IONA

fﬁ; Orbix®

Web Services Tutorial
Version 6.1, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M3139

Contents

Chapter 1 Introduction

Chapter 2 Building a Web Service
How Web Service Builder Works
Sample Application
Building a Web Service From a JAR
Naming the Web Service
Including Supporting Classes
Selecting the Web Service’s Implementation
Selecting the Web Service’s Methods
Defining WSDL Namespaces

Chapter 3 Deploying and Listing Web Services
Deploying a Web Service Application
Listing Web Service Information

Chapter 4 Generating and Using a J2SE Client
Generating a J2SE Client
Compiling the Client
Running a J2SE Client

Chapter 5 Review

[

[S -
oONOrRrONUODAW

21
22
24

31
32
36
37

39

CONTENTS

Tutorial steps

Updated documentation

Additional resources

CHAPTER 1

Introduction

This tutorial shows how to transform an existing Java application to a Web
service. Orbix provides the tools to build, deploy, manage, and use a Web
service.

This tutorial takes you through a complete example, so you learn the
processes of creating a Web service. This includes how to use the key tools
and what to supply to them, what components are used where in the
development process, and what files and information are created.

Each chapter in this tutorial describes a stage in creating a Web service:
® Chapter 2: “Building a Web Service” on page 3

® Chapter 3: “Deploying and Listing Web Services” on page 21

® Chapter 4: “Generating and Using a J2SE Client” on page 31

The latest documentation updates can be found at
http://waw. i ona. cond docs/ .

The IONA knowledge base (htt p: // www. i ona. coml support/ kb/) contains
helpful articles written by IONA experts about this and other products.

The IONA update center (ht t p: // wwv. i ona. cond suppor t / updat e/) contains
the latest releases and patches for IONA products.

http://www.iona.com/docs/
http://www.iona.com/support/kb/
http://www.iona.com/support/update/

CHAPTER 1 | Introduction

In this chapter

CHAPTER 2

Building a Web

Service

Web Service Builder is a graphical tool that walks you through
the steps to make your application a Web service.

Web Service Builder creates the files that a Web service requires, based on
the application that you specify, and other information that you provide.
This tutorial uses an existing Java application with one Java class.

The following sections describe the stages to build a Web service from a

Java application:

How Web Service Builder Works page 4
Sample Application page 5
Building a Web Service From a JAR page 7
Naming the Web Service page 9
Including Supporting Classes page 11
Selecting the Web Service’s Implementation page 15
Selecting the Web Service's Methods page 17
Defining WSDL Namespaces page 19

CHAPTER 2 | Building a Web Service

How Web Service Builder Works

Input and output for Web Service Figure 1 shows the input required and the typical output produced for Web

Builder Service Builder when transforming a Java application to a Web service.
Developer supplies application infarmation Wieh Service Builder produces infarmation
ta the Web Service Builder that defines the web service

TemperstureConverter jar MyebhService xar
TemperastureConverter ﬁn
clasz TemperastureConverter jar
getFahrenheit) /
getCentigrade)))
%ML Bus Web TempConverterService propetties

Service
Buillder

Cther information
zuch as output file

names and output r{ TempConverterServiceClient java
options

Figure 1: Input and output for Web Service Builder

XAR file After you supply the location of the application’s Java class implementation
along with other information required, the builder produces a Web service
archive file (XAR) and code for a stand-alone client to the Web service.

The XAR contains:

® Implementation code in the form of a JAR file.

®* A properties file that describes Web Service Builder settings, and
deployment configuration information that the Web services container
uses to deploy the Web service.

At runtime, WSDL, which describes the Web service in a standard format, is
generated from the XAR information.

Sample Application

Sample Application

Implementation code The tutorial creates a Web service from a simple temperature converter
application. The application’s implementation is shown in the following

code:

package com i ona.webservi ces. webser vi ces. server;

inport java.io.*;

publ i c cl ass Tenper at ur eConvert er

{

public |ong get Fahrenheit (float centigrade)

{
fl oat
fl oat
fl oat
Fl oat

return tenp. | ongVal ue();

public long get Centi grade(fl oat

{

fl oat
fl oat
fl oat
Fl oat

return tenp. | ongVal ue();

}

result_1
result_2
final _answer
tenp

result_1
result_2
final _answer
tenp

centigrade * 9;
result_1/ 5;

result 2 + 32;

new Fl oat (fi nal _answer);

fahrenhei t)

fahrenheit - 32;

result 1/ 9;

result_2 * 5;

new Fl oat (fi nal _answer);

The temperature converter application contains two methods:

get Fahrenhei t () takes a fl oat value representing a Centigrade

temperature and returns a long representing the Fahrenheit equivalent.

® getCentigrade() takes a float value representing a Fahrenheit
temperature and returns a long representing the Centigrade equivalent.

Main method The application’s main method is coded as follows:

CHAPTER 2 | Building a Web Service

package comiona.webservi ces. webservi ces. server;
inport java.io.*;

public class Tenperat ur eConvert er Test

public static void main(String args[]){

byte[] b = new byt e[1000] ;

Systemout. printl n("Pl ease Enter a Nunber: \n");
int length = Systemin.read(b);

Byt eArrayQut put St ream bout =
new Byt eArrayQut put Strean();
bout.wite(b);

String request = bout.toString();
Fl oat floatCbj = new Fl oat(request);

Tenper at ur eConverter converter =
new Tenper at ur eConverter();

long fTenp =
converter. get Fahrenhei t (f1 oat Qoj . f| oat Val ue()) ;
Systemout . printl n(
request.trin()
oo
+"'Degrees Centigrade converted to Fahrenheit:
+ f Tenp
+ \n"

)

long cTenp =
converter. get Centi grade(floatj.fl oatVal ue());
System out . print | n(
request.trin()
oo
+'Degrees Fahrenheit converted to Centegrade:
+ cTenp
Dk

}cat ch(1 CException i0)

{
try{
{
}
}
}

io.printStackTrace();

Building a Web Service From a JAR

Building a Web Service From a JAR

Steps Follow these steps to start building a Web service from a JAR.

1 Atacommand line, enter i tws_buil der or use the IONA central toolbar to
start up the Web Service Builder. Figure 2 shows the tool’s opening page.

=10l]

.'-_:.'i_'xMLBus Web Service Builder

Project Edit Application Generate Tools Help

D=3 | BNeLLMA |
W B sirnple Demos (7)

@ Attachmentipp

@ () Electricity XMLBus Archives in Project |
Deplay

@ () Finance MName of XAR | Path to XAR

@ InteropTest AttachmentApp |CAProgram FilestOnAWyMLBusHMLBusEditionxmlbusid. . | Undeploy

@ KnowledgeBase Electricity CAProgram FilesuONAMLBusMLBusEditionfmlbusid... =

& ChainApp Finance CAProgram FilestUONAWMLBusXMLBusEditionxmlbusid. .. | Fuhlish
InteropTest CAProgram FilestUONAWMLBusXMLBusEditionxmlbusid. ..

© {) Transfarm KnowledgeBase | CiProgram FilesUONAWyXMLBUSHMLBUSEditiontmibusfd..

ﬁ Secure_Services (1) ChainApp CAProgram Files\ONAMyMLBusHMLBusEditionixmlbusid...

B Broker Supplier Derma {3 Transfarm CAProgram Files\ONAMyMLBusHMLBusEditionixmlbusid...

B USPS Demos (2)
I ¥Methods iDemo (3)
50 Mty Project (03

] Froject Overview

Create a¥Weh Service from a class.

Figure 2: Web Service Builder

CHAPTER 2 | Building a Web Service

2 Select MyProject from the PROJECTS area.
To build a Web service, Web Service Builder requires input from one of the

following sources:

Java class

CORBA object

Operation flow

Schema map

Schema

You can create a Web service from an existing Java
class, or from an existing XAR, JAR, or Zip archive.

An existing CORBA object whose interface is stored
in an interface repository.

You can create a Web service from a flow that
combines input and output from multiple operations.

The features of source and target XML schemas can
be associated with each other to produce a mapping
that you can use to produce a Web service.

You can create a Web service from an existing
schema.

3 This example uses a Java class from an existing archive file. From the menu,
choose Application|Create Web Service | From Class.

Naming the Web Service

Naming the Web Service

Steps The following steps identify the Web service in your environment. Figure 3
shows the first of the five windows that guide you through creation of this
Web service.

/Create Service { fromclass) : 10F 5 |

~Weh Service Names

¥ Auta Fill

Application Mame

|TempCUnvener1 |

Service Mame

|TempCUnvenerSer\rice |

Fort Hame

|TempCUnvenerF'nr‘[|

Prey |[Mext I | Finish “ Help I Igancell

Figure 3: Naming the Web service’s XAR and application

1 Enter the following value for XAR Application Name:
TenpConvert er

CHAPTER 2 | Building a Web Service

10

The Web Services container uses this name to identify the Web service
application and distinguish it from other applications that the Web service
might use.

The two fields that follow—Service Name and Port Name—automatically fill
in with the values TenpConvert er Servi ce and
TenpConver t er Por t ,respectively:

Service Name specifies the name by which this Web service is known to the
outside world and to other tools.

Port Name identifies the interface to your Web service and is an address to
a particular Web service implementation where SOAP messages or XML
documents are sent. in WSDL, this is also known as an endpoint.

Click Next.

Including Supporting Classes

Including Supporting Classes

Overview

Steps

After naming the Web service, you identify all classes that the Web service
requires. Web Service Builder includes these classes in the XAR.

For this example, include converter.jar as follows:

Click Add.
Web Service Builder displays the Add Xar Resource dialog:

2} Add %AR Resource X

Time
larchive |E|

Resource Mame

Description

Path to Resource

| || select

DOk || Cancel]

Figure 4:

The Add Xar Resource dialog specifies information about the resource to
add:

Type specifies the type of resource to add—for example, archive (the
default), class, and schema map.

11

CHAPTER 2 | Building a Web Service

Resource Name optionally specifies the name that you assign to this
resource.

Description provides a description of the resource.

Path to Resource specifies the resource’s file path. You can set this field by
clicking Select and browsing to the desired resource file.

2 Click Select, and browse the system directories to find converter.jar in the
denos directory:
your -i nstal | ati on\ demos\ webser vi ces\ Tenper at ureConverter\lib:

Lookin: [Tl v =] (&) [=] -

D converter.jar

File name: |conver‘[er.jar | Select

n* v|| Cancel |

Files of type:

3 Select converter.jar.

12

Including Supporting Classes

4 Set the other Add XAR Resource fields as shown:

) add %AR Resource |

Type

Resource Mame

|Temp00nvener |

Description

|TempConversionJar1 |

Path to Resource

|351TemperatureCDn\rer‘[er’tlihlcun\rerter.jar| Selact

o<][gancer |

Figure 5:

13

CHAPTER 2 | Building a Web Service

5 Click OK. The selected jar is included in the XAR:

.7 Create Service { from class) : 2 0F 5 \ x|

~Awvailable Resource

Add
Included Resource Name Description Type

2

I I T | T R

Figure 6: /Including a JAR.

In addition to the implementation class, the application might require other
supporting classes. You can repeat the previous steps to add more
supporting files.

6 After you add all desired entries to the XAR, click Next.

14

Selecting the Web Service’s Implementation

Selecting the Web Service’s Implementation

Steps Follow these steps to select the Web service’s implementation code:

1 Click Select and browse the packages and classes that are in the resources
you added earlier. Find and select the class to use as the endpoint class:

/1 5elect endpoint class 5 x|
Available classes:
[com
@ iona
@ [Jwebsemices
@ [Jwebserices
@ Clfserver
D TemperatureConverter
D TemperatureConverterTest

| oK || cancel

Figure 7: Selecting an endpoint class

Note: Only classes that use supported data types are displayed even
though the archive might contain other classes.

15

CHAPTER 2 | Building a Web Service

2 For this example, select the TemperatureConverter class and click OK:

; //Create Service (from class) : 30F 5

B
Endpoint Class File Selection
_.ﬂ =- A check will appear when class is valid.
|cum.i0na.wehsenfices.exampIeS.misc.TemperatureCon\rer‘cer ||| Select ||l Validate
| Prev][Next I | Finish || Help] |gance|]

Figure 8: Selecting a class from an archive

3 Click Next.

16

Selecting the Web Service’s Methods

Selecting the Web Service’'s Methods

After selecting the implementation class, you identify the methods that the
Web service will support. A Web service can use all methods defined in the
application’s class, or a subset of those defined in the class.

Steps Follow these steps:

1 Select the methods to use for your Web service. For this example, select
get Fahrenhei t () and get Cent i grade() .

.__-:.l:reate Service (fromclass) :40OF 5 g x|

METHOD SELECTION { STYLE, ENCODING and ATTACHMENTS)

I+

[public long getCentigrade(float) public long getFahrenheit{float)

[#/] public long getFahrenheitifloat Operation Style
@ RPC O Document

Operation Usage
@ 50aP (O =ML Scherma (Literal)

Retumn Farameter: lang

Select All ” Deselect Al l Parameter: centigrade [=]

| Prey H Mext i | Einish || Help l |Qance|]

Figure 9: Selecting Web service methods

Note: Methods that use unsupported data types are displayed in gray.

2 For each selected method, the panel on the right lists the interaction style
and encoding to use on the SOAP message.

17

CHAPTER 2 | Building a Web Service

For both methods, select RPC and SOAP:

RPC In a remote procedure call (RPC) style of interaction, the
SOAP request has the form of a method call. In a document
style of interaction, the SOAP request is a complete XML
document.

SOAP With SOAP encoding, the SOAP message is constructed
according to the SOAP specification encoding rules.

If you select Literal encoding, the SOAP message is
constructed according to an XML Schema.

SOAP attachments can also be associated with a method’s return value.
SOAP attachments can transport binary data or large XML documents—for
example, image files.

3 Click Next.

18

Defining WSDL Namespaces

Defining WSDL Namespaces

Overview

Steps

'__.'f_'Ereate Service (fromclass) : 50F 5 ll

Web services are represented in the Web Service Description Language
(WSDL), which is generated by the Web Services container at runtime. Web
services are described in the WSDL standard so that applications can find
and use them. This file has information such as the implementation's SOAP
endpoint URL and the methods available to the Web service.

Web Service Builder automatically generates the service WSDL. However,
you might want to specify the service’s WSDL namespace or its data
namespace, as shown in Figure 10. WSDL uses namespaces to organize its
XML names to avoid name conflicts.

Output XAR File { Desired or existing path to %4R e.q. ciprojectidemo xar)

|ONA\My}{MLEIuS.I'Xr-nLEIusEditi0nh{mIbusIde\rtoDIstrDjectSISimpIeDemDSJ’TempCDrH Select]

Schema Mamespace

|http:itemibus.comTempConverterxsd |

Target Mamespace

|htlp:m{mIhus.cum.l’TempCDn\rerter |

| Presy ” Mext | [Einish]| Help l |Qance|l

Figure 10: Defining WSDL Settings with Web Service Builder

Complete creation of the Web service:

1 Enter the following values in the Create Service dialog:

19

CHAPTER 2 | Building a Web Service

Output XAR File: accept the default value, which is constructed from the
application name.

Schema Namespace: accept the default value, which is constructed from
the Java implementation class name

The Schema namespace is used for the names of XML Schema types in the
Web service's WSDL.

Target Namespace: accept the default value, which is constructed from the
Java implementation class name.

The target namespace is used for the names of messages and the port type,
binding and service defined in the Web service's WSDL. Complex data types
such as arrays require the target namespace.

2 Click Finish. Web Service Builder creates the information needed to deploy
your Web service and stores it in the specified XAR.

//Create Service { from class) |
Assembling ¥AR information B
TempComiarter

Processing semice.

Atternpting to load existing Senvice.

Senice notfound, creating new Service.
Sefling Namespace information
hitpeifmibus comiTempConverer
hitp:iemlbus comiTempConvertertsd
Adding specified files to KAR.
TempConveter

Adding specified references to ¥AR.
Atternpting to load Endpoint fram Service.
Endpaint not found, creating new Endpoint.
Setting endpoint attributes. E

‘ Prey “ Mext | |£inish H Help I | Close l

Figure 11: Completion of XAR processing.

3 Click OK, then Close, to return to Web Service Builder's main window.

20

In this chapter

CHAPTER 3

Deploying and
Listing Web
Services

Use Web Service Builder to deploy Web service applications
into the Web Service Container so they are available to clients.

The Web Services container is the runtime component for your Web
services. Use Web Services Manager tool to access the Web Services
container to view and manage Web services. This tool lets you undeploy any
Web service application, view each Web service’s methods, activate or
deactivate a Web service's endpoints, among other things.

This chapter includes the following tasks:

Deploying a Web Service Application page 22

Listing Web Service Information page 24

21

CHAPTER 3 | Deploying and Listing Web Services

Deploying a Web Service Application

Overview After you create a Web service application, you need to deploy it so that it is
visible to the outside world. The following steps walk you through deploying
a Web service application using Web Service Builder.

1 If necessary, restart the Web Services container: from the command line,
enter start_Domain_ser vi ces.

2 From Web Service Builder, select the TempConverter Web service that you
created in Chapter 2.

Z'-___.'f_'XMLBus Wehb Service Builder

1ol =l
Project Edit Application Generate Tools Help
=8 | BNeLAM |
PROJECTS WORK AREA

imple Demos (7) TempConverter {13 CAProgram FilesuONAWEMLBUsMLBusEditionxmibusidevioolsiprojectsiMy ProjectTe...
Secure_Services |

roker Supplier De Services in Archive

Deplo
UsPs Demos (2) Name | Target Namespace Schema Namespace |E

Methods iDemo TempConverer.. hitpxmlbus. comiTempConverter |hitpfxmlbus. comiTempConverte. . | Undeploy
5 hiy Project{1) i)

2] ETempCDnveﬂer | Puhlish

] @ TempCaonve
@] TermpCo

) peieene o]O\rer\riew Available Resources

Figure 12: Selecting a Web service for deployment.

22

Deploying a Web Service Application

3 Select Application | Deploy:

/iDeploy a XAR x|

Weh Service Host

Local Container (Defaulf) E|

Include | Marne orxaR | Path to XAR |

[Deploy H_gancel ”

Figure 13: Specifying Web Services to Deploy

4 Select the XARs that you wish to deploy. In this example, only
TempConverter is available for deployment and should be checked.

5 When all of the desired XARs are checked, click Deploy.

23

CHAPTER 3 | Deploying and Listing Web Services

Listing Web Service Information

Overview Web Services Manager lets you perform the following management tasks:
® List deployed Web service applications.
® Undeploy Web service applications.
® List Web services within an application.
® List Web service methods.
® Activate and deactivate Web services.
® List a Web service's WSDL file.
® Test a Web service.

1 Start the Web Services Manager
® Launch the Web Services Manager from the IONA Central Toolbar, or

® Enter the following URL into a Web browser:

http://1 ocal host : 53205/ xm bus/ cont ai ner ?adni n=t r ue
® In a secure domain, enter the following URL into a Web browser:

htt ps: // HostName: 53206/ xm bus/ cont ai ner ?adni n=t r ue

24

Listing Web Service Information

Figure 14 shows Web Services Manager's opening page.

Select an Application

/ =3
Attachmentipp
Broker
Chaindpp
DeliveryConfirmation
Deploy
DomesticCalculator
Electricity
EmployeeDatabase
FarmsAndRegal
Finance
IOMACreditBureau
IONASupplier
IOMAWarehouse
InteropTest
InteropTest1999
KnowledgeBase
TempConverer
Transfarm
UDDIRegistry
XMLBusVersion

List Services |
Undeplay |

]

Figure 14: The Web Services Manager

Select the TempConverter application. You can also list the services that the
application provides, and undeploy a Web service application.

25

CHAPTER 3 | Deploying and Listing Web Services

3 Click List Services to display the Web service that the TenpConvert er
application provides. Most applications provide a one-to-one mapping
between the application and a Web service as shown in Figure 15.

Select an Application [Select a Service

Anaconda ;I
Attachmentipp

Broker

Chaindpp
DeliveryConfirmation [-]

Deploy : : |
DomesticCalculatar CRLENdRIE

Electricity
EmployeeDatabase
FarmsAndRegal
Finance
IONACreditBureau
IONASupplier
ION&AWarehouse
InteropTest
InteropTest1999
KnowledgeBase
TempCon
Transform
UDDIRegistry
=MLBusVersion =l

List Services |
Undeplay |

Figure 15: Listing Web Services with Web Services Manager

4 Select the TempConverterService service.

26

Listing Web Service Information

5 Click List Endpoints to display the endpoint details:

Service Info
hitplocathost:2000fmibusTemp Converter Temp Converter Service. widl

"WEDLs) hitpdilocalhost: 2000/ zmlbusiTempC onverter/ Termp ConverterSernce/Temp Converter P ortd
hitp:Mecathost: 200 05mmlbus Temp Converter Temp Converter S ermce/Temp ConverterPort

Endpoint Information
|URL Ihttp:fﬂoca]ho st 2000/ zmlbusTemp ConverterTemp ConverterService/Temp C onverter F ortf

|TEST |Tem]c_> ConverterPort

Figure 16: Endpoint Details with Web Services Manager

A Web service’s WSDL contains endpoints that describe where the
implementation runs on a particular server. Use Web Services Manager to
view and manage a Web service’s endpoints.

Endpoint information displayed includes the following:

WSDL The full WSDL URL, which is a selectable link that displays
the WSDL file.
Status An indicator as to whether the endpoint is enabled to receive

messages. You can select the Enabled link to disable endpoint
activation. You can select the Disabled link to reenable the
endpoint again.

TEST Lets you test enabled Web services.

27

CHAPTER 3 | Deploying and Listing Web Services

28

6 Click on the TEST link to test the Web service. Your browser displays the

following dialog:

WSDL SOURCE URL: hﬂp:mncalhns‘l:SIJSIJIHmlhus.fi:nntainer.l’TempCo PROCESS WSDL |

OPERATIONS DERIVED FROM WSDL FILE

getCentigrades float »

getFahrenheit(float)

GET TEST FORM |

Figure 17: Testing a Web Service

Select the desired operation—in this case, get Cent i gr ade() —and click Get
Test Form.
Your browser displays a dialog for supplying the operation’s parameters:

METHOD IHPUT PARAMETERS

PORT HAME TempConverterPort
OPERATION HAME getCentiorace

Hame Type Value

fahrenheit float I

Mime Encoding I UTF-3 j

INY¥OKE OPERATION I

Figure 18: Supplying Web Service Input Parameters

Listing Web Service Information

8 Enter any float value and click Invoke Operation. A dialog displays with the
operation’s return value, and the request and response SOAP messages. In
the following case, the return value of -8 (degrees Centigrade) is calculated
from an input value of 17 (degrees Fahrenheit):

RESULTS FROM METHOD CALL
Return Yalue

-G

Soap Request

=7aml version="1.0" encoding="UTF-8"7= =S0AP-ENY:Envelope xming: S0LP-EMY="hitp: Mzchemas xmlsoap orglzoapfenvelopers
winnE s d="http: Masnesne w3 orgf2001 SMLSchema”

xmins: xsi="http: Mavwewy o3 orgf 20010 IMLSchema-instance=<S0 AP-ENY: Body

SO0AP-ENY: encodingStyle="http: schemas . xmlsoap.orgfsoaplencoding™==m1; getCertigrade

=minsml ="http: Mmlbus comiTempCaonyerter==fahrenheit

waitype="xzd: float"=17 O=Aahrenhet=<in1:getCentigrace==rS0AP-ENY:Body==S04P-ENY: Envelope=

Soap Response

=7yl version="1 0" encoding="UTF-8"7= =S04AP-ENY:Envelope xming: S0LP-EMY="hitp: Mschemas xmlsoap orglzoap/envelopers
winins s d="http: o w3 orgi2001 MLSchema”

=mins: xsi="http: Mavwewy o3 org 20010 ML Echems-instance " =<S0 AP-ENY: Body

S0aP-ENY: encodingStyle="http: Mschemas . xmlsoap.orgisoaplencoding™==m1; getCentigradeResponse

wimins m] ="hitpe Memlbus comiTempConyerter==return

xzzitype="xsd long"=-G=return==/m1: getCentigr adeResponse=<iSOARP-ENY: Body=</S0AP-ENY: Envelope=

Figure 19: Obtaining a Web Service’s Return Value

29

CHAPTER 3 | Deploying and Listing Web Services

30

In this chapter

CHAPTER 4

Generating and
Using a J2SE
Client

You can compile and run auto-generated client code to create
an application that uses the Web service. You can also
incorporate the appropriate portions of the client code into
your own applications for seamless interaction with the Web
service.

the following topics are covered in this chapter:

Generating a J2SE Client page 32
Compiling the Client page 36
Running a J2SE Client page 37

31

CHAPTER 4 | Generating and Using a J2SE Client

Generating a J2SE Client

Overview

Steps

32

After you deploy a Web service, you need a way to access it. Web Service
Builder can generate three types of client code:

J2ME client: A Java 2 Micro Edition (J2ME) client that can access the Web
service.

You can compile and run the J2ME client application to access the Web

service's methods. This client has hard-coded values such as the endpoint
URL of the Web service.

J2SE RPC client: A Java 2 Platform, Standard Edition (J2SE) client
application that invokes a remote procedure call upon the Web service.

JTSE DOM client: A Java 2 Platform, Standard Edition (J2SE) client
application that supplies an XML document to the Web service, for
processing by a DOM handler.

Both J2SE client types consist of an interface class that is created at
compile time, and an implementation class that is created and instantiated
at runtime based on the Java 1.3 proxy scheme.

Follow these steps to generate a J2SE RPC client.

From Web Service Builder, select the TenpConverter application from the
PROJECTS panel.

Generating a J2SE Client

2 From Web Service Builder, select Generate | Generate a Client from a XAR:

/i Client Generation : 1 OF 3 x|

Client Type

(@ J25E RPC Client|
0 J25E DOM Client
) J2ME Client

O Skeleton

Cutput Directary Selection
CAProgram FilesUoraihys=hMLBus=MLBusEditionxmlibusihimclients || Select l

Prew ” Mext] | Finish || Help] |gance|l

Figure 20: Specifying a Web service client type

3 You can choose from one of the following client types:

® J2SE RPC Client: Generates a client that invokes remote procedure
calls on a Web service.

® J2SE DOM Client: Generates a client that supplies an XML document
to a Web service that uses a DOM handler to process that document.

® J2ME Client: Generates a J2ME client application that can access
Web service’s methods from devices like a WAP-enabled phone or a
palmtop computer

® Skeleton: Generates client skeleton code, which you must later
implement.

For this example, accept the default choice J2SE RPC client.

33

CHAPTER 4 | Generating and Using a J2SE Client

4 In the Output Directory Selection field, you can specify the output directory
where Web Service Builder puts the generated files. For this example, use

your-installation\bin\clients.

5 Click Next. The following window displays:

J Client Generation : 2 OF 3

WeSDL Selection

Semices(select a serwvice to uze the WSDL from that service).

‘Tempounver‘[erSewice

| | Senvice |

| Prey H Mext i | Finish || Help l |Qance|l

Figure 21: Selecting WSDL to generate a Web service client

6 Specify the service WSDL from which to generate the client. In this case,
only one service—TempConverterService—is available to choose.

34

Generating a J2SE Client

Click Next. The following window displays:

£}iclient Generation : 3 OF 3 x|

Service and Port Selection

Semices { derived fram WSDL)
|TemannvenerSer\rice E|

Available Ports
|TemannvenerPnr‘c E|

Bindingsd derived from WSDL)

-]

Prey H Mext | [Einish ” Help l |Qancel]

Figure 22: Selecting service and port for a Web service client

7 Use the Services and Available Ports drop-down lists to select the service
and port to use in the client code. For this example, select
TenpConvert er Servi ce and TenpConverterPort.

8 Click Finish. Web Service Builder generates two files:

® TenpConvert er ProxyDeno. j ava is the J2SE client test program.

TenpConverterl nt erf ace. j ava is the J2SE client interface from which
a developer can build a Web service client.

35

CHAPTER 4 | Generating and Using a J2SE Client

Compiling the Client

Overview

36

To compile and run properly, the clients that are generated by Web Service
Builder require certain environment variables. Follow these steps to compile
a generated J2SE client:

Make sure your PATH system environment variable includes a valid Java
Developer's Kit. For example:

C\jdkl.3.1\bin

From a system prompt, set the client environment by running the
i tws_clientenv. bat script (Windows) or sourcing the i tws_cl i ent env
script (UNIX) ininstal | - r oot/ asp/ Version/ bi n.

Compile the J2SE client’s generated code to create the class files. For this
example, run the following command:

j avac TenpConverter ProxyDeno. j ava TenpConverterlnterface.java

Running a J2SE Client

Running a J2SE Client

Usage options Run the J2SE client demo without arguments to display the usage options
and a list of the methods available in the Web service. For example:

set cl asspat h=.; %]l asspat h%
j ava TenpConvert er Pr oxyDeno
Syntax is: TenpConverter ProxyDeno [-debug] [-url soapurl]
[-wsdl wsdl|ocation] operation [args...]
operation is one of:
get Cent i grade
get Fahr enhei t

Executing an operation The following command runs the J2SE client with an operation and
argument:
j ava TenpConvert er ProxyDeno get Fahrenheit 35
® java TenpConvert er ProxyDeno executes the J2SE client test
application.
get Fahrenhei t 35 represents one of the Web service’s methods and
appropriate arguments. In this example an input value of 35 degrees
Centigrade returns the corresponding Fahrenheit value of 95 degrees.

37

CHAPTER 4 | Generating and Using a J2SE Client

38

Steps to build a Web service

CHAPTER 5

Review

In this tutorial you learned how to take an existing Java
application class and use Web Service Builder to generate all
the information necessary to transform the application into a
Web service.

Building a Web service was described in “Building a Web Service” on

page 3 and required these steps:

Step

Action

1

“Building a Web Service From a JAR” on page 7

“Naming the Web Service” on page 9

“Selecting the Web Service's Implementation” on page 15

“Selecting the Web Service’'s Methods” on page 17

“Including Supporting Classes” on page 11

2
3
4
5
6

“Defining WSDL Namespaces” on page 19

39

CHAPTER 5 | Review

Deploying a Web service You used Web Service Builder to deploy the Web service. You then learned

application how to manage the Web service using Web Services Manager. These steps
were as follows:

Step Action

1 | “Deploying a Web Service Application” on page 22

2 | “Listing Web Service Information” on page 24

Using a client This tutorial also used Web Service Builder to generate and compile a J2SE

client to the Web service. You then learned how to access the Web service
using this generated client. The developer tasks to use the client were
described in “Generating and Using a J2SE Client” on page 31.

40

Index

A

archive file 4
create service from 8

C

Class, selecting with the Web Service Builder 16

Classes, including in the XAR 11
client code

compiling 31

generating 32

J2ME 32

J2SE 32

running 31
CORBA object

create service from 8

D
deploy 22, 23

E
endpoint
details 27
list 27
URL 19
environment variables 36
PATH 36

G

getCentigrade() method 5
getFahrenheit() method 5

|

implementation
selecting a class from an archive 16
selecting for the Web Service 15
selecting methods 17
selecting operations 17

Input 4

input, confirming Web Service Builder 33

J
J2ME client 32
J2SE client 32
Java 1.3 proxy scheme 32
Java class
create service from 8

P

PATH environment variable 36
properties file 4
proxy client, see J2SE client

S
SOAP Endpoint URL 19
SOAP style 17
source
CORBA object 8
Java class 8

U
undeploy 25

W

Web service
deploying 22, 23
listing deployed 26
selecting implementation 15
undeploying 25

Web Service Builder 7
defining WSDL settings 19
input, confirming 33
input and output 4
selecting methods 17
selecting operations 17
specifying output 23
starting 7

Web Service Description Language 19

Web Services Container 4

Web Services Manager 21, 25
endpoint details with the 27
listing Web services 26

41

INDEX

starting 24
WSDL 19

file 4

namespace 20
WSDL information, defining 19
WSDL URL 27

X
XAR 4
application name 9

42

INDEX

43

INDEX

44

	Web Services Tutorial
	1 Introduction
	2 Building a Web Service
	How Web Service Builder Works
	Sample Application
	Building a Web Service From a JAR
	Naming the Web Service
	Including Supporting Classes
	Selecting the Web Service’s Implementation
	Selecting the Web Service’s Methods
	Defining WSDL Namespaces

	3 Deploying and Listing Web Services
	Deploying a Web Service Application
	Listing Web Service Information

	4 Generating and Using a J2SE Client
	Generating a J2SE Client
	Compiling the Client
	Running a J2SE Client

	5 Review
	Index

