includes basic command line utilities for generating and
signing certificates and these utilities are available with every installation of
Orbix. Complete documentation for the OpenSSL command line utilities is
available from http://www.openssl.org/docs.

Setting up a private CA using
OpenSSL

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 268.

Choosing a host for a private
certification authority

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Orbix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

Security precautions If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

• Do not connect the CA to a network.

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an RF-shield.
 262

Certificate Chaining
Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 34 shows an example of a simple certificate chain.

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Figure 34: A Certificate Chain of Depth 2

CA
Certificate

Peer
Certificate

signs signs
263

CHAPTER 12 | Managing Certificates
Certificates signed by multiple
CAs

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 35 shows what this certificate chain looks like.

Trusted CAs An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Providing a List of Trusted Certificate Authorities” on page 277.

Maximum chain length policy You can limit the length of certificate chains accepted by your applications,
with the maximum chain length policy. You can set a value for the
maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy configuration variables for
IIOP/TLS and HTTPS respectively.

Figure 35: A Certificate Chain of Depth 3

Finance
CA

Certificate

Peer
Certificate

signs signs Commercial
CA

Certificate

signs
 264

PKCS#12 Files
PKCS#12 Files

Contents of a PKCS#12 file A PKCS#12 file contains the following:

• An X.509 peer certificate (first in a chain).

• All the CA certificates in the certificate chain.

• A private key.

The file is encrypted with a password.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer. They are also used in Orbix. Orbix does not
support .pem format certificate chains, however.

Creating a PKCS#12 file To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 272.

Viewing a PKCS#12 file To view a PKCS#12 file, CertName.p12:

openssl pkcs12 -in CertName.p12

Importing and exporting
PKCS#12 files

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Orbix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.
265

CHAPTER 12 | Managing Certificates
Using the Demonstration Certificates

Location of the demonstration
certificates

The Orbix certificates directory contains a set of demonstration certificates
that enable you to run the Orbix example applications. The certificates are
contained in this directory:

ASPInstallDir/asp/6.0/etc/tls/x509/certs

Default CA certificate The CA used to sign the demonstration certificates is the default Orbix CA:

• The CA certificate is x509/certs/ca/abigbank_ca.pem.

• The list of trusted CA’s is contained in
x509/certs/trusted_ca_lists/ca_list1.pem. This initially contains
only the abigbank_ca.pem CA, but other CAs can be appended.

Certificates for demonstration
programs

The PKCS#12 certificates in Table 14 are used by the Orbix demonstration
programs. These certificates are located in the x509/certs/demos directory
and signed by the x509/certs/ca/abigbank_ca.pem CA certificate.

Untrusted demonstration
certificate

In the demonstration programs, the following certificate, bad_guy.p12, is
used to represent a certificate from an untrusted CA:

certs/demos/bad_guy.p12

Note: No whitespace or text is allowed in this file outside the BEGIN/END
statements.

Table 14: Demonstration Certificates and Passwords

Demonstration Certificate Password

certs/demos/admin.p12 adminpass

certs/demos/alice.p12 alicepass

certs/demos/bankserver.p12 bankserverpass

certs/demos/bob.p12 bobpass

certs/demos/CertName.p12 CertNamepass
 266

Using the Demonstration Certificates
Certificates for the Orbix services The Orbix services all use the same certificate, as shown in Table 15.

Table 15: Demonstration Certificate for the Orbix Services

Services Demonstration Certificate Password

certs/services/administrator.p12 administratorpass
267

CHAPTER 12 | Managing Certificates
Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.

OpenSSL utilities The steps described in this section are based on the OpenSSL
command-line utilities from the OpenSSL project,
http://www.openssl.org—see Appendix F on page 537. Further
documentation of the OpenSSL command-line utilities can be obtained from
http://www.openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Set Up Your Own CA page 269

Use the CA to Create Signed Certificates page 272
 268

Creating Your Own Certificates
Set Up Your Own CA

Substeps to perform This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 262.

To set up your own CA, perform the following substeps:

• Step 1—Add the bin directory to your PATH

• Step 2—Create the CA directory hierarchy

• Step 3—Copy and edit the openssl.cnf file

• Step 4—Initialize the CA database

• Step 5—Create a self-signed CA certificate and private key

Step 1—Add the bin directory to
your PATH

On the secure CA host, add the Orbix bin directory to your path:

Windows

> set PATH=ASPInstallDir\asp\6.0\bin;%PATH%

UNIX

% PATH=ASPInstallDir/asp/6.0/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Create the CA directory
hierarchy

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

Step 3—Copy and edit the
openssl.cnf file

Copy the openssl.cnf file to the X509CA directory, as follows:

Windows

copy ASPInstallDir\asp\6.0\etc\tls\x509\openssl.cnf
X509CA\openssl.cnf

UNIX

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl
269

CHAPTER 12 | Managing Certificates
cp ASPInstallDir/asp/6.0/etc/tls/x509/openssl.cnf
X509CA/openssl.cnf

Edit the openssl.cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

Edit the [CA_default] section of the openssl.cnf file to make it look like
the following:

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 547.

Step 4—Initialize the CA database In the X509CA directory, initialize two files, serial and index.txt.

Windows

> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.

UNIX

% echo "01" > serial
% touch index.txt
 270

Creating Your Own Certificates
These files are used by the CA to maintain its database of certificate files.

Step 5—Create a self-signed CA
certificate and private key

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem
-keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@iona.com

You should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Note: The index.txt file must initially be completely empty, not even
containing white space.

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.
271

CHAPTER 12 | Managing Certificates
Use the CA to Create Signed Certificates

Substeps to perform If you have set up a private CA, as described in “Set Up Your Own CA” on
page 269, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12,
perform the following substeps:

• Step 1—Add the bin directory to your PATH

• Step 2—Create a certificate signing request

• Step 3—Sign the CSR

• Step 4—Concatenate the files

• Step 5—Create a PKCS#12 file

• Step 6—Repeat steps as required

Step 1—Add the bin directory to
your PATH

If you have not already done so, add the Orbix bin directory to your path:

Windows

> set PATH=ASPInstallDir\asp\6.0\bin;%PATH%

UNIX

% PATH=ASPInstallDir/asp/6.0/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Create a certificate
signing request

Create a new certificate signing request (CSR) for the CertName.p12
certificate:

openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl.cnf
file). The default openssl.cnf file requires the following entries to match:

• Country Name

• State or Province Name

• Organization Name
 272

Creating Your Own Certificates
The Common Name must be distinct for every certificate generated by
OpenSSL.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Orbix
Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:IONA

Step 3—Sign the CSR Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out
X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
273

CHAPTER 12 | Managing Certificates
organizationName :PRINTABLE:'IONA Technologies PLC'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@iona.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT (365

days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 269.

Step 4—Concatenate the files Concatenate the CA certificate file, CertName certificate file, and
CertName_pk.pem private key file as follows:

Windows

copy X509CA\ca\new_ca.pem +
X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem
X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Step 5—Create a PKCS#12 file Create a PKCS#12 file from the CertName_list.pem file as follows:

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.p12 -name "New cert"

Step 6—Repeat steps as required Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Orbix certificates must include a set of certificates for the
secure Orbix services.
 274

Deploying Certificates
Deploying Certificates

Overview This section provides an overview of deploying X.509 certificates in a typical
secure Orbix system, with detailed instructions on how to deploy certificates
for different parts of the Orbix system.

In this section This section contains the following subsections:

Overview of Certificate Deployment page 276

Providing a List of Trusted Certificate Authorities page 277

Deploying Application Certificates page 279

Deploying Certificates in Smart Cards page 299

Deploying Orbix Service Certificates page 283

Deploying itadmin Certificates page 286
275

CHAPTER 12 | Managing Certificates
Overview of Certificate Deployment

Overview Figure 36 provides an overview of the certificates used in a typical
deployment of Orbix.

Sample deployment directory
structure

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

Where X509Deploy is the parent directory for the deployed certificates.

Figure 36: Overview of Certificates in a Typical Deployed System

CA Cert List 1

CA Cert List 2

Trusted CA Lists Application Certificates

PKCS#12
File

PKCS#12
File

PKCS#12
File

Service Certificates

PKCS#12
File

PKCS#12
File

PKCS#12
File

itadmin Certificates

PKCS#12
File

PKCS#12
File

PKCS#12
File

X509Deploy/trusted_ca_lists

X509Deploy/certs/applications

X509Deploy/certs/services

X509Deploy/certs/admin
 276

Deploying Certificates
Providing a List of Trusted Certificate Authorities

Configuration variable You can specify the list of root trusted certificates authorities by setting the
policies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted_ca_list_policy configuration variables for
IIOP/TLS and HTTPS respectively.

This variable contains a list of strings, each of which provides the filename
and path of a file containing one or more trusted CA certificates. For
example:

policies:iiop_tls:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/certs/trusted_ca_lists/ca_
list1.pem"];

The directory containing the trusted CA certificate lists (for example,
ASPInstallDir/asp/6.0/etc/tls/x509/certs/trusted_ca_lists/) should
be a secure directory.

Choosing a configuration domain Before deploying the CA certificate on a target host, you must have access
to a secure configuration domain or you can create a new domain—see the
Administrator’s Guide.

For example, if you create a secure file-based configuration domain,
SecureDomain, you could view or modify the configuration by editing the
corresponding ASPInstallDir/etc/domains/SecureDomain.cfg file.

Choosing a deployment directory CA certificates are deployed as concatenated lists. These CA list files can be
stored in any location; however, it is convenient to store them under a
common deployment directory, for example:

X509Deploy/trusted_ca_lists

Deploying To deploy a trusted CA certificate, perform the following steps:

Note: If an application supports authentication of a peer, that is a client
supports EstablishTrustInTarget, then a file containing trusted CA
certificates must be provided. If not, a NO_RESOURCES exception is raised.
277

CHAPTER 12 | Managing Certificates
Step Action

1 If you have access to an existing secure domain,
SecureDomain, you can append the CA certificate contents to
one of the files specified in the
policies:iiop_tls:trusted_ca_list_policy configuration
variable for IIOP/TLS or in the
policies:https:trusted_ca_list_policy configuration
variable for HTTPS.

For example, consider how to configure the IIOP/TLS protocol.
If policies:iiop_tls:trusted_ca_list_policy lists the file,
X509Deploy/trusted_ca_lists/ca_list1.pem, you can add
your new CA to the ca_list1.pem file as follows:

Windows
copy X509Deploy\trusted_ca_lists\ca_list1.pem +

X509CA\ca\new_ca.pem
X509Deploy\trusted_ca_lists\ca_list1.pem

UNIX
cat X509CA/ca/new_ca.pem >>

X509Deploy/trusted_ca_lists/ca_list1.pem

The CA certificate is now deployed; hence you can skip steps 2
and 3.

2 Alternatively, you can create a new CA list file to hold your CA
certificate. Copy the new_ca.pem certificate to the
X509Deploy/trusted_ca_lists directory. Rename new_ca.pem
to ca_list.pem, to remind you that this file is actually a list of
certificates that happens to contain one certificate.

Do not copy the CA private key to the target host.

3 Add the ca_list.pem file to your list of trusted CA files. For
example, in the case of IIOP/TLS:

policies:iiop_tls:trusted_ca_list_policy =
["X509Deploy/trusted_ca_lists/existing_list.pem",
"X509Deploy/trusted_ca_lists/ca_list.pem"];
 278

Deploying Certificates
Deploying Application Certificates

Choosing a deployment directory Application certificates are stored as PKCS#12 files (with .p12 suffix). The
certificates can be stored in arbitrary locations; however, it is usually
convenient to store the application certificates under a common deployment
directory, for example:

X509Deploy/certs/applications

Deploying To deploy an application certificate, CertName.p12, for an application that
uses the SampleApp ORB name in the DomainName domain, perform the
following steps:

Step Action

1 Copy the application certificate, CertName.p12, to the
certificates directory—for example,
X509Deploy/certs/applications—on the deployment host.

The certificates directory should be a secure directory that is
accessible only to administrators and other privileged users.

2 Edit the DomainName configuration file (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the
SampleApp scope, change the principal sponsor configuration
to specify the CertName.p12 certificate, as follows:

Orbix Configuration File
SampleApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/applications/CertName
.p12"];

};

3 By default, the application will prompt the user for the
certificate pass phrase as it starts up. To choose another option
for providing the pass phrase, see “Providing a Certificate Pass
Phrase” on page 342.
279

CHAPTER 12 | Managing Certificates
4 If you are using the KDM to enable automatic activation of your
secure servers, make sure you update the KDM database with
the new certificate passwords. See “Automatic Activation of
Secure Servers” on page 355.

Step Action
 280

Deploying Certificates
Deploying Certificates in Smart Cards

Overview Orbix supports an option to store credentials (that is, an X.509 certificate
chain and private key) on a smart card.

Prerequisites Before deploying your certificates in a smart card, you must have the
following third-party products installed:

• Baltimore smart card toolkit—a software library that supports the
PKCS#11 interface and enables Orbix to communicate with the smart
card (see http://www.baltimore.com). This library is bundled with
Orbix.

• Tools and utilities to administer the smart card (usually bundled with
the hardware).

Deploying the certificates Smart card hardware is normally delivered with drivers and utilities that
enable you to deploy X.509 certificate chains and private keys to the smart
card. Consult the third-party documentation that accompanies your
smart-card hardware for details.

Deployment constraints Please note the following constraints when deploying the certificates:

• You must deploy the certificate chain and private key to slot 0. This is
currently the only supported smart card slot.

• The slot 0 should contain only one certificate chain and public/private
key pair.

Configuring an application to use
the smart card

To configure an application to use the smart card, edit the configuration for
your domain (usually ASPInstallDir/etc/domains/DomainName.cfg). In
the SmartCardApp scope, ensure that the principal sponsor is configured to
use the smart card, as follows:

Orbix Configuration File
SmartCardApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs11";
281

http://www.baltimore.com

CHAPTER 12 | Managing Certificates
 principal_sponsor:auth_method_data = ["provider=dkck132.dll",
"slot=0"];

};

By default, the application will prompt the user for the smart card PIN as it
starts up. To choose another option for providing the PIN, see “Providing a
Smart Card PIN” on page 346.
 282

Deploying Certificates
Deploying Orbix Service Certificates

Orbix services requiring
certificates

In a secure system, all Orbix services should be capable of servicing secure
connections; hence, all of the services require certificates. A minimal system
typically includes the following secure services:

• Locator,

• Node daemon,

• Naming service,

• Interface repository (IFR),

• Management service.

• Security service.

Additionally, your system might also require certificates for the events,
notification, and OTS services.

Choosing a deployment directory Orbix service certificates are stored as PKCS#12 files. The service
certificates are similar to application certificates and, like application
certificates, can be stored in arbitrary locations. It is usually convenient to
store the service certificates in their own subdirectory—for example:

X509Deploy/certs/services

Deploying To deploy a service certificate, CertName.p12, for a service that uses the
Service ORB name in the DomainName domain, perform the following
steps:

Step Action

1 Copy the service certificate, CertName.p12, to the service
certificates directory X509Deploy/certs/services on the
deployment host.

The service certificates directory should be a secure directory
that is accessible only to administrators and other privileged
users.
283

CHAPTER 12 | Managing Certificates
Providing pass phrases for Orbix
services

It is possible to combine the different ways of providing pass phrases to the
Orbix services. For example, some of the alternatives for setting up the Orbix
services are:

• Use a password file for all Orbix services.

• Provide the pass phrase from a dialog prompt for all Orbix services.

• Use a password file for the locator and the node daemon. Use the
KDM for all other Orbix services.

• Provide the pass phrase from a dialog prompt for the locator and the
node daemon. Use the KDM for all other Orbix services.

2 Edit the DomainName configuration file (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the Service
scope, change the principal sponsor configuration to specify the
CertName.p12 certificate, as follows:

Orbix Configuration File
Service {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/services/CertName.p12
"];

};

3 By default, the application will prompt the user for the
certificate pass phrase as it starts up. To choose another option
for providing the pass phrase, see “Providing a Certificate Pass
Phrase” on page 342.

4 If you are using the KDM to enable automatic activation of the
Orbix service, make sure you update the KDM database with
the new certificate pass phrase. See “Automatic Activation of
Secure Servers” on page 355.

Step Action
 284

Deploying Certificates
Example configuration The default configuration of the Orbix services specifies that all services use
the administrator.p12 certificate. The principal sponsor for services is
configured as follows:

The sub-scopes, ServiceA, ServiceB and so on, use the principal sponsor
settings from the outer scope, iona_services. Hence, all of the Orbix
services use the same certificate, administrator.p12.

It is possible to override settings from the iona_services outer scope by
configuring the principal sponsor in a local scope—for example, within the
ServiceA scope.

Orbix Configuration File
iona_services
{
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\services\a
dministrator.p12",
"password_file=ASPInstallDir\asp\6.0\etc\tls\x509\certs\servic
es\administrator.pwf"];

 ...
 ServiceA {
 // Inherit principal sponsor settings from outer scope.
 ...
 };
 ServiceB {
 // Inherit principal sponsor settings from outer scope.
 ...
 };
 ...
};
285

CHAPTER 12 | Managing Certificates
Deploying itadmin Certificates

Overview The Orbix command-line administration utility, itadmin, requires a
certificate when used in a secure domain. Two categories of certificate can
be used with itadmin, as follows:

• Ordinary certificates—for users with ordinary privileges who want to
perform routine administration tasks such as checking the status of
servers and administering the naming service.

• Administrator certificates—for users with administrator privileges who
need to administer pass phrases and security checksums stored in the
KDM—see “KDM Administration” on page 363.

Specifying a deployment directory
for administrator certificates

Before deploying itadmin certificates for the first time, you can edit the
Orbix configuration file to specify the directory that will contain the
administrator certificates. You can specify the administrator certificates
deployment directory using the itadmin_x509_cert_root configuration
variable.

For example, if you choose the following deployment directory for your
itadmin certificates:

X509Deploy/certs/admin

you should then set itadmin_x509_cert_root as follows:

Orbix Configuration File
itadmin_x509_cert_root = "X509Deploy/certs/admin";
...
 286

Deploying Certificates
Deploying an ordinary certificate
for itadmin

To deploy an ordinary certificate for itadmin, OrdinaryCert.p12, in the
DomainName domain, perform the following steps:

Step Action

1 Copy the ordinary certificate, OrdinaryCert.p12, to the service
certificates directory X509Deploy/certs/services on the
deployment host.

The service certificates directory should be a secure directory
that is accessible only to administrators and other privileged
users.

2 Edit the DomainName configuration file (usually
ASPInstallDir/etc/domains/DomainName.cfg). In the
ItadminUtility scope, change the principal sponsor
configuration to specify the OrdinaryCert.p12 certificate, as
follows:

Orbix Configuration File
ItadminUtility {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/services/OrdinaryCert.p
12"];

};

3 By default, the itadmin utility would prompt the user for the
certificate pass phrase as it starts up. A more convenient
option, however, is to store the pass phrase in a secure
password file—see “Providing a Certificate Pass Phrase” on
page 342 for details of how to configure this.
287

CHAPTER 12 | Managing Certificates
Deploying an administrator
certificate for itadmin

To deploy an administrator certificate for itadmin, AdminCert.p12, perform
the following step:

Overriding the ordinary certificate
with the administrator certificate

To perform administrator tasks requiring special privileges, such as
administering the KDM, you must override the ordinary certificate with the
administrator certificate using the itadmin admin_logon subcommand.

See “KDM Administration” on page 363 for details.

Step Action

1 Copy the administrator certificate, AdminCert.p12, to the
itadmin certificates directory specified by the
itadmin_x509_cert_root configuration variable.

The itadmin certificates directory should be a secure directory
that is accessible only to administrators and other privileged
users.
 288

Deploying Certificates with Schannel
Deploying Certificates with Schannel

Overview This section describes how to deploy X.509 certificates into the Schannel
certificate store. This method of deployment is used only for C++
applications that use the Schannel SSL/TLS toolkit on the Windows
platform—see “Choosing an SSL/TLS Toolkit” on page 247 for more details.

In this section This section contains the following subsections:

Schannel Certificate Store page 290

Deploying Trusted Certificate Authorities page 295

Deploying Application Certificates page 296

Deploying Certificates in Smart Cards page 299
289

CHAPTER 12 | Managing Certificates
Schannel Certificate Store

Overview This subsection describes how to manage certificates in the Schannel
certificate store (Windows C++ applications only).

Prerequisites The Schannel certificate store is only available to C++ applications on the
Windows platform when you have selected Schannel as the underlying
SSL/TLS toolkit. See “Choosing an SSL/TLS Toolkit” on page 247 for details.

Managing the certificate store Windows makes the Schannel certificate store accessible through the
following O/S utilities:

• Internet Explorer.

• Microsoft Management Console.

Internet Explorer To access the certificate store from Internet Explorer:

1. Choose the Tools|Internet Options... menu option to open the Internet
Options dialog box.

2. Click on the Content tab.

3. Click Certificates... to open the Certificates dialog box.

4. Use the Certificates dialog box to manage the certificate store.

Microsoft Management Console You can also access the certificate store from within the Microsoft
Management Console (MMC), using the certificate snap-in. The MMC is
general-purpose, customizable management tool for the Windows operating
system. The functionality of the MMC can be customized by adding,
removing and configuring a variety of different MMC snap-ins.
 290

Deploying Certificates with Schannel
You can add the certificate snap-in to the MMC as follows:

1. Start the MMC from the start menu by selecting Start|Run and then
entering the command mmc. The MMC opens as shown in Figure 37.

Figure 37: The Microsoft Management Console
291

CHAPTER 12 | Managing Certificates
2. From the MMC, select the Console|Add/Remove Snap-In... menu
option. The Add/Remove Snap-In dialog opens as shown in Figure 38.

Figure 38: The Add/Remove Snap-In Dialog Box
 292

Deploying Certificates with Schannel
3. Click Add... to open the Add Standalone Snap-In dialog box, as shown
in Figure 39.

4. From the snap-in list box, select the Certificates snap-in and then click
Add.

5. A wizard utility starts up to guide you through the process of adding
the Certificates snap-in. Follow the instructions in the wizard to add
the snap-in.

Figure 39: The Add Standalone Snap-In Dialog Box
293

CHAPTER 12 | Managing Certificates
6. After finishing the certificate snap-in wizard, close the dialog boxes.
The console window should now look similar to Figure 40.

7. To save the current console configuration for future use, select
Console|Save As... and save the customized console in a convenient
location.

References For more details about the MMC utility, see the following white paper from
Microsoft:

• Microsoft Management Console: Overview
(http://www.microsoft.com/windows2000/docs/_Toc463917037).

Figure 40: Microsoft Management Console with Certificates Snap-In
 294

http://www.microsoft.com/windows2000/docs/_Toc463917037

Deploying Certificates with Schannel
Deploying Trusted Certificate Authorities

Overview This subsection describes how to deploy trusted certificate authority (CA)
certificates to the Schannel certificate store (Windows C++ applications
only). Your Orbix application must be configured to use Schannel as its
underlying SSL/TLS toolkit.

CA certificate format A trusted CA certificate is distributed as a plain certificate without a private
key (the private key is known only to the certification authority). For
example, trusted CA certificates might be distributed in PEM format, but not
in PKCS#12 format (which includes a private key).

Deploying To deploy a trusted CA certificate to the Schannel certificate store, perform
the following steps:

1. Launch an MMC utility that has been configured with a certificates
snap-in (see “Schannel Certificate Store” on page 290).

2. From the MMC console tree, select the Console
Root\Certificates\Trusted Root Certification Authorities\Certificates
directory.

3. Right-click the Certificates directory and select the All Tasks|Import...
option. A Certificate Import Wizard launches.

4. Follow the instructions in the Certificate Import Wizard to add a
trusted CA certificate to the certificate store.

Note: The Orbix policies:iiop_tls:trusted_ca_list_policy
configuration variable is ignored when your C++ application is configured
to use the Schannel SSL/TLS toolkit.
295

CHAPTER 12 | Managing Certificates
Deploying Application Certificates

Overview This subsection describes how to deploy application certificates in the
Schannel certificate store (Windows C++ applications only). Your Orbix
application must be configured to use Schannel as its underlying SSL/TLS
toolkit.

Deploying To deploy an application certificate to the Schannel certificate store, perform
the following steps:

1. Launch an MMC utility that has been configured with a certificates
snap-in (see “Schannel Certificate Store” on page 290).

2. From the MMC console tree, select the Console
Root\Certificates\Personal\Certificates directory.

3. Right-click the Certificates directory and select the All Tasks|Import...
option. A Certificate Import Wizard launches.

4. Follow the instructions in the Certificate Import Wizard to add an
application certificate to your personal certificate store.

5. To configure an Orbix application to use the certificate, you need to
know the common name (CN) from the certificate’s subject DN.

If you do not already know the certificate’s common name, you can
easily find out by double-clicking the certificate entry in the Console
Root\Certificates\Personal\Certificates directory of the MMC console.
In the Certificate dialog, click the Details tab and then select the

Note: Currently, Orbix can load application certificates from the
personal certificate directory only.
 296

Deploying Certificates with Schannel
Subject field from the scrollbox. Figure 41 shows the Certificate dialog
at this point.

The lower pane shows the AVA settings from the certificate’s subject
DN (for an explanation of X.509 certificate terminology, see “ASN.1
and Distinguished Names” on page 529). From Figure 41, you can see
that the common name (CN) of this certificate is Alice.

Figure 41: Certificate Dialog Showing the Certificate’s Subject DN.
297

CHAPTER 12 | Managing Certificates
6. Edit the Orbix configuration for your domain (usually
ASPInstallDir/etc/domains/DomainName.cfg). In your application’s
configuration scope, MyApp, ensure that the principal sponsor is
configured to use the new certificate, as shown in Example 31.

Where CommonName is the common name (CN) from the new
certificate’s subject DN. For example, if using the certificate shown in
Figure 41 on page 297, the CommonName would be Alice.

7. When you start an Orbix application that uses the new certificate,
Schannel might or might not prompt you for a private key password.
The behavior at runtime depends on whether or not you chose the
Enable strong private key protection option when importing the
certificate with the Certificate Import Wizard.

Importing PKCS#12 files If you want to import a PKCS#12 certificate (.p12 file suffix) into the
certificate store, there is an easy short cut available: double-click the
PKCS#12 file and follow the instructions in the Certificate Import Wizard
to add the certificate to your personal certificate store.

Orbix Configuration File
...
MyApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";
 principal_sponsor:auth_method_data =

["label=CommonName"];
};

Note: When Orbix is configured to use Schannel, you cannot use
PKCS#12 files directly. Hence, the pkcs12_file value of
principal_sponsor:auth_method_id cannot be used with Schannel.
 298

Deploying Certificates with Schannel
Deploying Certificates in Smart Cards

Overview Orbix supports an option to store credentials (that is, an X.509 certificate
chain and private key) on a smart card.

This subsection describes how to deploy certificates in a smart card which is
accessible through the Schannel certificate store (Windows C++
applications only). Your Orbix application must be configured to use
Schannel as its underlying SSL/TLS toolkit.

Prerequisites Before deploying your certificates in a smart card, you must have the
following third-party products installed:

• Third-party smart card toolkit—a software library that integrates the
smart card hardware with the Schannel toolkit and certificate store.

• Tools and utilities to administer the smart card (usually bundled with
the hardware).

Deploying the certificates Smart card hardware is normally delivered with drivers and utilities that
enable you to deploy X.509 certificate chains and private keys to the smart
card. Consult the third-party documentation that accompanies your
smart-card hardware for details.

Smart card transparency in
Schannel

As soon as a smart card is inserted into the card reader, the smart card
credentials automatically appear in the Schannel certificate store. The
credentials are then accessible in just the same way as any other certificate
in the store.

Configuring an application to use
the smart card

To configure an Orbix application to use the smart card through Schannel,
edit the configuration for your domain (usually
ASPInstallDir/etc/domains/DomainName.cfg). In your application’s
299

CHAPTER 12 | Managing Certificates
configuration scope, SmartCardApp, ensure that the principal sponsor is
configured to use the smart card, as shown in Example 31.

Where CommonName is the common name (CN) from the smart card
certificate’s subject DN (see “ASN.1 and Distinguished Names” on
page 529).

Supplying the smart card PIN By default, Schannel will prompt the user for the smart card PIN as it starts
up. There is currently no alternative to supplying the smart card PIN in
Schannel.

Example 31:Configuring an Application to Use a Smart Card in Schannel

Orbix Configuration File
...
SmartCardApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";
 principal_sponsor:auth_method_data = ["label=CommonName"];
};
 300

CHAPTER 13

Configuring
SSL/TLS Secure
Associations
You can govern the behavior of client-server connections by
setting configuration variables to choose association options
and to specify cipher suites.

In this chapter This chapter discusses the following topics:

Overview of Secure Associations page 302

Setting Association Options page 304

Specifying Cipher Suites page 317

Caching TLS Sessions page 325
301

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Overview of Secure Associations

Secure association Secure association is the CORBA term for any link between a client and a
server that enables invocations to be transmitted securely. In practice, a
secure association is often realized as a TCP/IP network connection
augmented by a particular security protocol (such as TLS) but many other
realizations are possible.

In the context of Orbix, secure associations always use TLS.

TLS session A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Orbix.

Colocation For colocated invocations, that is where the calling code and called code
share the same address space, Orbix supports the establishment of
colocated secure associations. A special interceptor, TLS_Coloc, is provided
by the security plug-in to optimize the transmission of secure, colocated
invocations.

Configuration overview The security characteristics of an association can be configured through the
following CORBA policy types:

• Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 308 for details.

• Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 310 for details.

• Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
Cipher Suites” on page 317 for details.
 302

Overview of Secure Associations
Figure 42 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

Figure 42: Configuration of a Secure Association

Client

Client Invocation
Policy

Client Configuration

Association Options

Specified Cipher SuitesMechanism Policy

Secure Association
Server

Server Configuration

Target Invocation
Policy

Association Options

Specified Cipher SuitesMechanism Policy
303

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Setting Association Options

Overview This section explains the meaning of the various SSL/TLS association
options and describes how you can use the SSL/TLS association options to
set client and server secure invocation policies for both SSL/TLS and HTTPS
connections.

In this section The following subsections discuss the meaning of the settings and flags:

Secure Invocation Policies page 305

Association Options page 306

Choosing Client Behavior page 308

Choosing Target Behavior page 310

Hints for Setting Association Options page 312
 304

Setting Association Options
Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements of objects in your system
with two types of security policy:

• Client secure invocation policy—specifies the client association
options.

• Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

OMG-defined policy types The client and target secure invocation policies correspond to the following
policy types, as defined in the OMG security specification:

• Security::SecClientSecureInvocation

• Security::SecTargetSecureInvocation

These policy types are, however, not directly accessible to programmers.

Configuration example For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Orbix Configuration File
secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 // Other settings (not shown)...
};
305

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Association Options

Available options You can use association options to configure Orbix. They can be set for
clients or servers where appropriate. These are the available options:

• NoProtection

• Integrity

• Confidentiality

• DetectReplay

• DetectMisordering

• EstablishTrustInTarget

• EstablishTrustInClient

NoProtection Use the NoProtection flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoProtection) the object can accept secure and insecure
invocations. This is the equivalent to SEMI_SECURE servers in OrbixSSL.

Integrity Use the Integrity flag to indicate that the object supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Confidentiality Use the Confidentiality flag if your object requires or supports at least
confidentiality-protected invocations. The object can support this feature if
the cipher suites specified by the MechanismPolicy support
confidentiality-protected invocations.

DetectReplay Use the DetectReplay flag to indicate that your object supports or requires
replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

DetectMisordering Use the DetectMisordering flag to indicate that your object supports or
requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.
 306

Setting Association Options
EstablishTrustInTarget The EstablishTrustInTarget flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client supports
and requires unless anonymous cipher suites are supported.

EstablishTrustInClient Use the EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.

Note: Examples of all the common cases for configuring association
options can be found in the default Orbix configuration file—see the
demos.tls scope of the ASPInstallDir/etc/domains/DomainName.cfg
configuration file.
307

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Choosing Client Behavior

Client secure invocation policy The Security::SecClientSecureInvocation policy type determines how a
client handles security issues.

IIOP/TLS configuration You can set this policy for IIOP/TLS connections through the following
configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
IIOP/TLS connections.

HTTPS configuration You can set this policy for HTTPS connections through the following
configuration variables:

policies:https:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish a HTTPS connection.

policies:https:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
HTTPS connections.

Association options In both cases, you provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 306 and
Appendix D on page 609.

Default value The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,

DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,

DetectMisordering, EstablishTrustInTarget
 308

Setting Association Options
Example In the default configuration file, the demos.tls.bank_client scope specifies
the following association options:

Orbix Configuration File
In ’demos.tls’ scope
 bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 };
 ...
};
309

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Choosing Target Behavior

Target secure invocation policy The Security::SecTargetSecureInvocation policy type operates in a
similar way to the Security::SecClientSecureInvocation policy type. It
determines how a target handles security issues.

IIOP/TLS configuration You can set the target secure invocation policy for IIOP/TLS connections
through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
IIOP/TLS connections.

HTTPS configuration You can set the target secure invocation policy for HTTPS connections
through the following configuration variables:

policies:https:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept a HTTPS connection.

policies:https:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
HTTPS connections.

Association options In both cases, you can provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 306 and
Appendix D on page 609.

Default value The default value for the target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,

DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,

DetectMisordering
 310

Setting Association Options
Example In the default configuration file, the demos.tls.bank_server scope specifies
the following association options:

Orbix Configuration File
In ’demos.tls’ scope
 ...
 bank_server {
 ...
 policies:iiop_tls:target_secure_invocation_policy:requires =
 ["Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 ...
 };
 ...
311

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Hints for Setting Association Options

Overview This section gives an overview of how association options can be used in
real applications.

Use the sample scopes The quickest way to configure a secure SSL/TLS application is by basing the
configuration on one of the sample demos.tls scopes in the
DomainName.cfg configuration file. In demos.tls, there are sample scopes
that match all of the common use cases for SSL/TLS configuration.

For more details, see “Configuration samples” on page 60.

Rules of thumb The following rules of thumb should be kept in mind:

• If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

• It is important to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is,
the association options effective for a particular secure association
depend on the available cipher suites (see “Constraints Imposed on
Cipher Suites” on page 322).

• The NoProtection option must appear alone in a list of required
options. It does not make sense to require other security options in
addition to NoProtection.
 312

Setting Association Options
Types of assocation option Association options can be categorized into the following different types, as
shown in Table 16.

EstablishTrustInTarget and
EstablishTrustInClient

These association options are used as follows:

• EstablishTrustInTarget—determines whether a server sends its own
X.509 certificate to a client during the SSL/TLS handshake. In
practice, secure Orbix applications must enable
EstablishTrustInTarget, because all of the cipher suites supported
by Orbix require it.

The EstablishTrustInTarget association option should appear in all
of the configuration variables shown in the relevant row of Table 17.

• EstablishTrustInClient—determines whether a client sends its own
X.509 certificate to a server during the SSL/TLS handshake. The
EstablishTrustInClient feature is optional and various combinations
of settings are possible involving this assocation option.

Table 16: Description of Different Types of Association Option

Description Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quality of protection. Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.
313

CHAPTER 13 | Configuring SSL/TLS Secure Associations
The EstablishTrustInClient association option can appear in any of
the configuration variables shown in the relevant row of Table 17.

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there
are a couple of integrity-only ciphers that do not support Confidentiality
(see Table 21 on page 323). As a rule of thumb, if you want security you
generally would want all of these association options.

Table 17: Setting EstablishTrustInTarget and EstablishTrustInClient
Association Options

Association Option Client side—can appear in... Server side—can appear in...

EstablishTrustInTarget policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

EstablishTrustInClient policies:client_secure_invocation_pol

icy:supports
policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
policies:allow_unauthenticated_clients_policy configuration
variable. See “policies Namespace” on page 498.

Table 18: Setting Quality of Protection Association Options

Association Options Client side—can appear in... Server side—can appear in...

Confidentiality,
Integrity,
DetectReplay, and
DetectMisordering

policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires
 314

Setting Association Options
A typical secure application would list all of these association options in all
of the configuration variables shown in Table 18.

NoProtection The NoProtection association option is used for two distinct purposes:

• Disabling security selectively—security is disabled, either in the client
role or in the server role, if NoProtection appears as the sole required
association option and as the sole supported association option in a
secure invocation policy. This mechanism is selective in the sense that
the client role and the server role can be independently configured as
either secure or insecure.

• Making an application semi-secure—an application is semi-secure,
either in the client role or in the server role, if NoProtection appears as
the sole required association option and as a supported association
option along with other secure association options. The meaning of
semi-secure in this context is, as follows:

♦ Semi-secure client—the client will open either a secure or an
insecure connection, depending on the disposition of the server
(that is, depending on whether the server accepts only secure
connections or only insecure connections). If the server is
semi-secure, the type of connection opened depends on the order
of the bindings in the binding:client_binding_list.

Note: Some of the sample configurations appearing in the generated
configuration file require Confidentiality, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support Confidentiality also support the other
qualities of protection. This is an example of where the security
mechanism policy interacts with the secure invocation policies.

Note: In this case, the orb_plugins configuration variable should
include the iiop plug-in to enable insecure communication.
315

CHAPTER 13 | Configuring SSL/TLS Secure Associations
♦ Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Table 19 shows the configuration variables in which the NoProtection
association option can appear.

References For more information about setting association options, see the following:

• “Securing Communications with SSL/TLS” on page 60.

• The demos.tls scope in a generated Orbix configuration file.

Note: In this case, the orb_plugins configuration variable should
include both the iiop_tls plug-in and the iiop plug-in.

Table 19: Setting the NoProtection Association Option

Association Option Client side—can appear in... Server side—can appear in...

NoProtection policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires
 316

Specifying Cipher Suites
Specifying Cipher Suites

Overview This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
secure associations. During a security handshake, the client chooses a
cipher suite that matches one of the cipher suites available to the server.
The cipher suite then determines the security algorithms that are used for
the secure association.

In this section This section contains the following subsections:

Supported Cipher Suites page 318

Setting the Mechanism Policy page 320

Constraints Imposed on Cipher Suites page 322
317

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Supported Cipher Suites

Orbix cipher suites The following cipher suites are supported by Orbix:

• Null encryption, integrity-only ciphers:
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA

Security algorithms Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

• Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.

• Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

• Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

Key exchange algorithms The following key exchange algorithms are supported by Orbix:

Encryption algorithms The following encryption algorithms are supported by Orbix:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.

RSA_EXPORT RSA public key encryption using X.509v3 certificates.
Key size restricted to 512 bits.

RC4_40 A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.
 318

Specifying Cipher Suites
Secure hash algorithms The following secure hash algorithms are supported by Orbix:

Cipher suite definitions The Orbix cipher suites are defined as follows:

Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.

RC4_128 RC4 with a 128-bit key.

DES40_CBC Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES_CBC DES with a 56-bit key.

3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

SHA Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

Table 20: Cipher Suite Definitions

Cipher Suite Key Exchange
Algorithm

Encryption
Algorithm

Secure Hash
Algorithm

Exportable?

RSA_WITH_NULL_MD5 RSA NULL MD5 yes

RSA_WITH_NULL_SHA RSA NULL SHA yes

RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes

RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5 no

RSA_WITH_RC4_128_SHA RSA RC4_128 SHA no

RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes

RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA no

RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no
319

http://www.ietf.org

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Setting the Mechanism Policy

Mechanism policy To specify cipher suites, use the mechanism policy. The mechanism policy
is a client and server side security policy that determines

• Whether SSL or TLS is used, and

• Which specific cipher suites are to be used.

The protocol_version
configuration variable

You can specify whether SSL or TLS is used with a transport protocol by
setting the policies:iiop_tls:mechanism_policy:protocol_version
configuration variable for IIOP/TLS and the
policies:https:mechanism_policy:protocol_version configuration
variable for HTTPS. For example:

You can set the protocol_version configuration variable to one of the
following alternatives:

TLS_V1
SSL_V3

And a special setting for interoperating with an application deployed on the
OS/390 platform (to work around a bug in IBM’s System/SSL toolkit):

SSL_V2V3

The cipher suites configuration
variable

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechanism_policy:ciphersuites configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:ciphersuites configuration variable
for HTTPS. For example:

Orbix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";

Orbix Configuration File
policies:iiop_tls:mechanism_policy:ciphersuites =
 ["RSA_WITH_NULL_MD5",
 "RSA_WITH_NULL_SHA",
 "RSA_EXPORT_WITH_RC4_40_MD5",
 "RSA_WITH_RC4_128_MD5"];
 320

Specifying Cipher Suites
Cipher suite order The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ciphersuites list.

Valid cipher suites You can specify any of the following cipher suites:

• Null encryption, integrity only ciphers:
RSA_WITH_NULL_MD5,
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5,
RSA_WITH_RC4_128_MD5,
RSA_WITH_RC4_128_SHA,
RSA_EXPORT_WITH_DES40_CBC_SHA,
RSA_WITH_DES_CBC_SHA,
RSA_WITH_3DES_EDE_CBC_SHA

Default values If no cipher suites are specified through configuration or application code,
the following apply:

RSA_WITH_RC4_128_SHA,
RSA_WITH_RC4_128_MD5,
RSA_WITH_3DES_EDE_CBC_SHA,
RSA_WITH_DES_CBC_SHA
321

CHAPTER 13 | Configuring SSL/TLS Secure Associations
Constraints Imposed on Cipher Suites

Effective cipher suites Figure 43 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Orbix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Required and supported
association options

For example, in the context of the IIOP/TLS protocol the list of cipher suites
is affected by the following configuration options:

• Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

• Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports on
the server side.

Figure 43: Constraining the List of Cipher Suites

Association
Options

Specified
Cipher Suites

constrain

Effective
Cipher Suites

yields
 322

Specifying Cipher Suites
Cipher suite compatibility table Use Table 21 to determine whether or not a particular cipher suite is
compatible with your association options.

Determining compatibility The following algorithm is applied to the initial list of cipher suites:

1. For the purposes of the algorithm, ignore the EstablishTrustInClient
and EstablishTrustInTarget association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 21) do not satisfy the configured
required association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 21) not included in the configured supported
association options.

Table 21: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA_WITH_NULL_MD5 Integrity, DetectReplay,

DetectMisordering

RSA_WITH_NULL_SHA Integrity, DetectReplay,

DetectMisordering

RSA_EXPORT_WITH_RC4_40_MD5 Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_RC4_128_MD5 Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_RC4_128_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_EXPORT_WITH_DES40_CBC_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_DES_CBC_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_3DES_EDE_CBC_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality
323

CHAPTER 13 | Configuring SSL/TLS Secure Associations
No suitable cipher suites available If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

Example For example, specifying a cipher suite such as RSA_WITH_RC4_128_MD5 that
supports Confidentiality, Integrity, DetectReplay, DetectMisordering,
EstablishTrustInTarget (and optionally EstablishTrustInClient) but
specifying a secure_invocation_policy that supports only a subset of
those features results in that cipher suite being ignored.
 324

Caching TLS Sessions
Caching TLS Sessions

Session caching policy You can use the IT_TLS_API::SessionCachingPolicy to control TLS
session caching and reuse for both the client side and the server side.

Configuration variable You can set the IT_TLS_API::SessionCachingPolicy with the
policies:iiop_tls:session_caching_policy or
policies:https:session_caching_policy configuration variables. For
example:

policies:iiop_tls:session_caching_policy = "CACHE_CLIENT";

Valid values You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

Default value The default value is CACHE_NONE.

Configuration variable plugins:atli_tls_tcp:session_cache_validity_period

This allows control over the period of time that SSL/TLS session caches
are valid for.

Valid values session_cache_validity_period is specified in seconds.

Default value The default value is 1 day.

Configuration variable plugins:atli_tls_tcp:session_cache_size

session_cache_size is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

Default value This defaults to no limit specified for C++.

This defaults to 100 for Java.
325

CHAPTER 13 | Configuring SSL/TLS Secure Associations
 326

CHAPTER 14

Configuring
SSL/TLS
Authentication
This chapter describes how to configure the authentication
requirements for your application.

In this chapter This chapter discusses the following topics:

Requiring Authentication page 328

Specifying Trusted CA Certificates page 335

Specifying an Application’s Own Certificate page 337

Providing a Pass Phrase or PIN page 341

Advanced Configuration Options page 348
327

CHAPTER 14 | Configuring SSL/TLS Authentication
Requiring Authentication

Overview This section discusses how to specify whether a target object must
authenticate itself to a client and whether the client must authenticate itself
to the target. For a given client-server link, the authentication requirements
are governed by the following policies:

• Client secure invocation policy.

• Target secure invocation policy.

• Mechanism policy.

These policies are explained in detail in “Configuring SSL/TLS Secure
Associations” on page 301. This section focuses only on those aspects of
the policies that affect authentication.

In this section There are two possible arrangements for a TLS secure association:

Target Authentication Only page 329

Target and Client Authentication page 332
 328

Requiring Authentication
Target Authentication Only

Overview When an application is configured for target authentication only, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 44.

Security handshake Prior to running the application, the client and server should be set up as
follows:

• A certificate chain is associated with the server—the certificate chain is
provided in the form of a PKCS#12 file. See “Specifying an
Application’s Own Certificate” on page 337.

• One or more lists of trusted certification authorities (CA) are made
available to the client—see “Providing a List of Trusted Certificate
Authorities” on page 277.

During the security handshake, the server sends its certificate chain to the
client—see Figure 44. The client then searches its trusted CA lists to find a
CA certificate that matches one of the CA certificates in the server’s
certificate chain.

Figure 44: Target Authentication Only

Secure Association
Client Server

PKCS#12
File

Trusted CA Lists

CA Cert List 1

CA Cert List 2

Authenticate
Certificate

X.509

X.509
CA
329

CHAPTER 14 | Configuring SSL/TLS Authentication
Client configuration For target authentication only, the client policies should be configured as
follows:

• Client secure invocation policy—must be configured both to require
and support the EstablishTrustInTarget association option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix E2A support target authentication.

Server configuration For target authentication only, the target policies should be configured as
follows:

• Target secure invocation policy—must be configured to support the
EstablishTrustInTarget association option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix E2A support target authentication.
 330

Requiring Authentication
Example of target authentication
only

The following sample extract from an Orbix E2A configuration file shows a
configuration for a CORBA client application, bank_client, and a CORBA
server application, bank_server, in the case of target authentication only.

Orbix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
331

CHAPTER 14 | Configuring SSL/TLS Authentication
Target and Client Authentication

Overview When an application is configured for target and client authentication, the
target authenticates itself to the client and the client authenticates itself to
the target. This scenario is illustrated in Figure 45. In this case, the server
and the client each require an X.509 certificate for the security handshake.

Security handshake Prior to running the application, the client and server should be set up as
follows:

Figure 45: Target and Client Authentication

Secure Association
Client Server

PKCS#12
File

Trusted CA Lists
Authenticate

Target

X.509

X.509
CA

PKCS#12
File
X.509

X.509
CA

CA Cert List 1

CA Cert List 2

CA Cert List 1

CA Cert List 2

Trusted CA Lists

Authenticate
Client
 332

Requiring Authentication
• Both client and server have an associated certificate chain (PKCS#12
file)—see “Specifying an Application’s Own Certificate” on page 337.

• Both client and server are configured with lists of trusted certification
authorities (CA)—see “Providing a List of Trusted Certificate
Authorities” on page 277.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 44.

Client configuration For target and client authentication, the client policies should be configured
as follows:

• Client secure invocation policy—must be configured both to require
and support the EstablishTrustInTarget association option. The
client also must support the EstablishTrustInClient association
option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication.

Server configuration For target and client authentication, the target policies should be configured
as follows:

• Target secure invocation policy—must be configured to support the
EstablishTrustInTarget association option. The target must also
require and support the EstablishTrustInClient association option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target and client authentication.
333

CHAPTER 14 | Configuring SSL/TLS Authentication
Example of target and client
authentication

The following sample extract from an Orbix E2A configuration file shows a
configuration for a client application, secure_client_with_cert, and a
server application, secure_server_enforce_client_auth, in the case of
target and client authentication.

Orbix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
 334

Specifying Trusted CA Certificates
Specifying Trusted CA Certificates

Overview When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Which applications need to
specify trusted CA certificates?

Any application that is likely to receive an X.509 certificate as part of an
SSL/TLS or HTTPS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

• All IIOP/TLS or HTTPS clients.

• Any IIOP/TLS or HTTPS servers that support mutual authentication.

Deploying trusted CA certificates You can use one of the following approaches to deploying trusted CA
certificates, depending on which SSL/TLS toolkit your application uses:

• Baltimore toolkit (all platforms)—use the Trusted CA list policy.

• Schannel toolkit (Windows C++ applications only)—use the Schannel
certificate store.

Trusted CA list policy The trusted CA list policy specifies a list of files, each of which contains a
concatenated list of CA certificates in PEM format. You can configure this
policy by setting one of the following configuration variables in your
application’s configuration scope:

• policies:iiop_tls:trusted_ca_list_policy, for IIOP/TLS, and

• policies:https:trusted_ca_list_policy, for HTTPS.

Schannel certificate store If you have configured your application to use the Schannel SSL/TLS toolkit
(Windows C++ applications only), you would deploy trusted CA certificates
by adding them to the Schannel certificate store, which is an integral part of
the Windows operating system.
335

CHAPTER 14 | Configuring SSL/TLS Authentication
More details For more details about deploying trusted CA certificates, see one of the
following references:

• Baltimore toolkit—“Providing a List of Trusted Certificate Authorities”
on page 277.

• Schannel toolkit—“Deploying Trusted Certificate Authorities” on
page 295.
 336

Specifying an Application’s Own Certificate
Specifying an Application’s Own Certificate

Overview To enable an Orbix application to identify itself, it must be associated with
an X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

• Security unaware—configuration only,

• Security aware—configuration or programming.

This section describes how to specify a certificate by configuration only. For
details of the programming approach, see “Authentication” on page 435.

PKCS#12 files In practice, the TLS protocol needs more than just an X.509 certificate to
support application authentication. Orbix therefore stores X.509 certificates
in a PKCS#12 file, which contains the following elements:

• The application certificate, in X.509 format.

• One or more certificate authority (CA) certificates, which vouch for the
authenticity of the application certificate (see also “Certification
Authorities” on page 260).

• The application certificate’s private key (encrypted).

In addition to the encryption of the private key within the certificate, the
whole PKCS#12 certificate is also stored in encrypted form.

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by
Orbix.
337

CHAPTER 14 | Configuring SSL/TLS Authentication
Figure 46 shows the typical elements in a PKCS#12 file.

PKCS#11 and smart cards Orbix supports the use of smart cards for storing credentials. Orbix accesses
the smart card through a standard PKCS#11 interface (implemented by the
third-party toolkit from Baltimore).

Smart card storage is arranged as a series of slots. To use the smart card
with Orbix, slot 0 should be initialized to contain an X.509 certificate chain
and a public/private key pair. The user gains access to the data in the smart
card by supplying a slot number and a PIN.

Schannel certificate store (Windows C++ applications only) If you have configured your application to
use the Schannel toolkit, the applications own certificate will be stored in
the Schannel certificate store, which is an integral part of the Windows
operation system. For details of how to manage the certificate store, see
“Schannel Certificate Store” on page 290.

SSL/TLS principal sponsor The SSL/TLS principal sponsor is a piece of code embedded in the security
plug-in that obtains SSL/TLS authentication information for an application.
It is configured by setting variables in the Orbix configuration.

Figure 46: Elements in a PKCS#12 File

X.509

PKCS#12 File

Private Key

Certificate Chain

X.509
CA
 338

Specifying an Application’s Own Certificate
Single or multiple certificates The SSL/TLS principal sponsor is limited to specifying a single certificate for
each ORB scope. This is sufficient for most applications.

Specifying multiple certificates for a single ORB can only be achieved by
programming (see “Authentication” on page 435). If an application is
programmed to own multiple certificates, that application ought to be
accompanied by documentation that explains how to specify the certificates.

Principal sponsor configuration To use a principal sponsor, you must set the principal_sponsor
configuration variables:

1. Set the variable principal_sponsor:use_principal_sponsor to true.

2. Provide values for the principal_sponsor:auth_method_id and
principal_sponsor:auth_method_data variables.

Sample PKCS #12 configuration For example, to use a certificate, DemoCerts/demo_cert_ie5.p12, that has
its password in the DemoCerts/demo_cert_ie5.pwf file:

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcs12_file";
principal_sponsor:auth_method_data =

["filename=DemoCerts/demo_cert_ie5.p12",
"password_file=DemoCerts/demo_cert_ie5.pwf"];

Details of these configuration variables can be found in “principal_sponsor
Namespace” on page 507.

Sample PKCS #11 configuration (Java only.) For example, to use a smart card from the provider,
dkck132.dll (Baltimore), with credentials in slot 0:

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "pkcs11";
principal_sponsor:auth_method_data = ["provider=dkck132.dll",

"slot=0"];

Details of these configuration variables can be found in “principal_sponsor
Namespace” on page 507.

Sample Schannel configuration (Windows C++ applications only) If you have configured your application to
use the Schannel toolkit, you should set the principal sponsor as follows:

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "security_label";
339

CHAPTER 14 | Configuring SSL/TLS Authentication
principal_sponsor:auth_method_data = ["label=CommonName"];

Where CommonName is the common name (CN) from the certificate’s
subject DN (see “ASN.1 and Distinguished Names” on page 529).

Credentials sharing Normally, when you specify an own credential using the SSL/TLS principal
sponsor, the credential is available only to the ORB that created it. By
setting the plugins:security:share_credentials_across_orbs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.
 340

Providing a Pass Phrase or PIN
Providing a Pass Phrase or PIN

Overview When you specify an application’s own certificate, in the form of a certificate
file or smart card, you must also provide authorization data that decrypts the
certificate’s private key, as follows:

• PKCS#12 certificate file—provide a pass phrase,

• PKCS#11 or Schannel smart card—provide a PIN.

In this section This section contains the following subsections:

Providing a Certificate Pass Phrase page 342

Providing a Smart Card PIN page 346
341

CHAPTER 14 | Configuring SSL/TLS Authentication
Providing a Certificate Pass Phrase

Overview Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

The pass phrase can be provided in one of the following ways:

• From a dialog prompt.

• From the KDM server.

• In a password file.

• Directly in configuration.

From a dialog prompt If the pass phrase is not specified in any other way, Orbix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C++ Applications

When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the ORB
Enter password :
 342

Providing a Pass Phrase or PIN
Java Applications Using PKCS #12

If the Java application uses a PKCS #12 file to store its certificate, the
following dialog window pops up to prompt the user for the pass phrase:

The Java dialog window can also be customized by programming. See
“principal_sponsor Namespace” on page 507.

From the KDM server The pass phrase can be obtained automatically from the KDM server as the
application starts up. This mechanism is suitable for automatically launched
servers. See “Automatic Activation of Secure Servers” on page 355 for
details.

Figure 47: Java Dialog Window for Certificate Pass Phrase
343

CHAPTER 14 | Configuring SSL/TLS Authentication
In a password file The pass phrase is stored in a password file whose location is specified in
the principal_sponsor:auth_method_data configuration variable using the
password_file option. For example, the iona_services scope configures
the principal sponsor as follows:

In this example, the pass phrase for the bank_server.p12 certificate is
stored in the administrator.pwd file, which contains the following pass
phrase:

administratorpass

Orbix Configuration File
iona_services {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\services\a
dministrator.p12",
"password_file=ASPInstallDir\asp\6.0\etc\tls\x509\certs\servic
es\administrator.pwf"];

 ...
};

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.
 344

Providing a Pass Phrase or PIN
Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
principal_sponsor:auth_method_data configuration variable using the
password option. For example, the bank_server demonstration configures
the principal sponsor as follows:

In this example, the pass phrase for the bank_server.p12 certificate is
bankserverpass.

Orbix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\bank
_server.p12", "password=bankserverpass"];

};

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.
345

CHAPTER 14 | Configuring SSL/TLS Authentication
Providing a Smart Card PIN

Overview If you are using a smart card (PKCS #11 or Schannel), you must provide a
PIN when the application starts up to gain access to the smart card.

The PIN can be provided in one of the following ways:

• From a dialog prompt.

• Directly in configuration (PKCS#11 only).

From a dialog prompt If the PIN is not specified in any other way, Orbix will prompt the user for
the PIN as the application starts up.

Java Applications Using PKCS #11 (Smart Card)

If the Java application uses a smart card to store its certificate, the following
dialog window pops up to prompt the user for the provider name, slot
number, and PIN:

Figure 48: Java Dialog Window for Certificate PIN
 346

Providing a Pass Phrase or PIN
Windows C++ Application Using Schannel (Smart Card)

If your C++ application is configured to use Schannel in combination with a
smart card, the following dialog window pops up to prompt the user for the
smart card PIN:

Directly in configuration
(PKCS#11 only)

The PKCS #11 authentication mechanism allows you to specify the PIN
directly in configuration.

The PIN can be specified directly in the
principal_sponsor:auth_method_data configuration variable using the pin
option. For example:

In this example, the PIN for slot 0 of the smart card is 1234.

Figure 49: Schannel Dialog Window for Certificate PIN

Orbix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs11";
 principal_sponsor:auth_method_data = ["provider=dkck132.dll",

"slot=0", "pin=1234"];
};

WARNING: Storing the PIN directly in configuration is not recommended
for deployed systems. The PIN is in plain text and could be read by
anyone.
347

CHAPTER 14 | Configuring SSL/TLS Authentication
Advanced Configuration Options

Overview For added security, Orbix allows you to apply extra conditions on
certificates. Before reading this section you might find it helpful to consult
“Managing Certificates” on page 257, which provides some background
information on the structure of certificates.

In this section This section discusses the following advanced configuration options:

Setting a Maximum Certificate Chain Length page 349

Applying Constraints to Certificates page 350

Delaying Credential Gathering page 352
 348

Advanced Configuration Options
Setting a Maximum Certificate Chain Length

Max chain length policy You can use the MaxChainLengthPolicy to enforce the maximum length of
certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the
TrustedCAListPolicy).

Example For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

Configuration variable You can specify the maximum length of certificate chains used in
MaxChainLengthPolicy with the
policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy configuration variables. For
example:

policies:iiop_tls:max_chain_length_policy = "4";

Default value The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA’s.
349

CHAPTER 14 | Configuring SSL/TLS Authentication
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 350

Advanced Configuration Options
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 529.
351

CHAPTER 14 | Configuring SSL/TLS Authentication
Delaying Credential Gathering

Overview Delayed credential gathering is a feature that enables a client to send an
X.509 certificate to a secure server at a later point in the SSL/TLS
handshake. The advantage of this handshake procedure is that the server
sends the client a list of trusted CA certificates. Hence, the client can select
a certificate at runtime which is compatible with the server’s trusted CA
certificates.

SSL/TLS handshake process Delayed credential gathering occurs during the course of the SSL/TLS
handshake process as follows:

Note: Delayed credential gathering is currently only supported in
combination with the Schannel SSL/TLS toolkit (Windows C++
applications only). See “Choosing an SSL/TLS Toolkit” on page 247.

Stage Description

1 A client opens a new connection to a secure server and initiates
the SSL/TLS connection handshake.

2 The client does not initially send an X.509 certificate to the
server, although the client supports authentication (that is, the
EstablishTrustInClient association option is supported on
the client side, but the principal sponsor is disabled).

3 At a later stage of the handshake, the server gives the client a
second chance to send an X.509 certificate. The server
explicitly requests a certificate from the client and sends a list
of all the CA certificates it is willing to trust.

4 At this point, if delayed credential gathering is enabled, the
client will select a certificate and send it on to the server.
Depending on the configuration, the certificate is selected
either by default or manually by the user.

If delayed credential gathering is not enabled, connection
establishment would fail at this point.
 352

Advanced Configuration Options
Enabling delayed credential
gathering

Delayed credential gathering is enabled by setting the following variable to
true in the relevant scope of your Orbix configuration:

plugins:iiop_tls:delay_credential_gathering_until_handshake

When the server requests a client certificate during the SSL/TLS handshake,
the certificate can be selected using one of the following procedures:

• Prompting the user for credentials.

• Choosing credentials by default.

Prompting the user for credentials To enable the user to choose a client certificate at SSL/TLS handshake time,
you should set the plugins:schannel:prompt_with_credential_choice
variable to true. For example:

Choosing credentials by default If the plugins:schannel:prompt_with_credential_choice variable is set to
false, the default behavior is for Orbix to choose the first certificate it can
find in the certificate store that meets the applicable constraints. For
example, you can enable a default credential choice as follows

Example client configuration Example 32 shows how to configure an SSL/TLS client to use delayed
credential gathering.

plugins:iiop_tls:delay_credential_gathering_until_handshake =
"true";

plugins:schannel:prompt_with_credential_choice = "true";

plugins:iiop_tls:delay_credential_gathering_until_handshake =
"true";

plugins:schannel:prompt_with_credential_choice = "false";

Example 32:Client Configuration with Delayed Credential Gathering

Orbix configuration file
...
SchannelClientApplication {

1 # Configuration to load Schannel toolkit (not shown)
 ...
 # SSL/TLS Configuration
 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
353

CHAPTER 14 | Configuring SSL/TLS Authentication
The preceding configuration example can be explained as follows:

1. A basic prerequisite for delayed credential gathering is that your
application is configured to use the Schannel toolkit (see “Schannel
Toolkit for C++” on page 250 for details).

2. The client must support the EstablishTrustInClient association
option.

3. The principal sponsor must be disabled when using the delayed
credential gathering feature; in addition you must ensure that no
certificate is associated with the client through programming the
principal authenticator.

4. The delay_credential_gathering_until_handshake variable is set to
true to enable delayed credential gathering.

5. In this example, the prompt_with_credential_choice variable is set to
true so that Schannel will prompt the user for credentials at SSL/TLS
handshake time. You could also set this variable to false, if you want to
let Orbix choose the credentials by default.

2 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 ...
 # Delaying credentials gaterhing

3 principal_sponsor:use_principal_sponsor = "false";
4 plugins:iiop_tls:delay_credential_gathering_until_handshake

= "true";
5 plugins:schannel:prompt_with_credential_choice = "true";

};

Example 32:Client Configuration with Delayed Credential Gathering
 354

CHAPTER 15

Automatic
Activation of
Secure Servers
Every server secured with Orbix has an associated certificate
and private key. To access its private key, and use it to encrypt
messages, a server must retrieve the associated pass phrase.
This chapter shows you how to use Orbix administration to
supply pass phrases to servers.

In this chapter This chapter covers the following topics:

Managing Server Pass Phrases page 356

Protecting against Server Imposters page 359

How the KDM Activates a Secure Server page 361

KDM Administration page 363

Setting Up the KDM page 366

Registering a Secure Server page 368
355

CHAPTER 15 | Automatic Activation of Secure Servers
Managing Server Pass Phrases

Overview Every server secured with Orbix has an associated certificate and private
key. To access the private key, which is stored in encrypted form, a pass
phrase must be supplied to the server as it starts up. The server is then able
to identify itself to other applications that require authentication.

Persistent activation To activate a secure server persistently (manual start-up), the server’s pass
phrase must be supplied by the operator who is starting the process.
Typically, the operator types in the pass phrase manually in response to a
login prompt at the console.

Automatic activation To activate a secure server automatically (in response to a client request),
the server’s pass phrase should be supplied automatically because it would
be impractical for the server to wait for manual intervention. This is
particularly true of high availability environments. It is necessary, therefore,
to have a mechanism for automatic delivery of authentication data to a
server.

Key distribution management Orbix provides the key distribution management (KDM) mechanism to
manage the authentication data required by servers. The KDM manages the
storage of authentication data and is responsible for delivering the
authentication data to automatically activated servers.
 356

Managing Server Pass Phrases
KDM architecture Figure 50 shows the main components of the KDM architecture:

The KDM server The main component of the KDM is the KDM server, which is implemented
as a plug-in and embedded in the locator service. The main responsibility of
the KDM server is to manage the secure storage and retrieval of
authentication data.

The key distribution repository The key distribution repository (KDR) is the database that stores
authentication data for the KDM server.The KDR currently stores the
following information:

• Pass phrases—a pass phrase is stored in the form of an ORB
name/pass phrase association. Given an ORB name, the KDM server
can retrieve the associated pass phrase. Just one pass phrase can be
stored per ORB name.

• Checksums—a checksum is generated for a particular server record in
the IMR and stored in the form of a process name/checksum
association. Checksums are described in “Protecting against Server
Imposters” on page 359.

Figure 50: The KDM Architecture

Key Distribution
Repository

IMR

Host 1

Locator

KDM Server

Host 2

Server

Request
Activation
Request

Activates

Node
Daemon
357

CHAPTER 15 | Automatic Activation of Secure Servers
Role of the locator When the locator receives a client request for an inactive server, the role of
the locator is to contact the KDM server (a plug-in to the locator), retrieve
the server’s authentication data and send the authentication data on to the
node daemon.

Role of the node daemon When the node daemon receives an activation request from the locator, the
node daemon launches the corresponding server process and passes the
authentication data to the server as it starts up.
 358

Protecting against Server Imposters
Protecting against Server Imposters

Security threats A server imposter is a rogue server executable that runs in place of a
legitimate server application.The KDM must ensure that authentication data
are not supplied to server imposters. The following forms of attack must be
guarded against:

• Replacing the server executable by an imposter.

• Replacing one or more Orbix plug-ins by imposters.

• Tampering with the IMR record to point at a rogue executable.

Protection measures The following measures should be taken to protect against server imposters:

• Place all server executables in a trusted directory (for example, one
secured by the operating system).

• Place all plug-in libraries in a trusted directory.

• Specify the list of trusted directories in the node daemon’s
secure_directories configuration variable.

• Use the KDM checksum facility to protect the IMR record from
tampering.

The secure_directories
configuration variable

The secure_directories configuration variable specifies a list of trusted
directories to the node daemon. For example, on the Windows platform you
could set it as follows:

If the node daemon’s secure_directories configuration variable is set, only
server executables stored in one of the listed directories can be launched.

Orbix E2A Configuration File
iona_services {
 ...
 node_daemon {
 secure_directories = ["c:\trusted_servers",
 "c:\trusted_apps"];
 ...
 };
};
359

CHAPTER 15 | Automatic Activation of Secure Servers
Checksums The server’s IMR record contains details of where to find the server
executable and other server activation information. By protecting the IMR
record from tampering, you can ensure that the KDM passes its
authentication data only to a known server executable.

After an administrator creates or modifies a server’s IMR record the
administrator generates an associated checksum for the IMR record. The
checksum is then stored in the KDR database, in the form of a process
name/checksum association.
 360

How the KDM Activates a Secure Server
How the KDM Activates a Secure Server

Overview When the KDM mechanism is used, two different kinds of server activation
are supported, as follows:

• Insecure server activation—the server is activated using the normal
(insecure) activation mechanism. A server is implicitly treated as
insecure if no pass phrases are registered for the server.

• Secure server activation—the server is activated using a secure
activation algorithm. The KDM supplies pass phrases to the server and
verifies the server’s checksum.

Activation process Figure 51 outlines the steps for activating a secure server:

Figure 51: Automatic Activation of a Secure Server

KDR

IMR

Host 1

Locator

KDM Server

Host 2

Server

Client
Request

Pass Security
Attributes

Activate and
Pass Security

Attributes

Node
Daemon

1 4

5

3 Retrieve
Pass Phrase

2 Verify
Checksum
361

CHAPTER 15 | Automatic Activation of Secure Servers
Description The secure server shown in Figure 51 is activated using the KDM, as
follows:

Stage Description

1 A client makes a request on a server that is currently inactive.

In Figure 51, the client request (a Request or LocateRequest
message) is sent to the locator. The example assumes that the
target object belongs to an indirect persistent POA.

2 The locator requests the server’s checksum from the KDM,
which attempts to retrieve the checksum from the KDR
database.

If there is a checksum for the server, the checksum for the
server’s current IMR record is calculated and compared with
the retrieved checksum. If the checksums do not match, the
locator reports an error.

3 The locator requests the server pass phrases from the KDM,
which retrieves the pass phrases from the KDR database.

If there are pass phrases but no checksum for the server, the
locator reports an error (unless the
plugins:kdm:checksums_optional configuration variable is set
to false).

If there are no pass phrases registered for the server, the
locator reverts to the standard procedure for activating an
insecure server at this point.

4 The locator sends an activation request and authentication data
to the node daemon.

5 The node daemon activates the server and passes the
authentication data to the server as it starts up.
 362

KDM Administration
KDM Administration

Overview An administrator uses an extended version of the itadmin utility to manage
the pass phrases and checksums stored in the KDR. In a secure
environment, the itadmin utility includes a KDM administration plug-in,
kdm_adm. Figure 52 shows how the itadmin utility communicates with the
KDM server.

Whenever the administrator invokes a KDM command (kdm_adm or
checksum) the itadmin client communicates directly with a secure IP port on
the KDM server (separate from the locator’s ports).

Logging In Before invoking itadmin commands to manage the KDM, an administrator
must log on to the itadmin utility. To log on, enter the following at a
command prompt:

itadmin
% admin_logon login identity

Figure 52: Using itadmin to Manage the KDM Server

Key Distribution
Repository

IMR

Host 1

Locator

KDM Server

itadmin Client

kdm_adm
Plug-In

Enter
Administration

Commands

KDM
Subcommands
363

CHAPTER 15 | Automatic Activation of Secure Servers
Please enter password for identity identity:
%

After entering itadmin, subsequent commands are entered in itadmin script
mode (see Administrator’s Guide). The admin_logon command logs the
administrator on to the itadmin utility using the X.509 certificate specified
by identity. The administrator then enters the pass phrase to access the
certificate.

See the Administrator’s Guide for full details of the admin_logon command
syntax.

Commands Two new administration commands, kdm_adm and checksum, are provided
for the KDM. These commands are used from within the itadmin scripting
mode.

The kdm_adm command manages pass phrases stored in the KDR. The
command supports the following subcommands and options:

Table 22: The kdm_adm Administration Command

Command Subcommand and Options

kdm_adm create -orbname name [-password pass_phrase]

confirm -orbname name

remove -orbname name

list [-count]

change_pw
 364

KDM Administration
The checksum command manages server checksums stored in the KDR. The
command supports the following subcommands and options:

See the Administrator’s Guide for detailed descriptions of these commands.
Examples of using these commands appear in “Registering a Secure Server”
on page 368.

Configuration The KDM is configured by two sets of variables, as follows:

A complete list and descriptions of KDM configuration variables is provided
in the Appendix A on page 485.

Table 23: The checksum Administration Command

Command Subcommand and Options

checksum create -orbname name [-password pass_phrase]

confirm -orbname name

remove -orbname name

list [-count]

Table 24: Prefixes for KDM Configuration Variables

Prefix Description

plugins:kdm Variables with this prefix configure the KDM server
plug-in, which is embedded in the locator service.

plugins:kdm_adm Variables with this prefix configure the KDM
administration plug-in, which is embedded in the
itadmin utility.
365

CHAPTER 15 | Automatic Activation of Secure Servers
Setting Up the KDM

Setting up a secure domain Use the itconfigure utility to create a secure domain that includes the
KDM. You must choose file-based configuration instead of the configuration
repository (CFR) on a secure domain, because the CFR is completely
insecure.

Using secure directories When an administrator enables automatic activation of a secure server, it
becomes possible for remote clients to trigger activation of the secure server.
It is, therefore, essential to protect server executables from being overwritten
by storing them in a trusted directory.

Create a directory, SecureServerDir, that is accessible only to administrators
and store your secure server executables in this directory. Add the secure
directory, SecureServerDir, to the node daemon’s list of trusted directories.
For example:

Defining certificate constraints In a real deployment, you must define a set of certificate constraints for the
KDM. The following certificate constraints are relevant to the KDM:

• plugins:kdm:cert_constraints—restricts access to the KDM server,
protecting it from unauthorized clients. See
“plugins:kdm:cert_constraints” on page 494 for details of how to set
this variable.

WARNING: Because there is no security on the CFR, anyone could update
the CFR so that the KDM uses their certificate. Such an individual would
then be able to read all the KDM passwords.

Orbix E2A Configuration File
iona_services {
 ...
 node_daemon {
 secure_directories = ["SecureServerDir"];
 ...
 };
};
 366

Setting Up the KDM
• plugins:kdm_adm:cert_constraints—protects the itadmin utility
from rogue applications that might attempt to impersonate the KDM
server. See “plugins:kdm_adm:cert_constraints” on page 495 for
details of how to set this variable.

Creating and installing
administration certificates

When you create a new set of X.509 certificates for use with Orbix, you
need to choose a naming pattern for your Distinguished Names that is
compatible with the KDM certificate constraints. In particular, your
certificates should satisfy the following conditions:

• The Orbix locator certificate (also used by the KDM server) must satisfy
the plugins:kdm_adm:cert_constraints certificate constraints.

• Certificates with administrator privileges should satisfy the
plugins:kdm:cert_constraints certificate constraints.

• Other certificates must not satisfy the KDM certificate constraints.

To deploy the administrator certificates (that is, the certificates used by
itadmin), create a secure directory AdminCerts, copy the administrator
certificates to this directory, and set the itadmin_x509_cert_root
configuration variable equal to AdminCerts.
367

CHAPTER 15 | Automatic Activation of Secure Servers
Registering a Secure Server

Server registration steps You must register the server with the locator daemon to enable it to find the
server when requested by a client. To register the server with the locator,
perform the following steps:

1. Enter itadmin. This starts the Orbix administration command shell,
and avoids typing itadmin before each command.

2. Register the server’s persistent POA name and ORB name with the
locator, using the following commands:

% orbname create demos.tls.secure_bank_extended_server
% poa create -replica demos.tls.secure_bank_extended_server

bank_server_persistent_poa

The first command creates an ORB name called
demos.tls.secure_bank_extended_server. The second creates a POA
name called bank_server_persistent_poa, and associates it with
demos.tls.secure_bank_extended_server ORB name, using the
-replica option. For more details about POA names and ORB names,
see the Administrator’s Guide.

3. Register the server process name with the locator.

C++ Server

To register a C++ process name, use the following command:

UNIX
% process create -node_daemon hostname/it_node_daemon

-pathname
{install-dir/asp/6.0/demos/tls/secure_bank_extended/
 cxx_server/server} -args "--use_kdm /tmp/bank.ior"

secure_bank_extended_process

Windows

% process create -node_daemon hostname/it_node_daemon
-pathname

{install-dir\asp\6.0\demos\tls\secure_bank_extended\
 cxx_server\server.exe} -args "--use_kdm C:\temp\bank.ior"

secure_bank_extended_process

Replace hostname with your machine’s DNS name, and replace
install-dir with the location of your Orbix installation (for example,
 368

Registering a Secure Server
c:\iona). The -args parameter specifies command-line arguments (for
example, the file used to publish the server object reference).

4. Register the server process name with the appropriate ORB name (in
this case, demos.tls.secure_bank_extended_server):

orbname modify -process secure_bank_extended_process
demos.tls.secure_bank_extended_server

5. From the itadmin command prompt, log on to the itadmin utility:

% admin_logon login kdmadmin
Please enter password for identity kdmadmin:

This example uses the kdmadmin.p12 certificate which has the
password kdmadminpass.

6. Register the server’s pass phrase with the KDM:

% kdm_adm create -orbname
demos.tls.secure_bank_extended_server

Please enter password for orb my_orb_name :

The secure_bank_extended_server demonstration uses the
bankserver.p12 certificate which has the password bankserverpass.

7. Create and store a checksum for the server’s IMR record:

% checksum create -process secure_bank_extended_process

Running the server After registering the bank server, you must run the bank server once to
initialize the bank.ior file containing a persistent object reference. It is only
necessary to run the server explicitly once. Subsequently, the node daemon
can activate the bank server automatically in response to client requests.
369

CHAPTER 15 | Automatic Activation of Secure Servers
 370

Part IV
CSIv2 Administration

In this part This part contains the following chapters:

Introduction to CSIv2 page 373

Configuring CSIv2 Authentication over Transport page 383

Configuring CSIv2 Identity Assertion page 403

CHAPTER 16

Introduction to
CSIv2
CSIv2 is the OMG’s Common Secure Interoperability protocol
v2.0, which can provide the basis for application-level security
in CORBA applications. The Orbix Security Framework uses
CSIv2 to transmit usernames and passwords, and asserted
identities between applications.

In this chapter This chapter discusses the following topics:

CSIv2 Features page 374

Basic CSIv2 Scenarios page 376

Integration with the Orbix Security Framework page 380
373

CHAPTER 16 | Introduction to CSIv2
CSIv2 Features

Overview This section gives a quick overview of the basic features provided by CSIv2
application-level security. Fundamentally, CSIv2 is a general, interoperable
mechanism for propagating security data between applications. Because
CSIv2 is designed to complement SSL/TLS security, CSIv2 focuses on
providing security features not covered by SSL/TLS.

Application-level security CSIv2 is said to provide application-level security because, in contrast to
SSL/TLS, security data is transmitted above the transport layer and the
security data is sent after a connection has been established.

Transmitting CSIv2-related
security data

The CSIv2 specification defines a new GIOP service context type, the
security attribute service context, which is used to transmit CSIv2-related
security data. There are two important specializations of GIOP:

• IIOP—the Internet inter-ORB protocol, which specialises GIOP to the
TCP/IP transport, is used to send CSIv2 data between CORBA
applications.

• RMI/IIOP—RMI over IIOP, which is an IIOP-compatible version of
Java’s Remote Method Invocation (RMI) technology, is used to send
CSIv2 data between EJB applications and also for CORBA-to-EJB
interoperability.

CSIv2 mechanisms The following CSIv2 mechanisms are supported:

• CSIv2 authentication over transport mechanism.

• CSIv2 identity assertion mechanism.

CSIv2 authentication over
transport mechanism

The CSIv2 authentication over transport mechanism provides a simple client
authentication mechanism, based on a username and a password. This
mechanism propagates a username, password, and domain name to the
server. The server then authenticates the username and password before
allowing the invocation to proceed.
 374

CSIv2 Features
CSIv2 identity assertion
mechanism

The CSIv2 identity assertion mechanism provides a way of asserting the
identity of a caller without performing authentication. This mechanism is
usually used to propagate a caller identity that has already been
authenticated at an earlier point in the system.

Applicability of CSIv2 CSIv2 is applicable to both CORBA technology. CSIv2 can be used by the
following kinds of application:

• CORBA C++ applications.

• CORBA Java applications.
375

CHAPTER 16 | Introduction to CSIv2
Basic CSIv2 Scenarios

Overview The CSIv2 specification provides two independent mechanisms for sending
credentials over the transport (authentication over transport, and identity
assertion), but the CSIv2 specification does not mandate how the
transmitted credentials are used. Hence, there are many different ways of
using CSIv2 and different ways to integrate it into a security framework
(such as iSF).

This section describes some of the basic scenarios that illustrate typical
CSIv2 usage.

In this section This section contains the following subsections:

CSIv2 Authentication over Transport Scenario page 377

CSIv2 Identity Assertion Scenario page 378
 376

Basic CSIv2 Scenarios
CSIv2 Authentication over Transport Scenario

Overview Figure 53 shows a basic CSIv2 scenario where a CORBA client and a
CORBA server are configured to use the CSIv2 authentication over transport
mechanism.

Scenario description The scenario shown in Figure 53 can be described as follows:

More details For more details about authentication over transport, see “Configuring CSIv2
Authentication over Transport” on page 383.

Figure 53: Basic CSIv2 Authentication over Transport Scenario

Request + u/p/d

Authentication
Service

1 2

3

Client
authentication
token

ServerClient
u/p/d

User login
Propagate
authentication
token

authenticate()

Stage Description

1 The user enters a username, password, domain name on the
client side (user login).

2 When the client makes a remote invocation on the server,
CSIv2 transmits the username/password/domain authentication
data to the server in a security attribute service context.

3 The server authenticates the received username/password
before allowing the invocation to proceed.
377

CHAPTER 16 | Introduction to CSIv2
CSIv2 Identity Assertion Scenario

Overview Figure 54 shows a basic CSIv2 scenario where a client and an intermediate
server are configured to use the CSIv2 authentication over transport
mechanism, and the intermediate server and a target server are configured
to use the CSIv2 identity assertion mechanism. In this scenario, the client
invokes on the intermediate server, which then invokes on the target server.

Scenario description The second stage of the scenario shown in Figure 54 (intermediate server
invokes an operation on the target server) can be described as follows:

Figure 54: Basic CSIv2 Identity Assertion Scenario

Request + u/p/d

Authentication
Service

1
2

3

u u

Client
authentication
token Identity token

Request + uIntermediate
Server

Target
Server

Client
u/p/d

Set asserted identity

Propagate identity

Examine
calling identity

Stage Description

1 The intermediate server can set the identity that will be
asserted to the target in one of two ways:

• Implicitly—if the execution context has an associated
CSIv2 received credentials, the intermediate server
extracts the user identity from the received credentials, or

• Explicitly—by programming.
 378

Basic CSIv2 Scenarios
More details For more details about identity assertion, see “Configuring CSIv2 Identity
Assertion” on page 403.

2 When the intermediate server makes a remote invocation on
the target server, CSIv2 transmits the user identity data to the
server in a security attribute service context.

3 The target server can access the propagated user identity
programmatically (by extracting it from a
SecurityLevel2::ReceivedCredentials object).

Stage Description
379

CHAPTER 16 | Introduction to CSIv2
Integration with the Orbix Security Framework

Overview This section presents an example of how CSIv2 works in the context of the
Orbix Security Framework. The purpose of the example is to show the
distinction between the purely CSIv2 functionality and the way in which
CSIv2 is used in the Orbix Security Framework. The example also provides a
case study of how to integrate the CSI plug-in within a wider security
framework.

CSIv2 authentication domain In the context of the Orbix Security Framework, the CSIv2 authentication
domain set by the user on the client side must match the CSIv2
authentication domain set on the server side.

Plug-ins used by the iSF Within the iSF, a typical CORBA server would load the following security
plug-ins: IIOP/TLS, GSP, and CSI. The roles of the GSP plug-in and the CSI
plug-in in particular are important in the context of the iSF, as follows:

• GSP plug-in,

• CSI plug-in.

GSP plug-in The role of the GSP plug-in is to manage the interpretation of authentication
data and to perform authorization. The GSP plug-in implements features
specific to the Orbix Security Framework.

CSI plug-in The role of the CSIv2 plug-in is to manage the propagation of authentication
data. It handles the protocol that delivers the data and makes decisions
such as whether to propagate authentication data in further calls to other
servers.
 380

Integration with the Orbix Security Framework
How CSIv2 integrates with iSF Figure 55 shows how the CSIv2 and the GSP plug-ins behave in the context
of the iSF, for a server that is configured to use CSIv2 authentication over
transport.

Description The stages of a secure invocation using CSIv2 authentication over transport,
as shown in Figure 55, can be described as follows:

Figure 55: CSIv2 in the Orbix Security Framework

Retrieve roles and realmsauthenticate()

Orbix Security Service

CORBA Server

IIOP/
TLS

Auth

ACL

Action-role
mapping file

1

4 5

u/p/d

Invocation

Request + u/p/d

CSI/GSP

Extract2

3

Stage Description

1 A secure operation invocation arrives at the server. Initially, the
invocation passes through the IIOP/TLS plug-in, which is
responsible for decrypting the incoming message and
performing other transport layer security tasks.

2 The CSI plug-in extracts the username/password/domain
authentication data, which identifies the calling user, from the
incoming message’s security attribute service context.
381

CHAPTER 16 | Introduction to CSIv2
3 The CSI plug-in delegates authentication to the
IT_CSI::AuthenticateGSSUPCredentials callback object,
which is implemented in the GSP plug-in.

4 The AuthenticateGSSUPCredentials object further delegates
authentication to the central Orbix security service.

5 If authentication with the Orbix security service is successful,
the GSP plug-in receives details of all the roles and realms for
the calling user. The roles and realms are cached, to be used
later during the authorization step.

Stage Description
 382

CHAPTER 17

Configuring CSIv2
Authentication
over Transport
This chapter explains the concepts underlying the CSIv2
authentication over transport mechanism and provides details
of how to configure a client and a server to use this mechanism.

In this chapter This chapter discusses the following topics:

CSIv2 Authentication Scenario page 384

SSL/TLS Prerequisites page 388

Requiring CSIv2 Authentication page 390

Providing an Authentication Service page 393

Providing a Username and Password page 394

Sample Configuration page 398
383

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
CSIv2 Authentication Scenario

Overview This section describes a typical CSIv2 authentication scenario, where the
client is authenticated over the transport by providing a username and a
password.

Authentication over transport The CSIv2 authentication over transport mechanism is a simple client
authentication mechanism based on a username and a password. In a
system with a large number of clients, it is significantly easier to administer
CSIv2 client authentication than it is to administer SSL/TLS client
authentication.

CSIv2 authentication is said to be over transport, because the
authentication step is performed at the General Inter-ORB Protocol (GIOP)
layer. Specifically, authentication data is inserted into the service context of
a GIOP request message. CSIv2 authentication, therefore, occurs after a
connection has been established (in contrast to SSL/TLS authentication).

GSSUP mechanism The Generic Security Service Username/Password (GSSUP) mechanism is
the basic authentication mechanism supported by CSIv2 at Level 0
conformance. Currently, this is the only authentication mechanism
supported by IONA’s implementation of CSIv2.

Dependency on SSL/TLS Note, that CSIv2 authentication over transport cannot provide adequate
security on its own. The authentication over transport mechanism relies on
the transport layer security, that is SSL/TLS, to provide the following
additional security features:

• Server authentication.

• Privacy of communication.

• Message integrity.
 384

CSIv2 Authentication Scenario
CSIv2 scenario Figure 56 shows a typical scenario for CSIv2 authentication over transport:

How CSIv2 authentication over
transport proceeds

As shown in Figure 56 on page 385, the authentication over transport
mechanism proceeds as follows:

Figure 56: CSIv2 Authentication Over Transport Scenario

Request + u/p/d

SSL/TLS Connection

Client

Authentication Service

1

2

4

3
u/p/d

Target Server

?

PKCS#12
File

invoke

Client
authentication
token

Stage Description

1 When a client initiates an operation invocation on the target,
the client’s CSI plug-in inserts a client authentication token
(containing username/password/domain) into the GIOP request
message.
385

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
SSL/TLS connection The client and server should both be configured to use a secure SSL/TLS
connection. In this scenario, the SSL/TLS connection is configured for target
authentication only.

See “SSL/TLS Prerequisites” on page 388 for details of the SSL/TLS
configuration for this scenario.

Client authentication token A client authentication token contains the data that a client uses to
authenticate itself to a server through the CSIv2 authentication over
transport mechanism, as follows:

• Username—a UTF-8 character string, which is guaranteed not to
undergo conversion when it is sent over the wire.

• Password—a UTF-8 character string, which is guaranteed not to
undergo conversion when it is sent over the wire.

• Domain—a string that identifies the CSIv2 authentication domain
within which the user is authenticated.

2 The request, together with the client authentication token, is
sent over the SSL/TLS connection. The SSL/TLS connection
provides privacy and message integrity, ensuring that the
username and password cannot be read by eavesdroppers.

3 Before permitting the request to reach the target object, the CSI
server interceptor calls an application-supplied object (the
authentication service) to check the username/password
combination.

4 If the username/password combination are authenticated
successfully, the request is allowed to reach the target object;
otherwise the request is blocked and an error returned to the
client.

Stage Description

Note: The client’s domain should match the target domain, which is
specified by the
policies:csi:auth_over_transport:server_domain_name
configuration variable on the server side.
 386

CSIv2 Authentication Scenario
The client authentication token is usually initialized by the CSIv2 principal
sponsor (which prompts the user to enter the username/password and
domain). See “Providing a Username and Password” on page 394.

Authentication service The authentication service is an external service that checks the username
and password received from the client. If the authentication succeeds, the
request is allowed to proceed and an invocation is made on the target
object; if the authentication fails, the request is automatically blocked and a
CORBA::NO_PERMISSION system exception is returned to the client.

See “Providing an Authentication Service” on page 393.
387

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
SSL/TLS Prerequisites

Overview The SSL/TLS protocol is an essential complement to CSIv2 security. The
CSIv2 authentication over transport mechanism relies on SSL/TLS to provide
the following additional security features:

• Server authentication.

• Privacy of communication.

• Message integrity.

SSL/TLS target authentication
only

For the scenario depicted in Figure 56 on page 385, the SSL/TLS
connection is configured for target authentication only. The SSL/TLS
configuration can be summarized as follows:

• Client-side SSL/TLS configuration—the client requires confidentiality,
message integrity, and the EstablishTrustInTarget SSL/TLS
association option. No X.509 certificate is provided on the client side,
because the client is not authenticated at the transport layer.

• Server-side SSL/TLS configuration—the server requires confidentiality
and message integrity, but the EstablishTrustInClient SSL/TLS
association option is not required. An X.509 certificate is provided on
the server side to enable the client to authenticate the server.

Configuration samples The SSL/TLS configuration of this CSIv2 scenario is based on the following
TLS demonstration configurations in your Orbix configuration
(DomainName.cfg file or CFR service):

• demos.tls.secure_client_with_no_cert

• demos.tls.secure_server_no_client_auth

WARNING: If you do not enable SSL/TLS for the client-server connection,
the GSSUP username and password would be sent over the wire
unencrypted and, therefore, could be read by eavesdroppers.
 388

SSL/TLS Prerequisites
SSL/TLS principal sponsor
configuration

In this scenario, the SSL/TLS principal sponsor needs to be enabled only on
the server side, because it is only the server that has an associated X.509
certificate.

References See “Sample Configuration” on page 398 for a detailed example of the client
and server SSL/TLS configuration.

See “SSL/TLS Administration” on page 245 for complete details of
configuring and administering SSL/TLS.

Note: The SSL/TLS principal sponsor is completely independent of the
CSIv2 principal sponsor (see “CSIv2 principal sponsor” on page 394). It is
possible, therefore, to enable both of the principal sponsors within the
same application.
389

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
Requiring CSIv2 Authentication

Overview This section describes the minimal configuration needed to enable CSIv2
authentication over transport. In a typical system, however, you also need to
configure SSL/TLS (see “SSL/TLS Prerequisites” on page 388) and the
CSIv2 principal sponsor (see “Providing a Username and Password” on
page 394).

Loading the CSI plug-in To enable CSIv2 for a C++ or Java application, you must include the csi
plug-in in the orb_plugins list in your Orbix configuration. The
binding:client_binding_list and binding:server_binding_list must
also be initialized with the proper list of interceptor combinations.

Sample settings for these configuration variables can be found in the
demos.tls.csiv2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Client configuration A client can be configured to support CSIv2 authentication over transport, as
follows:

Orbix configuration file
csiv2 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 ...
};

Orbix configuration file
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
 390

Requiring CSIv2 Authentication
Client CSIv2 association options The EstablishTrustInClient option is a CSIv2 association option.
Including this option in the
policies:csi:auth_over_transport:client_supports list indicates that
the client supports the CSIv2 authentication over transport mechanism.

Server configuration A server can be configured to support CSIv2 authentication over transport,
as follows:

Server CSIv2 association options Including the EstablishTrustInClient CSIv2 association option in the
policies:csi:auth_over_transport:target_supports list indicates that
the server supports the CSIv2 authentication over transport mechanism.

Including the EstablishTrustInClient CSIv2 association option in the
policies:csi:auth_over_transport:target_requires list indicates that
the server requires clients to authenticate themselves using the CSIv2
authentication over transport mechanism. If the client fails to authenticate
itself to the server when the server requires it, the server throws a
CORBA::NO_PERMISSION system exception back to the client.

Server domain name The server domain name is the name of a valid CSIv2 authentication
domain. A CSIv2 authentication domain is an administrative unit within
which a username/password combination is authenticated.

A CSIv2 client will check that the domain name in its CSIv2 credentials is
the same as the domain name set on the server side by the
policies:csi:auth_over_transport:server_domain_name configuration
variable. If the domain in the client credentials is an empty string, however,
the domain always matches (the empty string is treated as a wildcard).

Orbix configuration file
policies:csi:auth_over_transport:target_supports =

["EstablishTrustInClient"];
policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];
policies:csi:auth_over_transport:server_domain_name =

"AuthDomain";
policies:csi:auth_over_transport:authentication_service =

"csiv2.AuthenticationServiceObject";
391

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
Authentication service The authentication_service variable specifies a Java class that provides
an implementation of the authentication service. This enables you to provide
a custom implementation of the CSIv2 authentication service in Java.

When using CSIv2 in the context of the Orbix Security Framework, however,
this configuration variable should be omitted. In the Orbix Security
Framework, the GSP plug-in specifies the CSIv2 authentication service
programmatically.

See “Providing an Authentication Service” on page 393 for more details.
 392

Providing an Authentication Service
Providing an Authentication Service

Overview An implementation of the CSIv2 authentication service can be specified in
one of the following ways:

• By configuration (Java only).

• By programming a policy (Java only).

• By registering an initial reference.

By configuration (Java only) In Java, the authentication service is provided by a customizable class
which can be loaded by setting the
policies:csi:auth_over_transport:authentication_service
configuration variable to the fully-scoped name of the Java class.

By programming a policy (Java
only)

In Java, you can specify a CSIv2 authentication service object
programmatically by setting the IT_CSI::CSI_SERVER_AS_POLICY policy with
an IT_CSI::AuthenticationService struct as its policy value.

See the CORBA Programmer’s Reference, Java for more details.

By registering an initial reference You can specify a CSIv2 authentication service object (in C++ and Java) by
registering an instance as the IT_CSIAuthenticationObject initial
reference. This approach is mainly intended for use by Orbix plug-ins.

Default authentication service If no authentication service is specified, a default implementation is used
that always returns false in response to authenticate() calls.

Orbix Security Framework In the context of the Orbix Security Framework, the GSP plug-in provides a
proprietary implementation of the CSIv2 authentication service that
delegates authentication to the Orbix security service.

Sample implementation A sample implementation of a CSIv2 authentication service can be found in
the following demonstration directory:

ASPInstallDir/asp/Version/demos/corba/tls/csiv2/java/src/csiv2
393

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
Providing a Username and Password

Overview This section explains how a user can provide a username and a password
for CSIv2 authentication (logging on) as an application starts up. CSIv2
mandates the use of the GSSUP standard for transmitting a
username/password pair between a client and a server.

CSIv2 principal sponsor The CSIv2 principal sponsor is a piece of code embedded in the CSI plug-in
that obtains authentication information for an application. It is configured by
setting variables in the Orbix configuration. The great advantage of the
CSIv2 principal sponsor is that it enables you to provide authentication data
for security unaware applications, just by modifying the configuration.

The following configuration file extract shows you how to enable the CSIv2
principal sponsor for GSSUP-style authentication (assuming the application
is already configured to load the CSI plug-in):

Credentials sharing Normally, when you specify an own credential using the CSI principal
sponsor, the credential is available only to the ORB that created it. By
setting the plugins:security:share_credentials_across_orbs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

Logging in The GSSUP username and password can be provided in one of the following
ways:

• From a dialog prompt.

• Directly in configuration.

• By programming.

Orbix configuration file
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";
 394

Providing a Username and Password
From a dialog prompt If the login data are not specified in configuration, the CSIv2 principal
sponsor will prompt the user for the username, password, and domain as
the application starts up. The dialog prompt is displayed if the client
supports the EstablishTrustInClient CSIv2 association option and one or
more of the principal_sponsor:csi:auth_method_data fields are missing
(username, password, or domain).

C++ Applications

When a C++ application starts up, the user is prompted for the username
and password at the command line as follows:

Please enter username :
Enter password :

Java Applications

The following dialog window pops up to prompt the user for the username,
password, and domain name:

Figure 57: Java Dialog Window for GSSUP Username and Password

Note: The password is not checked until the client communicates with a
server secured by CSIv2. Hence, the dialog is unable to provide immediate
confirmation of a user’s password and a mis-typed password will not be
detected until the client begins communicating with the server.
395

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
Directly in configuration The username, password, and domain can be specified directly in the
principal_sponsor:csi:auth_method_data configuration variable. For
example, the CSIv2 principal sponsor can be configured as follows:

In this example, the auth_method_data variable specifies a User username,
Pass password, and AuthDomain domain.

By programming A CORBA application developer can optionally specify the GSSUP
username, password and domain name by programming—see “Creating
CSIv2 Credentials” on page 444.

In this case, an administrator should ensure that the CSIv2 principal
sponsor is disabled for the application. Either the
principal_sponsor:csi:use_principal_sponsor variable can to be set to
false, or the CSIv2 principal sponsor variables can be removed from the
application’s configuration.

The best approach is to set the
principal_sponsor:csi:use_principal_sponsor variable to false in the
application’s configuration scope. For example:

Orbix configuration file
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data = ["username=User",

"password=Pass", "domain=AuthDomain"];

WARNING: Storing the password directly in configuration is not
recommended for deployed systems. The password is in plain text and
could be read by anyone.

Orbix configuration file
outer_config_scope {
 ...
 my_app_config_scope {
 principal_sponsor:csi:use_principal_sponsor = "false";
 ...
 };
 ...
};
 396

Providing a Username and Password
This ensures that the principal sponsor cannot be enabled accidentally by
picking up configuration variables from the outer configuration scope.
397

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
Sample Configuration

Overview This section provides complete sample configurations, on both the client
side and the server side, for the scenario described in “CSIv2 Authentication
Scenario” on page 384.

In this section This section contains the following subsections:

Sample Client Configuration page 399

Sample Server Configuration page 401
 398

Sample Configuration
Sample Client Configuration

Overview This section describes a sample client configuration for CSIv2 authentication
over transport which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• The client supports the SSL/TLS EstablishTrustInTarget association
option.

• The client supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

• The username and password are specified using the CSIv2 principal
sponsor.

Configuration sample The following sample shows the configuration of a client application that
uses CSIv2 authentication over transport to authenticate a user, Paul (using
the csiv2.client.paul ORB name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 client
 {
 policies:iiop_tls:client_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];
399

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
 paul
 {
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
 policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Paul", "password=password", domain="DEFAULT"];
 };
 };
};
 400

Sample Configuration
Sample Server Configuration

Overview This section describes a sample server configuration for CSIv2
authentication over transport which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• The server supports the SSL/TLS EstablishTrustInTarget and
EstablishTrustInClient association options.

• The server’s X.509 certificate is specified using the SSL/TLS principal
sponsor.

• The server supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

Configuration sample The following sample shows the configuration of a server application that
supports CSIv2 authentication over transport (using the csiv2.server ORB
name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 server
 {
 policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];
401

CHAPTER 17 | Configuring CSIv2 Authentication over Transport
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\b
ank_server.p12", "password=bankserverpass"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:authentication_service =
"csiv2.AuthenticationServiceObject";

 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

 };
};
 402

CHAPTER 18

Configuring CSIv2
Identity Assertion
This chapter explains the concepts underlying the CSIv2
identity assertion (or delegation) mechanism and provides
details of how to configure your applications to use this
mechanism.

In this chapter This chapter discusses the following topics:

CSIv2 Identity Assertion Scenario page 404

SSL/TLS Prerequisites page 408

Enabling CSIv2 Identity Assertion page 410

Sample Configuration page 412
403

CHAPTER 18 | Configuring CSIv2 Identity Assertion
CSIv2 Identity Assertion Scenario

Overview This section describes a typical CSIv2 identity assertion scenario, involving a
client, an intermediate server, and a target server. Once the client has
authenticated itself to the intermediate server, the intermediate server can
impersonate the client by including an identity token in the requests that it
sends to the target server. The intermediate server thus acts as a proxy (or
delegate) server.

Identity assertion The CSIv2 identity assertion mechanism provides the basis for a
general-purpose delegation or impersonation mechanism. Identity assertion
is used in the context of a system where a client invokes an operation on an
intermediate server which then invokes an operation on a target server (see
Figure 58). When making a call on the target, the client identity (which is
authenticated by the intermediate server) can be forwarded by the
intermediate to the target. This enables the intermediate to impersonate the
client.

Dependency on SSL/TLS The CSIv2 identity assertion mechanism relies on SSL/TLS to provide the
the following security features at the transport layer (between the
intermediate server and the target server):

• Authentication of the target server to the intermediate server.

• Authentication of the intermediate server to the target server.

• Privacy of communication.

• Message integrity.
 404

CSIv2 Identity Assertion Scenario
CSIv2 scenario Figure 58 shows a typical scenario for CSIv2 identity assertion:

How CSIv2 identity assertion
proceeds

As shown in Figure 58 on page 405, the identity assertion mechanism
proceeds as follows:

Figure 58: CSIv2 Identity Assertion Scenario

Request + u/p/d

SSL/TLS Connection

Client

Authentication Service

1

2

5

4

3

Received
credentials object

u/p/d

Intermediate Server

?

PKCS#12
File

Target Server

Request + u

SSL/TLS Connection

u

PKCS#12
File

invoke

u

invoke

6

7
Client
authentication
token

Identity token

Stage Description

1 When a client initiates an operation invocation on the
intermediate, the client’s CSI plug-in inserts a client
authentication token (containing username/password/domain)
into the GIOP request message.
405

CHAPTER 18 | Configuring CSIv2 Identity Assertion
SSL/TLS connection The intermediate server and target server should both be configured to use a
secure SSL/TLS connection. In this scenario, the intermediate-to-target
SSL/TLS connection is configured for mutual authentication.

See “SSL/TLS Prerequisites” on page 408 for details of the SSL/TLS
configuration for this scenario.

2 The request, together with the client authentication token, is
sent over the SSL/TLS connection. The SSL/TLS connection
provides privacy and message integrity, ensuring that the
username and password cannot be read by eavesdroppers.

3 Before permitting the request to reach the target object in the
intermediate, the intermediate’s CSI plug-in calls the
authentication service to check the username/password
combination.

4 If the username/password combination are authenticated
successfully, the request is allowed to reach the object;
otherwise the request is blocked and an error is returned to the
client.

5 Within the context of the current invocation, the intermediate
server invokes an operation on the target server.

Because identity assertion has been enabled on the
intermediate server, the intermediate’s CSI plug-in extracts the
client username from the received GSSUP credentials, creates
an identity token containing this username, and then inserts
the identity token into the GIOP request message.

6 The request, together with the identity token, is sent over the
SSL/TLS connection. The SSL/TLS connection provides privacy
message integrity, and mutual authentication between the
intermediate and the target.

7 When the request arrives at the target server, the asserted
identity is extracted and made available to the target through
the CORBA received credentials object—see “Retrieving
Received Credentials” on page 463.

Stage Description
 406

CSIv2 Identity Assertion Scenario
Identity token An identity token can contain one of the following types of identity token:

• ITTAbsent—if no identity token is included in the GIOP message sent
by the intermediate server (for example, if CSIv2 identity assertion is
disabled in the intermediate server).

• ITTAnonymous—if the intermediate server is acting on behalf of an
anonymous, unauthenticated client.

• ITTPrincipalName—if the intermediate server is acting on behalf of an
authenticated client. In this case, the client identity contains the
following data:

♦ GSSUP username—automatically extracted from the GSSUP
client authentication token received from the client.

♦ Subject DN—if the intermediate server authenticates the client
using an X.509 certificate, but not using a username and
password, the intermediate would forward on an identity token
containing the subject DN from the client certificate.

Received credentials The received credentials is an object, of
SecurityLevel2::ReceivedCredentials type, defined by the OMG CORBA
Security Service that encapsulates the security credentials received from a
client. In this scenario, the target server is programmed to access the
asserted identity using the received credentials.

For details of how to access the asserted identity through the received
credentials object, see “Retrieving Received Credentials from the Current
Object” on page 464.

See “EJB Security Programming” on page 442 for details.
407

CHAPTER 18 | Configuring CSIv2 Identity Assertion
SSL/TLS Prerequisites

Overview The CSIv2 identity assertion mechanism relies on SSL/TLS to provide the
the following security features at the transport layer (between the
intermediate server and the target server):

• Authentication of the target server to the intermediate server.

• Authentication of the intermediate server to the target server.

• Privacy of communication.

• Message integrity.

SSL/TLS mutual authentication For the scenario depicted in Figure 58 on page 405, the SSL/TLS
connection between the intermediate and the target server is configured for
mutual authentication. The SSL/TLS configuration can be summarized as
follows:

• Intermediate server SSL/TLS configuration—the intermediate server
requires confidentiality, message integrity, and the
EstablishTrustInTarget SSL/TLS association option. An X.509
certificate is provided, which enables the intermediate server to be
authenticated both by the client and by the target server.

• Target server SSL/TLS configuration—the server requires
confidentiality, message integrity, and the EstablishTrustInClient
SSL/TLS association option. An X.509 certificate is provided, which
enables the target server to be authenticated by the intermediate
server.

See “Sample Intermediate Server Configuration” on page 415 for a detailed
example of the SSL/TLS configuration in this scenario.

See “SSL/TLS Administration” on page 245 for complete details of
configuring and administering SSL/TLS.

Setting certificate constraints In the scenario depicted in Figure 58 on page 405, the target server grants
a special type of privilege (backward trust) to the intermediate server—that
is, the target accepts identities asserted by the intermediate without getting
 408

SSL/TLS Prerequisites
the chance to authenticate these identities itself. It is, therefore,
recommended to set the certificate constraints policy on the target server to
restrict the range of applications that can connect to it.

The certificate constraints policy prevents connections being established to
the target server, unless the ASN.1 Distinguished Name from the subject
line of the incoming X.509 certificate conforms to a certain pattern.

See “Applying Constraints to Certificates” on page 350 for further details.

Principal sponsor configuration In this scenario, the SSL/TLS principal sponsor needs to be enabled in the
intermediate server and in the target server.

See “Specifying an Application’s Own Certificate” on page 337 and
“Providing a Certificate Pass Phrase” on page 342 for further details.

Note: The SSL/TLS principal sponsor is completely independent of the
CSIv2 principal sponsor (see “Providing a Username and Password” on
page 394). It is possible, therefore, to enable both of the principal
sponsors within the same application.
409

CHAPTER 18 | Configuring CSIv2 Identity Assertion
Enabling CSIv2 Identity Assertion

Overview Based on the sample scenario depicted in Figure 58 on page 405, this
section describes the basic configuration variables that enable CSIv2
identity assertion. These variables on their own, however, are by no means
sufficient to configure a system to use CSIv2 identity assertion. For a
complete example of configuring CSIv2 identity assertion, see “Sample
Configuration” on page 412.

Loading the CSI plug-in To enable CSIv2, you must include the csi plug-in in the orb_plugins list in
your Orbix configuration. The binding:client_binding_list and
binding:server_binding_list must also be initialized with the proper list
of interceptor combinations.

Sample settings for these configuration variables can be found in the
demos.tls.csiv2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Intermediate server configuration The intermediate server can be configured to support CSIv2 identity
assertion, as follows:

Orbix configuration file
csiv2 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 ...
};

Orbix configuration file
policies:csi:attribute_service:client_supports =

["IdentityAssertion"];
 410

Enabling CSIv2 Identity Assertion
Intermediate server CSIv2
association options

Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:client_supports list indicates that the
application supports CSIv2 identity assertion when acting as a client.

Target server configuration The target server can be configured to support CSIv2 identity assertion, as
follows:

Target server CSIv2 association
options

Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:target_supports list indicates that the
application supports CSIv2 identity assertion when acting as a server.

Orbix configuration file
policies:csi:attribute_service:target_supports =

["IdentityAssertion"];
411

CHAPTER 18 | Configuring CSIv2 Identity Assertion
Sample Configuration

Overview This section provides complete sample configurations, covering the client,
the intermediate server, and the target server, for the scenario described in
“CSIv2 Identity Assertion Scenario” on page 404.

In this section This section contains the following subsections:

Sample Client Configuration page 413

Sample Intermediate Server Configuration page 415

Sample Target Server Configuration page 417
 412

Sample Configuration
Sample Client Configuration

Overview This section describes a sample client configuration for the CSIv2 identity
assertion scenario. In this part of the scenario, the client is configured to use
CSIv2 authentication over transport, as follows:

• The iiop_tls and csi plug-ins are loaded into the application.

• The client supports the SSL/TLS EstablishTrustInTarget association
option.

• The client supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

• The username and password are specified using the CSIv2 principal
sponsor.

Configuration sample The following sample shows the configuration of a client application that
uses CSIv2 authentication over transport to authenticate a user, Paul (using
the csiv2.client.paul ORB name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 client
 {
 policies:iiop_tls:client_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];
413

CHAPTER 18 | Configuring CSIv2 Identity Assertion
 paul
 {
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Paul", "password=password", "domain=DEFAULT"];
 };
 };
};
 414

Sample Configuration
Sample Intermediate Server Configuration

Overview This section describes a sample intermediate server configuration for CSIv2
identity assertion which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• In the role of server, the intermediate server supports the SSL/TLS
EstablishTrustInTarget and EstablishTrustInClient association
options.

• In the role of client, the intermediate server supports the SSL/TLS
EstablishTrustInTarget and EstablishTrustInClient association
options.

• The intermediate server’s X.509 certificate is specified using the
SSL/TLS principal sponsor.

• In the role of server, the intermediate server supports the CSIv2
authentication over transport EstablishTrustInClient association
option.

• In the role of client, the intermediate server supports the CSIv2
IdentityAssertion association option.

Configuration sample The following sample shows the configuration of an intermediate server
application that supports CSIv2 authentication over transport (when acting
as a server) and identity assertion (when acting as a client). In this example,
the server executable should use the csiv2.intermed_server ORB name:

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
415

CHAPTER 18 | Configuring CSIv2 Identity Assertion
 intermed_server
 {
 policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 policies:iiop_tls:client_secure_invocation_policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\art\6.0\etc\tls\x509\certs\demos\b
ank_server.p12", "password=bankserverpass"];

 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:authentication_service =
"csiv2.AuthenticationServiceObject";

 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

 };
};
 416

Sample Configuration
Sample Target Server Configuration

Overview This section describes a sample target server configuration for CSIv2 identity
assertion which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• The server supports the SSL/TLS EstablishTrustInTarget and
EstablishTrustInClient association options.

• The server requires the SSL/TLS EstablishTrustInClient association
option.

• The server’s X.509 certificate is specified using the SSL/TLS principal
sponsor.

• The intermediate server supports the CSIv2 IdentityAssertion
association option.

Configuration sample The following sample shows the configuration of a target server application
that supports identity assertion (using the csiv2.target_server ORB
name).

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 target_server
 {
 policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
417

CHAPTER 18 | Configuring CSIv2 Identity Assertion
 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\art\6.0\etc\tls\x509\certs\demos\b
ank_server.p12", "password=bankserverpass"];

 policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

 };
};
 418

Part V
CORBA Security

Programming

In this part This part contains the following chapters:

Programming Policies page 421

Authentication page 435

Validating Certificates page 473

CHAPTER 19

Programming
Policies
You can customize the behavior of secure CORBA applications
by setting policies programmatically.

In this chapter This chapter discusses the following topics:

Setting Policies page 422

Programmable SSL/TLS Policies page 425

Programmable CSIv2 Policies page 432
421

CHAPTER 19 | Programming Policies
Setting Policies

Overview This section provides a brief overview of how to set CORBA policies by
programming. An example, in C++ and Java, is provided that shows how
to set a CORBA policy at the ORB level.

How to program CORBA policies is described in more detail in the CORBA
Programmer’s Guide.

Client-side policy levels You can set client-side policies at any of the following levels:

• ORB

• Thread

• Object (for client-side proxies).

Server-side policy levels You can set server-side policies at any of the following levels:

• ORB

• POA

Policy management As described in the CORBA Programmer’s Guide, you can set a policy at
each level using the appropriate policy management object as listed in
Table 25.

Table 25: Policy Management Objects

Policy Level Policy Management Object

ORB CORBA::PolicyManager

Thread CORBA::PolicyCurrent

POA PortableServer::POA::create_POA()

Client-side proxy (ObjectRef)._set_policy_overrides()
 422

Setting Policies
C++ Example The following C++ example shows how to set an SSL/TLS certificate
constraints policy at the ORB level:

Java Example The following Java example shows how to set an SSL/TLS certificate
constraints policy at the ORB level:

Example 33:C++ Example of Setting ORB-Level Policies

//C++
...
 CORBA::Any any;
 CORBA::PolicyList orb_policies;
 orb_policies.length(1);

1 CORBA::Object_var object =
 global_orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_mgr =
 CORBA::PolicyManager::_narrow(object);

2 IT_TLS_API::CertConstraints cert_constraints;
 cert_constraints.length(1);

3 cert_constraints[0] = CORBA::string_dup(
 "C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"
);

 any <<= cert_constraints;

4,5 orb_policies[0] = global_orb->create_policy(
 IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY, any
);

6 policy_mgr->set_policy_overrides(
 orb_policies, CORBA::ADD_OVERRIDE
);

Example 34: Java Example of Setting ORB-Level Policies

//Java
1 PolicyManager pol_manager = null;

 pol_manager = (PolicyManager)
 orb.resolve_initial_references("ORBPolicyManager");
 Any policy_value = orb.create_any();
 String[] constraint =
 {"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"};

2,3 CertConstraintsHelper.insert(policy_value, constraint);
 Policy[] policies = new Policy[1];
423

CHAPTER 19 | Programming Policies
Setting a Policy at ORB Level The programming steps in the preceding examples, “C++ Example” on
page 423 and “Java Example” on page 423, can be explained as follows:

1. Retrieve the ORB policy manager.

2. Create an instance of the policy that you are to adjust, based on the
Orbix IDL (see the CORBA Programmer’s Reference).

3. Set your new values on this policy.

4. Create an ORB policy object using the CORBA::ORB:create_policy()
operation and provide your new policy as a parameter.

5. Add the policy to a PolicyList object.

6. Use the PolicyManager::set_policy_overrides() operation to set
the new PolicyList on the ORB.

4,5 policies[0] =
 orb.create_policy(TLS_CERT_CONSTRAINTS_POLICY.value,
 policy_value);

6 pol_manager.set_policy_overrides(policies,
 SetOverrideType.SET_OVERRIDE);

Example 34: Java Example of Setting ORB-Level Policies
 424

Programmable SSL/TLS Policies
Programmable SSL/TLS Policies

Overview This section gives a brief overview of the different kinds of programmable
SSL/TLS policy and discusses how these policies interact with each other
and with policies set in configuration.

For more details of these SSL/TLS policies, consult the relevant sections of
the CORBA Programmer’s Reference.

In this section This section contains the following subsections:

Introduction to SSL/TLS Policies page 426

The QOPPolicy page 428

The EstablishTrustPolicy page 429

The InvocationCredentialsPolicy page 430

Interaction between Policies page 431
425

CHAPTER 19 | Programming Policies
Introduction to SSL/TLS Policies

Configuring or programming
policies

You can use policies to govern security behavior in Orbix and most of these
policies can be set through the Orbix configuration file (see “policies
Namespace” on page 498).

However, policies set with the configuration file only apply at the ORB level.
If you develop security-aware applications, you can add a finer level of
security to objects by programming policies in your application code.

Augmenting minimum levels of
security

You can use the CORBA policy IDL and the TLS policy IDL to refine the
security features that your objects require. Follow these steps:

1. Consider what are the minimum security levels set for objects in your
system.

2. Add to these minimum levels, by adding the available programmable
policies to your application code.

What are the minimum security
levels for objects?

You can set the minimum levels of security that objects require with secure
invocation policies. There are two types of secure invocation policy:

• Security::SecClientSecureInvocation

• Security::SecTargetSecureInvocation

You can apply values for these in the Orbix configuration file, as discussed in
“Setting Association Options” on page 304, or by programming policies.

It is important to remember that by programming policies you can only add
more security to the minimum required in the configuration; you cannot
reduce the minimum required security by programming.

Required and supported security
features

Any object, can have the following dispositions to a security feature:

• If the object requires a certain type of security, that requirement must
be complied with before a call to the object succeeds.

Note: Examples of configuring policies programmatically can be found in
the TLS policy demo, in the ASPInstallDir/asp/6.0/demos/tls/policy
directory.
 426

Programmable SSL/TLS Policies
• If the object supports a certain type of security, that security feature
can be used, but does not have to be used.
427

CHAPTER 19 | Programming Policies
The QOPPolicy

IDL definition The SecurityLevel2::QOPPolicy policy provides a way to override the
client and target secure invocation policies. You can apply four levels of
protection defined by the enumerated type, Security::QOP, defined as
follows:

Purpose The SecurityLevel2::QOPPolicy is used by security aware applications for
two purposes:

• Restricting the types of cipher suites available for consideration.

• Overriding the way in which a specific object is contacted.

Restricting cipher suites The values allowed for QOP policies are not specific enough to identify
particular cipher suites (the mechanism policy can be used for this).
However the QOPPolicy value can render certain cipher suites
inapplicable—see “Constraints Imposed on Cipher Suites” on page 322.

If you set a QOP policy to override an existing QOP policy, the applicable list
of cipher suites can be extended as a result.

Over-riding how an object is
contacted

When you set a QOP policy override for an object, this results in a new
object reference that contains the applicable policies. This means that the
QOP policy can conveniently be used to create an insecure object reference
(where allowed by the administration policies) that you can use for
operations where you wish insecure invocations to take place. The original
object reference that contains a higher quality of protection can be used for
the more sensitive operations.

//IDL
module Security {
...
 enum QOP {
 SecQOPNoProtection,
 SecQOPIntegrity,
 SecQOPConfidentiality,
 SecQOPIntegrityAndConfidentiality
 };
};
 428

Programmable SSL/TLS Policies
The EstablishTrustPolicy

Purpose You can use the SecurityLevel2::EstablishTrustPolicy to control
whether server or client authentication is to be enforced.

Both a client and target object can support this policy, meaning that, for a
client, the client is prepared to authenticate its privileges to the target, and
the target supports this.

However, you can also set this policy as required for a target policy. This
means that a client must authenticate its privileges to the target, before the
target will accept the connection.

IDL Definition The SecurityLevel2::EstablishTrustPolicy policy contains an attribute,
trust, of Security::EstablishTrust type that specifies whether trust in
client and trust in target is enabled. The Security::EstablishTrust type is
defined as follows:

Structure members This structure contains the following members:

• The trust_in_client element stipulates whether the invocation must
select credentials and mechanism that allow the client to be
authenticated to the target.

• The trust_in_target element stipulates whether the invocation must
first establish trust in the target.

//IDL
module Security {
...
 struct EstablishTrust {
 boolean trust_in_client;
 boolean trust_in_target;
 };
...
};

Note: Normally, all SSL/TLS cipher suites need to authenticate the target.
429

CHAPTER 19 | Programming Policies
The InvocationCredentialsPolicy

Purpose The SecurityLevel2::InvocationCredentialsPolicy policy forces a POA
to use specific credentials or to use specific credentials on a particular
object. When this object is returned by the get_policy() operation, it
contains the active credentials that will be used for invocations using this
target object reference.

Attribute The SecurityLevel2::InvocationCredentialsPolicy policy has a single
attribute, creds, that returns a list of Credentials objects that are used as
invocation credentials for invocations through this object reference.

Setting the policy at object level An InvocationCredentialsPolicy object can be passed to the
set_policy_overrides() operation to specify one or more Credentials
objects to be used when calling this target object, using the object reference
returned by set_policy_overrides().
 430

Programmable SSL/TLS Policies
Interaction between Policies

Upgrading security To upgrade an insecure Orbix application to be fully secure using the QOP
and EstablishTrust policies, the application must initially be configured to
support the DetectReply and the DetectMisordering association options.
This is because it is not possible to specify the DetectReplay and
DetectMisordering association options programatically, but these
association options are needed for all the SSL/TLS cipher suites. See
“Constraints Imposed on Cipher Suites” on page 322.

No downgrading of security When you specify the client secure invocation policy and the target secure
invocation policy, you are providing your application with its minimum
security requirements. These minimum requirements must be met by any
other specified policies and cannot be weakened. This means that the
following policies cannot be specified, if their values would conflict with the
corresponding SecureInvocationPolicy value:

• QOPPolicy

• MechanismPolicy

• EstablishTrustPolicy

Compatibility with the mechanism
policy value

You cannot specify values for the QOPPolicy, SecureInvocationPolicy
(client and target), or EstablishTrustPolicy, if the underlying mechanism
policy does not support it. For example, you cannot specify that
Confidentiality is required, if only NULL cipher suites are enabled in the
MechanismPolicy.
431

CHAPTER 19 | Programming Policies
Programmable CSIv2 Policies

Overview This section gives a brief overview of the programmable CSIv2 policies.
These programmable policies provide functionality equivalent to the CSIv2
configuration variables.

For complete details of the CSIv2 policies, see the description of the IT_CSI
module in the CORBA Programmer’s Reference.

CSIv2 policies The following CSIv2 policies can be set programmatically:

• Client-side CSIv2 authentication policy.

• Server-side CSIv2 authentication policy.

• Client-side CSIv2 identity assertion policy.

• Server-side CSIv2 identity assertion policy.

Client-side CSIv2 authentication
policy

You can set the client-side CSIv2 authentication policy to enable an
application to send GSSUP username/password credentials over the wire in
a GIOP service context. The programmable client-side CSIv2 authentication
policy provides functionality equivalent to setting the following configuration
variable:

policies:csi:auth_over_transport:client_supports

To create a client-side CSIv2 authentication policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_CLIENT_AS_POLICY.

• Policy data is IT_CSI::AuthenticationService.

Server-side CSIv2 authentication
policy

You can set the server-side CSIv2 authentication policy to enable an
application to receive and authenticate GSSUP username/password
credentials. The programmable server-side CSIv2 authentication policy
provides functionality equivalent to setting the following configuration
variables:

policies:csi:auth_over_transport:target_supports
policies:csi:auth_over_transport:target_requires
policies:csi:auth_over_transport:server_domain_name
policies:csi:auth_over_transport:authentication_service
 432

Programmable CSIv2 Policies
To create a server-side CSIv2 authentication policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_SERVER_AS_POLICY.

• Policy data is IT_CSI::AuthenticationService.

Client-side CSIv2 identity
assertion policy

You can set the client-side CSIv2 identity assertion policy to enable an
application to send a CSIv2 asserted identity over the wire in a GIOP service
context. The programmable client-side CSIv2 identity assertion policy
provides functionality equivalent to setting the following configuration
variable:

policies:csi:attribute_service:client_supports

To create a client-side CSIv2 identity assertion policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_CLIENT_SAS_POLICY.

• Policy data is IT_CSI::AttributeService.

Server-side CSIv2 identity
assertion policy

You can set the server-side CSIv2 identity assertion policy to enable an
application to receive a CSIv2 asserted identity. The programmable
server-side CSIv2 identity assertion policy provides functionality equivalent
to setting the following configuration variable:

policies:csi:attribute_service:target_supports

To create a server-side CSIv2 identity assertion policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_SERVER_SAS_POLICY.

• Policy data is IT_CSI::AttributeService.
433

CHAPTER 19 | Programming Policies
 434

CHAPTER 20

Authentication
The Orbix Security Framework protects your applications by
preventing principals from making calls to the system unless
they authenticate themselves.

In this chapter This chapter discusses the following topics:

Using the Principal Authenticator page 436

Using a Credentials Object page 449

Retrieving Own Credentials page 451

Retrieving Target Credentials page 457

Retrieving Received Credentials page 463
435

CHAPTER 20 | Authentication
Using the Principal Authenticator

Overview The principal authenticator is an object that associates secure identities
with a CORBA application. This section explains how to use the principal
authenticator to create various kinds of credentials.

In this section This section contains the following subsections:

Introduction to the Principal Authenticator page 437

Creating SSL/TLS Credentials page 440

Creating CSIv2 Credentials page 444
 436

Using the Principal Authenticator
Introduction to the Principal Authenticator

Overview This section describes the role of the principal authenticator object in
creating and authenticating an application’s own credentials.

Creating own credentials There are two alternative ways to create an application’s own credentials:

• By configuration—that is, by setting the principal sponsor
configuration variables. See “Specifying an Application’s Own
Certificate” on page 337.

• By programming—that is, by calling the
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation directly. This alternative is described here.

Principal A principal can be any person or code that wants to use your secure system.
The principal must be identified, for example by a user name and password,
and authenticated. Once authenticated, your system assigns credentials to
that principal, that assert the authenticated identity.

Own credentials An own credentials object, of SecurityLevel2::Credentials type,
represents a secure identity under whose authority the context is executing.
When an application invokes an operation on a remote server, it sends one
or more of its own credentials to the server in order to identify itself to the
server.

Principal authenticator The principal authenticator is a factory object that creates own credentials
and associates them with the current ORB instance. By calling the principal
authenticator’s authenticate() operation multiple times, you can associate
a list of own credentials objects with the current ORB.

Note: In terms of the CORBA Security Specification, an ORB object is
identified with a security capsule. The list of own credentials created by a
principal authenticator is implicitly associated with the enclosing security
capsule.
437

CHAPTER 20 | Authentication
Credentials sharing Normally, when you specify an own credential using the principal
authenticator, the credential is available only to the ORB that created it. By
setting the plugins:security:share_credentials_across_orbs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

Creating own credentials To create own credentials and make them available to your application,
follow these steps:

Types of credentials Using the PrincipalAuthenticator, you can create the following types of
credentials:

• SSL/TLS own credentials.

• CSIv2 own credentials.

SSL/TLS own credentials An SSL/TLS own credentials contains an X.509 certificate chain and is
represented by an object of IT_TLS_API::TLSCredentials type.

CSIv2 own credentials The contents of a CSIv2 own credentials depends on the particular
mechanism that is used, as follows:

• Username and password—if the CSIv2 authentication over transport
mechanism is used.

Step Action

1 Obtain an initial reference to the
SecurityLevel2::SecurityManager object.

2 Acquire a SecurityLevel2::PrincipleAuthenticator object
from the security manager.

3 Call the PrincipleAuthenticator::authenticate() operation
to authenticate the client principal and create a
SecurityLevel2::Credentials own credentials object.

4 If more than one type of own credentials object is needed, call
the PrincipleAuthenticator::authenticate() operation
again with the appropriate arguments.
 438

Using the Principal Authenticator
• Username only—if the CSIv2 identity assertion mechanism is used.

In both cases, the CSIv2 own credentials is represented by an object of
IT_CSI::CSICredentials type.
439

CHAPTER 20 | Authentication
Creating SSL/TLS Credentials

Overview The following authentication methods are supported for SSL/TLS:

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE—enables you to specify
the path name of a PKCS#12 file containing an X.509 certificate
chain. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_DER—enables you to specify
an X.509 certificate chain in DER-encoded PKCS#12 format. The
PKCS#12 data is provided in the form of an
IT_Certificate::DERData object. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_CERT_CHAIN—enables you to specify
the private key and certificate chain directly as
IT_Certificate::DERData and IT_Certificate::X509CertChain
objects, respectively. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_CERT_CHAIN_FILE—enables you to
specify the path name of a file containing a PEM-encoded X.509
certificate chain. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS11—enables you to specify the
provider, slot number and PIN for a PKCS#11 smart card. Not
supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_LABEL—enables you to specify the
common name (CN) from an application certificate’s subject DN. This
method can be used only in combination with the Schannel toolkit
(Windows C++ only).

C++ example In the following C++ example, a client principal passes its identity to the
principal authenticator in the form of a PKCS#12 file:

Example 35:C++ Example of SSL/TLS Authentication

//C++
int pkcs12_login(
 CORBA::ORB_ptr orb,
 const char *pkcs12_filename,
 const char *password
)

 440

Using the Principal Authenticator
{
 CORBA::Any auth_data;
 CORBA::Any* continuation_data_ign;
 CORBA::Any* auth_specific_data_ign;
 Security::AttributeList privileges; // Empty

1 SecurityLevel2::Credentials_var creds;
 Security::AuthenticationStatus status;
 IT_TLS_API::PKCS12FileAuthData p12_auth_data;
 CORBA::Object_var obj;
 SecurityLevel2::SecurityManager_var security_manager_obj;
 SecurityLevel2::PrincipalAuthenticator_var
 principal_authenticator_obj;

2 obj = orb->resolve_initial_references("SecurityManager");
 security_manager_obj = SecurityLevel2::SecurityManager::
 _narrow(obj);

3 principal_authenticator_obj =
 security_manager_obj->principal_authenticator();

 p12_auth_data.filename =
 CORBA::string_dup(pkcs12_filename);
 p12_auth_data.password =
 CORBA::string_dup(password);
 auth_data <<= p12_auth_data;

4 status = principal_authenticator_obj->authenticate(
 IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE,
 "", // The mechanism name.
 NULL, // SecurityName (not used for this method).
 auth_data, // The authentication data for this method of
 // authentication.
 privileges, // Empty list, no privileges are supported
 // by SSL.
 creds,
 continuation_data_ign, // These last two paramaters are
 auth_specific_data_ign // not used by this
 // mechanism/method combination.
);
...

Example 35:C++ Example of SSL/TLS Authentication
441

CHAPTER 20 | Authentication
C++ notes The preceding C++ example can be explained as follows:

1. Declare an empty credentials object reference to hold the security
attributes of this client if login is successful.

2. Obtain an initial reference to the SecurityManager object.

3. Acquire a PrincipleAuthenticator object from the security manager.

4. Use the PrincipleAuthenticator to authenticate the client principal.
If this operation returns a value of Security::SecAuthSuccess, the
security attributes of the authenticated object are stored in the
credentials object, creds.

Java example In the following Java example, a client principal passes its identity to the
principal authenticator in the form of a PKCS#12 file:

Example 36: Java Example of SSL/TLS Authentication

//Java
1 org.omg.SecurityLevel2.SecurityManager manager =

 (org.omg.SecurityLevel2.SecurityManager)
 orb.resolve_initial_references("SecurityManager");

2 PrincipalAuthenticator authenticator
 manager.principal_authenticator();

 Any auth_data_any = orb.create_any();

 PKCS12FileAuthData authentication_data =
 new PKCS12FileAuthData("bankserverpass", certificate);
 PKCS12FileAuthDataHelper.insert(auth_data_any,
 authentication_data);

 SecAttribute[] privileges = new SecAttribute[0];

 // Holder for the credentials returned from logging in
3 CredentialsHolder credentials = new CredentialsHolder();

 // Holders for continuation_data and auth_specific_data
 // are not used
 AnyHolder continuation_data = new AnyHolder();
 AnyHolder auth_specific_data = new AnyHolder();

 AuthenticationStatus authentication_result;
 442

Using the Principal Authenticator
Java notes The preceding Java example can be explained as follows:

1. Obtain an initial reference to the SecurityManager object.

2. Acquire a PrincipleAuthenticator object from the security manager.

3. Initialize an empty credentials holder object to hold the security
attributes of this client if login is successful.

4. Use the PrincipleAuthenticator to authenticate the client principal.
If this operation returns a value of Security::SecAuthSuccess, the
security attributes of the authenticated object are stored in the
Credentials object.

4 authentication_result = authenticator.authenticate(

IT_TLS_AUTH_METH_PKCS12_FILE.value,
 "", // mechanism empty
 "", // security name empty
 auth_data_any,
 privileges,
 credentials,
 continuation_data,
 auth_specific_data
);
...

Example 36: Java Example of SSL/TLS Authentication
443

CHAPTER 20 | Authentication
Creating CSIv2 Credentials

Overview The following authentication method is supported for CSIv2:

• IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD—enables you to
specify a GSSUP username, password, and domain. The GSSUP
authentication data is provided in the form of an
IT_CSI::GSSUPAuthData object.

C++ example Example 37 shows how to create CSIv2 credentials in C++, by supplying a
username, <user_name>, password, <password>, and authentication
domain, <domain>, to the principal authenticator’s authenticate()
operation.

Example 37:C++ Example of CSIv2 Authentication

// C++
int
set_csiv2_credential(CORBA::ORB_var orb)
{
 IT_CSI::GSSUPAuthData csi_gssup_auth_data;
 CORBA::Any auth_data;
 CORBA::Any* continuation_data_ign;
 CORBA::Any* auth_specific_data_ign;
 Security::AttributeList privileges;
 SecurityLevel2::Credentials_var creds;
 CORBA::String_var username;
 Security::AuthenticationStatus status;
 SecurityLevel2::PrincipalAuthenticator_var authenticator;

 try {
 // Get initial reference of SecurityManager
 SecurityLevel2::SecurityManager_var security_manager_obj;

 try
 {
 CORBA::Object_var obj;

1 obj = orb->resolve_initial_references(
 "SecurityManager"
);
 security_manager_obj =
 SecurityLevel2::SecurityManager::_narrow(obj);
 444

Using the Principal Authenticator
 if (CORBA::is_nil(security_manager_obj))
 {
 cerr << "Unexpected Error. Failed to initialize "
 "SecurityManager initial reference." << endl;
 }

2 authenticator =
 security_manager_obj->principal_authenticator();
 if (CORBA::is_nil(authenticator))
 {
 // Log error message (not shown) ...
 return -1;
 }
 }
 catch (const CORBA::ORB::InvalidName&)
 {
 // Log error message (not shown) ...
 return -1;
 }

 username = CORBA::string_dup("<user_name>");
3 csi_gssup_auth_data.password =

 CORBA::string_dup("<password>");
 csi_gssup_auth_data.domain =
 CORBA::string_dup("<domain>");

4 auth_data <<= csi_gssup_auth_data;
 ...

5 status = authenticator->authenticate(
 IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD,
 "", // NOT USED
 username, // GSSUP user name
 auth_data, // GSSUP auth data in an any
 privileges, // NOT USED
 creds, // returned credentials
 continuation_data_ign, // NOT USED
 auth_specific_data_ign // NOT USED
);

 if (status != Security::SecAuthSuccess)
 {
 // Log error message (not shown) ...
 return -1;
 }
 }

Example 37:C++ Example of CSIv2 Authentication
445

CHAPTER 20 | Authentication
C++ notes The preceding C++ example can be explained as follows:

1. Obtain an initial reference to the SecurityManager object.

2. Acquire a PrincipleAuthenticator object from the security manager.

3. Create a GSSUPAuthData struct containing the GSSUP password,
<password>, and domain, <domain>.

4. Insert the GSSUPAuthData struct, auth_data, into the any,
auth_data_any.

5. Call authenticate() on the PrincipleAuthenticator object to
authenticate the client principal. If the authenticate() operation
returns a value of Security::SecAuthSuccess, the security attributes
of the authenticated object are stored in creds.

Java example Example 38 shows how to create CSIv2 credentials in Java, by supplying a
username, <user_name>, password, <password>, and authentication
domain, <domain>, to the principal authenticator’s authenticate()
operation.

 catch(const CORBA::Exception& ex)
 {
 cerr << "Could not set csi credentials, " << ex << endl;
 return -1;
 }
 return 0;
}

Example 37:C++ Example of CSIv2 Authentication

Example 38: Java Example of CSIv2 Authentication

//Java
...
// Given the following prerequisites:
// orb - A reference to an org.omg.CORBA.ORB object.

1 org.omg.SecurityLevel2.SecurityManager manager =
 (org.omg.SecurityLevel2.SecurityManager)
 orb.resolve_initial_references("SecurityManager");

2 org.omg.SecurityLevel2.PrincipalAuthenticator authenticator
 = manager.principal_authenticator();
 446

Using the Principal Authenticator
 org.omg.CORBA.Any auth_data_any = orb.create_any();
3 com.iona.IT_CSI.GSSUPAuthData auth_data =

 new com.iona.IT_CSI.GSSUPAuthData(
 "<password>",
 "<domain>"
);

4 com.iona.IT_CSI.GSSUPAuthDataHelper.insert(
 auth_data_any,
 auth_data
);

 org.omg.Security.SecAttribute[] privileges
 = new org.omg.Security.SecAttribute[0];

 // Holder for the credentials returned from logging in
5 org.omg.SecurityLevel2.CredentialsHolder credentials

 = new org.omg.SecurityLevel2.CredentialsHolder();

 // Holders for continuation_data and auth_specific_data
 // are not used
 org.omg.CORBA.AnyHolder continuation_data
 = new org.omg.CORBA.AnyHolder();
 org.omg.CORBA.AnyHolder auth_specific_data
 = new org.omg.CORBA.AnyHolder();

 org.omg.Security.AuthenticationStatus authentication_result;

6 authentication_result = principal_authenticator.authenticate(
 com.iona.IT_CSI.IT_CSI_AUTH_METH_USERNAME_PASSWORD.value,
 "", // NOT USED
 "<user_name>", // GSSUP user name
 auth_data_any, // an any containing the
 // IT_CSI::GSSUPAuthData struct
 privileges, // NOT USED
 credentials, // returns the CSIv2 user credentials
 continuation_data, // NOT USED
 auth_specific_data // NOT USED
);

// Returned credentials can be accessed in ’credentials.value’
...

Example 38: Java Example of CSIv2 Authentication
447

CHAPTER 20 | Authentication
Java notes The preceding Java example can be explained as follows:

1. Obtain an initial reference to the SecurityManager object.

2. Acquire a PrincipleAuthenticator object from the security manager.

3. Create a GSSUPAuthData struct containing the GSSUP password,
<password>, and domain, <domain>.

4. Insert the GSSUPAuthData struct, auth_data, into the any,
auth_data_any.

5. Initialize an empty credentials holder object to hold the security
attributes of this client.

6. Call authenticate() on the PrincipleAuthenticator object to
authenticate the client principal. If the authenticate() operation
returns a value of Security::SecAuthSuccess, the security attributes
of the authenticated object are stored in credentials.value.
 448

Using a Credentials Object
Using a Credentials Object

What is a credentials object? A SecurityLevel2::Credentials object is a locality-constrained object that
represents a particular principal’s credential information, specific to the
execution context. A Credentials object stores security attributes, including
authenticated (or unauthenticated) identities, and provides operations to
obtain and set the security attributes of the principal it represents.

Credentials types There are three types of credentials:

• Own credentials—identifies the principal under whose authority the
context is executing. An own credential is represented by an object of
SecurityLevel2::Credentials type.

• Target credentials—identifies a remote target object. A target
credential is represented by an object of
SecurityLevel2::TargetCredentials type.

• Received credentials—identifies the principal that last sent a message
to the current execution context (for example, the principal that called
a currently executing operation). A received credential is represented
by an object of SecurityLevel2::ReceivedCredentials type.

How credentials are obtained Credentials objects are created or obtained as the result of:

• Authentication.

• Asking for a Credentials object from a SecurityLevel2::Current
object or from a SecurityLevel2::SecurityManager object.

Accessing the credentials
attributes

The security attributes associated with a Credentials object can be
obtained by calling the SecurityLevel2::Credentials::get_attributes()
operation, which returns a list of security attributes (of
Security::AttributeList type).

Standard credentials attributes Two security attribute types are supported by Orbix (of
Security::SecurityAttributeType type), as follows:
449

CHAPTER 20 | Authentication
• Security::_Public—present in every Credentials object. The value
of this attribute is always empty.

• Security::AccessId—present only if the Credentials object
represents a valid credential (containing an X.509 certificate chain). In
SSL/TLS, the value of this attribute is the string form of the subject DN
of the first certificate in the certificate chain.

Orbix-specific credentials
attributes

Orbix also enables you to access the X.509 certificate chain associated with
a Credentials object by narrowing the Credentials object to one of the
following interface types: IT_TLS_API::Credentials,
IT_TLS_API::ReceivedCredentials, or IT_TLS_API::TargetCredentials.

Retrieval method summary The different credentials types can be retrieved in the following ways:

• Retrieving own credentials—a client’s own credentials can be retrieved
from the SecurityLevel2::SecurityManager object.

• Retrieving target credentials—a client can retrieve target credentials
(if they are available) by passing the target’s object reference to the
SecurityLevel2::SecurityManager::get_target_credentials()
operation.

• Retrieving received credentials—a server can retrieve an
authenticated client’s credentials from the SecurityLevel2::Current
object.

Note: The _ (underscore) prefix in _Public is needed to avoid a
clash with the IDL keyword, public. The underscore prefix is,
however, omitted from the corresponding C++ and Java identifiers.
 450

Retrieving Own Credentials
Retrieving Own Credentials

Overview This section describes how to retrieve own credentials from the security
manager object and how to access the information contained in the own
credentials.

In this section This section contains the following subsections:

Retrieving Own Credentials from the Security Manager page 452

Parsing SSL/TLS Own Credentials page 454

Parsing CSIv2 Own Credentials page 456
451

CHAPTER 20 | Authentication
Retrieving Own Credentials from the Security Manager

Overview This section describes how to retrieve an application’s list of own credentials
from the security manager object.

The security manager object The SecurityLevel2::SecurityManager object provides access to
ORB-specific security information. The attributes and operations of the
SecurityManager object apply to the current security capsule (that is, ORB
or group of credentials-sharing ORBs) regardless of the thread of execution.

Security manager operations and
attributes

The attributes and operations on the SecurityLevel2::SecurityManager
object are described in the CORBA Programmer’s Reference.

C++ example In C++, you can retrieve an application’s own credentials list as shown in
Example 39.

The preceding code example can be described, as follows:

1. The standard string, SecurityManager, is used to obtain an initial
reference to the SecurityLevel2::SecurityManager object.

2. The list of own credentials is obtained from the own_credentials
attribute of the security manager object.

Example 39:Retrieving a C++ Application’s Own Credentials List

// C++
...

1 CORBA::Object_var obj =
 my_orb->resolve_initial_references("SecurityManager");
SecurityLevel2::SecurityManager_var security_manager_obj =

SecurityLevel2::SecurityManager::_narrow(obj);
if (CORBA::is_nil(security_manager_obj))
{
 // Error! Deal with failed narrow...
}

2 SecurityLevel2::CredentialsList_var creds_list =
 security_manager_obj->own_credentials();
...
 452

Retrieving Own Credentials
Java example In Java, you can retrieve an application’s own credentials list as shown in
Example 40.

The preceding code example can be described, as follows:

1. The standard string, SecurityManager, is used to obtain an initial
reference to the SecurityLevel2::SecurityManager object.

2. The list of own credentials is obtained from the own_credentials
attribute of the security manager object.

Example 40:Retrieving a Java Application’s Own Credentials List

// Java
...
try {

1 org.omg.CORBA.Object obj =
 my_orb.resolve_initial_references("SecurityManager");
 org.omg.SecurityLevel2.SecurityManager security_manager_obj
 = org.omg.SecurityLevel2.SecurityManagerHelper.narrow(obj);
}
catch (org.omg.CORBA.ORB.InvalidName e) {
 ...
}
catch (org.omg.CORBA.BAD_PARAM e)
{
 // Error! Deal with failed narrow...
}

2 org.omg.SecurityLevel2.Credentials[] creds_list =
 security_manager_obj.own_credentials();
...
453

CHAPTER 20 | Authentication
Parsing SSL/TLS Own Credentials

Overview This subsection explains how to access the information stored in an
SSL/TLS credentials object. If a credentials object obtained from the security
manager is of SSL/TLS type, you can narrow the credentials to the
IT_TLS_API::TLSCredentials type to gain access to its X.509 certificate
chain.

C++ example In C++, if the own credentials list contains a list of SSL/TLS credentials,
you can access the credentials as follows:

// C++
for (CORBA::ULong i=0; i < creds_list->length(); i++)
{
 // Access the i’th own credentials in the list
 IT_TLS_API::TLSCredentials_var tls_creds =
 IT_TLS_API::TLSCredentials::_narrow(creds_list[i]);
 if (CORBA::is_nil(tls_creds))
 {
 // Error! Deal with failed narrow...
 }

 // Get the first X.509 certificate in the chain
 IT_Certificate::X509Cert_var cert =
 tls_creds->get_x509_cert();

 // Examine the X.509 certificate, etc.
 ...
}

 454

Retrieving Own Credentials
Java example In Java, if the own credentials list contains a list of SSL/TLS credentials, you
can access the credentials as follows:

// Java
import com.iona.corba.IT_TLS_API.TLSCredentials;
import com.iona.corba.IT_TLS_API.TLSCredentialsHelper;
import com.iona.corba.IT_Certificate.X509Cert;
...
for (int i=0; i < creds_list.length; i++)
{
 // Access the i’th own credentials in the list
 TLSCredentials tls_creds =
 TLSCredentialsHelper.narrow(creds_list[i]);

 // Get the first X.509 certificate in the chain
 X509Cert cert =
 tls_creds.get_x509_cert();

 // Examine the X.509 certificate, etc.
 ...
}

455

CHAPTER 20 | Authentication
Parsing CSIv2 Own Credentials

Overview This subsection explains how to access the information stored in a CSIv2
credentials object. If a credentials object obtained from the security manager
is of CSIv2 type, you can narrow the credentials to the
IT_CSI::CSICredentials type.

Java example In Java, if the own credentials list contains a list of CSIv2 credentials, you
can access the credentials as follows:

// Java
import com.iona.corba.IT_CSI.CSICredentials;
import com.iona.corba.IT_CSI.CSICredentialsHelper;
import com.iona.corba.IT_CSI.CSICredentialsType;
import

com.iona.corba.IT_CSI.CSICredentialsType.GSSUPCredentials;
import

com.iona.corba.IT_CSI.CSICredentialsType.PropagatedCredential
s;

...
for (int i=0; i < creds_list.length; i++)
{
 // Access the i’th own credentials in the list
 CSICredentials csi_creds =
 CSICredentialsHelper.narrow(creds_list[i]);
 CSICredentialsType csi_type
 = csi_creds.csi_credentials_type()
 if (csi_type == GSSUPCredentials) {
 System.out.println("[" + i + "] = "
 + "credentials for CSIv2 authentication mechanism");
 }

 ...
}

 456

Retrieving Target Credentials
Retrieving Target Credentials

Overview This section describes how to retrieve the target credentials from a particular
target object and how to access the information contained in the target
credentials.

In this section This section contains the following subsections:

Retrieving Target Credentials from an Object Reference page 458

Parsing SSL/TLS Target Credentials page 461
457

CHAPTER 20 | Authentication
Retrieving Target Credentials from an Object Reference

Availability of target credentials Target credentials are available on the client side only if the client is
configured to authenticate the remote target object. For almost all SSL/TLS
cipher suites and for all SSL/TLS cipher suites currently supported by Orbix
E2A ASP this is the case.

When target credentials are available to the client, they are implicitly
associated with an object reference.

The TargetCredentials interface The SecurityLevel2::TargetCredentials interface is the standard type
used to represent a target credentials object. It is described in the CORBA
Programmer’s Reference.

Interaction with rebind policy If you are going to retrieve target credentials, you should be aware of the
possible interactions with the rebind policy.

WARNING: If you want to check the target credentials, you should ensure
that transparent rebinding is disabled by setting the
policies:rebind_policy configuration variable to NO_REBIND. Otherwise,
a secure association could close (for example, if automatic connection
management is enabled) and rebind to a different server without the client
being aware of this.
 458

Retrieving Target Credentials
C++ example In C++, you can retrieve the target credentials associated with a particular
object reference, target_ref, as shown in Example 41.

Example 41:C++ Obtaining Target Credentials

// C++
...
// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

CORBA::Object_var obj =
 my_orb->resolve_initial_references("SecurityManager");
SecurityLevel2::SecurityManager_var security_manager_obj =

SecurityLevel2::SecurityManager::_narrow(obj);
if (CORBA::is_nil(security_manager_obj))
{
 // Error! Deal with failed narrow...
}

SecurityLevel2::TargetCredentials_var target_creds =
 security_manager_obj->get_target_credentials(target_ref);
...
459

CHAPTER 20 | Authentication
Java example In Java, you can retrieve the target credentials associated with a particular
object reference, target_ref, as shown in Example 42.

Example 42: Java Obtaining Target Credentials

// Java
...
// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

try {
 org.omg.CORBA.Object obj =
 my_orb.resolve_initial_references("SecurityManager");
 org.omg.SecurityLevel2.SecurityManager security_manager_obj
 = org.omg.SecurityLevel2.SecurityManagerHelper.narrow(obj);
}
catch (org.omg.CORBA.ORB.InvalidName e) {
 ...
}
catch (org.omg.CORBA.BAD_PARAM e)
{
 // Error! Deal with failed narrow...
}

org.omg.SecurityLevel2.TargetCredentials target_creds =
 security_manager_obj.get_target_credentials(target_ref);
...
 460

Retrieving Target Credentials
Parsing SSL/TLS Target Credentials

Overview If you want to access the added value Orbix functionality for SSL/TLS target
credentials, perform this additional step after obtaining the target
credentials (otherwise, you can use the standard
SecurityLevel2::Credentials interface).

Narrow the SecurityLevel2::TargetCredentials object to the
IT_TLS_API::TLSTargetCredentials type to gain access to its X.509
certificate.

C++ example In C++, after obtaining a target credentials object, target_creds, as shown
in Example 41 on page 459, you can access the SSL/TLS specific data as
follows:

// C++
...
IT_TLS_API::TLSTargetCredentials_var tls_target_creds =
 IT_TLS_API::TLSTargetCredentials::_narrow(target_creds);
if (CORBA::is_nil(tls_target_creds))
{
 // Error! Deal with failed narrow...
}

// Get the first X.509 certificate in the chain
IT_Certificate::X509Cert_var cert =
 tls_target_creds->get_x509_cert();

// Examine the X.509 certificate, etc.
...
461

CHAPTER 20 | Authentication
Java example In Java, after obtaining a target credentials object, target_creds, as shown
in Example 42 on page 460, you can access the SSL/TLS specific data as
follows (exception handling not shown):

// Java
import com.iona.corba.IT_TLS_API.TLSTargetCredentials;
import com.iona.corba.IT_TLS_API.TLSTargetCredentialsHelper;
import com.iona.corba.IT_Certificate.X509Cert;
...
TLSTargetCredentials tls_target_creds =
 TLSTargetCredentialsHelper.narrow(target_creds);

// Get the first X.509 certificate in the chain
X509Cert cert =
 tls_target_creds.get_x509_cert();

// Examine the X.509 certificate, etc.
...
 462

Retrieving Received Credentials
Retrieving Received Credentials

Overview This section describes how to retrieve received credentials from the current
object and how to access the information contained in the received
credentials.

In this section This section contains the following subsections:

Retrieving Received Credentials from the Current Object page 464

Parsing SSL/TLS Received Credentials page 466

Parsing CSIv2 Received Credentials page 468
463

CHAPTER 20 | Authentication
Retrieving Received Credentials from the Current Object

Role of the
SecurityLevel2::Current object

A security-aware server application can obtain information about the
attributes of the calling principal through the SecurityLevel2::Current
object. The SecurityLevel2::Current object contains information about
the execution context.

The SecurityLevel2::Current
interface

The SecurityLevel2::Current interface is described in detail in the CORBA
Programmer’s Reference.

C++ example In C++, to obtain received credentials, perform the steps shown in
Example 43.

Example 43:C++ Retrieving Received Credentials

// C++
...
// In the context of an operation/attribute implementation

CORBA::Object_var obj =
my_orb->resolve_initial_references("SecurityCurrent");

SecurityLevel2::Current_var current_obj =
SecurityLevel2::Current::_narrow(obj);

if (CORBA::is_nil(current_obj))
{
 // Error! Deal with failed narrow...
}

SecurityLevel2::ReceivedCredentials_var recvd_creds =
 current_obj->received_credentials();
...
 464

Retrieving Received Credentials
Java example In Java, to obtain received credentials, perform the steps shown in
Example 44.

Example 44: Java Retrieving Received Credentials

// Java
...
// In the context of an operation/attribute implementation

try {
 org.omg.CORBA.Object obj =
 my_orb.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current current_obj
 = org.omg.SecurityLevel2.CurrentHelper.narrow(obj);
}
catch (org.omg.CORBA.ORB.InvalidName e) {
 ...
}
catch (org.omg.CORBA.BAD_PARAM e)
{
 // Error! Deal with failed narrow...
}

org.omg.SecurityLevel2.ReceivedCredentials recvd_creds =
 current_obj.received_credentials();
...
465

CHAPTER 20 | Authentication
Parsing SSL/TLS Received Credentials

Overview If you want to access the added value Orbix functionality for SSL/TLS
received credentials, perform this additional step (otherwise, you can use
the standard SecurityLevel2::Credentials interface).

Narrow the SecurityLevel2::ReceivedCredentials object to the
IT_TLS_API::TLSReceivedCredentials type to gain access to its X.509
certificate (this step is specific to Orbix).

C++ example In C++, after obtaining a received credentials object, recvd_creds, (see
Example 43 on page 464) you can access the SSL/TLS specific data as
follows:

// C++
...
IT_TLS_API::TLSReceivedCredentials_var tls_recvd_creds =
 IT_TLS_API::TLSReceivedCredentials::_narrow(recvd_creds);
if (CORBA::is_nil(tls_recvd_creds))
{
 // Error! Deal with failed narrow...
}

// Get the first X.509 certificate in the chain
IT_Certificate::X509Cert_var cert =
 tls_recvd_creds->get_x509_cert();

// Examine the X.509 certificate, etc.
...
 466

Retrieving Received Credentials
Java example In Java, after obtaining a received credentials object, recvd_creds, (see
Example 44 on page 465) you can access the SSL/TLS specific data as
follows (exception handling not shown):

// Java
import com.iona.corba.IT_TLS_API.TLSReceivedCredentials;
import com.iona.corba.IT_TLS_API.TLSReceivedCredentialsHelper;
import com.iona.corba.IT_Certificate.X509Cert;
...
TLSReceivedCredentials tls_recvd_creds =
 TLSReceivedCredentialsHelper.narrow(recvd_creds);

// Get the first X.509 certificate in the chain
X509Cert cert =
 tls_recvd_creds.get_x509_cert();

// Examine the X.509 certificate, etc.
...
467

CHAPTER 20 | Authentication
Parsing CSIv2 Received Credentials

Overview If you want to access the added value Orbix functionality for CSIv2 received
credentials, you need to narrow the generic
SecurityLevel2::ReceivedCredentials object to the
IT_CSI::CSIReceivedCredentials type. This subsection explains, with the
help of examples, how to access the CSIv2 received credentials.

CSIv2 received credentials The CSIv2 received credentials are a special case, because the CSIv2
specification allows up to three distinct credentials types to be propagated
simultaneously. A CSIv2 received credentials can, therefore, include one or
more of the following credentials types:

• Propagated identity credentials (through the CSIv2 identity assertion
mechanism).

• GSSUP credentials (through the CSIv2 authentication mechanism).

• Transport credentials (through SSL/TLS).

CSIReceivedCredentials interface Access to each of the credentials types is provided by the following
attributes of the IT_CSI::CSIReceivedCredentials interface:

// IDL
...
module IT_CSI {
...
 local interface CSIReceivedCredentials :
 IT_TLS_API::TLSReceivedCredentials, CSICredentials
 {
 readonly attribute CSICredentials gssup_credentials;
 readonly attribute CSICredentials
 propagated_identity_credentials;
 readonly attribute SecurityLevel2::Credentials
 transport_credentials;
 };
...
};
 468

Retrieving Received Credentials
Java example In Java, after obtaining a received credentials object, recvd_creds (see
Example 44 on page 465), you can access the CSIv2 specific data as
shown in Example 45. This example assumes that CSIv2 authentication is
enabled, but not CSIv2 identity assertion. Hence, no attempt is made to
access the propagated identity credentials.

Example 45: Java Parsing CSIv2 Received Credentials

// Java
import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

import com.iona.corba.IT_CSI.CSIReceivedCredentials;
import com.iona.corba.IT_CSI.CSIReceivedCredentialsHelper;
import com.iona.corba.IT_CSI.CSICredentialsType;
import com.iona.corba.IT_CSI.CSI_SERVER_AS_POLICY;
import com.iona.corba.util.OrbServicesUtility;
...
 // Get the TLS received credentials

1 CSIReceivedCredentials csi_rec_creds
 = CSIReceivedCredentialsHelper.narrow(recvd_creds);

2 Credentials transport_credentials_rec
 = csi_rec_creds.transport_credentials();

 // Select the org.omg.Security.AccessId SecAttribute type
3 AttributeType[] attributes_types =

 {
 new AttributeType(
 new ExtensibleFamily((short)0, (short)1), AccessId.value
)
 };

4 SecAttribute[] trans_attribute
 = transport_credentials_rec.get_attributes(
 attributes_types
);

5 String trans_access_id = new String(
 trans_attribute[0].value, 0, trans_attribute[0].value.length
);

 // Get the GSSUP (username/passsword) credentials
6 Credentials gssup_creds = csi_rec_creds.gssup_credentials();

7 SecAttribute[] gssup_attribute
469

CHAPTER 20 | Authentication
The preceding Java example can be explained as follows:

1. This line attempts to narrow the generic received credentials object,
recvd_creds, to the IT_CSI::CSIReceivedCredentials type. If the
received credentials object is not of this type, the narrow would fail and
a CORBA::BAD_PARAM exception would be thrown.

2. The transport_credentials attribute accessor returns a reference to
the received transport credentials (for example, SSL/TLS), which form
part of the overall CSI received credentials. If there is no secure
transport or if the client is not configured to send transport credentials,
the return value would be null.

3. This line initializes a Security::AttributeTypeList sequence (Java
org.omg.Security.AttributeType[] array) with a single attribute type
for a Security::AccessId.

4. The attribute type list created in the previous line is passed to
get_attributes() to retrieve the AccessId attribute from the received
transport credentials. The AccessId for the transport credentials is the
distinguished name of the subject of the X.509 certificate received
from the client. In other words, the AccessId identifies the invoking
client.

5. This line converts the AccessId from its native format (an octet
sequence) into a string. The result is a distinguished name in string
format (see “ASN.1 and Distinguished Names” on page 529).

This step completes the process of identifying the client using the
transport credentials portion of the CSI received credentials.

 = gssup_creds.get_attributes(attributes_types);

8 String gssup_access_id = new String(
 gssup_attribute[0].value, 0, gssup_attribute[0].value.length
);

...

Example 45: Java Parsing CSIv2 Received Credentials
 470

Retrieving Received Credentials
6. The gssup_credentials attribute accessor returns a reference to the
received GSSUP credentials. The GSSUP credentials contain an
authenticated username sent by the client using the CSIv2
authentication mechanism. If the client is not configured to use the
CSIv2 authentication mechanism, the return value would be null.

7. The get_attributes() operation is invoked to retrieve the AccessId
attribute from the received GSSUP credentials. The AccessId for the
GSSUP credentials is the client’s username.

8. This line converts the AccessId from its native format (an octet
sequence) into a string.

This step completes the process of identifying the client using the
GSSUP portion of the CSI received credentials.
471

CHAPTER 20 | Authentication
 472

CHAPTER 21

Validating
Certificates
During secure authentication, Orbix TLS checks the validity of
an application’s certificate. This chapter describes how Orbix
validates a certificate and how you can use the Orbix API to
introduce additional validation to your applications.

In this chapter This chapter discusses the following topics:

Overview of Certificate Validation page 474

The Contents of an X.509 Certificate page 477

Parsing an X.509 Certificate page 478

Controlling Certificate Validation page 480

Obtaining an X.509 Certificate page 489
473

CHAPTER 21 | Validating Certificates
Overview of Certificate Validation

Certificate validation The Orbix API allows you to define a certificate validation policy that
implements custom validation of certificates. During authentication, Orbix
validates a certificate and then passes it to a certificate validation object, if
you have specified a certificate validation policy. This functionality is useful
in systems that have application-specific requirements for the contents of
each certificate.

Validation process A server sends its certificate to a client during a TLS handshake, as follows:

1. The server obtains its certificate (for example, by reading it from a local
file) and transmits it as part of the handshake.

2. The client reads the certificate from the network, checks the validity of
its contents, and either accepts or rejects the certificate.

Figure 59: Validating a Certificate

2 . T L S A cc e p ts
o r R e jec ts
C e rtif ica te

1 . T L S C h e c k s
C e rtif ic a te

C lie n t

A p p lic a tio n C o d e

O rb ix 2 0 0 0 S S L /
T LS

S e rve r

A p p lic a tio n C o de

O rb ix 2 0 0 0 S S L /T LS

::::
::::
 474

Overview of Certificate Validation
Default validation The default certificate validation in Orbix checks the following:

• The certificate is a validly constructed X.509 certificate.

• The signature is correct for the certificate.

• The certificate has not expired and is currently valid.

• The certificate chain is validly constructed, consisting of the peer
certificate plus valid issuer certificates up to the maximum allowed
chain depth.

• If the CertConstraintsPolicy has been set, the DN of the received
peer certificate is checked to see if it passes any of the constraints in
the policy conditions. This applies only to the application certificate,
not the CA certificates in the chain.

Custom validation For some applications, it is necessary to introduce additional validation. For
example, your client programs might check that each server uses a specific,
expected certificate (that is, the distinguished name matches an expected
value). Using Orbix, you can perform custom validation on certificates by
registering an IT_TLS_API::CertValidatorPolicy and implementing an
associated IT_TLS::CertValidator object.

Example of custom validation For example, Figure 60 shows the steps followed by Orbix to validate a
certificate when a CertValidatorPolicy has been registered on the client
side:

1. The standard validation checks are applied by Orbix.

2. The certificate is then passed to an IT_TLS::CertValidator callback
object that performs user-specified validation on the certificate.

3. The user-specified CertValidator callback object can decide whether
to accept or reject the certificate.
475

CHAPTER 21 | Validating Certificates
4. Orbix accepts or rejects the certificate.

Figure 60: Using a CertValidator Callback

1 . T LS C h e ck s
C e rtif ic a te

2 . C e r tV a lid a to r
C a llb a c k C h e c k s

C e rtif ic a te

4 . T L S A cc e p ts
o r R e jec ts
C e rtif ica te

3 .
C e rtV a lid a to r

C a llb a ck
A c c ep ts o r

R e je c ts
C e rtif ic a te

C lie n t

A p p lic a tio n C o d e

O rb ix 2 0 0 0 S S L /T LS

S e rv e r

A p p lic a tio n C o d e

O rb ix 2 0 0 0 S S L /
T L S

C e rtV a lid a to r
C a llb a c k

::::
::::
 476

The Contents of an X.509 Certificate
The Contents of an X.509 Certificate

Purpose of a certificate An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate).

Certificate syntax A certificate is encoded in Abstract Syntax Notation One (ASN.1), a
standard syntax for describing messages that can be sent or received on a
network.

Certificate contents The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

• A common name that identifies the subject.

• The public key associated with the common name.

• The name of the user who created the certificate, which is known as
the subject name.

• Information about the certificate issuer.

• The signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.
477

CHAPTER 21 | Validating Certificates
Parsing an X.509 Certificate

Parsing APIs Two distinct APIs are used to parse an X.509 certificate, depending on
whether you program in C++ or Java, as follows:

• C++ parsing uses the interfaces defined in the IT_Certificate IDL
module.

• Java parsing uses the java.security.cert package and a subset of
the interfaces in the IT_Certificate IDL module.

C++ parsing Orbix E2A ASP provides a high-level set of C++ classes that provide the
ability to parse X.509 v3 certificates, including X.509 v3 extensions. When
writing your certificate validation functions, you use these classes to
examine the certificate contents.

The C++ parsing classes are mapped from the interfaces appearing in the
IT_Certificate IDL module—see the CORBA Programmer’s Reference.

Java parsing Orbix E2A ASP allows you to use the X.509 functionality provided by the
JDK.

If you develop Java applications, only the following IDL interfaces are
relevant:

• IT_Certificate::Certificate

• IT_Certificate::X509Cert

• IT_Certificate::X509CertificateFactory

To access the information in a Java X.509 certificate, perform the following
steps:

1. Extract the DER data from the certificate using the
IT_Certificate::Certificate::encoded_form attribute.

2. Pass the DER data to the
com.iona.corba.tls.cert.CertHelper.bytearray_to_cert() method
to obtain a java.security.cert.Certificate object.

3. Use the java.security.cert package to examine the certificate.
 478

Parsing an X.509 Certificate
Working with distinguished
names in C++

An X.509 certificate uses ASN.1 distinguished name structures to store
information about the certificate issuer and subject. A distinguished name
consists of a series of attribute value assertions (AVAs). Each AVA
associates a value with a field from the distinguished name.

For example, the distinguished name for a certificate issuer could be
represented in string format as follows:

/C=IE/ST=Co. Dublin/L=Dublin/O=IONA/OU=PD/CN=IONA

In this example, AVAs are separated by the / character. The first field in the
distinguished name is C, representing the country of the issuer, and the
corresponding value is the country code IE. This example distinguished
name contains six AVAs.

Extracting distinguished names
from certificates in C++

Once you have acquired a certificate, the IT_Certificate::Certificate
interface permits you to retrieve distinguished names using the
get_issuer_dn_string() and get_subject_dn_string() operations. These
operations return an object derived from the IT_Certificate::AVAList
interface. The AVAList interface gives you access to the AVA objects
contained in the distinguished name. For more information on these
interfaces, see the CORBA Programmer’s Reference.

Working with X.509 extensions in
C++

Some X.509 v3 certificates include extensions. These extensions can
contain several different types of information. You can use the
IT_Certificate::ExtensionList and IT_Certificate::Extension
interfaces described in the CORBA Programmer’s Reference to retrieve this
information.
479

CHAPTER 21 | Validating Certificates
Controlling Certificate Validation

Policies used for certificate
validation

You can control how your applications handle certificate validation using the
following Orbix policies:

In this section This section contains the following subsections:

CertConstraintsPolicy Use this policy to apply conditions that peer
X.509 certificates must meet to be
accepted.

CertificateValidatorPolicy Use this policy to create customized
validations of peer certificate chains.

Certificate Constraints Policy page 481

Certificate Validation Policy page 485
 480

Controlling Certificate Validation
Certificate Constraints Policy

Constraints applied to
distinguished names

You can impose rules about which peer certificates to accept using
certificate constraints. These are conditions imposed on a received
certificate subject's distinguished name (DN). Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN). Constraints are not
applied to all certificates in a received certificate chain, but only to the first
in the list, the peer application certificate.

Alternatives ways to set the
constraints policy

Use the certificate constraints policy to apply these conditions. You can set
this policy in two ways:

Setting the CertConstraintsPolicy
by configuration

You can set the CertConstraintsPolicy in the configuration file. For
example:

"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"

In this case, the same constraints string applies to all POAs. If you need
different constraints for different POAs then you must supply the policy at
POA creation time. For more details, see “Applying Constraints to
Certificates” on page 350.

Setting the CertConstraintsPolicy
by programming

When you specify a CertConstraintsPolicy object on an ORB
programatically, objects created by that ORB apply the certificate
constraints to all applications that connect to it.

By configuration This allows you to set constraints at the granularity
of an ORB. The same constraints are applied to both
client and server peer certificates.

By programming This allows you to set constraints by ORB, thread,
POA, or object reference. You can also differentiate
between client and server certificates when
specifying constraints.
481

CHAPTER 21 | Validating Certificates
In the following example, the certificate constraints string specified only
allows clients from the Administration Organization unit to connect. The
administration user is the only client that has a certificate that satisfies this
constraint.

C++ example The following C++ example shows how to set the CertConstraintsPolicy
programmatically:

C++ example description The preceding C++ example can be explained as follows:

1. Create a PolicyList object.

2. Retrieve the PolicyManager object.

3. Instantiate a CertConstraints data instance (string array).

Note: This certificate constraints policy is only relevant if the target object
supports client authentication.

Example 46:C++ Example of Setting the CertConstraintsPolicy

//C++
...
 CORBA::Any any;

1 CORBA::PolicyList orb_policies;
 orb_policies.length(1);

2 CORBA::Object_var object =

global_orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_mgr = CORBA::PolicyManager::
 _narrow(object);

3 IT_TLS_API::CertConstraints cert_constraints;
 cert_constraints.length(1);

 cert_constraints[0] =

CORBA::string_dup("C=US,ST=Massachusetts,
 O=ABigBank*,OU=Administration");
 any <<= cert_constraints;

4 orb_policies[0] = global_orb->create_policy(IT_TLS_API::
 TLS_CERT_CONSTRAINTS_POLICY, any);

5 policy_mgr->set_policy_overrides(orb_policies, CORBA::
 ADD_OVERRIDE);
 482

Controlling Certificate Validation
4. Create a policy using the CORBA::ORB::create_policy() operation.
The first parameter to this operation sets the policy type to
TLS_CERT_CONSTRAINTS_POLICY, and the second is an Any
containing the custom policy.

5. Use the PolicyManager to add the new policy override to the Orb
scope

Java example The following Java example shows how to set the CertConstraintsPolicy
programmatically:

Example 47: Java Example of Setting the CertConstraintsPolicy (Sheet 1 of
2)

// Java
...
// OMG imports
import org.omg.CORBA.ORBPackage.InvalidName;
import org.omg.CORBA.Policy;
import org.omg.CORBA.PolicyManager;
import org.omg.CORBA.PolicyManagerHelper;
import org.omg.CORBA.SetOverrideType;
...
// IONA specific security imports
import com.iona.corba.IT_TLS_API.CertConstraintsHelper;
import com.iona.corba.IT_TLS_API.TLS_CERT_CONSTRAINTS_POLICY;

public class Server
{
 public static void main(String args[])
 {
 try
 {
 ...
 PolicyManager pol_manager = null;
 try
 {

1 pol_manager = PolicyManagerHelper.narrow(
 orb.resolve_initial_references("ORBPolicyManager")
);
 }
 catch(InvalidName invalid_name)
 {
 System.err.println(
 "x509 initial reference not set. Check plugin list"
483

CHAPTER 21 | Validating Certificates
Java example description The preceding Java example can be explained as follows:

1. Retrieve the PolicyManager object.

2. Instantiate a CertConstraints data instance (string array).

3. Insert the constraint into policy_value (an Any).

4. Create a policy using the CORBA::ORB::create_policy() operation.
The first parameter to this operation sets the policy type to
TLS_CERT_CONSTRAINTS_POLICY, and the second is an Any
containing the custom policy.

5. Use the PolicyManager to add the new policy override to the ORB
scope

);
 System.exit(1);
 }
 catch(org.omg.CORBA.BAD_PARAM exc)
 {
 System.err.println("narrow to PolicyManager failed.");
 System.exit(1);
 }

 org.omg.CORBA.Any policy_value = orb.create_any();
2 String[] constraint =

{"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"};
3 CertConstraintsHelper.insert(policy_value, constraint);

 Policy[] policies = new Policy[1];
4 policies[0] = orb.create_policy(

 TLS_CERT_CONSTRAINTS_POLICY.value,
 policy_value
);

5 pol_manager.set_policy_overrides(
 policies,
 SetOverrideType.SET_OVERRIDE
);

Example 47: Java Example of Setting the CertConstraintsPolicy (Sheet 2 of
2)
 484

Controlling Certificate Validation
Certificate Validation Policy

Certificate validation Your applications can perform customized validation of peer certificate
chains. This enables them, for example, to perform special validation on
x.509 v3 extensions or do automatic database lookups to validate subject
DNs.

Restrictions on custom certificate
validation

The customized certificate validation policy cannot make Orbix accept a
certificate that the system has already decided is invalid. It can only reject a
certificate that would otherwise have been accepted.

Customizing your applications To customize your applications, perform the following steps:

Your customized policy is used in addition to the default
CertValidatorPolicy.

Derive a class from the
CertValidator signature class

In the following example, an implementation class is derived from the
IT_TLS::CertValidator interface:

Step Action

1 Derive a class from the CertValidator signature class.

2 Override the validate_cert_chain() operation.

3 Specify the CertValidatorPolicy on the ORB.

//C++
class CustomCertValidatorImpl :
 public virtual IT_TLS::CertValidator,
 public virtual CORBA::LocalObject

{
 public:

 CORBA::Boolean
 validate_cert_chain(
 CORBA::Boolean chain_is_valid,
 const IT_Certificate::X509CertChain& cert_chain,
485

CHAPTER 21 | Validating Certificates
The class contains your custom version of the validate_cert_chain()
function.

Override the validate_cert_chain()
operation

The following an example custom validation function simply retrieves a
name from a certificate:

 const IT_TLS::CertChainErrorInfo& error_info
);
};

Example 48:C++ Example of Overriding validate_cert_chain()

//C++
CORBA::Boolean
CustomCertValidatorImpl::validate_cert_chain(
 CORBA::Boolean chain_is_valid,
 const IT_Certificate::X509CertChain& cert_chain,
 const IT_TLS::CertChainErrorInfo& error_info
)
{
 if (chain_is_valid)
 {
 CORBA::String_var CN;

1 IT_Certificate::X509Cert_var cert = cert_chain[0];

2 IT_Certificate::AVAList_var subject =
 cert->get_subject_avalist();

 IT_Certificate::Bytes* subject_string_name;
3 subject_string_name = subject->convert(IT_Certificate::

 IT_FMT_STRING);

 int len = subject_string_name->length();
 char *str_name = new char[len];
 for (int i = 0; i < len; i++){
 str_name[i] = (char)((*subject_string_name)[i]);
 }
 }
 return chain_is_valid;
}

 486

Controlling Certificate Validation
The preceding C++ example can be explained as follows:

1. The certificate is retrieved from the certificate chain.

2. An AVAList (see “Working with distinguished names in C++” on
page 479) containing the distinguished name is retrieved from the
certificate.

3. The distinguished name is converted to string format.

Specify the CertValidatorPolicy on
the ORB

Once you have devised your custom validation class, create an instance of it
and apply it as a policy to the Orb with the policy manager, as shown in the
following example:

Example 49:C++ Example of Setting the CertValidatorPolicy

//C++
int main(int argc, char* argv[])
{
 CORBA::PolicyTypeSeq types;
 CORBA::PolicyList policies(1);
 CORBA::Any policy_any;
 CORBA::Object_var object;
 CORBA::PolicyManager_var policy_mgr;
 IT_TLS::CertValidator_ptr custom_cert_val_obj;

1 policies.length(1);
 types.length(1);

2 types[0] = IT_TLS_API::TLS_CERT_VALIDATOR_POLICY;

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 object = orb->resolve_initial_references("ORBPolicyManager");
3 policy_mgr = CORBA::PolicyManager::_narrow(object);

 // set cert validator policy at ORB scope
4 custom_cert_val_obj = new CustomCertValidatorImpl;

 policy_any <<= custom_cert_val_obj;
5 policies[0] =

orb->create_policy(IT_TLS_API::TLS_CERT_VALIDATOR_POLICY,
policy_any);

6 policy_mgr->set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);
487

CHAPTER 21 | Validating Certificates
As can be seen from the above example, you can apply the new
CertValidator policy to the Orb in the same manner as any other
Orbix2000 policy:

1. Create a CORBA::PolicyList object.

2. Set the type of the appropriate policy slot in the PolicyList to
TLS_CERT_VALIDATOR_POLICY. In this example, the first slot is
chosen.

3. Retrieve the CORBA::PolicyManager object.

4. Instantiate the custom IT_TLS::CertValidator policy object.

5. Create a policy using the CORBA::ORB::create_policy() operation.
The first parameter to this operation sets the policy type to
TLS_CERT_VALIDATOR_POLICY, and the second is a CORBA::Any
containing the custom policy.

6. Use the PolicyManager to add the new policy override to the ORB
scope.

 ...
}

Example 49:C++ Example of Setting the CertValidatorPolicy
 488

Obtaining an X.509 Certificate
Obtaining an X.509 Certificate

Alternative ways of obtaining
certificates

You can obtain a certificate in the following ways:

• Using the IT_TLS_API::TLSCredentials interface, which enables you
to retrieve X.509 certificates from a credentials object—see “Retrieving
Own Credentials” on page 451.

• The IT_Certificate::X509CertChain object that Orbix passes to the
IT_TLS::CertValidator::validate_cert_chain() operation.

• Using the IT_Certificate::X509CertificateFactory interface, which
creates an IT_Certificate::X509Cert object from DER data.

The certificate can be accessed through the IT_Certificate::X509Cert
interface. For more For more information on this interface, see the CORBA
Programmer’s Reference.
489

CHAPTER 21 | Validating Certificates
 490

Part VI
Web Services Security

Programming

In this part This part contains the following chapters:

Web Services Security API page 493

CHAPTER 22

Web Services
Security API
This chapter describes how to program Web services security,
using IONA’s proprietary Web services API.

In this chapter This chapter discusses the following topics:

Secure Client API page 494

Web Services Client Demonstration page 495
493

CHAPTER 22 | Web Services Security API
Secure Client API

Overview This section provides a brief overview of the security methods available to
Web services clients. The main purpose of the API is to enable clients to
specify a username and password programmatically.

Setting a username and password A client can set its username and password using methods defined on an
com.iona.webservices.soap.client.security.ClientSecurity Java
interface. The following methods are defined:

// Java - in ClientSecurity
void setUserName(String user);
void setPassword(String pass);

Single sign-on token After receiving a username and password from the client, the Web services
container contacts the Orbix security service to authenticate the
username/password combination. If authentication is successful, the Orbix
security service returns a single sign-on (SSO) token to the Web services
container. The Web services container then embeds the SSO token in a
SOAP reply message and sends it back to the client.

Accessing a single sign-on token After the client has been authenticated by the remote Web services
container, the SSO token becomes accessible to the client. The following
methods defined on the
com.iona.webservices.soap.client.security.ClientSecurity Java
interface provide access to the SSO token:

// Java - in ClientSecurity
String getToken();
void setToken(String token);

References For more details of the security APIs, see the Web Services Reference
Guide.
 494

Web Services Client Demonstration
Web Services Client Demonstration

Overview This subsection explains how to build and run a Web services client that
exploits the client-side security API.

Running the demonstration Follow these steps to create a client that can access a Web service.

1. Generate a J2SE client for the secured Web service by following the
instructions in the Web Services User’s Guide.

This generates an interface and proxy demonstration code. For
example, when you create a J2SE client for the Web service named
Finance, the files named FinanceInterface.java and
FinanceProxyDemo.java are generated.

2. Uncomment the part of the generated demonstration code as shown in
the following example.

3. Compile and run the J2SE client code following the instructions in
Web Services User’s Guide.

...
//uncomment for basic authentication support
/*
ClientSecurity security =

WebServiceProxy.getClientSecurity(proxy);
security.setUserName("admin");
security.setPassword("admin");
*/
...
495

CHAPTER 22 | Web Services Security API
 496

Part VII
iSF Programming

In this part This part contains the following chapters:

Developing an iSF Adapter page 269

CHAPTER 23

Developing an iSF
Adapter
An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate iSF with any third-party
enterprise security service. This chapter explains how to
develop and configure a custom iSF adapter implementation.

In this chapter This chapter discusses the following topics:

iSF Security Architecture page 500

iSF Server Module Deployment Options page 504

iSF Adapter Overview page 506

Implementing the IS2Adapter Interface page 507

Deploying the Adapter page 517
499

CHAPTER 23 | Developing an iSF Adapter
iSF Security Architecture

Overview This section introduces the basic components and concepts of the iSF
security architecture, as follows:

• Architecture.

• iSF client.

• iSF client SDK.

• Orbix Security Service.

• iSF adapter SDK.

• iSF adapter.

• Example adapters.
 500

iSF Security Architecture
Architecture Figure 61 gives an overview of the Orbix Security Service, showing how it
fits into the overall context of a secure system.

iSF client An iSF client is an application that communicates with the Orbix Security
Service to perform authentication and authorization operations. The
following are possible examples of iSF client applications:

• CORBA servers.

• Artix servers.

• Any server that has a requirement to authenticate its clients.

Hence, an iSF client can also be a server. It is a client only with respect to
the Orbix Security Service.

Figure 61: Overview of the Orbix Security Service

Java
application

iSF Server Module

iSF client SDK

C / C++
application

iSF client SDK

iSF adapter

iSF adapter SDK

Third-party security service

Orbix Security Service
501

CHAPTER 23 | Developing an iSF Adapter
iSF client SDK The iSF client SDK is the programming interface that enables the iSF clients
to communicate (usually remotely) with the Orbix Security Service.

Orbix Security Service The Orbix Security Service is a standalone process that acts a thin wrapper
layer around the iSF server module. On its own, the iSF server module is a
Java library which could be accessed only through local calls. By embedding
the iSF server module within the Orbix Security Service, however, it
becomes possible to access the security service remotely.

iSF server module The iSF server module is a broker that mediates between iSF clients, which
request the security service to perform security operations, and a third-party
security service, which is the ultimate repository for security data.

The iSF server module has the following special features:

• A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.

• A single sign-on feature with user session caching.

iSF adapter SDK The iSF adapter SDK is the Java API that enables a developer to create a
custom iSF adapter that plugs into the iSF server module.

iSF adapter An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate with any third-party enterprise security service. An
iSF adapter implementation provides access to a repository of authentication
data and (optionally) authorization data as well.

Note: The iSF client SDK is only used internally. It is currently not
available as a public programming interface.
 502

iSF Security Architecture
Example adapters The following standard adapters are provided with Orbix:

• Lightweight Directory Access Protocol (LDAP).

• File—a simple adapter implementation that stores authentication and
authorization data in a flat file.

WARNING: The file adapter is intended for demonstration purposes only.
It is not industrial strength and is not meant to be used in a production
environment.
503

CHAPTER 23 | Developing an iSF Adapter
iSF Server Module Deployment Options

Overview The iSF server module, which is fundamentally implemented as a Java
library, can be deployed in one of the following ways:

• CORBA service.

CORBA service The iSF server module can be deployed as a CORBA service (Orbix Security
Service), as shown in Figure 62. This is the default deployment model for
the iSF server module in Orbix. This deployment option has the advantage
that any number of distributed iSF clients can communicate with the iSF
server module over IIOP/TLS.

With this type of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server (just like any of the other
standard Orbix services). The Orbix Security Service can be launched by the
itsecurity executable and basic configuration is set in the
iona_services.security scope of the Orbix configuration file.

Figure 62: iSF Server Module Deployed as a CORBA Service

Application

iSF Security Module

iSF client SDK

iSF adapter

CORBA Service

IDL Interface

IIOP/TLS
 504

iSF Server Module Deployment Options
505

CHAPTER 23 | Developing an iSF Adapter
iSF Adapter Overview

Overview This section provides an overview of the iSF adapter architecture. The
modularity of the iSF server module design makes it relatively
straightforward to implement a custom iSF adapter written in Java.

Standard iSF adapters IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

• File adapter.

• LDAP adapter.

Custom iSF adapters The iSF server module architecture also allows you to implement your own
custom iSF adapter and use it instead of a standard adapter.

Main elements of a custom iSF
adapter

The main elements of a custom iSF adapter are, as follows:

• Implementation of the ISF Adapter Java interface.

• Configuration of the ISF adapter using the iSF properties file.

Implementation of the ISF
Adapter Java interface

The only code that needs to be written to implement an iSF adapter is a
class to implement the IS2Adapter Java interface. The adapter
implementation class should respond to authentication requests either by
checking a repository of user data or by forwarding the requests to a
third-party enterprise security service.

Configuration of the ISF adapter
using the iSF properties file

The iSF adapter is configured by setting Java properties in the
is2.properties file. The is2.properties file stores two kinds of
configuration data for the iSF adapter:

• Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 518.

• Configuration of the adapter itself—see “Setting the Adapter
Properties” on page 519.
 506

Implementing the IS2Adapter Interface
Implementing the IS2Adapter Interface

Overview The com.iona.security.is2adapter package defines an IS2Adapter Java
interface, which a developer must implement to create a custom iSF
adapter. The methods defined on the ISFAdapter class are called by the iSF
server module in response to requests received from iSF clients.

This section describes a simple example implementation of the IS2Adapter
interface, which is capable of authenticating a single test user with
hard-coded authorization properties.

Test user The example adapter implementation described here permits authentication
of just a single user, test_user. The test user has the following
authentication data:

Username: test_user
Password: test_password

and the following authorization data:

• The user’s global realm contains the GuestRole role.

• The user’s EngRealm realm contains the EngineerRole role.

• The user’s FinanceRealm realm contains the AccountantRole role.

iSF adapter example Example 50 shows a sample implementation of an iSF adapter class,
ExampleAdapter, that permits authentication of a single user. The user’s
username, password, and authorization are hard-coded. In a realistic
system, however, the user data would probably be retrieved from a database
or from a third-party enterprise security system.

Example 50:Sample ISF Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;
import com.iona.security.common.Role;
import com.iona.security.is2adapter.IS2Adapter;
import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;
import java.util.ArrayList;
import java.security.cert.X509Certificate;
507

CHAPTER 23 | Developing an iSF Adapter
import org.apache.log4j.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;

public class ExampleAdapter implements IS2Adapter {

 public final static String EXAMPLE_PROPERTY =
"example_property";

 public final static String ADAPTER_NAME = "ExampleAdapter";

1 private final static String MSG_EXAMPLE_ADAPTER_INITIALIZED
= "initialized";

 private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";

 private final static String MSG_EXAMPLE_ADAPTER_AUTHENTICATE
= "authenticate";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM =
"authenticate_realm";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK = "authenticateok";

 private final static String MSG_EXAMPLE_ADAPTER_GETAUTHINFO
= "getauthinfo";

 private final static String
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK = "getauthinfook";

 private ResourceBundle _res_bundle = null;

2 private static Logger LOG =
Logger.getLogger(ExampleAdapter.class.getName());

 public ExampleAdapter() {
3 _res_bundle = ResourceBundle.getBundle("ExampleAdapter");

 LOG.setResourceBundle(_res_bundle);
 }

4 public void initialize(Properties props)
 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_INITIALIZED,null);

Example 50:Sample ISF Adapter Implementation
 508

Implementing the IS2Adapter Interface
 // example property
 String propVal = props.getProperty(EXAMPLE_PROPERTY);
 LOG.info(propVal);

 }

5 public void close() throws IS2AdapterException {
 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_CLOSED, null);
 }

6 public AuthenticatedPrincipal authenticate(String username,
String password)

 throws IS2AdapterException {

7 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE,new
Object[]{username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

8 ap = getAuthorizationInfo(new
AuthenticatedPrincipal(username));

 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
9 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);
 return ap;

Example 50:Sample ISF Adapter Implementation
509

CHAPTER 23 | Developing an iSF Adapter
 }

10 public AuthenticatedPrincipal authenticate(String realmname,
String username, String password)

 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM,new
Object[]{realmname,username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

11 AuthenticatedPrincipal principal = new
AuthenticatedPrincipal(username);

 principal.setCurrentRealm(realmname);
 ap = getAuthorizationInfo(principal);
 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

 return ap;
 }

12 public AuthenticatedPrincipal authenticate(X509Certificate
certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED

Example 50:Sample ISF Adapter Implementation
 510

Implementing the IS2Adapter Interface
);
 }

13 public AuthenticatedPrincipal authenticate(String realm,
X509Certificate certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

14 public AuthenticatedPrincipal
getAuthorizationInfo(AuthenticatedPrincipal principal) throws
IS2AdapterException{

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO,new
Object[]{principal.getUserID()},null);

 AuthenticatedPrincipal ap = null;
 String username = principal.getUserID();
 String realmname = principal.getCurrentRealm();

 try{
 if (username.equals("test_user")) {

15 ap = new AuthenticatedPrincipal(username);
16 ap.addRole(new Role("GuestRole", ""));

17 if (realmname == null || (realmname != null &&

realmname.equals("EngRealm")))
 {
 ap.addRealm(new Realm("EngRealm", ""));
 ap.addRole("EngRealm", new

Role("EngineerRole", ""));
 }

18 if (realmname == null || (realmname != null &&
realmname.equals("FinanceRealm")))

 {
 ap.addRealm(new Realm("FinanceRealm",""));
 ap.addRole("FinanceRealm", new

Role("AccountantRole", ""));
 }
 }

Example 50:Sample ISF Adapter Implementation
511

CHAPTER 23 | Developing an iSF Adapter
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.USER_NOT_EXIST, new Object[]{username},
null);

 throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.USER_NOT_EXIST, new Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK,null);

 return ap;
 }

19 public AuthenticatedPrincipal getAuthorizationInfo(String

username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

20 public AuthenticatedPrincipal getAuthorizationInfo(String
realmname, String username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

21 public ArrayList getAllUsers()
 throws IS2AdapterException {

Example 50:Sample ISF Adapter Implementation
 512

Implementing the IS2Adapter Interface
The preceding iSF adapter code can be explained as follows:

1. These lines list the keys to the messages from the adapter’s resource
bundle. The resource bundle stores messages used by the Log4J logger
and exceptions thrown in the adapter.

2. This line creates a Log4J logger.

3. This line loads the resource bundle for the adapter.

4. The initialize() method is called just after the adapter is loaded.
The properties passed to the initialize() method, props, are the
adapter properties that the iSF server module has read from the
is2.properties file.

See “Setting the Adapter Properties” on page 519 for more details.

5. The close() method is called to shut down the adapter. This gives you
an opportunity to clean up and free resources used by the adapter.

6. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with
username and password parameters.

In this simple demonstration implementation, the authenticate()
method recognizes only one user, test_user, with password,
test_password.

7. This line calls a Log4J method in order to log a localized and
parametrized message to indicate that the authenticate method has
been called with the specified username and password values. Since

 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);

 }

22 public void logout(AuthenticatedPrincipal ap) throws
IS2AdapterException {

 }
}

Example 50:Sample ISF Adapter Implementation
513

CHAPTER 23 | Developing an iSF Adapter
all the keys in the resource bundle begin with the adapter name, the
adapter name is prepended to the key. The l7dlog() method is used

because it automatically searches the resource beundle which was set previously by

the loggers setResourceBundle() method.

8. If authentication is successful; that is, if the name and password
passed in match test_user and test_password, the
getAuthorizationInfo() method is called to obtain an
AuthenticatedPrincipal object populated with all of the user’s realms
and role

9. If authentication fails, an IS2AdapterException is raised with minor
code IS2AdapterException.WRONG_NAME_PASSWORD.
The resource bundle is passed to the exception as it accesses the
exception message from the bundle using the key,
ExampleAdapter.wrongUsernamePassword.

10. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with realm
name, username and password parameters.

This method differs from the preceding username/password
authenticate() method in that only the authorization data for the
specified realm and the global realm are included in the return value.

11. If authentication is successful, the getAuthorizationInfo() method is
called to obtain an AuthenticatedPrincipal object populated with the
authorization data from the specified realm and the global realm.

12. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with an
X.509 certificate parameter.

13. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with a
realm name and an X.509 certificate parameter.

This method differs from the preceding certificate authenticate()
method in that only the authorization data for the specified realm and
the global realm are included in the return value.

14. This method should create an AuthenticatedPrincipal object for the
username user. If a realm is not specified in the principal, the
AuthenticatedPrincipal is populated with all realms and roles for this
 514

Implementing the IS2Adapter Interface
user. If a realm is specified in the principal, the
AuthenticatedPrincipal is populated with authorization data from
the specified realm and the global realm only.

15. This line creates a new AuthenticatedPrincipal object for the
username user to hold the user’s authorization data.

16. This line adds a GuestRole role to the global realm, IONAGlobalRealm,
using the single-argument form of addRole(). Roles added to the
global realm implicitly belong to every named realm as well.

17. This line checks if no realm is specified in the principal or if the realm,
EngRealm, is specified. If either of these is true, the following lines add
the authorization realm, EngRealm, to the AuthenticatedPrincipal
object and add the EngineerRole role to the EngRealm authorization
realm.

18. This line checks if no realm is specified in the principal or if the realm,
FinanceRealm, is specified. If either of these is true, the following lines
add the authorization realm, FinanceRealm, to the
AuthenticatedPrincipal object and add the AccountantRole role to
the FinanceRealm authorization realm.

19. Since SSO was introduced to Orbix, this variant of the
IS2Adapter.getAuthorizationInfo() method has been deprecated.
The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

20. Since SSO was introduced to Orbix, this variant of the
IS2Adapter.getAuthorizationInfo() method has also been
deprecated. The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

21. The getAllUsers() method is currently not used by the iSF server
module during runtime. Hence, there is no need to implement this
method currently.
515

CHAPTER 23 | Developing an iSF Adapter
22. When the logout() method is called, you can perform cleanup and
release any resources associated with the specified user principal. The
iSF server module calls back on IS2Adapter.logout() either in
response to a user calling AuthManager.logout() explicitly or after an
SSO session has timed out.
 516

Deploying the Adapter
Deploying the Adapter

Overview This section explains how to deploy a custom iSF adapter.

In this section This section contains the following subsections:

Configuring iSF to Load the Adapter page 518

Setting the Adapter Properties page 519

Loading the Adapter Class and Associated Resource Files page 520
517

CHAPTER 23 | Developing an iSF Adapter
Configuring iSF to Load the Adapter

Overview You can configure the iSF server module to load a custom adapter by setting
the following properties in the iSF server module’s is2.properties file:

• Adapter name.

• Adapter class.

Adapter name The iSF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, set the property as follows:

com.iona.isp.adapters=AdapterName

Adapter class The name of the adapter class to be loaded is specified by the following
property setting:

com.iona.isp.adapter.AdapterName.class=AdapterClass

Example adapter For example, the example adapter provided shown previously can be
configured to load by setting the following properties:

com.iona.isp.adapters=example
com.iona.isp.adapter.example.class=isfadapter.ExampleAdapter

Note: In the current implementation, the iSF server module can load only
a single adapter at a time.
 518

Deploying the Adapter
Setting the Adapter Properties

Overview This subsection explains how you can set properties for a specific custom
adapter in the is2.properties file.

Adapter property name format All configurable properties for a custom file adapter, AdapterName, should
have the following format:

com.iona.isp.adapter.AdapterName.param.PropertyName

Truncation of property names Adapter property names are truncated before being passed to the iSF
adapter. That is, the com.iona.ispadapter.AdapterName.param prefix is
stripped from each property name.

Example For example, given an adapter named ExampleAdapter which has two
properties, host and port, these properties would be set as follows in the
is2.properties file:

com.iona.isp.adapter.example.param.example_property="This is an
example property"

Before these properties are passed to the iSF adapter, the property names
are truncated as if they had been set as follows:

example_property="This is an example property"

Accessing properties from within
an iSF adapter

The adapter properties are passed to the iSF adapter through the
com.iona.security.is2adapter.IS2Adapter.initialize() callback
method. For example:

...
public void initialize(java.util.Properties props)
throws IS2AdapterException {
 // Access a property through its truncated name.
 String propVal = props.getProperty("PropertyName")
 ...
}

519

CHAPTER 23 | Developing an iSF Adapter
Loading the Adapter Class and Associated Resource Files

Overview You need to make appropriate modifications to your CLASSPATH to ensure
that the iSF server module can find your custom adapter class.

In all cases, the location of the file used to configure Log4j logging can be
set using the log4j.configuration property in the is2.properties file.

CORBA service By default, the Orbix Security Service uses the iona_services.security
scope in your Orbix configuration file (or configuration repository service).
Modify the plugins:java_server:classpath variable to include the
directory containing the compiled adapter class and the adapter’s resource
bundle. The plugins:java_server:classpath variable uses the value of the
SECURITY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in
the OrbixInstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable as follows:

The Orbix Security Service launches a Java process which uses the
classpath defined in the securityserver_ce.xml file which is located in the
OrbixInstallDir/etc/domains/DomainName/resources directory. This
classpath also needs to be modified.

Orbix configuration file
SECURITY_CLASSPATH =

"OrbixInstallDir\ExampleAdapter;OrbixInstallDir\etc\domains;O
rbixInstallDir\etc\domains\DomainName\;OrbixInstallDir\asp\6.
1\lib\security.jar";
 520

Deploying the Adapter
In this case, you must also modify the ce:loader element of
securityserver_ce.xml file, as shown in the following example:

securityserver_ce.xml file
...
 <ce:loader>
 <ce:location>OrbixInstallDir\ExampleAdapter</ce:location>
 <ce:location>${java.home}/../lib/tools.jar</ce:location>

 <ce:location>OrbixInstallDir\etc\domains</ce:location>

<ce:location>OrbixInstallDir\asp\6.1\bin\..\lib\security.jar<
/ce:location>

 </ce:loader>
...
521

CHAPTER 23 | Developing an iSF Adapter
 522

APPENDIX A

Security
This chapter describes variables used by the IONA Security
Framework. The Orbix security infrastructure is highly
configurable.

In this chapter This chapter discusses the following topics:

Applying Constraints to Certificates page 525

initial_references page 527

plugins:atli2_tls page 528

plugins:baltimore_toolkit page 529

plugins:csi page 530

plugins:gsp page 531

plugins:https page 535

plugins:iiop_tls page 536

plugins:is2_authorization page 540

plugins:kdm page 541

plugins:kdm_adm page 543

plugins:locator page 544

plugins:schannel page 545
523

APPENDIX A | Security
plugins:schannel_toolkit page 546

plugins:security page 547

policies page 548

policies:csi page 554

policies:https page 557

policies:iiop_tls page 562

principal_sponsor page 571

principal_sponsor:csi page 575
 524

Applying Constraints to Certificates
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
525

APPENDIX A | Security
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see the Security Guide.
 526

initial_references
initial_references
The initial_references namespace contains the following configuration
variables:

• IT_TLS_Toolkit:plugin

IT_TLS_Toolkit:plugin

(Windows only.) This configuration variable enables you to specify the
underlying SSL/TLS toolkit to be used by Orbix. It is used in conjunction with
the plugins:baltimore_toolkit:shlib_name and
plugins:schannel_toolkit:shlib_name configuration variables to
implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel
SSL/TLS toolkit, you would set configuration variables as follows:

initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
527

APPENDIX A | Security
 plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:

• use_jsse_tk

use_jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
Orbix Java applications. If true, Orbix uses the JSSE/JCE architecture to
implement SSL/TLS security; if false, Orbix uses the Baltimore SSL/TLS
toolkit.

The default is false.
 528

plugins:baltimore_toolkit
plugins:baltimore_toolkit
The plugins:baltimore_toolkit namespace contains the following
variable:

• shlib_name

shlib_name

(Windows only) Specifies the root name of the shared library containing the
Baltimore SSL/TLS toolkit.

This configuration variable is always initialized as follows:

plugins:baltimore_toolkit:shlib_name = "it_tls_baltimore";
529

APPENDIX A | Security
plugins:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• ClassName

• shlib_name

ClassName

ClassName specifies the Java class that implements the csi plugin. The
default setting is:

plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

This configuration setting makes it possible for the Orbix core to load the
plugin on demand. Internally, the Orbix core uses a Java class loader to load
and instantiate the csi class. Plugin loading can be initiated either by
including the csi in the orb_plugins list, or by associating the plugin with
an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated with the it_csi_prot shared library,
where it_csi_prot is the base name of the library. The library base name,
it_csi_prot, is expanded in a platform-dependent manner to obtain the full
name of the library file.
 530

plugins:gsp
plugins:gsp
The plugins:gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user’s roles against the permissions stored in an action-role mapping file. It
includes the following:

• accept_asserted_authorization_info

• assert_authorization_info

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• ClassName

• enable_authorization

• enable_gssup_sso

• enable_x509_sso

• enforce_secure_comms_to_sso_server

• enable_security_service_cert_authentication

• shlib_name

• sso_server_certificate_constraints

accept_asserted_authorization_info

If false, SAML data is not read from incoming connections. Default is true.

assert_authorization_info

If false, SAML data is not sent on outgoing connections. Default is true.
531

APPENDIX A | Security
authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Orbix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:gsp:authorization_realm to
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).
 532

plugins:gsp
ClassName

ClassName specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Orbix core to load the plugin
on demand. Internally, the Orbix core uses a Java class loader to load and
instantiate the gsp class. Plugin loading can be initiated either by including
the csi in the orb_plugins list, or by associating the plugin with an initial
reference.

enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is true.

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when set to
true.

enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.

Default is true.
533

APPENDIX A | Security
enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
on the server side using the Orbix security service.

Default is false.

shlib_name

shlib_name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see “Applying Constraints to Certificates” on
page 525.
 534

plugins:https
plugins:https
The plugins:https namespace contains the following variable:

• ClassName

ClassName

(Java only) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";
535

APPENDIX A | Security
plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:

• buffer_pool:recycle_segments

• buffer_pool:segment_preallocation

• buffer_pools:max_incoming_buffers_in_pool

• buffer_pools:max_outgoing_buffers_in_pool

• delay_credential_gathering_until_handshake

• enable_iiop_1_0_client_support

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

In addition, the plugins:iiop_tls namespace contains OS/390 specific
variables that are used to configure the source of authentication data and
certificates for an application.

• max_chain_length_policy

• hfs_keyring_file_stashfile

• hfs_keyring_filename

• racf_keyring

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable’s value.
 536

plugins:iiop_tls
buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable’s
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable’s
value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the principal_sponsor variables to specify an
application’s own certificate. When this variable is set to true and
principal_sponsor:use_principal_sponsor is set to false, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.

This configuration variable can be used in conjunction with the
plugins:schannel:prompt_with_credential_choice configuration variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of Orbix SSL/TLS
applications with legacy IIOP 1.0 SSL/TLS servers, which do not support
IIOP 1.1.

The default value is false. When set to true, Orbix SSL/TLS searches
secure target IIOP 1.0 object references for legacy IIOP 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

Note: This variable will not be necessary for most users.
537

APPENDIX A | Security
incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:hard_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:soft_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:hard_limit variable’s
value.

outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable’s
value.
 538

plugins:iiop_tls
hfs_keyring_file_password

hfs_keyring_file_password specifies the password that accesses the key
database specified by plugins:iiop_tls:hfs_keyring_filename.

hfs_keyring_file_stashfile

hfs_keyring_file_stashfile specifies the name of a stash file containing
the password that accesses the key database specified by
plugins:iiop_tls:hfs_keyring_filename. The stash file stores the
password in encrypted form.

hfs_keyring_filename

hfs_keyring_filename specifies the name of a key ring file (database of
keys) within a hierarchical file system. For example, to specify the
/keyring/key.kdb key ring file:

racf_keyring

racf_keyring specifies the name of an RACF key ring from which an
application retrieves authentication data. For example, to use the RACF key
ring named TESTRING:

Note: Either hfs_keyring_file_password or
hfs_keyring_file_stashfile can be used to specify the password, but
not both.

plugins:iiop_tls:hfs_keyring_filename = "/keyring/key.kdb";

plugins:iiop_tls:racf_keyring = "TESTRING";
539

APPENDIX A | Security
plugins:is2_authorization
The plugins:is2_authorization namespace contains the following variable:

• action_role_mapping

action_role_mapping

Specifies the action-role mapping file URL. For example:

plugins:is2_authorization:action_role_mapping =
"file:///my/action/role/mapping";
 540

plugins:kdm
plugins:kdm
The plugins:kdm namespace contains the following variables:

• cert_constraints

• iiop_tls:port

• checksums_optional

cert_constraints

Specifies the list of certificate constraints for principals attempting to open a
connection to the KDM server plug-in. See “Applying Constraints to
Certificates” on page 525 for a description of the certificate constraint
syntax.

To protect the sensitive data stored within it, the KDM applies restrictions
on which entities are allowed talk to it. A security administrator should
choose certificate constraints that restrict access to the following principals:

• The locator service (requires read-only access).

• The kdm_adm plug-in, which is normally loaded into the itadmin utility
(requires read-write access).

All other principals should be blocked from access. For example, you might
define certificate constraints similar to the following:

plugins:kdm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Secure admin*",
"C=US,ST=Boston,O=ABigBank*,CN=Orbix2000 Locator Service*"]

Your choice of certificate constraints will depend on the naming scheme for
your subject names.
541

APPENDIX A | Security
iiop_tls:port

Specifies the well known IP port on which the KDM server listens for
incoming calls.

checksums_optional

When equal to false, the secure information associated with a server must
include a checksum; when equal to true, the presence of a checksum is
optional. Default is false.
 542

plugins:kdm_adm
plugins:kdm_adm
The plugins:kdm_adm namespace contains the following variable:

• cert_constraints

cert_constraints

Specifies the list of certificate constraints that are applied when the KDM
administration plug-in authenticates the KDM server. See “Applying
Constraints to Certificates” on page 525 for a description of the certificate
constraint syntax.

The KDM administration plug-in requires protection against attack from
applications that try to impersonate the KDM server. A security
administrator should, therefore, choose certificate constraints that restrict
access to trusted KDM servers only. For example, you might define
certificate constraints similar to the following:

plugins:kdm_adm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=IT_KDM*"];

Your choice of certificate constraints will depend on the naming scheme for
your subject names.
543

APPENDIX A | Security
plugins:locator
The plugins:locator namespace contains the following variable:

• iiop_tls:port

iiop_tls:port

Specifies the IP port number where the Orbix locator service listens for
secure connections.

Note: This is only useful for applications that have a single TLS listener.
For applications that have multiple TLS listeners, you need to
programmatically specify the well-known addressing policy.
 544

plugins:schannel
plugins:schannel
The plugins:schannel namespace contains the following variable:

• prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay_credential_gathering_until_handshake
variable to true on the client side allows the user to choose which
credentials to use for the server connection. The choice of credentials
offered to the user is based on the trusted CAs sent to the client in an
SSL/TLS handshake message.

If prompt_with_credential_choice is set to false, Orbix chooses the first
certificate it finds in the certificate store that meets the applicable
constraints.

The certificate prompt can be replaced by implementing an IDL interface
and registering it with the ORB.
545

APPENDIX A | Security
plugins:schannel_toolkit
The plugins:schannel_toolkit namespace contains the following variable:

• shlib_name

shlib_name

(Windows only) Specifies the root name of the shared library containing the
Schannel SSL/TLS toolkit.

This configuration variable is always initialized as follows:

plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
 546

plugins:security
plugins:security
The plugins:security namespace contains the following variable:

• share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also principal_sponsor:csi:use_existing_credentials for details of
how to enable sharing of CSI credentials.

Default is false.
547

APPENDIX A | Security
policies
The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the policies namespace include:

• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• session_caching

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

(Deprecated in favor of
policies:iiop_tls:allow_unauthenticated_clients_policy and
policies:https:allow_unauthenticated_clients_policy.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.
 548

policies
certificate_constraints_policy

(Deprecated in favor of
policies:iiop_tls:certificate_constraints_policy and
policies:https:certificate_constraints_policy.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:requires and
policies:https:client_secure_invocation_policy:requires.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:supports and
policies:https:client_secure_invocation_policy:supports.)

A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.
549

APPENDIX A | Security
max_chain_length_policy

(Deprecated in favor of policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy.)

max_chain_length_policy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:ciphersuites

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:ciphersuites and
policies:https:mechanism_policy:ciphersuites.)

mechanism_policy:ciphersuites specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites shown in
Table 26 can be specified in this list.

Note: The max_chain_length_policy is not currently supported on the
OS/390 platform.

Table 26: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
 550

policies
mechanism_policy:protocol_version

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:protocol_version and
policies:https:mechanism_policy:protocol_version.)

mechanism_policy:protocol_version specifies the protocol version used by
a security capsule (ORB instance). It can be set to SSL_V3 or TLS_V1. For
example:

session_caching_policy

(Java only) session_caching_policy specifies whether a Java ORB caches
the session information for secure associations when acting in a client role,
a server role, or both. The purpose of session caching is to enable closed
connections to be re-established quickly. The following values are
supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

policies:mechanism_policy:protocol_version="TLS_V1"
551

APPENDIX A | Security
session_caching

(C++ only) session_caching specifies whether a C++ ORB caches the
session information for secure associations when acting in a client role, a
server role, or both. The purpose of session caching is to enable closed
connections to be re-established quickly. The following values are
supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:requires and
policies:https:target_secure_invocation_policy:requires.)

target_secure_invocation_policy:requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

target_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:supports and
policies:https:target_secure_invocation_policy:supports.)

supports specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.
 552

policies
trusted_ca_list_policy

(Deprecated in favor of policies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted_ca_list_policy.)

trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];
553

APPENDIX A | Security
policies:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• attribute_service:backward_trust:enabled

• attribute_service:client_supports

• attribute_service:target_supports

• auth_over_transport:authentication_service

• auth_over_transport:client_supports

• auth_over_transport:server_domain_name

• auth_over_transport:target_requires

• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];
 554

policies:csi
attribute_service:target_supports

attribute_service:target_supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns false when the
authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSIv2 authorization over transport.
The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
555

APPENDIX A | Security
auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
 556

policies:https
policies:https
The policies:https namespace contains variables used to configure the
https plugin. It contains the following variables:

• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

certificate_constraints_policy

A list of constraints applied to peer certificates—see “Applying Constraints
to Certificates” on page 525 for the syntax of the pattern constraint
language. If a peer certificate fails to match any of the constraints, the
certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.
557

APPENDIX A | Security
client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for details on how to set SSL/TLS association options.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for details on how to set SSL/TLS association options.

max_chain_length_policy

The maximum certificate chain length that an ORB will accept (see the
discussion of certificate chaining in the Orbix Security Guide).

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

Note: This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

Note: The max_chain_length_policy is not currently supported on the
OS/390 platform.
 558

policies:https
mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

mechanism_policy:protocol_version

Specifies the protocol version used by a security capsule (ORB instance).
Can be set to one of the following values:

TLS_V1
SSL_V3
SSL_V2V3

The SSL_V2V3 value is a special setting that facilitates interoperability with
an Orbix application deployed on the OS/390 platform. Orbix security on the
OS/390 platform is based on IBM’s System/SSL toolkit, which implements
SSL version 3, but does so by using SSL version 2 hellos as part of the
handshake. This form of handshake causes interoperability problems,
because applications on other platforms identify the handshake as an SSL
version 2 handshake.

Table 27: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
559

APPENDIX A | Security
The misidentification of the SSL protocol version can be avoided by setting
the protocol version to be SSL_V2V3 in the non-OS/390 application (this bug
also affects some old versions of Microsoft Internet Explorer).

For example:

policies:mechanism_policy:protocol_version = "SSL_V2V3";

session_caching_policy

When this policy is set, the https plug-in reads this policy’s value instead of
the policies:session_caching policy’s value (C++) or
policies:session_caching_policy policy’s value (Java).

target_secure_invocation_policy:requires

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.
 560

policies:https
trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.
561

APPENDIX A | Security
policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting affect the
iiop_tls plugin. It contains the following variables:

• allow_unauthenticated_clients_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• client_version_policy

• connection_attempts

• connection_retry_delay

• max_chain_length_policy

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname

• server_version_policy

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

• trusted_ca_list_policy
 562

policies:iiop_tls
allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:default_buffer_size
policy’s value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:max_buffer_size
policy’s value.

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion of
certificate constraints in the Orbix security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.
563

APPENDIX A | Security
client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by clients. A
client uses the version of IIOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1.2.

For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
 564

policies:iiop_tls
connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the iiop_tls
plugin.

The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for the
iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Note: The max_chain_length_policy is not currently supported on the
OS/390 platform.

Table 28: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
565

APPENDIX A | Security
mechanism_policy:protocol_version

This policy overides policies:mechanism_policy:protocol_version for the
iiop_tls plugin.

Specifies the protocol version used by a security capsule (ORB instance).
Can be set to one of the following values:

TLS_V1
SSL_V3
SSL_V2V3

The SSL_V2V3 value is a special setting that facilitates interoperability with
an Orbix application deployed on the OS/390 platform. Orbix security on the
OS/390 platform is based on IBM’s System/SSL toolkit, which implements
SSL version 3, but does so by using SSL version 2 hellos as part of the
handshake. This form of handshake causes interoperability problems,
because applications on other platforms identify the handshake as an SSL
version 2 handshake. The misidentification of the SSL protocol version can
be avoided by setting the protocol version to be SSL_V2V3 in the non-OS/390
application (this bug also affects some old versions of Microsoft Internet
Explorer).

For example:

policies:mechanism_policy:protocol_version = "SSL_V2V3";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_domain policy’s value.
 566

policies:iiop_tls
server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.

server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon/configuration repository, and listened on
by server-side IIOP.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The local_hostname
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:port_range policy’s value.

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
567

APPENDIX A | Security
server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the
policies:iiop:server_address_mode_policy:publish_hostname policy’s
value.

server_address_mode-policy:publish_hostname specifes whether IIOP
exports hostnames or IP addresses in published profiles. Defaults to false
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:server_version_policy policy’s value.

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Orbix servers do not
publish IIOP 1.0 profiles. The default value is 1.2.

session_caching_policy

This policy overides policies:session_caching_policy(Java) and
policies:session_caching(C++) for the iiop_tls plugin.

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
 568

policies:iiop_tls
target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the iiop_tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the iiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:no_delay policy’s
value.

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option
should be set on connections. Defaults to false.
569

APPENDIX A | Security
tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:send_buffer_size
policy’s value.

tcp_options_policy:send_buffer_size specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.
 570

principal_sponsor
principal_sponsor
The principal_sponsor namespace stores configuration information to be
used when obtaining credentials. Orbix provides an implementation of a
principal sponsor that creates credentials for applications automatically. The
principal sponsor automatically calls the authenticate() operation on the
PrincipalAuthenticator object after determining the data to supply.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

• callback_handler:ClassName

• login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor variables must contain data in order for anything to
actually happen.
571

APPENDIX A | Security
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

pkcs12_file The authentication method uses a PKCS#12 file.

pkcs11 Java only. The authentication data is provided by a
smart card.

security_label Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.
 572

principal_sponsor
For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in auth_method_data:

For the security_label authentication method on Windows, the following
authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

The following points apply to Java implementations:

• If the file specified by filename= is not found, it is searched for on the
classpath.

• The file specified by filename= can be supplied with a URL instead of
an absolute file location.

• The mechanism for prompting for the password if the password is
supplied through password= can be replaced with a custom
mechanism, as demonstrated by the login demo.

provider A name that identifies the underlying PKCS #11
toolkit used by Orbix to communicate with the smart
card.

The toolkit currently used by Orbix has the provider
name dkck132.dll (from Baltimore).

slot The number of a particular slot on the smart card
(for example, 0) containing the user’s credentials.

pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is not
supplied, the user is prompted for it.

label (Windows and Schannel only.) The common name
(CN) from an application certificate’s subject DN

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
573

APPENDIX A | Security
• There are two extra configuration variables available as part of the
principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

• These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an interface that
implements the interface com.iona.corba.tls.auth.CallbackHandler. This
variable is only used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom CallbackHandlers; if a CallbackHandler is supplied, it is invoked
upon up to login_attempts times as long as the PrincipalAuthenticator
returns SecAuthFailure. This variable is only used by Java clients.
 574

principal_sponsor:csi
principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

• use_existing_credentials

• use_principal_sponsor

• auth_method_data

• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if false, CSI credentials are not shared.

This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also true.

Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to true, the CSI principal sponsor is enabled; if false, the CSI
principal sponsor is disabled and the remaining principal_sponsor:csi
variables are ignored. Defaults to false.
575

APPENDIX A | Security
auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the GSSUPMech authentication method, the following authentication
data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in
the US-SantaClara domain:

principal_sponsor:csi:auth_method_data =
["username=administrator", "domain=US-SantaClara"];

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see
auth_over_transport:authentication_service.

password The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.

Note: If domain is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.
 576

principal_sponsor:csi
When the application is started, the user is prompted for the administrator
password.

auth_method_id

auth_method_id specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

For example, you can select the GSSUPMech authentication method as
follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.
577

APPENDIX A | Security
 578

APPENDIX B

iSF Configuration
This appendix provides details of how to configure the Orbix
security server.

In this appendix This appendix contains the following sections:

Properties File Syntax page 580

iSF Properties File page 581

Cluster Properties File page 597

log4j Properties File page 599
579

CHAPTER B | iSF Configuration
Properties File Syntax

Overview The Orbix security service uses standard Java property files for its
configuration. Some aspects of the Java properties file syntax are
summarized here for your convenience.

Property definitions A property is defined with the following syntax:

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,
is2.current.server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

Specifying full pathnames When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

Specifying relative pathnames If you specify a relative pathname when setting a property, the root directory
for this path must be added to the Orbix security service’s classpath. For
example, if you specify a relative pathname as follows:

UNIX
securityInfo.xml

The security service’s classpath must include the file’s parent directory:

<PropertyName>=<PropertyValue>

D:\\iona\\securityInfo.xml

CLASSPATH = /home/data/:<rest_of_classpath>
 580

iSF Properties File
iSF Properties File

Overview An iSF properties file is used to store the properties that configure a specific
Orbix security service instance. Generally, every Orbix security service
instance should have its own iSF properties file. This section provides
descriptions of all the properties that can be specified in an iSF properties
file.

File location The default location of the iSF properties file is the following:

In general, the iSF properties file location is specified in the Orbix
configuration by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server’s property list is normally
initialized in the iona_services.security configuration scope as follows:

OrbixInstallDir/etc/domains/DomainName/server_Host/is2.propertie
s

Orbix configuration file
...
iona_services {
 ...
 security {
 ...
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ASPInstallDir/etc/domains/DomainName/is2.pro
perties"];

 ...
 };
};
581

CHAPTER B | iSF Configuration
List of properties The following properties can be specified in the iSF properties file:

com.iona.isp.adapters

Specifies the iSF adapter type to be loaded by the Orbix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an
Artix security domain. Currently, you can specify one of the following
adapter types:

• file

• LDAP

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with
Orbix is selected as follows:

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C:/is2_config/security_info.xml,
as follows:

com.iona.isp.adapters=LDAP

Note: The file adapter is intended for demonstration purposes only. Use
of the file adapter is not supported in production systems.

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

com.iona.isp.adapter.file.param.filename=C:/is2_config/security_info.xml
 582

iSF Properties File
com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the Orbix security
service, but is now ignored.

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Orbix is selected as follows:

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections
opened by this Orbix security service instance.

Internally, the Orbix security service uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to
here is one that is maintained by the LDAP third-party toolkit. Data retrieved
from the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter

com.iona.isp.adapter.LDAP.param.CacheSize=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60
583

CHAPTER B | iSF Configuration
com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com.iona.isp.adapter.LDAP.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn

com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames
 584

iSF Properties File
• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.host.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10.81.1.100 as follows:

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Orbix security
service (a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Orbix security service. The default is 1.

For example, to limit the Orbix security service to open a maximum of 50
LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the MemberDNAttr property to construct a query to find
out which groups a user belongs to.

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.LDAP.param.host.1=10.81.1.100

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50
585

CHAPTER B | iSF Configuration
The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Orbix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Orbix security
service. The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.port.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter.LDAP.param.port.1=636
 586

iSF Properties File
com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo

Specifies whether or not the Orbix security service retrieves authorization
information from the LDAP server. This property selects one of the following
alternatives:

• yes—the Orbix security service retrieves authorization information from
the LDAP server.

• no—the Orbix security service retrieves authorization information from
the iS2 authorization manager..

Default is no.

For example, to use the LDAP server’s authorization information:

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes
587

CHAPTER B | iSF Configuration
com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the role name.
The default is CN.

For example, you can specify the common name, CN, attribute type as
follows:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

No default.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>

Specifies the client certificate file that is used to identify the Orbix security
service to the <cluster_index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

No default.

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

com.iona.isp.adapter.LDAP.param.SSLCACertDir.1=d:/certs/test
 588

iSF Properties File
com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>

Specifies the password for the client certificate that identifies the Orbix
security service to the <cluster_index> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>

Enables SSL/TLS security for the connection between the Orbix security
service and the <cluster_index> LDAP server replica. The possible values
are yes or no. Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

• yes—each group name is interpreted as a role name.

• no—for each of the user’s groups, retrieve all roles assigned to the
group.

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled.1=yes

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no
589

CHAPTER B | iSF Configuration
com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example:

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertificate

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson
 590

iSF Properties File
com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of the
following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the Orbix security service uses to
communicate with LDAP servers. The only supported version is 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

&(uid=$USER_NAME$)(objectclass=organizationalPerson)

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB
591

http://www.ietf.org/rfc/rfc2251.txt

CHAPTER B | iSF Configuration
For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the Orbix security
service, but is now ignored.

com.iona.isp.authz.adapters

Specifies the name of the adapter that is loaded to perform authorization.
The adapter name is an arbitrary identifier, AdapterName, which is used to
construct the names of the properties that configure the adapter—that is,
com.iona.isp.authz.adapter.AdapterName.class and
com.iona.isp.authz.adapter.AdapterName.param.filelist. For
example:

com.iona.isp.authz.adapter.AdapterName.class

Selects the authorization adapter class for the AdapterName adapter. The
following adapter implementations are provided by Orbix:

• com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—
an authorization adapter that enables you to specify multiple ACL files.
It is used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

For example:

com.iona.isp.adapter.LDAP.param.version=3

com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;

com.iona.isp.authz.adapters = file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter
 592

iSF Properties File
com.iona.isp.authz.adapter.AdapterName.param.filelist

Specifies the absolute pathname of a file containing a list of ACL files for the
AdapterName adapter. Each line of the specified file has the following
format:

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key. The ACL file,
ACLFileName, is specified using an absolute pathname in the local file
format.

For example, on Windows you could specify a list of ACL files as follows:

is2.current.server.id

The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service’s ID. The server ID is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this
Orbix security service, the server ID is embedded into the SSO token.
Subsequently, if the SSO token is passed to a second Orbix security service
instance, the second Orbix security service recognizes that the SSO token
originates from the first Orbix security service and delegates security
operations to the first Orbix security service.

The server ID is also used to identify replicas in the cluster.properties fle.

For example, to assign a server ID of 1 to the current Orbix security service:

[ACLKey=]ACLFileName

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml

is2.current.server.id=1
593

CHAPTER B | iSF Configuration
is2.cluster.properties.filename

Specifies the file that stores the configuration properties for clustering. For
example:

is2.replication.required

Enables the replication feature of the Orbix security service, which can be
used in the context of security service clustering. The possible values are
true (enabled) and false (disabled). When replication is enabled, the
security service pushes its cache of SSO data to other servers in the cluster
at regular intervals.

Default is false.

For example:

is2.replication.interval

Specifies the time interval between replication updates to other servers in
the security service cluster. The value is specified in units of a second.

Default is 30 seconds.

For example:

is2.replica.selector.classname

If replication is enabled (see is2.replication.required), you must set this
variable equal to com.iona.security.replicate.StaticReplicaSelector.

For example:

is2.cluster.properties.filename=C:/is2_config/cluster.properties

is2.replication.required=true

is2.replication.interval=10

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector
 594

iSF Properties File
is2.sso.cache.size

Specifies the maximum cache size (number of user sessions) associated
with single sign-on (SSO) feature. The SSO caches user information,
including the user’s group and role information. If the maximum cache size
is reached, the oldest sessions are deleted from the session cache.

No default.

For example:

is2.sso.enabled

Enables the single sign-on (SSO) feature of the Orbix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.

For example:

is2.sso.session.idle.timeout

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the Orbix security service. A zero value implies no time-out.

If a user logs on to the Orbix Security Framework (supplying username and
password) with SSO enabled, the Orbix security service returns an SSO
token for the user. The next time the user needs to access a resource, there
is no need to log on again because the SSO token can be used instead.
However, if no secure operations are performed using the SSO token for the
length of time specified in the idle time-out, the SSO token expires and the
user must log on again.

Default is 0 (no time-out).

For example:

is2.sso.cache.size=1000

is2.sso.enabled=yes

is2.sso.session.idle.timeout=0
595

CHAPTER B | iSF Configuration
is2.sso.session.timeout

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Orbix security service. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

log4j.configuration

Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the Orbix security
service. See also “log4j Properties File” on page 599.

For example:

is2.sso.session.timeout=0

log4j.configuration=d:/temp/myconfig.txt
 596

Cluster Properties File
Cluster Properties File

Overview The cluster properties file is used to store properties common to a group of
Orbix security service instances that operate as a cluster or federation. This
section provides descriptions of all the properties that can be specified in a
cluster file.

File location The location of the cluster properties file is specified by the
is2.cluster.properties.filename property in the iSF properties file. All of
the Orbix security service instances in a cluster or federation must share the
same cluster properties file.

List of properties The following properties can be specified in the cluster properties file:

com.iona.security.common.securityInstanceURL.<server_ID>

Specifies the server URL for the <server_ID> Orbix security service
instance.

When single sign-on (SSO) is enabled together with clustering or federation,
the Orbix security service instances use the specified instance URLs to
communicate with each other. Because the Orbix security service instances
share the same cluster file, they can read each other’s URLs and open
connections to each other.

The connections between Orbix security service instances are made using
the IIOP protocol combined with SSL/TLS. The detailed configuration of the
IIOP/TLS endpoint is specified in the Orbix configuration file for each
security service in the cluster. Hence, you can discover the host and port
used by a particular security service by inspecting the value of the
plugins:security:iiop_tls:addr_list from its Orbix configuration. You
can use the host and port values to construct the value of the security
instance URL.
597

CHAPTER B | iSF Configuration
For example, consider a cluster of three security services, where the first
security service (ID=1) is configured as follows:

The entry without the + prefix gives the host and port of the first service,
server01:5001. Assuming the host and port for the second and third
services are server02:5002 and server03:5003 respectively, you would
configure the security instance URLs as follows:

com.iona.security.common.replicaURL.<server_ID>

A comma-separated list of URLs for the other security services to which this
service replicates its SSO token data. In Orbix, the URLs for the other
security services are normally specified in a corbaloc format.

For example, to configure the first service in a cluster (ID=1) to replicate its
SSO token data to the second service (with address, server02:5002) and
the third service (with address, server02:5002) in the cluster, you would
add the following line to the cluster.properties file:

Orbix Configuration File for service with ID=1
plugins:security:iiop_tls:addr_list = ["security01:5001",

"+security02:5002", "+security03:5003"];
plugins:security:iiop_tls:host = "5001";
plugins:security:iiop_tls:port = "security01";

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security01:5001/IT_Security

Service
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security02:5002/IT_Security

Service
com.iona.security.common.securityInstanceURL.3=corbaloc:it_iiops:1.2@security03:5003/IT_Security

Service

Configure replication between security services.
com.iona.security.common.replicaURL.1=corbaloc:it_iiops:1.2@security02:5002/IT_SecurityService,c

orbaloc:it_iiops:1.2@security03:5003/IT_SecurityService
 598

log4j Properties File
log4j Properties File

Overview The log4j properties file configures log4j logging for your Orbix security
service. This section describes a minimal set of log4j properties that can be
used to configure basic logging.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

File location The location of the log4j properties file is specified by the
log4j.configuration property in the iSF properties file. For ease of
administration, different Orbix security service instances can optionally
share a common log4j properties file.

List of properties To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender.<AppenderHandle>

This property specifies a log4j appender class that directs
<AppenderHandle> logging messages to a particular destination. For
example, one of the following standard log4j appender classes could be
specified:

• org.apache.log4j.ConsoleAppender

• org.apache.log4j.FileAppender

• org.apache.log4j.RollingFileAppender

• org.apache.log4j.DailyRollingFileAppender

• org.apache.log4j.AsynchAppender

• org.apache.log4j.WriterAppender

For example, to log messages to the console screen for the A1 appender
handle:

log4j.appender.A1=org.apache.log4j.ConsoleAppender
599

http://jakarta.apache.org/log4j/docs/documentation.html

CHAPTER B | iSF Configuration
log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

• org.apache.log4j.PatternLayout

• org.apache.log4j.HTMLLayout

• org.apache.log4j.SimpleLayout

• org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

log4j.appender.<AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the
org.apache.log4j.PatternLayout class (when specified by the
log4j.appender.<AppenderHandle>.layout property) to define the
format of a log message.

For example, you can specify a basic conversion pattern for the A1 appender
as follows:

log4j.rootCategory

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

The logging level, <LogLevel>, can have one of the following values:

• DEBUG

• INFO

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

<LogLevel>, <AppenderHandle01>, <AppenderHandle02>, ...
 600

log4j Properties File
• WARN

• ERORR

• FATAL

An appender handle is an arbitrary identifier that associates a logger with a
particular logging destination.

For example, to select all messages at the DEBUG level and direct them to the
A1 appender, you can set the property as follows:

log4j.rootCategory=DEBUG, A1
601

CHAPTER B | iSF Configuration
 602

APPENDIX C

ASN.1 and
Distinguished
Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 604

Distinguished Names page 605
603

CHAPTER C | ASN.1 and Distinguished Names
ASN.1

Overview The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

BER The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

DER The OSI’s Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

References You can read more about ASN.1 in the following standards documents:

• ASN.1 is defined in X.208.

• BER is defined in X.209.
 604

Distinguished Names
Distinguished Names

Overview Historically, distinguished names (DN) were defined as the primary keys in
an X.500 directory structure. In the meantime, however, DNs have come to
be used in many other contexts as general purpose identifiers. In the Orbix
Security Framework, DNs occur in the following contexts:

• X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

• LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

DN string example The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string A DN string is built up from the following basic elements:

• OID.

• Attribute types.

• AVA.

• RDN.

OID An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.
605

CHAPTER C | ASN.1 and Distinguished Names
Attribute types The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 29 shows a selection of the attribute types that you are most likely to
encounter:

AVA An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table 29). For example:

2.5.4.3=A. N. Other

Table 29: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid
 606

Distinguished Names
RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering
607

CHAPTER C | ASN.1 and Distinguished Names
 608

APPENDIX D

Association
Options
This appendix describes the semantics of all the association
options that are supported by Orbix.

In this appendix This appendix contains the following section:

Association Option Semantics page 610
609

APPENDIX D | Association Options
Association Option Semantics

Overview This appendix defines how AssociationOptions are used with
SecClientInvocation and SecTargetInvocation policies.

IDL Definitions AssociationOptions are enumerated in the CORBA security specification as
follows:

//IDL
typedef unsigned short AssociationOptions;
const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
// Unsupported option: NoDelegation
// Unsupported option: SimpleDelegation
// Unsupported option: CompositeDelegation

Table of association options Table 30 shows how the options affect client and target policies:

Table 30: AssociationOptions for Client and Target

Association

Options

client_supports client_requires target_supports target_requires

NoProtection Client supports
unprotected
messages.

The client’s
minimal
protection
requirement is
unprotected
messages.

Target supports
unprotected
messages.

The target’s
minimal protection
requirement is
unprotected
messages.

Integrity The client
supports integrity
protected
messages.

The client
requires
messages to be
integrity
protected.

The target supports
integrity protected
messages.

The target requires
messages to be
integrity protected.
 610

Association Option Semantics
Confidentiali

ty

The client
supports
confidentiality
protected
messages.

The client
requires
messages to be
confidentiality
protected.

The target supports
confidentiality
protected
messages.

The target requires
messages to be
confidentiality
protected.

DetectReplay The client can
detect replay of
requests (and
request
fragments).

The client
requires detection
of message
replay.

The target can
detect replay of
requests (and
request fragments).

The target requires
detection of
message replay.

DetectMisorde

ring

The client can
detect sequence
errors of requests
(and request
fragments).

The client
requires detection
of message
mis-sequencing.

The target can
detect sequence
errors of requests
(and request
fragments).

The target requires
detection of
message
mis-sequencing.

EstablishTrus

tInTarget

The client is
capable of
authenticating
the target.

The client
requires
establishment of
trust in the
target’s identity.

The target is
prepared to
authenticate its
identity to the
client.

(This option is
invalid).

EstablishTrus

tInClient

The client is
prepared to
authenticate its
identity to the
target.

(This option is
invalid).

The target is
capable of
authenticating the
client.

The target requires
establishment of
trust in the client’s
identity.

Table 30: AssociationOptions for Client and Target

Association

Options

client_supports client_requires target_supports target_requires
611

APPENDIX D | Association Options
 612

APPENDIX E

Action-Role
Mapping DTD
This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

DTD file The action-role mapping DTD is shown in Example 51.

Example 51:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter
 name CDATA #REQUIRED
 value CDATA #REQUIRED
>
<!ELEMENT parameter-control (parameter+, role-name+)>
<!ELEMENT action-role (action-name, parameter-control*,

role-name+)>
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,

action-role-mapping+)>
613

CHAPTER E | Action-Role Mapping DTD
Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:

<!ELEMENT action-name (#PCDATA)>

Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

♦ CORBA server—for IDL operations, the action name corresponds
to the GIOP on-the-wire format of the operation name (usually the
same as it appears in IDL).

For IDL attributes, the accessor or modifier action name
corresponds to the GIOP on-the-wire format of the attribute
accessor or modifier. For example, an IDL attribute, foo, would
have an accessor, _get_foo, and a modifier, _set_foo.

♦ Artix server—for WSDL operations, the action name is equivalent
to a WSDL operation name; that is, the OperationName from a
tag, <operation name="OperationName">.

<!ELEMENT action-role (action-name, parameter-control*,
role-name+)>

Groups together a particular action and all of the roles permitted to
perform that action.

<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular server
application.

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>

Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents
can have the following values:

♦ true—for any interfaces not listed, access to all of the interfaces’
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

Note: However, if <allow-unlisted-interfaces> is true and a
particular interface is listed, then only the actions explicitly listed
within that interface’s interface element are accessible. Unlisted
actions from the listed interface are not accessible.
 614

♦ false—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is false.

<!ELEMENT interface (name, action-role+)>

In the case of a CORBA server, the interface element contains all of
the access permissions for one particular IDL interface.

In the case of an Artix server, the interface element contains all of the
access permissions for one particular WSDL port type.

You can also use the wildcard, *, to match any number of contiguous
characters in an interface name.

<!ELEMENT name (#PCDATA)>

Within the scope of an interface element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being
associated. The format of the interface name depends on the type of
application, as follows:

♦ CORBA server—the name element identifies the IDL interface
using the interface’s OMG repository ID. The repository ID
normally consists of the characters IDL: followed by the fully
scoped name of the interface (using / instead of :: as the scoping
character), followed by the characters :1.0. Hence, the
Simple::SimpleObject IDL interface is identified by the
IDL:Simple/SimpleObject:1.0 repository ID.

♦ Artix server—the name element contains a WSDL port type name,
specified in the following format:

NamespaceURI:PortTypeName

The PortTypeName comes from a tag, <portType
name="PortTypeName">, defined in the NamespaceURI namespace.

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.

For example, the CosNaming::NamingContext interface in the naming
service module, which uses the omg.org prefix, has the following
repository ID: IDL:omg.org/CosNaming/NamingContext:1.0
615

CHAPTER E | Action-Role Mapping DTD
The NamespaceURI is usually defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL
contract.

<!ELEMENT parameter EMPTY>
<!ATTLIST parameter
 name CDATA #REQUIRED
 value CDATA #REQUIRED
>

The <parameter> element is used in conjunction with the action-role
mapping feature to restrict user access to an action. A user role is
allowed to access an action only if the parameter specified by the name
attribute has the value specified by the value attribute.

<!ELEMENT parameter-control (parameter+, role-name+)>

Specifies access control based on the values of certain parameters of
the associated action. The role names listed within the
<parameter-control> element are granted access to the enclosing
action only if the parameters take the values specified by the
<parameter> tags.

<!ELEMENT role-name (#PCDATA)>

Specifies a role to which permission is granted. The role name can be
any role that belongs to the server’s Artix authorization realm (for
CORBA bindings, the realm name is specified by the
plugins:gsp:authorization_realm configuration variable; for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to the
IONAGlobalRealm realm. The roles themselves are defined in the
security server backend; for example, in a file adapter file or in an
LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups together a
collection of action-role-mapping elements.

<!ELEMENT server-name (#PCDATA)>

Note: By default, the <parameter> and <parameter-control> tags
only have an effect for the CFR service. Extending this feature to work
with other services requires the IONA ART plug-in development kit.
 616

The server-name element specifies the configuration scope (that is, the
ORB name) used by the server in question. This is normally the value
of the -ORBname parameter passed to the server executable on the
command line.

You can also use the wildcard, *, to match any number of contiguous
characters in a configuration scope name.
617

CHAPTER E | Action-Role Mapping DTD
 618

APPENDIX F

OpenSSL Utilities
The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Orbix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:

Using OpenSSL Utilities page 620

The OpenSSL Configuration File page 629
619

CHAPTER F | OpenSSL Utilities
Using OpenSSL Utilities

The OpenSSL package Orbix ships a version of the OpenSSL program that is available with Eric
Young’s openssl package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult “License Issues” on page 639 for information
about the copyright terms of OpenSSL.

Command syntax An openssl command line takes the following form:

openssl utility arguments

For example:

openssl x509 -in OrbixCA -text

The openssl utilities This appendix describes four openssl utilities:

The -help option To get a list of the arguments associated with a particular command, use
the -help option as follows:

openssl utility -help

For example:

openssl x509 -help

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http://www.openssl.org/docs.

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.

ca Implements a Certification Authority (CA).
 620

Using OpenSSL Utilities
The x509 Utility

Purpose of the x509 utility In Orbix the x509 utility is mainly used for:

• Printing text details of certificates you wish to examine.

• Converting certificates to different formats.

Options The options supported by the openssl x509 utility are as follows:

-inform arg - input format - default PEM
(one of DER, NET or PEM)

-outform arg - output format - default PEM
(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object

-req - input is a certificate request, sign and
output

-CA arg - set the CA certificate, must be PEM format
621

CHAPTER F | OpenSSL Utilities
Using the x509 utility To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert.der

-CAkey arg - set the CA key, must be PEM format. If missing
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/
-mdc2

- digest to do an RSA sign with
 622

Using OpenSSL Utilities
The req Utility

Purpose of the x509 utility The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted
for a pass phrase which will be used to protect the private key.

Options The options supported by the openssl req utility are as follows:

Note: It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken from
CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2, mdc2)

-config file request template file
623

CHAPTER F | OpenSSL Utilities
Using the req Utility To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA_cert.pem and
the corresponding encrypted private key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem and the
corresponding encrypted private key file MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-new new request

-x509 output an x509 structure instead of a
certificate req. (Used for creating self signed
certificates)

-days number of days an x509 generated by -x509 is
valid for

-asn1-kludge Output the ‘request’ in a format that is wrong
but some CA’s have been reported as requiring
[It is now always turned on but can be turned
off with -no-asn1-kludge]
 624

Using OpenSSL Utilities
The rsa Utility

Purpose of the rsa utility The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The rsa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

Options The options supported by the openssl rsa utility are as follows:

Using the rsa Utility Converting a private key to PEM format from DER format involves using the
rsa utility as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey2.pem

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using
168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus
625

CHAPTER F | OpenSSL Utilities
Note: Do not specify the same file for the -in and -out parameters,
because this can corrupt the file.
 626

Using OpenSSL Utilities
The ca Utility

Purpose of the ca utility You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca -policy and -name options, refer to “The OpenSSL Configuration
File” on page 629.

Creating a new CA To create a new CA using the openssl ca utility, two files (serial and
index.txt) need to be created in the location specified by the openssl
configuration file that you are using.

Options The options supported by the openssl ca utility are as follows:

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is
encrypted

-cert - The CA certificate

-in file - The input PEM encoded certificate request(s)

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates
627

CHAPTER F | OpenSSL Utilities
Note: Most of the above parameters have default values as defined in
openssl.cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
MyReq.pem to be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key and
challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos
universal strings
 628

The OpenSSL Configuration File
The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the openssl configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl.cnf The openssl.cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:

[req] Variables page 630

[ca] Variables page 631

[policy] Variables page 632

Example openssl.cnf File page 633
629

CHAPTER F | OpenSSL Utilities
[req] Variables

Overview of the variables The req section contains the following variables:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

default_bits configuration
variable

The default_bits variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

default_keyfile configuration
variable

The default_keyfile variable is the default name for the private key file
created by req.

distinguished_name
configuration variable

The distinguished_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attributes variable specifies the section in the configuration
file that defines defaults for certificate request attributes.
 630

The OpenSSL Configuration File
[ca] Variables

Choosing the CA section You can configure the file openssl.cnf to support a number of CAs that
have different policies for signing CSRs. The -name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not supplied to
the ca command, the CA section used is the one indicated by the
default_ca variable. In the “Example openssl.cnf File” on page 633, this is
set to CA_default (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Overview of the variables Possible [ca] variables include the following

dir: The location for the CA database
The database is a simple text database containing the

following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept
631

CHAPTER F | OpenSSL Utilities
[policy] Variables

Choosing the policy section The policy variable specifies the default policy section to be used if the
-policy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the “Example openssl.cnf File” on
page 633: policy_match and policy_anything.

Example policy section The policy_match section of the example openssl.cnf file specifies the
order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

The match policy value Consider the following value:

countryName = match

This means that the country name must match the CA certificate.

The optional policy value Consider the following value:

organisationalUnitName = optional

This means that the organisationalUnitName does not have to be present.

The supplied policy value Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate request.
 632

The OpenSSL Configuration File
Example openssl.cnf File

Listing The following listing shows the contents of an example openssl.cnf
configuration file:

##
openssl example configuration file.
This is mostly used for generation of certificate requests.
###
[ca]
default_ca= CA_default # The default ca section
###

[CA_default]

dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should

conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
633

CHAPTER F | OpenSSL Utilities
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name
 634

APPENDIX G

Security
Recommendations
This appendix lists some general recommendations for
ensuring the effectiveness of Orbix security.

In this appendix This appendix contains the following sections:

General Recommendations page 636

Orbix Services page 637
635

APPENDIX G | Security Recommendations
General Recommendations

List of recommendations The following general recommendations can help you secure your system
using Orbix applications

1. Use SSL security for every application wherever possible.

2. Use the strongest cipher suites available. There is little extra overhead
if you use 128 bit instead of 40 bit encryption for a typical connection.

3. If your application must connect to insecure applications, limit the
aspects of your system that use insecure communications to the
minimum necessary using policies and security aware code.

4. Treat any IOR received from an insecure endpoint as untrustworthy.
Set your policies so that you cannot use insecure IORs accidentally. Set
all communications in your ORBs to be secure by default and use the
appropriate policies to override these where necessary.

5. It is important to remember that the certificates supplied with Orbix are
for demonstration purposes only and must be replaced with a securely
generated set of real certificates before applications can run in a
production environment.

6. The contents of your trusted CA list files must only include CA
certificates that you trust.

7. Do not use passwords in the configuration file. This feature is only a
developer aid.

8. The security of all SSL/TLS programs is only as strong as the weakest
cipher suite that they support. Consider making stronger cipher suites
available as an optional service which may be availed of by
applications with stronger minimum security requirements.

The bad guys will of course choose to use the weakest cipher suites.

9. Depending on the sensitivity of your system an RSA key size greater
than 512 bits might be appropriate. 1024 bit keys are significantly
slower than 512 bit keys but are much more secure.
 636

Orbix Services
Orbix Services

No authorization support for Orbix
services

The Orbix services—that is, the locator, the node daemon, the naming
service, the configuration repository (CFR), and the interface repository
(IFR)—are not to be considered as fully secured in this release. While they
can be configured to use SSL they do not apply any authorization to
operations that clients perform. This still applies, to a lesser extent, even if
the services are configured to only allow secure connections and to enforce
client authentication, because all clients with trusted client certificates can
modify the services at will. That is, the Orbix services provide no way to
distinguish between ordinary users and users requiring administrative
privileges (authorization is not supported by the services).

WARNING: Do not use the CFR for the configuration of security
information in this release. The CFR could be modified by unauthorized
clients which would compromise secure application configuration.

File based configuration must be used for secure applications.
637

APPENDIX G | Security Recommendations
 638

APPENDIX H

License Issues
This appendix contains the text of licenses relevant to Orbix.

In this appendix This appendix contains the following section:

OpenSSL License page 640
639

CHAPTER H | License Issues
OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Orbix SSL/TLS is as follows:

LICENSE ISSUES
==============
 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
 640

OpenSSL License
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
641

CHAPTER H | License Issues
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
 642

Index

Symbols
#pragma prefix 184
<action-role-mapping> tag 184
<allow-unlisted-interfaces> tag 183
<interface> tag 184
<name> tag 184
<realm> tag 175
<role> tag 175
<server-name> tag 184
<users> tag 175

A
accept_asserted_authorization_info configuration

variable 117, 120
AccessId attribute type 470
AccessId credentials attribute 450
AccessId security attribute 450
ACL

<action-role-mapping> tag 184
<allow-unlisted-interfaces> tag 183
<interface> tag 184
<name> tag 184
<server-name> tag 184
action_role_mapping configuration variable 182
action-role mapping file 182
action-role mapping file, example 183

action-role mapping
and role-based access control 163

action_role_mapping configuration variable 76,
103, 115, 182, 199

action-role mapping file
<action-role-mapping> tag 184
<allow-unlisted-interfaces> tag 183
<interface> tag 184
<name> tag 184
<server-name> tag 184
CORBA

configuring 182
example 183

action-role mapping files
Orbix services, for 205

activation
automatic 356
of insecure servers 361
persistent 356
process for 361

addProvider() method
JCE security provider, adding 254

administration
itadmin utility, certificates for 286
of the KDM server 363
OpenSSL command-line utilities 268

administrator
certificates 367

admin_logon sub-command 364
admin_logon subcommand 369
and iSF adapter properties 519
application-level security 374
Artix security service

architecture 501
definition 502
features 502
plugins:java_server:classpath configuration

variable 520
standalone deployment of 504

ASN.1 258, 603
attribute types 606
AVA 606
OID 605
RDN 607

assert_authorization_info configuration
variable 117, 119

association options
and cipher suite constraints 322
and mechanism policy 312
client secure invocation policy, default 308
compatibility with cipher suites 323
DetectMisordering 431
DetectReply 431
EstablishTrustInClient 66, 82, 333
EstablishTrustInClient, CSIv2 390, 391
EstablishTrustInTarget 330, 333
IdentityAssertion, CSIv2 411
NoProtection 69
rules of thumb 312
SSL/TLS
643

INDEX
Confidentiality 306
DetectMisordering 306
DetectReplay 306
EstablishTrustInClient 307
EstablishTrustInTarget 307
Integrity 306
NoProtection 306
setting 304

target secure invocation policy, default 310
Asymmetric cryptography 43
AttributeList type 449
attribute service policy 410
AttributeService policy data 433
AttributeTypeList sequence 470
attribute value assertion 606
Attribute value assertions, See AVA
authenticate() method

in IS2Adapter 513
authenticate() operation 437, 438
AuthenticateGSSUPCredentials interface 382
Authentication 40, 42
authentication

and mechanism policy 333
caching of credentials 90
CSIv2, client configuration 399
CSIv2, requiring 390
CSIv2, sample configuration 398
CSIv2, server configuration 401
CSIv2 client-side policy 432
CSIv2 server-side policy 432
EstablishTrustPolicy 429
GSSUP mechanism
invocation credentials 430
iSF

process of 73
IT_CSI_AUTH_METH_USERNAME_PASSWORD

authentication method 444
IT_TLS_AUTH_METH_CERT_CHAIN

authentication method 440
IT_TLS_AUTH_METH_CERT_CHAIN_FILE

authentication method 440
IT_TLS_AUTH_METH_LABEL authentication

method 440
IT_TLS_AUTH_METH_PKCS11 authentication

method 440
IT_TLS_AUTH_METH_PKCS12_DER

authentication method 440
IT_TLS_AUTH_METH_PKCS12_FILE

authentication method 440
 644
methods for SSL/TLS 440
multiple own certificates 339
over transport, in CSIv2 384
own certificate, specifying 337
pass phrase

dialog prompt, C++ 342
dialog prompt, Java 343
in configuration 345
KDM server, from 343
password file, from 344

PIN
dialog prompt 346
in configuration 347

principal authenticator 436
security capsule 437
smart card

PIN 346
SSL/TLS

principal sponsor 338
requiring 328
smart cards 338
target and client 332
target only 329
trusted CA list 335

Web services client API 494
authentication_cache_size configuration variable 91
authentication_cache_timeout configuration

variable 91
authentication data

and key distribution management 356
authentication domain

CSIv2, definition 173
authentication over transport 113

client authentication token 386
client support, enabling 390
dependency on SSL/TLS 384
description 374, 384
GSSUP credentials 471
own credentials 438
scenario 377
server configuration 391
SSL/TLS prerequisites 388
target requirements 391
target support, enabling 391

authentication realm
JAAS, definition 173

authentication service
sample implementation 393

authentication service class

INDEX
specifying 392
authentication service object

and CSI_SERVER_AS_POLICY policy 393
default implementation 393
iSF implementation 393
registering as an initial reference 393

AuthenticationService policy data 432, 433
AuthenticationService policy value 393
auth_method_data configuration variable 339
auth_method_id configuration variable 339
authorization

caching of credentials 90
iSF

process of 73, 85
procedure 171
role-based access control 163
roles

creating 165
example 168
special 166

SAML data 105
terminology 172

authorization realm
adding a server 164
IONAGlobalRealm realm 166
iSF 163
iSF, setting in server 76
roles in 165
servers in 164
special 166

authorization realms
creating 165
example 168

automatic activation 356
automatic connection management

interaction with rebind policy 458
AVA 606

in distinguished names 479
AVAList interface 479

B
backward trust 83, 408
Baltimore SSL/TLS toolkit 249
Baltimore toolkit

selecting for C++ applications 527
shlib name configuration variable 529

Basic Encoding Rules 604
basic log service ACL

IONAServiceRole 232
IONAUserRole 232
secure domain 231
semi-secure domain 231
UnauthenticatedUserRole 232

BER 604
browsers

securing 134
bytearray_to_cert() method 478

C
CA 45, 258

appending to a CA list 278
choosing a host 262
commercial CAs 261
default 266
deploying 277
index file 270
in PKCS#12 file 337
list of trusted 264
multiple CAs 264
private CAs 262
private key, creating 271
security precautions 262
See Alsocertificate authority
self-signed 271
serial file 270
trusted list 277, 295, 335

631
CA, setting up 269
CA certificates 250

deploying to Windows certificate store 295
CACHE_CLIENT session caching value 325
CACHE_NONE session caching value 325
CACHE_SERVER_AND_CLIENT session caching

value 325
CACHE_SERVER session caching value 325
caching

authentication_cache_size configuration
variable 91

authentication_cache_timeout configuration
variable 91

CACHE_CLIENT session caching value 325
CACHE_NONE session caching value 325
CACHE_SERVER_AND_CLIENT session caching

value 325
CACHE_SERVER session caching value 325
of credentials 90
SSL/TLS 325

cache size 325
645

INDEX
validity period 325
Caching sessions 325
CAPI 250
CAs 269
ca utility 627
cert_constraints configuration variable 366
CertConstraintsPolicy 350, 525
CertConstraintsPolicy policy 350, 475, 480, 525
CertConstraints string array 482, 484
certificate authority

and certificate signing 258
certificate-based authentication

example scenario 84
file adapter, configuring 176
LDAP adapter, configuring 177

certificate-based SSO
overview 109
typical scenario 111

certificate constraints 366
login server 113

certificate constraints policy 475
C++ example 482
configuration, setting by 481
identity assertion and 409
Java example 483
programming, setting by 481
setting 481
three-tier target server 83

certificate_constraints_policy variable 350, 525
Certificate interface 478
Certificates 43, 45

chain length 349
constraints 350, 525
contents of 477
validating 473–477
validation process 474

certificates
accessing from Microsoft Management

Console 290
administrator 367
C++ parsing

get_issuer_dn_string() operation 479
get_subject_dn_string() operation 479

CertConstraintsPolicy policy 350, 525
Certificate interface 478
chaining 263
common names 477
constraint language 350, 525
constraint policy, C++ example 482
 646
constraint policy, Java example 483
constraints, applying 481
constraints policy 83
contents 477
contents of 258
creating and signing 272
creating for the KDM 367
default validation 475
demonstration 266
demonstration passwords 266
deploying 279
deploying in Schannel 289, 296
deployment, 276
deployment of 276
DER encoding 478
DER format 489
for itadmin utility 286
importing and exporting 265
issuer 477
itadmin_x509_cert_root configuration

variable 286
Java parsing 478
KDM administrator 367
length limit 264
locator 367
MaxChainLengthPolicy 349
multiple own certificates 339
obtaining 489
Orbix services 267
own, specifying 337
parsing 478

AVAList interface 479
bytearray_to_cert() method 478

pass phrase 342
peer 263
PKCS#11 interface 281, 338
PKCS#12 file 265, 337
public key 259, 477
public key encryption 318
security handshake 329, 333
self-signed 263, 271
serial number 259, 477
signing 258, 273
signing request 272
smart card deployment 281, 299
smart cards 338
subject name 477
syntax 477
trusted CA certificates 250

INDEX
trusted CA list 277, 295, 335
validation

validate_cert_chain() operation 486
validation, implementing 485
X.509 258
X.509 extensions 479
X509CertificateFactory interface 478, 489
X509Cert interface 478

certificate signing request 272
common name 273
signing 273

certificate snap-in, for MMC 291
certificate store

accessing from Internet Explorer 290
deploying application certificates 296
importing PKCS#12 files 298
Schannel 250
trusted CA certificates, depoying 295

certificate validation
CertValidator interface 475
custom 475
default validation 475

certificate validation policy 474
implementing 485

CertificateValidatorPolicy policy 480
Certification Authority. See CA
CertValidator interface 475

implementing 485
CertValidatorPolicy policy 475
CFR

CompoundName type 207
configuration scope 206
namespaces 207
parameter-based access control 208
use of 637

CFR domain
Domain.cfg file 191
secure 189
secure-Domain.cfg file 191, 192

cfr-Domain.cfg file 192
chaining of certificates 263
checksums 360

and the key distribution repository 357
checking 362

checksums_optional configuration variable 362
checksum subcommand 365, 369
ciper suites

order of 321
Ciphersuites
choosing 636
cipher suites

ciphersuites configuration variable 320
compatibility algorithm 323
compatibility with association options 323
default list 321
definitions 319
effective 322
encryption algorithm 318
exportable 319
integrity-only ciphers 318
key exchange algorithm 318
mechanism policy 320
secure hash algorithm 318
secure hash algorithms 319
security algorithms 318
specifying 317
standard ciphers 318

ciphersuites configuration variable 320
client authentication token

CSIv2 authentication over transport 386
client_binding_list configuration variable 410

and CSIv2 authentication 390
iSF, client configuration 74
secure client 65, 196

client secure invocation policy 322
HTTPS 308
IIOP/TLS 308

ClientSecureInvocationPolicy policy 305
ClientSecurity Java interface 494
client-side policies 422
client_version_policy

IIOP 564
close() method 513
clustering, and fixed ports 71
colocated invocations

and secure associations 302
com.iona.isp.adapters property 518
common names 477

uniqueness 273
common secure interoperability, see CSIv2
CompoundName type 207
Confidentiality association option 306

hints 314
Confidentiality option 306
configuration

and iSF standalone deployment 504
of OpenSSL 269
of the iSF adapter 518
647

INDEX
plugins:java_server:classpath configuration
variable 520

Configuration file 629
configuration repository ACL 206
configuration scope 206
connection_attempts 564
constraint language 350, 525
Constraints

for certificates 350, 525
Contents of certificates 477
CORBA

ACLs 180
action-role mapping file 182
action-role mapping file, example 183
and iSF client SDK 502
intermediate server configuration 79
iSF, three-tier system 78
security, overview 58
SSL/TLS

client configuration 64
securing communications 60
server configuration 66

three-tier target server configuration 81
two-tier systems 72

CORBA policies
how to set 422

CORBA security
CSIv2 plug-in 59
GSP plug-in 59
IIOP/TLS plug-in 59

CORBA Security RTF 1.7 40
create_POA() operation

and policies 422
create_policy() operation 483, 484
Credentials

and Principal Authenticator 50, 53
defined 50, 53
retrieving 450

credentials
AccessId attribute 450
AttributeList type 449
attributes, Orbix-specific 450
creating CSIv2 credentials 444, 446
creating own 437
definition 449
get_attributes() operation 470
get_target_credentials() operation 450
GSSUP 471
invocation credentials 430
 648
obtaining 449
own

C++ example 454
Java example 455, 456
parsing 454

own, creating multiple 438
own, CSIv2 438

parsing 456
own, SSL/TLS 438
_Public attribute 450
received 450

C++ example 464
Java example 465

received, CSIv2
Java example 469
parsing 468

received, SSL/TLS
parsing 466, 467

retrieving 450
retrieving own 451

C++ example 452
Java example 453

retrieving received 463
retrieving target 457
SecurityAttributeType type 449
sharing 340, 394, 438
smart cards 338
target, interaction with rebind policy 458
target, retrieving

C++ example 459
Java example 460

target, SSL/TLS
C++ example 461
Java example 462
parsing 461

Credentials interface 437, 449
get_attributes() operation 449
Orbix-specific 450

Cryptography
asymmetric 43
RSA. See RSA cryptography
symmetric 43, 46

CSI
and certificate-based SSO 109
authentication over transport 113

CSI authentication over transport
and single sign-on 105

CSI_CLIENT_AS_POLICY policy type 432
CSI_CLIENT_SAS_POLICY policy type 433

INDEX
CSICredentials interface 439
parsing 456

CSI identity assertion
and single sign-on 105

CSI interceptor 74, 198
CSI plug-in

and CSIv2 principal sponsor 394
loading for Java applications 390
role in iSF 381
role in the iSF 380

csi plug-in 410
CSIReceivedCredentials interface 468
CSI_SERVER_AS_POLICY policy 393
CSI_SERVER_AS_POLICY policy type 433
CSI_SERVER_SAS_POLICY policy type 433
CSIv2

applicability 375
application-level security 374
association options 391

IdentityAssertion 411
attribute service policy 410
AuthenticateGSSUPCredentials interface 382
authentication, client configuration 399
authentication, Java example 444, 446
authentication, requiring 390
authentication, sample configuration 398
authentication, server configuration 401
authentication domain 173
authentication over transport 374
authentication over transport, description 384
authentication over transport, own

credentials 438
authentication over transport scenario 377
authentication policy, client-side 432
authentication policy, server-side 432
authentication scenario 384
authentication service 392
authentication service object 387
backward trust 408
certificate constraints policy 83
client authentication token 386
client_binding_list configuration variable 410
csi plug-in for Java applications 410
features 374
GSSUPAuthData interface 444
GSSUP mechanism 384
identity assertion 375

own credentials 439
identity assertion, description 404
identity assertion, enabling 410
identity assertion, scenario description 405
identity assertion scenario 378
identity token types 407
intermediate server 378
iSF integration with
ITTAbsent identity token type 407
ITTAnonymous identity token type 407
ITTPrincipalName identity token type 407
level 0 384
login 377
login, by configuration 396
login, by programming 396
login, dialog prompt 395
login options 394
policies 432
principal sponsor

client configuration 75
principal sponsor, description 394
principal sponsor, disabling 396
principal sponsor, enabling 394
principal_sponsor:csi:auth_method_data

configuration variable 396
principal sponsor and client authentication

token 387
received credentials 407
sample configurations 412
scenarios 376
server_binding_list configuration variable 410
SSL/TLS mutual authentication 408
SSL/TLS prerequisites 388, 408
SSL/TLS principal sponsor 409
transmitting security data 374
username and password, providing 394

CSIv2 authentication domain
and server domain name 391
in the iSF 380

CSIv2 plug-in
CORBA security 59

CSP 250
CSR 272
CSv2

CSICredentials interface 439
Current interface

and credentials 450
retrieving received credentials 464

custom validation 475
649

INDEX
D
Data Encryption Standard 46
data encryption standard

see DES
delegation

and identity assertion 404
demonstration certificates 266

passwords 266
Deploy.xar file 136
deploying a CA 277
deployment

application certificates 279
certificates 276
service certificates 283
smart card, constraints 281
smart cards 281, 299

deploy operation
securing, in Web services 136

DeployPort service 136
DER 604
DER encoding 478
DER format 489
DES 46

symmetric encryption 319
DetectMisordering association option 306, 431

hints 314
DetectMisordering option 306
DetectReplay association option 306

hints 314
DetectReplay option 306
DetectReply association option 431
DIRECT_PERSISTENCE policy value 70
Distinguished Encoding Rules 604
distinguished names 479

definition 605
DN

definition 605
string representation 605

Domain.cfg file 191
domain name

and CSIv2 authentication over transport 374
ignored by iSF 73

domain names
server domain name 391

E
effective cipher suites

definition 322
 650
effective credentials 119
enable_gssup_sso variable 99
enable_x509_sso variable

and certificate-based SSO 111
Encryption 40
encryption algorithm

RC4 319
encryption algorithms 318

DES 319
symmetric 318
triple DES 319

enforce_secure_comms_to_sso_server variable 101
and the login service 95
login server 113

enterprise security service
and iSF security domains 161

EstablishTrustInClient
CSIv2 association option 390, 391, 395

EstablishTrustInClient association option 66, 307,
333

hints 313
three-tier target server 82

EstablishTrustInClient CSI association option
and username/password-based

authentication 101, 103
EstablishTrustInClient option 307
EstablishTrustInTarget association option 307, 330,

333
hints 313

EstablishTrustInTarget option 307
EstablishTrustPolicy policy 429

and interaction between policies 431
EstablishTrust type 429
event log service ACL

IONAServiceRole 234
IONAUserRole 234
secure domain 233
semi-secure domain 234
UnauthenticatedUserRole 234

event service ACL
IONAServiceRole 220
IONAUserRole 221
secure domain 219
semi-secure domain 220
UnauthenticatedUserRole 221

exportable cipher suites 319
ExtendedReceivedCredentials interface 106
Extension interface 479
ExtensionList interface 479

INDEX
F
features, of the Artix security service 502
file adapter 146

configuring certificate-based authentication 176
properties 146

file-based domain
secure 189

file domain
<realm> tag 175
<users> tag 175
example 168, 174
file location 174
managing 174

fixed ports 70
DIRECT_PERSISTENCE policy value 70
host 71
IIOP/TLS addr_list 71
IIOP/TLS listen_addr 71
IIOP/TLS port 71
INDIRECT_PERSISTENCE policy value 70

G
generic security service username/password

mechanism
generic server 504
getAllUsers() method 515
get_attributes() operation 470

in Credentials interface 449
getAuthorizationInfo() method 514
get_issuer_dn_string() operation 479
get_subject_dn_string() operation 479
get_target_credentials() operation 450
getToken() method 494
GIOP

and CSIv2 374
GroupBaseDN property 150
GroupNameAttr property 150
GroupObjectClass property 150
GroupSearchScope property 151
GSP interceptor 198
GSP plug-in

and the login service 94
authentication_cache_size configuration

variable 91
authentication_cache_timeout configuration

variable 91
caching of credentials 90
CORBA security 59
role in the iSF 380
GSSUP

modifications for single sign-on 98
GSSUPAuthData interface 444
GSSUPAuthData struct 446, 448
GSSUP credentials 471
GSSUP mechanism 384

and CSIv2 principal sponsor 394
GSSUP username 407

H
Handshake, TLS 43–??
HTTP

login realm 173
HTTP Basic Authentication

adding to Web services 138
Web service client 140

HTTPBasicAuthHandler 136, 138
HTTPS

ciphersuites configuration variable 320

I
identity assertion

backward trust 408
certificate constraints policy

CSIv2
certificate constraints policy

409
csi plug-in for Java applications 410
description 375, 404
enabling 410
intermediate server configuration 410
own credentials 439
policy, client-side 433
policy, server-side 433
received credentials and 407
sample client configuration 413
sample configurations 412
sample intermediate server configuration 415
sample target server configuration 417
scenarioCSIv2

identity assertion scenario 404
scenario description 405
SSL/TLS dependency 404
SSL/TLS mutual authentication 408
SSL/TLS prerequisites 408
SSL/TLS principal sponsor 409
651

INDEX
IdentityAssertion CSIv2 association option 411
identity assertion scenario 378
identity tokens

GSSUP username 407
subect DN in 407
types of 407

IIOP
and CSIv2 374

IIOP/TLS
ciphersuites configuration variable 320
host 71

IIOP/TLS addr_list 71
IIOP/TLS listen_addr 71
IIOP/TLS plug-in

CORBA security 59
role in iSF 381

IIOP/TLS port 71
IIOP plug-in

and semi-secure clients 65, 198, 204
IIOP policies 557, 562

client version 564
connection attempts 564
export hostnames 568
export IP addresses 568
GIOP version in profiles 568
server hostname 567
TCP options

delay connections 569
receive buffer size 570

IIOP policy
ports 567

IIOP_TLS interceptor 65, 196
impersonation

and identity assertion 404
imposter, server 359
IMR record 369

protecting with checksums 360
index file 270
INDIRECT_PERSISTENCE policy value 70
initialize() method 513, 519
initial references

IT_CSIAuthenticationObject 393
insecure object references

and QOP policy 428
insertProviderAt() method

JCE security provider, adding 254
Integrity 42, 47
Integrity association option 306

hints 314
 652
integrity-only ciphers 318
Integrity option 306
intermediate server

and CSIv2 identity assertion 378
SSL/TLS connection from 406

intermediate server configuration 410
internal ORB

configuration 200
management service, monitoring 200
share_credentials_across_orbs variable 201

International Telecommunications Union 45
Internet Explorer

accessing the Windows certificate store 290
interoperability

OS/390, SSL/TLS 320
InvocationCredentialsPolicy policy 430
invocation policies

interaction with mechanism policy 312
IONAGlobalRealm 515
IONAGlobalRealm realm 166
IONA security framework, see iSF
IONAServiceRole role 205
IONAUserRole role 205
is2.properties file 146

and iSF adapter configuration 506
IS2AdapterException class 514
IS2Adapter Java interface 506

implementing 507
iS2 adapters

enterprise security service 161
file domain

managing 174
file domain, example 168
LDAP domain

managing 177
standard adapters 503

iS2 server
bootstrapping 204
configuring 145
file adapter 146
IP port 203
is2.properties file 146
LDAP adapter 148
LDAP adapter, properties 149
log4j logging 157
securing 188
security infomation file 146

iS2 service
configuring 202

INDEX
is2_user_password_role_file.txt file 138
iSF

action_role_mapping configuration variable 76,
103, 115, 199

and certificate-based authentication 84
and CSIv2
authentication service implementation 393
authorization

process of 73, 85
authorization realm

setting in server 76
client configuration

CSI interceptor 74
CORBA

three-tier system 78
three-tier target server configuration 81
two-tier scenario description 73

CORBA security 58
CSI plug-in role 380, 381
CSIv2 authentication domain in the 380
domain name, ignoring 73
GSP plug-in role 380
IIOP/TLS plug-in role 381
intermediate server configuration 79
security domain

creating 162
server configuration

server_binding_list 74
server domain name, ignored 391
server_domain_name configuration variable 76
three-tier scenario description 79
two-tier CORBA systems 72
user account

creating 162
iSF adapter

adapter class property 518
and IONAGlobalRealm 515
and the iSF architecture 502
authenticate() method 513
close() method 513
com.iona.isp.adapters property 518
configuring to load 518
custom adapter, main elements 506
example code 507
getAllUsers() method 515
getAuthorizationInfo() method 514
initialize() method 513, 519
logout() method 516
overview 506
property format 519
property truncation 519
WRONG_NAME_PASSWORD minor

exception 514
iSF adapter SDK

and the iSF architetecture 502
iSF client

in iSF architecture 501
iSF client SDK 502
iSF server

plugins:java_server:classpath configuration
variable 520

itadmin utility
admin_logon 364
and KDM administration 363
deploying certificates for 286
itadmin_x509_cert_root configuration

variable 286
protection 367

itadmin_x509_cert_root configuration variable 286,
367

IT_Certificate module 478
IT_CFR module 207
IT_CORBASEC module 106
IT_CSIAuthenticationObject initial object ID 393
IT_CSI_AUTH_METH_USERNAME_PASSWORD

authentication method 444
IT_SecurityService initial reference 203
ITTAbsent identity token type 407
ITTAnonymous identity token type 407
IT_TLS_AUTH_METH_CERT_CHAIN authentication

method 440
IT_TLS_AUTH_METH_CERT_CHAIN_FILE

authentication method 440
IT_TLS_AUTH_METH_LABEL authentication

method 440
IT_TLS_AUTH_METH_PKCS11 authentication

method 440
IT_TLS_AUTH_METH_PKCS12_DER authentication

method 440
IT_TLS_AUTH_METH_PKCS12_FILE authentication

method 440
ITTPrincipalName identity token type 407
ITU 45
itws_builder utility

and HTTP Basic Authentication 138
certificate matching condition 132
client security 134
securing the deploy service 136
653

INDEX
itws_clientenv script 140

J
J2EE

and iSF client SDK 502
realm 173
security policy domain 173
security technology domain 172

J2SE client
generating for Web service 140

JAAS
authentication realm 173

Java
certificates 478

java.security.cert package 478
java.security file 135
Java Authentication and Authorization Service

see JAAS
Java Cryptography Extension 252
Java security

security providers 135
JCE 252
JCE architecture

enabling 528
enabling in Orbix 253
logging 254

JSSE toolkit 248

K
KDM

activation 361
activation process 361
administration overview 363
and activation 356
and certificate constraints 366
and checksums 360
and checksum storage 357
and deploying certificates 280, 284
and secure directories 366
and security threats 359
and the key distribution repository 357
and the locator 357
architecture 357
certificates, creating 367
checking the checksum 362
checksum creation 369
configuration variables 365
definition of 356
 654
itadmin utility
protection 367

itadmin_x509_cert_root 367
logging on 364
loggin on 369
pass phrase registration 369
pass phrase storage 357
registration of a secure server 368
role of the locator 358
role of the node daemon 358
secure_directories configuration variable 359
server plug-in 357
setting up 366

kdm_adm subcommand 364, 369
KDM server protection 366
KDR 357
key distribution mechanism. See KDM
key distribution repository 357
key exchange algorithms 318
keytool utility 135

L
LDAP adapter 148

basic properties 151
configuring certificate-based authentication 177
GroupBaseDN property 150
GroupNameAttr property 150
GroupObjectClass property 150, 151
LDAP server replicas 152
MemberDNAttr property 151
PrincipalUserDN property 152
PrincipalUserPassword property 152
properties 149
replica index 152
RoleNameAttr property 150
SSLCACertDir property 153
SSLClientCertFile property 153
SSLClientCertPassword property 153
SSLEnabled property 153
UserBaseDN property 150
UserNameAttr property 150
UserObjectClass property 150
UserRoleDNAttr property 150

LDAP domain
managing 177

LifespanPolicy policy 70
Lightweight Directory Access Protocol

see LDAP
local_hostname 567

INDEX
locator
and the KDM 358
and the KDM server 357
certificate 367

locator ACL 211
IONAServiceRole 211
IONAUserRole 211

log4j 157
documentation 157
properties file 157

logging
in secure client 66
JCE architecture 254
log4j 157

login
CSIv2 377
CSIv2, by configuration 396
CSIv2, by programming 396
CSIv2 dialog prompt 395
CSIv2 options 394

login realm
HTTP, definition 173

login server
enforce_secure_comms_to_sso_server

variable 113
login service

and single sign-on 94
embedded deployment 94
enforce_secure_comms_to_sso_server variable 95
login operation 110
secure connection to 95
standalone deployment mode 96

logout() method 516

M
MAC 47
management service

and the internal ORB settings 200
max_chain_length_policy configuration variable 349
MaxChainLengthPolicy policy 349
MD5 306, 319
mechamism policy

interaction with invocation policies 312
MechanismPolicy 306
mechanism policy 320

and authentication 333
and interaction between policies 431
and Orbix services 196

MechanismPolicy policy
and interaction between policies 431
MemberDNAttr property 151
message authentication code 47
message digest 5

see MD5
message digests 306
message fragments 306
Message integrity 40
Microsoft Crypto API 250
Microsoft Cryptographic Service Provider 250
Microsoft Management Console

accessing certificates 290
minimum security levels 426
mixed configurations, SSL/TLS 69
MMC 290
multi-homed hosts, configure support for 567
multiple CAs 264
multiple own certificates 339
mutual authentication

identity assertion scenario 408

N
names, distinguished 479
namespace

plugins:csi 530
plugins:gsp 531
policies 548
policies:csi 554
policies:https 557
policies:iiop_tls 562
principal_sponsor:csi 575
principle_sponsor 571

namespaces 207
naming service ACL

IONAServiceRole 215
IONAUserRole 215
UnauthenticatedUserRole 215

node daemon
and the KDM 357, 358
secure_directories configuration variable 359

node daemon ACL
IONAServiceRole 213
IONAUserRole 213
UnauthenticatedUserRole 213

no_delay 569
NO_PERMISSION exception

and login server certificate constraings 113
and SSO token refresh 95

NoProtection assocation option
655

INDEX
rules of thumb 312
NoProtection association option 69, 306

hints 315
semi-secure applications 315

NoProtection option 306
notification service ACL

IONAServiceRole 224
IONAUserRole 225
secure domain 223
semi-secure domain 224
UnauthenticatedUserRole 225

notify log service ACL
IONAServiceRole 237
IONAUserRole 238
secure domain 236
semi-secure domain 237
UnauthenticatedUserRole 238

O
object-level policies

invocation credentials policy 430
object references

and target credentials 458
making insecure 428

opage Abstract Syntax Notation One
see ASN.1 603

OpenSSL 262, 619
openSSL

configuration file 629
utilities 620

openSSL.cnf example file 633
openssl.cnf file 269
OpenSSL command-line utilities 268
OpenSSL configuration file 269
ORB

security capsule 437
Orbix configuration file 504
orbname create 368
orbname modify 369
orb_plugins configuration variable 65, 198, 204

client configuration 74
orb_plugins list

CSI plug-in, including the 390
orb_plugins variable

and the NoProtection association option 315
semi-secure configuration 316

OS/390
interoperability with 320
 656
own credentials
creating 437
creating multiple 438
CSICredentials interface 439
CSIv2 438

parsing 456
definition 449
principal authenticator 437
retrieving 451

C++ example 452
Java example 453

SSL/TLS 438
C++ example 454
Java example 455
parsing 454

TLSCredentials interface 438

P
parameter-based access control 208
pass phrase 342

and the kdm_adm subcommand 364
and the key distribution repository 357
dialog prompt, C++ 342
dialog prompt, Java 343
in configuration 345
KDM server, from 343
password file, from 344
registering with the KDM 369

pass phrases
and key distribution management 356

passwords
demonstration, for 266

PDK
and custom SSL/TLS toolkit 248

peer certificate 263
performance

caching of credentials 90
PersistenceModePolicy policy 70
persistent activation 356
PIN 282, 300

dialog prompt 346
in configuration 347
smart card 338

PKCS#11 interface 281, 338
PKCS#12 file

importing into Windows certificate store 298
PKCS#12 files 337

creating 265, 272
definition 265

INDEX
deploying 279
importing and exporting 265
pass phrase 342
private key 337
viewing 265

plug-in development kit 248
plug-ins

csi 410
CSI, and CSIv2 principal sponsor 394
CSI, role in iSF 380, 381
CSIv2, in CORBA security 59
GSP, in CORBA security 59
GSP, role in iSF 380
IIOP 65, 198, 204
IIOP/TLS, in CORBA security 59
IIOP/TLS, role in iSF 381
kdm_adm 363

plugins:csi:ClassName 530
plugins:csi:shlib_name 530
plugins:gsp:authorization_realm 532
plugins:gsp:ClassName 533
plugins:gsp:shlib_name 534
plugins:iiop_tls:hfs_keyring_filename 539
plugins:iiop_tls:hfs_keyring_file_password 565
plugins:iiop_tls:hfs_keyring_file_stashfile 539
plugins:iiop_tls:racf_keyring 539
plugins:java_server:classpath configuration

variable 520
poa create 368
polices:max_chain_length_policy 550
policies

and create_POA() operation 422
and _set_policy_overrides() operation 422
C++ example 423
CertConstraintsPolicy 350, 480, 525
certificate constraints 475, 481
certificate validation 474
CertificateValidatorPolicy 480
client secure invocation 322
ClientSecureInvocationPolicy 305
client-side 422
CSI_SERVER_AS_POLICY 393
CSIv2, programmable 432
EstablishTrustPolicy 429
how to set 422
HTTPS

client secure invocation 308
target secure invocation 310

identity assertion, client-side 433
identity assertion, server-side 433
IIOP/TLS

client secure invocation 308
target secure invocation 310

insecure object references 428
interaction between 431
InvocationCredentialsPolicy policy 430
Java example 423
MaxChainLengthPolicy 349
minimum security levels 426
PolicyCurrent type 422
PolicyManager type 422
QOPPolicy policy 428
rebind policy 458
restricting cipher suites 428
SecClientSecureInvocation 308
SecClientSecureInvocation policy 426
SecQOPConfidentiality enumeration value 428
SecQOPIntegrityAndConfidentiality enumeration

value 428
SecQOPIntegrity enumeration value 428
SecQOPNoProtection enumeration value 428
SecTargetSecureInvocation 310
SecTargetSecureInvocation policy 426
server-side 422
SessionCachingPolicy 325
SSL/TLS 425
target secure invocation 322
TargetSecureInvocationPolicy 305
TLS_CERT_CONSTRAINTS_POLICY 483, 484

policies:allow_unauthenticated_clients_policy 548
policies:certificate_constraints_policy 549
policies:csi:attribute_service:client_supports 554
policies:csi:attribute_service:target_supports 555
policies:csi:auth_over_transpor:target_supports 556
policies:csi:auth_over_transport:authentication_servi

ce configuration variable 392, 393
policies:csi:auth_over_transport:client_supports 55

5
policies:csi:auth_over_transport:client_supports

configuration variable 390
policies:csi:auth_over_transport:target_requires 556
policies:csi:auth_over_transport:target_requires

configuration variable 391
policies:csi:auth_over_transport:target_supports

configuration variable 391
policies:https:allow_unauthenticated_clients_policy

557
policies:https:certificate_constraints_policy 557
657

INDEX
policies:https:client_secure_invocation_policy:requir
es 558

policies:https:client_secure_invocation_policy:suppo
rts 558

policies:https:max_chain_length_policy 558
policies:https:mechanism_policy:ciphersuites 559
policies:https:mechanism_policy:protocol_version 5

59
policies:https:session_caching_policy 560
policies:https:target_secure_invocation_policy:requir

es 560
policies:https:target_secure_invocation_policy:suppo

rts 560
policies:https:trusted_ca_list_policy 561
policies:iiop_tls:allow_unauthenticated_clients_polic

y 563
policies:iiop_tls:certificate_constraints_policy 563
policies:iiop_tls:client_secure_invocation_policy:requ

ires 564
policies:iiop_tls:client_secure_invocation_policy:sup

ports 564
policies:iiop_tls:client_version_policy 564
policies:iiop_tls:connection_attempts 564
policies:iiop_tls:connection_retry_delay 565
policies:iiop_tls:max_chain_length_policy 565
policies:iiop_tls:mechanism_policy:ciphersuites 565
policies:iiop_tls:mechanism_policy:protocol_version

566
policies:iiop_tls:server_address_mode_policy:local_h

ostname 567
policies:iiop_tls:server_address_mode_policy:port_ra

nge 567
policies:iiop_tls:server_address_mode_policy:publish

_hostname 568
policies:iiop_tls:server_version_policy 568
policies:iiop_tls:session_caching_policy 568
policies:iiop_tls:target_secure_invocation_policy:req

uires 569
policies:iiop_tls:target_secure_invocation_policy:sup

ports 569
policies:iiop_tls:tcp_options:send_buffer_size 570
policies:iiop_tls:tcp_options_policy:no_delay 569
policies:iiop_tls:tcp_options_policy:recv_buffer_size

570
policies:iiop_tls:trusted_ca_list_policy 570
policies:mechanism_policy:ciphersuites 550
policies:mechanism_policy:protocol_version 551
policies:session_caching_policy 551, 552
policies:target_secure_invocation_policy:requires 55
 658
2
policies:target_secure_invocation_policy:supports 5

52
policies:trusted_ca_list_policy 553
632

PolicyCurrent type 422
policy data

AttributeService 433
AuthenticationService 432, 433

PolicyList interface 482
PolicyList object 424
PolicyManager interface 482, 484
PolicyManager object 424
PolicyManager type 422
policy types

CSI_CLIENT_AS_POLICY 432
CSI_CLIENT_SAS_POLICY 433
CSI_SERVER_AS_POLICY 433
CSI_SERVER_SAS_POLICY 433

policy values
AuthenticationService 393

principal
definition 437

principal authenticator
authenticate() operation 437, 438
CSIv2

Java example 444, 446
definition 437
security capsule 437
SSL/TLS

C++ example 440
Java example 442

using 436
principal sponsor

configuring for smart cards 300
CSIv2

client configuration 75
CSIv2, description 394
CSIv2 and client authentication token 387
SSL/TLS

configuring 339
definition 338
enabling 68, 197

SSL/TLS, disabling 66
principal_sponsor:csi:auth_method_data 576
principal_sponsor:csi:auth_method_data

configuration variable 395, 396
principal_sponsor:csi:use_method_id configuration

variable 394

INDEX
principal_sponsor:csi:use_principal_sponsor 575
principal_sponsor:csi:use_principal_sponsor

configuration variable 394, 396
principal_sponsor configuration namespace 339
principal_sponsor Namespace Variables 571
principal sponsors

CSIv2, disabling 396
CSIv2, enabling 394
SSL/TLS, and CSIv2 389

PrincipalUserDN property 152
PrincipalUserPassword property 152
PrincipleAuthenticator interface 438, 442, 446,

448
principle_sponsor:auth_method_data 572
principle_sponsor:auth_method_id 572
principle_sponsor:callback_handler:ClassName 574
principle_sponsor:login_attempts 574
principle_sponsor:use_principle_sponsor 571
Privacy 42
private key 271

in PKCS#12 file 337
process create 368
Protocol, TLS handshake 43–??
protocol version

interoperability with OS/390 320
protocol_version configuration variable 320
_Public credentials attribute 450
public key 477
Public key cryptography 43
public key encryption 318
public keys 259
_Public security attribute 450
publish_hostname 568

Q
QOP enumerated type 428
QOP policy

restricting cipher suites 428
QOPPolicy policy 428

and interaction between policies 431
quality of protection 428

R
RC4 46
RC4 encryption 319
RDN 607
realm

J2EE, definition 173
see authorization realm
realms

and GSP plug-in 382
IONAGlobalRealm, adding to 515
SAML data 105

rebind policy
interaction with target credentials 458

received credentials
CSIv2

Java example 469
parsing 468

Current object 464
definition 449
identity assertion and 407
retrieving 463

C++ example 464
Java example 465

SSL/TLS
parsing 466, 467

ReceivedCredentials interface 379, 449
Orbix-specific 450
parsing received credentials 466

recv_buffer_size 570
registration

of a secure server 368
relative distinguished name 607
remote method invocation, see RMI
Replay detection 306
repository ID

#pragma prefix 184
in action-role mapping file 184

630
required security features 426
req utility 623
req Utility command 623
Rivest Shamir Adleman

see RSA
Rivest Shamir Adleman cryptography. See RSA

cryptography
RMI/IIOP

and CSIv2 374
role-based access control 163

example 165
RoleNameAttr property 150
roles

and GSP plug-in 382
creating 165
example 168
SAML data 105
659

INDEX
special 166
root certificate directory 264
RSA 318

key size 636
symmetric encryption algorithm 318

RSA cryptography 43
RSA_EXPORT_WITH_DES40_CBC_SHA cipher

suite 318, 323
RSA_EXPORT_WITH_RC4_40_MD5 cipher

suite 318, 323
rsa utility 625
rsa Utility command 625
RSA_WITH_3DES_EDE_CBC_SHA cipher

suite 318, 323
RSA_WITH_DES_CBC_SHA cipher suite 318, 323
RSA_WITH_NULL_MD5 cipher suite 318, 323
RSA_WITH_NULL_SHA cipher suite 318, 323
RSA_WITH_RC4_128_MD5 cipher suite 318, 323
RSA_WITH_RC4_128_SHA cipher suite 318, 323

S
SAML

piggybacking data 105
sample configurations

SSL/TLS 60
scenarios

authentication in CSIv2 384
authentication over transport 377
CSIv2 376
identity assertion 378

Schannel
and smart cards 299
deploying application certificates 296
deploying certificates 289
deploying trusted CA certificates 295

Schannel toolkit 250
selecting for C++ applications 527

SecClientSecureInvocation policy 308, 426
SecQOPConfidentiality enumeration value 428
SecQOPIntegrityAndConfidentiality enumeration

value 428
SecQOPIntegrity enumeration value 428
SecQOPNoProtection enumeration value 428
SecTargetSecureInvocation policy 310, 426
secure associations

client behavior 308
definition 302
TLS_Coloc interceptor 302

secure_client_with_no_cert configuration
 660
sample 388
secure_directories configuration variable 359
secure-Domain.cfg file 191
secure hash algorithms 318, 319
secure invocation policy 305, 426
secure_server_no_client_auth configuration 63
secure_server_no_client_auth configuration

sample 388
Secure Sockets Layer, See SSL
Security 635
security algorithms

and cipher suites 318
security attribute service context 374, 379
SecurityAttributeType type 449
security capsule

and principal authenticator 437
credentials sharing 340, 394, 438

security domain
creating 162
file domain example 168

security domains
architecture 161
iSF 161

security handshake
cipher suites 317
SSL/TLS 329, 333

security infomation file 146
SecurityManager interface 438, 442, 446, 448

and credentials 450
retrieving own credentials 452

security policy domain
J2EE, definition 173

security providers
configuring JCE 253
Java security 135
JCE 252
providing by programming 254

Security recommendations 635
security technology domain

J2EE, definition 172
security threats 359
self-signed CA 271
self-signed certificate 263
semi-secure applications

and NoProtection 315
SEMI_SECURE servers 306
serial file 270
serial number 259, 477
server_binding_list configuration variable 74, 410

INDEX
and CSIv2 authentication 390
secure server 198

server domain name
and CSIv2 authentication over transport 391

server_domain_name configuration variable
iSF, ignored by 76

server-side policies 422
server_version_policy

IIOP 568
service contexts

security attribute 374, 379
services

certificates 267
configuring Orbix 194
deploying certificates 283
principal sponsor

example configuration 285
securing Orbix 188

session_cache_size configuration variable 325
session_cache_validity_period configuration

variable 325
session_caching_policy configuraion variable 325
SessionCachingPolicy policy 325
session_caching_policy variable 325
setPassword() method 494
_set_policy_overrides() operation 422
set_policy_overrides() operation 424, 482

and invocation credentials 430
setToken() method 494
setUserName() method 494
SHA 319
SHA1 306
share_credentials_across_orbs variable

internal ORB settings 201
shared credentials 340, 394, 438
signing certificates 258
single sign-on

accept_asserted_authorization_info configuration
variable 117, 120

assert_authorization_info configuration
variable 117, 119

effective credentials 119
ExtendedReceivedCredentials interface 106
getToken() method 494
IT_CORBASEC module 106
sample client configurations 121
setToken() method 494
sso_server_certificate_constraints configuration

variable 107
token timeouts 95
Web services 494

slot number, in smart card 338
smart card

certificate deployment 281
PIN 338, 346
slot number 338

smart cards 338
and Schannel 250
certificate deployment 299
deploying credentials 299
deployment constraints 281
PIN 282, 300

SOAPFaultException
and deploying securely 139

Specifying ciphersuites 317
SSL/TLS

association options
setting 304

caching 325
caching validity period 325
cipher suites 317
client configuration 64
colocated invocations 302
encryption algorithm 318
fixed ports 70
IIOP_TLS interceptor 65, 196
key exchange algorithm 318
logging 66
mechanism policy 320
mixed configurations 69
orb_plugins list 65, 198, 204
principal sponsor

disabling 66
enabling 68, 197

protocol_version configuration variable 320
sample configurations 60
secure associations 302
secure client, definition 61
secure hash algorithm 318
secure hash algorithms 319
secure invocation policy 305
securing communications 60
security handshake 329, 333
selecting a toolkit, C++ 527
semi-secure client

IIOP plug-in 65, 198, 204
semi-secure client, definition 61
semi-secure server, definition 62
661

INDEX
server configuration 66
server server, definition 62
session cache size 325
terminology 61
TLS session 302

SSL/TLS policies 425
SSL/TLS principal sponsor

and CSIv2 authentication over transport 389
SSL/TLS toolkit

Baltimore 249
SSL/TLS toolkits 248

Schannel 250
SSLCACertDir property 153
SSLClientCertFile property 153
SSLClientCertPassword property 153
SSLeay 262
SSLEnabled property 153
SSO

see single sign-on
sso_server_certificate_constraints configuration

variable 107
sso_server_certificate_constraints variable 99

and certificate-based SSO 111
_SSO_TOKEN_ 98

certificate-based SSO 110
SSO token 107, 119

and certificate-based SSO 110
and the login service 94
automatic refresh 95
re-authenticating 118
timeouts 95
Web services, accessing 494

standalone deployment 504
standard ciphers 318
subject DN

and identity tokens 407
subject name 477
supported security features 427
Symmetric cryptography 46
symmetric encryption algorithms 318

T
Target

choosing behavior 310
target and client authentication 332

example configuration 334
target authentication 329
target authentication only

example 331
 662
target credentials
availability of 458
definition 449
interaction with rebind policy 458
retrieving 457

C++ example 459
Java example 460

SSL/TLS
C++ example 461
Java example 462
parsing 461

TargetCredentials interface 449, 458
Orbix-specific 450

target secure invocation policy 322
HTTPS 310
IIOP/TLS 310

TargetSecureInvocationPolicy policy 305
TCP policies

delay connections 569
receive buffer size 570

terminology
SSL/TLS

secure client, definition 61
semi-secure client, definition 61
semi-secure server, definition 62
server server, definition 62

SSL/TLS samples 61
terminology, for domain and realm 172
three-tier scenario description 79
TLS

authentication 42
handshake 43–??
how provides security 42
integrity 47
session caching 325

TLS_CERT_CONSTRAINTS_POLICY policy
type 483, 484

TLS_Coloc interceptor 302
TLSCredentials interface 438, 454, 489
TLSReceivedCredentials interface 466
TLS session

definition 302
TLSTargetCredentials interface

parsing target credentials 461
token

SSO 107, 119
tokens

client authentication 386
toolkit replaceability 248

INDEX
enabling JCE architecture 528
JSSE/JCE architecture 252
logging 254
selecting the toolkit, C++ 527

trader service ACL
IONAServiceRole 217
IONAUserRole 217
secure domain 216
semi-secure domain 217
UnauthenticatedUserRole 217

Transport Layer Security, See TLS
triple DES 319
truncation of property names 519
trusted CA list 277, 295
trusted CA list policy 335
trusted_ca_list_policy 278
trusted_ca_list_policy configuration variable 335
trusted_ca_list_policy variable 277

and Orbix services 196
trusted CAs 264
trust in client

by programming, SSL/TLS 429
trust in target

by programming, SSL/TLS 429

U
undeploy operation

securing, in Web services 136
use_jsse_tk configuration variable 528
use_principal_sponsor configuration variable 339
user account

creating 162
UserBaseDN property 150
username/password

for deploying a Web service 139
username/password-based authentication

overview 97
username and password

CSIv2 394
UserNameAttr property 150
UserObjectClass property 150
UserRoleDNAttr property 150
UserSearchScope property

LDAP adapter
UserObjectClass property 150

V
validate_cert_chain() operation 486
Variables 630, 631, 632

W
Web service

client, building a 140
deploying a service securely 139
HTTP Basic Authentication, adding 138

Web services
browser security 134
certificate for the container 132
client example 495
client security 134
ClientSecurity Java interface 494
container security 132
Deploy.xar file 136
deploy operation, securing 136
DeployPort service 136
getToken() method 494
HTTPBasicAuthHandler 136
secure client API 494
setToken() method 494
setUserName() method 494
single sign-on 494
SSO token, accessing 494

Web services domain
creating 128

well-known addressing policy 71
WellKnownAddressingPolicy policy 70
WRONG_NAME_PASSWORD minor exception 514

X
X.500 603
X.509

and PKCS#12 file 337
certificates. See certificates
Extension interface 479
ExtensionList interface 479
extensions 479
public key encryption 318
v3 extensions 477, 478

X.509 certificate
contents 477
definition 258

X.509 certificates 257
parsing 478

X509CertChain interface 489
X509CertificateFactory interface 478, 489
X509Cert interface 478, 489
663

INDEX
x509 utility 621
 664

INDEX
665

INDEX
 666

	Orbix Security Guide
	List of Tables
	List of Figures
	Preface
	Part I Introducing Security
	1 Getting Started with Security
	Creating a Secure Domain
	Security Demonstrations
	Running a Secure CORBA Demonstration

	Where do I go from here?

	2 Orbix Security Framework
	Introduction to the iSF
	iSF Features
	Example of an iSF System
	Security Standards

	Orbix Security Service
	Orbix Security Service Architecture
	iSF Server Development Kit

	Secure Applications
	ART Security Plug-Ins
	Secure CORBA Applications

	Administering the iSF
	Overview of iSF Administration
	Secure ASP Services

	3 Transport Layer Security
	What does Orbix Provide?
	How TLS Provides Security
	Authentication in TLS
	Certificates in TLS Authentication
	Privacy of TLS Communications
	Integrity of TLS Communications

	Obtaining Credentials from X.509 Certificates
	Obtaining Certificate Credentials from a File
	Obtaining Certificate Credentials from a Smart Card

	4 Securing CORBA Applications
	Overview of CORBA Security
	Securing Communications with SSL/TLS
	Specifying Fixed Ports for SSL/TLS Connections
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication
	Caching of Credentials

	5 Single Sign-On for CORBA Applications
	SSO and the Login Service
	Username/Password-Based SSO
	Three Tier Example with Identity Assertion
	X.509 Certificate-Based SSO
	Enabling Re-Authentication at Each Tier
	SSO Sample Configurations

	6 Securing Web Services
	Create a Secure Web Services Domain
	Configure Server-Side Security
	Configure Client-Side Security
	Secure the Deploy Service
	Add the HTTPBasicAuthHandler to a Web Service
	Build and Run a Secure Client

	Part II Orbix Security Framework Administration
	7 Configuring the Orbix Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	8 Managing Users, Roles and Domains
	Introduction to Domains and Realms
	iSF Security Domains
	iSF Authorization Realms
	Example Domain and Realms
	Domain and Realm Terminology

	Managing a File Security Domain
	Managing an LDAP Security Domain

	9 Managing Access Control Lists
	CORBA ACLs
	Overview of CORBA ACL Files
	CORBA Action-Role Mapping ACL

	10 Securing Orbix Services
	Introduction to Securing Services
	File-Based and CFR Domains
	Customizing a Secure Domain
	Configuring a Typical Orbix Service
	Configuring the Security Service

	Default Access Control Lists
	Configuration Repository ACL
	Locator ACL
	Node Daemon ACL
	Naming Service ACL
	Trader Service ACL
	Event Service ACL
	Notification Service ACL
	Basic Log Service ACL
	Event Log Service ACL
	Notify Log Service ACL

	Part III SSL/TLS Administration
	11 Choosing an SSL/TLS Toolkit
	Toolkit Replaceability
	Baltimore Toolkit for C++ and Java
	Schannel Toolkit for C++
	JSSE/JCE Architecture

	12 Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Using the Demonstration Certificates
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Providing a List of Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards
	Deploying Orbix Service Certificates
	Deploying itadmin Certificates

	Deploying Certificates with Schannel
	Schannel Certificate Store
	Deploying Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards

	13 Configuring SSL/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching TLS Sessions

	14 Configuring SSL/TLS Authentication
	Requiring Authentication
	Target Authentication Only
	Target and Client Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Pass Phrase or PIN
	Providing a Certificate Pass Phrase
	Providing a Smart Card PIN

	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates
	Delaying Credential Gathering

	15 Automatic Activation of Secure�Servers
	Managing Server Pass Phrases
	Protecting against Server Imposters
	How the KDM Activates a Secure Server
	KDM Administration
	Setting Up the KDM
	Registering a Secure Server

	Part IV CSIv2 Administration
	16 Introduction to CSIv2
	CSIv2 Features
	Basic CSIv2 Scenarios
	CSIv2 Authentication over Transport Scenario
	CSIv2 Identity Assertion Scenario

	Integration with the Orbix Security Framework

	17 Configuring CSIv2 Authentication over Transport
	CSIv2 Authentication Scenario
	SSL/TLS Prerequisites
	Requiring CSIv2 Authentication
	Providing an Authentication Service
	Providing a Username and Password
	Sample Configuration
	Sample Client Configuration
	Sample Server Configuration

	18 Configuring CSIv2 Identity Assertion
	CSIv2 Identity Assertion Scenario
	SSL/TLS Prerequisites
	Enabling CSIv2 Identity Assertion
	Sample Configuration
	Sample Client Configuration
	Sample Intermediate Server Configuration
	Sample Target Server Configuration

	Part V CORBA Security Programming
	19
	Setting Policies
	Programmable SSL/TLS Policies
	Introduction to SSL/TLS Policies
	The QOPPolicy
	The EstablishTrustPolicy
	The InvocationCredentialsPolicy
	Interaction between Policies

	Programmable CSIv2 Policies

	20 Authentication
	Using the Principal Authenticator
	Introduction to the Principal Authenticator
	Creating SSL/TLS Credentials
	Creating CSIv2 Credentials

	Using a Credentials Object
	Retrieving Own Credentials
	Retrieving Own Credentials from the Security Manager
	Parsing SSL/TLS Own Credentials
	Parsing CSIv2 Own Credentials

	Retrieving Target Credentials
	Retrieving Target Credentials from an Object Reference
	Parsing SSL/TLS Target Credentials

	Retrieving Received Credentials
	Retrieving Received Credentials from the Current Object
	Parsing SSL/TLS Received Credentials
	Parsing CSIv2 Received Credentials

	21 Validating Certificates
	Overview of Certificate Validation
	The Contents of an X.509 Certificate
	Parsing an X.509 Certificate
	Controlling Certificate Validation
	Certificate Constraints Policy
	Certificate Validation Policy

	Obtaining an X.509 Certificate

	Part VI Web Services Security Programming
	22 Web Services Security API
	Secure Client API
	Web Services Client Demonstration

	Part VII iSF Programming
	23 Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Appendix A Security
	Applying Constraints to Certificates
	initial_references
	IT_TLS_Toolkit:plugin
	plugins:atli2_tls
	use_jsse_tk
	plugins:baltimore_toolkit
	shlib_name
	plugins:csi
	ClassName
	shlib_name
	plugins:gsp
	accept_asserted_authorization_info
	assert_authorization_info
	authentication_cache_size
	authentication_cache_timeout
	authorization_realm
	ClassName
	enable_authorization
	enable_gssup_sso
	enable_x509_sso
	enforce_secure_comms_to_sso_server
	enable_security_service_cert_authentication
	shlib_name
	sso_server_certificate_constraints
	plugins:https
	ClassName
	plugins:iiop_tls
	buffer_pool:recycle_segments
	buffer_pool:segment_preallocation
	buffer_pools:max_incoming_buffers_in_pool
	buffer_pools:max_outgoing_buffers_in_pool
	delay_credential_gathering_until_handshake
	enable_iiop_1_0_client_support
	incoming_connections:hard_limit
	incoming_connections:soft_limit
	outgoing_connections:hard_limit
	outgoing_connections:soft_limit
	hfs_keyring_file_password
	hfs_keyring_file_stashfile
	hfs_keyring_filename
	racf_keyring
	plugins:is2_authorization
	action_role_mapping
	plugins:kdm
	cert_constraints
	iiop_tls:port
	checksums_optional
	plugins:kdm_adm
	cert_constraints
	plugins:locator
	iiop_tls:port
	plugins:schannel
	prompt_with_credential_choice
	plugins:schannel_toolkit
	shlib_name
	plugins:security
	share_credentials_across_orbs
	policies
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	session_caching
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:csi
	attribute_service:backward_trust:enabled
	attribute_service:client_supports
	attribute_service:target_supports
	auth_over_transport:authentication_service
	auth_over_transport:client_supports
	auth_over_transport:server_domain_name
	auth_over_transport:target_requires
	auth_over_transport:target_supports
	policies:https
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:iiop_tls
	allow_unauthenticated_clients_policy
	buffer_sizes_policy:default_buffer_size
	buffer_sizes_policy:max_buffer_size
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	client_version_policy
	connection_attempts
	connection_retry_delay
	max_chain_length_policy
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	server_address_mode_policy:local_domain
	server_address_mode_policy:local_hostname
	server_address_mode_policy:port_range
	server_address_mode_policy:publish_hostname
	server_version_policy
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	tcp_options_policy:no_delay
	tcp_options_policy:recv_buffer_size
	tcp_options_policy:send_buffer_size
	trusted_ca_list_policy
	principal_sponsor
	use_principal_sponsor
	auth_method_id
	auth_method_data
	callback_handler:ClassName
	login_attempts
	principal_sponsor:csi
	use_existing_credentials
	use_principal_sponsor
	auth_method_data
	auth_method_id

	Appendix B iSF Configuration
	Properties File Syntax
	iSF Properties File
	com.iona.isp.adapters
	com.iona.isp.adapter.file.class
	com.iona.isp.adapter.file.param.filename
	com.iona.isp.adapter.file.params
	com.iona.isp.adapter.LDAP.class
	com.iona.isp.adapter.LDAP.param.CacheSize
	com.iona.isp.adapter.LDAP.param.CacheTimeToLive
	com.iona.isp.adapter.LDAP.param.GroupBaseDN
	com.iona.isp.adapter.LDAP.param.GroupNameAttr
	com.iona.isp.adapter.LDAP.param.GroupObjectClass
	com.iona.isp.adapter.LDAP.param.GroupSearchScope
	com.iona.isp.adapter.LDAP.param.host.<cluster_index>
	com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.MemberDNAttr
	com.iona.isp.adapter.LDAP.param.MemberFilter
	com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.port.<cluster_index>
	com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>
	com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>
	com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo
	com.iona.isp.adapter.LDAP.param.RoleNameAttr
	com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>
	com.iona.isp.adapter.LDAP.param.UseGroupAsRole
	com.iona.isp.adapter.LDAP.param.UserBaseDN
	com.iona.isp.adapter.LDAP.param.UserCertAttrName
	com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
	com.iona.isp.adapter.LDAP.param.UserObjectClass
	com.iona.isp.adapter.LDAP.param.UserRoleDNAttr
	com.iona.isp.adapter.LDAP.param.UserSearchFilter
	com.iona.isp.adapter.LDAP.param.UserSearchScope
	com.iona.isp.adapter.LDAP.param.version
	com.iona.isp.adapter.LDAP.params
	com.iona.isp.authz.adapters
	com.iona.isp.authz.adapter.AdapterName.class
	com.iona.isp.authz.adapter.AdapterName.param.filelist
	is2.current.server.id
	is2.cluster.properties.filename
	is2.replication.required
	is2.replication.interval
	is2.replica.selector.classname
	is2.sso.cache.size
	is2.sso.enabled
	is2.sso.session.idle.timeout
	is2.sso.session.timeout
	log4j.configuration
	Cluster Properties File
	com.iona.security.common.securityInstanceURL.<server_ID>
	com.iona.security.common.replicaURL.<server_ID>
	log4j Properties File
	log4j.appender.<AppenderHandle>
	log4j.appender.<AppenderHandle>.layout
	log4j.appender.<AppenderHandle>.layout.ConversionPattern
	log4j.rootCategory

	Appendix C ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Appendix D Association Options
	Association Option Semantics

	Appendix E Action-Role Mapping DTD
	Appendix F OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Appendix G Security Recommendations
	General Recommendations
	Orbix Services

	Appendix H License Issues
	OpenSSL License

	Index

