Orbix 6.3.9

ORBA Trader Service Guide: Java

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/10/17

Contents

P aCe .. \Y/
Contacting MICIO FOCUS ...ttt aae Vi

An Introduction to the CORBA Trading Service...................... 1
1 g} Ao o [T 1 e o R PP 1

ST V7o = 1/ 0 1= 1= 2
12T Y [ol =T @] i =T o J PP 5

The Trader Service’s COMPONENTS. .. uiii it aaaneens 6
Configuring the Trader ServiCe.......oovviiiiiiiiiiiiiii e 9
Configuring and Running the Trader ServiCecoiiiiiiiiiii e 9
Steps 1-2: Determine the hosts and ports to be used in the deployment ..9

Step 3: Enter the host and port information in the configuration............ 10

Step 4: Configure the service to run with or without replication............. 11

Step 5: Run the service in prepare mode to obtain initial references 11

Step 6: Adding the initial references to the configuration...................... 12

Step 7: RUNNing the trader SerVICEcviiiiiii e 12

Additional Configuration INnformation...........ccoiiiiiiiiiiiiiii e eaes 13
Getting Started with the Trader Service ... 15
Starting the Trader SerViCe ... e 15

The Printer AppPliCation e e 15
Trader Service Programimingo e 17
Connecting to the Trader ... e e e aas 17

Adding a New Service Offer TYPe coiiiiii i 18

EXporting @ Service Offer ... e 19

Querying for a Service Offerooi i s 21
Querying for Service Offersooooiiiiiiiii e 23
How the Trader Service Processes @ QUENYcvuiiiiiiiiiii i eaeeaeenaneanns 23

A Basic Query for Service Offers.o 24
Selecting a Service from Query ResSUItS ... 26
Forming Constraints fOr QUEIIES ... o 27
Setting Preferences to Sort Service Offersccooviiiiiiiiii i 29
Refining the Properties a QUery RETUINSot eieeenas 31
Understanding Trader Service Policiesccccoviiiiiiiiiiinnn... 33
WRAT IS @ POIICY 2 . et e 33
Policies that AffECt QUETIES ... e aeee e 33
Policies that Affect Trader FUNCEIONAIITYcvieiiii e 35
UsSIiNG POlICIES IN @ QUEKY ...ttt aaeas 36
Setting a Trader’'s Global POlICIES ..o 37
Exporting and Managing Service Offers.........ccccceviiiviiiiin. 39
Initializing Service Offer Propertiesccvie oo 39
Exporting a Service Offer t0 Trader......ovoiiiiiiiiii e 41
Getting Service Offer Data from Traderoooiiiiiiii i 42
MOodifying & Service OFfer ... e e 42

Orbix CORBA Trader Service Guide: Java iii

Withdrawing a Service Offer from Traderooviiiiiiiiiiiii i eeeeees 43

Programming TOPICS ...ttt eaanaeees 45
Managing the Service Type RePOSITOIYciuiiiiiii i eeeas 45
Using Dynamic Property ValUes ... e e 47
Managing Links Between TradersS ... e e eeeas 50

Trader Service CONSOle ... e 53
Starting the Trader CONSOIE ... e e aaaeeas 53
Y= T AV T To [P 53
The Trader Console MENUS. ...t 55
Y E=YaT=Te [T o IS T=T Y Tot =T Y 1 57
Y =T T=Te [o B) i =] 60
Managing ProxXy OFfersS ...t et eeenas 64
Managing LinNKSo e 65
Configuring the Trader Attributes. e 67

SUPPOt ATErIDULES . . e 67
IMPOrt AttribULES .. 68
LiNK AttriDULES . .o 70
AdMIN AN DULES L. 71
EXECULING QUETIES .ottt ittt ettt et ettt et et e et e e e et e e e aneeraneeeaanneannns 72
(@fe] g aT=Tex uTaTe [o J= T AN [TV A I = T L= 74

Appendix The OMG Constraint Languageccccevvvvvnnnnn. 75
1 1o T 11 T4 1] o I 75
LanQUAOgE BasiCS . ..uuiii ettt 75
The Constraint Language BNF ... 77

Gl OS S aANY et 81

T = P 85

iv Orbix CORBA Trader Service Guide: Java

Preface

CORBA Trader Service is a Java implementation of the Object
Management Group (OMG) Trading Service. The CORBA Trader
Service provides facilities for object location and discovery. Unlike
the CORBA Naming Service where an object is located by name,
an object in the Trading Service does not have a name. Rather, a
server advertises an object in the Trading Service based on the
kind of service provided by the object. A client locates objects of
interest by asking the Trading Service to find all objects that
provide a particular service. The client can further restrict the
search to select only those objects with particular characteristics.

The Trader Service is compliant with the OMG CORBA services:
Common Object Services Specification
(ftp://www.omg.org/pub/docs/formal/98-12-09.pdf) and
conforms to the specification’s definition of a full-service trader,
meaning that the service supports all of the functionality described
in the specification.

Audience

This manual is aimed at users wanting to create a trader service
for use by their applications.

Related documentation

The document set for Orbix includes the following:
* CORBA Programmer’s Guide

* Administrator’s Guide

* CORBA Programmer’s Reference

Typographical conventions

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, and data structures. For
example, text might refer to the
CORBA: :Object class.

Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:

#include <stdio.h>

Orbix CORBA Trader Service Guide: Java v

Italic Italic words in normal text represent
emphasis and new terms.

Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use
angle brackets to represent variable values
you must supply. This is an older
convention that is replaced with italic
words or characters.

Keying conventions

This guide may use the following keying conventions:

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

o°

A percent sign represents the UNIX
command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command that
requires root privileges.

> The notation > represents the DOS or
Windows command prompt.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{1} Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format
and syntax descriptions.

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

vi Orbix CORBA Trader Service Guide: Java

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information

below, if you have it. The more information you can give, the

better Micro Focus SupportLine can help you. But if you don't

know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

®* Your computer make and model.

®* Your operating system version number and details of any
networking software you are using.

* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

. Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

Orbix CORBA Trader Service Guide: Java vii

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

* https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online

form at:
http://www.microfocus.com/Resources/News etters/i nfocus/newsl etter-subscriptio
n.asp

viii Orbix CORBA Trader Service Guide: Java

http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

An Introduction to the
CORBA Trading Service

TheTrader Serviceisafull implementation of the CORBA Trading Object
Service. With this service, servers can offer functionality by making a
number of objects publicly available. Clients can then get references to
objects that match a specified functionality.

Introduction

The CORBA Trader Service is a Trading Object Service that allows
an object to be registered with a description of its functionality.
This service greatly increases the scalability of distributed systems
by making services easier to locate. An example of a service that a
client might search for is a printer.

How clients and servers use a trader

A trader contains a number of service types that describe a
service. For example, a printer service type might have properties
such as pages per minute (a long) and location (a string). Service
types are stored in a Service Type Repository. Service offers, or
offers, are instances of these service types.

3. Invoke Object

Client > Server

2. Query for 1. Export
Service Offer Trading service Service Offer
Service Offers
Service Types Repository

Figurel: Typical trading service process

A server can export an offer to the trader, which includes an
object reference for one of its objects and values for properties
defined by the service type, for example, “50 pages per minute,
located on the first floor”.

A client can then query the trading service based on these
properties using a filter called a constraint. For example, a client
could search for a printer where “pages_per_minute > 200". The
trader then returns to the client an offer of a service. The client
can then use the object reference in the offer to invoke on the
server.

Orbix CORBA Trader Service Guide: Java 1

Service Types

Scalability

The trader can be a tool for constructing efficient distributed
applications. The advantage of annotating a service offer with
properties, and allowing offers to be filtered on the basis of those
properties using a constraint, is that clients can select offers
without having to incur the overhead of invoking operations on
each object.

For example, suppose that printer2Interface, which is a subclass
of PrinterInterface, has an additional operation, cost (), which
returned a value of type float:

//IDL

interface Printer2Interface : PrinterInterface {
void page counter() ;
float cost();

I

In this situation, if the importer needed to select only those
printers whose cost is within a certain range, the importer would
need to iterate over each printer returned by the trading service to
invoke the cost () operation. In a distributed environment, the
overhead of this activity could be prohibitively expensive. It is the
developer’s responsibility to anticipate the types of queries that
importers will need to perform and design their service types
accordingly.

Service type definition

Service types are general descriptions of a kind of service. They
consist of the following:

* A type name (for example, printer) uniquely identifies the
service type.

* An interface type defines the IDL interface to which an
advertised object of this type must conform (for example,
"IDL:MyAppModule/MyAppInterface:1.0").

* A collection of property types defines additional attributes of

the service offer (for example, “long page_per_min”, “string
location”).

Service type names

Each service type in the repository has a unique name. Orbix
Trader supports two name formats:

* Scoped names - These names have formats such as
: :One: :Two. Other supported variations include Three: :Four
and simply Five.

2 Orbix CORBA Trader Service Guide: Java

. Interface repository identifiers - These names adhere to
the format of interface repository identifiers. The most
common format is

IDL: [prefix/] [Module/] Interface:X.Y

Note: Although both naming formats follow interface
repository conventions, service type names are never used
to look up information in the interface repository.

Interface types

An interface type describes the IDL signature of the advertised
service. The interface type is a string whose format should be a
scoped name or an interface repository identifier as described
above for service type names. When a new service is exported,
the trader may use the interface repository to confirm that the
object being advertised conforms to the interface defined by the
interface type. An object conforms to an interface if it implements
that interface, or if it implements a subclass of that interface.

Property types

A service type can have zero or more property types, representing
additional information that can be associated with an advertised
service.

A property type definition consists of a name, a value type and a
mode. The value type is a CORBA: : TypeCode, and the mode indicates
whether a property is mandatory and whether it is read-only.

The property modes have the following semantics:

* Mandatory—The exporter must provide a value for the
property at the time the service is exported. Mandatory
properties cannot be removed.

* Read-only—Once an exporter has supplied a value for the
property, it cannot be modified. Read-only properties can be
removed.

* Mandatory and Read-only—The property must have a value
when the service is exported, and cannot subsequently be
changed or removed.

A property that is neither mandatory nor read-only is considered
optional, and can be changed and removed.

Orbix Trader accepts Java-style identifiers as property names,
meaning a property name must start with a letter, and may
consist of letters, numbers and underscores.

Orbix CORBA Trader Service Guide: Java 3

Super types

Service types can inherit from other service types, which enables
the definition of super types that encapsulate behavior and
characteristics common to many service types. When a new
service type is created that has super types, the trader checks
that several prerequisites are met:

1. All super types must already exist in the service type
repository.

2. Any property type definitions in the new service type that
have the same name as a definition in a super type must be
compatible with the super type definition. For two property
definitions to be compatible, their value types must match,
and the mode of the new definition must be the same as, or
stronger than, the mode of the property in the super type
according to the graph in Figure 2.

Optional

Read-only Mandatory Increasing
strength

Read-only and Mandatory

Figure2: Property Mode Strengths

3. The interface type of the new service type must conform to
the interface type of all super types. Orbix Trader may use the
interface repository to verify that this is true.

For example, consider two IDL interfaces, InterfaceaA and

InterfaceB, defined below:

// IDL
interface InterfaceA {
void do something() ;

b

interface InterfaceB : Interfaced {
void do something else() ;

I

4 Orbix CORBA Trader Service Guide: Java

Service Offers

Here, InterfaceB inherits from InterfaceA. Now, let’s define
two service types:

service ServiceTypeA

{

interface Interfacel;
property string name;

b s

service ServiceTypeB : ServiceTypeA

{

interface InterfaceB;
mandatory property string name;
readonly property float cost;

b s

In the example above, serviceTypeB inherits from ServiceTypea. As
such, it inherits all of the property types from ServiceTypea, and
declares an interface type of InterfaceB, which conforms to the
interface type of its super type because InterfaceB is a subclass of
InterfaceA.

Notice that serviceTypeB redefines the mode of the “name”
property. Whereas the definition in ServiceTypea does not specify a
mode (making the property optional), the definition in
ServiceTypeB makes this property mandatory, therefore a value for
the property must be supplied when the offer is exported. The
reverse is not allowed; a subtype cannot redefine a mandatory
property to be optional.

ServiceTypeB also adds a new property, “cost”, which is defined to
be read-only. Because the property is not mandatory, an exporter
does not need to supply a value for it at the time a service offer is
exported. However, once a value has been defined for this
property, it cannot subsequently be changed.

Service offers

A service offer is an instance of a service type and represents the
advertisement of a service by a service provider.

A service offer has the following characteristics:

* A service type name associates the offer with a particular
service type.

* An object reference provides the “pointer” (the object
reference) to the advertised object that is necessary for
clients to invoke the service being offered.

* A set of properties describe this service offer and must
conform to the property types defined by the service type.

Orbix CORBA Trader Service Guide: Java 5

The trader uses the definition of the specified service type to
perform several validation steps on a new offer:

1. The exporter must provide values for all mandatory properties
(including all mandatory properties that the service type
inherits from its super types, if any).

2. The object must conform to the interface type defined by the
service type. Orbix Trader may use the interface repository to
verify that this is true.

3. The value types of all properties must match the value types
as defined by the service type. For example, a value of type
double is not allowed for a property whose type is defined as
string in the service type.

Note: Orbix Trader allows an exporter to supply values for
named properties that are not defined in the service type.

The value of a property in a service offer can be modified if the
mode of the property is not read-only. A property can be removed
from a service offer if the property is not mandatory. New
properties can also be added to an existing service offer.

The Trader Service’s Components

Trader components

The Trader Service functionality is divided into components where
each component has an associated interface as follows:

* Lookup
* Register
e Admin

e Link

® Proxy

The CORBA Trader Service is a full-service implementation of the
OMG’s Trading Object Service specification. The following table
summarizes the different kinds of traders and the component
functionality offered:

Table 1: Kinds of traders and their components

Kind of Component Interfaces

Trader

Lookup | Register | Admin Link Proxy

Full-Service CORBA Trader Service
Linked X X X X
Proxy X X X X
Stand-alone | X X X
Simple X X
Query X

6 Orbix CORBA Trader Service Guide: Java

The functionality of each kind of trader depends on the interfaces
that it supports. The following is a list of the kinds of traders
specified by the OMG:

The simplest trader is the Query trader, which just supports
the Lookup interface. This could be useful, for example, where
a trader is pre-loaded and optimized for searching.

The simple trader supports not only the Lookup interface but it
also supports exporting of offers with the rRegister interface.

The stand-alone trader supports the interfaces of a simple
trader and additionally supports administration of the trader’s
configuration settings using the admin interface.

The proxy trader supports the interfaces of a stand-alone
trader and additionally supports the proxy interface. The proxy
trader essentially exports a lookup interface for delayed
evaluation of offers, and can be used for encapsulating legacy
applications, or as a kind of service offer factory.

The linked trader supports the interfaces of a stand-alone
trader and additionally supports federation of traders using
the Link interface.

The full-service trader combines the functionality of all
component interfaces. The Orbix CORBA Trader Service is a
full-service trader.

Orbix CORBA Trader Service Guide: Java 7

8 Orbix CORBA Trader Service Guide: Java

Configuring the Trader
Service

This chapter provides a description of the steps necessary to configure
the Trader Service.

Configuring and Running the Trader Service

These instructions describe how to configure the Trader Service.

Preparatory steps

Several preparatory steps are necessary to configure and run the
trader service. The specific actions taken at each step are
somewhat different depending on whether you want to run the
service replicated or non-replicated.

The general sequence of actions are as follows:

1. Determine on which hosts you want to run the master trader
service and on which hosts any slaves will run.

2. Determine the port number on which the master, slaves, and
Replicators will listen.

3. Enter the host and port number information into the
configuration.

4. Configure the trader service to run in replicated or
non-replicated mode.

5. Run the trader service in “prepare” mode to obtain initial
references needed to enable clients to interact with the
service.

6. Add each of the references obtained during step 4 to the
configuration database.

7. Start the master trader service and any slaves.

Explanation

In the following explanation of the steps listed above, example
settings are given assuming a deployment of one master trader
service instance running on host “master”, and one slave trader
service instance running on host “slave”. In addition, it will be
pointed out where steps should be modified or bypassed in order
to run a single non-replicated instance of the service.

Steps 1-2: Determine the hosts and ports to be used in the

deployment

These steps are completely deployment-specific. Depending on
the number of trader service instances you want to deploy, you
will need to select 1 or more distinct host/port pairs for each
instance of the service to use as a communication end-point. In
our example, we use a replicated service with one master and one

Orbix CORBA Trader Service Guide: Java 9

slave. The master runs on host master and listens on port 15001;
the slave runs on host slave and listens on port 15001. The
master and slave need not listen on the same port number. Also,
two or more replicas may run on the same host as long as they
listen on different ports.

Furthermore, each trader service instance running in a replicated
deployment scenario will also create a Replicator object. You must
also select the ports on which each Replicator will listen. In the
sample configuration, the Replicator always listens on port 15002.

Step 3: Enter the host and port information in the

configuration

The Trader Service configuration will contain variables set in a
global scope (the outer scope not contained within a named
block), and variables set in one or more named scopes. The global
scope specifies configuration variable settings for all replicas in a
replicated deployment, while the named scopes each specify
configuration variable settings that apply to a specific trader
service instance. The name of each scope corresponds to the ORB
name that will be used when launching each instance of the
service.

In the default trader.cfg included with the trader service package,
there are two named scopes: one for ORB name trading0, and the
other for ORB name tradingl. All host/port information is set
within a named configuration scope.

The host/port information within a given configuration scope is
contained in the following variables:

trader:iiop:addr list
replication:Replicator:iiop:addr list

In the sample configuration, these variables are set as follows in
the trading0 scope:

trader:iiop:addr list = ["master:15001", "+slave:15001"];
replication:Replicator:iiop:addr list = ["master:15002"];

These settings indicate that the trader service instance using ORB
name trading0 will run on host master and listen on port 15001.
The service will be replicated, with the one replica participating in
the service running on host slave and listening on port 15001. The
Replicator will listen on port 15002.

Note that if more replicas are being used in the deployment, an
additional "+<hostname>:<port>" pair would be appended to the list
for each replica. If running the service non-replicated, only a
single "<hostnames:<port>" pair should be included in the
trader:iiop:addr list. Including additional pairs in the list will
only increase the size of IORs used by the service, but this will
result in unnecessary resource consumption when running
non-replicated. In addition, in the non-replicated case, the second
addr list variable listed above need not be set.

10 Orbix CORBA Trader Service Guide: Java

Step 4: Configure
replication

In the sample configuration, these same variables are set as
follows in the tradingl configuration scope:

trader:iiop:addr list = ["slave:15001", "+master:15001"];
replication:Replicator:iiop:addr list = ["slave:15002"];

These settings indicate that the trader service instance run with
ORB name tradingl will run on host slave and listen on port
15001. The service will be replicated, and the one other replica
will run on host master and also listen on port 15001. The
Replicator used by this service instance will listen on port 15002.

the service to run with or without

Before running the trader service in “prepare” mode, you should
decide if you want to run with replication enabled or disabled, and
if replication is enabled how many replicas will be used.

Whether replication is enabled or disabled is controlled by the
setting of the configuration variable replication:enable. This
variable should be set to "True" to enable replication, and to
"False" to disable replication.

If running with replication enabled, you must also indicate the
number of replicas that will be used by setting the
replication:replica count to the appropriate value. This variable
should be set to the total number of replicas including the master
and any slaves. In the example scenario with one master trader
service instance and one slave, this variable should be set to 2.

Step 5: Run the service in prepare mode to obtain initial

references

Now you are ready to run the service in prepare mode, and obtain
the initial references necessary for clients to connect to the
service. Note that when running a replicated service, each
individual replica must be prepared. The command to run the
trader service in prepare mode is:

asp/Version/bin/ittrader prepare [-publish to file <filenames]

If running with replication enabled, preparing each instance of the
trader service will result in three IORs being sent to standard
output:

* The IOR of the replicated trader service (which will be the
same for all replicas)

* The non-replicated, per-instance trader service IOR
* The IOR of the per-trader service Replicator.

If running with replication disabled only the IOR of the prepared
trader service instance will be output.

Save the values for use in step 6.

Orbix CORBA Trader Service Guide: Java 11

Step 6: Adding the initial references to the configuration

The initial references of each trader service instance and each
Replicator need to be added to the configuration.

If running one non-replicated instance of the service, the initial
reference to the service returned by preparing the one instance
should be set as the value of the following variable in the global
configuration scope:

initial references:TradingService:reference

If running with replication enabled, the IOR of the replicated
trader service should be set as the value of the trader service
initial reference in the global scope (the same variable as
described above for the non-replicated case).

If replication is enabled, or if running multiple non-replicated
instances of the service within the same domain, the trader
service initial reference variable within each nhamed scope must
also be set. If replication is enabled, the value set for the following
variable within each named scope should be the non-replicated,
per-instance trader service I0OR:

initial references:TradingService:reference

In addition, the non-replicated IOR of each trader service
instance, along with the Replicator IOR for each instance, should
be added to the configuration as the values of the variables of the
form:

replication:replica:<replica id>:TradingService:reference
replication:replica:<replica id>:Replicator:reference

In the current example, the IORs returned by preparing the
master replica are set as the values of the following variables:

replication:replica:0:TradingService:reference
replication:replica:0:Replicator:reference

while the I0Rs returned by preparing the slave replica are set as
the values of these variables:

replication:replica:1:TradingService:reference
replication:replica:1:TradingService:reference

Step 7: Running the trader service

To start the trader, enter the command:

ittrader run

12 Orbix CORBA Trader Service Guide: Java

Additional Configuration Information

There are some additional configuration settings to be aware of:

trader:database:dir=""./traderdb0O”’;

This variable should be modified, for each replica of the service, to
contain the pathname (absolute or relative to where the trader is
launched from) of where the trader database will reside.
replication:replica_id = “0”;

This is a numeric ID for the instance of the trader being configured
in the current scope.

Each replica should have a unique replica id. If a replica’s
replication:replica id is the same value as replication:master
then it is the master replica.

direct_persistence

This variable specifies if the service runs using direct or indirect
persistence. The default value is FALSE, meaning indirect
persistence.

iiop:port

This variable specifies the port that the service listens on when
running using direct persistence.

Orbix CORBA Trader Service Guide: Java 13

14 Orbix CORBA Trader Service Guide: Java

Getting Started with
the Trader Service

This chapter shows an example of a simple printer serviceto illustrate

most of the common functionality in the Trader Service. A printer server
makes a printer availablefor general use. Then, a client application asks
the Trader Servicefor a suitable printer, and usesit to print a document.

Starting the Trader Service

To start the trader, enter the command:

ittrader run

Synopsis

ittrader [-launcher help]
[-ORBconfig dir config dir value]
[-ORBconfig domains dir config domains dir value]
[-ORBdomain name domain name value]
[-ORBproduct dir product dir value]
[-ORBlicense file license file]
[-bg | -background]
[-show java command]
[-version]
[run | prepare [publish to file = filename]

Stopping the Trader Service

Enter the command:

itadmin trd admin stop

The Printer Application

The print server creates a Printer service type, and exports the
descriptions of several printers to the trader. A client allows the
user to execute queries and “print” files.

Orbix CORBA Trader Service Guide: Java 15

Interaction with the trader

Figure 3 shows the typical interactions clients and servers have
with the trader:

4. Invoke Server Object Print

Server

3. Query to
Obtain Offer 2. Export an Offer

1. Add Service Type

Repository

Figure3: Typical Interactionswith the trader

1. An offer server adds a service type (Printer) to the trader.
The printer type describes properties that office printers
have, such as pages per minute. The service type names
differ from the IDL interface names in this example, mainly to
make their use clearer. For example, there could also be a
book printer service type that uses the printServer IDL
interface, but it could have quite different properties such as
options for hard or soft book binding.

2. The printer server creates a printer if object. It exports and
object reference to this object to the Trader Service as an
offer of type printer. It then waits for incoming requests, as
normal.

3. The client process queries the Trader Service for a Printer
offer.

4. The client process then uses the object reference in the offer
obtained to invoke the printer server.

16 Orbix CORBA Trader Service Guide: Java

The IDL specification

The example application uses the following printServer IDL
interface to describe the interface to a printer object:

// IDL

// This interface represents a print server that manages queues
// for several printers.

//

module TraderDemo

{

interface PrintServer

{

typedef unsigned long JobID;

// BAdd a file to a printer's queue.
//
JobID print (in string queue, in string file) ;
¥
b s

Trader Service Programming

This section outlines the three major programming steps used to
interact with the trader. These steps are:
1. Add a service type using the offer server:

i. Createaserviceoffer typeif acorresponding one doesn’t already exist within

the Trader Service. This example creates an Printer service offer type.
2. Register a service offer using the printer server:

i. Create an object, for example, an instance of the IDL interface
PrintServer.

ii. Register the object reference with the Trader Service, within a service offer
of type Printer. The server then acceptsincoming object invocations as
normal.

3. Get a service offer using the client:
i. Query the Trader Serviceto get back a service offer.

ii. Usethe object reference specified in the service offer to invoke the object on
the server.

Note that for simplicity, exception handling is omitted in the
sample code.

Connecting to the Trader

1

Servers need to connect to the trader to add a service offer type,
for example, or to register a service offer. Clients need to connect
to query the trader for service offers. The trader has a number of
components represented by IDL interfaces including Lookup,
Register, and others. The “TradingService” initial reference is a
reference to the CosTrading: :Lookup interface.

Do the following steps to get an object reference to the Trader
Service:

org.omg.CORBA.Object obj =
orb.resolve initial references ("TradingService") ;

Orbix CORBA Trader Service Guide: Java 17

2 if(obj != null)
{
org.omg.CosTrading.Lookup trader =
org.omg.CosTrading.LookupHelper.narrow (obj) ;

}

1. Call resolve initial references() which returns a
org.omg.CORBA.Object.

2. Narrow the object reference.

Adding a New Service Offer Type

An offer server inserts a service offer type called printer into the
Trader Service. This is essentially a type declaration of an offer.
Other servers may then use this type to register printer objects by
creating instances of this type. Operations on service offer types
are handled by the Service Offer Type Repository component of
the Trader Service.

Do the following steps to add an offer type to the Offer Type
Repository:

1 org.omg.CORBA.Object obj = trader.type repos /() ;

2 org.omg.CosTradingRepos .ServiceTypeRepository
trader repos obj =
org.omg.CosTradingRepos . ServiceTypeRepositoryHelper.na

rrow (obj) ;
3 org.omg.CosTradingRepos .ServiceTypeRepository.PropStruct [

] props =

new
org.omg.CosTradingRepos . ServiceTypeRepository. PropStru
ct [3];

props [0] = new
org.omg.CosTradingRepos . ServiceTypeRepository. PropStru
e () 5

props [0] .name = "name";

props [0] .value type =
orb.get primitive tc (org.omg.CORBA.TCKind.tk string) ;
props [0] .mode = PropertyMode.PROP MANDATORY READONLY ;

props [1] = new
org.omg.CosTradingRepos . ServiceTypeRepository. PropStru
ct ()

props [1] .name = "location";

props [1] .value type =
orb.get primitive tc (org.omg.CORBA.TCKind.tk string) ;
props [1] .mode = PropertyMode.PROP MANDATORY ;

props [2] = new
org.omg.CosTradingRepos . ServiceTypeRepository . PropStru
e () 5

props [2] .name = "page per min";

props [2] .value type =
orb.get primitive tc (org.omg.CORBA.TCKind.tk long) ;
props [2] .mode = PropertyMode.PROP NORMAL;

String[] superTypes = new String[0];

18 Orbix CORBA Trader Service Guide: Java

4 type repos obj.add type (

"Printer" // Service Type
"IDL:TraderDemo/PrintServer:1.0", // IDL type name
props, // offer properties

superTypes // no supertypes
) g

The code is described as follows:

1. Get a reference to the Service Offer Type Repository.

2. The type CosTrading: : TypeRepository var iS a typedef of
CORBA: :Object, and is essentially a forward reference. After
obtaining a reference of this type, narrow it to
org.omg.CosTradingRepos . ServiceTypeRepository.

3. Construct the property information of a service offer type. In
this example there are three properties: name, location, and
page per min. The main parts of a service offer type include
the following:

+ The name of the service type.
+ The IDL interface id for this service.

+ The properties which are a description of the offer. These
are as follows:

enum PropertyMode {

PROP_NORMAL, PROP_ READONLY,
PROP_MANDATORY, PROP MANDATORY READONLY

s

struct PropStruct {
CosTrading: : PropertyName name;
TypeCode value type;
PropertyMode mode;

}i

typedef sequence<PropStruct> PropStructSeq;

4. Invoke the add _type() function and pass it the relevant
parameters.

Exporting a Service Offer

When a server wants to make its service offers available, it
registers with the Trader Service by exporting service offers. The
code in Example 1 demonstrates the steps to export a service
offer.

Example 1: Exporting a service offer

1 PrintServer Impl print server impl = new PrintServer Impl () ;
PrintServer print server = print server impl. this(orb);;
2 org.omg.CORBA.Object trader =
orb.resolve initial references ("TradingService") ;
org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading . LookupHelper .narrow (trader) ;
org.omg.CosTrading.Register register = lookup.register if();

Orbix CORBA Trader Service Guide: Java 19

Example 1:

Exporting a service offer

3 org.omg.CosTrading.Property[] props = new
org.omg.CosTrading.Property [3] ;

props [0]
props [0]
props [0]
props [0]

props [1]
props [1]
props [1]
props [1]

props [2]
props [2]
props [2]
props [2]

= new org.omg.CosTrading.Property () ;

.name = "name";
.value = orb.create any() ;
.value.insert string("laser4") ;

= new org.omg.CosTrading.Property () ;

.name = "location";
.value = orb.create any() ;
.value.insert string("near coffee machine");

= new org.omg.CosTrading.Property () ;

.name = "ppm";
.value = orb.create any() ;
.value.insert long(50) ;

4 String id = reg.export (
print server, // object reference to the CORBA object
"Printer", // the service type

props
)5

// the service’s properties

1. The printer server first creates an instance of the printer
object.

2. The printer server connects to the Trader Service (as
described in “Connecting to the Trader” on page 17) and gets
a trader lookup var. It then uses this to access the Trader
Service’s register component, which handles exporting of
service offers.

3. The server initializes the service offer properties with relevant
values.

4. The server finally invokes the export () function to register the
service offer.

20 Orbix CORBA Trader Service Guide: Java

Querying for a Service Offer

Once offers have been exported to the trader service, clients can
use the lookup interface to request services. Example 2
demonstrates a basic query that requests a printer that can print
more than 5 pages per minute and uses the first offer returned by
the trader.

Example2: Querying for a service offer
// Trader Service reference, trader, acquired earlier

org.omg.CosTrading.Policy[] policies = new
org.omg.CosTrading.Policy [0] ;

org.omg.CosTrading.LookupPackage . SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps () ;

desiredProps. default (org.omg.CosTrading.LookupPackage . HowMany
Props.all) ;

org.omg.CosTrading.OfferSegHolder offers = new
org.omg.CosTrading.Of ferSegHolder () ;

org.omg.CosTrading.OfferIteratorHolder iter = new
org.omg.CosTrading.Of ferIteratorHolder () ;

org.omg.CosTrading.PolicyNameSegHolder limits = new
org.omg.CosTrading.PolicyNameSegHolder () ;

1 trader.query(

"Printer", // the service type

"ppm >5", // the constraint to match
"random", // the order to sort the results
policies, // no special policies
desiredProps, // set to return all properties
50, // max offers to return

offers, // offers returned

iter, // remaining offers

limits // polices applied by the trader

);
2 org.omg.CosTrading.Offer[] offer = offers.value;
if (offer.length() != 0)

{

PrintServer printer obj =
PrinterServerHelper.narrow (offer [0] .reference) ;

3 printer obj.print (doc, job id);

}

4 // we are only interested in a single offer, so we
// destroy the offer iterator, if the Trader created one for us
if (iter.value != null)
iter.value.destroy() ;

1. The client queries the Trader Service for a service offer
matching certain criteria. In this example:

+ The constraint is that the offers returned have a
page per min value that is greater than 5 pages per
minute.

+ The results are returned in random order.
+ The default policies are used.
+ All properties are returned with the offer.

Orbix CORBA Trader Service Guide: Java 21

+ Alimit is set for the number of offers returned in the
offers parameter. The trader will make find all of the
possible matches, and return the remainder in the iter
parameter.

2. The client selects a service offer from those returned in the
query and invokes on the server. This simple example uses
the first offer in the sequence.

3. The client uses the service offer to invoke on the object. In
this case, the document is printed using the selected printer
offer.

4. Any resources created by the trader for the iterator must be
explicitly freed up.

22 Orbix CORBA Trader Service Guide: Java

Querying for Service
Offers

Inorder for clientsto find out about and use services offered by the Trader
Service, the client code performs queries to obtain one or more service
offers. A service offer contains, among other things, an object reference
to a service. Clients then use the object reference to access a desired
service.

How the Trader Service Processes a Query

It is easy to see how the set of offers that a trader contains can
get quite large. In addition, traders can be linked together
(federated) to search each other for service offers. This means
that a query needs to have controls that complete a search in a
reasonable amount of time. A query also needs controls that limit
the amount of data returned.

Format of a query

A query starts with a service type name. A query then limits a
search for appropriate offers by using a constraint on one or more
properties of the service. You can also specify other limiting
factors including the number of offers returned, a preference on
the sort order, and the property values actually returned.

Figure 4 shows how the Trader Service uses these factors to
process a query and generate a sequence of desired service
offers.

Traderl
All Potential Offers

Offers of Appropriate
Service Types

Offers
that Match
Constraints

Sorted Set
of Offers

Returned
Properties of
Offers

Query

Service Name Determines

Property Constraints Determine

Preferences Determine

Desired Properties Determine

Figure4: How Query Parameters Affect Offers Gathered

Orbix CORBA Trader Service Guide: Java 23

When the Trader Service processes a query, it gathers a sequence
of offers together by narrowing down the set of all potential offers
in all linked traders. The Trader Service uses query input to
determine the following:

1. Uses the service name to determine if an offer is of an
appropriate service type.

2. Uses the property constraints to determine if the offer
matches the criteria specified by the client.

3. Uses preferences to determine the order in which to place the
offer in the sequence of offers created.

4. Uses desired properties to determine which of the offer’s
property values (if any) are returned.

Policies

The Trader Service uses policies to control its behavior. For
example, the maximum number of offers that can be searched for.
You can also include one or more policies and values in a query to
control the search behavior for a specific query.

A Basic Query for Service Offers

A WDN PR

Connecting to the trader

Clients need to connect to the Trader Service before they query
for service offers. Do the following in your client to get an object
reference to the trader:

// Java
org.omg.CORBA.Object trader obj =
orb.resolve initial references ("TradingService") ;
if (trader obj != null)
{
org.omg.CosTrading.Lookup lookup =
org.omg.CosTrading.LookupHelper.narrow (obj) ;

}

First, call resolve initial references() which returns a
org.omg.CORBA.Object. Then, narrow the object reference to a
trader Lookup Object.

Querying the trader

After connecting to the trader, clients can query the trader for
service offers that match any desired criteria.

// Java
lookup.query (
// Query input

"IDL:printer:1.0", // service type name
" (page per min > 5) and (page type == ‘A4’)", // constraint
"random", // preference sort order
default policies, // policies desired

24 Orbix CORBA Trader Service Guide: Java

return properties, // properties to return

10, // Initial number of offers wanted
// Query Output

offers, // offers returned

iterator, // remaining offers

limits reached // Limits reached during query

) 5

The input parameters to a query are explained in detail as follows:

1. The service type name parameter specifies the service type of
the offers required. If the exact type match import policy is
specified as true, only the service type is considered and no
subtypes. If the exact type match policy is false or unspecified
then subtypes are considered.

2. The constraint parameter specifies the constraint for
restricting suitable offers. The constraint is a string that
conforms to the OMG Constraint Language. Use an empty
string if no constraints are required. See “Forming Constraints
for Queries” on page 27 for more constraint examples.

3. A preference parameter specifies the order of the returned
sequence of offers. You can sort offers by the following
criteria:

. In the order in which the Trader Service finds the offers.
(This is the default.)

+ In descending order based on property values.
+ In ascending order based on property values.

+ All offers that meet a constraint first, followed by those
offers that do not meet the constraint.

+ In random order.

Use an empty string if no sort preference is required. See
“Setting Preferences to Sort Service Offers” on page 29 for
sort preference examples.

4. For now, default policies are used for the policies parameter.
Policies are discussed in Chapter 1.

5. A return-properties parameter specifies the properties to
return for the sequence of offers. You can choose to have
none, some, or all properties returned. For example, if for
your application it is adequate to use the first valid service
offer, you can improve efficiency by returning no properties
for the returned offers. See “Refining the Properties a Query
Returns” on page 31 for an example of how to specify some
properties to return.

6. The how-many-offers parameter specifies the number of
offers to be initially returned via the offers out parameter.
This example requests 10 initial offers.

The offers are returned as a sequence of offers. You can check for
more offers and obtain them by using the iterator output
parameter. If the Trader Service reached any policy limits during
its search, the policy name is returned in the limits reached
output parameter. The query() output and how to use it is
described in the next section.

Orbix CORBA Trader Service Guide: Java 25

Selecting a Service from Query Results

The previous section described how the input parameters to the
query () operation controls the offers you get. This section
describes details of the output from query ().

Output parameters

The output parameters include a sequence of offers, an iterator
object to obtain more offers, and a sequence of policy limits that
the Trader Service may have encountered as it collected the
offers.

// Java
lookup.query (
// Query Input

// Query Output

offers, // offers returned

iterator, // remaining offers

limits reached // Limits reached during query
)5
offers

The offers parameter contains the returned sequence of offers.
The client selects a service offer from those returned in the query
and invokes on the desired server. The following example simply
uses the first offer in the sequence:

// Java
org.omg.CosTrading.Offer[] offer = offers.value.
if (offer.length != 0)
{
PrintServer printer obj =
PrintServerHepler.narrow (offer [0] .reference) ;
printer obj.print (doc, job id);

}

iterator

The iterator parameter is an object reference to an offerIterator
interface. If all offers are returned in the offers parameter then
the iterator parameter has a null reference value. However, recall
that a query specifies the number of offers to be returned. If the
number of offers requested is lower than the number the Trader
Service found, then an offerIterator object reference is returned
and the remaining offers can be retrieved via that object.

26 Orbix CORBA Trader Service Guide: Java

This example shows how to peruse the remaining sequence of
offers. In the example, the names of properties are printed:

// Java
String name;

boolean more offers = TRUE;

while (more offers)
more offers = iterator.next n(2, offers);
org.omg.CosTrading.Offer[] offer = offers.value;

for (long i = 0; 1 < offer.length(); i++)
{
name = offer[i] .properties[0] .value.extract string() ;
System.out .println (name) ;
}

}

// free up the resources used by the iterator
iterator.destroy() ;

Once you are done with the iterator, you must use its destroy ()
function to release the resources it uses.

limits_applied

The limits applied parameter is a sequence of policy names. If
the Trader Service encounters any policy limits during a query, it
returns the names of the policies in this sequence. For example, if
a query generates more offers than the maximum number of
offers the trader is allowed to search for, the name
max_search card is returned in the sequence. The values of the
policies are not returned.

Forming Constraints for Queries

This section describes how to use more features of the OMG
constraint language to construct effective constraint expressions
when querying for service offers. See “The OMG Constraint
Language” for a complete specification of the constraint language.

Although service properties can be defined using the great variety
of IDL data types available, not all can be queried with the OMG
constraint language. You can use the constraint language for
properties defined with the following simple IDL data types:

boolean

short, unsigned short

long, unsigned long

float, double

char, Ichar

string, Istring

You can also use the constraint language for properties defined
with sequences of the above data types.

Orbix CORBA Trader Service Guide: Java 27

Evaluating property values

A constraint contains a comparison of property values. The result
of a comparison is a boolean. Thus, a potential offer is a match if
the Trader Service evaluates the constraint as true.

Comparison operators

Use the operators ==, !=, >, >=, <, Or <= to compare two of the
same simple types. For example, the following constraint
compares a float property with a float constant value:

float property == 1.0

Substring operator

Use the operator ~ to determine if the right operand is a substring
of the left operand. The left operand is a property of type string or
Istring, and the right operand is another string or string constant.
For example:

string property ~ ’‘String data’

String constants are delineated with apostrophes. To embed an
apostrophe in a string, precede the apostrophe with a backslash

Q\").
Sequence operators

Use the in operator to test if a value is in a sequence of values.
The left operand must be a simple IDL type and the right operand
must be a sequence of the same simple IDL type. For example:

'duplex’ in output options

Combining expressions

Constraints can include combinations of expressions by using the
keywords and, or, and not. For example, the following shows a
constraint to obtain printers that produce output at a rate greater
than 5 pages per minute and that support an A4 page type:

(page per min > 5) and (page type == 'A4’)

The following constraint is to obtain printers that do not produce
output at a rate less than 5 pages per minute:

not (page per min < 5)

You can use parentheses to group expressions for clarity or to
override the precedence relations of the constraint language.

28 Orbix CORBA Trader Service Guide: Java

Testing for a property’s existence

A constraint can test any service type property for its existence,
even if the IDL data type used to define it is not a simple data type
or sequence of a simple data type. Use the exist keyword to test
whether a property exists for given offer:

exist page per min

Because properties with a mandatory mode must exist, it does not
make sense to test for their existence. However, searching for the
existence of optional properties can provide a powerful means of

limiting the offers returned.

Using arithmetic expressions

Constraints can include arithmetic expressions by using the
standard operators */+-. However, you can only use these
operators between numbers and not between property names. For
example:

page per min > 2 * 5

You can use float and double values where appropriate.
Exponential notation is also valid.

Setting Preferences to Sort Service Offers

Creating a preference string

When querying for service offers, you can set preferences to make
the offers return in a particular order. Create a preference string
using one of the following formats:

first

max numerical_expression

min numerical_expression

with constraint_expression

random

A preference string consists of a keyword and, in some cases, an
expression. You cannot specify combinations of preferences by
using more than one keyword in a single preference string.

Constructing preference expressions

Use the OMG constraint language to construct the preference
expressions for max, min, and with formats. When you submit a
query with one of these preference expressions, the Trader
Service associates a sort value with each offer by evaluating the
expression. The offers are then sorted with respect to the sort
value and the type of preference as follows:

* A max preference sorts the offers in descending order from the
maximum sort value evaluated.

Orbix CORBA Trader Service Guide: Java 29

* A min preference sorts the offers in ascending order from the
minimum sort value evaluated.

* A with preference returns the offers that evaluate to true
before the offers that evaluate to false.

If the Trader Service cannot evaluate the expression for a
particular offer (for example, an expression that is based on an
optional property may not evaluate), the offers are not discarded
but are grouped after those offers that can be evaluated.

Returning offers in the order of discovery

The default behavior of the Trader Service is to return offers in the
same order in which they were discovered. You can also specify
this behavior by using the first preference.

Returning offers in descending order

Use the preference string format “max numerical_expression” to sort the
returned service offers in descending order. For example:

max page per min

In this example, printers with the highest page per min value are
returned first. The rest of the offers are returned in a descending
order based on the sort value calculated in the numerical
expression. Any offers that do not have a value for page per min
are returned last.

Returning offers in ascending order

Use the preference string format “min numerical_expression” to sort
the returned service offers in ascending order. For example:

min (jobs in queue)

In this example, printers with the lowest number of jobs in queue
are returned first, followed in ascending order.

Note: The max and min preference formats do not constrain
the offers returned to a maximum or minimum value. For

example, the following is an incorrect expression that does
not limit a sort to the offers with a minimum page per min

value of 8:

min (page per min == 8) This is an incorrect format

30 Orbix CORBA Trader Service Guide: Java

Returning offers by constraint

Use the preference string format “with constraint_expression” to order
the returned service offers based on a constraint expression. A
constraint expression evaluates to either true or false. The offers
with a constraint preference that evaluates to true precede those
that evaluate to false. For example:

with (page per min > 10)

This example sorts the returned offers into two groups: the first
group has pages per minute values greater than 10, and the
second has pages per minute values less than or equal to 10.

Returning offers in random order

Use the random preference to make the Trader Service return
offers in random order.

Refining the Properties a Query Returns

Specifying returned properties

You can specify which properties you want returned in the
sequence of offers. For example, if your application does not need
to use all properties to determine which services to use, it can be
more efficient for your memory and network traffic to return only
those properties you need.

Example 3 shows how to specify the properties to return.
Example 3: Specifying the return of properties

// Java
1 org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps () ;
desiredProps. default (org.omg.CosTrading.LookupPackage . HowManyP
rops . some) ;

2 org.omg.CosTrading.PropertyName [] properties = new
org.omg.CosTrading. PropertyName [2] ;

properties[0] = new
org.omg.CosTrading. PropertyName ("location") ;
properties[1l] = new org.omg.CosTrading.PropertyName ("ppm") ;

3 desiredProps.prop names (properties) ;

lookup . query (
"IDL:printer:1.0",
"(page per min > 5) and (page type == ‘A4’)",
"random",
default policies,

Orbix CORBA Trader Service Guide: Java 31

Example 3: Specifying the return of properties

4 desiredProps, // properties to return
10,
offers,
iterator,
limits reached
)i

The code is described as follows:

1. You first declare a specifiedProps union for properties.
To return all properties use this code and go to step 4:

// Java

org.omg.CosTrading.LookupPackage . SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps () ;

desiredProps. default (org.omg.CosTrading.LookupPackage . HowMany
Props.all) ;

To return no properties use this code and go to step 4:

// Java

org.omg.CosTrading . LookupPackage . SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps () ;

desiredProps. default (org.omg.CosTrading.LookupPackage . HowMany
Props.none) ;

2. If you want specific properties returned, create a property
name sequence, property seq. Make the sequence long
enough to contain the names of all properties to be returned
and fill it with the names of the desired properties.

3. Fill the desired properties object with the list of properties to
be returned.

4. Use the desired properties object as a parameter in the
query () function call.

32 Orbix CORBA Trader Service Guide: Java

Understanding Trader
Service Policies

Trader policiesaffect howtheTrader Serviceworks. Most policiescontrol
the scope of a search for offers. A few policies determine certain
functionality that appliesto the trader itself, including whether a trader
supports modifiable properties, whether it supports dynamic properties,
and whether it supports proxy offers.

What is a policy?

A policy is a data structure containing a pre-defined policy name
and a value for that policy. The value’s data type depends on the
particular policy. For example, the supports modifiable properties
policy can have a boolean value. A value of 0 means that for the
particular trader, properties of service offers cannot be changed
after an offer is exported to the trader. A value of 1 means that
the trader allows changes to its service offer properties.

Policies that Affect Queries

Query semantics

Most policies that affect queries are scoping policies. These
policies relate to the scope of a search when a query is submitted
to the trader. Here are the high-level semantics when the trader
processes a query:

1. Consider the number of initial offers to be searched.

2. Match the offers against the constraints specified in the query.

3. Consider the number of “hops” between linked traders during
a search.

4. Order the results according to the preference supplied in the
query. (No policies relate to this.)

5. Return these offers to the user.

Search policies

The following policies govern the scope of this search:

search card Consider at most this number of offers for the
search.

match card Match at most this number of offers before
returning them to be ordered.

hop count Allow at most this number of hops from one
trader to another linked trader.

return card Return at most this number of offers to the
client.

Orbix CORBA Trader Service Guide: Java 33

These policies can be optionally specified in a query. Each of these
policies have “tuning” policies associated with them in the trader.
The trader tuning policies are called def_policy and max_policy
where policy is the name of one of the policies listed above. For
example, the search card policy may be specified in a query and
the def search card and max search card policies have initial values
in the Trader Service when it starts up. The trader policies may be
changed using functions from the CosTrading: :Admin interface.

If a query doesn’t specify a value for a policy, then the appropriate
def_policy value of the trader applies. If the query specifies a
value for a policy, then it applies for the duration of that query,
except where it exceeds the trader’s max_policy value, in which
case the value max policy is used. For example, suppose that in
the trader, def search card is 50, and max search card is 500:

* If the query doesn’t specify a search card, then at most 50
offers will be considered in the initial search.

* If the query specifies “search_card = 100", then 100 offers
will be initially considered.

* If the query specifies “search_card = 600", then, since this
exceeds the trader’'s maximum, at most 500 offers will be
initially considered.

Return policy

The policy exact type match may also be defined in a query. The
value of this policy is a boolean. If it is specified as true, then only
offers that exactly match the specified service type are
considered; super-types are omitted. Otherwise, offers of any
conforming