
Orbix 6.3.7

CORBA Trader
Service Guide: Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2014. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2014-06-17

Contents
Preface..v
Contacting Micro Focus ... vi

An Introduction to the CORBA Trading Service......................1
Introduction ...1
Service Types...2
Service Offers...5
The Trader Service’s Components..6

Configuring the Trader Service..9
Configuring and Running the Trader Service ...9

Steps 1-2: Determine the hosts and ports to be used in the deployment ..9
Step 3: Enter the host and port information in the configuration............10
Step 4: Configure the service to run with or without replication.............11
Step 5: Run the service in prepare mode to obtain initial references11
Step 6: Adding the initial references to the configuration......................12
Step 7: Running the trader service..12

Additional Configuration Information..13

Getting Started with the Trader Service15
Starting the Trader Service ..15
The Printer Application...15
Trader Service Programming ..17

Connecting to the Trader ...17
Adding a New Service Offer Type ..18
Exporting a Service Offer ...19
Querying for a Service Offer ...21

Querying for Service Offers ...23
How the Trader Service Processes a Query ...23
A Basic Query for Service Offers..24
Selecting a Service from Query Results ..26
Forming Constraints for Queries ..27
Setting Preferences to Sort Service Offers ..29
Refining the Properties a Query Returns ...31

Understanding Trader Service Policies33
What is a policy?...33
Policies that Affect Queries ...33
Policies that Affect Trader Functionality ..35
Using Policies in a Query ..36
Setting a Trader’s Global Policies...37

Exporting and Managing Service Offers39
Initializing Service Offer Properties ..39
Exporting a Service Offer to Trader..41
Getting Service Offer Data from Trader ..42
Modifying a Service Offer ...42
 Orbix CORBA Trader Service Guide: Java i i i

Withdrawing a Service Offer from Trader ..43

Programming Topics ... 45
Managing the Service Type Repository ...45
Using Dynamic Property Values ...47
Managing Links Between Traders...50

Trader Service Console ... 53
Starting the Trader Console ..53
Main Window ..53
The Trader Console Menus..55
Managing Service Types ...57
Managing Offers..60
Managing Proxy Offers ...64
Managing Links ...65
Configuring the Trader Attributes...67

Support Attributes...67
Import Attributes ..68
Link Attributes ..70

Admin Attributes ...71
Executing Queries ...72
Connecting to a New Trader..74

Appendix The OMG Constraint Language 75
Introduction ...75
Language Basics ...75
The Constraint Language BNF ...77

Glossary.. 81

Index.. 85
iv Orbix CORBA Trader Service Guide: Java

Preface
CORBA Trader Service is a Java implementation of the Object
Management Group (OMG) Trading Service. The CORBA Trader
Service provides facilities for object location and discovery. Unlike
the CORBA Naming Service where an object is located by name,
an object in the Trading Service does not have a name. Rather, a
server advertises an object in the Trading Service based on the
kind of service provided by the object. A client locates objects of
interest by asking the Trading Service to find all objects that
provide a particular service. The client can further restrict the
search to select only those objects with particular characteristics.
The Trader Service is compliant with the OMG CORBA services:
Common Object Services Specification
(ftp://www.omg.org/pub/docs/formal/98-12-09.pdf) and
conforms to the specification’s definition of a full-service trader,
meaning that the service supports all of the functionality described
in the specification.

Audience
This manual is aimed at users wanting to create a trader service
for use by their applications.

Related documentation
The document set for Orbix includes the following:
• CORBA Programmer’s Guide
• Administrator’s Guide
• CORBA Programmer’s Reference

Typographical conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, and data structures. For
example, text might refer to the
CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:
#include <stdio.h>
 Orbix CORBA Trader Service Guide: Java v

Keying conventions
This guide may use the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.

Italic Italic words in normal text represent
emphasis and new terms.
Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:
% cd /users/your_name
Note: Some command examples may use
angle brackets to represent variable values
you must supply. This is an older
convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX
command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command that
requires root privileges.

> The notation > represents the DOS or
Windows command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format
and syntax descriptions.
 vi Orbix CORBA Trader Service Guide: Java

The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
Orbix CORBA Trader Service Guide: Java vii

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
 viii Orbix CORBA Trader Service Guide: Java

http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

An Introduction to the
CORBA Trading Service
The Trader Service is a full implementation of the CORBA Trading Object
Service. With this service, servers can offer functionality by making a
number of objects publicly available. Clients can then get references to
objects that match a specified functionality.

Introduction
The CORBA Trader Service is a Trading Object Service that allows
an object to be registered with a description of its functionality.
This service greatly increases the scalability of distributed systems
by making services easier to locate. An example of a service that a
client might search for is a printer.

How clients and servers use a trader
A trader contains a number of service types that describe a
service. For example, a printer service type might have properties
such as pages_per_minute (a long) and location (a string). Service
types are stored in a Service Type Repository. Service offers, or
offers, are instances of these service types.

A server can export an offer to the trader, which includes an
object reference for one of its objects and values for properties
defined by the service type, for example, “50 pages per minute,
located on the first floor”.
A client can then query the trading service based on these
properties using a filter called a constraint. For example, a client
could search for a printer where “pages_per_minute > 200". The
trader then returns to the client an offer of a service. The client
can then use the object reference in the offer to invoke on the
server.

Figure 1: Typical trading service process

Client Server

RepositoryService Types

Service Offers

3. Invoke Object

2. Query for 1. Export
Trading serviceService Offer Service Offer
 Orbix CORBA Trader Service Guide: Java 1

Scalability
The trader can be a tool for constructing efficient distributed
applications. The advantage of annotating a service offer with
properties, and allowing offers to be filtered on the basis of those
properties using a constraint, is that clients can select offers
without having to incur the overhead of invoking operations on
each object.
For example, suppose that Printer2Interface, which is a subclass
of PrinterInterface, has an additional operation, cost(), which
returned a value of type float:

In this situation, if the importer needed to select only those
printers whose cost is within a certain range, the importer would
need to iterate over each printer returned by the trading service to
invoke the cost() operation. In a distributed environment, the
overhead of this activity could be prohibitively expensive. It is the
developer’s responsibility to anticipate the types of queries that
importers will need to perform and design their service types
accordingly.

Service Types

Service type definition
Service types are general descriptions of a kind of service. They
consist of the following:
• A type name (for example, printer) uniquely identifies the

service type.
• An interface type defines the IDL interface to which an

advertised object of this type must conform (for example,
"IDL:MyAppModule/MyAppInterface:1.0").

• A collection of property types defines additional attributes of
the service offer (for example, “long page_per_min”, “string
location”).

Service type names
Each service type in the repository has a unique name. Orbix
Trader supports two name formats:
• Scoped names - These names have formats such as

::One::Two. Other supported variations include Three::Four
and simply Five.

//IDL
interface Printer2Interface : PrinterInterface {
 void page_counter();
 float cost();
};
 2 Orbix CORBA Trader Service Guide: Java

• Interface repository identifiers - These names adhere to
the format of interface repository identifiers. The most
common format is

Interface types
An interface type describes the IDL signature of the advertised
service. The interface type is a string whose format should be a
scoped name or an interface repository identifier as described
above for service type names. When a new service is exported,
the trader may use the interface repository to confirm that the
object being advertised conforms to the interface defined by the
interface type. An object conforms to an interface if it implements
that interface, or if it implements a subclass of that interface.

Property types
A service type can have zero or more property types, representing
additional information that can be associated with an advertised
service.
A property type definition consists of a name, a value type and a
mode. The value type is a CORBA::TypeCode, and the mode indicates
whether a property is mandatory and whether it is read-only.
The property modes have the following semantics:
• Mandatory—The exporter must provide a value for the

property at the time the service is exported. Mandatory
properties cannot be removed.

• Read-only—Once an exporter has supplied a value for the
property, it cannot be modified. Read-only properties can be
removed.

• Mandatory and Read-only—The property must have a value
when the service is exported, and cannot subsequently be
changed or removed.

A property that is neither mandatory nor read-only is considered
optional, and can be changed and removed.
Orbix Trader accepts Java-style identifiers as property names,
meaning a property name must start with a letter, and may
consist of letters, numbers and underscores.

IDL:[prefix/][Module/]Interface:X.Y

Note: Although both naming formats follow interface
repository conventions, service type names are never used
to look up information in the interface repository.
Orbix CORBA Trader Service Guide: Java 3

Super types
Service types can inherit from other service types, which enables
the definition of super types that encapsulate behavior and
characteristics common to many service types. When a new
service type is created that has super types, the trader checks
that several prerequisites are met:
1. All super types must already exist in the service type

repository.
2. Any property type definitions in the new service type that

have the same name as a definition in a super type must be
compatible with the super type definition. For two property
definitions to be compatible, their value types must match,
and the mode of the new definition must be the same as, or
stronger than, the mode of the property in the super type
according to the graph in Figure 2.

3. The interface type of the new service type must conform to
the interface type of all super types. Orbix Trader may use the
interface repository to verify that this is true.

For example, consider two IDL interfaces, InterfaceA and
InterfaceB, defined below:

Figure 2: Property Mode Strengths

Optional

Read-only Mandatory

Read-only and Mandatory

Increasing
strength

// IDL
interface InterfaceA {
 void do_something();
};

interface InterfaceB : InterfaceA {
 void do_something_else();
};
 4 Orbix CORBA Trader Service Guide: Java

Here, InterfaceB inherits from InterfaceA. Now, let’s define
two service types:

In the example above, ServiceTypeB inherits from ServiceTypeA. As
such, it inherits all of the property types from ServiceTypeA, and
declares an interface type of InterfaceB, which conforms to the
interface type of its super type because InterfaceB is a subclass of
InterfaceA.
Notice that ServiceTypeB redefines the mode of the “name”
property. Whereas the definition in ServiceTypeA does not specify a
mode (making the property optional), the definition in
ServiceTypeB makes this property mandatory, therefore a value for
the property must be supplied when the offer is exported. The
reverse is not allowed; a subtype cannot redefine a mandatory
property to be optional.
ServiceTypeB also adds a new property, “cost”, which is defined to
be read-only. Because the property is not mandatory, an exporter
does not need to supply a value for it at the time a service offer is
exported. However, once a value has been defined for this
property, it cannot subsequently be changed.

Service Offers

Service offers
A service offer is an instance of a service type and represents the
advertisement of a service by a service provider.
A service offer has the following characteristics:
• A service type name associates the offer with a particular

service type.
• An object reference provides the “pointer” (the object

reference) to the advertised object that is necessary for
clients to invoke the service being offered.

• A set of properties describe this service offer and must
conform to the property types defined by the service type.

service ServiceTypeA
{
 interface InterfaceA;
 property string name;
};

service ServiceTypeB : ServiceTypeA
{
 interface InterfaceB;
 mandatory property string name;
 readonly property float cost;
};
Orbix CORBA Trader Service Guide: Java 5

The trader uses the definition of the specified service type to
perform several validation steps on a new offer:
1. The exporter must provide values for all mandatory properties

(including all mandatory properties that the service type
inherits from its super types, if any).

2. The object must conform to the interface type defined by the
service type. Orbix Trader may use the interface repository to
verify that this is true.

3. The value types of all properties must match the value types
as defined by the service type. For example, a value of type
double is not allowed for a property whose type is defined as
string in the service type.

The value of a property in a service offer can be modified if the
mode of the property is not read-only. A property can be removed
from a service offer if the property is not mandatory. New
properties can also be added to an existing service offer.

The Trader Service’s Components

Trader components
The Trader Service functionality is divided into components where
each component has an associated interface as follows:
• Lookup
• Register
• Admin
• Link
• Proxy
The CORBA Trader Service is a full-service implementation of the
OMG’s Trading Object Service specification. The following table
summarizes the different kinds of traders and the component
functionality offered:

Note: Orbix Trader allows an exporter to supply values for
named properties that are not defined in the service type.

Table 1: Kinds of traders and their components

Kind of
Trader

Component Interfaces

Lookup Register Admin Link Proxy

Full-Service CORBA Trader Service

Linked X X X X

Proxy X X X X

Stand-alone X X X

Simple X X

Query X
 6 Orbix CORBA Trader Service Guide: Java

The functionality of each kind of trader depends on the interfaces
that it supports. The following is a list of the kinds of traders
specified by the OMG:
• The simplest trader is the Query trader, which just supports

the Lookup interface. This could be useful, for example, where
a trader is pre-loaded and optimized for searching.

• The simple trader supports not only the Lookup interface but it
also supports exporting of offers with the Register interface.

• The stand-alone trader supports the interfaces of a simple
trader and additionally supports administration of the trader’s
configuration settings using the Admin interface.

• The proxy trader supports the interfaces of a stand-alone
trader and additionally supports the Proxy interface. The proxy
trader essentially exports a lookup interface for delayed
evaluation of offers, and can be used for encapsulating legacy
applications, or as a kind of service offer factory.

• The linked trader supports the interfaces of a stand-alone
trader and additionally supports federation of traders using
the Link interface.

• The full-service trader combines the functionality of all
component interfaces. The Orbix CORBA Trader Service is a
full-service trader.
Orbix CORBA Trader Service Guide: Java 7

 8 Orbix CORBA Trader Service Guide: Java

Configuring the Trader
Service
This chapter provides a description of the steps necessary to configure
the Trader Service.

Configuring and Running the Trader Service
These instructions describe how to configure the Trader Service.

Preparatory steps
Several preparatory steps are necessary to configure and run the
trader service. The specific actions taken at each step are
somewhat different depending on whether you want to run the
service replicated or non-replicated.
The general sequence of actions are as follows:
1. Determine on which hosts you want to run the master trader

service and on which hosts any slaves will run.
2. Determine the port number on which the master, slaves, and

Replicators will listen.
3. Enter the host and port number information into the

configuration.
4. Configure the trader service to run in replicated or

non-replicated mode.
5. Run the trader service in “prepare” mode to obtain initial

references needed to enable clients to interact with the
service.

6. Add each of the references obtained during step 4 to the
configuration database.

7. Start the master trader service and any slaves.

Explanation
In the following explanation of the steps listed above, example
settings are given assuming a deployment of one master trader
service instance running on host “master”, and one slave trader
service instance running on host “slave”. In addition, it will be
pointed out where steps should be modified or bypassed in order
to run a single non-replicated instance of the service.

Steps 1-2: Determine the hosts and ports to be used in the
deployment

These steps are completely deployment-specific. Depending on
the number of trader service instances you want to deploy, you
will need to select 1 or more distinct host/port pairs for each
instance of the service to use as a communication end-point. In
our example, we use a replicated service with one master and one
Orbix CORBA Trader Service Guide: Java 9

slave. The master runs on host master and listens on port 15001;
the slave runs on host slave and listens on port 15001. The
master and slave need not listen on the same port number. Also,
two or more replicas may run on the same host as long as they
listen on different ports.
Furthermore, each trader service instance running in a replicated
deployment scenario will also create a Replicator object. You must
also select the ports on which each Replicator will listen. In the
sample configuration, the Replicator always listens on port 15002.

Step 3: Enter the host and port information in the
configuration

The Trader Service configuration will contain variables set in a
global scope (the outer scope not contained within a named
block), and variables set in one or more named scopes. The global
scope specifies configuration variable settings for all replicas in a
replicated deployment, while the named scopes each specify
configuration variable settings that apply to a specific trader
service instance. The name of each scope corresponds to the ORB
name that will be used when launching each instance of the
service.
In the default trader.cfg included with the trader service package,
there are two named scopes: one for ORB name trading0, and the
other for ORB name trading1. All host/port information is set
within a named configuration scope.
The host/port information within a given configuration scope is
contained in the following variables:

In the sample configuration, these variables are set as follows in
the trading0 scope:

These settings indicate that the trader service instance using ORB
name trading0 will run on host master and listen on port 15001.
The service will be replicated, with the one replica participating in
the service running on host slave and listening on port 15001. The
Replicator will listen on port 15002.
Note that if more replicas are being used in the deployment, an
additional "+<hostname>:<port>" pair would be appended to the list
for each replica. If running the service non-replicated, only a
single "<hostname>:<port>" pair should be included in the
trader:iiop:addr_list. Including additional pairs in the list will
only increase the size of IORs used by the service, but this will
result in unnecessary resource consumption when running
non-replicated. In addition, in the non-replicated case, the second
addr_list variable listed above need not be set.

trader:iiop:addr_list
replication:Replicator:iiop:addr_list

trader:iiop:addr_list = ["master:15001", "+slave:15001"];
replication:Replicator:iiop:addr_list = ["master:15002"];
 10 Orbix CORBA Trader Service Guide: Java

In the sample configuration, these same variables are set as
follows in the trading1 configuration scope:

These settings indicate that the trader service instance run with
ORB name trading1 will run on host slave and listen on port
15001. The service will be replicated, and the one other replica
will run on host master and also listen on port 15001. The
Replicator used by this service instance will listen on port 15002.

Step 4: Configure the service to run with or without
replication

Before running the trader service in “prepare” mode, you should
decide if you want to run with replication enabled or disabled, and
if replication is enabled how many replicas will be used.
Whether replication is enabled or disabled is controlled by the
setting of the configuration variable replication:enable. This
variable should be set to "True" to enable replication, and to
"False" to disable replication.
If running with replication enabled, you must also indicate the
number of replicas that will be used by setting the
replication:replica_count to the appropriate value. This variable
should be set to the total number of replicas including the master
and any slaves. In the example scenario with one master trader
service instance and one slave, this variable should be set to 2.

Step 5: Run the service in prepare mode to obtain initial
references

Now you are ready to run the service in prepare mode, and obtain
the initial references necessary for clients to connect to the
service. Note that when running a replicated service, each
individual replica must be prepared. The command to run the
trader service in prepare mode is:

If running with replication enabled, preparing each instance of the
trader service will result in three IORs being sent to standard
output:
• The IOR of the replicated trader service (which will be the

same for all replicas)
• The non-replicated, per-instance trader service IOR
• The IOR of the per-trader service Replicator.
If running with replication disabled only the IOR of the prepared
trader service instance will be output.
Save the values for use in step 6.

trader:iiop:addr_list = ["slave:15001", "+master:15001"];
replication:Replicator:iiop:addr_list = ["slave:15002"];

asp/Version/bin/ittrader prepare [-publish_to_file <filename>]
Orbix CORBA Trader Service Guide: Java 11

Step 6: Adding the initial references to the configuration
The initial references of each trader service instance and each
Replicator need to be added to the configuration.
If running one non-replicated instance of the service, the initial
reference to the service returned by preparing the one instance
should be set as the value of the following variable in the global
configuration scope:

If running with replication enabled, the IOR of the replicated
trader service should be set as the value of the trader service
initial reference in the global scope (the same variable as
described above for the non-replicated case).
If replication is enabled, or if running multiple non-replicated
instances of the service within the same domain, the trader
service initial reference variable within each named scope must
also be set. If replication is enabled, the value set for the following
variable within each named scope should be the non-replicated,
per-instance trader service IOR:

In addition, the non-replicated IOR of each trader service
instance, along with the Replicator IOR for each instance, should
be added to the configuration as the values of the variables of the
form:

In the current example, the IORs returned by preparing the
master replica are set as the values of the following variables:

while the IORs returned by preparing the slave replica are set as
the values of these variables:

Step 7: Running the trader service
To start the trader, enter the command:
ittrader run

initial_references:TradingService:reference

initial_references:TradingService:reference

replication:replica:<replica id>:TradingService:reference
replication:replica:<replica id>:Replicator:reference

replication:replica:0:TradingService:reference
replication:replica:0:Replicator:reference

replication:replica:1:TradingService:reference
replication:replica:1:TradingService:reference
 12 Orbix CORBA Trader Service Guide: Java

Additional Configuration Information
There are some additional configuration settings to be aware of:

trader:database:dir=”./traderdb0”;
This variable should be modified, for each replica of the service, to
contain the pathname (absolute or relative to where the trader is
launched from) of where the trader database will reside.

replication:replica_id = “0”;
This is a numeric ID for the instance of the trader being configured
in the current scope.
Each replica should have a unique replica_id. If a replica’s
replication:replica_id is the same value as replication:master
then it is the master replica.

direct_persistence
This variable specifies if the service runs using direct or indirect
persistence. The default value is FALSE, meaning indirect
persistence.

iiop:port
This variable specifies the port that the service listens on when
running using direct persistence.
Orbix CORBA Trader Service Guide: Java 13

 14 Orbix CORBA Trader Service Guide: Java

Getting Started with
the Trader Service
This chapter shows an example of a simple printer service to illustrate
most of the common functionality in the Trader Service. A printer server
makes a printer available for general use. Then, a client application asks
the Trader Service for a suitable printer, and uses it to print a document.

Starting the Trader Service
To start the trader, enter the command:
ittrader run

Synopsis
ittrader [-launcher_help]

[-ORBconfig_dir config_dir_value]
[-ORBconfig_domains_dir config_domains_dir_value]
[-ORBdomain_name domain_name_value]
[-ORBproduct_dir product_dir_value]
[-ORBlicense_file license_file]
[-bg | -background]
[-show_java_command]
[-version]
[run | prepare [publish_to_file = filename]

Stopping the Trader Service
Enter the command:
itadmin trd_admin stop

The Printer Application
The print server creates a Printer service type, and exports the
descriptions of several printers to the trader. A client allows the
user to execute queries and “print” files.
 Orbix CORBA Trader Service Guide: Java 15

Interaction with the trader
Figure 3 shows the typical interactions clients and servers have
with the trader:

1. An offer server adds a service type (Printer) to the trader.
The Printer type describes properties that office printers
have, such as pages per minute. The service type names
differ from the IDL interface names in this example, mainly to
make their use clearer. For example, there could also be a
book_printer service type that uses the PrintServer IDL
interface, but it could have quite different properties such as
options for hard or soft book binding.

2. The printer server creates a printer_if object. It exports and
object reference to this object to the Trader Service as an
offer of type Printer. It then waits for incoming requests, as
normal.

3. The client process queries the Trader Service for a Printer
offer.

4. The client process then uses the object reference in the offer
obtained to invoke the printer server.

Figure 3: Typical Interactions with the trader

Printer
Repository

Trader Service

4. Invoke Server Object

3. Query to
2. Export an Offer

1. Add Service Type

Client Print
Server

Obtain Offer
 16 Orbix CORBA Trader Service Guide: Java

The IDL specification
The example application uses the following PrintServer IDL
interface to describe the interface to a printer object:

Trader Service Programming
This section outlines the three major programming steps used to
interact with the trader. These steps are:
1. Add a service type using the offer server:

i. Create a service offer type if a corresponding one doesn’t already exist within

the Trader Service. This example creates an Printer service offer type.

2. Register a service offer using the printer server:
i. Create an object, for example, an instance of the IDL interface

PrintServer.

ii. Register the object reference with the Trader Service, within a service offer

of type Printer. The server then accepts incoming object invocations as

normal.

3. Get a service offer using the client:
i. Query the Trader Service to get back a service offer.

ii. Use the object reference specified in the service offer to invoke the object on

the server.

Note that for simplicity, exception handling is omitted in the
sample code.

Connecting to the Trader
Servers need to connect to the trader to add a service offer type,
for example, or to register a service offer. Clients need to connect
to query the trader for service offers. The trader has a number of
components represented by IDL interfaces including Lookup,
Register, and others. The “TradingService” initial reference is a
reference to the CosTrading::Lookup interface.
Do the following steps to get an object reference to the Trader
Service:

// IDL
// This interface represents a print server that manages queues
// for several printers.
//
module TraderDemo
{
 interface PrintServer
 {
 typedef unsigned long JobID;

 // Add a file to a printer's queue.
 //
 JobID print (in string queue, in string file);
 };
};

1 org.omg.CORBA.Object obj =
orb.resolve_initial_references("TradingService");
Orbix CORBA Trader Service Guide: Java 17

1. Call resolve_initial_references() which returns a
org.omg.CORBA.Object.

2. Narrow the object reference.

Adding a New Service Offer Type
An offer server inserts a service offer type called printer into the
Trader Service. This is essentially a type declaration of an offer.
Other servers may then use this type to register printer objects by
creating instances of this type. Operations on service offer types
are handled by the Service Offer Type Repository component of
the Trader Service.
Do the following steps to add an offer type to the Offer Type
Repository:

2 if(obj != null)
 {
 org.omg.CosTrading.Lookup trader =

org.omg.CosTrading.LookupHelper.narrow(obj);
 }

1 org.omg.CORBA.Object obj = trader.type_repos();
2 org.omg.CosTradingRepos.ServiceTypeRepository

trader_repos_obj =
org.omg.CosTradingRepos.ServiceTypeRepositoryHelper.na
rrow(obj);

3 org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[
] props =

new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStru
ct[3];

props[0] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStru
ct();

props[0].name = "name";
props[0].value_type =

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string);
props[0].mode = PropertyMode.PROP_MANDATORY_READONLY;

props[1] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStru
ct();

props[1].name = "location";
props[1].value_type =

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string);
props[1].mode = PropertyMode.PROP_MANDATORY;

props[2] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStru
ct();

props[2].name = "page_per_min";
props[2].value_type =

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_long);
props[2].mode = PropertyMode.PROP_NORMAL;

String[] superTypes = new String[0];
 18 Orbix CORBA Trader Service Guide: Java

The code is described as follows:
1. Get a reference to the Service Offer Type Repository.
2. The type CosTrading::TypeRepository_var is a typedef of

CORBA::Object, and is essentially a forward reference. After
obtaining a reference of this type, narrow it to
org.omg.CosTradingRepos.ServiceTypeRepository.

3. Construct the property information of a service offer type. In
this example there are three properties: name, location, and
page_per_min. The main parts of a service offer type include
the following:
♦ The name of the service type.
♦ The IDL interface id for this service.
♦ The properties which are a description of the offer. These

are as follows:

4. Invoke the add_type() function and pass it the relevant
parameters.

Exporting a Service Offer
When a server wants to make its service offers available, it
registers with the Trader Service by exporting service offers. The
code in Example 1 demonstrates the steps to export a service
offer.

4 type_repos_obj.add_type(
 "Printer" // Service Type
 "IDL:TraderDemo/PrintServer:1.0", // IDL type name
 props, // offer properties
 superTypes // no supertypes
);

enum PropertyMode {
 PROP_NORMAL, PROP_READONLY,
 PROP_MANDATORY, PROP_MANDATORY_READONLY
 };
 struct PropStruct {
 CosTrading::PropertyName name;
 TypeCode value_type;
 PropertyMode mode;
 };
 typedef sequence<PropStruct> PropStructSeq;

Example 1: Exporting a service offer

1 PrintServer_Impl print_server_impl = new PrintServer_Impl();
PrintServer print_server = print_server_impl._this(orb);;

2 org.omg.CORBA.Object trader =
orb.resolve_initial_references("TradingService");

org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow(trader);

org.omg.CosTrading.Register register = lookup.register_if();
Orbix CORBA Trader Service Guide: Java 19

1. The printer server first creates an instance of the printer
object.

2. The printer server connects to the Trader Service (as
described in “Connecting to the Trader” on page 17) and gets
a trader_lookup_var. It then uses this to access the Trader
Service’s register component, which handles exporting of
service offers.

3. The server initializes the service offer properties with relevant
values.

4. The server finally invokes the export() function to register the
service offer.

3 org.omg.CosTrading.Property[] props = new
org.omg.CosTrading.Property[3];

props[0] = new org.omg.CosTrading.Property();
props[0].name = "name";
props[0].value = orb.create_any();
props[0].value.insert_string("laser4");

props[1] = new org.omg.CosTrading.Property();
props[1].name = "location";
props[1].value = orb.create_any();
props[1].value.insert_string("near coffee machine");

props[2] = new org.omg.CosTrading.Property();
props[2].name = "ppm";
props[2].value = orb.create_any();
props[2].value.insert_long(50);

4 String id = reg.export(
 print_server, // object reference to the CORBA object
 "Printer", // the service type
 props // the service’s properties
);

Example 1: Exporting a service offer
 20 Orbix CORBA Trader Service Guide: Java

Querying for a Service Offer
Once offers have been exported to the trader service, clients can
use the lookup interface to request services. Example 2
demonstrates a basic query that requests a printer that can print
more than 5 pages per minute and uses the first offer returned by
the trader.

1. The client queries the Trader Service for a service offer
matching certain criteria. In this example:
♦ The constraint is that the offers returned have a

page_per_min value that is greater than 5 pages per
minute.

♦ The results are returned in random order.
♦ The default policies are used.
♦ All properties are returned with the offer.

Example 2: Querying for a service offer

// Trader Service reference, trader, acquired earlier

org.omg.CosTrading.Policy[] policies = new
org.omg.CosTrading.Policy[0];

org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps();

desiredProps.__default(org.omg.CosTrading.LookupPackage.HowMany
Props.all);

org.omg.CosTrading.OfferSeqHolder offers = new
org.omg.CosTrading.OfferSeqHolder();

org.omg.CosTrading.OfferIteratorHolder iter = new
org.omg.CosTrading.OfferIteratorHolder();

org.omg.CosTrading.PolicyNameSeqHolder limits = new
org.omg.CosTrading.PolicyNameSeqHolder();

1 trader.query(
 "Printer", // the service type
 "ppm >5", // the constraint to match
 "random", // the order to sort the results
 policies, // no special policies
 desiredProps, // set to return all properties
 50, // max offers to return
 offers, // offers returned
 iter, // remaining offers
 limits // polices applied by the trader
);

2 org.omg.CosTrading.Offer[] offer = offers.value;
if (offer.length() != 0)
 {
 PrintServer printer_obj =

PrinterServerHelper.narrow(offer[0].reference);

3 printer_obj.print(doc, job_id);
 }

4 // we are only interested in a single offer, so we
// destroy the offer iterator, if the Trader created one for us
if(iter.value != null)
 iter.value.destroy();
Orbix CORBA Trader Service Guide: Java 21

♦ A limit is set for the number of offers returned in the
offers parameter. The trader will make find all of the
possible matches, and return the remainder in the iter
parameter.

2. The client selects a service offer from those returned in the
query and invokes on the server. This simple example uses
the first offer in the sequence.

3. The client uses the service offer to invoke on the object. In
this case, the document is printed using the selected printer
offer.

4. Any resources created by the trader for the iterator must be
explicitly freed up.
 22 Orbix CORBA Trader Service Guide: Java

Querying for Service
Offers
In order for clients to find out about and use services offered by the Trader
Service, the client code performs queries to obtain one or more service
offers. A service offer contains, among other things, an object reference
to a service. Clients then use the object reference to access a desired
service.

How the Trader Service Processes a Query
It is easy to see how the set of offers that a trader contains can
get quite large. In addition, traders can be linked together
(federated) to search each other for service offers. This means
that a query needs to have controls that complete a search in a
reasonable amount of time. A query also needs controls that limit
the amount of data returned.

Format of a query
A query starts with a service type name. A query then limits a
search for appropriate offers by using a constraint on one or more
properties of the service. You can also specify other limiting
factors including the number of offers returned, a preference on
the sort order, and the property values actually returned.
Figure 4 shows how the Trader Service uses these factors to
process a query and generate a sequence of desired service
offers.

Figure 4: How Query Parameters Affect Offers Gathered

Trader2

Query
Trader1

Service Name Determines

Property Constraints Determine

Preferences Determine

Desired Properties Determine

Offers of Appropriate
Service Types

Offers
that Match
Constraints

Sorted Set
of Offers

Returned
Properties of

Offers

All Potential Offers
 Orbix CORBA Trader Service Guide: Java 23

When the Trader Service processes a query, it gathers a sequence
of offers together by narrowing down the set of all potential offers
in all linked traders. The Trader Service uses query input to
determine the following:
1. Uses the service name to determine if an offer is of an

appropriate service type.
2. Uses the property constraints to determine if the offer

matches the criteria specified by the client.
3. Uses preferences to determine the order in which to place the

offer in the sequence of offers created.
4. Uses desired properties to determine which of the offer’s

property values (if any) are returned.

Policies
The Trader Service uses policies to control its behavior. For
example, the maximum number of offers that can be searched for.
You can also include one or more policies and values in a query to
control the search behavior for a specific query.

A Basic Query for Service Offers

Connecting to the trader
Clients need to connect to the Trader Service before they query
for service offers. Do the following in your client to get an object
reference to the trader:

First, call resolve_initial_references() which returns a
org.omg.CORBA.Object. Then, narrow the object reference to a
trader Lookup object.

Querying the trader
After connecting to the trader, clients can query the trader for
service offers that match any desired criteria.

// Java
org.omg.CORBA.Object trader_obj =

orb.resolve_initial_references("TradingService");
if(trader_obj != null)
 {
 org.omg.CosTrading.Lookup lookup =

org.omg.CosTrading.LookupHelper.narrow(obj);
 }

// Java
lookup.query(
// Query input

1 "IDL:printer:1.0", // service type name
2 "(page_per_min > 5) and (page_type == ’A4’)", // constraint
3 "random", // preference sort order
4 default_policies, // policies desired
 24 Orbix CORBA Trader Service Guide: Java

The input parameters to a query are explained in detail as follows:
1. The service type name parameter specifies the service type of

the offers required. If the exact_type_match import policy is
specified as true, only the service type is considered and no
subtypes. If the exact_type_match policy is false or unspecified
then subtypes are considered.

2. The constraint parameter specifies the constraint for
restricting suitable offers. The constraint is a string that
conforms to the OMG Constraint Language. Use an empty
string if no constraints are required. See “Forming Constraints
for Queries” on page 27 for more constraint examples.

3. A preference parameter specifies the order of the returned
sequence of offers. You can sort offers by the following
criteria:
♦ In the order in which the Trader Service finds the offers.

(This is the default.)
♦ In descending order based on property values.
♦ In ascending order based on property values.
♦ All offers that meet a constraint first, followed by those

offers that do not meet the constraint.
♦ In random order.
Use an empty string if no sort preference is required. See
“Setting Preferences to Sort Service Offers” on page 29 for
sort preference examples.

4. For now, default policies are used for the policies parameter.
Policies are discussed in Chapter 1.

5. A return-properties parameter specifies the properties to
return for the sequence of offers. You can choose to have
none, some, or all properties returned. For example, if for
your application it is adequate to use the first valid service
offer, you can improve efficiency by returning no properties
for the returned offers. See “Refining the Properties a Query
Returns” on page 31 for an example of how to specify some
properties to return.

6. The how-many-offers parameter specifies the number of
offers to be initially returned via the offers out parameter.
This example requests 10 initial offers.

The offers are returned as a sequence of offers. You can check for
more offers and obtain them by using the iterator output
parameter. If the Trader Service reached any policy limits during
its search, the policy name is returned in the limits_reached
output parameter. The query() output and how to use it is
described in the next section.

5 return_properties, // properties to return
6 10, // Initial number of offers wanted

// Query Output
 offers, // offers returned
 iterator, // remaining offers
 limits_reached // Limits reached during query
);
Orbix CORBA Trader Service Guide: Java 25

Selecting a Service from Query Results
The previous section described how the input parameters to the
query() operation controls the offers you get. This section
describes details of the output from query().

Output parameters
The output parameters include a sequence of offers, an iterator
object to obtain more offers, and a sequence of policy limits that
the Trader Service may have encountered as it collected the
offers.

offers
The offers parameter contains the returned sequence of offers.
The client selects a service offer from those returned in the query
and invokes on the desired server. The following example simply
uses the first offer in the sequence:

iterator
The iterator parameter is an object reference to an OfferIterator
interface. If all offers are returned in the offers parameter then
the iterator parameter has a null reference value. However, recall
that a query specifies the number of offers to be returned. If the
number of offers requested is lower than the number the Trader
Service found, then an OfferIterator object reference is returned
and the remaining offers can be retrieved via that object.

// Java
lookup.query(
// Query Input

// Query Output
 offers, // offers returned
 iterator, // remaining offers
 limits_reached // Limits reached during query
);

// Java
org.omg.CosTrading.Offer[] offer = offers.value.
if (offer.length != 0)
 {
 PrintServer printer_obj =

PrintServerHepler.narrow(offer[0].reference);
 printer_obj.print(doc, job_id);
 }
 26 Orbix CORBA Trader Service Guide: Java

This example shows how to peruse the remaining sequence of
offers. In the example, the names of properties are printed:

Once you are done with the iterator, you must use its destroy()
function to release the resources it uses.

limits_applied
The limits_applied parameter is a sequence of policy names. If
the Trader Service encounters any policy limits during a query, it
returns the names of the policies in this sequence. For example, if
a query generates more offers than the maximum number of
offers the trader is allowed to search for, the name
max_search_card is returned in the sequence. The values of the
policies are not returned.

Forming Constraints for Queries
This section describes how to use more features of the OMG
constraint language to construct effective constraint expressions
when querying for service offers. See “The OMG Constraint
Language” for a complete specification of the constraint language.
Although service properties can be defined using the great variety
of IDL data types available, not all can be queried with the OMG
constraint language. You can use the constraint language for
properties defined with the following simple IDL data types:
boolean
short, unsigned short
long, unsigned long
float, double
char, Ichar
string, Istring

You can also use the constraint language for properties defined
with sequences of the above data types.

// Java
String name;

boolean more_offers = TRUE;
while (more_offers)
{
 more_offers = iterator.next_n(2, offers);
 org.omg.CosTrading.Offer[] offer = offers.value;

 for (long i = 0; i < offer.length(); i++)
 {
 name = offer[i].properties[0].value.extract_string();
 System.out.println(name);
 }
}

// free up the resources used by the iterator
iterator.destroy();
Orbix CORBA Trader Service Guide: Java 27

Evaluating property values
A constraint contains a comparison of property values. The result
of a comparison is a boolean. Thus, a potential offer is a match if
the Trader Service evaluates the constraint as true.

Comparison operators
Use the operators ==, !=, >, >=, <, or <= to compare two of the
same simple types. For example, the following constraint
compares a float property with a float constant value:

Substring operator
Use the operator ~ to determine if the right operand is a substring
of the left operand. The left operand is a property of type string or
Istring, and the right operand is another string or string constant.
For example:

String constants are delineated with apostrophes. To embed an
apostrophe in a string, precede the apostrophe with a backslash
(\’).

Sequence operators
Use the in operator to test if a value is in a sequence of values.
The left operand must be a simple IDL type and the right operand
must be a sequence of the same simple IDL type. For example:

Combining expressions
Constraints can include combinations of expressions by using the
keywords and, or, and not. For example, the following shows a
constraint to obtain printers that produce output at a rate greater
than 5 pages per minute and that support an A4 page type:

The following constraint is to obtain printers that do not produce
output at a rate less than 5 pages per minute:

You can use parentheses to group expressions for clarity or to
override the precedence relations of the constraint language.

float_property == 1.0

string_property ~ ’String data’

’duplex’ in output_options

(page_per_min > 5) and (page_type == ’A4’)

not (page_per_min < 5)
 28 Orbix CORBA Trader Service Guide: Java

Testing for a property’s existence
A constraint can test any service type property for its existence,
even if the IDL data type used to define it is not a simple data type
or sequence of a simple data type. Use the exist keyword to test
whether a property exists for given offer:

Because properties with a mandatory mode must exist, it does not
make sense to test for their existence. However, searching for the
existence of optional properties can provide a powerful means of
limiting the offers returned.

Using arithmetic expressions
Constraints can include arithmetic expressions by using the
standard operators */+-. However, you can only use these
operators between numbers and not between property names. For
example:

You can use float and double values where appropriate.
Exponential notation is also valid.

Setting Preferences to Sort Service Offers

Creating a preference string
When querying for service offers, you can set preferences to make
the offers return in a particular order. Create a preference string
using one of the following formats:
first
max numerical_expression
min numerical_expression
with constraint_expression
random

A preference string consists of a keyword and, in some cases, an
expression. You cannot specify combinations of preferences by
using more than one keyword in a single preference string.

Constructing preference expressions
Use the OMG constraint language to construct the preference
expressions for max, min, and with formats. When you submit a
query with one of these preference expressions, the Trader
Service associates a sort value with each offer by evaluating the
expression. The offers are then sorted with respect to the sort
value and the type of preference as follows:
• A max preference sorts the offers in descending order from the

maximum sort value evaluated.

exist page_per_min

page_per_min > 2 * 5
Orbix CORBA Trader Service Guide: Java 29

• A min preference sorts the offers in ascending order from the
minimum sort value evaluated.

• A with preference returns the offers that evaluate to true
before the offers that evaluate to false.

If the Trader Service cannot evaluate the expression for a
particular offer (for example, an expression that is based on an
optional property may not evaluate), the offers are not discarded
but are grouped after those offers that can be evaluated.

Returning offers in the order of discovery
The default behavior of the Trader Service is to return offers in the
same order in which they were discovered. You can also specify
this behavior by using the first preference.

Returning offers in descending order
Use the preference string format “max numerical_expression” to sort the
returned service offers in descending order. For example:

In this example, printers with the highest page_per_min value are
returned first. The rest of the offers are returned in a descending
order based on the sort value calculated in the numerical
expression. Any offers that do not have a value for page_per_min
are returned last.

Returning offers in ascending order
Use the preference string format “min numerical_expression” to sort
the returned service offers in ascending order. For example:

In this example, printers with the lowest number of jobs_in_queue
are returned first, followed in ascending order.

max page_per_min

min (jobs_in_queue)

Note: The max and min preference formats do not constrain
the offers returned to a maximum or minimum value. For
example, the following is an incorrect expression that does
not limit a sort to the offers with a minimum page_per_min
value of 8:
min (page_per_min == 8) This is an incorrect format
 30 Orbix CORBA Trader Service Guide: Java

Returning offers by constraint
Use the preference string format “with constraint_expression” to order
the returned service offers based on a constraint expression. A
constraint expression evaluates to either true or false. The offers
with a constraint preference that evaluates to true precede those
that evaluate to false. For example:

This example sorts the returned offers into two groups: the first
group has pages per minute values greater than 10, and the
second has pages per minute values less than or equal to 10.

Returning offers in random order
Use the random preference to make the Trader Service return
offers in random order.

Refining the Properties a Query Returns

Specifying returned properties
You can specify which properties you want returned in the
sequence of offers. For example, if your application does not need
to use all properties to determine which services to use, it can be
more efficient for your memory and network traffic to return only
those properties you need.
Example 3 shows how to specify the properties to return.

with (page_per_min > 10)

Example 3: Specifying the return of properties

// Java
1 org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =

new org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps._default(org.omg.CosTrading.LookupPackage.HowManyP

rops.some);

2 org.omg.CosTrading.PropertyName[] properties = new
org.omg.CosTrading.PropertyName[2];

properties[0] = new
org.omg.CosTrading.PropertyName("location");

properties[1] = new org.omg.CosTrading.PropertyName("ppm");
3 desiredProps.prop_names(properties);

lookup.query(
 "IDL:printer:1.0",
 "(page_per_min > 5) and (page_type == ’A4’)",
 "random",
 default_policies,
Orbix CORBA Trader Service Guide: Java 31

The code is described as follows:
1. You first declare a SpecifiedProps union for properties.

To return all properties use this code and go to step 4:

To return no properties use this code and go to step 4:

2. If you want specific properties returned, create a property
name sequence, property_seq. Make the sequence long
enough to contain the names of all properties to be returned
and fill it with the names of the desired properties.

3. Fill the desired_properties object with the list of properties to
be returned.

4. Use the desired_properties object as a parameter in the
query() function call.

4 desiredProps, // properties to return
 10,
 offers,
 iterator,
 limits_reached
);

Example 3: Specifying the return of properties

// Java
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =

new org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPackage.HowMany

Props.all);

// Java
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =

new org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPackage.HowMany

Props.none);
 32 Orbix CORBA Trader Service Guide: Java

Understanding Trader
Service Policies
Trader policies affect how the Trader Service works. Most policies control
the scope of a search for offers. A few policies determine certain
functionality that applies to the trader itself, including whether a trader
supports modifiable properties, whether it supports dynamic properties,
and whether it supports proxy offers.

What is a policy?
A policy is a data structure containing a pre-defined policy name
and a value for that policy. The value’s data type depends on the
particular policy. For example, the supports_modifiable_properties
policy can have a boolean value. A value of 0 means that for the
particular trader, properties of service offers cannot be changed
after an offer is exported to the trader. A value of 1 means that
the trader allows changes to its service offer properties.

Policies that Affect Queries

Query semantics
Most policies that affect queries are scoping policies. These
policies relate to the scope of a search when a query is submitted
to the trader. Here are the high-level semantics when the trader
processes a query:
1. Consider the number of initial offers to be searched.
2. Match the offers against the constraints specified in the query.
3. Consider the number of “hops” between linked traders during

a search.
4. Order the results according to the preference supplied in the

query. (No policies relate to this.)
5. Return these offers to the user.

Search policies
The following policies govern the scope of this search:

search_card Consider at most this number of offers for the
search.

match_card Match at most this number of offers before
returning them to be ordered.

hop_count Allow at most this number of hops from one
trader to another linked trader.

return_card Return at most this number of offers to the
client.
 Orbix CORBA Trader Service Guide: Java 33

These policies can be optionally specified in a query. Each of these
policies have “tuning” policies associated with them in the trader.
The trader tuning policies are called def_policy and max_policy
where policy is the name of one of the policies listed above. For
example, the search_card policy may be specified in a query and
the def_search_card and max_search_card policies have initial values
in the Trader Service when it starts up. The trader policies may be
changed using functions from the CosTrading::Admin interface.
If a query doesn’t specify a value for a policy, then the appropriate
def_policy value of the trader applies. If the query specifies a
value for a policy, then it applies for the duration of that query,
except where it exceeds the trader’s max_policy value, in which
case the value max_policy is used. For example, suppose that in
the trader, def_search_card is 50, and max_search_card is 500:
• If the query doesn’t specify a search_card, then at most 50

offers will be considered in the initial search.
• If the query specifies “search_card = 100”, then 100 offers

will be initially considered.
• If the query specifies “search_card = 600”, then, since this

exceeds the trader’s maximum, at most 500 offers will be
initially considered.

Return policy
The policy exact_type_match may also be defined in a query. The
value of this policy is a boolean. If it is specified as true, then only
offers that exactly match the specified service type are
considered; super-types are omitted. Otherwise, offers of any
conforming service type are considered.

List of query policies
Table 2 shows the policies you can set in a query, along with the
associated trader policies that affect the query policy. (A complete
list and description of each policy is in the CORBA Programmer’s
Reference.)

Table 2: Query policies and Trader Service policies

Policies You Can Set in a
Query

Related Trader Service
Policies

Searching Service Offers

exact_type_match

search_card def_search_card
max_search_card

Matching Query Constraints

match_card def_match_card
max_match_card

Number of Returned Offers
 34 Orbix CORBA Trader Service Guide: Java

Policies that Affect Trader Functionality
A trader may support some optional functionality. These include
modifiable properties, dynamic properties, and proxy offers. In a
particular query, a client may chose not to consider offers that
require such functionality, even if the trader supports it (for
example, to optimize the speed of a query).

Evaluating policies
To find out if a trader supports any of this functionality, the
following attributes are provided in the
CosTrading::SupportAttributes interface. The get function for these
attributes return a boolean representing the value of the policy:
• supports_modifiable_properties(default: true)
• supports_dynamic_properties(default: true)
• supports_proxy_offers(default: true)

return_card def_return_card
max_return_card

Links Between Traders

hop_count def_hop_count
max_hop_count

link_follow_rule default_follow_rulea

def_follow_policy
limiting_follow_rulea

link_follow_rule
max_follow_policy

request_id_stem request_id_stem

starting_trader

Optional Trader Capabilities

use_dynamic_properties supports_dynamic_properties

use_modifiable_properties supports_modifiable_properties

use_proxy_offers supports_proxy_offers

a. These are set in the links created between traders. See “Managing Links Between Traders”
on page 50.

Table 2: Query policies and Trader Service policies

Policies You Can Set in a
Query

Related Trader Service
Policies
Orbix CORBA Trader Service Guide: Java 35

Query policies
In a query, these policies are specified using the following boolean
variables. If the trader does not support the functionality, then the
corresponding query policy is ignored.
• use_modifiable_properties
• use_dynamic_properties
• use_proxy_offers

Using Policies in a Query

Policies parameter
You can use the policies parameter in a query to control the query
and override some of the default Trader Service policies. A Policy
data structure contains two members:
• A PolicyName is a pre-defined string identifier used by a trader

to identify a policy.
• A PolicyValue is the value specified for a policy. The

PolicyValue is of type any. The type of the any value should
match the type of the corresponding policy.

An application may manipulate policies by using a PolicySeq,
which is a sequence of Policy data structures.

Creating a policy list
Example 4 shows how to create a policy sequence and pass it to a
query():

Example 4: Creating a policy sequence

// Java
1 org.omg.CosTrading.Policy[] policies = new

org.omg.CosTrading.Policy[2];
2 org.omg.CORBA.Any any = org.omg.CORBA.ORB.create_any();

any.insert_long(50);
policies[0] = new org.omg.CosTradingPolicy("search_card", any);

3 any.insert_boolean(false);
policies[1] = new

org.omg.CosTradingPolicy("use_dynamic_properties", any);

lookup.query("IDL:printer:1.0", "page_per_min > 5", "first",
4 policies,

desired_properties,
how_many_offers,
offers,
offer_itr,

5 limits_applied
);
 36 Orbix CORBA Trader Service Guide: Java

1. First create a sequence of Policy structures, and set the
number of policies you want to specify for the query. This
example uses just two policies.

2. Setting the search_card policy to 50 means that the query
should look at a maximum of 50 offers initially before
matching this query.

3. Setting the use_dynamic_properties policy to false means that
the query should not consider offers with dynamic properties.

4. Use the policy sequence as a parameter in the query()
function.

5. If the Trader Service encounters any policy limits during a
query, it returns the names of the policies in this parameter as
a sequence of policy names. For example, if a query generates
more offers than the maximum number of offers the trader is
allowed to search for, the name max_search_card is returned in
the sequence. The values of the policies are not returned.

Policy types
Table 3 shows the policies you can set and the associated IDL data
type for each policy:

Setting a Trader’s Global Policies

Setting global policies
For each policy in the trader, the CosTrading::Admin interface has
an associated set function that you can use to set the policy value.
The set functions take the form set_policy_name(value), where

Table 3: Policies You Can Set for a Query

Policy Name IDL Type

exact_type_match boolean

hop_count unsigned long

link_follow_rule CosTrading::FollowOption

match_card unsigned long

request_id_stem CosTrading::OctetSeq

return_card unsigned long

search_card unsigned long

starting_trader CosTrading::TraderName

use_dynamic_properties boolean

use_modifiable_properties boolean

use_proxy_offers boolean
Orbix CORBA Trader Service Guide: Java 37

policy_name is the policy you wish to set. For example, you can use
the Admin::set_max_match_card() function to set the max_match_card
attribute of the ImportAttributes interface.
Also see “Setting policies for linked traders” on page 50 for
another example of how to set policies.

Global policies
Table 4 summarizes the global trader policies an administration
application can set:

Table 4: Trader policies

Policy Name Type

default_follow_rule CosTrading::FollowOption

def_follow_policy CosTrading::FollowOption

def_hop_count unsigned long

def_search_card unsigned long

def_match_card unsigned long

def_return_card unsigned long

max_follow_policy CosTrading::FollowOption

max_hop_count unsigned long

max_search_card unsigned long

max_link_follow_policy CosTrading::FollowOption

max_list unsigned long

max_match_card unsigned long

max_return_card unsigned long

request_id_stem CosTrading::OctetSeq

supports_dynamic_properties boolean

supports_modifiable_properties boolean

supports_proxy_offers boolean
 38 Orbix CORBA Trader Service Guide: Java

Exporting and
Managing Service
Offers
Application servers can advertise their services by exporting service
offers to the Trader Service. Servers can also manage their service offers
in the Trader Service by getting offer information, modifying an offer’s
properties, and withdrawing an offer.

Server tasks
This chapter describes the following service offer tasks for
servers:
• How to initialize service offer properties prior to exporting to

the Trader Service.
• How to export service offers to the Trader Service.
• How to get service offer data from the Trader Service.
• How to modify a service offer already in the Trader Service.
• How to withdraw a service offer from the Trader Service.

Environment
All of this chapter’s discussion and associated programming
examples can be done within a specific application server, such as
the printer server shown in the examples here. However, you
might just as likely do this programming with a management
server that is separate from the servers supplying specific
resources. Whether it is better for your server to export and
manage its own offer or for a separate management program to
do it depends on your programming style and application design.

Initializing Service Offer Properties

Property structure
Offer properties are stored as a sequence of property structures,
where each property is a name-value pair, as follows:

// IDL
typedef Istring PropertyName;
typedef any PropertyValue;
struct Property {
PropertyName name;
PropertyValue value;
};
typedef sequence<Property> PropertySeq;
 Orbix CORBA Trader Service Guide: Java 39

Getting an offer type’s property list
Information about all services that the Trader Service can support
is stored as service types in the Trader Service repository. When
you develop a server for a specific service, you will need to have
the information about the service type’s properties. There may be
documentation describing these properties or you may need to
extract the information from the Trader Service. The section,
“Managing the Service Type Repository” on page 45 explains how
to add service types to a trader and how to list a trader’s service
type property information.
Before a server can export an offer to a trader, it must initialize
the offer’s properties. A server initializes the service offer
properties with relevant values. For example:

Read-only and mandatory properties
Before you initialize an offer’s properties, check the service type
information for any mandatory properties and any readonly
properties. You must set a value for mandatory properties in order
to successfully export an offer. Readonly properties cannot be
modified once the offer is exported. Each property has assigned to
it one of the following modes:

// Java
org.omg.CosTrading.Property[] props = new

org.omg.CosTrading.Property[3];

props[0] = new org.omg.CosTrading.Property();
props[0].name = "name";
props[0].value = orb.create_any();
props[0].value.insert_string("laser4");

props[1] = new org.omg.CosTrading.Property();
props[1].name = "location";
props[1].value = orb.create_any();
props[1].value.insert_string("near coffee machine");

props[2] = new org.omg.CosTrading.Property();
props[2].name = "ppm";
props[2].value = orb.create_any();
props[2].value.insert_long(50);

normal A service offer need not supply a value for
this property.

readonly A service offer need not supply a value for
this property. However if it does, the value
cannot be modified after its offer is
exported.

mandatory A value for this property must always be
provided when a service offer is exported.

mandatory and
readonly

A value for this property must be supplied
and it cannot be modified after it is
exported.
 40 Orbix CORBA Trader Service Guide: Java

Exporting a Service Offer to Trader
Servers use the export() operation to register a service offer with
the Trader Service.

Synopsis
The export() operation takes the following form:

It takes the following parameters:

export() returns a CosTrading::OfferId which uniquely identifies
the service offer within the trader. This value is needed to modify
or withdraw the service offer.

Example
Example 5 shows how to export a service offer:

// Java
org.omg.CosTrading.Register.export(
 org.omg.CORBA.Object service_object,
 String service_type,
 org.omg.CosTrading.Property[] properties)

service_object A reference to the object providing the service
service_type The name of the service type that represents the

service being offered
properties A sequence of Property which describes the offer’s

properties. See “Initializing Service Offer
Properties” on page 39 for more information.

Example 5: Exporting a service offer

// Java
1 PrintServer_impl impl = new PrintServer_impl();

PrintServer print_server = impl._this(orb);

2 org.omg.CORBA.Object trader =
orb.resolve_initial_references("TradingService");

org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow(trader);

3 org.omg.CosTrading.Register register = lookup.regester_if();

4 String offer_id = register.export(
 print_server, // the object itself
 "Printer", // service type
 properties // initialized in previous example
);
Orbix CORBA Trader Service Guide: Java 41

Do the following programming steps to export the service offer:
1. Create an instance of the service object. For example, this

application uses a printer service.
2. Connect to the Trader Service. Call the function

resolve_initial_references() to get an object reference to the
trader and narrow the returned value to get the trader’s
Lookup object.

3. Narrow the Lookup object to get the trader’s Register
component, which handles service offer exporting.

4. Invoke the export() function to export the service offer.

Getting Service Offer Data from Trader

Reviewing offer information
After a server exports an offer, you can review the information
contained in the offer by using the describe() operation of the
Register interface. This function takes an OfferId as input and
returns an OfferInfo structure representing offer information. The
following example continues from the previous one:

The CosTrading::Admin interface includes an list_offers() function
you can use to obtain a list of all offers held by the Trader Service.

Modifying a Service Offer

Using modify()
You can modify any properties of an offer, other than those
declared read-only, by using the modify() operation of the trader’s
Register object to delete, add, or change its properties.
modify() takes the following parameters:

// Java
org.omg.CosTrading.Register.OfferInfo offer_info =

register.describe(offer_id);

offer_id The OfferId returned by the trader when the
offer was exported.

delete_list A sequence of PropertName specifying which
properties to delete from the offer.

change_list A sequence of Property specifying the properties
to modify, along with their new values. New
properties can included in this list and they will
be added to the offer.
 42 Orbix CORBA Trader Service Guide: Java

Example
Example 6 shows how to delete a property and how to change the
value of a property.

1. Create a sequence of the property names to be deleted.
2. Create the sequence of the properties to be added or

modified.
3. Finally, call the modify() function

Readonly properties
For situations in which you need to change readonly properties,
you can withdraw an offer and then export a new offer, but this
changes the offer ID which may affect applications that already
hold the current offer.

Policy for supporting modifiable
properties
The supports_modifiable_properties policy is a boolean attribute
that indicates whether or not a specific trader supports modifiable
properties. Servers and administration applications can turn
support for modifiable properties on or off by using
CosTrading::Admin::set_supports_modifiable_properties(). To
obtain the current value of this policy, query the
CosTrading::SupportAttributes::supports_modifiable_properties
attribute.

Withdrawing a Service Offer from Trader
When it is necessary to withdraw an offer from the Trader Service,
use the CosTrading::Register::withdraw() function. The function
requires as input the offer_id, which is obtained as a result of the
export() function:

Example 6: Deleting property

// Java
1 org.omg.CosTrading.PropertyName[] delete_list = new

PropertyName[1]
delete_list[0] = new org.omg.CosTrading.PropertyName("ppm’);

2 org.omg.CosTrading.Property[] change_list = new
org.omg.CosTrading.Property[1]

change_list[0] = new org.omg.CosTrading.Property();
change_list[0].name = "location";
change_list[0].value = orb.create_any();
change_list[0].value.insert_string("A-wing, first floor");

3 register.modify(offer_id, delete_list, change_list);

register.withdraw(offer_id);
Orbix CORBA Trader Service Guide: Java 43

Administration applications can use the following function to
withdraw multiple offers satisfying a specified service type and
constraint:

register.withdraw_using_constraint(type_name, my_constraint);
 44 Orbix CORBA Trader Service Guide: Java

Programming Topics
This chapter is a brief introduction to some advanced programming topics
and features of the Trader Service. These topics include adding service
types, using dynamic properties, and managing links between traders.

Managing the Service Type Repository
Servers cannot export service offers to the Trader Service unless
the appropriate service types are stored in the Service Type
Repository. You use the operations of the ServiceTypeRepository
interface of the CosTradingRepos module to manage service types
in a trader. Service types are added to a trader only occasionally,
and usually by a management type of server. Service types are
rarely removed from a trader.

Creating service type properties
You create service type properties and then you add these
properties along with other information to the Trader Service.
Example 7 shows how to create service type properties.

The code is described as follows:
1. Create a new sequence of property structures and set the

length of the sequence to equal the number of properties for
the service type.

2. For each property, create a new instance to contain it.

Example 7: Creating service type properties

// Java
1 org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[]

props = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[3];

2 props[0] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct();

3 props[0].name = "name";
4 props[0].value_type =

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string);
5 props[0].mode = PropertyMode.PROP_MANDATORY_READONLY;

props[1] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct();

props[1].name = "location";
props[1].value_type =

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string);
props[1].mode = PropertyMode.PROP_MANDATORY;

props[2] = new
org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct();

props[2].name = "page_per_min";
props[2].value_type =

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_long);
props[2].mode = PropertyMode.PROP_NORMAL;
 Orbix CORBA Trader Service Guide: Java 45

3. For each property, assign a character string to represent the
name of the property. This printer example has three
properties named name, location, and page_per_min.

4. Set the data type for the value of each property. This is
standard Orbix programming for setting values for typecodes.

5. Set the mode for each property.
♦ A PROP_MANDATORY_READONLY mode means the property must

be set when exporting a service offer of this service type,
but once it is exported, it cannot be changed.

♦ A PROP_MANDATORY mode means the property must be set
when exporting a service offer, but its value may be
changed later if needed, after the service offer is
exported.

♦ A PROP_READONLY mode (not shown) means the property
may be set when exporting a service offer, but once it is
exported, it cannot be changed.

♦ A PROP_NORMAL mode means the property may be set in a
service offer but it is not required. It can be changed
later.

Adding a service type
Example 8 adds a service type named IDL:printer:1.0 to a trader.
The interface type name from the IDL file is
IDL:TraderDemo/PrintServer:1.0. The properties, created in
Example 7 are the next parameter. The super_types parameter is a
list of types from which this service type is derived. A subtype
must support properties of its supertypes. In this example, there
are no supertypes.

Example 8: Adding a service type

// Java
1 org.omg.CORBA.Object trader =

orb.resolve_intial_references("TraderService");
org.omg.CosTrading.Lookup lookup =

org.omg.CosTrading.LookupHelper.narrow(trader);
org.omg.CORBA.Object obj = lookup.type_repos();
org.omg.CosTradingRepos.ServiceTypeRepository trader_repos_obj

=
org.omg.CosTradingRepos.ServiceTypeRepositoryHelper.narrow(o
bj);

2 String[] superTypes = new String[0];

3 type_repos_obj.add_type(
 "IDL:printer:1.0" // Service Type
 "IDL:TraderDemo/PrintServer:1.0", // IDL type name
 properties, // offer properties
 superTypes // no supertypes
);
 46 Orbix CORBA Trader Service Guide: Java

The code is described as follows:
1. Connect to the trader using resolve_initial_references,

narrow the returned object to a Lookup object, and use that to
get a reference to the Trader Service’s Service Type
Repository.

2. Create a list of the supertypes which define the service type
being created. For this example, there are no supertypes.

3. Call add_type to add the service type to the Service Type
Repository.

Managing service types
After a service type is added to the Trader Service, applications
can use other operations of the
CosTradingRepos::ServiceTypeRepository interface to manage
service types. These include remove_type() and list_types(). The
describe_type() operation returns information that describes the
type, and the fully_describe_type() operation searches
recursively to return information on all the supertypes for this
type.
You can also hide service types from outside the service type
repository by using the mask_type() operation. This may be used,
for example, where a type is no longer needed, but it is the
supertype of other types in the type repository. Use the
unmask_type() operation if you need to make a masked service
type visible again.
See also the SupportAttributes::type_repos attribute and the
Admin::set_type_repos() operation. These get a reference to the
type repository interface and set the type repository interface in a
trader.

Using Dynamic Property Values

Dynamic property values
Exported offers can contain dynamic property values. These are
values that can change at runtime. For example, the number of
print jobs in a printer queue. This is done by exporting an object
reference that can be invoked to retrieve the current value from
the server. Clients and the trader can then dynamically determine
the length of the printer queue at the time of a query. This is not
as fast as using static values, but it can greatly increase the
flexibility involved.
The fact that a property has a dynamic value is only relevant at
export time. There is no difference when defining the property in
the service type.
Orbix CORBA Trader Service Guide: Java 47

Exporting a dynamic property value
When a dynamic property value is being exported, then the type
CosTradingDynamic::DynamicProp is used rather than the expected
type. The trader recognizes this as a special type, and treats it
accordingly.
The following code shows how to set properties, including a
dynamic property, and then export the offer that contains the
dynamic property.

Example 9: Setting dynamic properties

// Java
org.omg.CosTrading.Property[] props = new

org.omg.CosTrading.Property[4];

props[0] = new org.omg.CosTrading.Property();
props[0].name = "name";
props[0].value = orb.create_any();
props[0].value.insert_string("laser4");

props[1] = new org.omg.CosTrading.Property();
props[1].name = "location";
props[1].value = orb.create_any();
props[1].value.insert_string("near coffe machine");

props[2] = new org.omg.CosTrading.Property();
props[2].name = "ppm";
props[2].value = orb.create_any();
props[2].value.insert_long(50);

org.omg.CosTradingDynamic.DynamicProp dp = new
org.omg.CosTradingDynamic.DynamicProp();

1 QueueLengthEval evalImpl = new QueueLengthEval(orb, printer);
dp.eval_if = evalImpl._this(orb);

2 dp.returned_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_short);

dp.extra_info = orb.create_any();

props[3] = new org.omg.CosTrading.Property();
props[3].name = "queue_length";
props[3].value = orb.create_any();

3 org.omg.CosTradingDynamic.DynamicPropHelper.insert(props[3].val
ue, dp);

register_obj.export(
 obj, // object reference
 "IDL:printer:1.0", // service type name
 props // seq of properties
);
 48 Orbix CORBA Trader Service Guide: Java

The code is described as follows:
1. eval_if is essentially a callback object in the server. It

implements the IDL interface
CosTradingDynamic::DynamicPropEval, which contains one
operation evalDP, which returns the current value of the
property in the server when invoked.

2. The returned_type must be the same type as the
corresponding property type defined in the service type.
extra_info is essentially ignored by the trader, but may be
used by users to carry additional information.

3. The dynamic value is assigned to the property value.

Using a dynamic property value
Clients may need to check if the value in a property is dynamic or
not, if it is possible that the value may be either a static or
dynamic value.

Note that if the trader itself evaluates the dynamic property value,
because it is used in a constraint expression (for example,
“queue_length < 10"), then it will return the static value at the
time of evaluation in the offer’s properties. This is to minimize the
evaluation times on dynamic properties.

Example 10: Using a dynamic property value

// Java
org.omg.CosTrading.Property prop = props[2];

short length;
if(prop.value.containsType(org.omg.CORBA.TCKind.tk_short))
 {
 length = prop.value.extract_short();
 System.out.println("static queue_length ", length);
 }
else if

(prop.value.containsType(org.omg.CosTradingDynamic._tc_Dynam
icProp))

 {
 org.omg.CosTradingDynamic dynam_prop =

org.omgCosTradingDynamicHelper.extract(prop.value);

 org.omg.CosTradingDynamic:DynamicPropEval dynam_eval =
dynam_prop.eval_if;

 org.omg.CORBA.Any any_length = dynam_eval.evalDP(
 prop.name,

dynam_prop.returned_type,
 dynam_prop.extra_info);
 length = length_any.extract_short();
 System.out.println("dynamic queue_length ", length);
 }
Orbix CORBA Trader Service Guide: Java 49

Allowing dynamic properties
While the Trader Service allows dynamic properties by default, a
specific trader may be set to not allow dynamic properties. The
CosTrading::SupportAttributes::supports_dynamic_properties
policy is a boolean attribute that indicates whether or not the
trader allows dynamic properties. Servers and administration
applications can set this policy value by using the operation
org.omg.CosTrading.Admin.set_supports_dynamic_properties().

Managing Links Between Traders

Linked traders
A linked trader shares information about its service offers with one
or more other traders. Linked traders allow administrators to
organize service types and service offers in logical and more
efficient ways for specific environments.
This section describes the following Link function tasks:
• Setting link trader policies.
• Adding and removing links.
• Listing links to other traders.

Setting policies for linked traders
“Understanding Trader Service Policies” introduced several policies
that relate to linked traders including hop_count, link_follow_rule,
and default_follow_rule. A client query can set some of these
policies to control the search for offers, but other policies relating
to linked traders control the links and may override the query
policies.
Example 11 shows the use of request_id_stem. This should be a
unique value per trader. It will be used in queries send to other
traders, to prevent infinite looping. When a trader sees an
incoming query with its own request id stem, it does not process
the query, and returns a result of zero offers to the calling trader.

Example 11: Using request_id_stem

// Java
//set request_id_stem to "1"
byte[] stem = new byte[1];
stem[0]="1";

// admin_obj is a pointer to the Admin interface of the Trader
Service

admin_obj.set_request_id_stem(stem);
 50 Orbix CORBA Trader Service Guide: Java

The following code shows how to set other trader policies relating
to links:

Adding links
Example 12 shows how to add a link from one trader to another.
The trader1 establishes a link to trader2. The link is called
link_to_trader2.

// Java
// set the following options
org.omg.CosTrading.FollowOption max_follow =

org.omg.CosTrading.FollowOption.always
org.omg.CosTrading.FollowOption max_link_follow =

org.omg.CosTrading.FollowOption.always;
org.omg.CosTrading.FollowOption def_follow =

org.omg.CosTrading.FollowOption.always;

// set options for hops between traders
int max_hop = 10;
int def_hop = 10;

admin_obj.set_max_follow_policy(max_follow);
admin_obj.set_def_follow_policy(def_follow);
admin_obj.set_max_link_follow_policy(max_link_follow);
admin_obj.set_def_hop_count(def_hop);
admin_obj.set_max_hop_count(max_hop);

Example 12: Linking from one trader to another

// Java
org.omg.CosTrading.LinkName name = "link_to_trader2"

// set CosTrading.FollowOptions for add_link
org.omg.CosTrading.FollowOption def_pass_on_follow_rule =

org.omg.CosTrading.FollowOption.always;
org.omg.CosTrading.FollowOption limiting_follow_rule =

org.omg.CosTrading.FollowOption.always;

// link_var is a pointer to the Link Interface of trader1
// target is a pointer to trader2 Lookup Interface
link_var.add_link(
 name,
 target,
 def_pass_on_follow_rule,
 limiting_follow_rule);
Orbix CORBA Trader Service Guide: Java 51

Removing links
Example 13 shows how to remove a link. The link removed is the
one created in Example 12:

Creating lists of links
Example 14 shows how to create a listing of the links to other
traders:

Example 13: Removing a link

// Java
// set LinkName
org.omg.CosTrading.LinkName name = "link_to_trader2";

// link_var is a pointer to the Link Interface of trader1
link_var.remove_link(name);

Example 14: Creating a list of links to traders

// Java
// lists links of trader1
org.omg.CosTrading.LinkName[] link_names = link_names =

link_var.list_links();

// This prints the link names
for(int i = 0; i < link_names.length; i++)
 System.out.println(link_names[i]);
 52 Orbix CORBA Trader Service Guide: Java

Trader Service Console
The Trader Service Console allows you to manage all aspects of the
Trader Service, including service types, offers, proxy offers and links. It
also lets you perform queries, and configure the trader attributes.

Starting the Trader Console

How to start the console
Run the following command in a command window:
ittrader_console

Main Window

GUI appearance
The Trader Service Console main window appears as shown in
Figure 5.

Figure 5: The Trader Console main window
Orbix CORBA Trader Service Guide: Java 53

Window elements
The main window includes the following elements:

The Toolbar
The toolbar contains buttons for the most common menu
commands.

Figure 6: Trader Console toolbar

Terms used in Trader Console
The Trader Service Console uses the term item to generically refer
to the four types of data managed by a trader service:
• Service types
• Offers
• Proxy offers
• Links
The console window is used to browse these items. The window
only shows one type of item at a time, which you can change with
the item type selector drop-down list or by selecting a type from
the View menu. When a new item type is selected, the current list
of items is retrieved from the trader service and displayed in the
item list.

Menu bar Provides access to all of the application’s
features

Toolbar Shortcuts for the most common menu
commands

Item type selector Selects which type of item is shown in the item
list

Item list Displays the names or identifiers of all items
contained in the trader

Item description Provides a textual summary of the selected
item

Status bar Displays information about the trader to which
the console is currently connected, including
the host, port and IDL interface

New
Item Copy Edit Query

Cut Paste Delete Refresh
 54 Orbix CORBA Trader Service Guide: Java

The Trader Console Menus

The Console menu
You use the commands in the Console menu to manage the
console windows.

The Edit menu
The console supports the typical notion of a clipboard, which can
be manipulated with cut, copy and paste commands. However,
the console does not use the system clipboard, and therefore the
application clipboard can only be accessed by windows from the
same execution of the application. In other words, if you start two
instances of the application, you cannot cut and paste between
them. You can cut and paste if you start a single instance of the
application, and create multiple windows with the Console/New
Window command.

Using the cut, copy and paste commands
There are some issues to be aware of when using the cut, copy
and paste operations:
• Service types and links must have unique names; therefore,

you will not be able to paste one of these items if an item
already exists in the trader with the same name.

New Window Creates a new console window, connected to the
current trader.

Connect Opens the Connect dialog box, allowing you to
connect to a different trader service.

Close Closes the current console window. If this window is
the last console window present, the application
exits.

Exit Quits the application.

Cut Copies the selected items to the clipboard and then
permanently removes the selected items

Copy Copies the selected items to the clipboard
Paste Pastes the items from the clipboard into the current

trader
Select All Selects all of the items in the item list
Clone Creates a clone of the selected item. The

appropriate dialog box is displayed to allow you to
create a new item, but the fields of the dialog box
are initialized with the values from the selected
item.

Modify Edits the currently selected item
Delete Permanently removes the selected items
Orbix CORBA Trader Service Guide: Java 55

• A certain amount of forethought is advised when you wish to
cut and paste service types. Since service types can inherit
from other service types, you cannot cut a service type that
has subtypes. If you wish to cut or delete a number of service
types, and if inheritance relationships exist between any of
them, you must cut the types that don’t have any subtypes
first. The same principle applies to pasting service types, in
that you cannot paste a type if its supertypes do not exist or
have not yet been pasted. It is recommended that you only
operate on one service type at a time when using the cut,
copy, paste or delete commands.

Using the Clone and Modify commands
Note the following when using the clone and modify operations:
• Some types of items, namely service types and proxy offers,

cannot be modified. The Modify command (and its toolbar
equivalent) are disabled while these types are displayed.

• The Clone and Modify commands operate on a single item at
a time. If more than one item is currently selected, the
application uses the first of the selected items.

The View menu
You use the View menu to select the type of items you wish to be
displayed in the item list. Selecting a new type of item from this
menu is equivalent to changing the setting of the item type
selector.
The Refresh command causes the application to retrieve an
updated list of items from the trader and display them in the item
list. This command can be useful if you know (or suspect) that the
list of items has been changed by some other client of the trader
service.

The Insert menu
You use the Insert menu when you want to create a new item. It
displays a dialog box in which you can supply the information
about the new item. If you need to create a new item that is
similar to an existing item, you can also use the Edit/Clone
command.

The Tools menu
The commands available in the Tools menu provide access to
additional features of the trader service.

Query Perform query operations on the trader and
review the matching offers

Attributes Configure the trader attributes
Withdraw Offers Removes offers using a constraint expression
 56 Orbix CORBA Trader Service Guide: Java

Managing Service Types

IDL type support
Although the Trader Service supports properties with user-defined
IDL types, the console only supports simple IDL types and
sequences of simple IDL types.
Refer to “Service Types” on page 2 for more information on
service types.

Adding a new service type
To add a new service type:
1. Select Insert/Service Type. The New Service Type dialog

box appears as shown below.

Figure 7: New Service Type dialog box

2. Enter a name for the service type in the Service type name
text box. The name must be unique among all of the service
types managed by the trader.

Mask Type Masks the selected service type
Unmask Type Unmasks the selected service type
Orbix CORBA Trader Service Guide: Java 57

3. Enter an interface repository identifier in the Interface text
box. If the interface repository service is available, clicking the
Browse... button displays an interface repository browser as
shown below.

Figure 8: Browsing for an interface

4. The browser displays only modules and interfaces. When you
select an interface, its identifier is displayed in the ID text box
below. Click OK to accept the identifier you have selected.

5. Use the Add... and Delete buttons to add and remove super
types. Clicking the Add... button displays the Super Types
dialog box as shown below. Select any service types you wish
to use as super types for the new type and click OK. The order
in which you add super types is not important.

Figure 9: Selecting super types

6. Use the Add..., Edit... and Delete buttons to manipulate the
properties for this service type. Clicking the Add... or Edit...
buttons displays the Property dialog box as shown below.
 58 Orbix CORBA Trader Service Guide: Java

Enter a name for the property, select a property type, and use
the checkboxes to indicate the mode of this property. Click OK
to add the new property.

Figure 10: Adding a property

7. Click OK on the New Service Type dialog box to add the new
service type.

Removing a service type
To remove a service type, do the following:
1. Select View/Service Types to display the service types in

the item list.
2. Select the service type you wish to remove.
3. Select Edit/Delete. A confirmation dialog appears.
4. Click Yes to permanently remove the service type.

Masking a service type
To mask a service type, do the following:
1. Select View/Service Types to display the service types in

the item list.
2. Select the service type you wish to mask.
3. Select Tools/Mask Type.

Unmasking a service type
To unmask a service type, do the following:
1. Select View/Service Types to display the service types in

the item list.
2. Select the service type you wish to unmask.
3. Select Tools/Unmask Type.

Note: If a service type has subtypes, you will not be able
to remove the type until all of its subtypes have been
removed.
Orbix CORBA Trader Service Guide: Java 59

Managing Offers

Adding a new offer
To add a new offer, do the following:
1. Select Insert/Offer. The New Offer dialog box appears as

shown below.

Figure 11: Adding a new offer

2. Select a service type from the drop-down list. Each time you
select a service type, the Properties table is updated to
reflect the properties defined for that service type.

3. Select a method for specifying the object reference for this
offer. Select the IOR toggle if you want to paste the
stringified interoperable object reference into the text box. If
you want the application to read the reference from a file,
select From file and enter the filename in the text box, or
click the Browse... button to display a file selection dialog
box. If the trader service is configured to allow nil objects,
and you do not wish to specify an object reference for this
offer, you may leave the object reference blank.

4. Enter values for the properties in the Properties table. All
properties have a checkbox to the left of the property name.
For a mandatory property, the checkbox is disabled, meaning
that a value must be provided for this property. For an
optional property, you can use the checkbox to indicate
whether this property should be included with the offer. To
enter a value for a property, double-click on the property
value field. For properties with sequence types, you can enter
multiple values by separating them with commas. Press
Return when you are finished entering the value for a
property.

5. Click the Add... button if you wish to add a property that is
not defined by the service type. The Add Property dialog box
appears as shown below. Enter a name for the property,
select the property’s type from the drop-down list, and enter a
 60 Orbix CORBA Trader Service Guide: Java

value in the text box. The name you use for the property must
not be the same as any existing properties. Click OK to add
the property to the Properties table.

Figure 12: Adding a property

6. If you wish to make a property dynamic, select the property
and click the Dynamic... button. The Dynamic Property
dialog box appears as shown below. Select a method for
specifying an object reference as outlined in step 3 above. If
you wish to include additional data, select a type from the
drop-down list and enter a value in the text box. Click OK to
save the dynamic property. The property table displays
<dynamic> as the value of a dynamic property.

Figure 13: Making a property dynamic

7. To clear the value of a property, select the property and click
Reset. You can use this command to convert a property from
a dynamic property to a regular property.

8. Click OK to add the new offer. The application validates the
information and reports any errors in a dialog box.

Note: Once the property has been added to the
Properties table, you can edit it directly, just as you
can with any other property. If you later decide that
you do not want to include the property with the offer,
simply uncheck the property’s checkbox.

Note: For properties of type string, an empty value is
accepted as a valid value, even for mandatory properties.
Orbix CORBA Trader Service Guide: Java 61

Modifying an offer
To modify an offer, do the following:
1. Select View/Offers to display the offers in the item list.
2. Select the offer you wish to modify.
3. Select Edit/Modify. The Edit Offer dialog box appears as

shown below.

Figure 14: Editing an offer

4. You can modify a property by double-clicking on the property
value. Press Return when you have finished editing a
property value.

5. You can remove an existing property from the offer (if it is an
optional property) by unchecking its checkbox. Similarly, you
can add a property to the offer by checking its checkbox and
entering a value for the property.

6. See the discussion of adding a new offer above for details on
adding new properties and configuring dynamic properties.

7. Click OK to update the offer.

Withdrawing offers
There are two distinct ways to withdraw offers. The first way is by
selecting individual offers, as outlined below:
1. Select View/Offers to display the offers in the item list.
2. Select the offer(s) you wish to withdraw.
3. Select Edit/Delete. A confirmation dialog appears.
4. Click Yes to withdraw the offers.
 62 Orbix CORBA Trader Service Guide: Java

The above method is suitable for withdrawing a limited number of
specific offers. A more efficient method for removing a large
quantity of offers for a single type, or for removing offers without
having to manually search for the right ones, is by withdrawing
offers with a constraint expression:
1. Select Tools/Withdraw Offers. The Withdraw Offers

dialog box appears as shown below.

Figure 15: Withdrawing an offer

2. Select the service type from the drop-down list. Offers with
this service type or a subtype of this service type are
considered for withdrawal.

3. Enter a constraint expression in the text box. See “Service
Types” on page 2 for more information on constraint
expressions.

4. Click OK to withdraw the offers. Only offers that match the
constraint expression are withdrawn. An error message
appears if no matching offers were found.

Note: A simple way to remove all of the offers for a
service type is to use TRUE for the constraint expression.
Orbix CORBA Trader Service Guide: Java 63

Managing Proxy Offers

Adding a new proxy offer
To add a new proxy offer, do the following:
1. Select Insert/Proxy Offer. The New Proxy Offer dialog

box appears as shown below.

Figure 16: Adding a new proxy offer

2. Select a service type from the drop-down list. Each time you
select a service type, the property table is updated to reflect
the properties defined for that service type.

3. Select a method for specifying the object reference of the
target CosTrading::Lookup object for this proxy offer. Select
the IOR toggle if you want to paste the stringified
interoperable object reference into the text box. If you want
the application to read the reference from a file, select From
file and enter the filename in the text box, or click the
Browse... button to display a file selection dialog box.

4. Enter the constraint recipe in the text box.
5. Select If match all if a matching service type is all that is

required for this proxy offer to be considered a match during a
query.

6. Enter values for the properties in the Properties table. See
“Adding a new offer” on page 60 for more information on
entering offer properties.
 64 Orbix CORBA Trader Service Guide: Java

7. Use the Add..., Edit... and Delete buttons to manipulate the
policies to be passed on to the target object. Clicking the
Add... or Edit... buttons displays the Policy dialog box as
shown below.

Figure 17: Adding a policy to a proxy offer

8. Click OK to add the new proxy offer. The application validates
the information and reports any errors in a dialog box.

Withdrawing proxy offers
To withdraw a proxy offer, do the following:
1. Select View/Proxy Offers to display the proxy offers in the

item list.
2. Select the proxy offer you wish to withdraw.
3. Select Edit/Delete. A confirmation dialog appears.
4. Click Yes to withdraw the proxy offer.

Managing Links

Adding a new link
To add a new link, do the following:
1. Select Insert/Link. The New Link dialog box appears as

shown below.

Figure 18: Adding a link
Orbix CORBA Trader Service Guide: Java 65

2. Enter a name for this link in the text box.
3. Select a method for specifying the target trader’s object

reference for this link. Select the IOR toggle if you want to
paste the stringified interoperable object reference into the
text box. If you want the application to read the reference
from a file, select From file and enter the filename in the text
box, or click the Browse... button to display a file selection
dialog box.

4. Select the appropriate link-follow rules from the drop-down
lists.

5. Click OK to add the new link.

Modifying a link
To modify a link, do the following:
1. Select View/Links to display the links in the item list.
2. Select the link you wish to modify.
3. Select Edit/Modify. The Edit Link dialog box appears.
4. Update the settings for the link-follow rules.
5. Click OK to update the link.

Removing a link
To remove a link, do the following:
1. Select View/Links to display the links in the item list.
2. Select the link you wish to remove.
3. Select Edit/Delete. A confirmation dialog appears.
4. Click Yes to remove the link.
 66 Orbix CORBA Trader Service Guide: Java

Configuring the Trader Attributes

Configuring attributes
To configure the trader attributes, select Tools/Attributes. The
Attributes dialog box appears, containing a tabbed folder with
four tabs.

Figure 19: Configuring trader attributes

The tabs provide access to the attributes from the following four
IDL interfaces:
• CosTrading::SupportAttributes

• CosTrading::ImportAttributes

• CosTrading::LinkAttributes

• CosTrading::Admin

Each of the tabs is described below. Click OK when you have
finished modifying the attributes.

Support Attributes

Supports modifiable properties
If enabled, the trader considers offers with modifiable properties
(that is, properties that are not read-only) during a query, unless
the importer requests otherwise with the
use_modifiable_properties policy. If disabled, the trader does not
consider offers with modifiable properties, regardless of the
importer's wishes. This setting also determines the behavior of the
modify operation in the CosTrading::Register interface. If enabled,
the server allows modification of offers. If disabled, the modify
operation raises the NotImplemented exception.
Orbix CORBA Trader Service Guide: Java 67

Supports dynamic properties
If enabled, the trader considers offers with dynamic properties
during a query, unless the importer requests otherwise with the
use_dynamic_properties policy. If disabled, the trader does not
consider offers with dynamic properties, regardless of the
importer's wishes. The trading service specification does not
define the behavior of a trader when this option is disabled and an
offer is exported that contains dynamic properties; however, the
Trader Service always accepts offers containing dynamic
properties.

Supports proxy offers
If enabled, the trader considers proxy offers during a query,
unless the importer requests otherwise with the use_proxy_offers
policy. If disabled, the trader does not consider proxy offers,
regardless of the importer's wishes. This setting also determines
the behavior of the proxy_if attribute in the
CosTrading::SupportAttributes interface. If enabled, proxy_if
returns the reference of the server's CosTrading::Proxy object. If
disabled, proxy_if returns nil.

Service type repository
The IOR of the service type repository currently in use by the
trader is displayed in the text box. In order to change the service
type repository, you first need to select a method for specifying its
object reference. Select the IOR toggle if you want to paste the
stringified IOR into the text box. If you want the application to
read the reference from a file, select From file and enter the
filename in the text box, or click the Browse... button to display a
file selection dialog box.

Import Attributes

Import attributes
Many of the Import attributes have default and maximum values.
The default value is used if an importer does not supply a value for
the corresponding importer policy. The maximum value is used as
the allowable upper limit for the importer policy. If an importer
 68 Orbix CORBA Trader Service Guide: Java

supplies a policy value that is greater than the maximum value,
the importer’s policy value is overridden and the maximum value
is used instead.

Figure 20: Import attributes

Search cardinality
The number of offers to be searched during a query. The
corresponding importer policy is search_card.

Match cardinality
The number of matched offers to be ordered during a query. The
corresponding importer policy is match_card.

Return cardinality
The number of ordered offers to be returned by a query. The
corresponding importer policy is return_card.

Link hop count
The depth of links to be traversed during a query. The
corresponding importer policy is hop_count.

Link follow policy
The trader’s behavior when considering whether to follow a link
during a query. The default value is used if an importer does not
specify a value for the link_follow_rule policy. The maximum
value overrides the policy established for a link as well as the
link_follow_rule policy proposed by an importer.
Orbix CORBA Trader Service Guide: Java 69

Maximum list count
The maximum number of items to be returned from any operation
that returns a list, such as the list_offers operation in
CosTrading::Admin or the next_n operation in
CosTrading::OfferIterator. This attribute may override the
number of items requested by a client.

Link Attributes

Link attributes
The following is the Link Attributes pane.

Figure 21: Link attributes

Maximum link follow policy
Determines the server's upper bound on the value of a link's
limiting follow rule at the time of creation or modification of a link.
The server raises the LimitingFollowTooPermissive exception if a
link's limiting follow rule exceeds the value of this attribute.
 70 Orbix CORBA Trader Service Guide: Java

Admin Attributes

Admin attributes
The following is the Admin attributes pane.

Figure 22: Admin attributes

Request identifier stem
The request identifier stem is used as a prefix by the server to
generate unique request identifiers during a federated query.
Although the IDL attribute request_id_stem returns a sequence of
octets, this property is defined in terms of a string, with the
characters of the string comprising the octets of the stem. You
need to provide a value for this property only if the server will
have links to other traders and you want to ensure that circular
links are handled correctly.
Orbix CORBA Trader Service Guide: Java 71

Executing Queries

Executing a query
To execute a query, do the following:
1. Select Tools/Query. The Query dialog box appears as

shown below.

Figure 23: Executing a query

2. Select a service type from the drop-down list.
3. Enter a constraint expression in the Constraint text box.
4. (Optional) Enter a preference expression in the Preference

text box. If this field is blank, the trader uses a default
preference expression of "first".

5. If you wish to specify which properties are returned in the
matching offers, click Desired properties to activate the text
box below and enter the names of the properties in the text
box. Use commas to separate the property names.

6. To include importer policies, click the Policies... button. The
Policies dialog box appears as shown below. Next to each
field label is a checkbox. You must check the box for a policy
 72 Orbix CORBA Trader Service Guide: Java

for it to be included in your query. Click the Defaults button
to load the trader’s default import attributes into the fields of
the dialog box. Click OK to accept your changes.

Figure 24: Query policies

7. Click Query to execute the query operation. If matching
offers were found, the Query Results dialog box appears as
shown below. You can scroll through the matching offers with
the < and > buttons. Click Close when you have finished
examining the results.

Figure 25: Query results

Note: The Query Results dialog box cannot be used to edit
offers.
Orbix CORBA Trader Service Guide: Java 73

Connecting to a New Trader
When the console is started, the first console window to appear is
already connected to the trader you specified using the command
line options. If you are managing multiple traders, you can
connect to a different trader with the Console/Connect
command. The Connect dialog appears as shown below.

Figure 26: The Connect dialog box

There are three methods of connecting to the trader.
1. To provide the stringified object reference, select the Trader

IOR option and paste the IOR into the text box.
2. To obtain the stringified object reference from a file, select

IOR from file and enter the filename in the text box, or click
the Browse... button to display a file selection dialog box.

3. To connect to a linked trader, select the Link option and
choose the link from the drop-down list.

Click OK to connect to the trader. The contents of the current
console window are updated to reflect the new trader.

Note: If you want to be connected to two or more traders
at the same time, use the Console/New Window
command to create a new console window, then select
Console/Connect to connect the new window to another
trader.
 74 Orbix CORBA Trader Service Guide: Java

The OMG Constraint
Language
This appendix provides the BNF specification of the CORBA standard
constraint language (reproduced from Annex B in the OMG Trading
Object Specification with the kind permission of the OMG). It is used for
specifying both the constraint and preference expression parameters to
various operations in the trader interfaces.

Introduction

Statement
A statement in this language is an Istring. Other constraint
languages may be supported by a particular trader
implementation; the constraint language used by a client of the
trader is indicated by embedding “<<Identifier major.minor>>” at the
beginning of the string. If such an escape is not used, it is
equivalent to embedding “<<OMG 1.0>>” at the beginning of the
string.

Language Basics

Basic elements
Both the constraint and preference expressions in a query can be
constructed from property names of conforming offers and literals.
The constraint language in which these expressions are written
consists of the following items (examples of these expressions are
shown in square brackets below each bulleted item):
• Comparative functions:

== (equality)
!= (inequality)
>, >=, <, <=
~ (substring match),
in (element in sequence)
The result of applying a comparative function is a boolean
value. [“Cost < 5” implies only consider offers with a Cost
property value less than 5; “’Visa’ in CreditCards” implies
only consider offers in which the CreditCards property,
consisting of a set of strings, contains the string ’Visa’]

• Boolean connectives:
and
or
not
[“Cost >= 2 and Cost <= 5” implies only consider offers where
the value of the Cost property is in the range 2 <= Cost <= 5]
 Orbix CORBA Trader Service Guide: Java 75

• Property existence:
exist

• Property names
• Numeric and string constants
• mathematical operators:

+, -, *, /
[“10 < 12.3 * MemSize + 4.6 * FileSize” implies only consider
offers for which the arithmetic function in terms of the value
of the MemSize and FileSize properties exceeds 10]

• grouping operators:
()

Note that the keywords in the language are case sensitive.

Precedence relations
The following precedence relations hold in the absence of
parentheses, in the order of highest to lowest:
() exist unary-minus
not
* /
+ -
~
in
== != < <= > >=
and
or

Legal property value types
While one can define properties of service types with arbitrarily
complex IDL value types, only the following property value types
can be manipulated using the constraint language:
• boolean, short, unsigned short, long, unsigned long, float,

double, char, Ichar, string, Istring
• sequences of the above types
The exist operator can be applied to any property name,
regardless of the property’s value type.

Operator restrictions

exist can be applied to any property
~ can only be applied if left operand and right operand are

both strings or both Istrings
in can only be applied if the left operand is one of the

simple types described above and the right operand is a
sequence of the same simple type
 76 Orbix CORBA Trader Service Guide: Java

The comparative functions <, <=, >, >= imply use of the appropriate
collating sequence for characters and strings; TRUE is greater than
FALSE for booleans.

Representation of literals

The Constraint Language BNF

The constraint language proper in terms
of lexical tokens
<constraint> := /* empty */
 | <bool>

<preference> := /* <empty> */
 | min <bool>
 | max <bool>
 | with <bool>
 | random
 | first

<bool> := <bool_or>

== can only be applied if the left and right operands are of
the same simple type

!= can only be applied if the left and right operands are of
the same simple type

< can only be applied if the left and right operands are of
the same simple type

<= can only be applied if the left and right operands are of
the same simple type

> can only be applied if the left and right operands are of
the same simple type

>= can only be applied if the left and right operands are of
the same simple type

+ can only be applied to simple numeric operands
- can only be applied to simple numeric operands
* can only be applied to simple numeric operands
/ can only be applied to simple numeric operands

boolean TRUE or FALSE
integers sequences of digits, with a possible leading + or -
floats digits with decimal point, with optional exponential

notation
characters char and Ichar are of the form ‘<char>’, string and

Istring are of the form ‘<char><char>+’; to embed
an apostrophe in a string, place a backslash (\) in
front of it; to embed a backslash in a string, use \\.
Orbix CORBA Trader Service Guide: Java 77

<bool_or> := <bool_or> or <bool_and>
 | <bool_and>

<bool_and> := <bool_and> and <bool_compare>
 | <bool_compare>

<bool_compare> := <expr_in> == <expr_in>
 | <expr_in> != <expr_in>
 | <expr_in> < <expr_in>
 | <expr_in> <= <expr_in>
 | <expr_in> > <expr_in>
 | <expr_in> >= <expr_in>
 | <expr_in>

<expr_in> := <expr_twiddle> in <Ident>
 | <expr_twiddle>

<expr_twiddle> := <expr> ~ <expr>
 | <expr>

<expr> := <expr> + <term>
 | <expr> - <term>
 | <term>

<term> := <term> * <factor_not>
 | <term> / <factor_not>
 | <factor_not>

<factor_not> := not <factor>
 | <factor>

<factor> := (<bool_or>)
 | exist <Ident>
 | <Ident>
 | <Number>
 | - <Number>
 | <String>
 | TRUE
 | FALSE

“BNF” for lexical tokens up to character
set issues
<Ident> := <Leader> <FollowSeq>

<FollowSeq> := /* <empty> */
 | <FollowSeq> <Follow>

<Number> := <Mantissa>
 | <Mantissa> <Exponent>

<Mantissa> := <Digits>
 | <Digits> .
 | . <Digits>
 | <Digits> . <Digits>

<Exponent> := <Exp> <Sign> <Digits>
 78 Orbix CORBA Trader Service Guide: Java

<Sign> := +
 | -

<Exp> := E
 | e

<Digits> := <Digits> <Digit>
 | <Digit>

<String> := ’ <TextChars> ’

<TextChars> := /* <empty> */
 | <TextChars> <TextChar>

<TextChar> := <Alpha>
 | <Digit>
 | <Other>
 | <Special>

<Special> := \\
 | \’

Character set issues
The previous BNF has been complete up to the non-terminals
<Leader>, <Follow>, <Alpha>, <Digit>, and <Other>. For a particular
character set, one must define the characters which make up
these character classes.
Each character set which the trading service is to support must
define these character classes. This annex defines these character
classes for the ASCII character set.
<Leader> := <Alpha>

<Follow> := <Alpha>
 | <Digit>
 | _

<Alpha> is the set of alphabetic characters [A-Za-z]
<Digit> is the set of digits [0-9]
<Other> is the set of ASCII characters that are not <Alpha>,

<Digit>, or <Special>
Orbix CORBA Trader Service Guide: Java 79

 80 Orbix CORBA Trader Service Guide: Java

Glossary
A ART

Adaptive Runtime Technology. A modular, distributed object
architecture, which supports dynamic deployment and configuration
of services and application code. ART provides the foundation for
Orbix software products.

C CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and
requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a
program that requests services from CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services
and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior.
This information consists of configuration variables and their values.
Configuration domain data can be implemented and maintained in
a centralized Orbix configuration repository or as a set of files
distributed among domain hosts. Configuration domains let you
organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration
file and configuration repository.

configuration file
A file that contains configuration information for Orbix components
within a specific configuration domain. See also configuration
domain.

configuration repository
A centralized store of configuration information for all Orbix
components within a specific configuration domain. See also
configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically
organized into a root scope and a hierarchy of nested scopes, the
fully-qualified names of which map directly to ORB names. By
organizing configuration properties into various scopes, different
settings can be provided for individual ORBs, or common settings
for groups of ORB. Orbix services, such as the naming service, have
their own configuration scopes.
 Orbix CORBA Trader Service Guide: Java 81

CORBA
Common Object Request Broker Architecture. An open standard
that enables objects to communicate with one another regardless
of what programming language they are written in, or what
operating system they run on. The CORBA specification is produced
and maintained by the OMG. See also OMG.

CORBA objects
Self-contained software entities that consist of both data and the
procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and
Java.

D deployment
The process of distributing a configuration or system element into
an environment.

I IDL
Interface Definition Language. The CORBA standard declarative
language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose
in a server application. Clients use these interfaces to access server
objects across a network. IDL interfaces are independent of
operating systems and programming languages.

IFR
See interface repository.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging
protocol, defined by the OMG, for communications between ORBs
and distributed applications. IIOP is defined as a protocol layer
above the transport layer, TCP/IP.

implementation repository
A database of available servers, it dynamically maps persistent
objects to their server’s actual address. Keeps track of the servers
available in a system and the hosts they run on. Also provides a
central forwarding point for client requests. See also location
domain and locator daemon.

IMR
See implementation repository.

installation
The placement of software on a computer. Installation does not
include configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.
 82 Orbix CORBA Trader Service Guide: Java

interface repository
Provides centralized persistent storage of IDL interfaces. An Orbix
client can query this repository at runtime to determine information
about an object’s interface, and then use the Dynamic Invocation
Interface (DII) to make calls to the object. Enables Orbix clients to
call operations on IDL interfaces that are unknown at compile time.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

L location domain
A collection of servers under the control of a single locator daemon.
Can span any number of hosts across a network, and can be
dynamically extended with new hosts. See also locator daemon and
node daemon.

locator daemon
A server host facility that manages an implementation repository
and acts as a control center for a location domain. Orbix clients use
the locator daemon, often in conjunction with a naming service, to
locate the objects they seek. Together with the implementation
repository, it also stores server process data for activating servers
and objects. When a client invokes on an object, the client ORB
sends this invocation to the locator daemon, and the locator daemon
searches the implementation repository for the address of the
server object. In addition, enables servers to be moved from one
host to another without disrupting client request processing.
Redirects requests to the new location and transparently reconnects
clients to the new server instance. See also location domain, node
daemon, and implementation repository.

N naming service
An implementation of the OMG Naming Service Specification.
Describes how applications can map object references to names.
Servers can register object references by name with a naming
service repository, and can advertise those names to clients.
Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming
service is an example.

node daemon
Starts, monitors, and manages servers on a host machine. Every
machine that runs a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored
in a CORBA naming service, in a file or in a URL. The contact details
that a client application uses to communicate with a CORBA object.
Also known as interoperable object reference (IOR) or proxy.
Orbix CORBA Trader Service Guide: Java 83

OMG
Object Management Group. An open membership, not-for-profit
consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including
CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients
and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a
distributed computer environment. Key component in CORBA.

P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object
references to all objects used by an application, manages object
state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB
products. Can be transient or persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as
containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

T trader service
An implementation of the OMG CORBA Trading Object Service
Specification. Facilitates the offering and the discovery of services.
Other objects can use it to advertise their capabilities and to match
their needs against those of advertised services.
 84 Orbix CORBA Trader Service Guide: Java

http://www.omg.com

Index
A
add_link()

usage 51
Admin interface

in OMG stand-alone trader 7
administration

setting Trader policies 38
advertising services 39

B
basic query 24
BNF specification, constraint language 75

C
connecting to Trader 42
constraint parameter, query() 25
constraints 27

and IDL data types 27
arithmetic expressions 29
comparing property values 28
connecting expressions together 28
testing whether property exists 29
when withdrawing offers 44

CORBA 75
CORBA Trading Object Service 1
creating service type properties 45

D
describe()

usage 42
describe_type() 47
documentation

.pdf format viii
updates on the web viii

dynamic properties 47
setting for a service offer 48, 49

E
exact_type_match policy

usage 25
export()

usage 42
usage, with a dynamic property 48

export an offer 1
exporting service offers 39, 41

F
federated traders 23, 50
FollowOption type

usage 51
full-service trader 7
fully_describe_type() 47
H
hop_count policy 33
how-many-offers parameter, query() 25

I
IDL data types and constaints 27
initialising service offer properties 39
iterator parameter, query() 26

K
kinds of traders 6

L
limits_applied parameter, query() 27
linked trader 7, 23
linked traders 50

setting policies for 50
Link interface

in OMG linked trader 7
LinkNameSeq sequence

usage 52
list_links()

usage 52
list_offers() 42
list_types() 47
Lookup interface

in OMG query trader 7

M
mandatory properties 40
mask_type() 47
match_card policy 33
max_search_card policy 27
modes 40

setting 46
modify()

usage 43
modifying service offers 42
multiple service offers, withdrawing 44

N
_narrow(), usage 42
narrowing object reference 42

O
object reference, to Trader 24
object reference narrowing 42
OfferInfo structure

usage 42
OfferIterator type

usage 26
offers parameter, query() 26
Orbix CORBA Trader Service Guide: Java 85

P
plugins:trader:direct_persitence 13
plugins:trader:iiop:port 13
policies 33

set in a query 34
setting for a trader 37
setting for linked traders 50
that affect queries 33
that affect trader functionality 35
using in a query 36
you can set, with data types 37

preference parameter, query() 25
properties of service offers

modifying 42
property modes, setting 46
PropertyNameSeq sequence

usage 32, 43
PropertySeq sequence

usage 39
PROP_MANDATORY mode 46
PROP_MANDATORY_READONLY mode 46
PROP_NORMAL mode 46
PROP_READONLY mode 46
PropStructSeq sequence

usage 45
Proxy interface

in OMG proxy trader 7
proxy trader 7

Q
query

basics 24
forming constraints 27
limiting returned properties 31
results of 26
setting policies 34

query()
input parameters to 25
output from 26
usage 32

querying for service offers 23
query processing by Trader 23
query trader 7

R
readonly properties 40

changing 43
Register interface

in OMG simple trader 7
remove_link()

usage 52
remove_type() 47
resolve_initial_references()

usage 42
return_card policy 33
return-properties parameter, query() 25

S
search_card policy 33
searching for offers 33
selecting a service 26

sequence of offers 27
service offers 1

exporting and managing 39
exporting to Trader 41
initialising properties 39
modifying 42
multiple withdraw 44
querying for 23
setting dynamic properties 48, 49
sorting 29
withdrawing from Trader 43

service type name parameter, query() 25
ServiceTypeNameSeq sequence

usage 46
Service Type Repository 1, 47
ServiceTypeRepository interface

usage 45
service types 1

adding 46
adding to Trader 45
creating properties for 45
definition 2
hiding 47
masking 47
supertypes 46

set_def_follow_policy()
usage 51

set_def_hop_count()
usage 51

set_max_follow_policy()
usage 51

set_max_hop_count()
usage 51

set_max_link_follow_policy()
usage 51

set_supports_modifiable_properties() 43
set_type_repos() 47
simple trader 7
sorting service offers 25, 29

ascending 30
by constraint 31
decending 30
in random order 31

SpecifiedProps union
usage 32

stand-alone trader 7
supertypes, of service types 46
SupportAttributes

supports_dynamic_properties policy 35
supports_proxy_offers policy 35
upports_modifiable_properties
policy 35

SupportAttributes interface 35
supports_dynamic_properties policy 35
supports_modifiable_properties policy 35,

43
supports_proxy_offers policy 35

T
Trader

as OMG linked trader 7
 86 Orbix CORBA Trader Service Guide: Java

connecting to 24, 42
multiple traders 50
policies to set 37
processing a query 23
usage by clients and servers 1

Trader Console 53
traders

links between 50
traders, kinds of 6
typecodes 46
type_repos attribute 47
types of traders 6

U
unmask_type() 47
use_dynamic_properties policy 36
use_modifiable_properties policy 36
use_proxy_offers policy 36

W
withdraw()

usage 43
withdrawing service offers 43
withdraw multiple offers 44
withdraw_using_constraint()

usage 44
Orbix CORBA Trader Service Guide: Java 87

 88 Orbix CORBA Trader Service Guide: Java

	Preface
	Contacting Micro Focus

	An Introduction to the CORBA Trading Service
	Introduction
	Service Types
	Service Offers
	The Trader Service’s Components

	Configuring the Trader Service
	Configuring and Running the Trader Service
	Steps 1-2: Determine the hosts and ports to be used in the deployment
	Step 3: Enter the host and port information in the configuration
	Step 4: Configure the service to run with or without replication
	Step 5: Run the service in prepare mode to obtain initial references
	Step 6: Adding the initial references to the configuration
	Step 7: Running the trader service

	Additional Configuration Information

	Getting Started with the Trader Service
	Starting the Trader Service
	The Printer Application
	Trader Service Programming
	Connecting to the Trader
	Adding a New Service Offer Type
	Exporting a Service Offer
	Querying for a Service Offer

	Querying for Service Offers
	How the Trader Service Processes a Query
	A Basic Query for Service Offers
	Selecting a Service from Query Results
	Forming Constraints for Queries
	Setting Preferences to Sort Service Offers
	Refining the Properties a Query Returns

	Understanding Trader Service Policies
	What is a policy?
	Policies that Affect Queries
	Policies that Affect Trader Functionality
	Using Policies in a Query
	Setting a Trader’s Global Policies

	Exporting and Managing Service Offers
	Initializing Service Offer Properties
	Exporting a Service Offer to Trader
	Getting Service Offer Data from Trader
	Modifying a Service Offer
	Withdrawing a Service Offer from Trader

	Programming Topics
	Managing the Service Type Repository
	Using Dynamic Property Values
	Managing Links Between Traders

	Trader Service Console
	Starting the Trader Console
	Main Window
	The Trader Console Menus
	Managing Service Types
	Managing Offers
	Managing Proxy Offers
	Managing Links
	Configuring the Trader Attributes
	Support Attributes
	Import Attributes
	Link Attributes

	Admin Attributes
	Executing Queries
	Connecting to a New Trader

	The OMG Constraint Language
	Introduction
	Language Basics
	The Constraint Language BNF

	Glossary
	Index

