Orbix 6.3.9

ORBA Programmer’s Reference:
NEVZ!

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/13/17

Contents

P e A . .. XiX

Introduction 1

Interface Repository QUICK REfErencCeoooviiiiiiiiii e 1

DIl and DSI QUICK REfEIENCE ..o i 2

Value Type QUICK REfEIreNCe ...ooeeiiiii e e aaee s 3

About Standard Functions for all Interfaces ..o 3

Y o T 1B ST =T o [T=T o = 5
CORBA OVEIVIEW ..ttt eaaas 7
CORBA::AbstractinterfaceDef Interfaceccoiiiiiinn... 21
CORBA::AliasDef INterfacecccooeiiiiiiiiiii e 23
CORBA: ANY ClaSS. ittt e anaanaas 25
CORBA::ArrayDef INterfaceccooveiiiiiiiiii e 33
CORBA::AttributeDef Interface..........cooiiii e 35
CORBA::ConstantDef INterfacecooiiiiiiiiiiiiii e 37
CORBA::ConstructionPolicy Interfacecccooooeiiiiiiiin... 39
CORBA::Contained INterfaceooiiiiiiiiiiiii i 41
CORBA::Container INterfaceccoooiiiiiiiiiiiii e 45
CORBA::CONEXTE Class .ooiiiiiiiii et et eeee e 61
CORBA::CONtEXTILIST ClasS ...t 65
CORBA::Current INterface ..o e 67
CORBA::CustomMarshal Value Typecccooiiiiiiiiiiiiiiiiiieaannn. 69
CORBA::DatalnputStream Value Typecccooviiiiiiiiiiiiiinnn.. 71
CORBA::DataOutputStream Value Type ... 83
CORBA::DomainManager Interface............ccccovviiiiiiiiinnnnn... 95

Orbix CORBA Programmer’s Reference: Java iii

CORBA::ENUMDET INterfacCe. e 97

CORBA:I:ENVIrONMENT ClasSS ..o 99
CORBA::EXCEPION ClasSS ...ttt et eeaaas 101
CORBA::ExceptionDef Interfacecccooiiiiiiiiiiiiiiiiiinnnnn... 103
CORBA::EXCeptioNLISt ClasS ...cciviiiiiii e e 105
CORBA::FixedDef INnterface........cccooiiiiiiiiiiii i 107

CORBA.InterfaceDefPackage.FulllnterfaceDescription Class109

CORBA: IDLType INterface......covviiiiii i 111
CORBA::InterfaceDef Interface..........ccooiiiiiiiiiiiiiiiiiaanns 113
CORBA::IRODbject INterface.....ccciiiiiiiiiiiiiiiiic e 117
CORBA::ModuleDef Interfacecooooiiiiiiiiiiiiiiiiieens 119
CORBA::NamedValue Classcccoiiiiiiiiiiiii i 121
CORBA::NativeDef Interface ..o 123
CORBA:IINVLIST ClasS ..ottt e 125
CORBA::ODJECt ClasS . ..o et 129
CORBA::OperationDef Interface..........cccoiiiiiiiiiiiiiiiiiinnnnn... 137
CORBA:I:ORB Class ...uiiiiiiii i e 141
CORBA::PoOlicy INterfaceccooviiiiiiiii e 163

Quality of Service FrameworkKoiiiiiii i e aaaes 163

[0 [0y Y01/ =3 e To - 165
CORBA::POlicyCUurreNt ClasScoviiiiiii e 167
CORBA::PolicyManager Classccooiiiiiiiiiiiiiiiiiicc e 169
CORBA::PrimitiveDef Interface ..., 171
CORBA::Repository Interface.........ccoooeviiiiiiiiiiiiiiiieiiiiias 173
CORBA::REQUEST Class ...iiiiiiiieeee ettt enaaanas 179

iv Orbix CORBA Programmer’s Reference: Java

CORBA::SequenceDef Interface........ccooiiiiiiiiiiiiiiiiiiiiiiiia.. 185

CORBA::ServerRequest ClassS.......ccioiiiiiiiiiiiiiii i 187
CORBA::String_Vvar Class ... 191
CORBA::StringDef INterface ..., 193
CORBA::StructDef Interfacec..oooiiiiiiiiiiiiiii i 195
CORBA::TypeCode Classcoiiiiiiiii e 197
CORBA::TypedefDef INnterface.........ccoiiiiiiiiiiiiiiiiiiiiiian, 205
CORBA::UnionDef INterfaceooooiiiiiiiiiiiiiii i 207
CORBA::ValueBase Classcccoiiiiiiiiiiii e 209
CORBA::ValueBoxDef Interfacecoooiiiiiiiiiiiiiiiieen. 211
CORBA::ValueDef INterfacecoooiiiiiii i 213
CORBA::VaAlUEFACTONY ... e 221

CORBA::ValUEFaCtOrY Ty P uieiiiiiit ettt ettt et et et e e e e eaaeeanns 221
CORBA::ValueMemberDef Interface.............cccooviiiiiiiin... 223
CORBA::WString_var Classcccoiiiiiiiiiii i 225
CORBA::WstringDef Interface..........ccoooiiiiiiiiiiiiiiiiiiiee 227
CosEventChannelAdmin Module.............cooiiiiiiiiiiiiiien. 229

CosEventChannelAdmin EXCEPHIONScceeeiiiaeeaeiiiiiiiiiiiieeieeeeeeeeaaaaaaaaenns 229
CosEventChannelAdmin::ConsumerAdmin Interface.......... 231
CosEventChannelAdmin::EventChannel Interface.............. 233
CosEventChannelAdmin::ProxyPullConsumer Interface..... 235
CosEventChannelAdmin::ProxyPullSupplier Interface 237

CosEventChannelAdmin:

CosEventChannelAdmin:

CosEventChannelAdmin:

:ProxyPushConsumer Interface...239
:ProxyPushSupplier Interface...... 241

:SupplierAdmin Interface 243

Orbix CORBA Programmer’s Reference: Java V

CosSEventComm ModUIe... ... e 245

COSEVeNtComMmMm EXCEPLIONS ... e 245
CosEventComm::PullConsumer Interface.......................... 247
CosEventComm::PullSupplier Interfaceccooiiiiis 249
CoskEventComm::PushConsumer Interface........................ 251
CosEventComm::PushSupplier Interface............c.....oooii. 253
CoOSNaMING OVEIVIEWt et eaaaaaaas 255
CosNaming::Bindinglterator Interface.............................. 259
CosNaming::NamingContext Interface..............ccoiiiieeaii. 261
CosNaming::NamingContextExt Interface......................... 271
CosNotification Module ..o 275

COSNOLIfICAtION Data TYPES .ttt 275

QoS and Administrative Constant Declarationsccccviiiiiiiiiiiiiennnn... 276

QOS and AdMIN Data TYPES cuutiiiitiii ettt e e et et e e e e e eaaneeaaanes 277

QOS and AdMIN EXCEPLIONS ..ottt et et e e e e aeeeeanees 279
CosNotification::AdminPropertiesAdmin Interface............ 281
CosNotification::QoSAdmin Interface............ccoiiiiiiinnaa... 283
CosNotifyChannelAdmin Module ..., 285

CosNotifyChannelAdmin Data TYPES ..uueeiiieieiiiiie e e eaaeeeaeeeaaaeeeeannes 285

CosNotifyChannelAdmin EXCEPLIONSoiineiiiiiiiii it eaees 288
CosNotifyChannelAdmin::ConsumerAdmin Interface 291
CosNotifyChannelAdmin::EventChannel Interface............. 297

CosNotifyChannelAdmin::EventChannelFactory Interface. 303
CosNotifyChannelAdmin::ProxyConsumer Interface 305
CosNotifyChannelAdmin::ProxyPullConsumer Interface ... 307
CosNotifyChannelAdmin::ProxyPullSupplier Interface 309
CosNotifyChannelAdmin::ProxyPushConsumer Interface.. 311

CosNotifyChannelAdmin::ProxyPushSupplier Interface 313

Vi Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

321

CosNotifyChannelAdmin:

323

CosNotifyChannelAdmin:
CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

331

CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

335

CosNotifyChannelAdmin:

337

CosNotifyChannelAdmin::

CosNotifyComm Module
CosNotifyComm Exceptions

CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:

CosNotifyComm:

:ProxySupplier Interface

:SequenceProxyPullConsumer Interface

:SequenceProxyPushConsumer Interface

:SequenceProxyPullSupplier Interface325
:SequenceProxyPushSupplier Interface327

:StructuredProxyPullConsumer Interface

:StructuredProxyPullSupplier Interface333

:StructuredProxyPushConsumer Interface

:StructuredProxyPushSupplier Interface

SupplierAdmin Interface............ 341
... 347
... 347

:NotifyPublish Interface 349
:NotifySubscribe Interface....................... 351
:PullConsumer Interface.......................... 353
:PullSupplier Interfacec.coovvveeeea. .. 355
:PushConsumer Interface 357
:PushSupplier Interface........................... 359
:SequencePullConsumer Interface........... 361
:SequencePullSupplier Interface 363
:SequencePushConsumer Interface......... 365
:SequencePushSupplier Interface............ 367

Orbix CORBA Programmer’s Reference: Java Vii

CosNotifyComm::StructuredPullConsumer Interface 369

CosNotifyComm::StructuredPullSupplier Interface 371
CosNotifyComm::StructuredPushConsumer Interface....... 373
CosNotifyComm::StructuredPushSupplier Interface 375
CosNotifyFilter Module.........c.cooiiiiiii e 377

COSNOLITYFIItEr Data Ty PES tuuuiiiiiiiii et ettt et e e e eaaeeeaanes 377

COSNOTLITYFIter EXCEPTIONS ..ttt et e e e et e e aae e eaneeas 379
CosNotifyFilter::Filter Interface ..., 381
CosNotifyFilter::FilterAdmin Interface 387
CosNotifyFilter::FilterFactory Interfacecccccevviiiia.. 389
CosNotifyFilter::MappingFilter Interface........................... 391
CosTrading Module ... e 399

COoSTrading Data TYPES .ottt et 399

(@015 = To [T To [l S0t Ce7 =T o 1] o 1= 403
CosTrading::Admin Interface ... 407
CosTrading::ImportAttributes Interface 413
CosTrading::Link Interfacecoooiiii i 415

CosTrading: :LiNK EXCEPLIONS ...ttt et e eaanes 416
CosTrading::LinkAttributes Interface............cooocevviiiiiia.. 421
CosTrading::Lookup INnterface.........cccoiiiiiiiiiiiiiiiiiiiiiaaaaannn. 423
CosTrading::Offerldlterator Interfacecccoceevvvviiiina.. 429
CosTrading::Offerlterator Interface.............cooiiiiiiiiiia.. 431
CosTrading::Proxy Interfaceccooiiiiiiiiiiiiiiiiiiiieeeenn 433
CosTrading::Register Interface.......ccccovvviiiiiiiiiiiiiiiiiiaanns 437
CosTrading::SupportAttributes Interface..................co.o... 443
CosTrading::TraderComponents Interface 445
CosTrading::Dynamic Module..........ccooiiiiiiiiiiiiiiiii i, 447

viii Orbix CORBA Programmer’s Reference: Java

CosTradingDynamic::DynamicPropEval Interface.............. 449

CosTradingRepos Module.........ooii e 451
CosTradingRepos::ServiceTypeRepository Interface 453
CoOSTranNSaCtioONS OVEIVIEW. ...t iae e aieeeaaaaeenns 461

OVENVIEW Of ClasSSeS ...nnitiie et 461

General EXCEPTIONS ...t 462

General Data Ty PO -ttt e 464
CosTransactions::Control ClassS......ccccovviiiiiiiiiii i 469
CosTransactions::Coordinator Classccoovvviiiiiiiiiiiiiannn.. 471
CosTransactions::CUurreNt Classcooiiiiiiiiiiiii it 481
CosTransactions::RecoveryCoordinator Class 487
CosTransactions::Resource Class......ccoovviiiiiiiiiiiiiiiiciiiiaeas 489
CosTransactions::SubtransactionAwareResource Class..... 491
CosTransactions::Synchronization Class..............cccovviieee.. 493
CosTransactions::Terminator ClasS........ccovviiiiiiiiiiiiiiiiineann. 495
CosTransactions::TransactionalObject Class...................... 497
CosTransactions::TransactionFactory Class 499
CosTypedEventChannelAdmin Module ..., 501

CosTypedEventChannelAdmin EXCEPtiONScovieeiieiiiiiii i eeeeeeens 501

CosTypedEventChannelAdmin Data TYPES . .couuieiieiii i eaaeeae e 501

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface503
(O] TS18] o] o Yol f=To I @ o 1= o=\ o [] o 1N 504

CosTypedEventChannelAdmin::TypedEventChannel Interface505

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface

507
UNSupported OPeratioOnNScoieoreii i et e e e e eaeeans 507

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface509
Unsupported Operationst 510

CosTypedEventComm Modulecoooiiiiiiiiiiiiii i 511

Orbix CORBA Programmer’s Reference: Java iX

CosTypedEventComm::TypedPushConsumer Interface 513

CSI OVEIVIBW ..t e e aas 515
CSHIOP OVEINVIEW ..t eeas 519
DsEventLogAdmin Module...........ccoii i 523
DsEventLogAdmin::EventLog Interface.............ccoccvviiinen.. 525
DsEventLogAdmin::EventLogFactory Interface 527
DsLogAdmin Module 529

DSLOGAAMIN EXCEPLIONSuvvviiiiiiiiiiiiieeeaeeeeaeeaee e e e e e e eeeeeeeaeaaanns 529

DSLOGAAMIN CONSTANTS -...tvveviiiiiiiiieeeeeaeaaaeeaaaaasaeaaaaaaannensnssseeeeeeeeeaeaaens 531

DSLOGAAMIN DATALYPES -...vvvvveeeeiiiiireieeaaaaaaaaaaaasaeaaaaaaannnsnnssssseeeeeeeeeeaeaens 532
DsLogAdmin::BasicLog Interface ..., 539
DsLogAdmin::BasicLogFactory Interface 541
DsLogAdmin::Iterator Interfacecooiiiiiiiiiiiiiiinn.... 543
DsLogAdmin::Log INnterfaceccooooiiiiiiiiiiiiii i 545
DsLogAdmin::LogMgr Interface ..., 557
DsLogNotification Module 559
DsNotifyLogAdmin Module....... ... 563
DsNotifyLogAdmin::NotifyLog Interface ..., 565
DsNotifyLogAdmin::NotifyLogFactory Interface................ 567
Dynamic ModUIe ... 569
DyNamiCANY OVEINVIEWoiiiiiiiiiii e taaeeaaeaaeaeaaaaaaaann 571
DynamicAny::DYyNANY Class ..o 573
DynamicAny::DynAnyFactory Class........cccoeiiiiiiiiiiiiiinnn... 599
DynamicAny::DynArray ClasS......cccooiiiiiiiiiiiiiiiiiiiiiiae, 603
DynamicAny::DYyNENUM ClassS......ccceviiiiiiiiiiiiii e 607

X Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynFixed ClassS........ccoiiiiiiiiiiiiiiiiiiiiiieeeees 609

DynamicAny::DynSequence ClassSccovviiiiiiiiiiiiiiiiieanns 611
DynamicAny::DynNStruct Class.........c.ooiiiiiiiiii i 615
DynamicAny::DynUnNIioNn ClassScooiiiiiiiiiiiiiiiiiiiiiieaees 619
DynamicAny::DynValue Classccooiiiiiiiiiiii i 623
GSSUP OVEIVIEW e aeeee 627
The IT_Buffer Module........ooo e 629
[=10 1 (=]] o] = To [630
IT _Buffer:i:Segment.. ... e 632
1T _BUuffer: BU er. ... e 633
IT_Buffer::BufferManagercooeiiiiiiiiiiiii i 637
IT _Certificate OVEeIrVIEW. ... eeeaeaen 639
IT _Certificate::AVA INterfaceccoooiiiiiiiiiiiieeeeeenn 641
IT_Certificate::AVAList Interface...........cccooiiiiiiiiiiiiiinn. .. 643
IT_Certificate::Certificate Interfacecocoviiiiiiiiina... 647
IT_Certificate::Extension Interface ..., 649
IT_Certificate::ExtensionList Interface.............................. 651
IT_Certificate::X509Cert Interfaceccccvvviiiiiiiiiiinann.n. 655
IT_Certificate::X509CertificateFactory Interface............... 657
IT _CoNfig OVEINVIEW ...ttt eee e 659
IT_Config::Configuration Interface..............ccccoiiiiiiiian... 661
IT _Config::Listener Interfacecoovviiiiiiiiiiieeeeenn. 667
IT _CORBA OVEINVIEW ...ttt et aeaaeeeaen 671
IT_CORBA::RefCountedLocalObject Class............cc.coceennin. 673

Orbix CORBA Programmer’s Reference: Java Xi

IT_CORBA::RefCountedLocalObjectNC Class..........c.ccceee... 675

IT_CORBA::WellKnownAddressingPolicy Class 677
The IT_CORBASEC Module ... 679
IT_CORBASEC::ExtendedReceivedCredentials................... 682
IT_CosTransactions Moduleo 685
IT_CosTransactions::Current Classccooeiiiiiiiiiiiiiiiinnn... 687
TGS OVEIVIBW ... eeaaneaaeas 689
IT_CSI::AttributeServicePolicy Interface..............cc.oooee... 695
IT_CSIl::AuthenticateGSSUPCredentials Interface 699
IT_CSIl::AuthenticationServicePolicy Interface................. 703
IT_CSIl::CSICredentials Interfaceccooeeviiiiiiiiiiiinnn... 707
IT_CSI::CSICurrentInterface ...t 709
IT_CSI::CSICurrent2 Interface ... 711
IT_CSIl::CSIReceivedCredentials Interface 715
IT_EventChannelAdmin Module ... 719

IT_EventChannelAdmin Data TYPeS .uuuiiiii it eaaaes 719

IT_EventChannelAdmin EXCEPHIONSuuvvvurirerreiiiiiieeeaeaaaaaaaaaaaaaaeaaaaanns 719

IT_EventChannelAdmin::EventChannelFactory Interface.. 721

IT_ FPS MOAUIE ..o, 723
IT_FPS::InterdictionPolicy Interfacecccccovviiiiiiiina... 725
The IT_GIOP Module......cooi e 727
Interface IT_GIOP::ClientVersionConstraintsPolicy 728
Interface IT_GIOP::ClientCodeSetConstraintsPolicy 729
Interface IT_GIOP::CUIrreNt ... 730
Interface IT_GIOP::CUrrent2cooiiiiiiiiiiiiiiiieeees 733

Xii Orbix CORBA Programmer’s Reference: Java

IT _LoadBalancing OVerVIEWccoiiiiiiiiiii e eeeeaeaeaaeenn 737

IT_LoadBalancing::ObjectGroup Interface 741
IT_LoadBalancing::ObjectGroupFactory Interface............. 747
IT _LOgQiNg OVeIVIEW ...uuniiiiiiii e aeeeans 751
IT_Logging::EventLog Interface..........ccooiiiiiiiiiiiiiiiiiinanns 757
IT_Logging::LogStream Interfaceoooiiiiiiiiiiiiannn, 761
IT _MessagingAdmin Module...............oooiiiiii e 763
IT_MessagingAdmin::Manager Interface...................cooo.... 765
IT_MessagingBridge Module...... ... 767
IT _MessagingBridge::Endpoint Interface 771
IT_MessagingBridge::SinkEndpoint Interface.................... 773
IT_MessagingBridge::SourceEndpoint Interface................ 774
IT _MessagingBridge::EndpointAdmin Interface 775
IT_MessagingBridgeAdmin Module..............ccooiiiiiiiiiea.. .. 779
IT_MessagingBridgeAdmin::Bridge Interface.................... 781
IT _MessagingBridgeAdmin::BridgeAdmin Interface.......... 783
IT_NotifyBridge Module.........ccooiiiiiiiiiii e 785
IT_NotifyBridge::SinkEndpoint Interface........................... 786
The IT_NamedKey Module....... ..o 787
IT_NamedKey::NamedKeyRegistry......ccooevviviiiiiiiiiiiinnnnn... 788
IT_Naming Module ... e 793
IT_Naming::1T_NamingContextExt Interface 795
IT_NotifyChannelAdmin Module ..., 797

IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface799

Orbix CORBA Programmer’s Reference: Java Xiii

IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier
=] = Lo 801

IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier

INEerTacCe .. 803
IT_NotifyComm Module ... e 805
IT_NotifyComm::GroupNotifyPublish Interface 807
IT_NotifyComm::GroupPushConsumer Interface............... 809

IT_NotifyComm::GroupSequencePushConsumer Interface811

IT_NotifyComm::GroupStructuredPushConsumer Interface813

IT_NotifyLogAdmin Module ... 815
IT_NotifyLogAdmin::NotifyLog Interface.......................... 817
IT_NotifyLogAdmin::NotifyLogFactory Interface 819
The IT_PlainTextKey Module ... 821

N I = U1 T IS0 =Y/ 821

IT_PlainTextKey: tFOrwardero e aeeas 821
IT_PortableServer OVerVIEW........coviiiiiiiiiiiiii i 823

IT_PortableServer::DispatchWorkQueuePolicy Interface.. 825

IT_PortableServer::ObjectDeactivationPolicy Class........... 827
IT_PortableServer::PersistenceModePolicy Class 829
IT _TLS OVEIVIEW ..o eeennaneas 831
IT_TLS::CertValidator Interface............coooiiiiiiiiiiiiiiian... 835
IT_TLS API OVEIVIEW ..ot 837
IT_TLS_API::CertConstraintsPolicy Interface................... 841
IT_TLS_API::CertValidatorPolicy Interface....................... 843
IT_TLS API::MaxChainLengthPolicy Interface.................. 845
IT_TLS_API::SessionCachingPolicy Interface 847

Xiv Orbix CORBA Programmer’s Reference: Java

IT_TLS APIL:TLS INterface.....cooiiiiiiiiii e 849

IT_TLS _API::TLSCredentials Interfaceccccvee.... 851
IT_TLS_API::TLSReceivedCredentials Interface 853
IT_TLS API:.:TLSTargetCredentials Interface.................... 855
IT_TLS_API::TrustedCAListPolicy Interface 857
IT_TypedEventChannelAdmin Module ...l 859

IT_TypedEventChannelAdmin Data TYPES ...couiiiiiiiiiii i eaeea 859

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface
861

IT_WorkQueue Module........coo e 863
IT_WorkQueue::AutomaticWworkQueue Interface 865

IT_WorkQueue::AutomaticWorkQueueFactory Interface...867

IT_WorkQueue::ManualWorkQueue Interface................... 869
IT_WorkQueue::ManualWorkQueueFactory Interface 871
IT_WorkQueue::Workltem Interface...........ccoooiiiiiiiinn, 873
IT_WorkQueue::WorkQueue Interfacecccoevvveeea.... 875
IT_WorkQueue::WorkQueuePolicy Interface..................... 877
The IT_ZIOP ModUle...... e 879
N A 1O] @ g g1] (/=TT P 880
IT_ZIOP::COMPIreSSOIrFaCIOrY ... e e e aeee e 881
IT_ZIOP::ComMPresSSiONMEaNAJETcinuiiieie e r e e eanens 883
IT_ZIOP::CompressioNCOMPONENTo eeee e 885
IT_ZIOP::CompressionComponentFactorycooooiiiiiiiiiiiiiiiiiiaieaaee, 885
IT_ZIOP::CompressionEnablingPoliCyoooiiii e 885
IT_ZIOP::CompressorldPOlICY ... 886
MeSSAgING OVEINVIEW ... e e aaas 887
Messaging::ExceptionHolder Value Typeccovviiiiiiniinnn.. 891
Messaging::RebindPolicy Class.........ccoiiiiii e 895
Messaging::ReplyHandler Base Class...........cccooiiiiiiiienis 897

Orbix CORBA Programmer’s Reference: Java XV

Messaging::SyncScopePolicy Class
OrbixEventsAdmin Module
OrbixEventsAdmin::ChannelManagerccoooeeivviiiiiina..
Portablelnterceptor Module.........ccoiiiii i,
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:

Portablelnterceptor:

:ClientRequestiInfo Interface

:ClientRequestinterceptor Interface. 915

:Current Interface ..., 919
Interceptor Interface 921
IORINfo Interface...........cc.ooooiiinnet. 923
IORINnterceptor Interface 925
:ORBInitializer Interface 927
:ORBInitInfo Interface 929
:PolicyFactory Interface 935
:Requestinfo Interface..................... 937
:ServerRequestinfo Interface........... 943

:ServerRequestinterceptor Interface 947

SECUNITY OVEIVIEW. ...ttt ettt e aaaanas 951
SecurityLevell OVEerVIEWcooiiiiiiii i 959
SecurityLevell::Current Interface..............ccooiiiiiiiiiiiinnnn... 961
SecurityLevel2 OVErVIEWcoiiiiiiiii e e 963
SecurityLevel2::Credentials Interface.............cocoviiiiiiiis 965
SecurityLevel2::Current Interface..............cccooiiiiiiiiiiiinnnn... 969
SecurityLevel2::EstablishTrustPolicy Interface................. 971
SecurityLevel2::InvocationCredentialsPolicy Interface..... 973

XVi Orbix CORBA Programmer’s Reference: Java

SecuritylLevel2:
SecuritylLevel2:
SecuritylLevel2:
SecuritylLevel2:
SecuritylLevel2:

SecuritylLevel2:

:MechanismPolicy Interface 975

:PrincipalAuthenticator Interface.............. 977
:QOPPolicy Interfacec.ooooiiiiiiiiiiin... 981
:ReceivedCredentials Interface 983
:SecurityManager Interface....................... 985
:TargetCredentials Interface 989

... 995

Orbix CORBA Programmer’s Reference: Java Xvii

Xviii Orbix CORBA Programmer’s Reference: Java

Audience

Preface

Orbix is a software environment for building and integrating
distributed object-oriented applications. Orbix is a full
implementation of the Common Object Request Broker
Architecture (CORBA) from the Object Management Group (OMG).
Orbix fully supports CORBA version 2.3.

This document is based on the CORBA 2.3 standard with some
additional features and Orbix-specific enhancements.

The reader is expected to understand the fundamentals of writing
a distributed application with Orbix. Familiarity with Java is
required.

Organization of this Reference

This reference presents core-product modules in alphabetical
order, disregarding IT_ prefixes in order to keep together related
OMG-compliant and Orbix-proprietary modules. For example,
modules corBa and IT CORBA are listed in sequence.

Modules that are specific to a service are also grouped together
under the service’s name—for example, modules
CosPersistentState, IT PSS, and IT PSS DB are listed under
Persistent State Service.

Related Documentation

This document is part of a set that comes with the Orbix product.
Other books in this set include:

* Application Server Platform Administrator’'s Guide
* CORBA Programmer’s Guide
* CORBA Code Generation Toolkit Guide

Document Conventions

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, methods, variables, and
data structures. For example, text might refer to
the CORBA: :Object class.

Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Orbix CORBA Programmer’s Reference: Java Xix

Italic

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

This guide may use the following keying conventions:

No prompt

%

[]

{}

xx Orbix CORBA Programmer’s Reference: Java

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root
privileges.

The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and
syntax descriptions.

Braces enclose a list from which you must choose
an item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

* Your computer make and model.

®* Your operating system version number and details of any
networking software you are using.

* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

®* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Orbix CORBA Programmer’s Reference: Java xxi

http://www.microfocus.com
http://www.microfocus.com

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

* https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsl etters/infocus/newsl etter-subscriptio
n.asp

xxii Orbix CORBA Programmer’s Reference: Java

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Introduction

This describes all of the standard programmer’s APl for CORBA
and Orbix. This introduction contains the following topics:

* “Interface Repository Quick Reference”
e “DIl and DSI Quick Reference”

* “Value Type Quick Reference”

* “About Sequences”

The rest of the CORBA Programmer’s Reference contains the fol-
lowing modules and appendix:

CORBA Portablelnterceptor
CosNaming PortableServer
CosTransactions “System Exceptions”
DynamicAny

IT Config

IT CORBA

IT Logging

IT PortableServer

Interface Repository Quick Reference

Table 1:

The interface repository (IFR) is the component of Orbix that pro-
vides persistent storage of IDL definitions. Programs use the fol-
lowing API to query the IFR at runtime to obtain information about

IDL definitions:

Interface Repository API

CORBA Structures

CORBA Enumerated Types

AttributeDescription
ConstantDescription
ExceptionDescription
Initializer
InterfaceDescription
ModuleDescription
OperationDescription
ParameterDescription
StructMember
TypeDescription
UnionMember
ValueDescription
ValueMember

AttributeMode
DefinitionKind
OperationMode
ParameterMode
PrimitiveKind
TCKind

Orbix CORBA Programmer’s Reference: Java 1

Table 1 Interface Repository API

CORBA Classes and Interfaces Typecode Methods in CORBA::ORB
AliasDef create abstract interface tc()
ArrayDef create alias tc()
AttributeDef create array tc()
ConstantDef create enum tc()
Contained create exception tc()
Container create fixed tc()
EnumDef create interface tc()
ExceptionDef create native tc()
Environment create recursive tc()
FixedDef create sequence tc()
IDLType create string tc()
InterfaceDef create struct tc()
IRObject create union tc()
ModuleDef create value box tc()
NativeDef create value tc()
OperationDef create wstring tc()
PrimitiveDef
Repository
SequenceDef
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueMemberDef
WstringDef

D11 and DSI Quick Reference

The client-side dynamic invocation interface (DII) provides for the
dynamic creation and invocation of requests for objects. The
server-side counterpart to the DIl is the dynamic Skeleton inter-
face (DSI) which dynamically handles object invocations. This
dynamic system uses the following data structures, interfaces,
and classes:

Table 2: DIl and DS API
D1l Classes DSI Classes
CORBA: : ExceptionList CORBA: : ServerRequest
CORBA: :Request PortableServer: :DynamicImplementation

CORBA: : TypeCode

Key Data Types DIlI1-Related Methods
CORBA: : Any CORBA: :Object:: create request ()
CORBA: :Flags CORBA: :ORB: :create list ()

CORBA: :NamedValue CORBA: :ORB: :create operation list ()
CORBA: :NVList CORBA: :ORB: :get default context ()

2 Orbix CORBA Programmer’s Reference: Java

Value Type Quick Reference

A value type is the mechanism by which objects can be passed by
value in CORBA operations. Value types use the following data
structures, methods, and value types from the CORBA module:

Types
ValueFactory

Value Types and Classes

CustomMarshal
DatalInputStream
DataOutputStream
ValueFactory
ValueDef

About Standard Functions for all Interfaces

Parameters

Note:

Parameters

Note:

Every IDL interface also has generated helper functions:

_duplicate()

inline static crass ptr duplicate(
CLASS ptr p

)i

This function returns a duplicate object reference and increments
the reference count of the object. Use this function to create a copy
of an object reference.

P The current object reference to duplicate.

This is a standard function generated for all interfaces.

_narrow()
static CLASS ptr narrow(
CORBA: :Object ptr obj
)i
This function returns a new object reference given an existing
reference. Use this function to narrow an object reference.

obj A reference to an object. The function returns a nil
object reference if this parameter is a nil object refer-
ence.

This is a standard function generated for all interfaces.

When you have IDL interfaces that inherit from each other, you
often need to convert a ref nerence of one type to a related type.
For example suppose you have the following interfaces:

// IDL
interface Base { ... };

Orbix CORBA Programmer’s Reference: Java 3

Exceptions

See Also

Note:

Parameters

Note:

See Also

interface Derived : Base { ... };

Now suppose you have a reference of type Base but it refers to an
object which is actually of type Derived. Converting the Base refer-
ence to a Derived reference is called narrowing because you are con-
verting from a more general type to a more specific, or narrow,
type. Conversely converting a Derived reference to a Base refer-
ence is called widening. Note that narrowed or widened references
still refer to the same object, they are simply different views of that
object.

Always check the results of narrow() with CORBA::is nil(). The
_narrow () function checks whether the reference actually refers to
an object of the type you are narrowing to. If not, narrow()
returns a nil reference. The _narrow() function does an implicit
duplicate, so you are responsible for releasing both the original
reference and the new reference returned. The easiest way to do
this is by assigning both to var variables.

The narrow() function can actually both narrow and widen refer-

ences. It takes a CORBA: :Object ptr parameter and tests whether

the requested interface is compatible with the actual most-derived
interface implemented by the object, regardless of the inheritance
relationships involved.

A standard system exception can be raised in some unusual cases
where a remote call occurs to the object being narrowed. However,
normally narrow() is a local function call and it can figure out the
conversion based on information in the IDL compiler generated stub
code.

unchecked narrow ()

_nil()
inline static crass ptr nil();

Returns a nil object reference to the object.

This is a standard function generated for all interfaces.

_unchecked_narrow()
static crLAss ptr unchecked narrow (

CORBA: :Object ptr obj
)i
Returns a new object reference to the object given an existing ref-
erence. However, unlike narrow (), this function does not verify
that the actual type of the parameter at runtime can be widened
to the requested interface’s type.

obj A reference to an object.

This is a standard function generated for all interfaces.

narrow ()

4 Orbix CORBA Programmer’s Reference: Java

About Sequences

An IDL sequence maps to a class of the same name. For example,
an IDL sequence named TypeSeqg Which is made up of a sequence of
Type IDL data types, has the class mypeSeq implemented.

// IDL
typedef sequence<Type> TypeSedq;

Orbix CORBA Programmer’s Reference: Java 5

6 Orbix CORBA Programmer’s Reference: Java

CORBA Overview

The CORBA namespace implements the IDL CORBA module. Addi-
tional introductory chapters describe the common methods and
definitions found in the scope of the CORBA namespace.

* “Common CORBA Data Types”

All classes or interfaces defined in the CORBA namespace are
described in the following alphabetically ordered chapters:

AliasDef

Any
ArrayDef
AttributeDef
ConstantDef
Contained
Container
Current
CustomMarshal
DataInputStream
DataOutputStream
DomainManager
EnumDef
Environment

ExceptionDef
ExceptionList

FixedDef
IDLType
InterfaceDef
IRObject
ModuleDef
NamedValue
NativeDef
NVList

Object
OperationDef
ORB

Policy
PolicyCurrent
PolicyManager
PrimitiveDef

Repository
Request
SequenceDef
ServerRequest
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueFactory
ValueMemberDef
WstringDef

Some standard system exceptions are also defined in the CORBA
module. However, these exceptions are described in “System

Exceptions”.

Common CORBA Data Types

This chapter contains details of all common CORBA data types.
The following alphabetically ordered list contains a link to the
details of each data type:

AttributeDescription InvalidPolicies SetOverrideType
AttributeMode ModuleDescription StructMember
ConstantDescription OperationDescription TCKind
DefinitionKind OperationMode TypeDescription
ExceptionDescription ParameterDescription UnionMember
Initializer ParameterMode ValueDescription
InterfaceDescription PolicyError ValueMember

PolicyErrorCode

PolicyList

PolicyType

PrimitiveKind

RepositoryId

RepositoryIdSeg

Orbix CORBA Programmer’s Reference: Java 7

CORBA::AttributeDescription Structure

// IDL

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode type;
AttributeMode mode;

}i

The description of an interface attribute in the interface repository.

name The name of the attribute.
id The identifier of the attribute.
defined in The identifier of the interface in which the attribute is
defined.
version The version of the attribute.
type The data type of the attribute.
mode The mode of the attribute.
See Also CORBA::AttributeDef

CORBA::AttributeMode Enumeration

// IDL
enum AttributeMode {ATTR NORMAL, ATTR READONLY};

The mode of an attribute in the interface repository.

ATTR NORMAL Mode is read and write.
ATTR READONLY Mode is read-only.

See Also CORBA::AttributeDef

CORBA::ConstantDescription Structure

// IDL

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode type;
any value;

}i

The description of a constant in the interface repository.

name The name of the constant.

id The identifier of the constant.

defined in The identifier of the interface in which the constant
is defined.

version The version of the constant.

8 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

type The data type of the constant.
value The value of the constant.

CORBA: : ConstantDef

CORBA::DefinitionKind Enumeration

// IDL
enum DefinitionKind {

dk none, dk all,

dk Attribute, dk Constant, dk Exception, dk Interface,
dk Module, dk Operation, dk Typedef,

dk Alias, dk Struct, dk Union, dk Enum,

dk Primitive, dk String, dk Sequence, dk Array,

dk Repository,

dk Wstring, dk Fixed,

dk Value, dk ValueBox, dk ValueMember,

dk Native

}i

Identifies the type of an interface repository object.

Each interface repository object has an attribute

(CORBA: : IRObject: :def kind) of the type DefinitionKind that
records the kind of the IFR object. For example, the def kind attri-
bute of an InterfaceDef object is dk_interface. The enumeration
constants dk_none and dk_all have special meanings when search-
ing for an object in a repository.

CORBA::IRObject:idef kind
CORBA: : Contained
CORBA: :Container

CORBA::ExceptionDescription

// Java

public ExceptionDescription (
java.lang.String name,
java.lang.String id,
java.lang.String defined in,
java.lang.String version,
org.omg.CORBA.TypeCode type

)

The description of an exception in the interface repository.

name The name of the exception.

id The identifier of the exception.

defined in The identifier of the interface in which the exception
is defined.

version The version of the exception.

type The data type of the exception.

Orbix CORBA Programmer’s Reference: Java 9

CORBA::Initializer Structure

// IDL
struct Initializer {
StructMemberSeq members;
Identifier name;
}i
// Java
package org.omg.CORBA;
public final class Initializer
implements org.omg.CORBA.portable.IDLEntity {
public org.omg.CORBA.StructMember [] members;
public Initializer() {}
public Initializer(org.omg.CORBA.StructMember[] members)
{ this.members = members; }

}

An initializer structure for a sequence in the interface repository.

members The sequence of structure members.

CORBA::InterfaceDescription Structure

// IDL

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
RepositoryIdSeq base interfaces;
boolean is abstract;

}i

// Java
package org.omg.CORBA;

public final class InterfaceDescription
implements org.omg.CORBA.portable.IDLEntity
{

public java.lang.String name;

public java.lang.String id;

public java.lang.String defined in;

public java.lang.String version;

public java.lang.String[] base interfaces;

public boolean is abstract;

public InterfaceDescription() {}

public InterfaceDescription (
java.lang.String name,
java.lang.String id,
java.lang.String defined in,
java.lang.String version,
java.lang.String[] base interfaces,
boolean is abstract)

A description of an interface in the interface repository. This
structure is returned by the inherited describe () method in the
InterfaceDef interface. The structure members consist of the fol-
lowing:

name The name of the interface.

10 Orbix CORBA Programmer’s Reference: Java

See Also

id The identifier of the interface.

defined in The identifier of where the interface is defined.
version The version of the interface.
base interfaces The sequence of base interfaces from which

this interface is derived.

is abstract A true value if the interface is an abstract one,
a false value otherwise.

CORBA: : InterfaceDef : :describe ()

CORBA::InvalidPolicies Exception

// IDL
exception InvalidPolicies {

sequence <unsigned short> indices;
}i

// Java

package org.omg.CORBA;

public final class InvalidPolicies
extends org.omg.CORBA.UserException

{
public short[] indices;
public InvalidPolicies()
{
super (InvalidPoliciesHelper.id()) ;
}
public InvalidPolicies(short[] indices)
{
super (InvalidPoliciesHelper.id()) ;
this.indices = indices;
}
public InvalidPolicies(String reason, short[] indices)
{
super (InvalidPoliciesHelper.id() + " " + reason);
this.indices = indices;
}
1

This exception is thrown by operations that are passed a bad policy.
The indicated policies, although valid in some circumstances, are
not valid in conjunction with other policies requested or already
overridden at this scope.

CORBA::ModuleDescription Structure

// IDL

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryIld defined in;
VersionSpec version;

}i

// Java

Orbix CORBA Programmer’s Reference: Java 11

package org.omg.CORBA;

public final

class ModuleDescription

implements org.omg.CORBA.portable.IDLEntity

{

public java.lang.String name;
public java.lang.String id;

public java.lang.String defined in;
public java.lang.String version;

public ModuleDescription() {}
public ModuleDescription (

java.
java.
java.
java.

this.
this.
this.
this.

}

lang.String name,
lang.String id,
lang.String defined in,
lang.String version

name = name;
id = id;

defined in = defined in;
version = version;

The description of an IDL module in the interface repository. The
structure members consist of the following:

name
id
defined in

version

The name of the module.

The identifier of the module.

The identifier of where the module is defined.
The version of the module.

See Also CORBA: :ModuleDef

CORBA::OperationDescription Structure

// IDL

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode

result;

OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

}i

This structure describes an IDL operation in the interface repository.
The structure members consist of the following:

name
id
defined in

version

12 Orbix CORBA Programmer’s Reference: Java

The name of the IDL operation.

The identifier of the IDL operation.

The identifier of where the IDL operation is defined.
The version of the IDL operation.

result The TypeCode of the result returned by the defined
IDL operation.

mode Specifies whether the IDL operation’s mode is nor-
mal (OP_NORMAL) or one-way (OP ONEWAY).

contexts The sequence of context identifiers specified in the
context clause of the IDL operation.

parameters The sequence of structures that give details of each
parameter of the IDL operation.

exceptions The sequence of structures containing details of
exceptions specified in the raises clause of the IDL
operation.

CORBA::OperationMode Enumeration

enum OperationMode {OP NORMAL, OP ONEWAY};

The mode of an IDL operation in the interface repository. An
operation’s mode indicates its invocation semantics.

OP_NORMAL The IDL operation’s invocation mode is normal.

OP_ONEWAY The IDL operation’s invocation mode is oneway which
means the operation is invoked only once with no
guarantee that the call is delivered.

CORBA::ORBIid Type

// IDL
typedef string ORBid;

The name that identifies an ORB. OrRBid strings uniquely identify
each ORB used within the same address space in a multi-ORB
application. orBid strings (except the empty string) are not man-
aged by the OMG but are allocated by ORB administrators who must
ensure that the names are unambiguous.

CORBA::ParameterDescription Structure

// IDL
struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type def;
ParameterMode mode;
}i
This structure describes an IDL operation’s parameter in the inter-
face repository. The structure members consist of the following:

name The name of the parameter.

type The TypeCode of the parameter.

type def Identifies the definition of the type for the parame-
ter.

Orbix CORBA Programmer’s Reference: Java 13

mode Specifies whether the parameter is an in input, out-
put, or input and output parameter.

CORBA::ParameterMode Enumeration

enum ParameterMode {PARAM IN, PARAM OUT, PARAM INOUT};
The mode of an IDL operation’s parameter in the interface reposi-

tory.

PARAM IN The parameter is passed as input only.

PARAM OUT The parameter is passed as output only.

PARAM INOUT The parameter is passed as both input and output.

CORBA::PolicyError Exception

// IDL
exception PolicyError {

PolicyErrorCode reason;
}i

The policyError exception is thrown to indicate problems with
parameter values passed to ORB: :create policy (). Possible reasons
are described in the pPolicyErrorCode.

See Also CORBA: :ORB: :create policy()
CORBA: : PolicyErrorCode

CORBA::PolicyErrorCode Type

typedef short PolicyErrorCode;

A value representing an error when creating a new policy. The
following constants are defined to represent the reasons a request
to create a policy might be invalid:

Table 3: PolicyErrorCode Constants

Constant Explanation

BAD POLICY The requested policy is not under-
stood by the ORB.

UNSUPPORTED POLICY The requested policy is understood
to be valid by the ORB, but is not
currently supported.

BAD POLICY TYPE The type of the value requested for
the policy is not valid for that
PolicyType.

BAD POLICY VALUE The value requested for the policy is

of a valid type but is not within the
valid range for that type.

14 Orbix CORBA Programmer’s Reference: Java

Table 3: PolicyErrorCode Constants

Constant Explanation

UNSUPPORTED POLICY VALUE The value requested for the policy is
of a valid type and within the valid
range for that type, but this valid
value is not currently supported.

See Also CORBA:I:ORB::create policy()

CORBA::PolicyList Sequence

A list of policy objects. Policies affect an ORB’s behavior.

See Also CORBA::Policy
CORBA: :Object: :set policy overrides()
PortableServer: :POA: : POA create POA()
“About Sequences”

CORBA::PolicyType Type
Defines the type of policy object.

The CORBA module defines the following constant PolicyType:

// IDL
const PolicyType SecConstruction = 11;

Other valid constant values for a PolicyType are described with the
definition of the corresponding policy object. There are standard
OMG values and Orbix-specific values.

See Also CORBA::Policy
CORBA: : PolicyTypeSeq
CORBA: :ORB: :create policy ()
CORBA: :Object:: get policy ()
CORBA: :DomainManager: :get domain policy ()
// IDL
typedef sequence<PolicyType> PolicyTypeSeq;

A sequence of PolicyType data types.

See Also CORBA::Object::get _policy overrides()
CORBA: : PolicyManager: :get policy overrides ()

CORBA::PrimitiveKind Enumeration

// IDL
enum PrimitiveKind {

pk null, pk void, pk short, pk long, pk ushort, pk ulong,
pk float, pk double, pk boolean, pk char, pk octet,
pk any, pk TypeCode, pk Principal, pk string, pk objref,
pk longlong, pk ulonglong, pk longdouble,
pk wchar, pk wstring, pk value base

}i

typedef PrimitiveKind& PrimitiveKind out;

Orbix CORBA Programmer’s Reference: Java 15

See Also

See Also

See Also

Indicates the kind of primitive type a PrimitiveDef Object represents
in the interface repository.

Most kinds are self explanatory with the exception of the follow-
ing:

®* There are no PrimitiveDef objects with the kind pk_null.

* The kind pk_string represents an unbounded string.

®* The kind pk_ocbjref represents the IDL type Object.

CORBA::PrimitiveDef
CORBA: : Repository

CORBA::Repositoryld Type

A string that uniquely identifies, in the interface repository, an IDL
module, interface, constant, typedef, exception, attribute, value
type, value member, value box, native type, or operation.

The format of rRepositoryId types is a short format name followed
by a colon followed by characters, as follows:

format name:string

The most common format encountered is the OMG IDL format. For
example:

IDL:Pre/B/C:5.3

This format contains three components separated by colons:

IDL The first component is the format name, 1DL.

pre/B/C The second component is a list of identifiers separated
by '/’ characters that uniquely identify a repository item
and its scope. These identifiers can contain other charac-
ters including underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version
numbers separated by a dot (.).

CORBA::Repository::ilookup id()

CORBA::RepositoryldSeq Sequence

A sequence of rRepositoryId strings in the interface repository.

CORBA: :RepositoryId
“About Sequences”

CORBA::SetOverrideType Enumeration

// IDL
enum SetOverrideType {SET OVERRIDE, ADD OVERRIDE};

The type of override to use in the set policy overrides() method
when setting new policies for an object reference. Possible types
consist of:

SET OVERRIDE Indicates that new policies are to be associated
with an object reference.

16 Orbix CORBA Programmer’s Reference: Java

See Also

ADD OVERRIDE Indicates that new policies are to be added to
the existing set of policies and overrides for an
object reference.

CORBA::StructMember()

// Java
public StructMember (

java.lang.String name,

org.omg.CORBA.TypeCode type,

org.omg.CORBA.IDLType type def
)

This describes an IDL structure member in the interface repository.
The structure members consist of the following:

name The name of the member.
type The TypeCode for the member.
type def Identifies the definition of the type for the member.

CORBA::TCKind Enumeration

// IDL
enum TCKind {

tk null, tk void,

tk short, tk long, tk ushort, tk ulong,

tk float, tk double, tk boolean, tk char,
tk octet, tk any, tk TypeCode, tk Principal, tk objref,
tk struct, tk union, tk enum, tk string,

tk sequence, tk array, tk alias, tk except,
tk longlong, tk ulonglong, tk longdouble,
tk wchar, tk wstring, tk fixed,

tk value, tk value box,

tk native,

tk abstract interface

i

A TCKind value indicates the kind of data type for a TypeCode. A
TypeCode iS a value that represent an invocation argument type or
attribute type, such as that found in the interface repository or with
a dynamic any type.

CORBA::TypeCode::kind ()

DynamicAny: : DynStruct: : current member kind ()
DynamicAny: : DynUnion: : discriminator kind()
DynamicAny: : DynUnion: :member kind ()
DynamicAny: : DynValue: : current member kind()

CORBA::TypeDescription Structure

// IDL

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;

Orbix CORBA Programmer’s Reference: Java 17

VersionSpec version;

TypeCode type;
}i
This structure describes an IDL data type in the interface repository.
The structure members consist of the following:

name The name of the data type.

id The identifier for the data type.

defined in The identifier of where the data type is defined.
version The version of the data type.

type The TypeCode of the data type.

CORBA::UnionMember Structure

// IDL
struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type def;
}i
This structure describes an IDL union member in the interface
repository. The structure members consist of the following:

name The name of the union member.

label The label of the union member.

type The TypeCode of the union member.

type def The IDL data type of the union member.

CORBA::ValueDescription Structure

// IDL
struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is abstract;
boolean is custom;
RepositoryId defined in;
VersionSpec version;
RepositoryIldSeq supported interfaces;
RepositoryIdSeq abstract base values;
boolean is truncatable;
RepositoryId base value;

}i
The description of an IDL value type in the interface repository.

Value types enable the passing of objects by value rather than just
passing by reference. The structure members consist of the follow-

ing:
name The name of the value type.
id The identifier of the value type.

18 Orbix CORBA Programmer’s Reference: Java

See Also

is abstract True of the value type is abstract. False if
the value type is not abstract.

is custom True of the value type is custom. False if the
value type is not custom.

defined in The identifier of where the value type is
defined.

version The version of the value type.

supported interfaces
abstract base values
is truncatable

base value

CORBA::ValueDef: :describe ()

CORBA::ValueMember Structure

// IDL
struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;
IDLType type def;
Visibility access;
i
This structure describes an IDL value type member in the interface
repository. The structure members consist of the following:

name The name of the value type member.

id The identifier of the value type member.

defined in The identifier of where the value type member is
defined.

version The version of the value type member.

type The TypeCode of the value type member.

type def The type definition of the value type member.

access The accessibility of the value type member (public
or private).

Orbix CORBA Programmer’s Reference: Java 19

20 Orbix CORBA Programmer’s Reference: Java

CORBA::AbstractinterfaceDef
Interface

RbstractInterfaceDef describes an abstract IDL interface in the
interface repository. It inherits from the InterfaceDef interface.

// IDL
interface AbstractInterfaceDef : InterfaceDef

{
}i

Orbix CORBA Programmer’s Reference: Java 21

22 Orbix CORBA Programmer’s Reference: Java

CORBA::AliasDef Interface

See Also

See Also

See Also

The aliaspDef interface describes an IDL typedef that aliases
another definition in the interface repository. It is used to repre-
sent an IDL typedef.
// IDL in module CORBA.
interface AliasDef : TypedefDef {

attribute IDLType original type def;
i

// Java
package org.omg.CORBA;

public interface AliasDef
extends AliasDefOperations,
org.omg.CORBA. TypedefDef

The following items are described for this interface:
®* The describe () IDL operation
®* The original type def attribute

CORBA: :Contained
CORBA: :Container: :create alias ()

AliasDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which is inherited by TypedefDef). The
DefinitionKind for the kind member is dk_Alias. The value member
is an any whose TypeCode iS _tc AliasDescription and whose value
is a structure of type TypeDescription.

CORBA: : TypedefDef : :describe ()

AliasDef::original_type def Attribute

// IDL
attribute IDLType original type def;

// Java
org.omg.CORBA.IDLType original type def();

void original type def(org.omg.CORBA.IDLType val);

Identifies the type being aliased. Modifying the original type def
attribute will automatically update the type attribute (the type
attribute is inherited from TypedefDef which in turn inherits it from
IDLType). Both attributes contain the same information.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: Java 23

24 Orbix CORBA Programmer’s Reference: Java

CORBA::Any Class

The class any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This
allows a program to handle values whose types are not known at
compile time. The IDL type any is most often used in code that
uses the interface repository or the dynamic invocation interface
(DI1) or with CORBA services in general.

Consider the following interface:

// IDL
interface Example {

void op(in any value) ;
}i

A client can construct an any to contain an arbitrary type of value
and then pass this in a call to op (). A process receiving an any
must determine what type of value it stores and then extract the
value (using the TypeCode). Refer to the CORBA Programmer’s
Guide for more details.

Methods are as follows:

create input stream() extract TypeCode () insert Object ()
create output stream() extract ulong() insert octet ()
equal () extract ulonglong () insert_short ()
extract any () extract ushort () insert_ Streamable ()
extract boolean() extract Value () insert string()
extract char() extract wchar () insert TypeCode ()
extract double () extract wstring() insert ulong()
extract fixed() insert _any () insert ulonglong ()
extract float() insert boolean () insert_ushort ()
extract long() insert_char () insert Value()
extract longlong() insert double () insert Value()
extract Object () insert fixed() insert wchar ()
extract octet () insert fixed() insert wstring()
extract short () insert float () read value (
extract Streamable () insert long() type ()

extract string() insert longlong() write value()

// Java

package org.omg.CORBA;

abstract public class Any implements
org.omg.CORBA.portable.IDLEntity {
abstract public boolean equal (org.omg.CORBA.Any a) ;

// type code accessors
abstract public org.omg.CORBA.TypeCode type() ;
abstract public void type (org.omg.CORBA.TypeCode t) ;

// read and write values to/from streams
// throw exception when typecode inconsistent with value
abstract public void read value (
org.omg.CORBA.portable. InputStream is,
org.omg.CORBA.TypeCode t) throws org.omg.CORBA.MARSHAL;
abstract public void
write value (org.omg.CORBA.portable.OutputStream os) ;
abstract public org.omg.CORBA.portable.OutputStream

Orbix CORBA Programmer’s Reference: Java 25

create output stream() ;
abstract public org.omg.CORBA.portable.InputStream
create input stream() ;
abstract public short extract short ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert short (short s);
abstract public int extract long()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert long(int i) ;
abstract public long extract longlong()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert longlong(long 1) ;
abstract public short extract ushort ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert ushort (short s);
abstract public int extract ulong()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert ulong(int i) ;
abstract public long extract ulonglong()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert ulonglong(long 1) ;
abstract public float extract float ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert_float (float f);
abstract public double extract double()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert double (double d);
abstract public boolean extract boolean ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert boolean(boolean b) ;
abstract public char extract char()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert char(char c)
throws org.omg.CORBA.DATA CONVERSION;
abstract public char extract wchar ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert wchar(char c);
abstract public byte extract octet ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert octet (byte b);
abstract public org.omg.CORBA.Any extract any ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert any(org.omg.CORBA.Any a) ;
abstract public org.omg.CORBA.Object extract Object ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert Object (org.omg.CORBA.Object obj) ;
abstract public java.io.Serializable extract Value()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert Value(java.io.Serializable v);
abstract public void insert Value (
java.io.Serializable v,
org.omg.CORBA. TypeCode t)
throws org.omg.CORBA.MARSHAL;

// throw exception when typecode inconsistent with value
abstract public void insert Object (

org.omg.CORBA.Object obj,

org.omg.CORBA. TypeCode t)

throws org.omg.CORBA.BAD PARAM;
abstract public String extract string()

26 Orbix CORBA Programmer’s Reference: Java

Parameters

throws org.omg.CORBA.BAD OPERATION;
abstract public void insert string(String s)
throws org.omg.CORBA.DATA CONVERSION,
org.omg.CORBA.MARSHAL;
abstract public String extract wstring()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert wstring(String s)
throws org.omg.CORBA.MARSHAL;

// insert and extract typecode

abstract public org.omg.CORBA.TypeCode extract TypeCode ()
throws org.omg.CORBA.BAD OPERATION;

abstract public voidinsert TypeCode (org.omg.CORBA.TypeCode

t);

// insert and extract non-primitive IDL types
// BAD INV ORDER if any doesn’t hold a streamable
public org.omg.CORBA.portable.Streamable
extract Streamable ()
throws org.omg.CORBA.BAD INV ORDER {
}

public void insert Streamable (
org.omg.CORBA.portable.Streamable s) {

}

// insert and extract fixed
public java.math.BigDecimal extract fixed() {
throw org.omg.CORBA.NO IMPLEMENT () ;

}

public void insert fixed(java.math.BigDecimal value) {

}

public void insert fixed(
java.math.BigDecimal value,
org.omg.CORBA.TypeCode type)
throws org.omg.CORBA.BAD INV ORDER {

Any::create_input_stream()

abstract public org.omg.CORBA.portable.InputStream
create input stream() ;

This method creates an org.omg.CORBA.portable. InputStream Object
for this any, so that the data contained within the any can be accessed
through the read () methods defined on InputStream rather than the
extract () methods defined on 2any.

InputStream The InputStream representing the any.

Any:create_output_stream()

abstract public org.omg.CORBA.portable.OutputStream
create output stream() ;

Orbix CORBA Programmer’s Reference: Java 27

This method creates an org.omg.CORBA. portable .OutputStream Object
for this any. This object allows the any to be populated by calling the
write () methods declared on outputStream instead of using the
insert () methods of the any.

Parameters

OutputStream The outputStream representing the any

Any::equal()

abstract public boolean equal (org.omg.CORBA.Any a);

This method compares the type and value of this any with that of
the any passed in as a parameter and returns true if the anys are
equal.

Parameters

a The any to compare against.

Any::extract_type()

abstract public short extract short ()
throws org.omg.CORBA.BAD OPERATION;

abstract public int extract long()
throws org.omg.CORBA.BAD OPERATION;

abstract public long extract longlong/()
throws org.omg.CORBA.BAD OPERATION;

abstract public short extract ushort ()
throws org.omg.CORBA.BAD OPERATION;

abstract public int extract ulong()
throws org.omg.CORBA.BAD OPERATION;

abstract public long extract ulonglong()
throws org.omg.CORBA.BAD OPERATION;

abstract public float extract float ()
throws org.omg.CORBA.BAD OPERATION;

abstract public double extract double ()
throws org.omg.CORBA.BAD OPERATION;

abstract public boolean extract boolean ()
throws org.omg.CORBA.BAD OPERATION;

abstract public char extract_char()
throws org.omg.CORBA.BAD OPERATION;

abstract public char extract wchar ()
throws org.omg.CORBA.BAD OPERATION;

abstract public byte extract octet ()
throws org.omg.CORBA.BAD OPERATION;

abstract public org.omg.CORBA.Any extract any()
throws org.omg.CORBA.BAD OPERATION;

abstract public org.omg.CORBA.Object extract Object ()
throws org.omg.CORBA.BAD OPERATION;

abstract public java.io.Serializable extract Value()
throws org.omg.CORBA.BAD OPERATION;

28 Orbix CORBA Programmer’s Reference: Java

abstract public String extract string()
throws org.omg.CORBA.BAD OPERATION;

abstract public String extract wstring()
throws org.omg.CORBA.BAD OPERATION;

abstract public org.omg.CORBA.TypeCode extract TypeCode ()
throws org.omg.CORBA.BAD OPERATION;

public org.omg.CORBA.portable.Streamable extract Streamable ()
throws org.omg.CORBA.BAD INV ORDER {

throw new org.omg.CORBA.NO IMPLEMENT () ; }

public java.math.BigDecimal extract fixed() {
throw org.omg.CORBA.NO IMPLEMENT() ; }

Extracts the value of the indicated type from the any. You can
determine the type of the any using the org.omg.CORBA.Any. type ()
method. You can extract the value using the appropriate extraction
method. To extract a user defined type, you can also use the Helper
classes, for example:

org.omg.CORBA.AnNy a = // get the any from somewhere
// for example, through the DII,
// from one of the CORBA
services.
Object wval;
switch(a.type() .kind()) {
case org.omg.CORBA.TCKind. tc_short:
val = new Short (a.extract short()) ;
break;

//etc. for other basic types

default
if(a.type().equal(AStructHelper.type()){
val = AStructHelper.extract (a);
!

// else some other user defined types
break;

}i
You can also obtain the same kind of result by using the class
org.omg.CORBA.portable.InputStream.

Any::insert_type()

abstract public void insert short (short s);
abstract public void insert long(int i);
abstract public void insert longlong(long 1) ;
abstract public void insert ushort (short s);
abstract public void insert ulong(int i) ;
abstract public void insert ulonglong(long 1) ;
abstract public void insert float (float f);
abstract public void insert double (double d) ;
abstract public void insert boolean (boolean b) ;

abstract public void insert char(char c)
throws org.omg.CORBA.DATA CONVERSION;

Orbix CORBA Programmer’s Reference: Java 29

Parameters

abstract public void insert wchar (char c);
abstract public void insert octet (byte b);
abstract public void insert any (org.omg.CORBA.Any a) ;
abstract public void insert Object (org.omg.CORBA.Object obj) ;
abstract public void insert TypeCode (org.omg.CORBA.TypeCode t) ;
abstract public void insert Value(java.io.Serializable v);
abstract public void insert Value(

java.ilo.Serializable v,

org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.MARSHAL;

abstract public void insert Object (
org.omg.CORBA.Object obj,

org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.BAD PARAM;

abstract public void insert string(String s)
throws

org.omg.CORBA.DATA CONVERSION,
org.omg.CORBA.MARSHAL;

abstract public void insert wstring(String s)
throws org.omg.CORBA.MARSHAL;

public void insert fixed(java.math.BigDecimal value)
{ throw new org.omg.CORBA.NO IMPLEMENT(); }

public void insert fixed(
java.math.BigDecimal value,

org.omg.CORBA.TypeCode type

throws org.omg.CORBA.BAD INV ORDER {
throw new org.omg.CORBA.NO IMPLEMENT () ;
}

public void insert Streamable (
org.omg.CORBA.portable.Streamable s) {

throw new org.omg.CORBA.NO IMPLEMENT(); }

Insert a value of the indicated type into the any. Previous values
held in the any are discarded and each insertion method takes a
copy of the value inserted.

first parameter The actual value to insert into the any.

tc The TypeCode of the value being
inserted.

You can use the nameHelper class to insert a user-defined type. For
example, given the following IDL:

//IDL

struct AStruct{
string str;
float number;

}i

Use the insert () method generated on the AstructHelper class:

//Java
org.omg.CORBA.Any a = new org.omg.CORBA.Any () ;

Astruct s = new Astruct (“String”,1.0f);

30 Orbix CORBA Programmer’s Reference: Java

try {
AstructHelper.insert(a,s);
}

catch (org.omg.CORBA. SystemException) {
//do something here
}

The same result can be achieved using the outputStream.

Any::read_value()

abstract public void read value(
org.omg.CORBA.portable. InputStream is,

org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.MARSHAL;

Reads an object from an InputStream for the current any.
Parameters

is The InputStream to read the data from.

t The TypeCode of the object to be read
from the stream.

Any::type()
abstract public org.omg.CORBA.TypeCode type () ;

Returns the Typecode of the object encapsulated within the any.

abstract public void type (org.omg.CORBA.TypeCode t) ;
Sets the Typecode of the Object encapsulated within the any.

Parameters

t The TypeCode of the object.

Any::write_value()

abstract public void write value(
org.omg.CORBA.portable.OutputStream os

)i

Writes the object contained within the any into the specified
OutputStream.

Parameters

os The outputStream to write the data to.

Orbix CORBA Programmer’s Reference: Java 31

32 Orbix CORBA Programmer’s Reference: Java

CORBA::ArrayDef Interface

See Also

See Also

See Also

The arrayDef interface represents a one-dimensional array in an
interface repository. A multi-dimensional array is represented by
an ArrayDef with an element type that is another array definition.
The final element type represents the type of element contained in
the array. An instance of interface ArrayDef can be created using
create array().

// IDL in module CORBA.

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element type;
attribute IDLType element type def;

}i

CORBA: : IDLType
CORBA: :ArrayDef: :element type def
CORBA: :Repository: :create array()

ArrayDef::element_type Attribute

// IDL
readonly attribute TypeCode element type;

// Java
org.omg.CORBA.TypeCode element type();

Identifies the type of the element contained in the array. This
contains the same information as in the element type def attribute.

CORBA: :ArrayDef: :element type def

ArrayDef::element_type_ def Attribute

// IDL
attribute IDLType element type def;

// Java
org.omg.CORBA.IDLType element type def () ;

Describes the type of the element contained within the array. This
contains the same information as in the attribute element type
attribute.

The type of elements contained in the array can be changed by
changing this attribute. Changing this attribute also changes the
element type attribute.

CORBA: :ArrayDef: :element type

ArrayDef::length Attribute

// IDL
attribute unsigned long length;

Orbix CORBA Programmer’s Reference: Java 33

// Java
int length() ;

Returns the number of elements in the array.
void length(int wval);
Specifies the number of elements in the array.

34 Orbix CORBA Programmer’s Reference: Java

CORBA::AttributeDef Interface

See Also

See Also

The AttributeDef interface describes an attribute of an interface in
the interface repository.

// IDL in module CORBA.

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute AttributeMode mode;

}i

The inherited describe () method is also described.

CORBA: : Contained
CORBA: : InterfaceDef: :create attribute ()

AttributeDef::describe()

// IDL

Description describe() ;

Inherited from Contained. The DefinitionKind for the kind member
of this structure is dk_Attribute. The value member is an any whose
TypeCode IS _tc AttributeDescription. The value is a structure of type
AttributeDescription.

CORBA: :Contained: :describe ()

AttributeDef::mode Attribute

// IDL
attribute AttributeMode mode;

// Java
org.omg.CORBA.AttributeMode mode () ;

Returns the mode of the attribute.

// Java
void mode (

org.omg.CORBA.AttributeMode val
)i

Specifies whether the attribute is read and write (ATTR NORMAL) Or
read-only (ATTR READONLY).

AttributeDef::type Attribute

// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type() ;

Orbix CORBA Programmer’s Reference: Java 35

Returns the type of this attribute. The same information is contained
in the type def attribute.

See Also CORBA: : TypeCode
CORBA: :AttributeDef: :type def

AttributeDef::type def Attribute

// IDL
attribute IDLType type def;

// Java
org.omg.CORBA.IDLType type def();

Returns the type of this attribute.

// Java

void type def(
org.omg.CORBA.IDLType val

)i

Describes the type for this attribute. The same information is
contained in the type attribute. Changing the type def attribute
automatically changes the type attribute.

See Also CORBA: : IDLType
CORBA: :AttributeDef: : type

36 Orbix CORBA Programmer’s Reference: Java

CORBA::ConstantDef Interface

See Also

See Also

See Also

Interface CconstantDef describes an IDL constant in the interface
repository. The name of the constant is inherited from Contained.

// IDL

// in module CORBA.

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute any value;

}i

// Java

public interface ConstantDef
extends ConstantDefOperations,
org.omg.CORBA.Contained

{
}

The inherited operation describe () is also described.

CORBA: : Contained
CORBA: :Container: :create constant ()

ConstantDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The kind member is dk_Constant.

The value member is an any whose TypeCode is
_tc_ConstantDescription and whose value is a structure of type
ConstantDescription.

CORBA: :Contained: :describe ()

ConstantDef::type Attribute

// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type() ;

Identifies the type of this constant. The type must be a TypeCode for
one of the simple types (such as long, short, float, char, string,
double, boolean, unsigned long, and unsigned short). The same
information is contained in the type def attribute.

CORBA: :ConstantDef: :type def

Orbix CORBA Programmer’s Reference: Java 37

ConstantDef::type_ def Attribute

// IDL
attribute IDLType type def;

// Java
org.omg.CORBA.IDLType type def();

Returns the type of this constant.
void type def (org.omg.CORBA.IDLType val);

Identifies the type of the constant. The same information is con-
tained in the type attribute.

The type of a constant can be changed by changing its type def
attribute. This also changes its type attribute.

See Also CORBA: : ConstantDef : : type

ConstantDef::value Attribute

// IDL
attribute any value;

// Java
org.omg.CORBA.Any value() ;

Returns the value of this attribute.
void value (org.omg.CORBA.Any val);

Contains the value for this constant. When changing the value
attribute, the TypeCode of the any must be the same as the type
attribute.

See Also CORBA: : TypeCode

38 Orbix CORBA Programmer’s Reference: Java

CORBA::ConstructionPolicy

Interface

Parameters

See Also

When new object references are created, the ConstructionPolicy
object allows the caller to specify that the instance should be
automatically assigned membership in a newly created policy
domain. When a policy domain is created, it also has a
DomainManager Object associated with it. The ConstructionPolicy
object provides a single operation that makes the DomainManager
object.

// IDL in CORBA Module
interface ConstructionPolicy: Policy {
void make domain manager (
in CORBA::InterfaceDef object type,
in boolean constr policy

)i
}i

ConstructionPolicy::make_domain_manager()

// IDL
void make domain manager (

in CORBA::InterfaceDef object type,
in boolean constr policy

)i

// Java

void make domain manager (
org.omg.CORBA.InterfaceDef object type,
boolean constr policy

)i

This operation sets the construction policy that is to be in effect in
the policy domain for which this constructionPolicy object is asso-
ciated.

object type The type of the objects for which domain managers
will be created. If this is nil, the policy applies to all
objects in the policy domain.

constr policy A value of true indicates to the ORB that new object
references of the specified object type are to be asso-
ciated with their own separate policy domains (and
associated domain manager). Once such a construc-
tion policy is set, it can be reversed by invoking
make domain manager () again with the value of false.

A value of false indicates the construction policy is set
to associate the newly created object with the policy
domain of the creator or a default policy domain.

You can obtain a reference to the newly created domain manager
by calling get domain managers () on the newly created object ref-
erence.

CORBA::DomainManager

Orbix CORBA Programmer’s Reference: Java 39

CORBA: :Object:: get domain managers ()

40 Orbix CORBA Programmer’s Reference: Java

CORBA::Contained Interface

Interface Contained is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or
repository. It is a base interface for the following interfaces:

See Also

ModuleDef
InterfaceDef
ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
StructDef
EnumDef
UnionDef
AliasDef
ValueDef

The complete interface
// IDL

// In module CORBA.
interface Contained :

is shown here:

IRObject {

// read/write interface
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute

readonly attribute

readonly attribute

struct Description
DefinitionKind
any value;

}i

Container defined in;
ScopedName absolute name;
Repository containing repository;

{

kind;

Description describe() ;

// write interface
void move (
in Container n
in Identifier
in VersionSpec

)i

CORBA: :Container
CORBA: : IRObject

ew_container,
new name,
new version

Contained::absolute _name Attribute

//1IDL

readonly attribute ScopedName absolute name;

// Java
java.lang.String absol

ute name () ;

Orbix CORBA Programmer’s Reference

: Java 41

Gives the absolute scoped name of an object.

Contained::containing_repository Attribute

// IDL
readonly attribute Repository containing repository;

// Java
org.omg.CORBA.Repository containing repository () ;

Gives the Repository within which the object is contained.

Contained::defined_in Attribute

// IDL
attribute Container defined in;

// Java
org.omg.CORBA.Container defined in();

Specifies the Container for the interface repository object in which
the object is contained.

An IFR object is said to be contained by the IFR object in which it
is defined. For example, an InterfaceDef Object is contained by the
ModuleDef in which it is defined.

A second notion of contained applies to objects of type
AttributeDef Or OperationDef. These objects may also be said to be
contained in an InterfaceDef object if they are inherited into that
interface. Note that inheritance of operations and attributes across
the boundaries of different modules is also allowed.

See Also CORBA: : Container: :contents ()

Contained::describe()

// IDL
Description describe() ;

// Java
org.omg.CORBA.ContainedPackage .Description describe () ;

Returns a structure of type Description.

The kind field of the Description structure contains the same value
as the def kind attribute that Contained inherits from IRObject.

See Also CORBA: :Container: :describe contents ()
CORBA: :DefinitionKind

Contained::Description Structure

// IDL
struct Description {

DefinitionKind kind;
any value;

}i

42 Orbix CORBA Programmer’s Reference: Java

This is a generic form of description which is used as a wrapper for
another structure stored in the value field.

Depending on the type of the Contained object, the value field will
contain a corresponding description structure:

ConstantDescription

ExceptionDescription

AttributeDescription

OperationDescription

ModuleDescription

InterfaceDescription

TypeDescription
The last of these, TypeDescription is used for objects of type
StructDef, UnionDef, EnumDef, and AliasDef (it is associated with
interface TypedefDef from which these four listed interfaces
inherit).

Contained::id Attribute

// IDL
attribute RepositoryId id;

// Java
java.lang.String id() ;

void id(java.lang.String val);
A RepositoryId provides an alternative method of naming an object.

In order to be CORBA compliant the naming conventions specified
for CORBA RepositoryIds should be followed. Changing the id
attribute changes the global identity of the contained object. It is
an error to change the id to a value that currently exists in the
contained object’s Repository.

Contained::move()

// IDL
void move (

in Container new container,
in Identifier new name,
in VersionSpec new version

)i

// Java

void move (
org.omg.CORBA.Container new container,
java.lang.String new name,
java.lang.String new version

)i

Removes this object from its container, and adds it to the container
specified by new container. The new container must:

* Be in the same repository.
* Be capable of containing an object of this type.

* Not contain an object of the same name (unless multiple ver-
sions are supported).

Orbix CORBA Programmer’s Reference: Java 43

See Also

See Also

The name attribute of the object being moved is changed to that
specified by the new name parameter. The version attribute is
changed to that specified by the new version parameter.

CORBA: :Container

Contained::name Attribute

// IDL
attribute Identifier name;

// Java
java.lang.String name() ;

void name (java.lang.String wval);

Return or set the name of the object within its scope. For example,
in the following definition:

// IDL

interface Example {
void op () ;

}i

the names are Example and op. A name must be unique within its
scope but is not necessarily unique within an interface repository.
The name attribute can be changed but it is an error to change it to
a value that is currently in use within the object’s Container.

CORBA: :Contained: :id

Contained::version Attribute

// IDL
attribute VersionSpec version;

// Java
java.lang.String version() ;

void version(java.lang.String val);

Return or set the version number for this object. Each interface
object is identified by a version which distinguishes it from other
versioned objects of the same name.

44 Orbix CORBA Programmer’s Reference: Java

CORBA::Container Interface

Interface container describes objects that can contain other
objects in the interface repository. A Container can contain any
number of objects derived from the Contained interface. Such
objects include:

AttributeDef
ConstantDef
ExceptionDef
InterfaceDef
ModuleDef
OperationDef
TypedefDef
ValueDef
ValueMemberDef

The interface is shown here:

//IDL
// In CORBA Module
interface Container : IRObject {
// read interface
Contained lookup (
in ScopedName search name) ;

ContainedSeq contents (
in DefinitionKind limit type,
in boolean exclude inherited

)i

ContainedSeq lookup name (
in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

)i

DescriptionSeq describe contents (
in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs

)i

// write interface
ModuleDef create module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

)i

ConstantDef create constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

Orbix CORBA Programmer’s Reference: Java 45

StructDef create struct(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members
)i

UnionDef create union(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator type,
in UnionMemberSeq members
)

EnumDef create enum/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

)

AliasDef create alias(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type
)i

InterfaceDef create interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base interfaces
in boolean is abstract

)i

ValueDef create value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is custom,
in boolean is abstract,
in ValueDef base value,
in boolean is truncatable,
in ValueDefSeqg abstract base values,
in InterfaceDef supported interface,
in InitializerSeqg initializers

)i

ValueBoxDef create value box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type def

)

ExceptionDef create exception (
in RepositoryId id,
in Identifier name,

46 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

See Also

in VersionSpec version,
in StructMemberSeq members

)i

NativeDef create native (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
)i

}; // End Interface Container

CORBA: : IRObject

Container::contents()

// IDL
ContainedSeq contents (

in DefinitionKind limit type,
in boolean exclude inherited

)i

// Java

org.omg.CORBA.Contained[] contents (
org.omg.CORBA.DefinitionKind limit type,
boolean exclude inherited

)i

Returns a sequence of Contained objects that are directly contained
in (defined in or inherited into) the target object. This operation can
be used to navigate through the hierarchy of definitions—starting,
for example, at a Repository.

limit type If set to dk_all, all of the contained interface
repository objects are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

CORBA: :Container: :describe contents ()
CORBA: :DefinitionKind

Container::create_alias()

// IDL
AliasDef create alias(

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType original type

Orbix CORBA Programmer’s Reference: Java 47

// Java
org.omg.CORBA.AliasDef create alias(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. IDLType original type
)i

Creates a new AliasDef object within the target container. The
defined in attribute is set to the target container. The

containing repository attribute is set to the Repository in which the
new AliasDef object is defined.

Parameters

id The repository ID for the new AliasDef object. An
exception is raised if an interface repository object
with the same 1D already exists within the object’s
repository.

name The name for the new AliasDef object. It is an error
to specify a name that already exists within the
object’s container when multiple versions are not
supported.

version A version for the new AliasDef.
original type The original type that is being aliased.

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

See Also CORBA: :AliasDef

Container::create_constant()

// IDL
ConstantDef create_constant(

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType type,

in any value

)i

// Java
org.omg.CORBA.ConstantDef create constant (

java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType type,
org.omg.CORBA.Any value

48 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

Creates a ConstantDef object within the target container. The
defined in attribute is set to the target Container. The

containing repository attribute is set to the Repository in which the
new ConstantDef oObject is defined.

id The repository ID of the new ConstantDef object. It is an
error to specify an ID that already exists within the object’s
repository.

name The name of the new ConstantDef object. It is an error to

specify a name that already exists within the object’s
Container when multiple versions are not supported.

version The version number of the new ConstantDef object.

type The type of the defined constant. This must be one of the
simple types (long, short, ulong, ushort, float, double, char,
string, boolean).

value The value of the defined constant.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : ConstantDef

Container::create_enum()

// IDL
EnumDef create enum(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in EnumMemberSeq members
)i

// Java
org.omg.CORBA.EnumDef create enum(

java.lang.String id,
java.lang.String name,
java.lang.String version,
java.lang.String[] members

)

Creates a new EnumDef object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the Repository in which the new Enumbef object is
defined.

id The repository ID of the new Enumbef object. It is an error
to specify an ID that already exists within the Repository.

Orbix CORBA Programmer’s Reference: Java 49

Exceptions

See Also

Parameters

name The name of the Enumbef object. It is an error to specify a
name that already exists within the object’s Container
when multiple versions are not supported.

version The version number of the new Enumbef object.

members A sequence of structures that describes the members of
the new Enumbef object.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : EnumDef

Container::create_exception()

// IDL
ExceptionDef create exception(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

)i

// Java
org.omg.CORBA.ExceptionDef create exception(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. StructMember [] members
)i

Creates a new ExceptionDef Object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the Repository in which new ExceptionDef object
is defined.

id The repository ID of the new ExceptionDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ExceptionDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version number for the new ExceptionDef object.

members A sequence of StructMember structures that describes the
members of the new ExceptionDef Object.

50 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : ExceptionDef

Container::create_interface()

// IDL
InterfaceDef create interface(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base interfaces
in boolean is abstract
)i
// Java
org.omg.CORBA.InterfaceDef create interface(
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. InterfaceDef [] base interfaces

)i

Creates a new empty InterfaceDef object within the target Contain-
er. The defined in attribute is set to Container. The

containing repository attribute is set to the Repository in which the
new InterfaceDef object is defined.

id The repository ID of the new InterfaceDef oObject.
It is an error to specify an ID that already exists
within the object’s repository.

name The name of the new InterfaceDef object. It is an
error to specify a name that already exists within
the object’s container when multiple versions are
not supported.

version A version for the new InterfaceDef object.

base interfaces A sequence of InterfaceDef objects from which
the new interface inherits.

is abstract If true the interface is abstract.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

Orbix CORBA Programmer’s Reference: Java 51

See Also

Parameters

Exceptions

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : InterfaceDef

Container::create_module()

// IDL
ModuleDef create module (

in RepositoryId id,
in Identifier name,
in VersionSpec version

)i

// Java

org.omg.CORBA.ModuleDef create module (
java.lang.String id,
java.lang.String name,
java.lang.String version

)i

Creates an empty ModuleDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the newly created ModuleDef
object is defined.

id The repository ID of the new ModuleDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ModuleDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the ModuleDef oObject to be created.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_native()

// IDL
NativeDef create native(

in RepositoryId id,
in Identifier name,
in VersionSpec version,

)i

52 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

// Java
org.omg.CORBA.NativeDef create native(

java.lang.String id,

java.lang.String name,

java.lang.String version
)i
Creates a NativeDef object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the newly created NativeDef
object is defined.

id The repository ID of the new NativeDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new NativeDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the NativeDef object to be created.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_struct()

// IDL
StructDef create struct (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

)i

// Java
org.omg.CORBA. StructDef create struct(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. StructMember [] members
)i

Creates a new StructDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the new structDef object
is defined.

Orbix CORBA Programmer’s Reference: Java 53

Parameters

id The repository ID of the new structDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new structDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the new StructDef object.
members A sequence of StructMember structures that describes the
members of the new structDef object.
Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

See Also CORBA: : StructDef

Container::create_union()

// IDL
UnionDef create union(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator type,
in UnionMemberSeq members
)i

// Java
org.omg.CORBA.UnionDef create union/(

java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType discriminator type,
org.omg.CORBA.UnionMember [] members
)i
Creates a new UnionDef Object within the target Container. The
defined in attribute is set to the target Container. The

containing repository attribute is set to the repository in which the
new UnionDef object is defined.

Parameters

id The repository ID of the new UnionDef object.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new UnionDef Object. It is an
error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

54 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

version A version for the new Unionbef object.
discriminator type The type of the union discriminator.

members A sequence of UnionMember structures that
describes the members of the new UnionbDef
object.

BAD PARAM, An object with the specified id already exists in the

minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: :UnionDef

Container::create_value()

// IDL
ValueDef create value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is custom,
in boolean is abstract,
in ValueDef base value,
in boolean is truncatable,
in ValueDefSeqg abstract base values,
in InterfaceDef supported interfaces,
in InitializerSeq initializers

)i

// Java
org.omg.CORBA.ValueDef create value(

java.lang.String id,
java.lang.String name,
java.lang.String version,
boolean is custom,
boolean is abstract,
byte flags,
org.omg.CORBA.ValueDef base value,
boolean has safe base,
org.omg.CORBA.ValueDef [] abstract base values,
org.omg.CORBA. InterfaceDef supported interfaces,
org.omg.CORBA.Initializer[] initializers
)i
Creates a new empty valueDef object within the target container.
The defined in attribute is set to Container. The

containing repository attribute is set to the repository in which the
new VvalueDef object is defined.

Orbix CORBA Programmer’s Reference: Java 55

Parameters

Exceptions

id The repository ID of the new valueDef oObject.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new valueDef object. It is an
error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

version A version for the new valueDef object.
is_custom If true the value type is custom.

is abstract If true the value type is abstract.
base value The base value for this value type.

is truncatable if true the value type is truncatable.

abstract_base values A sequence of valueDef structures that
describes the base values of the new valueDef

object.
supported interfaces The interface the value type supports.
initializers A sequence of initializers for the new valueDef
object.
BAD PARAM, An object with the specified id already exists in the

minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_value box()

// IDL
ValueBoxDef create value box (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type def
)i
// Java
org.omg.CORBA.ValueBoxDef create value box (
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA.IDLType original type def
)i

Creates a new empty valueBoxDef Object within the target Container.
The defined in attribute is set to Container. The

containing repository attribute is set to the repository in which the
new VvalueBoxDef Object is defined.

56 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

id The repository ID of the new valueBoxDef
object. It is an error to specify an ID that
already exists within the object’s repository.

name The name of the new valueBoxDef object. It is
an error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

version A version for the new valueBoxDef Object.
original type def The IDL data type of the value box.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.
BAD PARAM, The specified name already exists within this Container

minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from container may restrict
the types of definitions that they may contain.

Container::describe_contents()

// IDL
DescriptionSeq describe contents (

in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs
)i
// Java
org.omg.CORBA. ContainerPackage.Description[] describe contents(
org.omg.CORBA.DefinitionKind limit type,
boolean exclude inherited,
int max returned objs

)i

Returns a sequence of structures of type Container: :Description.
describe contents() iS a combination of operations
Contained: :describe () and Container: :contents ()

limit type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

max returned objs The number of objects that can be returned in
the call. Setting a value of -1 means return all
contained objects.

Orbix CORBA Programmer’s Reference: Java 57

See Also

Parameters

See Also

Parameters

CORBA: :Container: :contents ()
CORBA: :Contained: :describe ()

Container::lookup()

// IDL
Contained lookup (

in ScopedName search name

)i

// Java

org.omg.CORBA. Contained lookup (
java.lang.String search name

)i

Locates an object name within the target container. The objects can
be directly or indirectly defined in or inherited into the target
container.

search name The name of the object to search for relative to the tar-
get container. If a relative name is given, the object
is looked up relative to the target container. If
search name is an absolute scoped name (prefixed by
‘::"), the object is located relative to the containing
Repository.

CORBA: :Container: :lookup name ()

Container::lookup_name()

// IDL
ContainedSeq lookup name (

in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

)i

// Java

org.omg.CORBA.Contained[] lookup name (
java.lang.String search name,
int levels to search,
org.omg.CORBA.DefinitionKind limit type,
boolean exclude inherited

)i

Locates an object or objects by name within the target container
and returns a sequence of contained objects. The named objects
can be directly or indirectly defined in or inherited into the target
container. (More than one object, having the same simple name

can exist within a nested scope structure.)

search name The simple name of the object to search for.

58 Orbix CORBA Programmer’s Reference: Java

levels to search Defines whether the search is confined to the
current object or should include all interface
repository objects contained by the object. If
set to -1, the current object and all contained
interface repository objects are searched. If set
to 1, only the current object is searched.

limit_type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

See Also CORBA: :DefinitionKind

Orbix CORBA Programmer’s Reference: Java 59

60 Orbix CORBA Programmer’s Reference: Java

CORBA::Context Class

Class CoreA: :Context implements the OMG pseudo-interface

Context. A context is intended to represent information about the
client that is inconvenient to pass via parameters. An IDL opera-
tion can specify that it is to be provided with the client’'s mapping
for particular identifiers (properties). It does this by listing these
identifiers following the operation declaration in a context clause.

A client can optionally maintain one or more CORBA Context
objects, that provide a mapping from identifiers (string names) to
string values. A context object contains a list of properties; each
property consists of a name and a string value associated with
that name and can be passed to a method that takes a Context
parameter.

You can arrange Context objects in a hierarchy by specifying par-
ent-child relationships among them. Then, a child passed to an
operation also includes the identifiers of its parent(s). The called
method can decide whether to use just the context actually
passed, or the hierarchy above it.

The context class is as follows:

// IDL
pseudo interface Context {
readonly attribute Identifier context name;
readonly attribute Context parent;
Context create child(in Identifier child ctx name) ;
void set one value(in Identifier propname, in any
propvalue) ;
void set values(in NVList values) ;
void delete values (in Identifier propname) ;
NVList get values(in Identifier start scope,
in Flags op flags,
in Identifier pattern);

bi

// Java
package org.omg.CORBA;
public abstract class Context {
public abstract String context name() ;
public abstract Context parent () ;
public abstract Context create child(
String child ctx name
)i
public abstract void set one value (
String propname,
Any propvalue
)i
public abstract void set values(
NVList values
)i
public abstract void delete values(
String propname
)i
public abstract NVList get values(
String start_ scpe,
int op flags,

Orbix CORBA Programmer’s Reference: Java 61

See Also

Parameters

See Also

Parameters

Exceptions

String pattern
)

Context::context _name()

// Java
abstract public java.lang.String context name() ;

Returns the name of the context object. Ownership of the returned
value is maintained by the context and must not be freed by the
caller.

CORBA::Context:.create child()

Context::create_child()

// Java
abstract public org.omg.CORBA.Context create child(

java.lang.String child ctx name

)i

Creates a child context of the current context. When a child context
is passed as a parameter to an operation, any searches (using
CORBA: : Context: :get values ()) look in parent contexts if necessary
to find matching property names.

child ctx name The newly created context.

CORBA::Context:iget values ()

Context::delete_values()

// Java
abstract public void delete values (

java.lang.String propname

)i

Deletes the specified property value(s) from the context. The search
scope is limited to the context object on which the invocation is
made.

propname The property name to be deleted. If prop name has a
trailing asterisk (*), all matching properties are
deleted.

An exception is raised if no matching property is found.

Context::get_values()

// Java
abstract public org.omg.CORBA.NVList get values(

java.lang.String start scope,
int op flags,

62 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

java.lang.String pattern

)
Retrieves the specified context property values.

start_scope The context in which the search for the values
requested should be started. The name of a direct or
indirect parent context may be specified to this
parameter. If O is passed in, the search begins in the
context which is the target of the call.

op_flags By default, searching of identifiers propagates
upwards to parent contexts; if the value
CORBA: : CTX_RESTRICT SCOPE is specified, then searching
is limited to the specified search scope or context
object.

values An NVList to contain the returned property values.

Context::parent()

// Java
abstract public org.omg.CORBA.Context parent () ;

Returns the parent of the context object. Ownership of the return
value is maintained by the context and must not be freed by the
caller.

CORBA::Context:icreate child()

Context::set_one_value()

// Java
abstract public void set one value(

java.lang.String propname,
org.omg.CORBA.Any propvalue
)i

Adds a property name and value to the context. Although the value
member is of type any, the type of the any must be a string.

propname The name of the property to add.
propvalue The value of the property to add.

CORBA::Context::set values()

Context::set_values()

// Java
abstract public void set values(

org.omg.CORBA.NVList values
)i

Sets one or more property values in the Context. The previous value
of a property, if any, is discarded.

Orbix CORBA Programmer’s Reference: Java 63

Parameters

values An NVList containing the property name:values to add
or change. In the nvList, the flags field must be set to

zero, and the TypeCode associated with an attribute
value must be CORBA:: tc string.

See Also CORBA::Context::set one value()

64 Orbix CORBA Programmer’s Reference: Java

CORBA::ContextList Class

See Also

Parameters

A contextList allows an application to provide a list of Context
strings that must be supplied when a dynamic invocation Request
is invoked.

The context is where the actual values are obtained by the ORB.
The contextList supplies only the context strings whose values are
to be looked up and sent with the request invocation. The server-
less contextList object allows the application to specify context
information in a way that avoids potentially expensive interface
repository lookups for the information by the ORB during a
request.

// IDL
pseudo interface ContextList {
readonly attribute unsigned long count;
void add(in string ctx) ;
string item(in unsigned long index) raises (CORBA: :Bounds) ;
void remove (in unsigned long index) raises (CORBA::Bounds) ;

}i

[¢]

CORBA:IObject:: create request ()
CORBA: :Request : :contexts
CORBA: :ORB: :create context list ()

ContextList::add()

// Java
abstract public void add(

java.lang.String ctxt

)i
Adds a context string to the context list.

ctx A string representing context information.

ContextList::count()

// Java
abstract public int count () ;

Returns the number of context strings in the context list.

ContextList::item()

// Java
abstract public java.lang.String item(

int index
) throws org.omg.CORBA.Bounds;

Orbix CORBA Programmer’s Reference: Java 65

Parameters

Returns the context item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ContextList.

index The indexed location of the desired context item.

ContextList::remove()

// Java
abstract public void remove (

int index
) throws org.omg.CORBA.Bounds;

Removes from the context list the context item at the indexed
location.

66 Orbix CORBA Programmer’s Reference: Java

CORBA::Current Interface

See Also

The current interface is the base interface for providing informa-
tion about the current thread of execution. Each ORB or CORBA
service that needs its own context derives an interface from
Current to provide information that is associated with the thread of
execution in which the ORB or CORBA service is running. Inter-
faces that derives from current include:

PortableServer: :Current

Your application can obtain an instance of the appropriate Current
interface by invoking resolve initial references().

Operations on interfaces derived from current access the state
associated with the thread in which they are invoked, not the state
associated with the thread from which the current was obtained.

The IDL interface follows:

//IDL

module CORBA {

// interface for the Current object
interface Current {

}i
}i
// Java

package org.omg.CORBA;
public interface Current extends org.omg.CORBA.Object {}

PortableServer: :Current

CORBA: :ORB: :resolve initial references ()

Orbix CORBA Programmer’s Reference: Java 67

68 Orbix CORBA Programmer’s Reference: Java

CORBA::CustomMarshal Value

Type

Custom value types can override the default marshaling/unmar-
shaling mechanism and provide their own way to encode/decode
their state. If an application’s value type is marked as custom, you
use custom marshaling to facilitate integration of such mecha-
nisms as existing class libraries and other legacy systems. Custom
marshaling is not to be used as the standard marshaling mecha-
nism.

CustomMarshal is an abstract value type that is meant to be imple-
mented by the application programmer and used by the ORB. For
example, if an application’s value type needs to use custom mar-
shaling, the IDL declares it explicitly as follows:

// RApplication-specific IDL
custom valuetype type {
// optional state definition

i

When implementing a custom value type such as this, you must
provide a concrete implementation of the CustomMarshal operations
so that the ORB is able to marshal and unmarshal the value type.
Each custom marshaled value type needs its own implementation.

You can use the skeletons generated by the IDL compiler as the
basis for your implementation. These operations provide the
streams for marshaling. Your implemented CustomMarshal code
encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.
It is the responsibility of your implementation to marshal the value
type’s state of all of its base types (if it has any).

The implementation requirements of the streaming mechanism
require that the implementations must be local because local
memory addresses such as those for the marshal buffers have to
be manipulated by the ORB.

Semantically, customMarshal is treated as a custom value type’s
implicit base class, although the custom value type does not actu-
ally inherit it in IDL. While nothing prevents you from writing IDL
that inherits from CustomMarshal, doing so will not in itself make
the type custom, nor will it cause the ORB to treat it as a custom
value type. You must implement these CustomMarshal operations.

Implement the following IDL operations for a custom value type:

// IDL in module CORBA
abstract valuetype CustomMarshal {
void marshal (
in DataOutputStream os
)i
void unmarshal (
in DataInputStream is
) ;
}i

Orbix CORBA Programmer’s Reference: Java 69

Parameters

See Also

Parameters

See Also

CustomMarshal::marshal()

void marshal (org.omg.CORBA.DataOutputStream os) ;

The operation you implement so that the ORB can marshal a custom
value type.

os A handle to the output stream the ORB uses to mar-
shal the custom value type.

Use the operations of the DataOutputStream in your implementation
to write the custom value type’s data to the stream as appropri-
ate.

CORBA:DataOutputStream

CustomMarshal::unmarshal()

void unmarshal (org.omg.CORBA.DataInputStream is) ;

The operation you implement so that the ORB can unmarshal a
custom value type.

is A handle to the input stream the ORB uses to unmar-
shal the custom value type.

Use the operations of the DataInputStream in your implementation
to read the custom value type’s data from the stream as appropri-
ate.

CORBA::DataInputStream

70 Orbix CORBA Programmer’s Reference: Java

CORBA::DatalnputStream Value

Type

// IDL in module CORBA
abstract valuetype DatalnputStream {

any read any() ;
boolean read boolean() ;

char read char() ;

wchar read wchar () ;

octet read octet () ;

short read short () ;

unsigned short read ushort () ;
long read long() ;

unsigned long read ulong() ;
unsigned long long read ulonglong() ;
float read float () ;

double read double () ;

long double read longdouble () ;
string read string() ;

wstring read wstring() ;

Object read Object () ;
AbstractBase read Abstract () ;
ValueBase read Value() ;

TypeCode read TypeCode () ;

void read any array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length
)
void read boolean array (
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

)

void read char array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length

) ;

void read wchar array(
inout WcharSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read octet array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)i

Orbix CORBA Programmer’s Reference

The DataInputStream value type is a stream used by unmarshal () for
unmarshaling an application’s custom value type. You use the
DataInputStream operations in your implementation of unmarshal ()
to read specific types of data from the stream, as defined in the
custom value type. The stream takes care of breaking the data
into chunks if necessary. The IDL code is as follows:

s Java 71

void read short array (
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read ushort array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read long array (
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

)

void read ulong array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read ulonglong array (
inout ULonglongSeq sedq,
in unsigned long offset,
in unsigned long length

)i

void read longlong array (
inout LonglongSeq sedq,
in unsigned long offset,
in unsigned long length

)i

void read float array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);

void read double array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

Exceptions
MARSHAL, An inconsistency is detected for any operations.

See Also CORBA::CustomMarshal
CORBA: :DataOutputStream

DatalnputStream::read_any()

// IDL
any read any() ;

// Java
org.omg.CORBA.Any read any () ;

Returns an any data type from the stream.

72 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

DatalnputStream::read_any_array()

// IDL

void read any array (
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java

void read any array (
org.omg.CORBA.AnySegHolder seq,
int offset,
int length);

Reads an array of any data from the stream.

seq

offset

length

The sequence into which the data is placed.

The starting index from which to read from the
sequence.

The number of items to read from the array.

DatalnputStream::read_boolean()

// IDL

boolean read boolean() ;

// Java

boolean read boolean() ;

Returns a boolean data type from the stream.

DatalnputStream::read_boolean_array()

// IDL

void read boolean array (
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

)

// Java

void read boolean array (
org.omg.CORBA.BooleanSegHolder seq,
int offset,
int length);

Reads an array of boolean data from the stream.

seq

offset

length

The sequence into which the data is placed.

The starting index from which to read from the
sequence.

The number of items to read from the array.

Orbix CORBA Programmer’s Reference: Java 73

DatalnputStream::read_char()

// IDL
char read char() ;

// Java
char read char() ;

Returns a char data type from the stream.

DatalnputStream::read_char_array()

// IDL
void read char array(

inout CharSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read char array(

org.omg.CORBA.CharSegHolder seq,
int offset,
int length);

Reads an array of char data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_double()

// IDL
double read double() ;

// Java
double read double() ;

Returns a double data type from the stream.

DatalnputStream::read_double_array()

// IDL
void read double array(

inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read double array (

org.omg.CORBA.DoubleSegHolder seq,
int offset,
int length);

Reads an array of double data from the stream.

74 Orbix CORBA Programmer’s Reference: Java

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_float()

// IDL
float read float();

// Java
float read float();

Returns a float data type from the stream.

DatalnputStream::read_float_array()

// IDL
void read float array(

inout FloatSeq seq,

in unsigned long offset,

in unsigned long length
)

// Java
void read float array(

org.omg.CORBA.FloatSegHolder seq,
int offset,
int length);

Reads an array of float data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_long()

// IDL
long read long() ;

// Java
int read long() ;

Returns a long data type from the stream.

DatalnputStream::read_long_array()
// IDL

void read long array(
inout LongSeq seq,

Orbix CORBA Programmer’s Reference: Java 75

Parameters

Parameters

in unsigned long offset,
in unsigned long length

)i

// Java
void read long array (

org.omg.CORBA.LongSegHolder seq,
int offset,
int length);

Reads an array of long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_longdouble()

// IDL
long double read longdouble () ;

// Java
Unsupported.

DatalnputStream::read_longlong_array()

// IDL
void read longlong array(

inout LongLongSeq sed,
in unsigned long offset,
in unsigned long length

)i

// Java
void read longlong array(

org.omg.CORBA. LongLongSegHolder seq,
int offset,
int length);

Reads an array of long long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_Object()

// IDL
Object read Object () ;

// Java
org.omg.CORBA.Object read objref();

76 Orbix CORBA Programmer’s Reference: Java

Returns an object (object reference) data type from the stream.

DatalnputStream::read_octet()

// IDL
octet read octet () ;

// Java
byte read octet();

Returns an octet data type from the stream.

DatalnputStream::read_octet_array()

// IDL
void read octet array(

inout OctetSeq seq,

in unsigned long offset,

in unsigned long length
)i

// Java
void read octet array(

org.omg.CORBA.OctetSegHolder seq,
int offset,
int length);

Reads an array of octet data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_short()

// IDL
short read short () ;

// Java
short read short () ;

Returns a short data type from the stream.

DatalnputStream::read_short_array()

// IDL
void read short array(

inout ShortSeq seq,

in unsigned long offset,

in unsigned long length
)

Orbix CORBA Programmer’s Reference: Java 77

// Java
void read short array(

org.omg.CORBA. ShortSegHolder seq,
int offset,
int length);

Reads an array of short data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_string()

// IDL
string read string() ;

// Java
java.lang.String read string();

Returns a string data type from the stream.

DatalnputStream::read_TypeCode()

// IDL
TypeCode read TypeCode () ;

// Java
org.omg.CORBA.TypeCode read TypeCode() ;

Returns a TypeCode data type from the stream.

DatalnputStream::read_ulong()

// IDL
unsigned long read ulong() ;

// Java
int read ulong() ;

Returns an unsigned long data type from the stream.

DatalnputStream::read_ulong_array()

// IDL
void read ulong array (

inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read ulong array (

org.omg.CORBA.ULongSegHolder seq,
int offset,
int length);

78 Orbix CORBA Programmer’s Reference: Java

Reads an array of unsigned long data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.
DatalnputStream::read_ulonglong()
// IDL
unsigned long long read ulonglong() ;
// Java
long read ulonglong() ;
Returns an unsigned long long data type from the stream.
DatalnputStream::read_ulonglong_array()
// IDL
void read ulonglong array(
inout ULonglongSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void read ulonglong array(
org.omg.CORBA.ULongLongSegHolder seq,
int offset,
int length);
Reads an array of unsigned long long data from the stream.
Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_ushort()

// IDL
unsigned short read ushort();

// Java
short read ushort () ;

Returns an unsigned short data type from the stream.

DatalnputStream::read_ushort_array()

// IDL
void read ushort array(

Orbix CORBA Programmer’s Reference: Java 79

inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read ushort array(

org.omg.CORBA.UShortSegHolder seq,
int offset,
int length);

Reads an array of unsigned short data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_Value()

// IDL
ValueBase read Value () ;

// Java
java.io.Serializable read value() ;

Returns a value type from the stream.

DatalnputStream::read_wchar()

// IDL
wchar read wchar () ;

// Java
char read wchar() ;

Returns a wchar data type from the stream.

DatalnputStream::read_wchar_array()

// IDL
void read wchar array (

inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read wchar array (

org.omg.CORBA.WCharSegHolder seq,
int offset,
int length);

Reads an array of wchar data from the stream.

Parameters

seq The sequence into which the data is placed.

80 Orbix CORBA Programmer’s Reference: Java

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_wstring()

// IDL
wstring read wstring() ;

// Java
java.lang.String read wstring() ;

Returns a wstring data type from the stream.

Orbix CORBA Programmer’s Reference: Java 81

82 Orbix CORBA Programmer’s Reference: Java

CORBA::DataOutputStream Value
Type

The DataOutputStream value type is a stream used by marshal () for
marshaling an application’s custom value type. You use the
DataOutputStream operations in your implementation of marshal ()
to write specific types of data to the stream, as defined in the cus-
tom value type. The stream takes care of breaking the data into
chunks if necessary. The IDL code is as follows:

//IDL in module CORBA
abstract valuetype DataOutputStream {

void write any(in any value);
void write boolean(in boolean value) ;
void write char(in char value);
void write wchar(in wchar value) ;
void write octet(in octet value);
void write short (in short value);
void write ushort(in unsigned short value);
void write long(in long value);
void write ulong(in unsigned long value) ;
void write longlong(in long long value) ;
void write ulonglong(in unsigned long long value) ;
void write float(in float value);
void write double(in double value) ;
void write string(in string value);
void write wstring(in wstring value) ;
void write Object(in Object value);
void write Value(in ValueBase value) ;
void write TypeCode(in TypeCode value) ;
void write any array(

in AnySeq seq,

in unsigned long offset,

in unsigned long length) ;
void write boolean array (

in BooleanSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write char array(

in CharSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write wchar array(

in WcharSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write octet array(

in OctetSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write short array(

in ShortSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ushort array(

in UShortSeq seq,

in unsigned long offset,

Orbix CORBA Programmer’s Reference: Java 83

in unsigned long length) ;
void write long array (

in LongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ulong array (

in ULongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ulonglong array (

in ULonglLongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write longlong array (

in LonglongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write float array(

in FloatSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write double array (

in DoubleSeq seq,

in unsigned long offset,

in unsigned long length) ;

Exceptions

MARSHAL An inconsistency is detected for any operations.

See Also CORBA: : CustomMarshal
CORBA: :DataInputStream

DataOutputStream::write_any()

// IDL
void write any(
in any value

)i

// Java
void write any(org.omg.CORBA.Any val);

Writes an any data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_any_array()

// IDL
void write any array(

in AnySeq seq,

in unsigned long offset,

in unsigned long length
)i

84 Orbix CORBA Programmer’s Reference: Java

// Java
void write any array(org.omg.CORBA.Any[] buf,

int offset, int len);

Writes an array of any data to the stream.

Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_boolean()
// IDL
void write boolean (
in boolean value
)i
// Java
void write boolean(boolean wval) ;
Writes a boolean data type to the stream.
Parameters
value The value written to the stream.
DataOutputStream::write_boolean_array()
// IDL
void write boolean array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write boolean array(boolean[] buf, int offset, int len);
Writes an array of boolean data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_char()

// IDL
void write char(

in char value

)i

// Java
void write char(char val);

Writes a char data type to the stream.

Orbix CORBA Programmer’s Reference: Java 85

Parameters

Parameters

Parameters

Parameters

value The value written to the stream.

DataOutputStream::write_char_array()

// IDL
void write char array(

in CharSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write char array(char[] buf, int offset, int len);

Writes an array of char data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_double()

// IDL
void write double (

in double value

)i

// Java
void write double(double val);

Writes a double data type to the stream.

value The value written to the stream.

DataOutputStream::write_double_array()

// IDL
void write double array(

in DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write double array(double[] buf, int offset, int len);

Writes an array of double data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

86 Orbix CORBA Programmer’s Reference: Java

DataOutputStream::write_float()

// IDL
void write float (

in float value

)i

// Java
void write float(float val);

Writes a float data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_float_array()
// IDL
void write float array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write float_array(float[] buf, int offset, int len);
Writes an array of float data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_long()
// IDL
void write_ long(
in long value
)i
// Java
void write long(int val);
Writes a long data type to the stream.
Parameters

value The value written to the stream.

DataOutputStream::write_long_array()

// IDL
void write long array (

in LongSeq sedq,

in unsigned long offset,

in unsigned long length
)i

Orbix CORBA Programmer’s Reference: Java 87

Parameters

Parameters

Parameters

// Java
void write long array(int[] buf, int offset, int len);

Writes an array of long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_longlong()

// IDL
void write longlong (

in long long value

)i

// Java
void write longlong(long val);

Writes a long long data type to the stream.

value The value written to the stream.

DataOutputStream::write_longlong_array()

// IDL
void write longlong array (

in LonglLongSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write longlong array(long[] buf, int offset, int len);

Writes an array of long long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_Object()

// IDL
void write Object (

in Object value

)i

// Java
void write objref (org.omg.CORBA.Object val);

Writes an Object data type (object reference) to the stream.

88 Orbix CORBA Programmer’s Reference: Java

Parameters

value The value written to the stream.

DataOutputStream::write_octet()

// IDL
void write octet (

in octet value

)i

// Java
void write octet (byte val);

Writes an octet data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_octet_array()
// IDL
void write octet array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write octet array(byte[] buf, int offset, int len);
Writes an array of octet data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_short()
// IDL
void write_ short (
in short value
)i
// Java
void write short (short val);
Writes a short data type to the stream.
Parameters

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 89

DataOutputStream::write_short_array()

// IDL
void write short array(

in ShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write short array(short[] buf, int offset, int len);

Writes an array of short data to the stream.
Parameters
seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_string()

// IDL
void write string(
in string value

)i

// Java
void write string(java.lang.String val);

Writes a string data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_TypeCode()

// IDL
void write TypeCode (

in TypeCode value
)i

// Java
void write TypeCode(org.omg.CORBA.TypeCode val);

Writes a TypeCode data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_ulong()

// IDL
void write ulong (

in unsigned long value

)i

// Java
void write ulong(int val);

90 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

Parameters

Parameters

Writes an unsigned long data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulong_array()

// IDL
void write ulong array (

in ULongSeq seq,

in unsigned long offset,

in unsigned long length
)

// Java
void write ulong array(int[] buf, int offset, int len);

Writes an array of unsigned long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_ulonglong()

// IDL
void write ulonglong (

in unsigned long long value

)i

// Java
void write ulonglong(long val);

Writes an unsigned long long data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulonglong_array()

// IDL
void write ulonglong array (

in ULongLongSeq seq,

in unsigned long offset,

in unsigned long length
)i

// Java
void write ulonglong array(long[] buf, int offset, int len);

Writes an array of unsigned long long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.

Orbix CORBA Programmer’s Reference: Java 91

Parameters

Parameters

Parameters

length The number of data items to write.

DataOutputStream::write__ushort()

// IDL
void write ushort (

in unsigned short value

)i

// Java
void write ushort (short val);

Writes an unsigned short data type to the stream.

value The value written to the stream.

DataOutputStream::write_ushort_array()

// IDL
void write ushort array(

in UShortSeq seq,

in unsigned long offset,

in unsigned long length
)i

// Java
void write ushort array(short[] buf, int offset, int len);

Writes an array of unsigned short data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_Value()

// IDL
void write Value(

in ValueBase value

)i

// Java
void write value(java.io.Serializable vb);

Writes a value type to the stream.

value The value written to the stream.

DataOutputStream::write_wchar()

// IDL
void write wchar (

92 Orbix CORBA Programmer’s Reference: Java

in wchar value

)

// Java
void write wchar(char val);

Writes a wchar data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_wchar_array()
// IDL
void write wchar array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write wchar array(char[] buf, int offset, int len);
Writes an array of wchar data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_wstring()
// IDL
void write wstring(
in wstring value
)i
// Java
void write wstring(java.lang.String val);
Writes a wstring data type to the stream.
Parameters

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 93

94 Orbix CORBA Programmer’s Reference: Java

CORBA::DomainManager

Interface

The DomainManager interface provides an operation to find the
Policy objects associated with a policy domain. Each policy
domain includes one policy domain manager object
(DomainManager). The DomainManager has associated with it the pol-
icy objects for that domain and it records the membership of the
domain.

// IDL in CORBA Module
interface DomainManager {
Policy get domain policy(
in PolicyType policy type

)i
}i

A policy domain is a set of objects with an associated set of policies.
These objects are the policy domain members. The policies represent
the rules and criteria that constrain activities of the objects of the
policy domain. Policy domains provide a higher granularity for pol-
icy management than an individual object instance provides.

When a new object reference is created, the ORB implicitly associ-
ates the object reference (and hence the object that it is associ-
ated with) with one or more policy domains, thus defining all the
policies to which the object is subject. If an object is simultane-
ously a member of more than one policy domain, it is governed by
all policies of all of its domains.

The DomainManager does not include operations to manage domain
membership, structure of domains, or to manage which policies
are associated with domains. However, because a DomainManager iS
a CORBA object, it has access to the CORBA: :Object interface,
which is available to all CORBA objects. The object interface
includes the following related operations:

get domain managers () allowsyour applicationsto retrieve the
domain managers and hence the security and other policies applicable to
individual objects that are members of the policy domain.

Y ou can a'so obtain an object’spolicy using _get policy().

DomainManager::get_domain_policy()

Policy get domain policy (
in PolicyType policy type

)i

// Java

org.omg.CORBA.Policy get domain policy(
int policy type

)i

Returns a reference to the policy object of the specified policy type
for objects in this policy domain.

Orbix CORBA Programmer’s Reference: Java 95

Parameters

policy type The type of policy for objects in the domain which the
application wants to administer.

There may be several policies associated with a domain, with a
policy object for each. There is at most one policy of each type
associated with a policy domain. The policy objects are thus
shared between objects in the domain, rather than being associ-
ated with individual objects. Consequently, if an object needs to
have an individual policy, then it must be a singleton member of a
policy domain.

Exceptions

INV_POLICY The value of policy type is not valid either because the
specified type is not supported by this ORB or because
a policy object of that type is not associated with this
object.

See Also CORBA::Policy
CORBA: :Object:: get domain managers ()
CORBA: :Object:: get policy ()

96 Orbix CORBA Programmer’s Reference: Java

CORBA::EnumbDef Interface

See Also

Interface Enumbef describes an IDL enumeration definition in the
interface repository.

// IDL in module CORBA.

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

}i

The inherited operation describe () is also described.

EnumbDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which TypedefDef inherits), describe ()
returns a Description. The DefinitionKind for the description’s kind
member is dk_Enum. The value member is an any whose TypeCode is
_tc_TypeDescription and whose value is a structure of type
TypeDescription. The type field of the struct gives the TypeCode of
the defined enumeration.

CORBA: : TypedefDef : :describe ()

EnumbDef::members Attribute

// IDL
attribute EnumMemberSeq members;

// Java
java.lang.String[] members() ;

void members (java.lang.String[] val);

Returns or changes the enumeration’s list of identifiers (its set of
enumerated constants).

Orbix CORBA Programmer’s Reference: Java 97

98 Orbix CORBA Programmer’s Reference: Java

CORBA::Environment Class

The Environment class provides a way to handle exceptions in situ-
ations where true exception-handling mechanisms are unavailable
or undesirable.

For example, in the DIl exceptions raised by remote invocation
are stored in an Environment member variable in the Request oObject
after the invocation returns. DIl clients should test the value of
this Environment variable by calling the env() method on the
Request object. If the returned java.lang.Exception iS null, NO
exception was raised. If it is not null, the returned exception
should be examined and acted on in an appropriate manner.

// IDL

pseudo interface Environment {
attribute exception exception;
void clear() ;

}i

// Java

package org.omg.CORBA;

abstract public class Environment {
abstract public void clear() ;
public abstract void exception (

java.lang.Exception except) ;

public abstract java.lang.Exception exception() ;

}

See Also CORBA::ORB:.create environment ()

Environment::clear()

//Java
abstract public void clear();

Deletes the Exception, if any, contained in the Environment. This is
equivalent to passing zero to exception(). It is not an error to call
clear () on an Environment that holds no exception.

See Also CORBA::Environment::exception ()

Environment::exception()

// Java

public abstract java.lang.Exception exception() ;

Extracts the exception contained in the Environment object.

//Java
public abstract void exception(java.lang.Exception except) ;

Sets the exception member variable in the Environment object to except.

Parameters
except The Exception assigned to the Environment The
Environment does not copy the parameter but it

assumes ownership of it. The Exception must be
dynamically allocated.

Orbix CORBA Programmer’s Reference: Java 99

See Also CORBA::Environment::clear ()

100 Orbix CORBA Programmer’s Reference: Java

CORBA::Exception Class

Details of this class can be found in the CORBA specification. The
C++ Language Mapping document provides the following explana-
tion of the CORBA: :Exception class:

// C++
class Exception
{

public:

virtual ~Exception() ;

virtual void raise() const = 0;

virtual const char * name() const;

virtual const char * rep id() const;
i
The Exception base class is abstract and may not be instantiated
except as part of an instance of a derived class. It supplies one
pure virtual function to the exception hierarchy: the raise() func-
tion. This function can be used to tell an exception instance to
throw itself so that a catch clause can catch it by a more derived

type.
Each class derived from Exception implements raise() as follows:

// C++
void SomeDerivedException:: raise() const

{
}

For environments that do not support exception handling, please
refer to Section 1.42.2, "Without Exception Handling," on page
1-169 of the CORBA specification for information about the
_raise() function.

throw *this;

The name() function returns the unqualified (unscoped) name of
the exception. The rep id() function returns the repository ID of
the exception.

Orbix CORBA Programmer’s Reference: Java 101

102 Orbix CORBA Programmer’s Reference: Java

CORBA::ExceptionDef Interface

See Also

See Also

See Also

Interface ExceptionDef describes an IDL exception in the interface
repository. It inherits from interface Contained and Container.

// IDL in module CORBA.

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

}i

The inherited operation describe () is also described.

CORBA: : Contained
CORBA: :Container

ExceptionDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description.

The DefinitionKind for the kind member of this structure is
dk_Exception. The value member is an any whose TypeCode is
_tc ExceptionDescription and whose value is a structure of type
ExceptionDescription.

The type field of the ExceptionDescription structure gives the
TypeCode of the defined exception.

CORBA: :Contained: :describe ()
CORBA: : TypeCode

ExceptionDef::members Attribute

// IDL
attribute StructMemberSeq members;

// Java
org.omg.CORBA. StructMember [] members () ;

void members (org.omg.CORBA.StructMember [] val);

In a sequence of structMember structures, the members attribute
describes the exception’s members.

The members attribute can be modified to change the structure’s
members.

CORBA: : StructDef
CORBA: : ExceptionDef: : type

ExceptionDef::type Attribute

// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type() ;

Orbix CORBA Programmer’s Reference: Java 103

The type of the exception (from which the definition of the exception
can be understood). The TypeCode kind for an exception is tk_except.

See Also CORBA: : TypeCode
CORBA: : ExceptionDef : :members

104 Orbix CORBA Programmer’s Reference: Java

CORBA::ExceptionList Class

See Also

Parameters

Parameters

An ExceptionList object allows an application to provide a list of
TypeCodes for all application-specific (user-defined) exceptions that
may result when a dynamic invocation Request is invoked. This
server-less ExceptionList object allows the ORB to avoid poten-
tially expensive interface repository lookups for the exception
information during a request.

// PIDL
pseudo interface ExceptionList {
readonly attribute unsigned long count;
void add(in TypeCode exc) ;
TypeCode item(in unsigned long index) raises (Bounds) ;
void remove (in unsigned long index) raises (Bounds) ;

bi

CORBA:IObject:: create request ()
CORBA: :Request : :exceptions
CORBA: :ORB: :create exception list ()

ExceptionList::add()

// Java
abstract public void add(org.omg.CORBA.TypeCode exc) ;

Adds a TypeCode to the exception list.

exc The TypeCode to be added to the list. Should be a Type-
Code for an exception.

ExceptionList::count()

// Java
abstract public int count () ;

Returns the number of items in the exception list.

ExceptionList::item()
// Java

abstract public org.omg.CORBA.TypeCode item(int index)
throws org.omg.CORBA.Bounds;

Returns the exception item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ExceptionList.

index The indexed location of the desired item.

Orbix CORBA Programmer’s Reference: Java 105

ExceptionList::remove()

// Java
abstract public void remove (int index)

throws org.omg.CORBA.Bounds;

Removes from the exception list the item at the indexed location.
Parameters

index The indexed location of the desired item.

106 Orbix CORBA Programmer’s Reference: Java

CORBA::FixedDef Interface

The FixedDef interface describes an IDL fixed-point type in the
interface repository. A fixed-point decimal literal consists of an
integer part, a decimal point, a fraction part, and a 4 or D.

// IDL in module CORBA.

interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

i
The inherited IDLType attribute is a tk_fixed TypeCode, which
describes a fixed-point decimal number.

See Also CORBA::Repository::create fixed()

FixedDef::digits Attribute

// IDL
attribute unsigned short digits;

// Java
short digits();

void digits(short wval);

The digits attribute specifies the total number of decimal digits in
the fixed-point number, and must be in the range of 1 to 31,
inclusive.

FixedDef::scale Attribute

// IDL
attribute short scale;

// Java
short scale() ;

void scale(short wval);

The scale attribute specifies the position of the decimal point.

Orbix CORBA Programmer’s Reference: Java 107

108 Orbix CORBA Programmer’s Reference: Java

CORBA.InterfaceDefPackage.Fulll
NnterfaceDescription Class

See Also

InterfaceDefPackage.FulllnterfaceDescription.
FulllnterfaceDescription()

// IDL
struct FullInterfaceDescription {

Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base interfaces;
TypeCode type;
boolean is abstract;

}i

// Java

public FullInterfaceDescription (
java.lang.String name,
java.lang.String id,
java.lang.String defined in,
java.lang.String version,
org.omg.CORBA.OperationDescription[] operations,
org.omg.CORBA.AttributeDescription[] attributes,
java.lang.String[] base interfaces,
org.omg.CORBA.TypeCode type,
boolean is abstract

)
Describes an interface including its operations and attributes.

name The name of the interface.

id An identifier of the interface.

defined in The identifier where the interface is defined.

version The version of the interface.

operations A sequence of interface operations.

attributes A sequence of interface attributes.

base interfaces A sequence of base interfaces from which this
interface is derived.

type The type of the interface.

is abstract True if the interface is an abstract one, false
otherwise.

CORBA::InterfaceDef:.describe interface ()

Orbix CORBA Programmer’s Reference: Java 109

110 Orbix CORBA Programmer’s Reference: Java

CORBA: . IDLType Interface

See Also

See Also

The abstract base interface 1DLType describes interface repository
objects that represent IDL types. These types include interfaces,
type definitions, structures, unions, enumerations, and others.
Thus, the IDLType is a base interface for the following interfaces:

ArrayDef
AliasDef
EnumDef
FixedDef
InterfaceDef
NativeDef
PrimitiveDef
SequenceDef
StringDef
StructDef
TypedefDef
UnionDef
ValueBoxDef
ValueDef
WstringDef

The IDLType provides access to the TypeCode describing the type,
and is used in defining other interfaces wherever definitions of IDL
types must be referenced.

// IDL in module CORBA.

interface IDLType : IRObject {
readonly attribute TypeCode type;

}i

CORBA: : IRObject
CORBA: : TypeCode
CORBA: : TypedefDef

IDLType::type Attribute

//IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type () ;

Encodes the type information of an interface repository object. Most
type information can also be extracted using operations and attri-
butes defined for derived types of the IDLType.

CORBA: : TypeCode

Orbix CORBA Programmer’s Reference: Java 111

112 Orbix CORBA Programmer’s Reference: Java

CORBA::InterfaceDef Interface

See Also

InterfaceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions,
operations, and attributes. it inherits from the interfaces
Container, Contained, and IDLType.

Calling get interface() on a reference to an object returns a ref-
erence to the InterfaceDef oObject that defines the CORBA object’s
interface.

// IDL in module CORBA.

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface
attribute InterfaceDefSeq base interfaces;

// read interface
boolean is a(
in RepositoryId interface id

)i

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base interfaces;

TypeCode type;

}i

FullInterfaceDescription describe interface() ;

// write interface
AttributeDef create attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create operation/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

)i
}; // End interface InterfaceDef
The inherited operation describe () is also described.

CORBA: : Contained
CORBA: :Container

Orbix CORBA Programmer’s Reference: Java 113

Exceptions

See Also

Parameters

CORBA: :Object:: get interface()

InterfaceDef::base_interfaces Attribute

// IDL
attribute InterfaceDefSeq base interfaces;

// Java
void base interfaces (org.omg.CORBA.InterfaceDef[] val);

The base_interfaces attribute lists in a sequence of InterfaceDef
objects the interfaces from which this interface inherits.

The inheritance specification of an InterfaceDef Object can be
changed by changing its base interfaces attribute.

BAD PARAM, The name of any definition contained in the interface
minor code 5 conflicts with the name of a definition in any of the base
interfaces.

CORBA: :Object:: get interface()

InterfaceDef::create_attribute()

// IDL
AttributeDef create attribute(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode
)i
// Java
org.omg.CORBA.AttributeDef create attribute(
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType type,
org.omg.CORBA.AttributeMode mode
)i

Creates a new AttributeDef within the target InterfacebDef. The
defined in attribute of the new AttributeDef is set to the target
InterfaceDef.

id The identifier of the new attribute. It is an error to specify
an id that already exists within the target object’s reposi-
tory.

name The name of the attribute. It is an error to specify a name

that already exists within this InterfaceDef.
version A version for this attribute.
type The 1DLType for this attribute.

mode Specifies whether the attribute is read only
(ATTR READONLY) Or read/write (ATTR NORMAL).

114 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

See Also

BAD PARAM,
minor code 2
BAD PARAM,

minor code 3

An object with the specified id already exists in the
repository.

An object with the same name already exists in this
InterfaceDef

CORBA: :AttributeDef

InterfaceDef::create_operation()

// IDL

OperationDef create operation/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

)i

// Java

org.omg.CORBA.OperationDef create operation(
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA.IDLType result,
org.omg.CORBA.OperationMode mode,
org.omg.CORBA.ParameterDescription[] params,
org.omg.CORBA.ExceptionDef [] exceptions,
java.lang.String[] contexts

)i

Creates a new OperationDef within the target InterfacebDef. The
defined in attribute of the new Operationbef is set to the target

InterfaceDef.

id

name

version
result

mode

params

exceptions

contexts

The identifier of the new attribute. It is an error to
specify an id that already exists within the target
object’s repository.

The name of the attribute. It is an error to specify a
name that already exists within this InterfaceDef.

A version number for this operation.
The return type for this operation.

Specifies whether this operation is normal (op_NORMAL)
or oneway (OP ONEWAY).

A sequence of ParameterDescription Structures that
describes the parameters to this operation.

A sequence of ExceptionDef objects that describes the
exceptions this operation can raise.

A sequence of context identifiers for this operation.

CORBA: :OperationDef

Orbix CORBA Programmer’s Reference: Java 115

CORBA: : ExceptionDef

InterfaceDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description. The
DefinitionKind for the kind member is dk_Interface. The value
member is an any whose TypeCode iS _tc_InterfaceDescription and
whose value is a structure of type InterfaceDescription.

See Also CORBA: : Contained: :describe ()

InterfaceDef::describe_interface()

// IDL
FullInterfaceDescription describe interface();

// Java
org.omg.CORBA. InterfaceDefPackage.FullInterfaceDescription

describe interface() ;

Returns a description of the interface, including its operations,
attributes, and base interfaces in a FullInterfaceDescription.

Details of exceptions and contexts can be determined via the
returned sequence of OperationDescription Structures.

See Also CORBA: : OperationDef: :describe ()
CORBA: :AttributeDef: :describe ()

InterfaceDef::FulllnterfaceDescription

See the “CORBA.InterfaceDefPackage.FullinterfaceDescription
Class”.

InterfaceDef::is_a()

// IDL
boolean is a(

in RepositoryId interface id

)i

// Java
boolean is a(java.lang.String interface id);

Returns TRUE if the interface is either identical to or inherits (directly
or indirectly) from the interface represented by interface id. Oth-
erwise the operation returns FALSE.

Parameters

interface id The repository ID of another InterfaceDef object.

116 Orbix CORBA Programmer’s Reference: Java

CORBA::IRODbject Interface

See Also

Exceptions

The interface IRObject is the base interface from which all inter-
face repository interfaces are derived.

// IDL in module CORBA.
interface IRObject {

readonly attribute DefinitionKind def kind;
void destroy () ;

}i

IRObject::def_kind Attribute

// IDL
readonly attribute DefinitionKind def kind;

// Java
org.omg.CORBA.DefinitionKind def kind() ;

Identifies the kind of an IFR object. For example, an OperationDef
object, describing an IDL operation, has the kind dk_Operation.

CORBA: :DefinitionKind

IRODbject::destroy()

// IDL
void destroy () ;

// Java
void destroy () ;

Deletes an IFR object. This also deletes any objects contained within
the target object.

BAD INV_ORDER With a minor value of:

2 destroy () is invoked on a Repository Or on a
PrimitiveDef Object

1 An attempt is made to destroy an object that would
leave the repository in an incoherent state.

Orbix CORBA Programmer’s Reference: Java 117

118 Orbix CORBA Programmer’s Reference: Java

CORBA::ModuleDef Interface

See Also

The interface ModuleDef describes an IDL module in the interface
repository. It inherits from the interfaces Container and Contained.

// IDL in module CORBA.
interface ModuleDef : Container, Contained { };

The inherited operation describe () is also described.

ModuleDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description.

The kind member is dk_Module. The value member is an any whose
TypeCode IS _tc ModuleDescription and whose value is a structure of
type ModuleDescription.

CORBA: :Contained: :describe ()

Orbix CORBA Programmer’s Reference: Java 119

120 Orbix CORBA Programmer’s Reference: Java

CORBA::NamedValue Class

A Namedvalue object describes an argument to a request or a return
value, especially in the DII, and is used as an element of an NVList
object. A Namedvalue object maintains an any value, parame-
ter-passing mode flags, and an (optional) name.

// IDL

pseudo interface Namedvalue {
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

i
See Also CORBA::NVList
CORBA: :ORB: :create named value ()

CORBA: :Request: :result ()
CORBA: :Object:: create request ()

NamedValue::flags()

// Java
abstract public int flags() ;

Returns the flags associated with the Namedvalue. Flags identify the
parameter passing mode for arguments of an NVList.

NamedValue::name()

// Java
abstract public java.lang.String name() ;

Returns the (optional) name associated with the NamedValue. This
is the name of a parameter or argument to a request.

NamedValue::value()

// Java
abstract public org.omg.CORBA.Any value() ;

Returns a reference to the org.omg.CORBA.Any Object contained in
the Namedvalue.

Orbix CORBA Programmer’s Reference: Java 121

122 Orbix CORBA Programmer’s Reference: Java

CORBA::NativeDef Interface

See Also

The interface NativeDef describes an IDL native type in the inter-
face repository. It inherits from the interface TypedefDef. The
inherited type attribute is a tk native TypeCode that describes the
native type.

// IDL in module CORBA

interface NativeDef : TypedefDef {};

CORBA::Container::create native ()

Orbix CORBA Programmer’s Reference: Java 123

124 Orbix CORBA Programmer’s Reference: Java

CORBA::NVLiIst Class

See Also

Parameters

See Also

An NVList is a pseudo-object used for constructing parameter lists.
It is a list of Namedvalue elements where each Namedvalue describes
an argument to a request.

The Namedvalue and NVList types are used mostly in the DIl in the
request operations to describe arguments and return values. They
are also used in the context object routines to pass lists of prop-

erty names and values. The NvList is also used in the DSI opera-
tion ServerRequest: :arguments () .

The nvList class is partially opaque and may only be created by
using ORB: :create list (). The NvList class is as follows:

// IDL
pseudo interface NVList {
readonly attribute unsigned long count;
NamedValue add(in Flags flags) ;
NamedValue add item(in Identifier item name, in Flags flags);
NamedValue add value(in Identifier item name,
in any val, in Flags flags);
NamedValue item(in unsigned long index) raises (Bounds) ;
void remove (in unsigned long index) raises (Bounds) ;

}i

CORBA::NamedValue
CORBA: :ORB:create list()
CORBA: :Object:: create request ()

NVList::count()

abstract public int count () ;

Returns the number of elements in the list.

NVList::add()

// Java
abstract public org.omg.CORBA.NamedValue add(int flgs);

Creates an unnamed value, initializes only the flags, and adds it to
the list. The new Namedvalue is returned.

flags

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

CORBAIINVList:ladd item()

CORBA: :NVList::add value()

Orbix CORBA Programmer’s Reference: Java 125

Parameters

See Also

Parameters

See Also

Parameters

NVList::add_item()

// Java
abstract public org.omg.CORBA.NamedValue add item(

java.lang.String item name, int flgs);

Creates and returns a Namedvalue with name and flags initialized,
and adds it to the list.

item name Name of item.
flgs
The reference count of the returned Namedvalue pseudo object is

not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

CORBA::NVList::add()
CORBA: :NVList::add value()

NVList::add_value()

// Java
abstract public org.omg.CORBA.NamedValue add value (

java.lang.String item name,
org.omg.CORBA.Any val, int flgs);

Creates and returns a Namedvalue with name, value, and flags
initialized and adds it to the list.

item name Name of item.
value Value of item.
flags

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

CORBA:I:NVList::add ()
CORBA: :NVList::add item()

NVList::item()

// Java
abstract public org.omg.CORBA.NamedValue item(int index)

throws org.omg.CORBA.Bounds;

Returns the Namedvalue list item at the given index. The first item is
at index 0. This method can be used to access existing elements in
the list.

index Index of item.

126 Orbix CORBA Programmer’s Reference: Java

NVList::remove()
// Java

abstract public void remove (int index)
throws org.omg.CORBA.Bounds;

Removes the item at the given index. The first item is at index O.

Parameters

index Index of item

Orbix CORBA Programmer’s Reference: Java 127

128 Orbix CORBA Programmer’s Reference: Java

CORBA::ODbject Class

The object class is the base class for all normal CORBA objects.
This class has some common methods that operate on any CORBA
object. These operations are implemented directly by the ORB, not
passed on to your object’s implementation.

On the client side, the methods of this class are called on a proxy
(unless collocation is set). On the server side, they are called on
the real object.

Table 4 shows the methods provided by the CORBA: :Object class:

Table 4: Methods of the Object Class

Manage Object References Create Requests for the DII

duplicate () create request ()

hash () request ()

is a() - -

is equivalent () Access Information in the
non existent () IFR

release ()

get interface ()

Manage Policies and
Domains

get domain managers ()
get policy()

// IDL
interface Object {
boolean is nil();
Object duplicate() ;
void release();
ImplementationDef get implementation();
InterfaceDef get interface();
boolean is a(in string logical type id);
boolean non existent() ;
boolean is equivalent (in Object other object);
unsigned long hash (in unsigned long maximum) ;
void create request (
in Context ctx,
in Identifier operation,
in NVList arg list,
in NamedValue result,
out Request request,
in Flags req flags
)i
void create request2 (
in Context ctx,
in Identifier operation,
in NVList arg list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,

Orbix CORBA Programmer’s Reference: Java 129

out Request request,
in Flags req flags
)
Policy ptr get policy(in PolicyType policy type);
DomainManagerList get domain managers() ;
Object set policy overrides (
in PolicyList policies,
in SetOverrideType set or add
)

// IDL Additions from CORBA Messaging
Policy get policy(
in PolicyType type
)i
Policy get client policy(
in PolicyType type
) ;
Object set policy overrides (
in PolicyList policies,
in SetOverrideType set add

raises (InvalidPolicies) ;
Policylist get policy overrides (
in PolicyTypeSeq types
)i
boolean validate connection (
out PolicyList inconsistent policies
) ;
}i
// Java
package org.omg.CORBA;
public interface Object {
boolean is a(String Identifier);
boolean is equivalent (Object that) ;
boolean non existent();
int hash(int maximum) ;
org.omg.CORBA.Object duplicate();
void release();
org.omg.CORBA.Object get interface def();
Request request (String s);
Request create request (Context ctx,
String operation,
NVList arg list,
NamedValue result) ;
Request create request (Context ctx,
String operation,
NVList arg list,
NamedValue result,
ExceptionList exclist,
ContextList ctxlist);
Policy get policy(int policy type) ;
DomainManager[] get domain managers() ;
org.omg.CORBA.Object set policy override (
Policy[] policies,
SetOverrideType set add) ;

130 Orbix CORBA Programmer’s Reference: Java

Object::_create_request()

// Java
Request create request (Context ctx,

String operation,
NVList arg list,
NamedValue result) ;

Request create request (Context ctx,

String operation,

NVList arg list,

NamedValue result,

ExceptionList exclist,

ContextList ctxlist);
These construct a CORBA: :Request Object. These methods are part
of the DIl and create an ORB request on an object by constructing
one of the object’s operations.

See request () for a simpler alternative way to create a Request.

The only implicit object reference operations allowed with the
_create request () call include:

non existent ()
is al()
get interface ()

Exceptions

BAD PARAM The name of an implicit operation that is not allowed is
passed to create request ()—for example,
_is equivalent is passed tO0 create request () as the
operation parameter.

See Also CORBA::Object:: request ()
CORBA: :Request
CORBA: :Request : :arguments ()
CORBA: :Request: :ctx ()
CORBA: :NVList
CORBA: :NamedValue

Object:: _duplicate()

// Java
org.omg.CORBA.Object duplicate();

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

Object::_get_domain_managers()

DomainManager[] get domain managers() ;

Returns the list of immediately enclosing domain managers of this
object. At least one domain manager is always returned in the list
since by default each object is associated with at least one domain
manager at creation.

Orbix CORBA Programmer’s Reference: Java 131

See Also

See Also

Parameters

Exceptions

See Also

Parameters

The get domain managers() method allows applications such as
administration services to retrieve the domain managers and
hence the security and other policies applicable to individual
objects that are members of the domain.

CORBA: :DomainManager

Object:: _get_interface()

// Java
InterfaceDef get interface();

Returns a reference to an object in the interface repository that
describes this object’s interface.

CORBA..InterfaceDef

Object::_get_policy()

// Java
Policy get policy(int policy type);

Returns a reference to the policy object of the type specified by the
policy type parameter.

policy type The type of policy to get.

_get_policy() returns the effective policy which is the one that
would be used if a request were made. Note that the effective pol-
icy may change from invocation to invocation due to transparent
rebinding. Invoking non existent () on an object reference prior
to get policy() ensures the accuracy of the returned effective
policy.

Quality of Service (see “Quality of Service Framework™) is man-
aged on a per-object reference basis with _get policy().

INV_POLICY The value of policy type is not valid either because
the specified type is not supported by this ORB or
because a policy object of that type is not associated
with this object.

CORBA::Object:: non existent ()

Object::_hash()

// Java
int hash(int maximum) ;

Returns a hashed value for the object reference in the range
0...maximum.

maximum The maximum value that is to be returned from the
hash method.

132 Orbix CORBA Programmer’s Reference: Java

Use hash() to quickly guarantee that objects references refer to
different objects. For example, if _hash() returns the same hash
number for two object references, the objects might or might not
be the same, however, if the method returns different numbers for
object references, these object references are guaranteed to be
for different objects.

In order to efficiently manage large numbers of object references,
some applications need to support a notion of object reference
identity. Object references are associated with internal identifiers
that you can access indirectly by using hash(). The value of this
internal identifier does not change during the lifetime of the object
reference.

You can use hash() and is equivalent () to support efficient
maintenance and search of tables keyed by object references.
_hash() allows you to partition the space of object references into
sub-spaces of potentially equivalent object references. For exam-
ple, setting maximum to 7 partitions the object reference space into
a maximum of 8 sub-spaces (O - 7).

See Also CORBA::Object:: is equivalent ()

Object::_is_a()

// Java
boolean is a(String Identifier);

Returns 1 (true) if the target object is either an instance of the type
specified in logical type id or of a derived type of the type in
logical type id. If the target object is neither, it returns O (false).

Parameters

Identifier The fully scoped name of the IDL interface. This is
a string denoting a shared type identifier
(RepositoryId). Use an underscore (‘_’) rather than
a scope operator (::) to delimit the scope.

The ORB maintains type-safety for object references over the
scope of an ORB, but you can use this method to help maintaining
type-safety when working in environments that do not have com-
pile time type checking to explicitly maintain type safety.

Exceptions If _is a() cannot make a reliable determination of type compatibil-
ity due to failure, it raises an exception in the calling application
code. This enables the application to distinguish among the true,
false, and indeterminate cases.

See Also CORBA: :Object:: non existent ()

Object::_is_equivalent()

// Java
boolean is equivalent (Object that) ;

Returns 1 (true) if the object references definitely refer to the same
object. A return value of O (false) does not necessarily mean that
the object references are not equivalent, only that the ORB cannot
confirm that they reference the same object. Two objects are

Orbix CORBA Programmer’s Reference: Java 133

Parameters

See Also

Parameters

See Also

equivalent if they have the same object reference, or they both refer
to the same object.

other object An object reference of other object.

A typical application use of is equivalent () iS to match object ref-
erences in a hash table. Bridges could use the method to shorten
the lengths of chains of proxy object references. Externalization
services could use it to flatten graphs that represent cyclical rela-
tionships between objects.

CORBA: :Object:: is a()
CORBA: :Object:: hash()

Object:: _non_existent()

// Java
boolean non existent();

Returns 1 (true) if the object does not exist or returns O (false)
otherwise.

Normally you might invoke this method on a proxy to determine
whether the real object still exists. This method may be used to
test whether an object has been destroyed because the method
does not raise an exception if the object does not exist.

Applications that maintain state that includes object references,
(such as bridges, event channels, and base relationship services)
might use this method to sift through object tables for objects that
no longer exist, deleting them as they go, as a form of garbage
collection.

Object::_release()

// Java

void release();

Signals that the caller is done using this object reference, so internal
ORB resources associated with this object reference can be re-
leased. Note that the object implementation is not involved in this
operation, and other references to the same object are not affected.

Object:: _request()

Request _request (String operation) ;

Returns a reference to a constructed .Request on the target object.
This is the simpler form of create request ().

operation The name of the operation.

You can add arguments and contexts after construction using
Request : :arguments () and Request: :ctx().

CORBA: :Object:: create request ()
CORBA: :Request : :arguments ()

134 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

CORBA: :Request: :ctx ()

Returns true if the current effective policies for the object will allow
an invocation to be made. Returns false if the current effective
policies would cause an invocation to raise the system exception
INV_POLICY.

inconsistent policies If the current effective policies are incompat-
ible, This parameter contains those policies
causing the incompatibility. This returned list
of policies is not guaranteed to be exhaus-
tive.

If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the
binding is no longer valid, a rebind will be attempted regardless of
the setting of any rRebindpolicy override. This method is the only
way to force such a rebind when implicit rebinds are disallowed by
the current effective RebindPolicy.

The appropriate system exception is raised if the binding fails due
to some reason unrelated to policy overrides.

Orbix CORBA Programmer’s Reference: Java 135

136 Orbix CORBA Programmer’s Reference: Java

CORBA::OperationDef Interface

Interface operationDef describes an IDL operation that is defined
in an IDL interface stored in the interface repository.

One way you can use the OperationDef is to construct an NvList for
a specific operation for use in the Dynamic Invocation Interface.
For details see ORB: :create operation list().

// IDL in module CORBA.

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

i
The inherited operation describe () is also described.
See Also CORBA: : Contained

CORBA: :ORB: :create operation list ()
CORBA: : ExceptionDef

OperationDef::contexts Attribute

// IDL
attribute ContextIdSeq contexts;

// Java
java.lang.String[] contexts() ;

void contexts(java.lang.String[] wval);

The list of context identifiers specified in the context clause of the
operation.

OperationDef::exceptions Attribute

// IDL
attribute ExceptionDefSeq exceptions;

// Java
org.omg.CORBA.ExceptionDef [] exceptions() ;

void exceptions(org.omg.CORBA.ExceptionDef[] wval);
The list of exceptions that the operation can raise.

See Also CORBA: : ExceptionDef

OperationDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description.

Orbix CORBA Programmer’s Reference: Java 137

See Also

See Also

See Also

The DefinitionKind for the kind member of this structure is
dk_Operation. The value member is an any whose TypeCode is
_tc_OperationDescription and whose value is a structure of type
OperationDescription.

CORBA: : Contained: :describe ()
CORBA: : ExceptionDef

OperationDef::mode Attribute

// IDL
attribute OperationMode mode;

// Java
org.omg.CORBA.OperationMode mode () ;

void mode(org.omg.CORBA.OperationMode val);

Specifies whether the operation is normal (OpP_NORMAL) Or oneway
(OP_ONEWAY).

OperationDef::params Attribute

// IDL

attribute ParDescriptionSeq params;

// Java

org.omg.CORBA. ParameterDescription[] params () ;

void params(org.omg.CORBA.ParameterDescription([] val);

Specifies the parameters for this operation. It is a sequence of
structures of type parameterDescription.

The name member of the ParameterDescription structure provides
the name for the parameter. The type member identifies the
TypeCode for the parameter. The type def member identifies the
definition of the type for the parameter. The mode specifies
whether the parameter is an in (PARAM IN), an out (PARAM OUT) Or
an inout (PARAM INOUT) parameter. The order of the
ParameterDescriptions is significant.

CORBA: : TypeCode
CORBA: : IDLType

OperationDef::result Attribute

// IDL
readonly attribute TypeCode result;

// Java
org.omg.CORBA. TypeCode result () ;

The return type of this operation. The attribute result def contains
the same information.

CORBA: : TypeCode
CORBA: :OperationDef: :result def

138 Orbix CORBA Programmer’s Reference: Java

OperationDef::result_def Attribute

// IDL
attribute IDLType result def;

// Java
org.omg.CORBA.IDLType result def();

void result def(org.omg.CORBA.IDLType val);

Describes the return type for this operation. The attribute result
contains the same information.

Setting the result def attribute also updates the result attribute.

See Also CORBA: : IDLType
CORBA: :OperationDef: :result

Orbix CORBA Programmer’s Reference: Java 139

140 Orbix CORBA Programmer’s Reference: Java

CORBA::ORB Class

The ORB class provides a set of methods and data types that con-
trol the ORB from both the client and the server. See Table 5:

Table5: Methods and Types of the ORB Class

Object Reference Manipulation

ORB Operation and Threads

duplicate ()

list initial services()
nil ()

ObjectId type

ObjectIdList sequence
object to string()

resolve initial references ()

destroy ()
perform work ()
run ()
shutdown ()

work pending ()

ORB Policies and Services

string to object ()

create policy ()

Dynamic Invocation Interface

(DI

TypeCode Creation Methods

create abstract interface tc()
create alias tc()
create array tc()
create enum tc()
create exception tc()
create fixed tc()
create interface tc()
create native tc()
create recursive tc()
create sequence tc()
create string tc()
create struct tc()
create union tc()
create value box tc()
create value tc()
create wstring tc()

create environment ()

create exception list ()

create list()

create named value ()

create operation list ()

get next response ()

poll next response ()

send multiple requests deferred()
send multiple requests oneway ()

Value Type Factory Methods

lookup value factory()
register value factory()
unregister value factory()

There are also methods to manage dynamic any data types.
You initialize the ORB using ORB.init ().
The oRrB class is defined as follows:

//IDL

pseudo interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InconsistentTypeCode {};
exception InvalidName {};
string object to string (in Object obj);
Object string to object (in string str);

// Dynamic Invocation related operations
void create list (in long count, out NVList new list);
void create operation list (
in OperationDef oper,
out NVList new list);
void get default context (out Context ctx);

Orbix CORBA Programmer’s Reference: Java 141

void send multiple requests oneway (in RequestSeq req) ;
void send multiple requests deferred(in RequestSeq red);
boolean poll next response() ;

void get next response (out Request re();

// Service information operations
boolean get service information (

in ServiceType service type,

out ServiceInformation service information);
ObjectIdList list initial services ();

// Initial reference operation
Object resolve initial references (
in ObjectId identifier
) raises (InvalidName) ;

// Type code creation operations
TypeCode create struct tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members) ;
TypeCode create union tc (

in RepositoryId id,

in Identifier name,

in TypeCode discriminator type,

in UnionMemberSeq members) ;
TypeCode create enum tc (

in RepositorylId id,

in Identifier name,

in EnumMemberSeq members) ;
TypeCode create alias tc (

in RepositoryId id,

in Identifier name,

in TypeCode original type);
TypeCode create exception tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members) ;
TypeCode create interface tc (

in RepositoryId id,

in Identifier name) ;
TypeCode create string tc (in unsigned long bound) ;
TypeCode create wstring tc (in unsigned long bound) ;
TypeCode create fixed tc (

in unsigned short digits,

in short scale);
TypeCode create sequence tc (

in unsigned long bound,

in TypeCode element type) ;
TypeCode create recursive sequence tc (// deprecated

in unsigned long bound,

in unsigned long offset);
TypeCode create array tc (

in unsigned long length,

in TypeCode element type) ;
TypeCode create value tc (

in RepositoryId id,

in Identifier name,

in ValueModifier type modifier,

in TypeCode concrete base,

142 Orbix CORBA Programmer’s Reference: Java

in ValueMemberSeq members) ;
TypeCode create value box tc (

in RepositoryId id,

in Identifier name,

in TypeCode boxed type) ;
TypeCode create native tc (

in RepositoryId id,

in Identifier name);
TypeCode create recursive tc (

in RepositoryId id);
TypeCode create abstract interface tc (

in RepositoryId id,

in Identifier name);

// Thread related operations

boolean work pending() ;

void perform work () ;

void run() ;

void shutdown(in boolean wait for completion) ;
void destroy () ;

// Policy related operations
Policy create policy(
in PolicyType type,
in any val) raises (PolicyError) ;

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations
// Value factory operations
ValueFactory register value factory(

in RepositoryId id,

in ValueFactory factory) ;
void unregister value factory(in RepositoryId id);
ValueFactory lookup value factory(in RepositoryId id);

// Additional operations that only appear in the Java mapping
TypeCode get primitive tc(in TCKind tcKind) ;
ExceptionlList create exception list();
ContextList create context list();
Environment create environment () ;

Current get current () ;

Any create any() ;

OutputStream create output stream() ;

void connect (Object obj) ;

void disconnect (Object obj) ;

Object get value def (in String repid) ;

void (Object wrapper) ;

additional methods for ORB initialization go here, but only
appear in the mapped Java (seeSection 1.21.9, “ORB
Initialization) Java signatures

public static ORB init (Strings[] args, Properties props) ;
public static ORB init (Applet app, Properties props) ;
public static ORB init () ;

abstract protected void set parameters (String[] args,
java.util.Properties props) ;

abstract protected void set parameters(java.applet.Applet
app,

java.util.Properties props) ;

Orbix CORBA Programmer’s Reference: Java 143

// Java
package org.omg.CORBA;
public abstract class ORB
public abstract org.omg.CORBA.Object
string to object (String str);
public abstract String
object_to string(org.omg.CORBA.Object obj) ;

// Dynamic Invocation related operations
public abstract NVList create list(int count);

public NVList create operation list(
org.omg.CORBA.Object oper) ;

// oper must really be an OperationDef

public abstract NamedValue create named value (
String name, Any value, int flags);

public abstract ExceptionlList create exception list();

public abstract ContextList create context list();

public abstract Context get default context () ;

public abstract Environment create environment () ;

public abstract void send multiple requests oneway (
Request [] req) ;

public abstract void send multiple requests deferred(
Request [] req);

public abstract boolean poll next response() ;

public abstract Request get next response() throws
org.omg.CORBA.WrongTransaction;

// Service information operations

public boolean get service information (
short service type,
ServiceInformationHolder service info) {
throw new org.omg.CORBA.NO IMPLEMENT () ;

}

public abstract String[] list initial services();

// Initial reference operation

public abstract org.omg.CORBA.Object

resolve initial references (String object name)
throws org.omg.CORBA.ORBPackage.InvalidName;

// typecode creation
public abstract TypeCode create struct tc(
String id, String name, StructMember [] members) ;
public abstract TypeCode create union tc(
String id,
String name,
TypeCode discriminator type,
UnionMember [] members) ;
public abstract TypeCode create enum tc(
String id,
String name,
String[] members) ;
public abstract TypeCode create alias tc(
String id,
String name,
TypeCode original type);
public abstract TypeCode create exception tc(

144 Orbix CORBA Programmer’s Reference: Java

String id,

String name,

StructMember [] members) ;
public abstract TypeCode create interface tc(

String id, String name) ;
public abstract TypeCode create string tc(int bound) ;
public abstract TypeCode create wstring tc(int bound) ;
public TypeCode create fixed tc(

short digits,

short scale) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public abstract TypeCode create sequence tc(

int bound, TypeCode element type) ;

public abstract TypeCode create array tc(

int length, TypeCode element type);
public TypeCode create value tc(

String id,

String name,

short type modifier,

TypeCode concrete base,

ValueMember [] members) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create value box tc(

String id,

String name,

TypeCode boxed type) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create native tc(

String id,

String name) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create recursive tc(

String id) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create abstract interface tc(

String id,

String name) {

throw org.omg.CORBA.NO IMPLEMENT () ; }

// Thread related operations
public boolean work pending() {
throw new org.omg.CORBA.NO IMPLEMENT () ;
}
public void perform work() {
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void run()
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void shutdown (boolean wait for completion) {
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void destroy() {
throw new org.omg.CORBA.NO IMPLEMENT () ; }

// Policy related operations

public Policy create policy(short policy type, Any val)
throws org.omg.CORBA.PolicyError {
throw new org.omg.CORBA.NO IMPLEMENT () ; }

// additional methods for IDL/Java mapping
public abstract TypeCode get primitive tc(TCKind tcKind) ;

Orbix CORBA Programmer’s Reference: Java 145

public abstract Any create any() ;
public abstract org.omg.CORBA.portable.OutputStream
create output stream() ;

// additional static methods for ORB initialization
public static ORB init(
Strings[] args,
Properties props) ;
public static ORB init (
Applet app,
Properties props) ;
public static ORB init () ;
abstract protected void set parameters(
String[] args,
java.util.Properties props) ;
abstract protected void set parameters(
java.applet.Applet app,
java.util.Properties props) ;

}

package org.omg.CORBA 2 3;
public abstract class ORB extends org.omg.CORBA.ORB {
// always return a ValueDef or throw BAD PARAM if
// repid not of a value
public org.omg.CORBA.Object get value def(
String repid)
throws org.omg.CORBA.BAD PARAM {
throw new org.omg.CORBA.NO IMPLEMENT(); }

// Value factory operations
public org.omg.CORBA.portable.ValueFactory
register value factory(

String id,
org.omg.CORBA.portable.ValueFactory factory) {
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void unregister value factory(String id) {
throw new org.omg.CORBA.NO IMPLEMENT(); }

public org.omg.CORBA.portable.ValueFactory
lookup value factory(String id)
throw new org.omg.CORBA.NO IMPLEMENT(); }

public void set delegate(java.lang.Object wrapper) {
throw new org.omg.CORBA.NO IMPLEMENT () ;}

ORB::.create_abstract_interface_tc()

Returns a pointer to a new TypeCode Of Kind tk_abstract interface
representing an IDL abstract interface.

Parameters
id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within
its enclosing scope.
See Also CORBA. . TypeCode

146 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

CORBA. . TCKind

ORB::.create_alias_tc()

// Java
public abstract TypeCode create alias tc(

String id,

String name,

TypeCode original type
)i

Returns a pointer to a new TypeCode of kind tk _alias representing
an IDL alias.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

original type A pointer to the actual TypeCode object this alias rep-
resents.

CORBA..TypeCode
CORBA. . TCKind

ORB.create_any()

// Java
public abstract Any create any();

Creates a new empty Any.

ORB::.create_array_tc()

// Java
public abstract TypeCode create array tc(

int length,
TypeCode element type
)i

Returns a pointer to a new TypeCode of kind tk_array representing
an IDL array.

length The length of the array.
element_type The data type for the elements of the array.

CORBA..TypeCode
CORBA. . TCKind

Orbix CORBA Programmer’s Reference: Java 147

Parameters

See Also

Parameters

See Also

See Also

See Also

ORB::create_context_list()

void create context list (ContextList out list);
Creates an empty ContextList object for use with a DIl request. You

can add context strings to the list using ContextList::add () and then
pass the list as a parameter to Object:: create request ().

list A reference to the new ContextList.

CORBA::ContextList
CORBA: :Object:: create request ()

ORB::create_enum_tc()

// Java
public abstract TypeCode create enum tc(

String id,

String name,

EnumMember [] members
)i

Returns a pointer to a new TypeCode of kind tk_enum representing an
IDL enumeration.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of enumeration members.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_environment()

// Java
public abstract Environment create environment () ;

Gets a newly created Environment object.

CORBA: :Environment

ORB::create_exception_list()

// Java
public abstract ExceptionList create exception list();

Creates an empty ExceptionList object for use with a DIl request.
You can add user-defined exceptions to the list using
Exceptionlist::add() and then pass the list as a parameter to
Object:: create request ().

CORBA::ExceptionList
CORBA: :Object:: create request ()

148 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

Parameters

See Also

ORB::create_exception_tc()

// Java
public abstract TypeCode create exception tc(

String id,

String name,

StructMember [] members
)i

Returns a pointer to a new TypeCode of kind tk_except representing
an IDL exception.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of members.

CORBA..TypeCode
CORBA. . TCKind

ORB::create_fixed_tc()

Returns a pointer to a new TypeCode of kind tk_fixed representing
an IDL fixed point type.

digits The number of digits for the fixed point type.
scale The scale of the fixed point type.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_interface_ tc()

// Java
public abstract TypeCode create interface tc(

String id, String name

)i
Returns a pointer to a new TypeCode representing an IDL interface.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA. . TypeCode
CORBA. . TCKind

Orbix CORBA Programmer’s Reference: Java 149

Parameters

See Also

Parameters

See Also

Parameters

See Also

ORB::create_list()

// Java
public abstract NVList create list (int count) ;

Allocates space for an empty NvList of the size specified by count
to contain Namedvalue Objects. A list of Namedvalue Object can be used
to describe arguments to a request when using the Dynamic
Invocation Interface. You can add Namedvalue items to list using the
NVList::add item() routine.

count Number of elements anticipated for the new NvList.
This is a hint to help with storage allocation.

CORBAIINVList

CORBA. . NamedValue
CORBA..ORB..create operation list ()
CORBA. .Request ()

ORB::.create_named_value()

// Java

public abstract NamedValue create named value (
String name,
Any value,
int flags

)i

Creates Namedvalue Objects you can use as return value parameters
in the Object:. create request () method.

value A pointer to the Namedvalue oObject created. You must
release the reference when it is no longer needed, or
assign it to a Namedvalue var variable for automatic
management.

CORBA..NVList

CORBA. . NamedValue
CORBA!Any
CORBA..ORB..create list()

ORB::.create_native_tc()

Returns a pointer to a new TypeCode of kind tk native representing
an IDL native type.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA. . TypeCode
CORBA. . TCKind

150 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

ORB::.create_operation_list()

// Java
public abstract NVList create operation list(

OperationDef operation

)i

Creates an NVList initialized with the argument descriptions for the
operation specified in operation.

operation A pointer to the interface repository object describing
the operation.

Each element in the list is of type Namedvalue whose value member
(of type CORBA: Any) has a valid type that denotes the type of the
argument. The value of the argument is not filled in.

Use of this method requires that the relevant IDL file be compiled
with the -r option.

CORBAINVList

CORBA. .NamedValue

CORBA: . Any
CORBA..ORB..create list ()

ORB::create_output_stream()

// Java
public abstract

org.omg.CORBA.portable.OutputStream create output stream() ;

Creates a new org.omg.CORBA.portable.OutputStream into which
IDL method parameters can be marshalled during method invoca-
tion.

ORB::create_policy()

Returns a reference to a newly created Policy object.

type The policyType of the Policy object to be created.
value The value for the initial state of the policy object cre-
ated.

CORBA::Policy
CORBA: : PolicyType
CORBA: : PolicyErrorCode

ORB::create_recursive_tc()

Returns a pointer to a recursive TypeCode, wWhich serves as a place
holder for a concrete TypeCode during the process of creating type
codes that contain recursion. After the recursive TypeCode has been
properly embedded in the enclosing TypeCode, which corresponds to
the specified repository id, it will act as a normal TypeCode.

Orbix CORBA Programmer’s Reference: Java 151

Parameters

id The repository ID of the enclosing type for which the
recursive TypeCode is serving as a place holder.

Invoking operations on the recursive TypeCode before it has been
embedded in the enclosing TypeCode will result in undefined behav-
ior.

Examples The following IDL type declarations contains TypeCode recursion:

// IDL

struct foo {
long value;
sequence<foo> chain;

bi

valuetype V {
public V member;
}i

See Also CORBA: . TypeCode

ORB::create_sequence_tc()

// Java
public abstract TypeCode create sequence tc(

int bound,
TypeCode element type
)i

Returns a pointer to a new TypeCode of kind tk_sequence representing
an IDL sequence.

Parameters
bound The upper bound of the sequence.

element_type The data type for the elements of the sequence.

See Also CORBA. . TypeCode
CORBA. . TCKind

ORB::create_string_tc()

// Java
public abstract TypeCode create string tc(int bound) ;

Returns a pointer to a new TypeCode of kind tk_string representing
an IDL string.

Parameters

bound The upper bound of the string.

See Also CORBA: . TypeCode
CORBA. . TCKind

152 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

Parameters

ORB::create_struct_tc()

// Java
public abstract TypeCode create struct tc(

String id,

String name,

StructMember [] members
)i

Returns a pointer to a new TypeCode of kind tk_struct representing
an IDL structure.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of structure members.

CORBA..TypeCode
CORBA. . TCKind

ORB::create_union_tc()

// Java
public abstract TypeCode create union tc(

String id,
String name,
TypeCode discriminator type,
UnionMember [] members
)i

Returns a pointer to a TypeCode of kind tk_union representing an IDL
union.

id The repository ID that globally identifies the
TypeCode Object.

name The simple name identifying the TypeCode
object within its enclosing scope.

discriminator type The union discriminator type.
members The sequence of union members.

CORBA. . TypeCode
CORBA. . TCKind

ORB::.create_value box_ tc()

Returns a pointer to a new TypeCode of kind tk_value box represent-
ing an IDL boxed value.

id The repository ID that globally identifies the TypeCode
object.

Orbix CORBA Programmer’s Reference: Java 153

name The simple name identifying the TypeCode object within
its enclosing scope.

original type A pointer to the original TypeCode object this boxed
value represents.

See Also CORBA.: . TypeCode
CORBA. : TCKind

ORB::.create_value_tc()

Returns a pointer to a TypeCode of kind tk_value representing an IDL

value type.
Parameters
id The repository ID that globally identifies the
TypeCode Object.
name The simple name identifying the TypeCode object
within its enclosing scope.
type modifier A value type modifier.
concrete base A TypeCode for the immediate concrete value type
base of the value type for which the TypeCode is
being created. If the value type does not have a
concrete base, use a nil TypeCode reference.
members The sequence of value type members.
See Also CORBA. . TypeCode
CORBA. . TCKind
ORB::.create_wstring_tc()
// Java
public abstract TypeCode create wstring tc(int bound) ;
Returns a pointer to a new TypeCode of kind tk_wstring representing
an IDL wide string.
Parameters
bound The upper bound of the string.
See Also CORBA. . TypeCode

CORBA: : TCKind

ORB::destroy()

void destroy () ;

This thread operation destroys the ORB so that its resources can be
reclaimed by the application.

154 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

See Also

If destroy () is called on an ORB that has not been shut down (see
shutdown ()) it will start the shut down process and block until the
ORB has shut down before it destroys the ORB. For maximum por-
tability and to avoid resource leaks, applications should always call
shutdown () and destroy() on all ORB instances before exiting.

After an ORB is destroyed, another call to orRB init () with the
same ORB ID will return a reference to a newly constructed ORB.

BAD INV ORDER, An application calls destroy() in a thread that is cur-
minor code 3 rently servicing an invocation because blocking would
result in a deadlock.

OBJECT NOT EXIAn operation is invoked on a destroyed ORB reference.
ST

The exception is raise if

CORBA::ORB::run ()
CORBA: :ORB: : shutdown ()

ORB::_duplicate()

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

ORB::get_default_context()

// Java
public abstract Context get default context();

Obtains a CORBA: : Context Object representing the default context of
the process.

context The default context of the process.

CORBA..Context
CORBA. .NVList

ORB::get_next _response()

// Java
public abstract Request get next response () ;

Gets the next response for a request that has been sent.

You can call get_next response () successively to determine the
outcomes of the individual requests from

send multiple requests deferred() calls. The order in which
responses are returned is not necessarily related to the order in
which the requests are completed.

Orbix CORBA Programmer’s Reference: Java 155

Exceptions

See Also

See Also

WrongTransaction The thread invoking this method has a non-null
transaction context that differs from that of the
request and the request has an associated trans-
action context.

CORBA..ORB..send multiple requests deferred ()
CORBA. .Request..get response ()

CORBA. .Request..send deferred ()
CORBA..ORB..poll next response ()

ORB::get_primitive_tc()

// Java

public abstract TypeCode get primitive tc(TCKind tcKind) ;
Retrieves the TypeCode object that represents the given primitive
IDL type.

ORB.init()

public static ORB init (Strings[] args, Properties props) ;
Creates a new ORB instance for a standalone application.

public static ORB init (Applet app, Properties props) ;
Creates a new ORB instance for an applet.

public static ORB init () ;
Returns the ORB singleton object.

ORB::list_initial_services()

public abstract String[] list initial services();

Returns a sequence of ObjectId strings, each of which names a
service provided by Orbix. This method allows your application to
determine which objects have references available. Before you can
use some services such as the naming service in your application
you have to first obtain an object reference to the service.

The ObjectIdList may include the following names:

DynAnyFactory
IT Configuration

InterfaceRepository
NameService
ORBPolicyManager
POACurrent

PSS

RootPOA
SecurityCurrent
TradingService
TransactionCurrent

CORBA::ORB:.:resolve initial references()

156 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

Note:

See Also

ORB::lookup_value_factory()

Returns a pointer to the factory method.

id A repository ID that identifies a value type factory
method.

Your application assumes ownership of the returned reference to
the factory. When you are done with the factory, invoke
ValueFactoryBase:: remove ref () once on that factory.

CORBA::ValueFactory
CORBA: :ORB: :register value factory()
CORBA: :ORB: :unregister value factory ()

ORB::object_to_string()

public abstract String object to string(
org.omg.CORBA.Object obj

)i

Returns a string representation of an object reference. An object
reference can be translated into a string by this method and the

resulting value stored or communicated in whatever ways strings
are manipulated.

obj Object reference to be translated to a string.

Use string to object () to translate the string back to the corre-
sponding object reference.

A string representation of an object reference has the prefix I0R:
followed by a series of hexadecimal octets. The hexadecimal
strings are generated by first turning an object reference into an
interoperable object reference (IOR), and then encapsulating the IOR
using the encoding rules of common data representation (CDR). The
content of the encapsulated IOR is then turned into hexadecimal
digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded
as a hexadecimal digit, then the low four bits are encoded.

Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for
storing references to objects in persistent storage or
communicating references by means other than invocation.

CORBA..ORB..string to object ()

ORB::perform_work()

void perform work () ;

A thread function that provides execution resources to your appli-
cation if called by the main thread. This function does nothing if
called by any other thread.

Orbix CORBA Programmer’s Reference: Java 157

Exceptions Y ou can use perform work () and work pending () for asimple polling loop
that multiplexesthe main thread among the ORB and other activities. Such aloop
would most likely be used in a single-threaded server. A multi-threaded server
would need a polling loop only if there were both ORB and other code that
required use of the main thread.

See Also CORBA:IORB::run()
CORBA: :ORB: :work pending ()

ORB::poll_next_response()

public abstract boolean poll next response() ;

Returns 1 (true) if any request has completed or returns O (false)
if none have completed. This method returns immediately, whether
any request has completed or not.

You can call this method successively to determine whether the
individual requests specified in a send multiple requests oneway ()
or send multiple requests deferred() call have completed success-
fully.

Alternatively you can call Request: :poll response () on the individ-
ual request objects in the sequence of requests passed to

send multiple requests oneway () Or

send multiple requests deferred().

See Also CORBAIIORB:Iget next response ()
CORBA: :ORB::send multiple requests oneway ()
CORBA: :ORB: :send multiple requests deferred()
CORBA: :Request: :poll response ()

ORB::register_value_factory()

Registers a value type factory method with the ORB for a particular
value type. The method returns a null pointer if no previous factory
was registered for the type. If a factory is already registered for the
value type, the method replaces the factory and returns a pointer
to the previous factory for which the caller assumes ownership.

Parameters

id A repository ID that identifies the factory.

factory The application-specific factory method that the ORB
calls whenever it needs to create the value type during
the unmarshaling of value instances.

When a value type factory is registered with the ORB, the ORB
invokes valueFactoryBase:: add ref () once on the factory before
returning from register value factory(). When the ORB is done
using that factory, the reference count is decremented once with
ValueFactoryBase:: remove ref (). This can occur in any of the fol-
lowing circumstances:

* If the factory is explicitly unregistered via
unregister value factory(), the ORB invokes
ValueFactoryBase:: remove ref () once on the factory.

158 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

See Also

See Also

* If the factory is implicitly unregistered due to a call to
shutdown (), the ORB invokes valueFactoryBase:: remove ref ()
once on each registered factory.

* If you replace a factory by calling this
register value factory() again, you should invoke
ValueFactoryBase:: remove ref () once on the previous factory.

CORBA::ValueFactory
CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :unregister value factory ()

ORB::resolve_initial _references()

public abstract org.omg.CORBA.Object
resolve initial references (String object name)

throws org.omg.CORBA.ORBPackage.InvalidName;

Returns an object reference for a desired service.

id The name of the desired service. Use
list initial services() to obtain the list of services
supported.

Applications require a portable means by which to obtain some ini-
tial object references such as the root POA, the interface reposi-
tory, and various object services instances. The functionality of
resolve initial references() and list initial services() is like a
simplified, local version of the naming service that has only a
small set of objects in a flattened single-level name space.

The object reference returned must be narrowed to the correct
object type. For example, the object reference returned from
resolving the id name InterfaceRepository must be narrowed to
the type CORBA: :Repository.

CORBA::ORB::list initial services()

ORB::run()

void run() ;

A thread method that enables the ORB to perform work using the
main thread. If called by any thread other than the main thread,
this method simply waits until the ORB has shut down.

This method provides execution resources to the ORB so that it
can perform its internal functions. Single threaded ORB implemen-
tations, and some multi-threaded ORB implementations need to
use the main thread. For maximum portability, your applications
should call either run() or perform work() on the main thread.

run() returns after the ORB has completed the shutdown process,
initiated when some thread calls shutdown ().

CORBA:IORB::perform work ()
CORBA: :ORB: :work pending ()
CORBA: :ORB: : shutdown ()
CORBA: :ORB: :destroy ()

Orbix CORBA Programmer’s Reference: Java 159

Parameters

See Also

Parameters

See Also

ORB::send_multiple_requests_deferred()

public abstract void send multiple requests deferred(
Request [] req

)i
Initiates a number of requests in parallel.

req A sequence of requests.

The method does not wait for the requests to finish before return-
ing to the caller. The caller can use get next response() Or
Request: :get response () to determine the outcome of the
requests. Memory leakage will result if one of these methods is
not called for a request issued with

send multiple requests oneway () Or Request::send deferred().

CORBA:IORB::send multiple requests oneway ()
CORBA: :Request: :get response ()

CORBA: :Request: :send deferred ()

CORBA: :ORB: :get next response ()

ORB::send_multiple_requests_oneway()

public abstract void send multiple requests oneway (Request []
req) ;

Initiates a number of requests in parallel. It does not wait for the
requests to finish before returning to the caller.

req A sequence of requests. The operations in this
sequence do not have to be IDL oneway operations.
The caller does not expect a response, nor does it
expect out or inout parameters to be updated.

CORBA::Request:isend oneway ()
CORBA: :ORB: :send multiple requests deferred()

ORB::shutdown()

void shutdown (
boolean wait for completion

)i

This thread method instructs the ORB to shut down in preparation
for ORB destruction.

160 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

See Also

Parameters

See Also

wait for completion Designates whether or not to wait for comple-
tion before continuing.

If the value is 1 (true), this method blocks until
all ORB processing has completed, including
request processing and object deactivation or
other methods associated with object adapters.

If the value is O (false), then shut down may
not have completed upon return of the
method.

While the ORB is in the process of shutting down, the ORB oper-

ates as normal, servicing incoming and outgoing requests until all
requests have been completed. Shutting down the ORB causes all
object adapters to be shut down because they cannot exist with-
out an ORB.

An application may also invoke ORB: :destroy () on the ORB itself.
Invoking any other method raises exception BAD INV ORDER System
with the OMG minor code 4.

BAD INV_ORDER, An application calls this method in a thread that is cur-
minor code rently servicing an invocation because blocking would
3 result in a deadlock.

CORBAIIORB::run()
CORBA: :ORB: :destroy ()

ORB::string_to_object()
public abstract org.omg.CORBA.Object string to object (String
str) ;

Returns an object reference by converting a string representation
of an object reference.

obj_ref string String representation of an object reference to be
converted.

To guarantee that an ORB will understand the string form of an
object reference, the string must have been produced by a call to
object to string().

CORBA..ORB..cbject to string()

ORB::unregister_value_factory()

Unregisters a value type factory method from the ORB.

id A repository ID that identifies a value type factory
method.

CORBA::ValueFactory

Orbix CORBA Programmer’s Reference: Java 161

CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :register value factory()

ORB::work_pending()

boolean work pending() ;

This thread method returns an indication of whether the ORB needs
the main thread to perform some work. A return value of 1 (true)
indicates that the ORB needs the main thread to perform some work
and a return value of O (false) indicates that the ORB does not need
the main thread.

Exceptions
BAD INV ORDER, The method is called after the ORB has shutdown.
minor code 4

See Also CORBAIIORB::Irun()

CORBA: :ORB: :perform work ()

162 Orbix CORBA Programmer’s Reference: Java

CORBA::Policy Interface

An ORB or CORBA service may choose to allow access to certain
choices that affect its operation. This information is accessed in a
structured manner using interfaces derived from the policy inter-
face defined in the CORBA module. A CORBA service is not
required to use this method of accessing operating options, but
may choose to do so.

This chapter is divided into the following sections:
* “Quality of Service Framework”
e “Policy Methods”

The following policies are available. These are classes that inherit
from the CORBA: :Policy class:

Table 6: Policies

Category Policy
CORBA and IT CORBA: :WellKnownAddressingPolicy
IT_CORBA
PortableServer PortableServer: : ThreadPolicy
and IT_Portable- | PortableServer: :LifespanPolicy
Server PortableServer: : IdUniquenessPolicy

PortableServer: : IdAssignmentPolicy
PortableServer: :ImplicitActivationPolicy
PortableServer: : ServantRetentionPolicy
PortableServer: :RequestProcessingPolicy

IT PortableServer: :ObjectDeactivationPolicy
IT PortableServer: :PersistenceModePolicy

You create instances of a policy by calling
CORBA: :ORB: :create policy ().

Quality of Service Framework

A policy is the key component for a standard Quality of Service
framework (QoS). In this framework, all qualities are defined as
interfaces derived from CORBA: : Policy. This framework is how all
service-specific qualities are defined. The components of the
framework include:

Policy This base interface from which all QoS objects
derive.

PolicyList A sequence of policy objects.

PolicyManager An interface with operations for querying and

overriding QoS policy settings.

Orbix CORBA Programmer’s Reference: Java 163

Policy Transport Mechanisms for transporting policy values as
Mechanisms part of interoperable object references and
within requests. These include:

® TAG POLICIES - A Profile Component con-
taining the sequence of QoS policies
exported with the object reference by an
object adapter.

L INVOCATION POLICIES - A Service Context
containing a sequence of QoS policies in
effect for the invocation.

Most policies are appropriate only for management at either the
server or client, but not both. Server-side policies are associated
with a POA. Client-side policies are divided into ORB-level,
thread-level, and object-level policies. At the thread and ORB lev-
els, use the policyManager interface to query the current set of pol-
icies and override these settings.

POA Policies for Servers

Server-side policy management is handled by associating QoS
Policy objects with a POA. Since all QoS are derived from interface
Policy, those that are applicable to server-side behavior can be
passed as arguments to POA: :create POA(). Any such policies that
affect the behavior of requests (and therefore must be accessible
by the ORB at the client side) are exported within the object refer-
ences that the POA creates. It is clearly noted in a POA policy defi-
nition when that policy is of interest to the client. For those
policies that can be exported within an object reference, the
absence of a value for that policy type implies that the target sup-
ports any legal value of that policyType.

ORB-level Policies for Clients

You obtained the ORB’s locality-constrained policyManager through
an invocation of CORBA: :ORB: :resolve initial references (), Speci-
fying an identifier of ORBPolicyManager. This PolicyManager has
operations through which a set of policies can be applied and the
current overriding policy settings can be obtained. Policies applied
at the ORB level override any system defaults.

Thread-level Policies for Clients

You obtained a thread’s locality-constrained policyCurrent through
an invocation of CORBA: :ORB: :resolve initial references (), Speci-
fying an identifier of policycurrent. Policies applied at the
thread-level override any system defaults or values set at the ORB
level. When accessed from a newly spawned thread, the
PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy Of ORB CONTROL MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a

SINGLE THREAD MODEL POA, the thread-level overrides are reset to
have no overridden values.

164 Orbix CORBA Programmer’s Reference: Java

Object-level Policies for Clients

Policy Methods

Operations are defined on the base object interface through which
a set of policies can be applied. Policies applied at the object level
override any system defaults or values set at the ORB or thread
levels. In addition, accessors are defined for querying the current
overriding policies set at the object level, and for obtaining the
current effective client-side policy of a given policyType. The effec-
tive client-side policy is the value of a pPolicyType that would be in
effect if a request were made. This is determined by checking for
overrides at the object level, then at the thread level, and finally
at the ORB level. If no overriding policies are set at any level, the
system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default val-
ues are not specified in most cases.

The policy interface is as follows:

// IDL in module CORBA

interface Policy {
readonly attribute PolicyType policy type;
Policy copy () ;

void destroy() ;

}i

Policy::policy_type Attribute

// IDL
readonly attribute PolicyType policy type;

// Java
public int policy type();

This read-only attribute returns the constant value of type
PolicyType that corresponds to the type of the policy object.

Policy::copy()

// IDL
Policy copy () ;

// Java
org.omg.CORBA.Policy copy () ;

This operation copies the policy object. The copy does not retain
any relationships that the original policy had with any domain, or
object.

Policy::destroy()

// IDL
void destroy () ;

// Java
public void destroy () ;

Orbix CORBA Programmer’s Reference: Java 165

This operation destroys the policy object. It is the responsibility of
the policy object to determine whether it can be destroyed.

Enhancement Orbix guarantees to always destroy all local objects it creates when
the last reference to them is released so you do not have to call
destroy (). However, code that relies on this feature is not strictly
CORBA compliant and may leak resources with other ORBs.

Exceptions

NO_PERMISSION The policy object determines that it cannot be
destroyed.

166 Orbix CORBA Programmer’s Reference: Java

CORBA::PolicyCurrent Class

The policyCurrent interface allows access to policy settings at the
current programming context level. Within a client, you obtain a
PolicyCurrent Object reference to set the quality of service for all
invocations in the current thread. You obtain a reference to this
interface by invoking ORB: :resolve initial references|().

The policyCurrent interface is derived from the policyManager and
the current interfaces. The PolicyManager interface allows you to
change the policies for each invocation and the current interface
allows control from the current thread.

Policies applied at the thread level override any system defaults or
values set at the ORB level. When accessed from a newly spawned
thread, the policyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy Of ORB CONTROL MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a POA of
the SINGLE THREAD MODEL, the thread-level overrides are reset to
have no overridden values.

// Java

package org.omg.CORBA;

public interface PolicyCurrent extends
org.omg.CORBA. PolicyManager,
org.omg.CORBA.Current {}

Orbix CORBA Programmer’s Reference: Java 167

168 Orbix CORBA Programmer’s Reference: Java

CORBA::PolicyManager Class

Parameters

Parameters

See Also

Parameters

PolicyManager is an interface with operations for querying and
overriding QoS policy settings. It includes mechanisms for obtain-
ing policy override management operations at each relevant appli-
cation scope. You obtain the ORB’s PolicyManager by invoking
ORB: :resolve initial references () with the objectId
ORBPolicyManager.

You use a CORBA: :PolicyCurrent Object, derived from

CORBA: :Current, for managing the thread’s QoS policies. You obtain
a reference to this interface by invoking

ORB: :resolve initial references() with the Objectld
PolicyCurrent.

®* Accessor operations on CORBA: :0Object allow querying and
overriding of QoS at the object reference scope.

* The application of QoS on a POA is done through the currently
existing mechanism of passing a PolicyList to
POA: :create POA().

PolicyManager::get_policy_ overrides()

// Java
org.omg.CORBA.Policy[] get policy overrides(int[] ts);

Returns a list containing the overridden polices for the requested
policy types. This returns only those policy overrides that have been
set at the specific scope corresponding to the target policyManager
(no evaluation is done with respect to overrides at other scopes).
If none of the requested policy types are overridden at the target
PolicyManager, an empty sequence is returned.

ts A sequence of policy types to get. If the specified
sequence is empty, the method returns all policy over-
rides at this scope.

CORBA::PolicyManager::set policy overrides ()

PolicyManager::set_policy_overrides()

// Java
void set_policy overrides (

org.omg.CORBA.Policy[] policies,
org.omg.CORBA.SetOverrideType set add
) throws org.omg.CORBA.InvalidPolicies;

Modifies the current set of overrides with the requested list of policy
overrides.

policies A sequence of references to policy objects.

Orbix CORBA Programmer’s Reference: Java 169

set_add Indicates whether the policies in the policies parame-
ter should be added to existing overrides in the
PolicyManager Or used to replace existing overrides:

®* Use ADD OVERRIDE to add policies onto any other
overrides that already exist in the PolicyManager.

i Use SET OVERRIDE to create a clean pPolicyManager
free of any other overrides.

Invoking the method with an empty sequence of policies and a
mode of SET OVERRIDE removes all overrides from a pPolicyManager.

There is no evaluation of compatibility with policies set within
other policy managers.

Exceptions

NO_PERMISSION Only certain policies that pertain to the invocation
of an operation at the client end can be overridden
using this operation. This exception is raised if you
attempt to override any other policy.

InvalidPolicied The request would put the set of overriding poli-
cies for the target policyManager in an inconsistent
state. No policies are changed or added.

170 Orbix CORBA Programmer’s Reference: Java

CORBA::PrimitiveDef Interface

Interface primitiveDef represents an IDL primitive type such as
short, long, and others. PrimitiveDef Objects are anonymous
(unnamed) and owned by the interface repository.

Objects of type primitiveDef cannot be created directly. You can
obtain a reference to a primitiveDef by calling
Repository::get primitive().

// IDL in module CORBA.
interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

See Also CORBA: : PrimitiveKind
CORBA: : IDLType

CORBA: :Repository: :get primitiwve ()

PrimitiveDef::kind Attribute

// IDL
readonly attribute PrimitiveKind kind;

// Java

org.omg.CORBA.PrimitiveKind kind() ;

Identifies which of the IDL primitive types is represented by this
PrimitiveDef.

A PrimitiveDef with a kind of type pk string represents an
unbounded string, a bounded string is represented by the inter-
face stringDef. A PrimitiveDef with a kind of type pk objref rep-
resents the IDL type Object.

See Also CORBA: : IDLType
CORBA: :Object
CORBA: : StringDef

Orbix CORBA Programmer’s Reference: Java 171

172 Orbix CORBA Programmer’s Reference: Java

CORBA::Repository Interface

The interface repository itself is a container for IDL type defini-
tions. Each interface repository is represented by a global root
Repository object.

The Repository interface describes the top-level object for a repos-
itory name space. It contains definitions of constants, typedefs,
exceptions, interfaces, value types, value boxes, native types, and
modules.

You can use the Repository operations to look up any IDL defini-
tion, by either name or identity, that is defined in the global name
space, in a module, or in an interface. You can also use other
Repository operations to create information for the interface
repository. See Table 7:

Table7: Operations of the Repository Interface
Read Operations Write Operations
get canonical typecode () create array ()
get primitiwve () create fixed()
lookup id() create sequence ()
create string()
create wstring()

The five create_type Operations create new interface repository
objects defining anonymous types. Each anonymous type defini-
tion must be used in defining exactly one other object. Because
the interfaces for these anonymous types are not derived from
Contained, it is your responsibility to invoke in your application
destroy () on the returned object if it is not successfully used in
creating a definition that is derived from Contained.

The RrRepository interface is as follows:

// IDL in module CORBA.
interface Repository : Container {
Contained lookup id(
in RepositoryId search id
);
TypeCode get canonical typecode (
in TypeCode tc

) ;

PrimitiveDef get primitive(
in PrimitiveKind kind

)

StringDef create string(
in unsigned long bound

)

WstringDef create wstring(
in unsigned long bound

)

SequenceDef create sequence (
in unsigned long bound,
in IDLType element type

)i
ArrayDef create array(
in unsigned long length,

Orbix CORBA Programmer’s Reference: Java 173

See Also

Parameters

See Also

in IDLType element type
) ;
FixedDef create fixed(
in unsigned short digits,
in short scale
)
}i
Note that although a Repository does not have a RepositoryId
associated with it (because it derives only from Container and not
from Contained) you can assume that its default RepositoryId. is an
empty string. This allows a value to be assigned to the defined in
field of each description structure for ModuleDef, InterfaceDef,
ValueDef, ValueBoxDef, TypedefDef, ExceptionDef and ConstantDef
that may be contained immediately within a Repository object.

CORBA: :Container

Repository::create_array()

// IDL
ArrayDef create array(

in unsigned long length,
in IDLType element type
)i

// Java
org.omg.CORBA.ArrayDef create array(
int length,

org.omg.CORBA.IDLType element type
)i

Returns a new array object defining an anonymous (unnamed) type.
The new array object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

length The number of elements in the array.
element_type The type of element that the array will contain.

CORBA: :ArrayDef
CORBA: : IRObject

Repository::create_fixed()

// IDL
FixedDef create fixed (

in unsigned short digits,
in short scale

)i

// Java
org.omg.CORBA.FixedDef create fixed(

short digits,
short scale

)i

174 Orbix CORBA Programmer’s Reference: Java

Returns a new fixed-point object defining an anonymous (unnamed)
type. The new object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility

to delete it.
Parameters
digits The number of digits in the fixed-point number. Valid
values must be between 1 and 31, inclusive.
scale The scale.
Repository::.create_sequence()
// IDL
SequenceDef create sequence (
in unsigned long bound,
in IDLType element type
)i
// Java
org.omg.CORBA. SequenceDef create sequence (
int bound,
org.omg.CORBA.IDLType element type
)
Returns a new sequence object defining an anonymous (unnamed)
type. The new sequence object must be used in the definition of
exactly one other object. Itis deleted when the object itis contained
in is deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.
Parameters
bound The number of elements in the sequence. A bound of
0 indicates an unbounded sequence.
element_type The type of element that the sequence will contain.
See Also CORBA: : SequenceDef

Repository::create_string()

// IDL
StringDef create string(

in unsigned long bound
)i

// Java
org.omg.CORBA.StringDef create string(int bound) ;

Returns a new string object defining an anonymous (unnamed)
type. The new string object must be used in the definition of exactly
one other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility
to delete it.

Orbix CORBA Programmer’s Reference: Java 175

Parameters

See Also

Parameters

See Also

Parameters

bound The maximum number of characters in the string.
(This cannot be 0.)

Use get primitive() to create unbounded strings.

CORBA: : StringDef
CORBA: :Repository: :get primitive ()

Repository::create_wstring()

// IDL
StringDef create wstring (

in unsigned long bound
)i

// Java
org.omg.CORBA.WstringDef create wstring(int bound) ;

Returns a new wide string object defining an anonymous (unnamed)
type. The new wide string object must be used in the definition of
exactly one other object. It is deleted when the object itis contained
in is deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility
to delete it.

bound The maximum number of characters in the string.
(This cannot be 0.)

Use get primitive() to create unbounded strings.

CORBA: :WstringDef
CORBA: :Repository: :get primitiwve ()

Repository::get_canonical_typecode()

// IDL
TypeCode get canonical typecode (

in TypeCode tc

)i

// Java

org.omg.CORBA.TypeCode get canonical typecode (
org.omg.CORBA.TypeCode tc

)i

Returns a TypeCode that is equivalent to tc that also includes all
repository ids, names, and member names.

tc The TypeCode to lookup.

If the top level TypeCode does not contain a RepositoryId (such as
array and sequence type codes or type codes from older ORBS) or
if it contains a RepositoryId that is not found in the target
Repository, then a new TypeCode is constructed by recursively call-
iNng get canonical typecode() on each member TypeCode of the
original TypeCode.

176 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

Repository::get_primitive()

// IDL

PrimitiveDef get primitive(
in PrimitiveKind kind

)

// Java

org.omg.CORBA.PrimitiveDef get primitive (
org.omg.CORBA.PrimitiveKind kind

)

Returns a reference to a PrimitiveDef oOf the specified PrimitiveKind.
All primitiveDef Objects are owned by the rRepository, one primitive
object per primitive type (for example, short, long, unsigned short,
unsigned long and so on).

kind The kind of primitive to get.

CORBA: : PrimitiveDef

Repository::lookup_id()
// IDL
Contained lookup id(
in RepositoryId search id
)i
// Java
org.omg.CORBA.Contained lookup id(java.lang.String search id);

Returns an object reference to a Contained object within the repos-
itory given its RepositoryId. If the repository does not contain a
definition for the given ID, a nil object reference is returned.

search id The RepositoryId of the IDL definition to lookup.

CORBA: : Contained

Orbix CORBA Programmer’s Reference: Java 177

178 Orbix CORBA Programmer’s Reference: Java

CORBA::Request Class

See Also

See Also

See Also

This class is the key support class for the Dynamic Invocation
Interface (DII), whereby an application may issue a request for
any interface, even if that interface was unknown at the time the
application was compiled.

Orbix allows invocations, that are instances of class rRequest, to be
constructed by specifying at runtime the target object reference,
the operation name and the parameters. Such calls are termed
dynamic because the IDL interfaces used by a program do not
have to be statically determined at the time the program is
designed and implemented.

You create a request using methods Object:: create request() Or
Object:: request().

CORBA::Object:: request ()
CORBA: :Object:: create request ()

Request::add_in_arg()

// Java
public abstract Any add in arg() ;

Returns an any value for the input argument that is added.

CORBA::Request : :arguments ()
CORBA: :Request::add inout arg()
CORBA: :Request: :add out arg()

Request::add_inout_arg()

// Java
public abstract Any add inout arg();

Returns an any value for the in/out argument that is added.

CORBA:IRequest: :arguments ()
CORBA: :Request::add in arg()
CORBA: :Request: :add out arg()

Request::add_named_in_arg()

// Java
public abstract Any add named in arg(String name) ;

Request:add_named_inout_arg()

// Java
public abstract Any add named inout arg(String name) ;

Orbix CORBA Programmer’s Reference: Java 179

See Also

See Also

Parameters

Request::add_named_out_arg()

// Java
public abstract Any add named out arg(String name) ;

Request::add_out_arg()

// Java
public abstract Any add out arg() ;

Returns an any value for the output argument that is added.

CORBA::Request: :arguments ()
CORBA: :Request::add in arg()
CORBA: :Request: :add inout arg()

Request::arguments()

// Java
public abstract NVList arguments() ;

Returns the arguments to the requested operation in an NVList.
Ownership of the return value is maintained by the Request and must
not be freed by the caller. You can add additional arguments to the
request using the add * arg() helper methods.

CORBA::NVList

CORBA: :Request::add in arg()
CORBA: :Request::add inout arg()
CORBA: :Request: :add out arg()

Request::contexts()

// Java
public abstract ContextList contexts();

Returns a pointer to a list of contexts for the request. Ownership of
the return value is maintained by the rRequest and must not be freed
by the caller.

Request::ctx()

// Java
public abstract Context ctx();

Returns the context associated with a request. Ownership of the
return value is maintained by the rRequest and must not be freed by
the caller.

// Java
public abstract void ctx(Context c);

Inserts a Context into a request.

c The context to insert with the request.

180 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

See Also

See Also

Request::env()

// Java
public abstract Environment env () ;

Returns the Environment associated with the request from which
exceptions raised in DIl calls can be accessed. Ownership of the
return value is maintained by the rRequest and must not be freed by
the caller.

CORBA::Environment

Request::exceptions()

// Java
public abstract ExceptionList exceptions() ;

Returns a pointer to list of possible application-specific exceptions
for the request. Ownership of the return value is maintained by the
Request and must not be freed by the caller.

CORBA::ExceptionList

Request::get_response()

// Java
public abstract void get response () ;

Determines whether a request has completed successfully. It re-
turns only when the request, invoked previously using
send deferred(), has completed.

CORBA::Request: :result ()
CORBA: :Request: :send deferred ()

Request::invoke()

// Java
public abstract void invoke () ;

Instructs the ORB to make a request. The parameters to the request
must already be set up. The caller is blocked until the request has
been processed by the target object or an exception occurs.

To make a non-blocking request, see send deferred() and
send oneway ().

CORBA:IRequest:isend oneway ()
CORBA: :Request: :send deferred()
CORBA: :Request: :result ()

Request::operation()

// Java
public abstract String operation() ;

Returns the operation name of the request. Ownership of the return
value is maintained by the rRequest and must not be freed by the
caller.

Orbix CORBA Programmer’s Reference: Java 181

See Also

See Also

Request::poll_response()

// Java
public abstract boolean poll response () ;

Returns 1 (true) if the operation has completed successfully and
indicates that the return value and out and inout parameters in the
request are valid. Returns O (false) otherwise. The method returns
immediately.

If your application makes an operation request using

send deferred(), it can call poll response() to determine whether
the operation has completed. If the operation has completed, you
can get the result by calling Request: :result ().

CORBA::Request:isend deferred ()
CORBA: :Request: :get response ()
CORBA: :Request: :result ()

Request::result()

// Java
public abstract NamedValue result () ;

Returns the result of the operation request in a Namedvalue. Owner-
ship of the return value is maintained by the rRequest and must not
be freed by the caller.

Request::return_value()

// Java
public abstract Any return value() ;

Returns an any value for the returned value of the operation.

Request::send_deferred()

// Java
public abstract void send deferred() ;

Instructs the ORB to make the request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

To make a blocking request, use invoke (). You can use
poll response () to determine whether the operation completed.

CORBA::Request:isend oneway ()

CORBA: :ORB::send multiple requests deferred()
CORBA: :Request : : invoke ()

CORBA: :Request: :poll response ()

CORBA: :Request: :get response ()

Request::send_oneway()

// Java
public abstract void send oneway () ;

182 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

Instructs Orbix to make the oneway request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

You can use this method even if the operation has not been
defined to be oneway in its IDL definition, however, do not expect
any output or inout parameters to be updated.

To make a blocking request, use invoke ().

CORBA:IRequest:isend deferred()

CORBA: :ORB: :send multiple requests oneway ()
CORBA: :Request : : invoke ()

CORBA: :Request: :poll response ()

CORBA: :Request: :get response ()

Request::set_return_type()

// Java
public abstract void set return type (TypeCode tc) ;

Sets the TypeCode associated with a Request object. When using the
DIl with the Internet Inter-ORB Protocol (110P), you must set the
return type of a request before invoking the request.

te The TypeCode for the return type of the operation asso-
ciated with the rRequest object.

Request::target()

// Java
public abstract Object target();

Gets the target object of the rRequest. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

Orbix CORBA Programmer’s Reference: Java 183

184 Orbix CORBA Programmer’s Reference: Java

CORBA::SequenceDef Interface

See Also

See Also

See Also

Interface sequenceDef represents an IDL sequence definition in the
interface repository. It inherits from the interface IDLType.

// IDL in module CORBA.

interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element type;
attribute IDLType element type def;

}i

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create sequence ()

SequenceDef::bound Attribute

// IDL
attribute unsigned long bound;

// Java
int bound() ;

void bound(int wval);

The maximum number of elements in the sequence. A bound of 0
indicates an unbounded sequence.

Changing the bound attribute will also update the inherited type
attribute.

CORBA: : SequenceDef: : type

SequenceDef::element_type Attribute

// IDL
readonly attribute TypeCode element type;

// Java
org.omg.CORBA. TypeCode element type() ;

The type of element contained within this sequence. The attribute
element type def contains the same information.

CORBA: : SequenceDef : :element type def

SequenceDef::element_type_ def Attribute

// IDL
attribute IDLType element type def;

// Java
org.omg.CORBA.IDLType element type def();

void element type def(org.omg.CORBA.IDLType val);

Describes the type of element contained within this sequence. The
attribute element type contains the same information. Setting the
element type def attribute also updates the element type and
IDLType: :type attributes.

Orbix CORBA Programmer’s Reference: Java 185

See Also CORBA: : SequenceDef : :element type
CORBA: : IDLType: : type

SequenceDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_sequence TypeCode that describes the sequence. It is updated
automatically whenever the attributes bound or element type def are
changed.

See Also CORBA: : SequenceDef : :element type def
CORBA: : SequenceDef : :bound

186 Orbix CORBA Programmer’s Reference: Java

CORBA::ServerRequest Class

Parameters

See Also

Parameters

See Also

The object adapter dispatches an invocation to a DSI-based object
implementation by calling invoke () on an object of the
DynamicImplentation class. The parameter passed to this method is
a ServerRequest Object. This serverRequest object contains the
state of an incoming invocation for the DSI. This can be compared
to how the rRequest class object is used in the DIl approach for cli-
ents.

The following code is the complete class definition:

ServerRequest::arguments()

// Java
public void arguments (org.omg.CORBA.NVList args)

Allows a redefinition of the following method to specify the values
of incoming arguments:

PortableServer: :DynamicImplementation: : invoke ()

args Obtains output and input arguments.

This method must be called exactly once in each execution of
invoke ().

CORBA::ServerRequest::params()

PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::ctx()

// Java
public abstract Context ctx();

Returns the context associated with the call.

If no Context was sent then this method returns null.

ServerRequest::except()

public abstract void except (Any a) ;

The DIrR may call except () at any time to return an exception to the
client.

a An any containing the exception to be
returned to the client.

The any value passed to except () must contain either a system
exception or one of the user exceptions specified in the raises
expression of the invoked operation’s IDL definition.

“System Exceptions”
CORBA.Any

Orbix CORBA Programmer’s Reference: Java 187

Parameters

See Also

Parameters

CORBA. SystemException

ServerRequest::operation()

// Java
public String operation ()

Returns the name of the operation being invoked.

This method must be called at least once in each execution of the
dynamic implementation routine, that is, in each redefinition of
the method:

PortableServer: :DynamicImplementation: : invoke ()

CORBA::ServerRequest: iop name ()
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::op_name()

public abstract String op name() ;
Returns the name of the operation being invoked.

ServerRequest::params()

public abstract void params (NVList parms) ;

This method marshals the parameters from the incoming Server-
Request into the supplied parms NVList.

parms An NVList describing the parameter types for
the operation in the order in which they appear
in the IDL specification (left to right).

It is up to the programmer to ensure that the TypeCode and flags
(2RG_IN,ARG OUT or ARG INOUT) of each of the parameters are cor-
rect.

The Dynamic Implementation Routine (DIR) must call params with
parms containing TypeCodes and Flags describing the parameter
types expected for the method.

After invoking params () the programmer uses the unmarshaled
“in” and “inout” values as parameters to the method invocation.

When the invocation completes the programmer must insert the
values for any out and inout parameters into the parms NvList
before returning.

If the operation has a return value you must also call “result ()" .
For example:

// import org.omg.CORBA.*;

//

// simulate the set operation on the grid interface with
// the DSI
public void invoke (ServerRequest req) {

188 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

String opName = req.op name() ;
Any ret = ORB.init().create any();
NVList nvl = null;

long [][lma_a = // create new array;

if (_opName.equals("set"))

{

~nvl = ORB.init () .create list(3);

// create a new any
Any row = ORB.init().create any();

// insert the TypeCode (tk short) into the new Any
row.type (ORB.init () .get primitive tc(TCKind.tk short))

// insert this Any into the NVList and set the Flag to in
_nvl.add_value(null, row, ARG_IN.value);

// create new Any,set TypeCode to short, insert into
NVList

// with flag set to in

Any col = ORB.init() .create any();

col.type (ORB.init () .get primitive tc(TCKind.tk short)) ;

_nvl.add value(null, col, ARG IN.value);

// create new Any,set TypeCode to long, insert into
NVList

// with flag set to in

Any data = ORB.init () .create any() ;

data.type (ORB.init () .get_primitive tc(TCKind.tk long)) ;

~nvl.add value(null, data, ARG IN.value);

// get params() method to marshal data into nvl
_req.params (_nvl) ;

// get the value of row,col from Any row,col
// and set this element in the array to the value
m a[row.extract short ()] [col.extract short()] =
data.extract long() ;
return;

CORBA.NVList class

ServerRequest.result()

public abstract void result (Any a) ;
Use the result () method to specify the return value for the call.

res An any containing the return value and

type for the operation.

Orbix CORBA Programmer’s Reference: Java 189

See Also

Parameters

See Also

Parameters

See Also

If the operation has a void result type, result () should be set to
an any whose type is _tc void.

CORBA.Any Class

ServerRequest::set_exception()

// Java

public void set exception(Any any)

Allows (a redefinition of)

PortableServer: :DynamicImplementation: : invoke () to return an ex-
ception to the caller.

value A pointer to an any, which holds the
exception returned to the caller.

CORBA: :Environment()
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::set_result()

// Java
public void set result (org.omg.CORBA.Any any)

Allows PortableServer: :DynamicImplementation: : invoke () to return
the result of an operation request in an Any.

value A pointer to a any, which holds the result
returned to the caller.

This method must be called once for operations with non-void
return types and not at all for operations with void return types. If
it is called, then set exception() cannot be used.

CORBA::ServerRequest:iset exception ()

190 Orbix CORBA Programmer’s Reference: Java

CORBA::String_var Class

See Also

See Also

See Also

Parameters

See Also

Parameters

The class string var implements the var type for IDL strings
required by the standard C++ mapping. The string var class con-
tains a char* value and ensures that this is properly freed when a
String var object is deallocated, for example when exectution
goes out of scope.

String_var::char*()

Converts a String var object to a char*.

CORBA::String var::operator=()

String_var::in()
Returns the proper string for use as an input parameter.

CORBA::String var::out ()
CORBA: :String var::inout ()
CORBA: :String var:: retn()

String_var::inout()
Returns the proper string for use as an inout parameter.

CORBA::String var::in()
CORBA: :String var::out ()
CORBA: :String var:: retn()

String_var::operator=() Assignment Operators

Assignment operators allow you to assign values to a String var
from a char* or from another String var type.

p A character string to assign to the string var.
A string var to assign to the String var.

CORBA::String var::char* ()

String_var::operator[]() Subscript Operators

Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

index The index location in the string.

Orbix CORBA Programmer’s Reference: Java 191

See Also

Parameters

See Also

See Also

See Also

String_var::out()
Returns the proper string for use as an output parameter.

CORBA::String var::in()
CORBA: :String var::inout ()
CORBA: :String var:: retn()

String_var::String_var() Constructors
The default constructor.
Constructors that convert from a char* to a String var.

The copy constructor.

p The character string to convert to a String var. The
String var assumes ownership of the parameter.

s The original string var that is copied.

CORBA::String var:i~String var()

String_var::—String_var() Destructor

The destructor.

CORBA::String var::iString var ()

String_var::_retn()

Returns the proper string for use as a method’s return value.
CORBA::String var: :inout ()

CORBA: :String var::in()

CORBA: :String var::out ()

192 Orbix CORBA Programmer’s Reference: Java

CORBA::StringDef Interface

See Also

See Also

Interface stringDef represents an IDL bounded string type in the
interface repository. A stringDef object is anonymous, which
means it is unnamed.

Use Repository: :create string() to obtain a new sStringDef. Use
Repository: :get primitive() for unbounded strings.

// IDL in module CORBA.

interface StringDef : IDLType {
attribute unsigned long bound;

}i

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create string()

StringDef::bound Attribute

// IDL
attribute unsigned long bound;

// Java
int bound() ;

void bound(int val);

Specifies the maximum number of characters in the string. This
cannot be zero.

StringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_string TypeCode that describes the string.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: Java 193

194 Orbix CORBA Programmer’s Reference: Java

CORBA::StructDef Interface

Interface structDef describes an IDL structure in the interface
repository.

// IDL in module CORBA.

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

}i

The inherited operation describe () is also described.

See Also CORBA: : Contained
CORBA: :Container: :create struct ()

StructDef::describe()

// IDL
Description describe() ;

describe (returns a Contained: :Description structure. describe () is
inherited from Contained (which TypedefDef inherits).

The DefinitionKind for the kind member is dk_Struct. The value
member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

See Also CORBA: : TypedefDef : :describe ()

StructDef::members Attribute

// Java
org.omg.CORBA. StructMember [] members () ;

void members(org.omg.CORBA.StructMember[] val);
Describes the members of the structure.

You can modify this attribute to change the members of a struc-
ture. Only the name and type def fields of each structMember should
be set (the type field should be set to tc void and it will be set
automatically to the TypeCode of the type def field).

See Also CORBA: : TypedefDef

Orbix CORBA Programmer’s Reference: Java 195

196 Orbix CORBA Programmer’s Reference: Java

CORBA::TypeCode Class

The class TypeCode is used to describe IDL type structures at run-
time. A TypeCode is a value that represents an IDL invocation argu-
ment type or an IDL attribute type. A TypeCode is typically used as
follows:

* In the dynamic invocation interface (DIIl) to indicate the type
of an actual argument.

* By the interface repository to represent the type specification
that is part of an OMG IDL declaration.

* To describe the data held by an any type.

A TypeCode consists of a kind that classifies the TypeCode as to
whether it is a basic type, a structure, a sequence and so on. See
the data type Tckind for all possible kinds of TypeCode objects.

A TypeCode may also include a sequence of parameters. The
parameters give the details of the type definition. For example,
the IDL type sequence<long, 20> has the kind tk_sequence and has
parameters long and 20.

You typically obtain a TypeCode from the interface repository or it
may be generated by the IDL compiler. You do not normally create
a TypeCode in your code so the class contains no constructors, only
methods to decompose the components of an existing TypeCode.
However, if your application does require that you create a
TypeCode, see the set of create Type tc() methods in the ORB class.

The class TypeCode contains the following methods:
See Also CORBAI:TCKind_

TypeCode::BadKind Exception

// Java
class CORBA.TypeCodePackage .BadKind

The Badkind exception is raised if a TypeCode member method is
invoked for a kind that is not appropriate.

TypeCode::Bounds Exception

// Java
class CORBA.TypeCodePackage .Bounds

The Bounds exception is raised if an attempt is made to use an index
for a type’s member that is greater than or equal to the number of
members for the type.

The type of IDL constructs that have members include enumera-
tions, structures, unions, value types, and exceptions. Some of
the TypeCode methods return information about specific members
of these IDL constructs. The first member has index value O, the
second has index value 1, and so on up to »-1 where nis the count
of the total number of members.

Orbix CORBA Programmer’s Reference: Java 197

See Also

Exceptions

Exceptions

Exceptions

The order in which members are presented in the interface repos-
itory is the same as the order in which they appeared in the IDL
specification.

This exception is not the same as the CORBA: :Bounds exception.

CORBA: :TypeCode:member count ()_
CORBA: : TypeCode: :member label ()
CORBA: : TypeCode: :member name ()
CORBA: : TypeCode: :member type ()
CORBA: : TypeCode : :member visibility ()

TypeCode:.concrete_base_ type()

// Java

public TypeCode concrete base type() throws BadKind {
throw new org.omg.CORBA.NO IMPLEMENT () ;

}

Returns a TypeCode for the concrete base if the value type repre-
sented by this TypeCode has a concrete base value type. Otherwise
it returns a nil TypeCode reference. This method is valid to use only
if the kind of TypeCode has a TCkind value of tk value.

BadKind The kind of TypeCode is not valid for this method.

TypeCode::.content_type()

// Java

public abstract TypeCode content type() throws BadKind

For sequences and arrays this method returns a reference to the
element type. For aliases it returns a reference to the original
type. For a boxed value type it returns a reference to the boxed
type. This method is valid to use if the kind of TypeCode is one of
the following TCKind values:

tk alias

tk array

tk sequence
tk_value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::default_index()

// Java
public abstract int default index() throws BadKind;

Returns the index of the default union member, or -1 if there is no
default member. This method is valid to use only if the kind of
TypeCode has a TCKind value of tk union.

BadKind The kind of TypeCode is not valid for this method.

198 Orbix CORBA Programmer’s Reference: Java

See Also

Exceptions

See Also

Parameters

See Also

Parameters

See Also

CORBA::TypeCode:imember label ()_

TypeCode::discriminator_type()

// Java
public abstract TypeCode discriminator type() throws BadKind;

Returns a TypeCode for the union discriminator type. This method is
valid to use only if the kind of TypeCode has a TCKind value of tk_union.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCodelidefault index()._
CORBA: : TypeCode: :member label ()

TypeCode::equal()

// Java
public abstract boolean equal (TypeCode tc) ;

Returns 1 (true) if this TypeCode and the tc parameter are equal.
Returns O (false) otherwise. Two type codes are equal if the set of
legal operations is the same and invoking an operation from one
set returns the same results as invoking the operation from the
other set.

te The TypeCode to compare.

CORBA::TypeCode::iequivalent ()_

TypeCode::equivalent()

// Java
public boolean equivalent (TypeCode tc) {
throw new org.omg.CORBA.NO IMPLEMENT(); }

Returns 1 (true) if this TypeCode and the tc parameter are equivalent.
Returns O (false) otherwise.

tc The TypeCode to compare.

equivalent () is typically used by the ORB to determine type equiv-
alence for values stored in an IDL any. You can use equal () to
compare type codes in your application. equivalent () would return
true if used to compare a type and an alias of that type while
equal () would return false.

CORBA::TypeCode:iequal () _

TypeCode::fixed_digits()

// Java
public short fixed digits() throws BadKind {

Orbix CORBA Programmer’s Reference: Java 199

Exceptions

See Also

Exceptions

See Also

throw new org.omg.CORBA.NO IMPLEMENT () ;

}

Returns the number of digits in the fixed point type. This method
is valid to use only if the kind of TypeCode has a TCKind value of
tk fixed.

BadKind The Kkind of TypeCode is not valid for this method.

CORBA::TypeCode::ifixed scale()._

TypeCode::fixed_scale()

// Java
public short fixed scale() throws BadKind {

throw new org.omg.CORBA.NO IMPLEMENT () ;

Returns the scale of the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk fixed.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCode::fixed digits()_

TypeCode::get_compact_typecode()

// Java

public TypeCode get compact typecode () {
throw new org.omg.CORBA.NO IMPLEMENT () ;

}

Removes all optional name and member name fields from the
TypeCode and returns a reference to the compact TypeCode. This
method leaves all alias type codes intact.

TypeCode::id()

// Java
public abstract String id() throws BadKind;

Returns the rRepositoryId that globally identifies the type.

Type codes that always have a RepositoryId. include object refer-
ences, value types, boxed value types, native, and exceptions.
Other type codes that also always have a RepositoryId and are
obtained from the interface repository or

ORB::create operation list() include structures, unions, enumera-
tions, and aliases. In other cases id() could return an empty
string.

The TypeCode Object maintains the memory of the return value;
this return value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

200 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Exceptions

tk _abstract_ interface
tk alias

tk enum

tk except

tk native

tk objref

tk struct

tk union

tk value

tk value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::kind()

// Java
public abstract TCKind kind() ;

Returns the kind of the TypeCode which is an enumerated value of
type TCKind. You can use kind() on any TypeCode to help determine
which other TypeCode methods can be invoked on the TypeCode.

CORBA:Z:TCKind

TypeCode::length()

// Java
public abstract int length() throws BadKind;

For strings, wide strings, and sequences, length() returns the
bound, with zero indicating an unbounded string or sequence. For
arrays, length() returns the number of elements in the array. This
method is valid to use if the kind of TypeCode has a TCKind value of
one of the following:

tk array
tk sequence
tk string
tk wstring

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_count()

// Java
public abstract int member count () throws BadKind;

Returns the number of members in the type. This method is valid
to use if the kind of TypeCode has a TCKind value of one of the
following:

tk enum

tk except
tk struct
tk union

Orbix CORBA Programmer’s Reference: Java 201

Exceptions

Parameters

Exceptions

See Also

Parameters

Exceptions

tk _value

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_label()

// Java
public abstract Any member label (int index)

throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns the label of the union member. For the default member,
the label is the zero octet. This method is valid to use only if the
kind of TypeCode has a TCKind value of tk union.

index The index indicating which union member you want.
BadKind The kind of TypeCode is not valid for this method.
Bounds The index parameter is greater than or equal to the

number of members for the type.

CORBA::TypeCodelidefault index()_
CORBA: : TypeCode : :member count ()

TypeCode::member_name()

// Java
public abstract String member name (int index)

throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns the simple name of the member. Because names are local
to a repository, the name returned from a TypeCode may not match
the name of the member in any particular repository, and may even
be an empty string.

index The index indicating which member to use.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk_enum

tk except

tk struct

tk union

tk value

The TypeCode oObject maintains the memory of the return value;
this return value must not be freed by the caller.

BadKind The Kkind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the
number of members for the type.

202 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

CORBA: :TypeCode:member count ()_

TypeCode::member_type()

// Java
public abstract TypeCode member type (int index)

throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns a reference to the TypeCode of the member identified by
index.

index The index indicating which member you want.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk except
tk struct
tk union
tk value

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the
number of members for the type.

CORBA: :TypeCode: imember count ()_

TypeCode::member_visibility()

// Java
public short member visibility(int index) throws BadKind, Bounds

{

throw new org.omg.CORBA.NO IMPLEMENT () ;

Returns the visibility of a value type member. This method is valid
to use only if the kind of TypeCode has a TCKind value of tk value.

index The index indicating which value type member you
want.

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the

number of members for the type.

CORBA::TypeCode::member count ()

TypeCode::name()

// Java
public abstract String name () throws BadKind;

Orbix CORBA Programmer’s Reference: Java 203

Exceptions

Exceptions

Returns the simple name identifying the type within its enclosing
scope. Because names are local to a repository, the name returned
from a TypeCode may not match the name of the type in any
particular repository, and may even be an empty string.

The TypeCode object maintains the memory of the return value;
this return value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk abstract interface
tk alias

tk_enum

tk except

tk native

tk objref

tk struct

tk union

tk value

tk value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::type_ modifier()
// Java

public short type modifier () throws BadKind {
throw new org.omg.CORBA.NO IMPLEMENT () ;
}

Returns the value modifier that applies to the value type represent-
ed by this TypeCode. This method is valid to use only if the kind of
TypeCode has a Tckind value of tk value.

BadKind The kind of TypeCode is not valid for this method.

204 Orbix CORBA Programmer’s Reference: Java

CORBA:: TypedefDef Interface

See Also

The abstract interface TypedefDef is simply a base interface for
interface repository interfaces that define named types. Named
types are types for which a name must appear in their definition
such as structures, unions, and so on. Interfaces that inherit from
typedefDef include:

o AliasDef

® EnumDef

® NativeDef

® StructDef

° UnionDef

o ValueBoxDef

Anonymous types such as primitiveDef, StringDef, SequenceDef
and ArrayDef do not inherit from TypedefDef.

//IDL in module CORBA.
interface TypedefDef : Contained, IDLType {};

The inherited operation describe () is described here.

TypedefDef::describe()

//IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The Definitionkind type for the kind member is dk_Typedef. The
value member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

CORBA: :Contained: :describe ()
CORBA: :Contained: :Description
CORBA: : TypeDescription

Orbix CORBA Programmer’s Reference: Java 205

206 Orbix CORBA Programmer’s Reference: Java

CORBA::UnionDef Interface

See Also

See Also

See Also

Interface UnionDef represents an IDL union in the interface reposi-
tory.

// IDL in module CORBA.

interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator type;
attribute IDLType discriminator type def;
attribute UnionMemberSeq members;

i
The inherited operation describe () is also described.
CORBA: :Contained

CORBA: : TypedefDef
CORBA: :Container: :create union/()

UnionDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which TypedefDef inherits), describe ()
returns a structure of type Contained: :Description.

The DefinitionKind for the kind member is dk_Union. The value
member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

CORBA: : TypedefDef : :describe ()

UnionDef::discriminator_type Attribute

// IDL
readonly attribute TypeCode discriminator type;

// Java

org.omg.CORBA.TypeCode discriminator type() ;

Describes the discriminator type for this union. For example, if the
union currently contains a long, the discriminator typeis tc long.
The attribute discriminator type def contains the same informa-
tion.

CORBA: : TypeCode

UnionDef::discriminator_type def Attribute

// IDL
attribute IDLType discriminator type def;

// Java
org.omg.CORBA. IDLType discriminator type def();

void discriminator type def (org.omg.CORBA.IDLType val);

Describes the discriminator type for this union. The attribute
discriminator type contains the same information.

Orbix CORBA Programmer’s Reference: Java 207

Changing this attribute will automatically update the
discriminator type attribute and the IDLType::type attribute.

See Also CORBA: : IDLType: : type
CORBA: :UnionDef: :discriminator type

UnionDef::members Attribute

// Java
org.omg.CORBA.UnionMember [] members () ;

void members(org.omg.CORBA.UnionMember[] val);

Contains a description of each union member: its name, label, and
type (type and type def contain the same information).

The members attribute can be modified to change the union’s mem-
bers. Only the name, label and type def fields of each UnionMember
should be set (the type field should be set to _tc void, and it will
be set automatically to the TypeCode of the type def field).

See Also CORBA: : TypedefDef

208 Orbix CORBA Programmer’s Reference: Java

CORBA::VValueBase Class

See Also

See Also

See Also

Parameters

See Also

All value types have a conventional base type called valueBase.
ValueBase serves a similar role for value types that the object class
serves for interfaces. valueBase serves as an abstract base class
for all value type classes. You must implement concrete value type
classes that inherit from valueBase. ValueBase provides several
pure virtual reference counting methods inherited by all value type
classes.

The names of these methods begin with an underscore to keep
them from clashing with your application-specific methods in
derived value type classes.

CORBA:IValueFactory

ValueBase:: _add_ref()

Increments the reference count of a value type instance and returns
a pointer to this value type.

CORBA::ValueBase: : remove ref ()

ValueBase:: copy_value()

Makes a deep copy of the value type instance and returns a pointer
to the copy. The copy has no connections with the original instance
and has a lifetime independent of that of the original.

Portable applications should not assume covariant return types
but should use downcasting to regain the most derived type of a
copied value type. A covariant return type means that a class
derived from ValueBase can override copy value() to return a
pointer to the derived class rather than the base class, valueBase*.

CORBA::ValueBase:: downcast ()

ValueBase:: downcast()

Returns a pointer to the base type for a derived value type class.

vt Pointer to the value type class to be downcast.

ValueBase:: refcount_value()

Returns the current value of the reference count for this value type
instance.

CORBA::ValueBase:: add ref ()
CORBA: :ValueBase:: remove ref ()

Orbix CORBA Programmer’s Reference: Java 209

See Also

See Also

Parameters

See Also

ValueBase:: _remove_ref()

Decrements the reference count of a value type instance and deletes
the instance when the reference count drops to zero.

If you use delete() to destroy instances, you must use the new
operator to allocate all value type instances.

CORBA::ValueBase:: add ref ()

ValueBase::—ValueBase() Destructor

The default destructor.

The destructor is protected to prevent direct deletion of instances
of classes derived from valueBase.

CORBA::ValueBase::ValueBase ()

ValueBase::ValueBase() Constructors
The default constructor.
The copy constructor. Creates a new object that is a copy of vt.

The copy constructor is protected to disallow copy construction of
derived value type instances except from within derived class
methods.

vt The original value type from which a copy is made.

CORBA::ValueBase::~ValueBase ()

210 Orbix CORBA Programmer’s Reference: Java

CORBA::VValueBoxDef Interface

The valueBoxDef interface describes an IDL value box type in the
interface repository. A value box is a value type with no inheri-
tance or operations and with a single state member. A value box is
a shorthand IDL notation used to simplify the use of value types
for simple containment. It behaves like an additional namespace
that contains only one name.

// IDL in module CORBA.

interface ValueBoxDef : IDLType {
attribute IDLType original type def;

}i

The inherited type attribute is also described.

See Also CORBA::Container::create value box()

ValueBoxDef::original _type_ def Attribute

// IDL
attribute IDLType original type def;

// Java
org.omg.CORBA.IDLType original type def();

void original type def(org.omg.CORBA.IDLType val);

Identifies the IDL type def that is being “boxed”. Setting the
original type def attribute also updates the type attribute.

See Also CORBA::ValueBoxDef : : type

ValueBoxDef::type Attribute

// IDL
readonly attribute TypeCode type;

Inherited from IDLType, this attribute is a tk value box TypeCode
describing the value box.

See Also CORBA::IDLType: : type

Orbix CORBA Programmer’s Reference: Java 211

212 Orbix CORBA Programmer’s Reference: Java

CORBA::VValueDef Interface

A valueDef object represents an IDL value type definition

in the

interface repository. It can contain constants, types, exceptions,

operations, and attributes.

A valueDef used as a Container may only contain TypedefDef,
(including definitions derived from TypedefDef), ConstantDef, and

ExceptionDef definitions.

// IDL in module CORBA.
interface ValueDef : Container, Contained, IDLType {

// read/write interface

attribute InterfaceDef supported interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base value;

attribute ValueDefSeq abstract base values;
attribute boolean is abstract;

attribute boolean is custom;

// read interface

boolean is a(
in RepositoryId id

)

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is abstract;
boolean is_ custom;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported interfaces;
RepositoryIdSeq abstract base values;
RepositoryId base value;
TypeCode type;

}i
FullValueDescription describe value() ;
ValueMemberDef create value member (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access
)i
AttributeDef create attribute(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode
)i
OperationDef create operation(
in RepositoryId id,
in Identifier name,

Orbix CORBA Programmer’s Reference

: Java 213

in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts
)i
}; // End ValueDef Interface

The inherited describe () and contents () operations are also
described.

See Also CORBA::Container:.create value ()

ValueDef::abstract_base values Attribute

// Java
org.omg.CORBA.ValueDef [] abstract base values() ;

void abstract base values(org.omg.CORBA.ValueDef[] wval);

The abstract _base values attribute lists the abstract value types
from which this value inherits.

Exceptions

BAD PARAM, The name attribute of any object contained by this
minor code 5 valueDef conflicts with the name attribute of any object
contained by any of the specified bases.

ValueDef::base value Attribute

// Java
org.omg.CORBA.ValueDef base value() ;

void base value(org.omg.CORBA.ValueDef val);

The base_value attribute describes the value type from which this
value inherits.

Parameters

BAD PARAM, The name attribute of any object contained by the

minor code 5 minor code 5 is raised if the name attribute of any
object contained by this valuebDef conflicts with the
name attribute of any object contained by any of the
specified bases.

ValueDef::contents()

// IDL
ContainedSeq contents (

in DefinitionKind limit type,
in boolean exclude inherited

)i

Inherited from Container, contents() returns the list of constants,
types, and exceptions defined in this valueDef and the list of
attributes, operations, and members either defined or inherited in
this valueDef.

214 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

Exceptions

See Also

limit type If set to dk_all, all of the contained objects in
the valueDef are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude inherited Applies only to interfaces. If true, only attri-
butes, operations and members defined within
this value type are returned. If false, all attri-
butes, operations and members are returned.

CORBA::Container: :contents ()

ValueDef::create_attribute()

// Java
org.omg.CORBA.AttributeDef create attribute(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. IDLType type,

org.omg.CORBA.AttributeMode mode
)i

Returns a new AttributeDef Object contained in the valueDef on
which it is invoked.

id The repository ID to use for the new AttributeDef. An
AttributeDef inherits the id attribute from Contained.

name The name to use for the new AttributeDef. An
AttributeDef inherits the name attribute from Contained.

version The version to use for the new AttributebDef. An
AttributeDef inherits the version attribute from
Contained.

type The IDL data type for the new AttributeDef. Both the
type_def and type attributes are set for AttributeDef.

mode The read or read/write mode to use for the new
AttributeDef.

The defined in attribute (which the AttributeDef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::AttributeDef
CORBA: :Contained

Orbix CORBA Programmer’s Reference: Java 215

Parameters

Exceptions

See Also

ValueDef::create_operation()

// Java
org.omg.CORBA.OperationDef create operation(

java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA.IDLType result,
org.omg.CORBA.OperationMode mode,
org.omg.CORBA.ParameterDescription[] params,
org.omg.CORBA.ExceptionDef [] exceptions,
java.lang.String[] contexts

)i

Returns a new OperationDef Object contained in the valueDef on
which it is invoked.

id The repository ID to use for the new OperationDef. An
OperationDef inherits the id attribute from Contained.

name The name to use for the new OperationDef. An
OperationDef inherits the name attribute from Contained.

version The version to use for the new OperationDef. An
OperationDef inherits the version attribute from
Contained.

result The IDL data type of the return value for the new
OperationDef. Both the result def and result attri-
butes are set for the OperationbDef.

mode The mode to use for the new OperationDef. Specifies
whether the operation is normal (OP_NORMAL) Or one-
way (OP ONEWAY).

params The parameters for this OperationDef.

exceptions The list of exceptions to use for the Operationbef. These
are exceptions the operation can raise.

contexts The list of context identifiers to use for the OperationDef.
These represent the context clause of the operation.

The defined in attribute (which the Operationbef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::OperationDef
CORBA: : Contained

ValueDef::create_value _member()

// Java
org.omg.CORBA.ValueMemberDef create value_ member (

java.lang.String id,

216 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

See Also

java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType type,
short access

)i

Returns a new valueMemberDef contained in the valueDef on which it
is invoked.

id The repository ID to use for the new valueMemberDef.
An ValueMemberDef inherits the id attribute from
Contained.

name The name to use for the new valueMemberDef. An
ValueMemberDef inherits the name attribute from
Contained.

version The version to use for the new valueMemberDef. An
ValueMemberDef inherits the version attribute from
Contained.

type The IDL data type for the new valueMemberDef. Both
the type def and type attributes are set for
ValueMemberDef.

access The visibility to use for the new valueMemberDef. IDL
value types can have state members that are either
public or private.

The defined in attribute (which the valueMemberDef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

A BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::ValueMemberDef
CORBA: :Contained

ValueDef::describe()

// IDL
ValueDescription describe () ;

Inherited from Contained, describe () for a valueDef returns a
ValueDescription object. Use describe value () for a full description
of the value.

CORBA::ValueDescription
CORBA: :Contained: :describe ()
CORBA: :ValueDef : :describe value ()

Orbix CORBA Programmer’s Reference: Java 217

See Also

ValueDef::describe_value()

// Java
org.omg.CORBA.ValueDefPackage.FullValueDescription

describe value() ;

Returns a FullvalueDescription Object describing the value, includ-
ing its operations and attributes.

CORBA::FullValueDescription
CORBA: :ValueDef : :describe ()

ValueDefPackage.FullValueDescription.FullVval
ueDescription()

// Java
public FullValueDescription (

java.lang.String name,
java.lang.String id,
boolean is abstract,
boolean is custom,
byte flags,
java.lang.String defined in,
java.lang.String version,
org.omg.CORBA.OperationDescription([] operations,
org.omg.CORBA.AttributeDescription[] attributes,
org.omg.CORBA.ValueMember [] members,
org.omg.CORBA.Initializer[] initializers,
java.lang.String supported interface,
java.lang.String[] abstract base values,
boolean has safe base,
java.lang.String base value,
org.omg.CORBA.TypeCode type

)

A full description of a value type in the interface repository.

name The name of the value type.

id The repository ID of the value type.

is abstract Has a value of 1 (true) if the value is an
abstract value type. A value of O is false.

is custom Has a value of 1 (true) if the value uses cus-
tom marshalling. A value of O is false.

defined in The repository ID that identifies where this
value type is defined.

version The version of the value type.

operations A list of operations that the value type sup-
ports.

attributes A list of attributes that the value type sup-
ports.

members A list of value type members.

initializers A list of initializer values for the value type.

supported interfaces A list of interfaces this value type supports.

abstract base values A list of repository IDs that identify abstract
base values.

218 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

base value A repository ID that identifies a base value.
type The IDL type of the value type.

CORBA::ValueDef::describe value ()

ValueDef::initializers Attribute

// Java
org.omg.CORBA.Initializer[] initializers();
void initializers(org.omg.CORBA.Initializer[] wval);

Lists the initializers this value type supports.

ValueDef::is_a()

// Java
boolean is a(java.lang.String value id);

Returns 1 (true) if this value type is either identical to or inherits,
directly or indirectly, from the interface or value identified by the
id parameter. Otherwise it returns O (false).

id The repository ID of the value type or interface to
compare with this value type.

ValueDef::is_abstract Attribute

// Java
boolean is abstract() ;

void is abstract(boolean val);

Returns 1 (true) if this value type is an abstract value type.
Otherwise it returns O (false).

ValueDef::is_custom Attribute

// Java
boolean is custom() ;

void is custom(boolean val);

Returns 1 (true) if this value type uses custom marshalling. Other-
wise it returns O (false).

ValueDef::supported_interfaces Attribute

// IDL
attribute InterfaceDef supported interfaces;

Lists the interfaces that this value type supports.

// Java
org.omg.CORBA.InterfaceDef supported interface();

void supported interface(org.omg.CORBA.InterfaceDef wval);

Orbix CORBA Programmer’s Reference: Java 219

Exceptions

BAD PARAM,
minor code 5

220 Orbix CORBA Programmer’s Reference: Java

The name attribute of any object contained by the
minor code 5 is raised if the name attribute of any
object contained by this valueDef conflicts with the
name attribute of any object contained by any of the
specified bases.

CORBA::ValueFactory

This describes the mapping of the IDL native type

CORBA: :ValueFactory. For native IDL types, each language mapping
specifies how repository IDs are used to find the appropriate fac-
tory for an instance of a value type so that it may be created as it
is unmarshaled off the wire.

// IDL in module CORBA

native ValueFactory;

Recall that value types allow objects to be passed by value which
implies that the ORB must be able to create instances of your
value type classes during unmarshaling. However, because the
ORB cannot know about all potential value type classes, you must
implement factory classes for those types and register them with
the ORB so the ORB can create value instances when necessary.

If the ORB is unable to locate and use the appropriate factory,
then a MARSHAL exception with a minor code is raised.

CORBA::ValueFactory Type

CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :register value factory()
CORBA: :ORB: :unregister value factory ()

Orbix CORBA Programmer’s Reference: Java 221

222 Orbix CORBA Programmer’s Reference: Java

CORBA::ValueMemberDef

Interface

See Also

See Also

The valueMemberDef interface provides the definition of a value type
member in the interface repository.
// IDL in module CORBA.
interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute Visibility access;

}i

ValueMemberDef::access Attribute

// Java
short access() ;

void access(short val);

Contains an indicator of the visibility of an IDL value type state
member. IDL value types can have state members that are either
public or private.

ValueMemberDef::type Attribute

// Java
org.omg.CORBA. TypeCode type () ;

Describes the type of this valueMemberDef.

CORBA: :ValueMemberDef: :type def

ValueMemberDef::type def Attribute

// Java
org.omg.CORBA.IDLType type def();

void type def(org.omg.CORBA.IDLType val);

Identifies the object that defines the IDL type of this valueMemberDef.
The same information is contained in the type attribute.

You can change the type of a valueMemberDef by changing its
type def attribute. This also changes its type attribute.

CORBA: :ValueMemberDef : : type

Orbix CORBA Programmer’s Reference: Java 223

224 Orbix CORBA Programmer’s Reference: Java

CORBA::WString _var Class

See Also

See Also

See Also

Parameters

See Also

Parameters

The class wstring var implements the var type for IDL wide
strings required by the standard C++ mapping. The WString var
class contains a char* value and ensures that this is properly freed
when a wstring var object is deallocated, for example when exec-
tution goes out of scope.

WString_var::char*()

Converts a Wstring var object to a char*.

CORBA:IIWString var: :operator= ()

WString_var::in()
Returns the proper string for use as an input parameter.

CORBA:IIWString var: :out ()
CORBA: :WString var: :inout ()
CORBA: :WString var:: retn()

WString_var::inout()

Returns the proper string for use as an inout parameter.

CORBA:I:IWString var::in()
CORBA: :WString var: :out ()
CORBA: :WString var:: retn()

WString_ var::operator=() Assignment
Operators

Assignment operators allow you to assign values to a WString var
from a char* or from another wstring var type.

p A character string to assign to the wWString var.
A WString var to assign to the WString var.

CORBA::WString var: :char* ()

WString_var::operator[]() Subscript Operators

Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

index The index location in the string.

Orbix CORBA Programmer’s Reference: Java 225

See Also

Parameters

See Also

See Also

See Also

WString_var::out()

Returns the proper string for use as an output parameter.

CORBA::WString var::in()
CORBA: :WString var: :inout ()
CORBA: :WString var:: retn()

WString_var::WString_var() Constructors
The default constructor.
Constructors that convert from a char* to a WString var.

The copy constructor.

p The character string to convert to a wString var. The
WString var assumes ownership of the parameter.

s The original wstring var that is copied.

CORBA:IIWString var::~WString var ()

WString_var::—WString_var() Destructor

The destructor.

CORBA:IWString var::WString var ()

WString_var::_retn()

Returns the proper string for use as a method’s return value.
CORBA:IIWString var: :inout ()

CORBA: :WString var::in()

CORBA: :WString var: :out ()

226 Orbix CORBA Programmer’s Reference: Java

CORBA::WstringDef Interface

See Also

See Also

Interface wstringDef represents a bounded IDL wide string type in
the interface repository. A WstringDef object is anonymous, which
means it is unnamed. Use Repository: :create wstring() to obtain
a new WstringDef object.

Unbounded strings are primitive types represented with the
PrimitiveDef interface. Use Repository::get primitive() to obtain
unbounded wide strings.

// IDL in module CORBA.
interface WstringDef : IDLType {
attribute unsigned long bound;

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create wstring()
CORBA: :PrimitiveDef
CORBA: : StringDef

WstringDef::bound Attribute

// IDL
attribute unsigned long bound;

// Java
int bound() ;

void bound(int wval);

Specifies the maximum number of characters in the wide string.
This cannot be zero.

WstringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_wstring TypeCode that describes the wide string.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: Java 227

228 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin Module

The CosEventChannelAdmin module specifies the interfaces and
exceptions for connecting suppliers and consumers to an event
channel. It also provides the methods for managing these connec-
tions.

It contains the following interfaces:

* CosEventChannelAdmin::ProxyPushConsumer Interface
* CosEventChannelAdmin::ProxyPushSupplier Interface

®* CosEventChannelAdmin::ProxyPullConsumer Interface
* CosEventChannelAdmin::ProxyPullSupplier Interface

®* CosEventChannelAdmin::ConsumerAdmin Interface

®* CosEventChannelAdmin::SupplierAdmin Interface

®* CosEventChannelAdmin::EventChannel Interface

CosEventChannelAdmin Exceptions

exception AlreadyConnected {};

An AlreadyConnected exception is raised when an attempt is made
to connect an object to the event channel when that objectis already
connected to the channel.

exception TypeError {};

The TypeError exception is raised when a proxy object trys to
connect an object that does not support the proper typed interface.

Orbix CORBA Programmer’s Reference: Java 229

230 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::Consum
erAdmin Interface

Once a consumer has obtained a reference to a ConsumerAdmin
object (by calling EventChannel: : for consumers ()), they can use
this interface to obtain a proxy supplier. This is necessary in order
to connect to the event channel.

interface ConsumerAdmin

{
ProxyPushSupplier obtain push supplier();
ProxyPullSupplier obtain pull supplier();

}i

ConsumerAdmin::obtain_push_supplier()

//IDL
ProxyPushSupplier obtain push supplier() ;

Returns a proxyPushSupplier object. The consumer can then use this
object to connect to the event channel as a push-style consumer.

ConsumerAdmin::obtain_pull_supplier()

//IDL
ProxyPushSupplier obtain pull supplier();

Returns a proxyPullSupplier Oobject. The consumer can then use this
object to connect to the event channel as a pull-style consumer.

Orbix CORBA Programmer’s Reference: Java 231

232 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::EventCh
annel Interface

The EventChannel interface lets consumers and suppliers establish
a logical connection to the event channel.

interface EventChannel

{
ConsumerAdmin for consumers() ;
SupplierAdmin for suppliers/()
void destroy () ;

7

}i

EventChannel::for_consumers()

//IDL
ConsumerAdmin for consumers() ;

Used by a consumer to obtain an object reference that supports the
ConsumerAdmin interface.

EventChannel::for_suppliers()

//IDL
SupplierAdmin for suppliers()

Used by a supplier to obtain an object reference that supports the
SupplierAdmin interface.

EventChannel::destroy()

//IDL
void destroy () ;

Destroys the event channel. All events that are not yet delivered,

as well as all administrative objects created by the channel, are also
destroyed. Connected pull consumers and push suppliers are noti-
fied when their channel is destroyed.

Orbix CORBA Programmer’s Reference: Java 233

234 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPul
IConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer
using the supplierAdmin interface, they use the ProxyPullConsumer
interface to connect to the event channel.

interface ProxyPullConsumer : CosEventComm: :PushConsumer

{

void connect pull supplier (
in CosEventComm: :PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

}i

ProxyPullConsumer::connect_pull_supplier()

//IDL
void connect pull supplier(

in CosEventComm::PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

This operation connects the supplier to the event channel.

If the proxy pull consumer is already connected to a PushSupplier,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is raised when supplier that is being connected does not support
the proper typed event structure.

pull supplier The supplier that is trying to connect to the event
channel.

Orbix CORBA Programmer’s Reference: Java 235

236 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPul
ISupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the pProxyPullSupplier interface
to connect to the event channel.

interface ProxyPullSupplier : CosEventComm::PullSupplier

{

void connect pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

}i

ProxyPullSupplier::connect_pull_consumer()

//IDL
void connect pull consumer (

in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

This operation connects the consumer to the event channel. If the
consumer passes a nil object reference, the proxy pull supplier will
not notify the consumer when it is about to be disconnected.

If the proxy pull supplier is already connected to the pPullConsumer,
then the AlreadyConnected exception is raised.

pull consumer The consumer that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: Java 237

238 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPu
shConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer
using the supplierAdmin interface, they use the ProxyPushConsumer
interface to connect to the event channel.

// IDL
interface ProxyPushConsumer : CosEventComm: :PushConsumer
{
void connect push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (AlreadyConnected) ;

}i

ProxyPushConsumer::connect_push_supplier(
)

//IDL
void connect push supplier (

in CosEventComm: : PushSupplier push supplier)
raises (AlreadyConnected) ;

This operation connects the supplier to the event channel. If the
supplier passes a nil object reference, the proxy push consumer will
not notify the supplier when it is about to be disconnected.

If the proxy push consumer is already connected to the
pPushSupplier, then the AlreadyConnected exception is raised.

push supplier The supplier that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: Java 239

240 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPu
shSupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the pProxyPushSupplier interface
to connect to the event channel.

interface ProxyPushSupplier : CosEventComm::PushSupplier
void connect push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

}i

ProxyPushSupplier::connect_push_consumer(
)

//IDL
void connect push consumer (

in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

This operation connects the consumer to the event channel.

If the proxy push supplier is already connected to the PushConsumer,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is when the consumer that is being connected does not support
the proper typed event structure.

push_consumer The consumer that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: Java 241

242 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::Supplier
Admin Interface

Once a supplier has obtained a reference to a SupplierAdmin object
(by calling EventChannel::for suppliers()), they can use this inter-
face to obtain a proxy consumer. This is necessary in order to con-
nect to the event channel.

interface SupplierAdmin

{
ProxyPushConsumer obtain push consumer () ;
ProxyPullConsumer obtain pull_ consumer () ;

}i

SupplierAdmin::obtain_push_consumer()

//IDL
ProxyPushConsumer obtain push consumer () ;

Returns a ProxyPushConsumer object. The supplier can then use this
object to connect to the event channel as a push-style supplier.

SupplierAdmin::obtain_pull _consumer()

//IDL
ProxyPushConsumer obtain pull consumer () ;

Returns a proxyPullConsumer object. The supplier can then use this
object to connect to the event channel as a pull-style supplier.

Orbix CORBA Programmer’s Reference: Java 243

244 Orbix CORBA Programmer’s Reference: Java

CosEventComm Module

The cosEventComm module specifies the interfaces which define the
event service consumers and suppliers.

CosEventComm Exceptions

CosEventComm::Disconnected

exception Disconnected {};
Disconnected is raised when an attempt is made to contact a proxy
that has not been connected to an event channel.

Orbix CORBA Programmer’s Reference: Java 245

246 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PullConsumer
Interface

A pull-style consumer supports the pullConsumer interface.

interface PullConsumer

{
}i

void disconnect pull consumer() ;

PullConsumer::disconnect_pull _consumer()

//IDL
void disconnect pull consumer() ;

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The pullConsumer Object reference is discarded.

Orbix CORBA Programmer’s Reference: Java 247

248 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PullSupplier

Interface

Parameters

A pull-style supplier supports the pullsupplier interface to trans-
mit event data. A consumer requests event data from the supplier
by invoking either the pull () operation or the try pull () opera-
tion.

interface PullSupplier

{

any pull() raises (Disconnected) ;
any try pull (out boolean has event) raises (Disconnected);
void disconnect pull supplier();

}i

PullSupplier::pull()

//IDL
any pull () raises (Disconnected);

The consumer requests event data by calling this operation. The
operation blocks until the event data is available, in which case it
returns the event data to the consumer. Otherwise an exception is
raised. If the event communication has already been disconnected,
the OBJECT NOT EXIST exception is raised.

PullSupplier::try_pull()

//IDL
any try pull (out boolean has event) raises (Disconnected) ;

Unlike the try operation, this operation does not block. If the event
data is available, it returns the event data and sets the has _event
parameter to true. If the event is not available, it sets the has event
parameter to false and the event data is returned with an undefined
value. If the event communication has already been disconnected,
the OBJECT NOT EXIST exception is raised.

has event Indicates whether event data is available to the
try pull operation

PullSupplier::disconnect_pull_supplier()

//IDL
void disconnect pull supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The pullsupplier object reference is discarded.

Orbix CORBA Programmer’s Reference: Java 249

250 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PushConsumer

Interface

Parameters

A push-style consumer supports the pushConsumer interface to
receive event data.

interface PushConsumer

{

void push(in any data) raises (Disconnected) ;
void disconnect push consumer() ;

}i

PushConsumer::push()

//IDL
void push(in any data) raises(Disconnected) ;

Used by a supplier to communicate event data to the consumer.
The supplier passes the event data as a parameter of type any. If
the event communication has already been disconnected, the
OBJECT NOT EXIST exception is raised.

data The event data, of type any.

PushConsumer::disconnect_push_consumer()

//IDL
void disconnect push consumer() ;

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The pushConsumer Object reference is discarded.

Orbix CORBA Programmer’s Reference: Java 251

252 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PushSupplier

Interface

A push-style supplier supports the pushSupplier interface.
interface PushSupplier

{

void disconnect push supplier();

Vi

PushSupplier::disconnect_push_supplier()

//IDL
void disconnect push supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The pushSupplier oObject reference is discarded.

Orbix CORBA Programmer’s Reference: Java 253

254 Orbix CORBA Programmer’s Reference: Java

CosNaming Overview

See Also

See Also

The CcosNaming module contains all IDL definitions for the CORBA
naming service. The interfaces consist of:

* “CosNaming::Bindinglterator Interface”
®* “CosNaming::NamingContext Interface”
* “CosNaming::NamingContextExt Interface”

Use the NamingContext and BindingIterator interfaces to access
standard naming service functionality. Use the NamingContextExt
interface to use URLs and string representations of names.

The rest of this chapter describes data types common to the
CosNaming module that are defined directly within its scope.

CosNaming::Binding Structure

// IDL
struct Binding {

Name binding name;
BindingType binding type;

i
A Binding structure represents a single binding in a naming context.
A Binding structure indicates the name and type of the binding:

binding name The full compound name of the binding.

binding type The binding type, indicating whether the name is
bound to an application object or a naming con-
text.

When browsing a naming graph in the naming service, an applica-
tion can list the contents of a given naming context, and deter-
mine the name and type of each binding in it. To do this, the
application calls the NamingContext.list () method on the target
NamingContext object. This method returns a list of Binding struc-
tures.

CosNaming: :BindingList
CosNaming: :BindingType
NamingContext::1list ()

CosNaming::BindingList Sequence

// IDL

typedef sequence<Binding> BindinglList;

A sequence containing a set of Binding structures, each of which
represents a single name binding.

An application can list the bindings in a given naming context
using the NamingContext::list() method. An output parameter of
this method returns a value of type BindingList.

CosNaming: :Binding
CosNaming: :BindingType
NamingContext::1list ()

Orbix CORBA Programmer’s Reference: Java 255

“About Sequences”

CosNaming::BindingType Enumeration

// IDL
enum BindingType {nobject, ncontext};

The enumerated type BindingType represents these two forms of
name bindings:

nobject Describes a name bound to an application
object.
ncontext Describes a name bound to a naming context in

the naming service.

There are two types of name binding in the CORBA naming ser-
vice: names bound to application objects, and names bound to
naming contexts. Names bound to application objects cannot be
used in a compound name, except as the last element in that
name. Names bound to naming contexts can be used as any com-
ponent of a compound name and allow you to construct a naming
graph in the naming service.

Name bindings created using NamingContext: :bind () oOr
NamingContext: :rebind () are nobject bindings.

Name bindings created using the operations
NamingContext: :bind context () Or NamingContext::rebind context ()
are ncontext bindings.

See Also CosNaming: :Binding
CosNaming: :BindingList

CosNaming::Istring Data Type

// IDL
typedef string Istring;

Type Istringis a place holder for an internationalized string format.

CosNaming::Name Sequence

// IDL

typedef sequence<NameComponent> Name;

A Name represents the name of an object in the naming service. If
the object name is defined within the scope of one or more naming
contexts, the name is a compound name. For this reason, type Name
is defined as a sequence of name components.

Two names that differ only in the contents of the kind field of one
NameComponent Structure are considered to be different names.
Names with no components, that is sequences of length zero, are
illegal.

See Also CosNaming: : NameComponent
“About Sequences”

256 Orbix CORBA Programmer’s Reference: Java

See Also

CosNaming::NameComponent Structure