
Version 5.0, December 21 2001

CORBA Migration and Interoperability Guide

Orbix, Orbix E2A, Orbix E2A Application Server Platform, Orbix E2A Application Server,
Orbix E2A XMLBus, Orbix E2A IMS Connector, Adaptive Runtime Technology, are trade-
marks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
IONA, IONA Technologies, the IONA logo, End 2 Anywhere, End To Anywhere, IONA
e-Business Platform, and Total Business Integration are trademarks or registered trade-
marks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

M 2 7 7 8

Contents

Preface vii

Part I Overview of Migration

Chapter 1 Introduction 3
Orbix E2A Advantages 4
Migration Resources 6
Migration Options 7

Migrating to Orbix E2A 8
Mixed Deployment 9

Part II Migrating to Orbix E2A

Chapter 2 IDL Migration 13
The context Clause 14
The opaque Type 15
The Principal Type 16

Chapter 3 Client Migration 17
Replacing the _bind() Function 18
Callback Objects 22
IDL-to-C++ Mapping 23
System Exception Semantics 24
Dynamic Invocation Interface 25

Chapter 4 Server Migration 27
Function Signatures 28
Object IDs versus Markers 29
CORBA Objects versus Servant Objects 30
iii

CONTENTS
BOA to POA Migration 31
Creating an Object Adapter 32
Defining an Implementation Class 33
Creating and Activating a CORBA Object 35

Chapter 5 Migrating Proprietary Orbix 3 Features 37
Orbix 3 Locator 38
Filters 41

Request Logging 42
Piggybacking Data on a Request 43
Multi-Threaded Request Processing 44
Accessing the Client's TCP/IP Details 45
Security Using an Authentication Filter 46

Loaders 47
Smart Proxies 49
Transformers 52
I/O Callbacks 53

Connection Management 54
Session Management 56

Chapter 6 CORBA Services 57
Interface Repository 58
Naming Service 59
Notification Service 60

CORBA Specification Updates 61
Quality of Service Properties 64
Configuration / Administration Changes 66
Deprecated Features 67

SSL/TLS Toolkit 68
Changes to the Programming Interfaces 69
Configuration and Administration 72
Migrating Certificate and Private Key Files 75

Chapter 7 Administration 79
Orbix Daemons 80
POA Names 81
Command-Line Administration Tools 82
Activation Modes 85
 iv

CONTENTS
Part III Interoperability

Chapter 8 Configuring for Interoperability 89
Interoperability Overview 90
Launch and Invoke Rights 92
GIOP Versions 94

Chapter 9 IDL Issues 97
Use of #pragma prefix 98
Use of #pragma ID in IDL 101
Fixed Data Type and Interoperability 102
Use of wchar and wstring 104
C++ Keywords as Operation Names 105

Chapter 10 Exceptions 107
Orbix 3.3 C++ Edition—System Exceptions 108

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions 111
The TRANSIENT and COMM_FAILURE Exceptions 112
Orbix 3.3 C++ Edition and Orbix E2A 113

Orbix 3.3 Java Edition—System Exceptions 115
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions 117
The TRANSIENT and COMM_FAILURE Exceptions 118
Orbix 3.3 Java Edition and Orbix E2A 119

FILTER_SUPPRESS Exception 120
Dynamic Invocation Interface and User Exceptions 121
Dynamic Invocation Interface and LOCATION_FORWARD 123

Chapter 11 Services 125
The Orbix E2A Interoperable Naming Service 126
Interface Repository Interoperability 132
SSL/TLS Toolkit Interoperability 133
High Availability and Orbix 3.3 Clients 134

Chapter 12 Connection Management 135
Orbix E2A Active Connection Management 136
Callbacks and Bi-Directional IIOP 137
v

CONTENTS
Setting the Listen Queue Size in Orbix 3.3 C++ Edition 140
Multiple LOCATION_FORWARD 142

Chapter 13 Codeset Negotiation 143
Codeset Negotiation for Narrow and Wide Characters 144

Configuring Orbix E2A to Support Legacy Behavior 146
Orbix E2A Codeset Negotiation Details 147
Sample Codeset Conversion Scenarios 149

Index 151
 vi

Preface
This document explains how to migrate applications from the Orbix and
OrbixWeb products, which conform to CORBA 2.1, to Orbix E2A v5.0,
which conforms to CORBA 2.4.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Audience This document is aimed at C++ or Java programmers who are already
familiar with IONA’s Orbix or OrbixWeb products and who now want to
migrate all or part of a system to use Orbix E2A v5.0.

Parts of this document are relevant also to administrators familiar with
Orbix and OrbixWeb administration. See “Administration” on page 79 and
“Configuring for Interoperability” on page 89.
vii

PREFACE
Organization of this Guide This guide is divided as follows:

Part I “Overview of Migration”

This part briefly discusses the advantages of migrating and the options for
your migration strategy.

Part II “Migrating to Orbix E2A”

This part explains how to migrate client and server source (in C++ or Java)
to Orbix E2A. For each of the features that have been modified or removed
from Orbix E2A, relative to the features supported by Orbix and OrbixWeb,
this part discusses the replacement features offered by Orbix E2A.

Part III “Interoperability”

This part discusses the issues that affect a mixed deployment of
interoperating Orbix, OrbixWeb and Orbix E2A applications. With
appropriate customization of the ORB configuration, you can obtain an
optimum level of compatibility between the various applications in your
system.

Additional Related Resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/
 viii

http://www.iona.com/support/kb/
http://www.iona.com/support/update/

PREFACE
Typographical Conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.
ix

PREFACE
Keying Conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 x

Part I
Overview of Migration

In This Part This part contains the following chapter:

Introduction page 3

CHAPTER 1

Introduction
The newest generation of IONA tools provide significant
advances over the previous generation of products.

In This Chapter This chapter discusses the following topics:

Orbix E2A Advantages page 4

Migration Resources page 6

Migration Options page 7
3

CHAPTER 1 | Introduction
Orbix E2A Advantages

Upgrading Orbix The recommended path for customers upgrading to a new version of Orbix is
to move to Orbix E2A. Because Orbix E2A is a CORBA 2.4-compliant ORB,
it offers many new features over previous versions of Orbix:

• Portable interceptor support.

• Codeset negotiation support.

• Value type support.

• Asynchronous method invocation (AMI) support.

• Persistent State Service (PSS) support.

• Dynamic any support.

Unique Features Orbix E2A also offers some unique benefits over other commercial ORB
implementations, including:

• ORB extensibility using IONA's patented Adaptive Runtime Technology
(ART).

Orbix E2A has a modular structure built on a micro-kernel architecture.
Required ORB modules, ORB plug-ins, are specified in a configuration
file and loaded at runtime, as the application starts up. The advantage
of this approach is that new ORB functionality can be dynamically
loaded into an Orbix application without rebuilding the application.

• Improved performance.

The performance of Orbix E2A has been optimized, resulting in
performance that is faster than Orbix 3.x and OrbixWeb 3.x in every
respect.

• Advanced deployment and configuration.

Orbix E2A supports a flexible model for the deployment of distributed
applications. Applications can be grouped into configuration domains
and organized either as file-based configuration domains or as
configuration repository-based configuration domains.
 4

Orbix E2A Advantages
• Rapid application development using the Orbix code generation toolkit.

The code generation toolkit is an extension to the IDL compiler that
generates a working application prototype—based on your application
IDL—in a matter of seconds.
5

CHAPTER 1 | Introduction
Migration Resources

Overview of Resources IONA is committed to assisting you with your migration effort to ensure that
it proceeds as easily and rapidly as possible. The following resources are
currently available:

• IONA's migration web page, including the latest news and links to
further resources, is at: http://www.iona.com/moving_forward

• This migration and interoperability guide.

This technical document provides detailed guidance on converting
source code to Orbix E2A. The document aims to provide
comprehensive coverage of migration issues, and to demonstrate how
features supported in earlier Orbix versions can be mapped to
Orbix E2A features.

• Professional Services migration packages

IONA's Professional Services organization has put together a set of
consultancy packages that facilitate rapid migration to Orbix E2A.
Details of Professional Services assessment and migration packages
are available at: http://www.iona.com/info/services/ps/migration.htm
 6

http://www.iona.com/moving_forward
http://www.iona.com/info/services/ps/migration.htm

Migration Options
Migration Options

Overview The possible migration options are:

• Migrating to Orbix E2A

• Mixed Deployment

In This Section This section contains the following subsections:

Migrating to Orbix E2A page 8

Mixed Deployment page 9
7

CHAPTER 1 | Introduction
Migrating to Orbix E2A

Overview The CORBA 2.4 specification, on which Orbix E2A is based, standardizes
almost every aspect of CORBA programming. Migrating your source code to
Orbix E2A, therefore, represents a valuable investment because your code
will be based on a stable, highly standardized programming interface.

Client Side On the client side, the main issue for migration is that the Orbix _bind()
function is not supported in Orbix E2A. The CORBA Naming Service is now
the recommended mechanism for establishing contact with CORBA servers.

Server Side On the server side, the basic object adapter (BOA) must be replaced by the
portable object adapter (POA). This is one of the major differences between
the CORBA 2.1 and the CORBA 2.4 specifications. The POA is much more
tightly specified than the old BOA; hence server code based on the POA is
well standardized.

Proprietary Features Orbix 3.x and OrbixWeb 3.x support a range of proprietary features not
covered by the CORBA standard-for example, the Orbix locator, filters,
loaders, smart proxies, transformers and I/O callbacks. When migrating to
Orbix E2A, the proprietary features must be replaced by standard CORBA
2.4 features. This migration guide details how each of the proprietary
features can be replaced by equivalent Orbix E2A functionality.

Further Details The details of migrating to Orbix E2A are discussed in Part II of this guide.
See “Migrating to Orbix E2A” on page 11.
 8

Migration Options
Mixed Deployment

Overview Mixed Deployment is appropriate when a number of CORBA applications
are in deployment simultaneously. Some applications might be upgraded to
use Orbix E2A whilst others continue to use Orbix 3.x and OrbixWeb 3.x.
This kind of mixed environment requires on-the-wire compatibility between
the generation 3 products and Orbix E2A. Extensive testing has been done
to ensure interoperability with Orbix E2A.

On-the-Wire Interoperability Both Orbix 3.3 and Orbix E2A have been modified to achieve an optimum
level of on-the-wire compatibility between the two products.

Further Details Interoperability is discussed in Part III of this guide. See “Interoperability” on
page 87.
9

CHAPTER 1 | Introduction
 10

Part II
Migrating to Orbix E2A

In This Part This part contains the following chapters:

IDL Migration page 13

Client Migration page 17

Server Migration page 27

Migrating Proprietary Orbix 3 Features page 37

CORBA Services page 57

Administration page 79

CHAPTER 2

IDL Migration
This chapter discusses the Orbix 3.x IDL features that are not
available in Orbix E2A.

In This Chapter This chapter discusses the following topics:

The context Clause page 14

The opaque Type page 15

The Principal Type page 16
13

CHAPTER 2 | IDL Migration
The context Clause

IDL Syntax According to IDL grammar, a context clause can be added to an operation
declaration, to specify extra variables that are sent with the operation
invocation. For example, the following Account::deposit() operation has a
context clause:

Migrating to Orbix E2A The context clause is not supported by Orbix E2A. IDL contexts are
generally regarded as type-unsafe. Orbix clients that use them need to be
migrated, to transmit their context information using another mechanism,
such as service contexts, or perhaps as normal IDL parameters.

//IDL

interface Account {
void deposit(in CashAmount amount)

context("sys_time", "sys_location");
//...

};
 14

The opaque Type
The opaque Type

Migrating to Orbix E2A The object-by-value (OBV) specification, introduced in CORBA 2.3 and
supported in Orbix E2A, replaces opaques. .
15

CHAPTER 2 | IDL Migration
The Principal Type

Not Supported in Orbix E2A The CORBA specification deprecates the Principal IDL type; therefore the
Principal IDL type is not supported by Orbix E2A.

Interoperability Orbix E2A has some limited on-the-wire support for the Principal type, to
support interoperability with Orbix 3.x applications.

See “Launch and Invoke Rights” on page 92.
 16

CHAPTER 3

Client Migration
Migration of client code from Orbix 3 to Orbix E2A is generally
straightforward, because relatively few changes have been
made to the client-side API.

In This Chapter The following topics are discussed in this chapter:

Replacing the _bind() Function page 18

Callback Objects page 22

IDL-to-C++ Mapping page 23

System Exception Semantics page 24

Dynamic Invocation Interface page 25
17

CHAPTER 3 | Client Migration
Replacing the _bind() Function

Overview The _bind() function is not supported in Orbix E2A. All calls to _bind()
must be replaced by one of the following:

• CORBA Naming Service.

• CORBA Trader Service.

• Object-to-string conversion.

• corbaloc URL.

• The ORB::resolve_initial_references() operation.

CORBA Naming Service The naming service is the recommended replacement for _bind() in most
applications. Migration to the naming service is straightforward on the client
side. The triplet of markerName, serverName, and hostName, used by the
_bind() function to locate an object, is replaced by a simple name in the
naming service.

When using the naming service, an object's name is an abstraction of the
object location and the actual location details are stored in the naming
service. Object names are resolved using these steps:

1. An initial reference to the naming service is obtained by calling
resolve_initial_references() with NameService as its argument.

2. The client uses the naming service reference to resolve the names of
CORBA objects, receiving object references in return.

Orbix E2A supports the CORBA Interoperable Naming Service, which is
backward-compatible with the old CORBA Naming Service and adds
support for stringified names.

CORBA Trader Service Orbix E2A Trader provides advanced capabilities for object location and
discovery. Unlike the Orbix Naming Service where an object is located by
name, an object in the Trading Service does not have a name. Rather, a
server advertises an object in the Trading Service based on the kind of
service provided by the object. A client locates objects of interest by asking
the Trading Service to find all objects that provide a particular service. The
client can further restrict the search to select only those objects with
particular characteristics.
 18

Replacing the _bind() Function
Object-to-String Conversion CORBA offers two CORBA-compliant conversion functions:

CORBA::ORB::object_to_string()
CORBA::ORB::string_to_object()

These functions allow you to convert an object reference to and from the
stringified interoperable object reference (stringified IOR) format. These
functions enable a CORBA object to be located as follows:

1. A server generates a stringified IOR by calling
CORBA::ORB::object_to_string().

2. The server passes the stringified IOR to the client, for example by
writing the string to a file.

3. The client reads the stringified IOR from the file and converts it back to
an object reference, using CORBA::ORB::string_to_object().

Because they are not scalable, these functions are generally not useful in a
large-scale CORBA system. Use them only to build initial prototypes or
proof-of-concept applications.

corbaloc URL A corbaloc URL is a form of human-readable stringified object reference. If
you are migrating your clients to Orbix E2A but leaving your servers as Orbix
3.3 applications, the corbaloc URL offers a convenient replacement for
_bind().

To access an object in an Orbix 3.3 server from an Orbix E2A client using a
corbaloc URL, perform the following steps:

1. Obtain the object key, ObjectKey, for the object in question, as follows:

i. Get the Orbix 3.3 server to print out the stringified IOR using, for
example, the CORBA::ORB::object_to_string() operation. The
result is a string of the form IOR:00...

ii. Use the Orbix E2A iordump utility to parse the stringified IOR.
Copy the string that represents the object key field, ObjectKey.

2. Construct a corbaloc URL of the following form:

corbaloc:iiop:1.0@DaemonHost:DaemonPort/ObjectKey%00
Where DaemonHost and DaemonPort are the Orbix daemon’s host and
port respectively. A null character, %00, is appended to the end of the
ObjectKey string because Orbix 3.3 applications expect object key
strings to be terminated by a null character.
19

CHAPTER 3 | Client Migration
3. In the source code of the Orbix E2A client, use the
CORBA::ORB::string_to_object() operation to convert the corbaloc
URL to an object reference.

The general form of a corbaloc URL for this case is, as follows:

corbaloc:iiop:GIOPVersion@Host:Port/Orbix3ObjectKey%00

Where the components of the corbaloc URL are:

• GIOPVersion—The maximum GIOP version acceptable to the server.
Can be either 1.0 or 1.1.

• Host and Port—The daemon’s (or server’s) host and port. The Host
can either be a DNS host name or an IP address in dotted decimal
format.

The Orbix3ObjectKey has the following general form:

:\Host:SvrName:Marker::IFRSvrName:InterfaceName%00

Where the components of the Orbix 3 object key are:

• Host—The server host. The Host can either be a DNS host name or an
IP address in dotted decimal format.

• SvrName—The server name of the Orbix 3.3 server.

• Marker—The CORBA object’s marker.

• IFRSvrName—Can be either IR or IFR.

• InterfaceName—The object’s IDL interface name.

WARNING: Constructing an Orbix 3.3 object key directly based on the
preceding format does not always work because some versions of Orbix
impose extra restrictions on the object key format. Extracting the object
key from the server-generated IOR is a more reliable approach.

If you encounter any difficulties with using corbaloc URLs, please contact
support@iona.com.
 20

Replacing the _bind() Function
ORB::resolve_initial_references() The CORBA::ORB::resolve_initial_references() operation provides a
mechanism for obtaining references to basic CORBA objects, for example
the naming service, the interface repository, and so on.

Orbix E2A allows the resolve_initial_references() mechanism to be
extended. For example, to access the BankApplication service using
resolve_initial_references(), simply add the following variable to the
Orbix E2A configuration:

Use this mechanism sparingly. The OMG defines the intended behavior of
resolve_initial_references() and the arguments that can be passed to
it. A name that you choose now might later be reserved by the OMG. It is
generally better to use the naming service to obtain initial object references
for application-level objects.

Orbix E2A Configuration File
initial_references:BankApplication:reference =

"IOR:010347923849..."
21

CHAPTER 3 | Client Migration
Callback Objects

POA Policies for Callback Objects Callback objects must live in a POA, like any other CORBA object; hence,
there are certain similarities between a server and a client with callbacks.
The most sensible POA policies for a POA that manages callback objects
are:

These policies allow for easy management of callback objects and an easy
upgrade path. Callback objects offer one of the few cases where the root
POA has reasonable policies, provided the client is multi-threaded (as it
normally is for callbacks).

Table 1: POA Policies for Callback Objects

Policy Type Policy Value

Lifespan TRANSIENTa

ID Assignment SYSTEM_ID

Servant Retention RETAIN

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

a. By choosing a TRANSIENT lifespan policy, you remove the need to register
the client with an Orbix E2A locator daemon.
 22

IDL-to-C++ Mapping
IDL-to-C++ Mapping

Overview The definition of the IDL-to-C++ mapping has changed little going from
Orbix 3.x to Orbix E2A (apart from some extensions to support valuetypes).
Two notable changes are:

• the CORBA:Any type.

• the CORBA:Environment parameter.

The CORBA::Any Type In Orbix E2A, it is not necessary to use the type-unsafe interface to Any.
Recent revisions to the CORBA specification have filled the gaps in the
IDL-to-C++ mapping that made these functions necessary. That is, the
following functions are deprecated in Orbix E2A:

The CORBA::Environment
Parameter

The signatures of IDL calls no longer contain the CORBA::Environment
parameter. This parameter was needed for languages that did not support
native exception handling. However, Orbix applications also use it for
operation timeouts.

// C++
// CORBA::Any Constructor.
Any(

CORBA::TypeCode_ptr tc,
void* value,
CORBA::Boolean release = 0

);

// CORBA::Any::replace() function.
void replace(

CORBA::TypeCode_ptr,
void* value,
CORBA::Boolean release = 0

);
23

CHAPTER 3 | Client Migration
System Exception Semantics

Overview Orbix and OrbixWeb clients that catch specific system exceptions might
need to change the exceptions they handle when they are migrated to
Orbix 2000.

System Exceptions Orbix E2A follows the latest CORBA standards for exception semantics. The
two system exceptions most likely to affect existing code are:

Minor Codes System exception minor codes are completely different between OrbixWeb
3.2 and Orbix E2A for Java. Applications which examine minor codes need
to be modified to use Orbix E2A for Java minor codes.

Table 2: Migrated System Exceptions

When This Happens Orbix 3 and
OrbixWeb Raise

Orbix E2A Raises

Server object does not
exist

INV_OBJREF OBJECT_NOT_EXIST

Cannot connect to
server

COMM_FAILURE TRANSIENT
 24

Dynamic Invocation Interface
Dynamic Invocation Interface

Proprietary Dynamic Invocation
Interface

Orbix-proprietary dynamic invocation interface (DII) functions are not
available in Orbix E2A. Code that uses CORBA::Request::operator<<()
operators and overloads must be changed to use CORBA-compliant DII
functions.

Note: Orbix E2A generated stub code consists of sets of statically
generated CORBA-compliant DII calls.
25

CHAPTER 3 | Client Migration
 26

CHAPTER 4

Server Migration
Server code typically requires many more changes than client
code. The main issue for server code migration is the
changeover from the basic object adapter (BOA) to the
portable object adapter (POA).

In This Chapter This chapter discusses the following topics:

Function Signatures page 28

Object IDs versus Markers page 29

CORBA Objects versus Servant Objects page 30

BOA to POA Migration page 31
27

CHAPTER 4 | Server Migration
Function Signatures

Changes to the Signature In Orbix E2A, two significant changes have been made to C++ function
signatures:

• The CORBA::Environment parameter has been dropped.

• New types are used for out parameters. An out parameter of T type is
now passed as a T_out type.

Consequently, when migrating C++ implementation classes you must
replace the function signatures that represent IDL operations and attributes.
 28

Object IDs versus Markers
Object IDs versus Markers

C++ Conversion Functions Orbix E2A uses a sequence of octets to compose an object's ID, while Orbix
3 uses string markers. CORBA provides the following helper methods:

to convert between the two types; hence migration from marker
dependencies to Object IDs is straightforward.

Java Conversion Functions In Java, an object ID is represented as a byte array, byte[]. Hence the
following native Java methods can be used to convert between string and
object ID formats:

// C++
// Converting string marker -----> ObjectId
PortableServer::ObjectId *
PortableServer::string_to_ObjectId(const char *);

// Converting ObjectId -----> string marker
char *
PortableServer::ObjectId_to_string(

const PortableServer::ObjectId&
);

// Java
// Converting string marker -----> ObjectId
byte[]
java.lang.String.getBytes();

// Converting ObjectId -----> string marker
// String constructor method:
java.lang.String.String(byte[]);
29

CHAPTER 4 | Server Migration
CORBA Objects versus Servant Objects

Orbix 3 In Orbix 3 there is no need to distinguish between a CORBA object and a
servant object. When you create an instance of an implementation class in
Orbix 3, the instance already has a unique identity (represented by a
marker) and therefore represents a unique CORBA object.

Orbix E2A In Orbix E2A, a distinction is made between the identity of a CORBA object
(its object ID) and its implementation (a servant). When you create an
instance of an implementation class in Orbix E2A, the instance is a servant
object, which has no identity. The identity of the CORBA object (represented
by an object ID) must be grafted on to the servant at a later stage, in one of
the following ways:

• The servant becomes associated with a unique identity. This makes it
a CORBA object, in a similar sense to an object in a BOA-based
implementation.

• The servant becomes associated with multiple identities. This case has
no parallel in a BOA-based implementation.

The mapping between object IDs and servant objects is controlled by the
POA and governed by POA policies.
 30

BOA to POA Migration
BOA to POA Migration

Overview It is relatively easy to migrate a BOA-based server by putting all objects in a
simple POA that uses an active object map; however, this approach is
unable to exploit most of the functionality that a POA-based server offers. It
is worth while redesigning and rewriting servers so they benefit fully from
the POA.

In This Section The Orbix 3 BOA is replaced by the POA in Orbix E2A. This affects the
following areas of CORBA application development:

Creating an Object Adapter page 32

Defining an Implementation Class page 33

Creating and Activating a CORBA Object page 35
31

CHAPTER 4 | Server Migration
Creating an Object Adapter

Creating a BOA in Orbix 3.x In Orbix 3, a single BOA instance is used. All CORBA objects in a server are
implicitly associated with this single BOA instance.

Creating a POA in Orbix E2A In Orbix E2A, an application can create multiple POA instances (using the
PortableServer::POA::create_POA() operation in C++ and the
org.omg.PortableServer.create_POA() operation in Java). Each POA
instance can be individually configured, using POA policies, to manage
CORBA objects in different ways. When migrating to Orbix E2A, you should
give careful consideration to the choice of POA policies, to obtain the
maximum benefit from the POA's flexibility.
 32

BOA to POA Migration
Defining an Implementation Class

Overview There are two approaches to defining an implementation class in CORBA:

• “The Inheritance Approach”

• “The Tie Approach”

The Inheritance Approach The most common approach to implementing an IDL interface in Orbix is to
use the inheritance approach. Consider the following IDL fragment:

The BankSimple::Account IDL interface can be implemented by defining a
class that inherits from a standard base class. The name of this standard
base class for Orbix 3 and Orbix E2A is shown in Table 3.

//IDL
module BankSimple {

Account {
//...

};
};

Table 3: Standard Base Classes for the Inheritance Approach

Description Base Class Name

Orbix 3, C++ (BOA) BankSimple::AccountBOAImpl

Orbix E2A, C++ (POA) POA_BankSimple::Account

Orbix 3, Java (BOA) BankSimple._AccountImplBase

Orbix E2A, Java (POA) BankSimple.AccountPOA
33

CHAPTER 4 | Server Migration
Consider a legacy Orbix 3 application that implements
BankSimple::Account in C++ as the BankSimple_Account_i class. The
BankSimple_Account_i class might be declared as follows:

When this implementation class is migrated to Orbix E2A, the
BankSimple::AccountBOAImpl base class is replaced by the
POA_BankSimple::Account base class, as follows:

The Tie Approach The tie approach is an alternative mechanism for implementing IDL
interfaces. It allows you to associate an implementation class with an IDL
interface using a delegation approach rather than an inheritance approach.

In Orbix E2A (C++) the tie classes are generated using C++ templates.
When migrating from Orbix 3 to Orbix E2A, all DEF_TIE and TIE
preprocessor macros must be replaced by the equivalent template syntax.

In Orbix E2A (Java) the tie approach is essentially the same as in Orbix 3.
However, the names of the relevant Java classes and interfaces are
different. For example, given an IDL interface, Foo, an Orbix E2A servant
class implements the FooOperations Java interface and the associated Java
tie class is called FooPOATie.

// C++
// Orbix 3 Version
// Inheritance Approach
class BankSimple_Account_i : BankSimple::AccountBOAImpl {
public:

// Declare IDL operation and attribute functions...
};

// C++
// Orbix E2A Version
// Inheritance Approach
class BankSimple_Account_i : POA_BankSimple::Account {
public:

// Declare IDL operation and attribute functions...
};
 34

BOA to POA Migration
Creating and Activating a CORBA Object

Overview To make a CORBA object available to clients, you should:

1. Create an implementation object. An implementation object is an
instance of the class that implements the operations and attributes of
an IDL interface. In Orbix 3, an implementation object is the same
thing as a CORBA object. In Orbix E2A, an implementation object is a
servant object, which is not the same thing as a CORBA object.

2. Activate the servant object. Activating a servant object attaches an
identity to the object (a marker in Orbix 3 or an object ID in Orbix E2A)
and associates the object with a particular object adapter.

Orbix 3 In Orbix 3, creating and activating an object are rolled into a single step. For
example, in C++ you might instantiate a BankSimple::Account CORBA
object using the following code:

This step creates the CORBA object and attaches the ObjectID identity to it
(initializing the object's marker). The constructor automatically activates the
CORBA object.

// C++
// Orbix 3
// Create and activate a new 'Account' object.
BankSimple_Account_i * acc1 =

new BankSimple_Account_i("ObjectID");
35

CHAPTER 4 | Server Migration
Orbix E2A In Orbix E2A, creating and activating an object are performed as separate
steps. For example, in C++ you might instantiate a BankSimple::Account
CORBA object using the following code:

Activation is performed as an explicit step in Orbix E2A. The call to
PortableServer::POA::activate_object_with_id() attaches the ObjectID
identity to the object and associates the persistent_poa object adapter
with the object.

// C++
// Orbix E2A

// Step 1: Create a new 'Account' object.
BankSimple_Account_i * acc1 = new BankSimple_Account_i();

// Step 2: Activate the new 'Account' object.
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("ObjectID");
// persistent_poa created previously
persistent_poa->activate_object_with_id(oid, acc1);
 36

CHAPTER 5

Migrating
Proprietary Orbix 3
Features
Proprietary Orbix 3 feature are replaced by a range of
standards-compliant Orbix E2A features.

In This Chapter The following proprietary features of Orbix 3 are discussed in this chapter:

Orbix 3 Locator page 38

Filters page 41

Loaders page 47

Smart Proxies page 49

Transformers page 52

I/O Callbacks page 53
37

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Orbix 3 Locator

Overview The Orbix 3 locator is an Orbix-specific feature that is used in combination
with _bind() to locate server processes. Because Orbix E2A does not
support _bind(), it cannot use the Orbix 3 style locator.

If your legacy code uses the locator, you must replace it with one of the
following Orbix E2A features:

• High availability.

• The CORBA Naming Service.

• The CORBA Initialization Service.

High Availability The Orbix E2A high availability feature provides fault tolerance—that is, a
mechanism that avoids having a single point of failure in a distributed
application. With the enterprise edition of Orbix E2A, you can protect your
system from single points of failure through clustered servers.

A clustered server is comprised of multiple instances, or replicas, of the
same server; together, these act as a single logical server. Clients invoke
requests on the clustered server and Orbix routes the requests to one of the
replicas. The actual routing to any replica is transparent to the client.

Note: Orbix E2A has a feature called a locator, which is not related in any
way to the Orbix 3 locator. The Orbix E2A locator is a daemon process,
itlocator, that locates server processes for clients.
 38

Orbix 3 Locator
The CORBA Naming Service If your legacy code uses the load-balancing feature of the Orbix 3 locator,
you can replace this by the ObjectGroup feature of the Orbix E2A naming
service. Object groups are an Orbix-specific extension to the naming service
that allow you to register a number of servers under a single name.

Table 4 shows how the Orbix 3 locator maps to the equivalent naming
service functionality.

The naming service is the preferred way to locate objects in Orbix E2A. It is
a standard service and is highly scalable.

Table 4: Replacing the Orbix 3 Locator by the Naming Service

Orbix 3-Locator Orbix E2A-Naming Service

Entry in the locator file, mapping
the server name, SrvName, to a
single server host, HostName:

SrvName:HostName:

Object binding in the naming
service, mapping a name to a single
object reference.

Entry in the locator file, mapping
the server name, SrvName, to
multiple host names:

SrvName:Host1,Host2,Host3:

Object group in the naming
service, mapping a name to
multiple object references.

Overriding functionality of
CORBA::LocatorClass.

Custom implementation of the
IT_LoadBalancing::ObjectGroup
interface.
39

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
The CORBA Initialization Service The initialization service uses the
CORBA::ORB::resolve_initial_references() operation to retrieve an
object reference from an Orbix E2A configuration file, DomainName.cfg.

Table 5 shows how the Orbix 3 locator maps to the equivalent initialization
service functionality.

The initialization service can only be used as a replacement for the Orbix 3
locator when a simple object lookup is needed.

Table 5: Replacing the Orbix 3 Locator by the Initialization Service

Orbix 3-Locator Orbix E2A-Initialization Service

Entry in the locator file, mapping
the server name, SrvName, to a
single server host, HostName:

SrvName:HostName:

Entry in the DomainName.cfg file,
mapping an ObjectId to a single
object reference:

initial_references:ObjectId:
reference = "IOR:00...";

Entry in the locator file, mapping
the server name, SrvName, to
multiple host names:

SrvName:Host1,Host2,Host3:

No Equivalent

Override functionality of
CORBA::LocatorClass.

No Equivalent
 40

Filters
Filters

Overview Filters are a proprietary Orbix 3 mechanism that allow you to intercept
invocation requests on the server and the client side.

Orbix E2A does not support the filter mechanism. Instead, a variety of Orbix
E2A features replace Orbix 3 filter functionality.

Equivalents Table 6 summarizes the typical uses of Orbix 3 filters alongside the
equivalent features supported by Orbix E2A.

In This Section The following topics are discussed in this section:

Table 6: Orbix E2A Alternatives to Filter Features

Orbix 3 Filter Feature Orbix E2A Equivalent

Request Logging Use portable interceptors.

Piggybacking data on a Request Use portable interceptors.

Multi-threaded request processing Use a multi-threaded POA and
(optionally) a proprietary
WorkQueue POA policy.

Accessing the client's TCP/IP
details

Not supported

Security using an authentication
filter

Full security support is provided in
the Orbix E2A enterprise edition.

Request Logging page 42

Piggybacking Data on a Request page 43

Multi-Threaded Request Processing page 44

Accessing the Client's TCP/IP Details page 45

Security Using an Authentication Filter page 46
41

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Request Logging

Using Portable Interceptors In Orbix E2A, request logging is supported by the new portable interceptor
feature. Interceptors allow you to access a CORBA request at any stage of
the marshaling process, offering greater flexibility than Orbix filters. You can
use them to add and examine service contexts. You can also use them to
examine the request arguments.
 42

Filters
Piggybacking Data on a Request

Piggybacking in Orbix 3 In Orbix 3, filters support a piggybacking feature that enables you to add
and remove extra arguments to a request message.

Piggybacking in Orbix E2A In Orbix E2A, piggybacking is replaced by the CORBA-compliant approach
using service contexts. A service context is an optional block of data that
can be appended to a request message, as specified in the IIOP 1.1
standard. The content of a service context can be arbitrary and multiple
service contexts can be added to a request.
43

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Multi-Threaded Request Processing

Orbix 3 In Orbix 3, concurrent request processing is supported using an Orbix thread
filter. The mechanism is flexible because it gives the developer control over
the assignment of requests to threads.

Orbix E2A In Orbix E2A, request processing conforms to the CORBA 2.4 specification.
Each POA can have its own threading policy:

• SINGLE_THREAD_MODEL ensures that all servant objects in that POA
have their functions called in a serial manner. In Orbix E2A, servant
code is called only by the main thread, therefore no locking or
concurrency-protection mechanisms need to be used.

• ORB_CTRL_MODEL leaves the ORB free to dispatch CORBA invocations to
servants in any order and from any thread it chooses.

Orbix E2A Request Processing
Extensions

Because the CORBA 2.4 specification does not specify exactly what
happens when the ORB_CTRL_MODEL policy is chosen, Orbix E2A makes
some proprietary extensions to the threading model.

The multi-threaded processing of requests is controlled using the Orbix E2A
work queue feature. Two kinds of work queue are provided by Orbix E2A:

• Automatic Work Queue: A work queue that feeds a thread pool. When
a POA uses an automatic work queue, request events are automatically
dequeued and processed by threads. The size of the thread pool is
configurable.

• Manual Work Queue: A work queue that requires the developer to
explicitly dequeue and process events.

Manual work queues give developers greater flexibility when it comes
to multi-threaded request processing. For example, prioritized
processing of requests could be implemented by assigning high-priority
CORBA objects to one POA instance and low-priority CORBA objects to
a second POA instance. Given that both POAs are associated with
manual work queues, the developer can write threading code that
preferentially processes requests from the high-priority POA.
 44

Filters
Accessing the Client's TCP/IP Details

Recommendations for Orbix E2A Some Orbix 3 applications use Orbix-specific extensions to access
socket-level information, such as the caller's IP address, in order to
implement proprietary security features. These features are not available in
Orbix E2A, because providing access to low-level sockets would
considerably restrict the flexibility of CORBA invocation dispatch.

To provide security for your applications, it is recommended that you use an
implementation of the security service provided with the Orbix E2A
Enterprise Edition instead.
45

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Security Using an Authentication Filter

Recommendations for Orbix E2A Some Orbix 3 applications use authentication filters to implement security
features. In Orbix E2A, it is recommended that you use the security service
that is made available with the Orbix E2A Enterprise Edition.
 46

Loaders
Loaders

Orbix 3 Loader The Orbix 3 loader provides support for the automatic saving and restoration
of persistent objects. The loader provides a mechanism that loads CORBA
objects automatically into memory, triggered in response to incoming
invocations.

Servant Manager The Orbix 3 loader is replaced by equivalent features of the Portable Object
Adapter (POA) in Orbix E2A. The POA can be combined with a servant
manager to provide functionality equivalent to the Orbix 3 loader. There are
two different kinds of servant manager:

• Servant activator: Triggered only when the target CORBA object
cannot be found in memory.

• Servant locator: Triggered for every invocation.

Servant Activator Taking the PortableServer::ServantActivator class as an example, the
member functions of CORBA::LoaderClass correspond approximately as
shown in Table 7.

Table 7: Comparison of Loader with Servant Activator Class

CORBA::LoaderClass Member
Function

ServantActivator Member
Function

save() etherealize()

load() incarnate()

record() No equivalent function.

An Orbix E2A object ID (equivalent
to an Orbix 3 marker) can be
specified at the time a CORBA
object is created. This gives
sufficient control over object IDs.
47

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Servant Locator A servant locator can also be used to replace the Orbix 3 loader. In general,
the servant locator is more flexible than the servant activator and offers
greater scope for implementing sophisticated loader algorithms.

rename() No equivalent function.

An Orbix E2A object ID (equivalent
to an Orbix 3 marker) cannot be
changed after a CORBA object has
been created.

Table 7: Comparison of Loader with Servant Activator Class

CORBA::LoaderClass Member
Function

ServantActivator Member
Function
 48

Smart Proxies
Smart Proxies

Orbix 3 The Orbix 3 smart proxies feature is a proprietary mechanism for overriding
the default implementation of the proxy class. This allows applications to
intercept outbound client invocations and handle them within the local
client process address space, rather than using the default proxy behavior of
making a remote invocation on the target object. Smart proxies can be used
for such purposes as client-side caching, logging, load-balancing, or
fault-tolerance.

Orbix E2A Orbix E2A does not support smart proxies. The primary difficulty is that, in
the general case, it is not possible for the client-side ORB to determine if
two object references denote the same server object. The CORBA standard
restricts the client-side ORB from interpreting the object key or making any
assumptions about it. Orbix 3 was able to avoid this limitation by making
assumptions about the structure of the object key. This is neither
CORBA-compliant nor interoperable with other ORBs.

At best, the ORB can only determine that two object references are
equivalent if they have exactly the same server location (host and port in
IIOP) and object key. Unfortunately, this may be an unreliable indicator if
object references pass through bridges, concentrators, or firewalls that
change the server location or object key.

In this case, it is possible for two object references denoting the same
CORBA object to appear different to the ORB, and thus have two different
smart proxy instances. Since smart proxies are commonly used for caching,
having two smart proxy instances for a single CORBA object is
unacceptable.
49

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Replacing Smart Proxies with
Equivalent Orbix E2A Features

Table 8 shows how smart proxy tasks can be mapped to equivalent features
in Orbix E2A.

Fault Tolerance Fault tolerance is provided by the high availability feature of the Orbix E2A
locator. See “High Availability” on page 38.

Logging For logging that requires access to request parameters, portable interceptors
can be used in Orbix E2A. Portable interceptors are similar to Orbix 3 filters,
but they are more flexible in that they allow you to read request parameters.

Table 8: Orbix E2A Alternatives to Smart Proxy Features

Orbix 3 Smart Proxy Task Orbix E2A Equivalent Feature

Fault Tolerance Orbix E2A high availability, based
on server clusters.

Logging Orbix E2A built-in logging facility
or portable interceptors

Caching Implement smart proxy-like
functionality by hand.
 50

Smart Proxies
Caching A smart proxy that implements client-side caching of data cannot be
mimiced by a standard Orbix E2A feature. In this case, you have no option
but to implement smart proxy-like functionality in Orbix E2A, and this can
be done as follows:

1. Create a local implementation of the object to be proxified, by writing a
class that derives from the client-side stub class.

2. Every time the client receives an object reference of the appropriate
type, wrap the object reference with a corresponding smart proxy
object. Before wrapping the object reference, however, you must
determine the target object's identity by making an invocation on the
remote target object, asking it for a system-wide unique identifying
name. This is the key step that avoids the object identity problem
described previously.

Based on the system-wide unique identifying name, the application can
then either create a new smart proxy, or reuse the target object's existing
smart proxy. The client application should consistently use the smart proxy
in place of the regular proxy throughout the application.
51

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Transformers

Orbix 3 Transformers are a deprecated feature of Orbix 3 that allow you to apply
customized encryption to CORBA request messages. This could be used to
implement a primitive substitute for a security service.

Orbix E2A In Orbix E2A, transformers are not supported. It is recommended, instead,
that you use the security service that is made available with the enterprise
edition of Orbix E2A.
 52

I/O Callbacks
I/O Callbacks

Overview Orbix E2A does not allow access to TCP/IP sockets or transport-level
information. This is incompatible with the Orbix E2A architecture, which
features a pluggable transport layer. Using Orbix E2A, you can replace
TCP/IP with another transport plug-in such as IP multicast (which is
connectionless), simple object access protocol (SOAP), hypertext transfer
protocol (HTTP), asynchronous transfer mode (ATM), and so on. For
example, the shared memory transport (SHMIOP) does not use file
descriptors or sockets.

Purposes for Using I/O Callbacks Orbix 3 I/O Callback functionality is generally used for two main purposes:

• Connection Management—the number of TCP/IP connections that can
be made to a single process is typically subject to an operating system
limit. Some form of connection management is required if this limit is
likely to be reached in a deployed system.

• Session Management—I/O Callback functionality can be used to
implement an elementary session-tracking mechanism. The opening of
a connection from a client defines the beginning of a session and the
closing of the connection defines the end of the session.

Because Orbix E2A has no equivalent to the Orbix 3 I/O Callback
functionality, you must migrate any code that uses it.

In This Section This section contains the following subsections:

Connection Management page 54

Session Management page 56
53

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Connection Management

Active Connection Management Orbix E2A provides an active connection manager (ACM) that allows the
ORB to reclaim connections automatically, and thereby increases the
number of clients that can concurrently use a server beyond the limit of
available file descriptors.

ACM Configuration Variables IIOP connection management is controlled by four configuration variables:

• plugins:iiop:incoming_connections:hard_limit sets the maximum
number of incoming (server-side) connections allowed to IIOP. IIOP
refuses new connections above this limit.

• plugins:iiop:incoming_connections:soft_limit determines when
IIOP starts to close incoming connections.

• plugins:iiop:outgoing_connections:hard_limit sets the maximum
number of outgoing (client-side) connections allowed to IIOP. IIOP
refuses new outgoing connections above this limit.

• plugins:iiop:outgoing_connections:soft_limit determines when
IIOP starts to close outgoing connections.

Closing Client Connections The ORB first tries to close idle connections in least-recently-used order. If
there are no idle connections, the ORB closes busy connections in
least-recently-opened order.

Active connection management effectively remedies file descriptor limits
that has constrained past Orbix applications. If a client is idle for a while
and the server ORB reaches its connection limit, it sends a GIOP
CloseConnection message to the client and closes the connection. Later,
the same client can transparently reestablish its connection, to send a
request without throwing a CORBA exception.

Note: In Orbix 3, Orbix tended to throw a COMM_FAILURE on the first
attempt at reconnection; server code that anticipates this exception should
be reevaluated against current functionality.
 54

I/O Callbacks
Default File Descriptor Limits Orbix E2A is configured to use the largest upper file descriptor limit on each
supported operating system. On UNIX, it is typically possible to rebuild the
kernel to obtain a larger number. However, active connection management
should make this unnecessary.
55

CHAPTER 5 | Migrating Proprietary Orbix 3 Features
Session Management

Overview Because Orbix E2A features a pluggable transport layer, it is not appropriate
to relate the duration of a client session to the opening and closing of TCP/IP
connections from clients. This type of session management, which is
typically implemented using I/O callbacks in Orbix 3, has to be migrated to
an alternative model.

Session Management in
Orbix E2A

Support for session management in Orbix E2A is provided by a lease
plug-in. The lease plug-in implements a scheme for automatically tracking
client sessions, based on the idea that a client obtains a lease from the
server for the duration of a client session.

Client Migration Client applications can easily be modified to use session management. Just
edit the Orbix E2A configuration to make the client load the lease plug-in.
No changes to the client source code are required.

Server Migration On the server side, the following changes are required to use session
management in Orbix E2A:

• Edit the Orbix E2A configuration to make the server load the lease
plug-in.

• Modify the server source code so that it uses the lease plug-in to track
client sessions.

Further Details See the CORBA Session Management Guide for details of how to program
and configure the lease plug-in for session management at:

http://www.iona.com/docs/e2a/asp/5.0/corba/session_cpp/html/index.html

and

http://www.iona.com/docs/e2a/asp/5.0/corba/session_java/html/index.html

Demonstration code for the lease plug-in is also provided with the Orbix E2A
product.
 56

http://www.iona.com/docs/e2a/asp/5.0/corba/session_cpp/html/index.html
http://www.iona.com/docs/e2a/asp/5.0/corba/session_java/html/index.html

CHAPTER 6

CORBA Services
Orbix includes several CORBA services, such as the interface
repository, the naming service, the notification service, and
the security service. Because these service are based mainly
on the CORBA standard, there are not many changes between
Orbix 3 and Orbix E2A.

In This Chapter The following topics are discussed in this chapter:

Interface Repository page 58

Naming Service page 59

Notification Service page 60

SSL/TLS Toolkit page 68
57

CHAPTER 6 | CORBA Services
Interface Repository

Migration Migrating source code that uses the Interface Repository (IFR) to Orbix E2A
is straightforward. Link the migrated application against the stub code
derived from the Orbix E2A version of the interface repository. No further
changes should be necessary.
 58

Naming Service
Naming Service

Backward Compatibility The Orbix E2A naming service is backward compatible with Orbix 3.x in two
respects:

• Source code backward compatibility: source code that is written to
use the standard naming service interfaces can be migrated to Orbix
E2A without modification.

• On-the-wire backward compatibility: Orbix 3.x applications can
interoperate with the Orbix E2A naming service. If you need to
interoperate Orbix 3.x applications, it is recommended that you
recompile the naming stub code from the Orbix E2A IDL files.

New Interface Orbix E2A adds a new interface, CosNaming::NamingContextExt, which is
defined by the CORBA Interoperable Naming Service specification. This
interface adds support for using names in stringified format.

Load Balancing The naming service load-balancing extensions provided in Orbix 3 are also
present in Orbix E2A. The Orbix E2A load-balancing interfaces are only
slightly different from Orbix 3, requiring small modifications to your source
code.
59

CHAPTER 6 | CORBA Services
Notification Service

Overview The Orbix E2A notification service has undergone significant modifications
since the OrbixNotification 3 generation of the notification service.

Many of the changes that impact application migration reflect changes in
the CORBA standard and require minimal changes to legacy
OrbixNotification 3 application code.

In This Section The following topics are discussed in this section:

CORBA Specification Updates page 61

Quality of Service Properties page 64

Configuration / Administration Changes page 66

Deprecated Features page 67
 60

Notification Service
CORBA Specification Updates

Overview The Orbix E2A notification service complies to both the CORBA 2.4
specification and the OMG’s Notification Service Specification, approved in
June of 2000. To achieve compliancy with these specifications several
changes were made to the notification services IDL and API’s.

These changes will require that any applications that use generation 3 code
will need to be recompiled and re-linked, at the very least. Other minor
changes may also need to be made to generation 3 code to accommodate
the changes in the API’s. Compiler warnings will warn you of most changes
that need to be made.

_bind() The Orbix E2A notification service clients do not use _bind() to contact the
notification service. Instead, clients should call
resolve_initial_references("NotificationService") to obtain an object
reference to the notification service. See “Replacing the _bind() Function” on
page 18 for more information.

Subscription and Publication
Notification

Orbix E2A provides notification service clients greater flexibility over how
they receive subscription and publication details from the notification
channel. To accomplish this, an input parameter has been added to
obtain_offered_types() and obtain_subscription_types().

The Orbix E2A operation signatures are:

// IDL
CosNotification::EventTypeSeq obtain_subscription_types(

in ObtainInfoMode mode);
CosNotification::EventTypeSeq obtain_offered_types(

in ObtainInfoMode mode);
61

CHAPTER 6 | CORBA Services
The new parameter is of type ObtainInfoMode which is an enum defined in
CosNotifyChannelAdmin as:

Any generation 3 clients that call obtain_offered_types() or
obtain_subscription_types() will need to add the parameter.
ALL_NOW_UPDATES_OFF mimics generation 3 functionality. For more
information on the other values, see the CORBA Notification Service Guide.

Unstructured Event Clients Orbix E2A introduced unstructured event, any-style, client interfaces into the
CosNotifyComm module. This allows any-style clients to support the
enhanced subscription features and it standardizes notification service client
development. Any-style clients developed for OrbixNotification 3 used the
interfaces from CosEventComm.

In addition, the Orbix E2A any-style proxy interfaces, defined in
CosNotifyChannelAdmin, inherit their client interfaces directly from
CosNotifyComm. In OrbixNotification 3 any-style proxies inherited client
interfaces from CosNotifyComm:NotifyPublish and
CosEventComm::PushConsumer.

Not updating legacy code will not generate any compiler errors. However, at
runtime any-style clients using legacy code will not be able to contact the
notification service.

// IDL
enum ObtainInfoMode
{
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON

};

Note: The connect() operation’s parameter is still an interface defined in
CosEventComm.
 62

Notification Service
TimeBase::TimeT Orbix E2A supports the new OMG standard definition of TimeBase::TimeT.
In OrbixNotification 3 TimeBase::TimeT was defined as a structure
containing two unsigned longs. In Orbix E2A it is defined as a
CORBA::ULongLong.

Any generation 3 clients that use the timing features of the service will need
to be updated to support the new definition of TimeBase::TimeT. If they are
not, the Orbix E2A notification service will generate mashalling errors at
runtime.
63

CHAPTER 6 | CORBA Services
Quality of Service Properties

Overview Orbix E2A notification uses new several new Quality-of-Service (QoS)
properties and has reimplemented others.

PacingInterval PacingInterval is reimplimented as a TimeBase::TimeT in Orbix E2A and is
specified in units of 10-7 seconds. In Orbix 3 it was a TimeBase:UtcT and
was specified in milliseconds.

Orbix E2A QoS Properties Table 9 lists the new Orbix E2A QoS properties. For more detailed
information on Orbix E2A QoS properties, see the CORBA Notification
Service Guide.

Table 9: Orbix E2A QoS Properties (Sheet 1 of 2)

QoS Property Description

MaxEventsPerConsumer Specifies the maximum number of undelivered
events that a channel will queue for a
consumer. It is set with a long and is valid for
supplier proxies, consumer admins, and
notification channels.

MaxRetries Specifies the maximum number of times a
proxy push supplier calls push() on its
consumer before giving up or the maximum
number of times a proxy pull consumer calls
pull() or try_pull() on its supplier before
giving up. It is set with a CORBA::Ulong and is
valid for consumer admins and notification
channels.

RetryTimeout Specifies the amount of time that elapses
between attempts by a proxy push supplier to
call push() on its consumer. It is set with a
TimeBase::TimeT and defaults to 1 second.

MaxRetryTimeout Sets the ceiling for the calculated value of
RetryTimeout. It is set with a
TimeBase::TimeT and defaults to 60 seconds.
 64

Notification Service
Channel Administration
Properties

Orbix E2A has introduced two properties to control the administration of a
notification channel. These properties can only be set on a notification
channel. For more information, see the CORBA Notification Service Guide.

Table 10 describes the new properties.

RequestTimeout Specifies the amount of time a channel object
has to perform an operation on a client. It is
set using a TimeBase::TimeT.

PullInterval Specifies the amount of time that elapses
between attempts by a proxy pull consumer to
call pull() or try_pull() on its consumer. It
is specifies with a long and defaults to 1
second.

RetryMultiplier Specifies the number used to calculate the
amount of time between attempts by a proxy
push supplier to call push() on its consumer.
It is set with a CORBA::double and defaults to
1.0.

Table 9: Orbix E2A QoS Properties (Sheet 2 of 2)

QoS Property Description

Table 10: Orbix E2A Administration Properties

Property Description

MaxConsumers Specifies the maximum number of
consumers that can be connected
to a channel at a given time. It is
set using a long and defaults to 0
(unlimited).

MaxSuppliers Specifies the maximum number of
suppliers that can be connected to
a channel at a given time. It is set
using a long and defaults to 0
(unlimited).
65

CHAPTER 6 | CORBA Services
Configuration / Administration Changes

Centralized Configuration The Orbix E2A CORBA platform has a centralized configuration mechanism.
This means that the notification service is configured using the standard
Orbix E2A CORBA platform configuration tools and the information is stored
in the common Orbix E2A database.

Starting the Notification Service The Orbix E2A notification service can be configured to start on system boot,
on demand, or from the command line.

To start the notification service from the command line use:

itnotify run [-backround]

The -background flag is optional and starts the notification service to run as
a background process.

Managing the Notification Service The Orbix E2A notification service can be managed in one of two ways.

• The Orbix E2A itadmin tool. For more information, see the CORBA
Administrator’s Guide.

• The Orbix E2A notification console, itnotifyconsole. For more
information on using the console, see the CORBA Notification Service
Guide.

Configuration Variables The Orbix E2A notification service uses a new set of configuration variables.
See the CORBA Administrator’s Guide for a detailed listing of the new
configuration variables.
 66

Notification Service
Deprecated Features

Overview Orbix E2A has deprecated some proprietary features from
OrbixNotification 3. Any notification clients that make use of these features
will need to be updated.

HealthCheck The OrbixNotification 3 HealthCheck feature allowed notification channels,
and optionally notification clients, to monitor their connections. In Orbix
E2A this feature is no longer supported.

Code Modification

To find code using the HealthCheck feature search for the following strings:

• DO_HEALTHCHECK

• DO_GL_HEALTHCHECK

• initializeHealthCheck

• startHealthCheck

• stopHealthCheck

• HealthCheck.h

This code must be removed before the clients can be compiled using the
Orbix E2A libraries.

Simulating HealthCheck in Orbix E2A

HealthCheck-like functionality is implemented in Orbix E2A using the
MaxRetries QoS property. If a ProxyPushSupplier or a ProxyPullConsumer
fails to communicate with its associated client in MaxRetries attempts, the
notification channel forces a disconnect and destroys all of the resources
used to support the client.

String Events Orbix E2A no longer supports string events. All generation 3 clients using
string events must be rewritten to use a valid event type.
67

CHAPTER 6 | CORBA Services
SSL/TLS Toolkit

Overview This section describes how to migrate from OrbixSSL or Orbix 3.3 security to
the Orbix E2A SSL/TLS security service. Orbix E2A SSL/TLS has a very
similar set of features to Orbix 3.3 security and it supports interoperability
with legacy Orbix applications (see “SSL/TLS Toolkit Interoperability” on
page 133).

The programming interfaces and administration of security have, however,
changed significantly between Orbix 3.3 and Orbix E2A. This section
provides an overview of these changes.

In This Section This section contains the following subsections:

Changes to the Programming Interfaces page 69

Configuration and Administration page 72

Migrating Certificate and Private Key Files page 75
 68

SSL/TLS Toolkit
Changes to the Programming Interfaces

Support for Security Level 2 The APIs for Orbix E2A SSL/TLS are based on the CORBA Security Level 2
interfaces. The programming interface is, therefore, based on the following
standard IDL modules:

• Security

• SecurityLevel1

• SecurityLevel2

CORBA Policy-Based API In contrast to OrbixSSL 3.x, the Orbix E2A SSL/TLS product supports a
CORBA policy-based approach to setting security properties. This
represents a significant enhancement over OrbixSSL 3.x because the
policy-based approach lets you set properties at a finer granularity than
before.

For example, client policies can be set at the following levels:

• ORB

• Thread

• Object reference

Server policies can be set at the following levels:

• ORB

• POA

Note: Orbix E2A SSL/TLS does not implement every interface in the
SecurityLevel1 and SecurityLevel2 modules. The CORBA security API is
a mechanism-neutral API that can be layered over a variety of security
toolkits. Some of the standard interfaces are more appropriately
implemented by a higher level security layer.
69

CHAPTER 6 | CORBA Services
No Support for Certificate
Revocation Lists

Orbix E2A SSL/TLS version 2.0 has no support for certificate revocation lists
(CRL). Therefore, the following OrbixSSL 3.x interfaces have no Orbix E2A
equivalent:

IT_CRL_List
IT_X509_CRL_Info
IT_X509_Revoked
IT_X509_RevokedList

If you require certificate revocation in Orbix E2A, you can programmatically
implement any required revocation checks by registering a certificate
validator policy, IT_TLS_API::CertValidatorPolicy.

Mechanism-Specific API Orbix E2A SSL/TLS provides a number of value-added APIs that deal with
the mechanism-specific aspects of the SSL/TLS toolkit. The extra IDL
interfaces provide the facility to parse X.509 certificates and set
Orbix-specific security policies.

The mechanism-specific API is defined by the following IDL modules:

• IT_Certificate

• IT_TLS

• IT_TLS_API

Migrating OrbixSSL 3.x Classes
and Data Types

When migrating to Orbix E2A, most of the old C++ and Java classes from
OrbixSSL 3.x are replaced by equivalent IDL interfaces. Table 11 shows
how to replace the OrbixSSL classes and data types by equivalent Orbix E2A
SSL/TLS types.

Table 11: Mapping OrbixSSL 3.x Types to Orbix E2A SSL/TLS

OrbixSSL 3.x Type Orbix E2A SSL/TLS Equivalent

IT_AVA IT_Certificate::AVA

IT_AVAList IT_Certificate::AVAList

IT_CertError IT_Certificate::CertError

IT_CRL_List No equivalent

IT_Extension IT_Certificate::Extension

IT_ExtensionList IT_Certificate::ExtensionList
 70

SSL/TLS Toolkit
IT_OID IT_Certificate::ASN_OID

IT_OIDTag IT_Certificate::OIDTag

IT_SSL Equivalent functionality provided by the
Security, SecurityLevel1,
SecurityLevel2, and IT_TLS_API IDL
modules.

IT_UTCTime IT_Certificate::UTCTime

IT_ValidateX509CertCB Use a combination of the
IT_TLS::CertValidator interface and the
IT_TLS_API::CertValidatorPolicy
interface.

IT_X509_CRL_Info No equivalent

IT_X509_Revoked No equivalent

IT_X509_RevokedList No equivalent

IT_X509Cert IT_Certificate::X509Cert

IT_X509CertChain IT_Certificate::X509CertChain

Table 11: Mapping OrbixSSL 3.x Types to Orbix E2A SSL/TLS

OrbixSSL 3.x Type Orbix E2A SSL/TLS Equivalent
71

CHAPTER 6 | CORBA Services
Configuration and Administration

Enabling Security in Orbix E2A Security in Orbix E2A is enabled by configuring an application to load the
security plug-in, iiop_tls.This is a relatively simple procedure involving just
a few changes in the Orbix E2A CORBA platform configuration file; although
advanced applications might also need to use security APIs.

Because application security is controlled by editing the configuration file,
you must ensure that access to the configuration file is restricted.

External Configuration Granularity The external configuration granularity refers to the effective scope of security
configuration settings that are made in a configuration file. The external
configuration granularity is mapped as follows:

• In OrbixSSL 3.x, it is identified with a process.

• In Orbix E2A SSL/TLS, it is identified with a single ORB instance.

KDM Support The key distribution management (KDM) is a framework that enables
automatic activation of secure servers. Both OrbixSSL 3.x and Orbix E2A
SSL/TLS provide a KDM and the functionality is similar in each.

There is one significant difference between the OrbixSSL 3.x KDM and the
Orbix E2A KDM. Protection against server imposters is implemented
differently in the two products:

• In OrbixSSL 3.x, a binary checksum is calculated from the contents of
the server executable file. The server is launched only if the calculated
checksum matches the cached value.

• In Orbix E2A SSL/TLS, the node daemon relies on the server
executables being stored in a secured directory to prevent tampering. A
different sort of checksum is calculated (based on the contents of the
server activation record) to ensure that the node daemon cannot be
fooled into launching a server from an insecure directory.

No CRL Support Orbix E2A SSL/TLS does not support certificate revocation lists. Hence,
there are no equivalents for the corresponding OrbixSSL 3.x configuration
variables. See also “No Support for Certificate Revocation Lists” on page 70.
 72

SSL/TLS Toolkit
Migrating OrbixSSL 3.x
Configuration

Most of the OrbixSSL 3.x configuration variables have direct equivalents in
Orbix E2A, as shown in Table 12. In addition, many of the properties listed
in Table 12 can also be set programmatically in Orbix E2A.

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix E2A

OrbixSSL 3.x Configuration Variable Orbix E2A SSL/TLS Equivalent

IT_CA_LIST_FILE policies:trusted_ca_list

IT_AUTHENTICATE_CLIENTS policies:target_secure_invocation_policy

IT_SERVERS_MUST_AUTHENTICATE_CLIENTS. policies:target_secure_invocation_policy

IT_INVOCATION_POLICY policies:target_secure_invocation_policy
policies:client_secure_invocation_policy

IT_SECURE_REMOTE_INTERFACES
IT_SECURE_SERVERS
IT_INSECURE_REMOTE_INTERFACES
IT_INSECURE_SERVERS

These properties cannot currently be specified in the
Orbix E2A configuration file.

You can, however, set the properties programmatically
using the following interfaces:

SecurityLevel2::EstablishTrustPolicy
SecurityLevel2::QOPPolicy

IT_CIPHERSUITES policies:mechanism_policy

IT_ALLOWED_CIPHERSUITES No equivalent in Orbix E2A

IT_CERTIFICATE_FILE
IT_CERTIFICATE_PATH

Equivalent functionality provided by:

principal_sponsor:auth_method_data

IT_BIDIRECTIONAL_IIOP_BY_DEFAULT Not applicable, because Orbix E2A does not support
bi-directional IIOP.

IT_CACHE_OPTIONS policies:session_caching_policy
plugins:atli_tls_tcp:session_cache_validity_period
plugins:atli_tls_tcp:session_cache_size

IT_DEFAULT_MAX_CHAIN_DEPTH policies:max_chain_length

IT_MAX_ALLOWED_CHAIN_DEPTH. No equivalent in Orbix E2A.

IT_DAEMON_POLICY
IT_DAEMON_UNRESTRICTED_METHODS
IT_DAEMON_AUTHENTICATES_CLIENTS
IT_ORBIX_BIN_SERVER_POLICY

In Orbix E2A, the IONA services are configured using
standard Orbix E2A configuration variables such as the
secure invocation policies.
73

CHAPTER 6 | CORBA Services
IT_DAEMON_UNRESTRICTED_METHODS No equivalent in Orbix E2A.

There is currently no concept of service authorization in
Orbix E2A.

IT_FILTER_BAD_CONNECTS_BY_DEFAULT Not needed in Orbix E2A.

IT_ENABLE_DEFAULT_CERT Not needed in Orbix E2A.

There is no need for this option because Orbix E2A
supports security unaware applications,.

IT_DISABLE_SSL Not needed in Orbix E2A.

Configure your application not to load the security plug-in.

IT_KDM_CLIENT_COMMON_NAMES
IT_KDM_ENABLED
IT_KDM_PIPES_ENABLED
IT_KDM_REPOSITORY
IT_KDM_SERVER_PORT

Equivalent functionality is provided by the KDM in
Orbix E2A.

See the CORBA SSL/TLS Guide.

IT_CHECKSUMS_ENABLED
IT_CHECKSUM_REPOSITORY

No equivalent in Orbix E2A.

There is no binary checksum functionality in Orbix E2A.
Orbix E2A SSL/TLS relies on storing server executables in
secured directories.

IT_CRL_ENABLED
IT_CRL_REPOSITORY
IT_CRL_UPDATE_INTERVAL

No equivalent in Orbix E2A.

There is no CRL functionality in Orbix E2A.

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix E2A

OrbixSSL 3.x Configuration Variable Orbix E2A SSL/TLS Equivalent
 74

SSL/TLS Toolkit
Migrating Certificate and Private Key Files

Overview In OrbixSSL 3.x, a variety of certificate and private key formats are used in
different parts of the product. Orbix E2A SSL/TLS is based on a unified
certificate file format, the industry standard PKCS#12 format, and the PEM
format for storing trusted CA certificates. This subsection describes how to
convert each of the legacy formats to PKCS#12.

Certificate File Formats The following certificate file formats are used by OrbixSSL 3.x and Orbix
E2A SSL/TLS:

• Privacy enhanced mail (PEM) format—A PEM file typically contains a
single certificate. OrbixSSL 3.x can use this format to hold peer
certificates. Orbix E2A SSL/TLS cannot use this format for peer
certificates.

• PKCS#12 format—A PKCS#12 file contains a peer certificate chain,
concatenated with a private key at the end. Both OrbixSSL 3.x and
Orbix E2A SSL/TLS can use this format for peer certificates.

Migrating Certificate Files You can migrate OrbixSSL 3.x certificate files to Orbix E2A SSL/TLS as
shown in Table 13.

Table 13: Converting Certificate Files

Source OrbixSSL 3.x
File Format

Target Orbix E2A
File SSL/TLS Format

How to Convert

PEM format PKCS#12 format Use the openssl pkcs12 utility, specifying the complete peer
cert chain, private key and pass phrase.

PKCS#12 format PKCS#12 format No conversion needed.
75

CHAPTER 6 | CORBA Services
Private Key File Formats The following private key file formats are used either by OrbixSSL 3.x and
Orbix E2A SSL/TLS:

• PKCS#1 format—An unencrypted private key format. Orbix E2A
SSL/TLS only supports this format programmatically.

• PKCS#8 format—An encrypted private key format. Orbix E2A SSL/TLS
only supports this format programmatically.

• OpenSSL proprietary private key format—A proprietary encrypted
format generated by the OpenSSL toolkit utilities.

• IONA proprietary KEYENC format (deprecated)—An encrypted private
key format generated by the OrbixSSL 3.x keyenc utility. This format
was formerly used by OrbixSSL 3.x Java applications and is now
deprecated.

Migrating Key Files You can migrate OrbixSSL 3.x private key files to Orbix E2A SSL/TLS as
shown in Table 14.

Table 14: Converting Private Key Files

Source OrbixSSL 3.x
File Format

Target Orbix E2A
SSL/TLS File Format

How to Convert

PKCS#1 format PKCS#12 format Use the openssl pkcs12 utility, specifying the complete peer
cert chain, private key, and pass phrase.

OpenSSL proprietary
encrypted private key
format

PKCS#12 format Convert as follows:

1. Decrypt using the openssl rsa command.

2. Encrypt as PKCS#12 using the openssl pkcs12 utility,
specifying the complete peer cert chain, private key,
and pass phrase.

IONA proprietary
keyenc format

PKCS#12 format Convert as follows:

1. Decrypt using the keyenc -d command:

2. Encrypt as PKCS#12 using the openssl pkcs12 utility,
specifying the complete peer cert chain, private key,
and pass phrase.
 76

SSL/TLS Toolkit
Trusted CA Certificate Lists In both OrbixSSL 3.x and Orbix E2A SSL/TLS, a trusted CA certificate list file
consists of a concatenated list of PEM certificates.

Interoperability In a mixed system containing Orbix 3.3 Java Edition and Orbix E2A
SSL/TLS, the PKCS#12 format can be used for peer certificates because
Orbix 3.3 Java Edition also accepts the PKCS#12 format.

Note: The Orbix E2A SSL/TLS Java Edition product currently does not
accept any extraneous text (comments and so on) in a trusted CA list file.
The extra text must therefore be removed if you are using Orbix E2A
SSL/TLS Java Edition.
77

CHAPTER 6 | CORBA Services
 78

CHAPTER 7

Administration
The administration of Orbix E2A has changed significantly
from Orbix 3. This chapter provides a brief overview of the main
changes in Orbix administration.

In This Chapter The following topics are discussed in this chapter:

Orbix Daemons page 80

POA Names page 81

Command-Line Administration Tools page 82

Activation Modes page 85
79

CHAPTER 7 | Administration
Orbix Daemons

Orbix E2A Daemons To provide greater flexibility and scaling, Orbix E2A replaced the Orbix 3
daemon, orbixd, with two daemons:

• The locator daemon, itlocator, helps clients to find Orbix E2A
servers.

• The node daemon, itnode_daemon, launches dormant Orbix E2A
servers in response to a client's request for service.
 80

POA Names
POA Names

Administering POA Names In Orbix 3, CORBA objects were associated with a named server. In Orbix
E2A, CORBA objects are associated with named POAs. This means that
Orbix E2A object references included an embedded POA name instead of a
server name.

The Orbix E2A locator daemon locates the CORBA object using the object
reference’s embedded POA name. Hence, POA names play a major role in
configuring the Orbix E2A locator daemon.
81

CHAPTER 7 | Administration
Command-Line Administration Tools

Overview Orbix E2A unifies many of Orbix 3’s command-line tools under a single
utility, itadmin. Also, some of the Orbix 3 command line-tools have been
deprecated.

General Command-Line Tools Table 15 compares the Orbix 3 general purpose command-line tools with
the Orbix E2A tools.

Table 15: Comparison of Orbix 3 and Orbix E2A General Command-Line
Tools

Description Orbix 3 Orbix E2A

Show implementation repository
(IMR) entry.

catit itadmin process show

Security commands. chownit, chmodit No equivalent

Show configuration dumpconfig itadmin config dump

Associate hosts into groups grouphosts No equivalent

C++ IDL compiler idl idl

CodeGen toolkit idlgen idlgen

Java IDL compiler idlj idl

Interface Repository (IFR) ifr itifr

Kill a server process killit itadmin process stop

List server lsit itadmin process list

Create a sub-directory in the IMR mkdirit No equivalent

Orbix daemon orbixd itlocator and itnode_daemon

Ping the Orbix daemon pingit No equivalent

List active servers psit itadmin process list -active
 82

Command-Line Administration Tools
Naming Service Command Line
Tools

Table 16 compares the Orbix 3 naming service command-line tools with the
Orbix E2A tools.

Add a definition to the IFR putidl idl -R

Register a server in the IMR putit itadmin process create

Show an IFR definition readifr itadmin ifr show

Remove a sub-directory from the
IMR

rmdirit No equivalent

Unregister a server from the IMR rmit itadmin process remove

Remove a definition from the IFR rmidl itadmin ifr remove

Associate servers with groups servergroups No equivalent

Associate hosts with servers serverhosts No equivalent

Table 15: Comparison of Orbix 3 and Orbix E2A General Command-Line
Tools

Description Orbix 3 Orbix E2A

Table 16: Comparison of Orbix 3 and Orbix E2A Naming Service
Command-Line Tools

Description Orbix 3 Orbix E2A

Add a member to an object group add_member itadmin nsog add_member

Print the IOR of an object group cat_group No equivalent

Print the IOR of an object group’s
member

cat_member itadmin nsog show_member

Print the IOR of a given name catns itadmin ns resolve

Remove an object group del_group itadmin nsog remove

Remove a member from an object
group

del_member itadmin nsog remove_member

List all object groups list_groups itadmin nsog list
83

CHAPTER 7 | Administration
List the members of an object
group

list_members itadmin nsog list_member

List the bindings in a context lsns itadmin ns list

Create an object group new_group itadmin nsog create

Create an unbound context newncns itadmin ns newnc

Select a member of an object
group

pick_member No equivalent

Bind a name to a context putncns itadmin ns bind -context

Create a bound context putnewncns itadmin ns newnc

Bind a name to an object putns itadmin ns bind -object

Rebind a name to a context reputncns itadmin ns bind -context

Rebind a name to an object reputns itadmin ns bind -object

Remove a binding rmns itadmin ns remove

Table 16: Comparison of Orbix 3 and Orbix E2A Naming Service
Command-Line Tools

Description Orbix 3 Orbix E2A
 84

Activation Modes
Activation Modes

Orbix 3 Orbix 3 process activation modes, shared, unshared, per-method,
per-client-pid and persistent, are used for a variety of reasons. For
example, they are used to achieve multi-threaded behavior in a
single-threaded environment, to increase server reliability, and so on. The
two most popular modes are:

• Shared mode—which enables all clients to communicate with the
same server process.

• Per-client-pid mode—which enforces a 1-1 relationship between
client process and server process, is sometimes used to maximize
server availability.

Orbix E2A Orbix E2A provides the following activation mode:

• on_demand—the process only activates when required.

Orbix E2A moved CORBA object association from the server to the POA.
Because of this, all Orbix E2A processes are shared.

Migration Migration of source code should be straightforward, because the choice of
activation mode has almost no impact on BOA or POA-based server code.

Load Balancing The additional activation modes provided by Orbix 3 are typically used to
achieve some form of load-balancing that is transparent to the client. The
Enterprise Edition of Orbix E2A includes transparent locator-based load
balancing over a group of replica POAs. This answers the needs currently
addressed by Orbix 3 activation modes.
85

CHAPTER 7 | Administration
 86

Part III
Interoperability

In This Part This part contains the following chapters:

Configuring for Interoperability page 89

IDL Issues page 97

Exceptions page 107

Services page 125

Connection Management page 135

Codeset Negotiation page 143

CHAPTER 8

Configuring for
Interoperability
This chapter describes the main configuration changes that
must be made to facilitate interoperability between Orbix 3.x
and Orbix E2A applications.

In This Chapter This chapter discusses the following topics:

Interoperability Overview page 90

Launch and Invoke Rights page 92

GIOP Versions page 94
89

CHAPTER 8 | Configuring for Interoperability
Interoperability Overview

Synopsis Orbix E2A v5.0, C++ and Java Editions, has been tested for interoperability
with the following IONA products: Orbix 3.0.1-82, OrbixWeb 3.2-15, and
Orbix 3.3, C++ and Java Editions.

This Interoperability Guide describes how to configure applications that use
a mixture of IONA products and any feature limitations that apply to such
interoperating systems.

Patched Releases of Orbix 3.3 The following patched releases have been tested for interoperability with
Orbix E2A v5.0:

• Orbix 3.0.1-82

• OrbixWeb 3.2-15

• Orbix 3.3.2 C++ Edition

• Orbix 3.3.2 Java Edition

It is recommend that you install these or later versions, if your applications
need to interoperate with Orbix E2A.

The _bind() Function Orbix E2A does not support the _bind() function for establishing
connections between clients and servers. Neither Orbix 3.0.1-82, OrbixWeb
3.2-15, nor Orbix 3.3 clients can use the _bind() function to establish a
connection to an Orbix E2A server. You must use a CORBA Naming Service
instead. For example, you could use either the Orbix 3.3 naming service or
the Orbix E2A naming service.
 90

Interoperability Overview
IDL Feature Support Orbix E2A supports a larger set of IDL data types and features than
Orbix 3.3. When developing IDL interfaces for use with Orbix E2A and other
IONA products you need to restrict your IDL to a subset that is supported by
all of the interoperating products.

In particular, the following articles describe IDL features that are subject to
limitations or require special configuration:

• “Use of #pragma prefix” on page 98

• “Use of #pragma ID in IDL” on page 101

• “Fixed Data Type and Interoperability” on page 102

• “Use of wchar and wstring” on page 104

• “C++ Keywords as Operation Names” on page 105

Changed Exception Semantics The semantics of some CORBA system exceptions are different in
Orbix E2A, as compared with Orbix 3.0.1-82, OrbixWeb 3.2-15, or Orbix
3.3. If you have existing code written for Orbix 3.0.1-82, OrbixWeb 3.2-15,
or Orbix 3.3, you should read the following articles:

• “Orbix 3.3 C++ Edition—System Exceptions” on page 108

• “Orbix 3.3 Java Edition—System Exceptions” on page 115

These articles describe how to configure your legacy application so that it is
insulated from any differences in exception semantics.

Other Affected Features It is not possible to use bi-directional IIOP when interoperating with
Orbix E2A applications because this feature is not supported by Orbix E2A.
See “Callbacks and Bi-Directional IIOP” on page 137.

If you want to use the new Orbix E2A interoperable naming service as the
common naming service for your interoperating system, see “The Orbix E2A
Interoperable Naming Service” on page 126.

The remaining articles in this guide describe miscellaneous issues that
might affect interoperability in a mixed product environment.
91

CHAPTER 8 | Configuring for Interoperability
Launch and Invoke Rights

Synopsis When an Orbix E2A client attempts to open a connection to an Orbix
3.0.1-82, OrbixWeb 3.2-15, or Orbix 3.3 server you must make sure that
the system is configured such that the Orbix E2A client has launch and
invoke rights.

Role of Launch and Invoke Rights In Orbix 3.3 the orbixd daemon process is responsible both for launching
servers and for redirecting client requests to servers. These two functions are
governed by launch rights and invoke rights, respectively.

Launch and invoke rights on Orbix 3.3 servers are based on the idea that
the client userID is transmitted along with request messages. The field of
the request message that contains the user ID is known as the Principal of
the invocation.

If launch and invoke rights are not configured correctly, the Orbix E2A client
raises a CORBA::OBJECT_NOT_EXIST system exception.

Setting Launch Rights The launch rights associated with an Orbix 3.3 server specify which users
are allowed to cause automatic launching of the server. Launch rights in
Orbix 3.3 are granted with the following form of chmodit:

chmodit l+userID ServerName

Setting Invoke Rights The invoke rights associated with an Orbix 3.3 server are used to determine
which users are allowed to invoke on the server. Invoke rights are granted
using:

chmodit i+userID ServerName

Orbix E2A and Orbix 3.3 The configuration must be altered for an Orbix E2A client invoking on an
Orbix 3.3 server. There are two possible approaches to fix the launch and
invoke rights:

• Alter the configuration of the Orbix E2A client.

• Relax the security on the orbixd daemon.
 92

Launch and Invoke Rights
Alter the Configuration of the
Orbix E2A Client

Two entries must be made (or changed) in the Orbix E2A configuration file:

The policies:giop:interop_policy:send_locate_request option controls
whether Orbix E2A sends LocateRequest messages before sending initial
Request messages. This option must be set to false because LocateRequest
messages do not contain a Principal field.

The policies:giop:interop_policy:send_principal option controls
whether Orbix E2A sends Principal information containing the current user
name in GIOP 1.0 and GIOP 1.1 requests. The user name is matched
against the launch and invoke rights listed in the orbixd daemon to
determine the permissions of the Orbix E2A client.

Relax the Security on the orbixd
Daemon

Alternatively, you can relax the security on the orbixd daemon so that all
clients have launch and invoke rights. For example, use the chmodit
command line utility to change the launch and invoke rights:

chmodit l+all ServerName
chmodit i+all ServerName

These commands give permission for any client to invoke or launch the
server ServerName. Permissions are granted even if the Principal value is
left blank in the incoming requests.

Orbix E2A Configuration File
policies:giop:interop_policy:send_locate_request = "false";
policies:giop:interop_policy:send_principal = "true";
93

CHAPTER 8 | Configuring for Interoperability
GIOP Versions

GIOP Version of a Connection The GIOP version used by a client-server connection is determined by the
client. When a client is about to open a connection to a CORBA object, the
client examines the version information in the object’s IOR.

• If the GIOP version in the IOR is greater than or equal to the default
GIOP version of the client, the client initiates a connection using the
client’s default GIOP version.

• Otherwise, the client initiates a connection using the GIOP version in
the IOR.

Effect of GIOP Version The GIOP version of a connection is important because some CORBA
features are not supported in early GIOP versions. Table 17 shows the
minimum GIOP version required for some CORBA features, according to the
CORBA specification.

Table 17: CORBA-Specified Minimum GIOP Versions

CORBA Feature CORBA-Specified
Minimum GIOP Version

fixed type 1.1

wchar and wstring types 1.1

codeset negotiation (Orbix E2A only) 1.1
 94

GIOP Versions
Orbix-Specific Minimum GIOP
Versions

Notwithstanding the CORBA-specified minimum GIOP versions, Orbix
allows some features to be used at a lower GIOP version (in some cases
requiring specific configuration variables to be set). Table 18 shows the
Orbix-specific minimum GIOP versions.

For more details on these CORBA features, see the following sections:

• “Fixed Data Type and Interoperability” on page 102.

• “Use of wchar and wstring” on page 104.

• “Codeset Negotiation for Narrow and Wide Characters” on page 144.

Table of Default GIOP Versions Table 19 shows the default GIOP versions for different Orbix clients when
opening a connection to a server.

Table 18: Orbix-Specific Minimum GIOP Versions

CORBA Feature Orbix-Specific
Minimum GIOP Version

fixed type 1.0

wchar and wstring types 1.0

codeset negotiation (Orbix E2A only) 1.1

Table 19: Default GIOP Version Used by Orbix Clients

Client Version Default GIOP Version

Orbix 3.0.1-82 1.0

OrbixWeb 3.2-15 1.0

Orbix 3.3 C++ Edition 1.1

Orbix 3.3 Java Edition 1.0

Orbix 2000 C++ Edition
(up to version 2.0)

1.1

Orbix 2000 Java Edition
(up to version 2.0)

1.1
95

CHAPTER 8 | Configuring for Interoperability
 96

CHAPTER 9

IDL Issues
This chapter describes those features of IDL that affect
interoperability between Orbix 3.x and Orbix E2A applications.

In This Chapter This chapter discusses the following topics:

Use of #pragma prefix page 98

Use of #pragma ID in IDL page 101

Fixed Data Type and Interoperability page 102

Use of wchar and wstring page 104

C++ Keywords as Operation Names page 105
97

CHAPTER 9 | IDL Issues
Use of #pragma prefix

Synopsis Using the #pragma prefix preprocessor directive in your IDL affects the
semantics of the _narrow() function. When an Orbix 3.0.1-82 or Orbix 3.3
C++ client attempts to _narrow() an object reference originating from an
Orbix E2A server, a remote _is_a() call is implicitly made.

The #pragma prefix preprocessor directive is not fully supported in
OrbixWeb 3.2-15 and Orbix 3.3 Java Edition. An OrbixWeb 3.2-15 or
Orbix 3.3 Java application can, however, interoperate with Orbix E2A, with
an implicit is_a() call being made by the Orbix runtime.

Effect of #pragma prefix The #pragma prefix directive is used to add a prefix to the RepositoryId of
all the IDL declarations that follow. For example:

The default RepositoryId of the Foo interface would be IDL:Foo:1.0. When
used as above, #pragma prefix causes the RepositoryId of the interface
Foo to change to IDL:mydomain.com/Foo:1.0.

//IDL
#pragma prefix "mydomain.com"

interface Foo {
//Various operations and attributes (not shown)
...

};
 98

Use of #pragma prefix
C++ Code Example Consider, a Foo object reference that is generated by an Orbix E2A server.
The Orbix E2A server stringifies the object reference using the
CORBA::ORB::object_to_string() operation and writes it to a temporary
file.

An Orbix 3.3 C++ client then reads the stringified object reference from the
temporary file and converts it back to a Foo object reference as follows:

Semantics of the _narrow()
Function

When Foo::_narrow(objV) is invoked the object's RepositoryId is checked
to make sure that it really is of type Foo. There are two ways a client can
check the type of an object when it performs a _narrow():

• Check the type locally, using the information in the client stub code.

• Check the type remotely, by calling back to the Orbix E2A server. The
_is_a() function is invoked on the remote Foo object.

Because the Foo object reference originates from an Orbix E2A server, the
Orbix 3.3 C++ client is unable to check the RepositoryId using its local
stub code. It must call back to the server instead. The implementation of

//C++
...
//--
// The following variables are assumed to be initialized already:
// 'stringObj'- A stringified object reference of char * type
// 'orbV' - A reference to an ORB object,
// of CORBA::ORB_var type
//
try {

CORBA::Object_var objV = orbV->string_to_object(stringObj);

// Attempt to 'narrow' the object reference to type 'Foo_ptr'
Foo_var myFooV = Foo::_narrow(objV);

if (CORBA::is_nil(myFooV)) {
cerr << "error: narrow to Foo failed" << endl;
exit(1);

}
}
catch (CORBA::SystemException& sysEx) {

... // deal with exceptions
}

99

CHAPTER 9 | IDL Issues
_narrow() calls the remote operation CORBA::Object::_is_a() on the
object reference objV. The _is_a() function returns TRUE if the object is
really of type Foo, otherwise it returns FALSE.

Effect on the CORBA Naming
Service

The naming service is affected because it uses a #pragma prefix directive:

When used as above, #pragma prefix causes the RepositoryId of the
interface NamingContext to change to
IDL:omg.org/CosNaming/NamingContext:1.0. An Orbix 3.3 C++ client that
uses the Orbix E2A naming service, therefore, implicitly makes a remote
_is_a() invocation whenever it invokes _narrow() on a naming service
object.

Orbix 3.3 C++ Edition and
Orbix E2A

When Orbix 3.3 C++ Edition and Orbix E2A applications are mixed in the
same system, you can use IDL that has a #pragma prefix directive but the
semantic behavior of _narrow() is affected.

Orbix 3.3 Java Edition and
Orbix E2A

If a #pragma prefix preprocessor directive appears in your IDL, it is ignored
by the Orbix 3.3 IDL-to-Java compiler. The Java stub and skeleton code is
generated as if the #pragma prefix was not there.

When Orbix 3.3 Java Edition and Orbix E2A applications are mixed in the
same system, you can use IDL that has a #pragma prefix directive but
implicit is_a() calls will be made by the Orbix runtime.

//IDL for the CORBA Naming Service
#pragma prefix "omg.org"

module CosNaming {
...
interface NamingContext {

...
};

};
 100

Use of #pragma ID in IDL
Use of #pragma ID in IDL

Synopsis The #pragma ID directive is supported in Orbix E2A, but is not supported in
Orbix 3.3.

Syntax of #pragma ID The #pragma ID directive is used to associate an arbitrary repository ID with
a given IDL type name. It has the following syntax:

The RepositoryId must be of the form Format:String where no colon may
appear in Format. For example, if the Format of the repository ID is IDL:

The default repository ID that would normally be associated with Foo is
IDL:Example/Foo:1.0. By including the #pragma ID directive the repository
ID becomes IDL:ArbitraryFooId:1.1 instead.

Orbix 3.3 C++ Edition and
Orbix E2A

IDL that makes use of the #pragma ID directive cannot be used
interoperably between Orbix 3.3 C++ Edition and Orbix E2A applications.

Orbix 3.3 Java Edition and
Orbix E2A

IDL that makes use of the #pragma ID directive cannot be used
interoperably between Orbix 3.3 Java Edition and Orbix E2A applications.

#pragma ID TypeName "RepositoryID"

//IDL
module Example {

interface Foo {};
#pragma ID Foo "IDL:ArbitraryFooId:1.1"
};
101

CHAPTER 9 | IDL Issues
Fixed Data Type and Interoperability

Synopsis When interoperating between an Orbix 3.0.1-82/OrbixWeb 3.2-15
application and an Orbix E2A C++ application, it is necessary to change
the configuration of Orbix E2A C++ to use the fixed-point IDL type.

Interoperating with Orbix E2A
C++ Edition

To enable the fixed-point type to be sent between an Orbix 3.0.1-82
application and an Orbix E2A C++ Edition application, the following
configuration entry must be made (or changed) in the Orbix E2A
configuration file:

If set to true, Orbix E2A permits fixed-point types to be sent over GIOP 1.0.
Defaults to false.

Interoperating with Orbix E2A
Java Edition

Orbix E2A Java accepts fixed-point types through GIOP 1.0 and GIOP 1.1
connections. No special configuration is needed, therefore, when sending
fixed-point types between Orbix E2A Java and legacy products such as Orbix
3.0.1-82 or Orbix 3.3.

Orbix 3.0.1-82 and Orbix E2A
C++ Edition

Orbix 3.0.1-82 uses GIOP 1.0 by default and Orbix E2A C++ does not
permit fixed-point types to be sent over GIOP 1.0. It is necessary, therefore,
to reconfigure Orbix E2A C++ in this case by setting the
allow_fixed_types_in_1_0 variable to true.

Orbix 3.3 C++ Edition and
Orbix E2A C++ Edition

Orbix 3.3 C++ Edition uses GIOP 1.1 by default and Orbix E2A C++
permits fixed-point types to be sent over GIOP 1.1. There is, therefore, no
need to reconfigure Orbix E2A C++ in this case.

Orbix E2A Configuration File
policies:giop:interop_policy:allow_fixed_types_in_1_0 = "true";
 102

Fixed Data Type and Interoperability
Orbix 3.3 Java Edition and
Orbix E2A C++ Edition

To enable the fixed-point type to be sent between Orbix 3.3 Java Edition
and Orbix E2A C++ applications, two alternative configurations can be
used:

• Make, or change, the following configuration entry in the Orbix E2A
configuration file:

If set to true, Orbix E2A C++ permits fixed-point types to be sent over
GIOP 1.0. Defaults to false.

• Alternatively, you can configure Orbix 3.3 Java Edition to use GIOP 1.1
using the IT_DEFAULT_IIOP_VERSION configuration variable. This
configuration variable can be set in any of the ways described in the
Orbix 3.3 Administrator's Guide. For example, you can set it in the
orbixweb3.cfg file as follows:

By setting the IT_DEFAULT_IIOP_VERSION configuration variable to 11
you ensure that Orbix 3.3 Java Edition uses GIOP 1.1 by default on
connections to servers. Because GIOP 1.1 officially supports
marshalling of fixed-point data, this enables you to use fixed-point data
interoperably.

Orbix E2A Configuration File
policies:giop:interop_policy:allow_fixed_types_in_1_0 =

"true";

#File: 'orbixweb3.cfg'
OrbixWeb {

Other options not shown
...
IT_DEFAULT_IIOP_VERSION = "11";

};

Note: Orbix 3.3 C++ Edition has a similarly named environment
variable, IT_IIOP_VERSION. However, setting IT_IIOP_VERSION in Orbix
3.3 C++ Edition does not have the same effect as setting
IT_DEFAULT_IIOP_VERSION in Orbix 3.3 Java Edition. The
IT_IIOP_VERSION environment variable cannot be used to enable use of
the fixed point type between Orbix 3.3 C++ Edition and Orbix E2A.
103

CHAPTER 9 | IDL Issues
Use of wchar and wstring

Synopsis Table 20 summarizes the support for the wchar and wstring IDL types in
the Orbix 3.3 and Orbix E2A products:

All of the products that support wchar and wstring types can interoperate
with each other (with the exception, currently, of Orbix E2A C++ when
transmitting wchars to and from other ORB products).

Table 20: Support for the wchar and wstring Types by Product

Product Supports wchar Supports wstring

Orbix E2A C++ Yesa Yes

Orbix E2A Java Yes Yes

Orbix 3.3 C++ Edition No No

Orbix 3.3 Java Edition Yes Yes
a. In Orbix E2A C++ release 5.0, there is currently a bug that affects the

transmission and reception of wchar characters when interoperating with
other ORB products. This bug does not affect the wstring type.
 104

C++ Keywords as Operation Names
C++ Keywords as Operation Names

Synopsis Previously, if your IDL contained operation names that are the same as
C++ keywords, Orbix 3.0.1-82 and Orbix 3.3 C++ Edition could not
interoperate with Orbix E2A.

This problem is now fixed. Orbix 3.3 applications can now interoperate with
Orbix E2A even when your IDL contains C++ keywords as operation
names.

IDL Example Consider the following IDL:

C++ Stub Code The Orbix 3.3 IDL-to-C++ compiler maps this interface to the following
proxy class:

The names of the functions in C++ have a leading underscore character, for
example _for and _class, to avoid clashing with the C++ keywords for
and class.

//IDL
interface CPlusPlusKeywords {

void for();
boolean class();

};

//C++
class CPlusPlusKeywords: public virtual CORBA::Object {

...
public:

...
virtual void _for (...) ;
virtual CORBA::Boolean _class (...) ;
...

};
105

CHAPTER 9 | IDL Issues
On-the-Wire Format for Operation
Names

When an Orbix 3.3 C++ or Java client makes a remote invocation using the
_for() and _class() functions, the operation names are marshalled as
"for" and "class" respectively. This behavior complies with CORBA 2.4
and is compatible with Orbix E2A servers.
 106

CHAPTER 10

Exceptions
This chapter discusses the differences in the handling of
CORBA exceptions between Orbix 3.x and Orbix E2A.

In This Chapter This chapter discusses the following topics:

Orbix 3.3 C++ Edition—System Exceptions page 108

Orbix 3.3 Java Edition—System Exceptions page 115

FILTER_SUPPRESS Exception page 120

Dynamic Invocation Interface and User Exceptions page 121

Dynamic Invocation Interface and LOCATION_FORWARD page 123
107

CHAPTER 10 | Exceptions
Orbix 3.3 C++ Edition—System Exceptions

Synopsis The semantics of system exceptions in Orbix prior to Orbix 3.0.1-20 are
different from the semantics in Orbix E2A. In Orbix 3.3, however, exception
semantics have been altered to make them compatible with Orbix E2A. An
environment variable IT_USE_ORBIX3_STYLE_SYS_EXC is introduced that
enables you to insulate legacy code from the change.

New Semantics and Old
Semantics

Some system exceptions in Orbix E2A have different semantics to the
corresponding exceptions in Orbix prior to Orbix 3.0.1-20. The exception
semantics used by Orbix E2A are referred to here as new semantics. The
exception semantics used by Orbix prior to Orbix 3.0.1-20 are referred to
here as old semantics.

The
IT_USE_ORBIX3_STYLE_SYS_EXC
Variable

The IT_USE_ORBIX3_STYLE_SYS_EXC variable affects three different aspects
of Orbix 3.0.1-82 and Orbix 3.3 applications:

• System exceptions raised by the server.

• System exceptions raised by the client.

• Transformation of exceptions arriving at the client.

System exceptions are not only raised by servers, they can also be raised on
the client side. If a client encounters an error before it sends a Request
message to a server, or after it receives a Reply message from a server, the
client raises a system exception. The IT_USE_ORBIX3_STYLE_SYS_EXC
variable therefore affects both client and server applications.
 108

Orbix 3.3 C++ Edition—System Exceptions
System Exceptions Raised by the
Server

System exceptions raised by an Orbix 3.0.1-82 and Orbix 3.3 server are
influenced in the following way by IT_USE_ORBIX3_STYLE_SYS_EXC.

System Exceptions Raised by the
Client

System exceptions raised by an Orbix 3.0.1-82 and Orbix 3.3 client are
influenced in the following way by IT_USE_ORBIX3_STYLE_SYS_EXC.

Table 21: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Server - Exception Raising

Not defined Old semantics

YES Old semantics

NO New semantics

Table 22: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Client - Exception Raising

Not defined Old semantics

YES Old semantics

NO New semantics
109

CHAPTER 10 | Exceptions
Transformation of Exceptions
Arriving at the Client

Transformation of exceptions arriving at an Orbix 3.0.1-82 and Orbix 3.3
client are influenced in the following way by
IT_USE_ORBIX3_STYLE_SYS_EXC.

Transformation is applied to system exceptions incoming from the network.
This feature dynamically intercepts system exceptions arriving at the client
and, if necessary, converts them to the type of system exception expected by
the client (consistent with either new or old semantics). This is essential to
ensure that the client can apply a consistent style of exception handling
irrespective of the type of server it is talking to.

Difference between Orbix Prior to
Orbix 3.0.1-82 and Orbix 3.3

The presence of the transformation feature means that there is a significant
difference between Orbix clients prior to Orbix 3.0.1-20 and Orbix
3.0.1-82/Orbix 3.3 clients even when the variable
IT_USE_ORBIX3_STYLE_SYS_EXC is not set (or set equal to YES). An Orbix
3.0.1-82 or Orbix 3.3 client that uses old semantics actively transforms
incoming system exceptions to old semantics. A pre-Orbix 3.0.1-20 client
does not.

In This Section This section contains the following subsections:

Table 23: Transformation of Exceptions at the Client Side

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Client - Exception Raising

Not defined Transform to old semantics

YES Transform to old semantics

NO Transform to new semantics

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions page 111

The TRANSIENT and COMM_FAILURE Exceptions page 112

Orbix 3.3 C++ Edition and Orbix E2A page 113
 110

Orbix 3.3 C++ Edition—System Exceptions
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions

Orbix E2A Semantics In Orbix E2A the INV_OBJREF and OBJECT_NOT_EXIST system exceptions are
raised under the following circumstances:

• The INV_OBJREF system exception is raised by
CORBA::ORB::string_to_object() to indicate that the stringified
object reference is malformed in some way.

• The OBJECT_NOT_EXIST system exception is raised by a server to
indicate that a CORBA object does not exist.

Orbix 3.3 (New Semantics) In Orbix 3.0.1-82 and Orbix 3.3 (new semantics) the INV_OBJREF and
OBJECT_NOT_EXIST system exceptions are raised under the following
circumstances:

• The INV_OBJREF system exception is raised for a variety of reasons.
However, it is not raised to indicate that a CORBA object does not
exist.

• The OBJECT_NOT_EXIST system exception is raised by a server to
indicate that a CORBA object does not exist.

Pre-Orbix 3.0.1-20 (Old
Semantics)

Prior to Orbix 3.0.1-20 (old semantics) the INV_OBJREF and
OBJECT_NOT_EXIST system exceptions are raised under the following
circumstances:

• The INV_OBJREF system exception is raised for a variety of reasons.
When raised by a server, with minor code 10101, it indicates that a
CORBA object does not exist.

• The OBJECT_NOT_EXIST system exception is never raised by pre-Orbix
3.0.1-20 applications.
111

CHAPTER 10 | Exceptions
The TRANSIENT and COMM_FAILURE Exceptions

Orbix E2A Semantics and
Orbix 3.3 (New Semantics)

In Orbix E2A and in Orbix 3.0.1-82/Orbix 3.3 (new semantics) the
TRANSIENT and COMM_FAILURE system exceptions are raised under the
following circumstances:

• The TRANSIENT exception is raised if a client tries to send a message to
a server but is unable to do so. In terms of the TCP/IP transport layer,
this means an error occurred before or during an attempt to write to or
connect to a socket.

• The COMM_FAILURE exception is raised if a client has already sent a
message to a server but is unable to receive the associated reply. In
terms of the TCP/IP transport layer, this means either the connection
went down or an error occurred during an attempt to read from a
socket.

Pre-Orbix 3.0.1-20 (Old
Semantics)

Prior to Orbix 3.0.1-20 (old semantics) the TRANSIENT and COMM_FAILURE
system exceptions are raised under the following circumstances:

• The TRANSIENT exception is never raised in pre-Orbix 3.0.1-20
applications.

• The COMM_FAILURE exception is raised in pre-Orbix 3.0.1-20
applications if an error occurs while writing to, reading from, or
connecting on a TCP/IP socket.
 112

Orbix 3.3 C++ Edition—System Exceptions
Orbix 3.3 C++ Edition and Orbix E2A

Overview There are three different ways of setting the IT_USE_ORBIX3_STYLE_SYS_EXC
configuration value:

• Set an environment variable.

• Set a configuration variable.

• Use the SetConfigValue() function.

Set an Environment Variable Set the environment variable, IT_USE_ORBIX3_STYLE_SYS_EXC, as follows:

Windows
set IT_USE_ORBIX3_STYLE_SYS_EXC=yes_or_no

UNIX
export IT_USE_ORBIX3_STYLE_SYS_EXC=yes_or_no

Where yes_or_no can be the string YES or NO.

Set a Configuration Variable Set the configuration variable, IT_USE_ORBIX3_STYLE_SYS_EXC, by editing
the Orbix 3.3 configuration file:

Use the SetConfigValue()
Function

Use the CORBA::ORB::SetConfigValue() function:

Where orb_p is a pointer to a CORBA::ORB instance.

Orbix 3.3 Configuration File
Orbix {

IT_USE_ORBIX3_STYLE_SYS_EXC = "yes_or_no";
};

// C++
orb_p->SetConfigValue(

"Orbix.IT_USE_ORBIX3_STYLE_SYS_EXC",
"yes_or_no"

);
113

CHAPTER 10 | Exceptions
Compatibility Matrix Table 24 shows the compatibility matrix between Orbix 3.0.1-82/Orbix 3.3
and Orbix E2A.

A Yes entry in the above table indicates compatible exception semantics for
that combination.

An Orbix 3.0.1-82/Orbix 3.3 application described in the table as old
semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to YES,
or unset. An Orbix 3.0.1-82/Orbix 3.3 application described in the table as
new semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to
NO.

Table 24: System Exception Handling Compatibility between Orbix
3.0.1-82/Orbix 3.3 and Orbix E2A

Client Application Orbix 3.0.1-82/Orbix 3.3
Server (Old Semantics)

Orbix 3.0.1-82/Orbix 3.3
Server (New Semantics)

Orbix E2A Server

Orbix 3.0.1-82/Orbix 3.3
Client (Old Semantics)

Yes Yes Yes

Orbix 3.0.1-82/Orbix 3.3
Client (New Semantics)

Yes Yes Yes

Orbix E2A Client No Yes Yes
 114

Orbix 3.3 Java Edition—System Exceptions
Orbix 3.3 Java Edition—System Exceptions

Synopsis The semantics of system exceptions in OrbixWeb prior to OrbixWeb 3.2-05
are different from the semantics in Orbix E2A. In OrbixWeb 3.2-15 and
Orbix 3.3 Java Edition, however, exception semantics have been altered to
make them compatible with Orbix E2A. An environment variable
IT_USE_ORBIX3_STYLE_SYS_EXC is introduced that enables you to insulate
legacy code from the change.

New Semantics and Old
Semantics

Some system exceptions in Orbix E2A have different semantics to the
corresponding exceptions in OrbixWeb prior to OrbixWeb 3.2-05. The
exception semantics used by Orbix E2A are referred to here as new
semantics. The exception semantics used by OrbixWeb prior to OrbixWeb
3.2-05 are referred to here as old semantics.

The
IT_USE_ORBIX3_STYLE_SYS_EXC
Variable

The IT_USE_ORBIX3_STYLE_SYS_EXC variable affects two aspects of
OrbixWeb 3.2-15 and Orbix 3.3 Java Edition applications:

• System exceptions raised by the server.

• System exceptions raised by the client.

The IT_USE_ORBIX3_STYLE_SYS_EXC variable therefore affects both client
and server applications.

Note: OrbixWeb 3.2-15 and Orbix 3.3 Java applications do not perform
transformations on incoming system exceptions.
115

CHAPTER 10 | Exceptions
System Exceptions Raised by the
Server

System exceptions raised by an OrbixWeb 3.2-15/Orbix 3.3 Java server are
influenced in the following way by IT_USE_ORBIX3_STYLE_SYS_EXC.

System Exceptions Raised by the
Client

System exceptions raised by an OrbixWeb 3.2-15/Orbix 3.3 Java client are
influenced in the following way by IT_USE_ORBIX3_STYLE_SYS_EXC.

In This Section This section contains the following subsections:

Table 25: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Java Server - Exception
Raising

Not defined Old semantics

TRUE Old semantics

FALSE New semantics

Table 26: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Java Client - Exception
Raising

Not defined Old semantics

TRUE Old semantics

FALSE New semantics

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions page 117

The TRANSIENT and COMM_FAILURE Exceptions page 118

Orbix 3.3 Java Edition and Orbix E2A page 119
 116

Orbix 3.3 Java Edition—System Exceptions
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions

Orbix E2A Semantics and
Orbix 3.3 Java Edition (New
Semantics)

In Orbix E2A and OrbixWeb 3.2-15/Orbix 3.3 Java Edition (new semantics)
the INV_OBJREF and OBJECT_NOT_EXIST system exceptions are raised under
the following circumstances:

• The INV_OBJREF system exception is raised by
CORBA::ORB::string_to_object() to indicate that the stringified
object reference is malformed in some way.

• The OBJECT_NOT_EXIST system exception is raised by a server to
indicate that a CORBA object does not exist.

Orbix 3.3 Java Edition (Old
Semantics)

In OrbixWeb 3.2-15/Orbix 3.3 Java Edition (old semantics) the INV_OBJREF
and OBJECT_NOT_EXIST system exceptions are raised under the following
circumstances:

• The INV_OBJREF system exception, with minor code 10100, is raised by
a server to indicate that a CORBA object does not exist.

• The OBJECT_NOT_EXIST system exception is never raised in OrbixWeb
3.2-15/Orbix 3.3 Java Edition (old semantics).
117

CHAPTER 10 | Exceptions
The TRANSIENT and COMM_FAILURE Exceptions

Orbix E2A Semantics and
Orbix 3.3 Java Edition (New
Semantics)

In Orbix E2A and OrbixWeb 3.2-15/Orbix 3.3 Java Edition (new semantics)
the TRANSIENT and COMM_FAILURE system exceptions are raised under the
following circumstances:

• The TRANSIENT exception is raised if a client tries to send a message to
a server but is unable to do so. In terms of the TCP/IP transport layer,
this means an error occurred before or during an attempt to write to or
connect to a socket.

• The COMM_FAILURE exception is raised if a client has already sent a
message to a server but is unable to receive the associated reply. In
terms of the TCP/IP transport layer, this means either the connection
went down or an error occurred during an attempt to read from a
socket.

Orbix 3.3 Java Edition (Old
Semantics)

In OrbixWeb 3.2-15/Orbix 3.3 Java Edition (old semantics) the TRANSIENT
and COMM_FAILURE system exceptions are raised under the following
circumstances:

• The TRANSIENT exception can be raised in an OrbixWeb 3.2-15/Orbix
3.3 Java client when attempting to make a connection through Orbix
Wonderwall, or when attempting to deal with a LOCATION_FORWARD
Reply message.

• The COMM_FAILURE exception is raised in OrbixWeb 3.2-15/Orbix 3.3
Java Edition (old semantics) if an error occurs while writing to, reading
from, or connecting on a TCP/IP socket.
 118

Orbix 3.3 Java Edition—System Exceptions
Orbix 3.3 Java Edition and Orbix E2A

Setting the
IT_USE_ORBIX3_STYLE_SYS_EXC
Variable

The IT_USE_ORBIX3_STYLE_SYS_EXC variable can be set in any of the ways
described in the OrbixWeb Administrator's Guide.

For example, to switch on new semantics you can make the following entry
in the OrbixWeb3.cfg configuration file:

Compatibility Matrix Table 27 shows the compatibility matrix between OrbixWeb 3.2-15/Orbix
3.3 Java Edition and Orbix E2A.

A Yes entry in the above table indicates compatible exception semantics for
that combination.

An OrbixWeb 3.2-15/Orbix 3.3 Java application described in the table as
old semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to
TRUE, or unset. An OrbixWeb 3.2-15/Orbix 3.3 Java application described in
the table as new semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable
set equal to FALSE.

Orbix 3.3 Configuration File
OrbixWeb.IT_USE_ORBIX3_STYLE_SYS_EXC = "FALSE";

Table 27: System Exception Handling Compatibility between OrbixWeb
3.2-15/Orbix 3.3 Java Edition and Orbix E2A

Client Application OrbixWeb 3.2-15/Orbix
3.3 Java Server (Old

Semantics)

OrbixWeb 3.2-15/Orbix
3.3 Java Server (New

Semantics)

Orbix E2A Server

OrbixWeb 3.2-15/Orbix
3.3 Java Client (Old
Semantics)

Yes No No

OrbixWeb 3.2-15/Orbix
3.3 Java Client (New
Semantics)

No Yes Yes

Orbix E2A Client No Yes Yes
119

CHAPTER 10 | Exceptions
FILTER_SUPPRESS Exception

Synopsis The FILTER_SUPPRESS exception is a system exception specific to Orbix and
OrbixWeb. If an Orbix 3.3 C++ server or an Orbix 3.3 Java server sends the
FILTER_SUPPRESS exception to an Orbix E2A client, it is converted to the
standard system exception CORBA::UNKNOWN.

Purpose of the FILTER_SUPPRESS
Exception

Filters are a proprietary feature of Orbix 3.3 that enable you to read and
manipulate all incoming and outgoing messages. Prior to the availability of a
standard CORBA Security Service some applications used filters to
implement a rudimentary security mechanism. These legacy applications
could block the execution of an operation on the server side by raising the
FILTER_SUPPRESS exception in a filter.

How Orbix E2A Handles a
FILTER_SUPPRESS Exception

When a FILTER_SUPPRESS exception is sent back to an Orbix E2A client, the
Orbix E2A client does not recognize the exception. A CORBA::UNKNOWN
system exception is raised instead by the Orbix E2A client.
 120

Dynamic Invocation Interface and User Exceptions
Dynamic Invocation Interface and
User Exceptions

Synopsis The dynamic invocation interface (DII) in Orbix 3.3 cannot handle CORBA
user exceptions.

Orbix 3.3 and User Exceptions If a user exception is received by an Orbix 3.3 invocation, the Orbix 3.3
runtime converts the exception into a CORBA::UNKNOWN system exception
which is then thrown by the CORBA::Request::invoke() operation.

Handling User Exceptions in
Orbix 3.3 C++ Edition

Given an initialized request object, req, the following example shows an
outline of how to deal with user exceptions in the DII:

// C++ - Orbix 3.3
// Initialize DII Request object, req.
...
// Make the invocation
try {

req.invoke();
}
catch (...) {

// You will reach this point if a user exception is thrown.
...

}

121

CHAPTER 10 | Exceptions
Handling User Exceptions in
Orbix 3.3 Java Edition

Given an initialized request object, req, the following example shows an
outline of how to deal with user exceptions in the DII:

Orbix E2A and User Exceptions In the Orbix E2A DII, however, user exceptions are supported in the DII. The
standard exception class CORBA::UnknownUserException holds a
CORBA::Any which can then be parsed with the aid of the dynamic any
module to obtain the contents of the user exception.

// Java - Orbix 3.3
// Initialize DII Request object, req.
...
// Make the invocation
try {

req.invoke();
}
catch (java.lang.Exception) {

// You will reach this point if a user exception is thrown.
...

}

 122

Dynamic Invocation Interface and LOCATION_FORWARD
Dynamic Invocation Interface and
LOCATION_FORWARD

Synopsis The dynamic invocation interface (DII) in Orbix 3.3 C++ Edition is now
able to handle reply messages that have the status LOCATION_FORWARD.
Previously, LOCATION_FORWARD replies were not supported in Orbix C++
applications.

The DII in Orbix 3.3 Java Edition has always been able to handle reply
messages that have the status LOCATION_FORWARD.

See also “Multiple LOCATION_FORWARD” on page 142.

Location Forwarding Mechanisms The IIOP protocol features support for location forwarding. It is used to
dynamically discover the location of CORBA objects. There are two distinct
kinds of message exchange that form the basis of location forwarding:

• The client ORB can deliberately probe the location of a CORBA object
by sending a LocateRequest message to the server (or agent). The
server (or agent) responds with a LocateReply message containing
details of the object's location.

• When a client sends a regular Request message the server (or agent)
might respond with a special type of Reply message that has a reply
status of LOCATION_FORWARD. This reply will have details of the object's
location.

Support for Location Forwarding The location forward mechanism is used by the Orbix 3.3 daemon and the
Orbix E2A locator service to direct clients to the true location of a CORBA
server.

• The first type of message exchange is a LocateRequest followed by
LocateReply.

• The second type of message exchange is a Request followed by a
Reply with status LOCATION_FORWARD.

Both kinds of message exchange are supported in Orbix 3.3.
123

CHAPTER 10 | Exceptions
 124

CHAPTER 11

Services
In a mixed system with Orbix 3.x and Orbix E2A applications,
you generally have a choice between an Orbix 3.x or an
Orbix E2A implementation of a CORBA service. This chapter
discusses the viable configurations of CORBA services in a
mixed system.

In This Chapter This chapter discusses the following topics:

The Orbix E2A Interoperable Naming Service page 126

Interface Repository Interoperability page 132

SSL/TLS Toolkit Interoperability page 133

High Availability and Orbix 3.3 Clients page 134
125

CHAPTER 11 | Services
The Orbix E2A Interoperable Naming Service

Synopsis The naming service provided with Orbix E2A is an implementation of the
CORBA Interoperable Naming Service (INS) specification. This section
explains how to set up Orbix 3.3 applications to use the Orbix E2A INS.

Old and New Naming Services In an environment that mixes Orbix 3.3 and Orbix E2A applications you
have a choice between using the old CORBA Naming Service (NS), provided
with Orbix 3.3, or the new CORBA Interoperable Naming Service (INS),
provided with Orbix E2A.

The NamingContextExt Interface The main difference between the old and new naming services is that the
INS adds a new IDL CosNaming::NamingContextExt interface.

// File: CosNaming.idl
#pragma prefix "omg.org"

module CosNaming {
...
interface NamingContextExt : NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string (in Name n)
raises (InvalidName);

Name to_name (in StringName sn)
raises (InvalidName);

exception InvalidAddress {};

URLString to_url (in Address addr, in StringName sn)
raises (InvalidAddress, InvalidName);

Object resolve_str (in StringName sn)
raises (NotFound, CannotProceed, InvalidName);

};
};
 126

The Orbix E2A Interoperable Naming Service
Stub Code Applications that use the INS should preferably be built against the new
naming stub (generated from the interoperable naming service IDL). This
makes the new NamingContextExt interface accessible. However, the old
naming stubs (generated from the old naming service IDL) can also be used.

Narrowing and Remote _is_a()
Operation

When an Orbix 3.3 application invokes
CosNaming::NamingContext::_narrow() on an Orbix E2A NamingContext it
makes a remote _is_a() invocation on the INS. The _is_a() invocation is
used to confirm the type of the NamingContext object reference. See “Use of
#pragma prefix” on page 98.

Orbix 3.3 and Orbix E2A You can configure Orbix 3.3 to use both the Orbix 3.3 naming service and
the Orbix E2A INS. This section describes how to configure the CORBA
Initialization Service to obtain a reference to either naming service using the
CORBA::ORB::resolve_initial_references() function.

Configuring Orbix 3.3 to Use the
Orbix E2A INS

To connect both to the Orbix 3.3 naming service and the Orbix E2A naming
service from an Orbix 3.3 application you must first configure the
initialization service. Edit the configuration file common.cfg and make the
following entries in the scope Common.Services.

Orbix 3.3 Configuration File
Common {

Services {
This is the stringified IOR for the root 'NamingContext'
of the 'Orbix 3' naming service.
You can obtain this IOR by running the naming service
as follows:
ns -I <iorfile>
NameService = "IOR:1234......";

This is the stringified IOR for the root 'NamingContext'
of the 'Orbix E2A' Interoperable Naming Service.
You can obtain this IOR using the Orbix E2A admin
utility as follows:
itadmin ns resolve
INS = "IOR:4567......";

};
};
127

CHAPTER 11 | Services
Orbix 3.3 Configuration Variables The following configuration variables are set in the Common.Services scope:

• The configuration variable Common.Services.NameService is set to a
stringified IOR for a NamingContext in the Orbix 3 naming service.

• The configuration variable Common.Services.INS is set to a stringified
IOR for a NamingContext in the Orbix E2A interoperable naming
service.

Setting the Common.Services.INS
Variable

For example, consider the following IOR string:

IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616d696e672
f49545f4e616d696e67436f6e746578744578743a312e30000001000000000000
006e000000010102000b00000031302e322e312e31313300008a1300003f00000
03a3e0232311744656661756c74204c6f636174696f6e20446f6d61696e185f64
656661756c745f69745f6e635f6578745f706f615f00080000000000000200000
10000000600000006000000010000003500

You can assign this IOR string to Common.Services.INS as follows:

Orbix 3.3 Configuration File
Common {

Services {
INS =

"IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616d69
6e672f49545f4e616d696e67436f6e746578744578743a312e30000001000
000000000006e000000010102000b00000031302e322e312e31313300008a
1300003f0000003a3e0232311744656661756c74204c6f636174696f6e204
46f6d61696e185f64656661756c745f69745f6e635f6578745f706f615f00
08000000000000020000010000000600000006000000010000003500";
};

};
 128

The Orbix E2A Interoperable Naming Service
Orbix 3.3 Client Code for Using
Both Naming Services

The following C++ code extract shows how an Orbix 3.0.1-20 application
can make an initial connection to both naming services.

After this code runs, orbix3RootContextV holds a reference to an Orbix 3
NamingContext and orbix2000RootContextV holds a reference to an Orbix
E2A NamingContext.

// C++ - Orbix 3 Client Code
int
main (int argc, char *argv[])
{

CORBA::ORB_var orbV;

try
{

cout << "Initializing the ORB." << endl;
orbV = CORBA::ORB_init(argc, argv, "Orbix");

CosNaming::NamingContext_var orbix3RootContextV;
CosNaming::NamingContext_var orbix2000RootContextV;
CORBA::Object_var objV;

try
{

objV =
orbV->resolve_initial_references("NameService");

orbix3RootContextV =
CosNaming::NamingContext::_narrow(objV);

objV = orbV->resolve_initial_references("INS");
orbix2000RootContextV =

CosNaming::NamingContext::_narrow(objV);
}
catch (CORBA::SystemException &sysEx)
{

cerr << &sysEx << endl;
return 1;

}
...

...
}

129

CHAPTER 11 | Services
Orbix 3.3 Java Edition and
Orbix E2A

This section describes how to configure Orbix 3.3 Java Edition to connect to
both the Orbix 3.3 naming service and the Orbix E2A naming service.

1 Obtain the IOR for the root naming context of the naming service.

Start the Orbix E2A naming service and enter the following command:

itadmin ns resolve > Naming.ref

The output of this command is an IOR string that looks similar to this:

IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616d696e672
f49545f4e616d696e67436f6e746578744578743a312e30000001000000000000
006e000000010102000b00000031302e322e312e31313300008a1300003f00000
03a3e0232311744656661756c74204c6f636174696f6e20446f6d61696e185f64
656661756c745f69745f6e635f6578745f706f615f00080000000000000200000
10000000600000006000000010000003500

This is the IOR string for the root naming context of the Orbix E2A naming
service.

2 The following Java code shows how an Orbix 3.3 Java client connects to
both the Orbix 3.3 naming service and the Orbix E2A naming service:

//Java
NamingContext OWrootContext = null;

try {
org.omg.CORBA.Object ncOWeb =

orb_wrapper.get_orb().resolve_initial_references(
"NameService"

);
OW32rootContext = NamingContextHelper.narrow(ncOWeb);

// read the ART Naming IOR from the file:
String objRef = null;
BufferedReader br = null;

try {
br = new BufferedReader(new FileReader("Naming.ref"));
objRef = br.readLine();

} catch (IOException e) {
System.err.println(

"IOException caught: " + e.toString()
);
ioe = new IOException();

} finally {
 130

The Orbix E2A Interoperable Naming Service
This code reads the stringified IOR for the Orbix E2A naming service from
the file Naming.ref. The stringified IOR is converted to an object reference,
O2KRootContext, using the org.omg.CORBA.ORB.string_to_object()
function. The O2KRootContext object reference is used to access the root
NamingContext of the Orbix E2A naming service.

try {
br.close();

} catch (IOException ignore) { }
}

org.omg.CORBA.Object objNaming =
orb.string_to_object(objRef);
O2KRootContext = NamingContextHelper.narrow(objNaming);

} catch (SystemException ex) {
System.err.println ("Exception caught during bind : " +
ex.toString());
System.exit (1);

} catch (org.omg.CORBA.ORBPackage.InvalidName in) {
System.err.println ("Exception during narrow of initial
reference : "

+ in.toString());
System.exit (1);

}

131

CHAPTER 11 | Services
Interface Repository Interoperability

Synopsis Significant changes were made to the IDL definition of the Interface
Repository (IFR) between CORBA 2.2 and CORBA 2.3. The Orbix E2A IFR
is written to conform to the CORBA 2.4 specification and it has many
advantages over the Orbix 3.3 IFR.

If you have both Orbix 3.3 and Orbix E2A applications that use the IFR, it is
recommended that you change the Orbix 3.3 applications to use the
Orbix E2A IFR.

Modifying Orbix 3.3 Applications
to Use the Orbix E2A IFR

To change an Orbix 3.3 C++ application to use the Orbix E2A IFR, perform
the following steps:

1. Take the IDL for the Orbix E2A IFR and generate stub code from it
using the Orbix 3.3 IDL compiler.

2. Modify the source code of your Orbix 3.3 application to be consistent
with the IDL for the Orbix E2A IFR.

3. Link your Orbix 3.3 application with the IFR stub code generated in
step 1.
 132

SSL/TLS Toolkit Interoperability
SSL/TLS Toolkit Interoperability

Orbix 3.3 to Orbix E2A
Interoperability

Orbix version 3.3 or later is recommended for secure interoperability with
Orbix E2A SSL/TLS. Both C++ and Java editions of Orbix 3.3 have been
tested with Orbix E2A SSL/TLS. There are no known SSL-related
interoperability problems affecting this product combination.

Orbix E2A Interoperability with
Orbix 2000

Orbix E2A SSL/TLS (both C++ and Java) has been tested for secure
interoperability with Orbix 2000 versions 1.2 and 2.0. There are no known
SSL-related interoperability problems.
133

CHAPTER 11 | Services
High Availability and Orbix 3.3 Clients

Synopsis High availability is a feature of Orbix E2A that provides fault tolerance by
grouping servers into server clusters. Orbix 3.3 clients (C++ and Java
Editions) are now able to interoperate with Orbix E2A server clusters.

Support for Multi-Profile IORs In Orbix 3.3.2 the client ORB iterates over a multi-profiled IOR until it is
able to establish a connection to a server. It always starts at the first profile
when connecting or reconnecting to a server.
 134

CHAPTER 12

Connection
Management
There are some differences in connection management
between Orbix 3.x and Orbix E2A applications. In most cases
these differences are unimportant but a minority of
applications might be affected.

In This Chapter This chapter discusses the following topics:

Orbix E2A Active Connection Management page 136

Callbacks and Bi-Directional IIOP page 137

Setting the Listen Queue Size in Orbix 3.3 C++ Edition page 140

Multiple LOCATION_FORWARD page 142
135

CHAPTER 12 | Connection Management
Orbix E2A Active Connection Management

Synopsis Orbix E2A has a feature called active connection management (ACM) that is
used to limit the number of open connections on an Orbix E2A application.

The Orbix E2A ACM feature has been interoperably tested with Orbix 3.3
and found to be fully compatible.

Configuring the ACM To configure ACM in Orbix E2A edit the configuration file, making the
following additional entries:

A value of -1 indicates that there is no limit on the number of connections.

Orbix E2A Configuration File
plugins:iiop:incoming_connections:hard_limit = "InHardLimit";
plugins:iiop:incoming_connections:soft_limit = "InSoftLimit";
plugins:iiop:outgoing_connections:hard_limit = "OutHardLimit";
plugins:iiop:outgoing_connections:soft_limit = "OutSoftLimit";
 136

Callbacks and Bi-Directional IIOP
Callbacks and Bi-Directional IIOP

Synopsis Orbix E2A does not support bi-directional IIOP. When an Orbix 3.3
application communicates with an Orbix E2A application, therefore, the
connection semantics automatically revert to standard IIOP instead of
bi-directional IIOP.

Callbacks can work but they will use standard IIOP instead of bi-directional
IIOP. This has implications for using IIOP through a firewall.

Motivation for Bi-Directional IIOP Bi-directional IIOP was introduced in Orbix in order to overcome the
limitations of standard IIOP in relation to using callback objects through a
firewall.

Standard IIOP—Single
Connection

A standard IIOP connection between client C and server S is illustrated in
Figure 1.

The server process supports one or more CORBA objects and listens on an
IP port 1234. The client establishes a single TCP/IP connection to the
server. Request messages flow from client to server, and reply messages
from server to client.

Figure 1: Standard IIOP - Single Connection
137

CHAPTER 12 | Connection Management
Standard IIOP—Two Connections Figure 2 shows the connections between a client and a server, where the
client supports a callback object and bi-directional IIOP is switched off.

The callback object is the CORBA object implemented in the client. To begin
with, the client opens a TCP/IP connection to the server on port 1234. This
enables the client to invoke on the server object. At some point, the client
passes an IOR for the callback object to the server (for example, as the
parameter of an operation). Under the rules of standard IIOP, when the
server tries to invoke on the callback object a new connection must be
opened to the client's IP port 2345. Using this second connection, requests
messages can flow in the reverse direction from server to client, and reply
messages from client to server.

A second connection is required for callbacks because the IIOP specification
requires request messages to be sent in only one direction through a given
TCP/IP connection. However, there is no intrinsic limitation that prevents a
TCP/IP connection from sending requests in either direction. The TCP/IP
transport layer is intrinsically bi-directional.

Bi-Directional IIOP Figure 3 illustrates bi-directional IIOP. Bi-directional IIOP takes advantage
of the intrinsically bi-directional nature of TCP/IP by reusing the original
connection to send requests in the reverse direction.

Figure 2: Standard IIOP - Two Connections

Figure 3: Bi-Directional IIOP
 138

Callbacks and Bi-Directional IIOP
In this mode, request messages can be sent from client to server, or from
server to client. There is no need to open a new TCP/IP connection from
server to client: the server invokes on the callback object by sending request
messages in the reverse direction along the original connection.

The reason for using bi-directional IIOP in Orbix 3.3 is because the standard
IIOP approach to callbacks, opening a second connection from the server to
the client, does not work when a firewall is interposed between the client
and server. In this situation, reusing the original TCP/IP connection is the
only way servers can make invocations on callback objects.

CORBA Firewall Specification The limitations of standard IIOP when used in conjunction with a firewall
are currently being addressed by the CORBA Firewall Specification. As soon
as the firewall standard is adopted it will be implemented by Orbix E2A
(including a standardized version of bi-directional IIOP mode). In the
meantime, bi-directional mode is not available in Orbix E2A. Callbacks still
work, however, using standard IIOP with two connections.
139

CHAPTER 12 | Connection Management
Setting the Listen Queue Size in
Orbix 3.3 C++ Edition

Synopsis A new configuration variable IT_LISTEN_QUEUE_SIZE is defined in Orbix 3.3
C++ Edition. It allows you to set the size of the queue associated with
listening ports on an Orbix 3.3 C++ server. This is a useful optimization for
a heavily loaded server that might receive many connection attempts in a
short time.

Listen Queue Size When an Orbix server wants to receive connections from clients it needs to
call the listen(int,int) socket function. The second parameter of
listen() sets the listen queue size associated with the socket. The listen
queue size determines the maximum length that the queue of pending
connections may grow to. In Orbix 3.3, the queue length is 5 by default.

The IT_LISTEN_QUEUE_SIZE
Configuration Variable

Orbix 3.3 C++ Edition supports a new IT_LISTEN_QUEUE_SIZE
configuration variable that enables you to configure the listen queue size. It
can be set subject to the following constraints:

• The value should lie between 5 and 2000 (inclusive).

• If it is set to a value less than 5, the value 5 is used instead.

• If it is set to a value greater than 2000, the value 2000 is used
instead.

Queue Size Hard Limit The maximum queue size is subject to a hard limit that varies between
platforms:

• Solaris—there is currently no limit.

• HPUX—the limit is 20.

• Windows—the limit is 5.
 140

Setting the Listen Queue Size in Orbix 3.3 C++ Edition
How to Set the Listen Queue Size There are three different ways to set the IT_LISTEN_QUEUE_SIZE
configuration value:

• Set the environment variable IT_LISTEN_QUEUE_SIZE:

Windows
set IT_LISTEN_QUEUE_SIZE=QueueSize

UNIX
export IT_LISTEN_QUEUE_SIZE=QueueSize

• Set the configuration variable IT_LISTEN_QUEUE_SIZE by editing the
Orbix 3.3 configuration file as follows:

• Use the CORBA::ORB::SetConfigValue() function:

Where orb_p is a pointer to a CORBA::ORB instance.

How to Query the Listen Queue
Size

An application can query the value of IT_LISTEN_QUEUE_SIZE using the
following code:

Orbix 3.3 Configuration File
Orbix {

IT_LISTEN_QUEUE_SIZE = "QueueSize";
};

// C++
orb_p->SetConfigValue(

"Orbix.IT_LISTEN_QUEUE_SIZE",
"QueueSize"

);

// C++
char* value = 0;
CORBA::Orbix.GetConfigValue("Orbix.IT_LISTEN_QUEUE_SIZE",value);
cout << endl << "Listen Queue size is " << value << endl;
// Caller is responsible for memory allocated
// in out parameter to GetConfigValue
//
delete[] value;
value = 0;
141

CHAPTER 12 | Connection Management
Multiple LOCATION_FORWARD

Synopsis When an Orbix 3.3 C++ client attempts to connect to a server, it can deal
with at most one LOCATION_FORWARD reply on a single request. In some
cases, this limit might be exceeded when an Orbix 3.3 client attempts to
connect to an Orbix E2A server.

An Orbix 3.3 Java client can deal with an infinite number of
LOCATION_FORWARD replies on a single request.

Description In a pure Orbix 3.3 environment the only time a LOCATION_FORWARD reply
can be generated is when an Orbix 3.3 client contacts the Orbix daemon. In
Orbix E2A, any server can generate a LOCATION_FORWARD reply. It is therefore
possible that the limit of a single LOCATION_FORWARD could be exceeded
when an Orbix 3.3 client attempts to connect to an Orbix E2A server.

Summary Table 28 summarizes the handling of multiple LOCATION_FORWARD Reply
messages.

Table 28: Number of LOCATION_FORWARD Replies that Can Be Handled
by Orbix Products

Product Maximum Number of
LOCATION_FORWARD Replies

Orbix 3.3 C++ Edition 1

Orbix 3.3 Java Edition Infinity

Orbix E2A C++ and Java Infinity
 142

CHAPTER 13

Codeset
Negotiation
Codeset negotiation enables CORBA applications to agree on
a common character set for transmission of narrow and wide
characters.

In This Chapter This chapter discusses the following topics:

Codeset Negotiation for Narrow and Wide Characters page 144
143

CHAPTER 13 | Codeset Negotiation
Codeset Negotiation for Narrow and Wide
Characters

Synopsis Orbix 2000 (version 1.1 and later) and Orbix E2A support codeset
negotiation, as defined by the CORBA 2.4 specification.

Neither Orbix 3.3 nor Orbix 2000 version 1.0 support codeset negotiation.

Description The CORBA codeset conversion framework enables applications to ensure
that they communicate using compatible character formats for both narrow
characters, char, and wide characters, wchar.

Servers and Codeset Negotiation A server that supports codeset negotiation appends a list of supported
codesets (character formats) to the interoperable object references (IORs) it
generates. The codesets are placed in standard IOP::TAG_CODE_SETS
components in the IOR.

Clients and Codeset Negotiation A client that supports codeset negotiation examines an IOR to check the list
of codesets supported by the server. The client compares this list with its
own list of supported codesets and, if a match is found, the client chooses
the pair of transmission codesets (narrow character format and wide
character format) to use for that particular connection.

When sending a Request message, the client appends an IOP::CodeSets
service context that tells the server which codesets are used. The client
continues to include an IOP::CodeSets service context in Request messages
until the first Reply message is received from the server. Receipt of the first
server Reply message implicitly indicates that codeset negotiation is
complete. The same characters formats are used for subsequent
communication on the connection.
 144

Codeset Negotiation for Narrow and Wide Characters
Orbix E2A C++ Codesets Table 29 shows the codesets supported by Orbix E2A C++.

In Orbix E2A C++, the choice of native wide character codeset, UCS-2 or
UCS-4, is based on the size of CORBA::WChar (either 2 or 4 bytes). On
Windows UCS-2 is used and on most UNIX platforms UCS-4 is used.

Orbix E2A Java Codesets Table shows the codesets supported by Orbix E2A Java.

Native codesets are used by the application to pass char and wchar data to
the ORB.

Conversion codesets are used, where necessary, to facilitate interoperability
with other ORBs or platforms.

Table 29: Orbix E2A C++ Codesets

Orbix E2A C++ Codeset

native codeset for char (NCS-C) ISO-8859-1

conversion codesets for char (CCS-C) none

native codeset for wchar (NCS-W) UCS-2 or UCS-4

conversion codesets for wchar (CCS-W) {UTF-16}

Table 30: Orbix E2A Java Codesets

Orbix E2A Java Codeset

native codeset for char (NCS-C) ISO-8859-1

conversion codesets for char (CCS-C) {UTF-8}

native codeset for wchar (NCS-W) UTF-16

conversion codesets for wchar (CCS-W) {}
145

CHAPTER 13 | Codeset Negotiation
Configuring Orbix E2A to Support Legacy Behavior

Default Behavior By default the IOP::TAG_CODE_SETS tagged component is included in
generated IORs and the transmission codesets are negotiated by clients and
transmitted through an IOP::CodeSets service context. This is the CORBA
defined behavior.

Legacy Behavior Orbix E2A also provides legacy behavior, typically in the event that wide
character data is communicated between Orbix E2A and Orbix 3.3 Java
Edition.

Disabling Codeset Negotiation The following configuration variable can be used to explicitly disable the
codeset negotiation mechanism:

The default is true.

This is a proprietary setting provided for interoperability with legacy
implementations, such as Orbix 3.3 Java Edition. The native codeset for
character data, ISO-8859-1 (Latin-1), is used and the overhead of full
negotiation is avoided. In the event that wide character data is used,
Orbix E2A reverts to the UTF-16 transmission codeset.

Enabling wchar Transmission on a
GIOP 1.0 Connections

Passing wchar data over GIOP 1.0 can be enabled using the following
configuration variable:

The default is false.

The transmission of wchar data is not legal in GIOP 1.0 by default.

Orbix E2A Configuration File
policies:giop:interop_policy:negotiate_transmission_codeset =

"false";

Orbix E2A Configuration File
policies:giop:interop_policy:allow_wchar_types_in_1_0 = "true";
 146

Codeset Negotiation for Narrow and Wide Characters
Orbix E2A Codeset Negotiation Details

Codeset Negotiation Steps The following steps are automatically performed by the ORB to negotiate
codesets between a client and a server:

1 Server Publishes IOR with Embedded Codesets

An IOR is generated by the Orbix E2A server containing an embedded
codeset that lists the character formats supported by the server.

2 Client Reads IOR and Opens Connection to Server

A client reads the IOR generated by the server in the previous step—
typically, obtaining the IOR from the CORBA Naming Service.

Just before it opens a connection to the server, the client attempts to
determine which character formats to use by looking for an embedded
codeset in the IOR. What happens next depends on whether or not the
client can find a codeset in the IOR:

• Codeset not found.

The client reverts to using native format, ISO-8859-1, for narrow
characters (char type). The format for wide characters is not defined at
this point.

Go to STEP 3.

• Codeset found.

The client chooses a pair of character formats (for narrow and wide
characters) by selecting the best match between its own codeset and
the codeset advertised in the IOR. The choice of character formats is
sent to the server by inserting an IOP::CodeSets service context into
the initial GIOP Request message(s), until codeset negotiation is
complete.

This step presupposes that the connection being opened to the server
is at least a GIOP 1.1 based connection—codeset negotiation is not
supported prior to GIOP 1.1. If the IOR profile used to open the
connection is IIOP version 1.1 or higher, and the client supports IIOP
1.1 or higher, full codeset negotiation is possible.

Go to STEP 4.
147

CHAPTER 13 | Codeset Negotiation
3 First Invocation Containing Wide Characters

This step is performed only if codeset negotiation is not complete by the
time the first invocation containing wide characters, wchar, is about to be
made.

An Orbix E2A client considers codeset negotiation to be active if an
IOP::TAG_CODE_SETS component is present in the IOR. If no such
component exists and transmission of wide character data is subsequently
attempted, the client raises a CORBA::INV_OBJREF exception.

If multiple IORs specify the same server address, the client can reuse the
same connection to establish bindings for all of the IORs. Only the first IOR
used on this connection is considered by the client when determining
transmission codesets. Likewise on the server side, only the first codeset
service context that is received by the server is considered when determining
transmission codesets.

If an Orbix E2A server receives an invocation containing wide characters
before codeset negotiation is complete, a CORBA::BAD_PARAM exception is
raised.

4 Subsequent Invocations

Codeset negotiation is performed at most once for each client-server
connection. When a pair of character formats has been agreed upon, the
same character formats are used for all subsequent invocations on that
connection.
 148

Codeset Negotiation for Narrow and Wide Characters
Sample Codeset Conversion Scenarios

Orbix E2A C++ talking to
Orbix E2A C++

When codeset negotiation is enabled, the following scenarios can occur
involving the Windows and UNIX platforms. Table 31 shows the codesets
used between an Orbix E2A C++ application on Windows and an Orbix
E2A C++ application on UNIX.

Table 32 shows the codesets used between two Orbix E2A C++
applications on Windows.

Table 33 shows the codesets used between two Orbix E2A C++
applications on UNIX.

Orbix E2A C++ talking to Orbix
E2A Java

Table 34 shows the codesets used between an Orbix E2A C++ application
(Windows or UNIX) and an Orbix E2A Java application when codeset
negotiation is enabled.

Table 31: Windows to UNIX Codesets

Windows On the Wire UNIX

UCS-2 UTF-16 UCS-4

Table 32: Windows to Windows Codesets

Windows On the Wire Windows

UCS-2 UCS-2 UCS-2

Table 33: UNIX to UNIX Codesets

UNIX On the Wire UNIX

UCS-4 UCS-4 UCS-4

Table 34: Orbix E2A C++ Application to Orbix E2A Java Application

Windows / UNIX On the Wire Java Platform

UCS-? UTF-16 UTF-16
149

CHAPTER 13 | Codeset Negotiation
Using the Legacy Switch When the Orbix E2A legacy switch is used to disable codeset negotiation,
the UTF-16 codeset is used for all transmissions on the wire. Codeset
negotiation is disabled by the following entry in the Orbix E2A configuration
file:

Table 35 shows the codesets used between an Orbix E2A C++ application
(Windows or UNIX) and an Orbix E2A Java application when codeset
negotiation is disabled.

Table 36 shows the codesets used between an Orbix E2A Java application
and an Orbix 3.3 Java application.

Orbix E2A Configuration File
policies:giop:interop_policy:negotiate_transmission_codeset =

"false";

Table 35: Orbix E2A C++ Application to Orbix E2A Java Application

Windows / UNIX On the Wire Java Platform

UCS-? UTF-16 UTF-16

Table 36: Orbix E2A Java Application to Orbix 3.3 Java Application

Orbix E2A Java On the Wire Orbix 3.3 Java
Edition

???-? UTF-16 ???-?
 150

Index

Symbols
#pragma ID 101
#pragma prefix 98

and naming service 100

A
ACM 54
activate_object_with_id() operation 36
activating CORBA objects 35

in Orbix 2000 36
activation, and the KDM 72
activation modes 85
active connection management 54

and interoperability 136
add_member command 83
administration properties

MaxConsumers 65
MaxSuppliers 65

allow_fixed_types_in_1_0 variable 102
allow_wchar_types_in_1_0 variable 146
Any constructor 23
any-style clients 62
Any type

migrating 23
type-unsafe functions 23

ASN_OID structure 71
authentication filters 46
auth_method_data variable 73
automatic activation 72, 85
automatic work queues 44
AVA interface 70
AVAList interface 70

B
BAD_PARAM system exception 148
bi-directional IIOP 91, 137

reusing a connection 138
binary checksums 72
_bind() function 90

and corbaloc URLs 19
and notification service 61
and the Orbix 3 locator 38
BOA, replacing with the POA 31

C
C++ function signatures 28
C++ keywords

in IDL 105
on-the-wire format 106

C++ mapping changes 23
caching

and smart proxies 50
of data using smart proxies 51

callbacks
and interoperability 137
POA policies for 22
separate connections 138
standard CORBA connection semantics 138

cat_group command 83
catit command 82
cat_member command 83
catns command 83
CertError interface 70
certificate authorities

trusted CA list 77
certificate revocation lists 70

configuration of 72
certificates

interoperability 77
migrating 75
PKCS#12 format 75

CertValidator interface 71
CertValidatorPolicy interface 70, 71
char type 144
checksums, in the KDM 72
chmodit command 82
chmodit utility 92
chownit command 82
client_secure_invocation_policy variable 73
clustered servers 38
codeset negotiation

interoperability 146
legacy switch 150
scenarios 149
steps 147
151

INDEX
support for 144
codesets

Orbix 2000 C++ Edition 145
Orbix 2000 Java Edition 145
transmission 144

CodeSets service context 144, 146
command-line tools 82
COMM_FAILURE system exception 24, 54

new semantics 112, 118
old semantics 112, 118

common.cfg file 127
Common.Services scope 128
compatibility matrix

for Java applications 119
for system exceptions 114

concurrent request processing 44
configuration

active connection management 136
allow_fixed_types_in_1_0 variable 102
itadmin utility 82
IT_IIOP_VERSION variable 103
IT_LISTEN_QUEUE_SIZE variable 140
IT_USE_ORBIX3_STYLE_SYS_EXC variable 108
security variables 73
send_locate_request variable 93
send_principal variable 93

connection management
and ACM 54
and I/O callbacks 53

context clause 14
CORBA::Environment parameter

migrating 23
CORBA Firewall Specification 139
corbaloc URL 19
CORBA objects, creating and activating 35
CORBA Security Level 2 69
CosNotifyComm module 62
CRL 70

D
daemons

locator 80
node daemon 80
orbixd 80

DEF_TIE macro 34
del_group command 83
del_member command 83
deprecated IDL types

Principal 16
 152
DII, See dynamic invocation interface
DO_GL_HEALTHCHECK 67
DO_HEALTHCHECK 67
dumpconfig command 82
dynamic any module 122
dynamic invocation interface

and LOCATION_FORWARD reply status 123
and user exceptions 121

E
Environment parameter 23

and C++ function signatures 28
migrating 23

EstablishTrustPolicy interface 73
etherealize() function 47
Extension interface 70
ExtensionList interface 70
external configuration granularity 72

F
fault tolerance 38, 50
file descriptor limits 54

extending 55
filters

and FILTER_SUPPRESS exception 120
migrating to Orbix 2000 41
typical uses 41

FILTER_SUPPRESS system exception 120
firewalls, and bi-directional IIOP 137
fixed type, interoperating 102

G
GIOP

default version 102
versions 147

grouphosts command 82

H
HealthCheck 67

simulating in Orbix 2000 67
high availability 38, 50

I
I/O Callbacks 53
IDL

C++ keywords appearing in 105
wchar type 104

INDEX
wstring type 104
idl command 82
idlgen command 82
idlj command 82
IDL migration 91
IDL-to-C++ mapping 23

and C++ keywords in IDL 105
IFR 132
ifr command 82
IIOP

bi-directional 91, 137
IT_DEFAULT_IIOP_VERSION variable 103

iiop_tls plug-in 72
implementing CORBA objects

inheritance approach 33
tie approach 34

incarnate() function 47
incoming_connections:hard_limit variable 54
incoming_connections:soft_limit variable 54
inheritance approach 33
initialization service

and the Orbix 3 locator 40
configuring for naming service 127

initializeHealthCheck() function 67
initial references

NotificationService object ID 61
interface repository 132
internationalization 104, 144
interoperability

overview 90
interoperable naming service 59

interoperability 126
INV_OBJREF system exception

codeset negotiation 148
migration 24
new semantics 111, 117
old semantics 111

invoke rights 92
IONA proprietary KEYENC format 76
IOR

and supported codesets 144
_is_a() function 98, 100
itadmin utility 82
IT_ALLOWED_CIPHERSUITES variable 73
IT_AUTHENTICATE_CLIENTS variable 73
IT_AVA interface 70
IT_AVAList interface 70
IT_BIDIRECTIONAL_IIOP_BY_DEFAULT variable 73
IT_CACHE_OPTIONS variable 73
IT_CA_LIST_FILE variable 73
IT_CertError structure 70
IT_CERTIFICATE_FILE variable 73
IT_Certificate interface 70
IT_CERTIFICATE_PATH variable 73
IT_CHECKSUM_REPOSITORY variable 74
IT_CHECKSUMS_ENABLED variable 74
IT_CIPHERSUITES variable 73
IT_CRL_ENABLED variable 74
IT_CRL_List interface 70
IT_CRL_REPOSITORY variable 74
IT_CRL_UPDATE_INTERVAL variable 74
IT_DAEMON_AUTHENTICATES_CLIENTS

variable 73
IT_DAEMON_POLICY variable 73
IT_DAEMON_UNRESTRICTED_METHODS

variable 73, 74
IT_DEFAULT_IIOP_VERSION variable 103
IT_DEFAULT_MAX_CHAIN_DEPTH variable 73
IT_DISABLE_SSL variable 74
IT_ENABLE_DEFAULT_CERT variable 74
IT_Extension interface 70
IT_ExtensionList interface 70
IT_FILTER_BAD_CONNECTS_BY_DEFAULT

variable 74
IT_IIOP_VERSION variable 103
IT_INSECURE_REMOTE_INTERFACES variable 73
IT_INSECURE_SERVERS variable 73
IT_INVOCATION_POLICY variable 73
IT_KDM_CLIENT_COMMON_NAMES variable 74
IT_KDM_ENABLED variable 74
IT_KDM_PIPES_ENABLED variable 74
IT_KDM_REPOSITORY variable 74
IT_KDM_SERVER_PORT variable 74
IT_LISTEN_QUEUE_SIZE variable 140

setting 141
itlocator daemon 80
IT_MAX_ALLOWED_CHAIN_DEPTH variable 73
itnode_daemon daemon 80
itnotifyconsole utility 66
IT_OID structure 71
IT_OIDTag type 71
IT_ORBIX_BIN_SERVER_POLICY variable 73
IT_SECURE_REMOTE_INTERFACES variable 73
IT_SECURE_SERVERS variable 73
IT_SERVERS_MUST_AUTHENTICATE_CLIENTS

variable 73
IT_SSL interface 71
IT_TLS_API interface 70
153

INDEX
IT_TLS interface 70
IT_USE_ORBIX3_STYLE_SYS_EXC value

setting 113
IT_USE_ORBIX3_STYLE_SYS_EXC variable 108,

115
setting for Java applications 119

IT_UTCTime interface 71
IT_ValidateX509CertCB interface 71
IT_X509CertChain interface 71
IT_X509Cert interface 71
IT_X509_CRL_Info interface 70, 71
IT_X509_Revoked interface 70, 71
IT_X509_RevokedList interface 70, 71

K
KDM 72
key distribution management 72
killit command 82

L
launch rights 92
lease plug-in

and session management 56
level 2, security 69
listen queue size

range 140
setting for C++ applications 141

list_groups command 83
list_members command 84
load() function 47
load balancing

and activation modes 85
and the CORBA Naming Service 39

loader 47
LoaderClass class 47
loading persistent objects 47
LocateReply messages 123
LocateRequest messages 93, 123
LOCATION_FORWARD reply status 123, 142
locator, Orbix 3 migrating to Orbix 2000 38
LocatorClass class 39, 40
locator daemon 80

administering POA names 81
logging

and portable interceptors 42
and smart proxies 50

lsit command 82
lsns command 84
 154
M
manual work queues 44
markers, converting to object ID 29
max_chain_length variable 73
MaxConsumers administration properties 65
MaxEventsPerConsumer QoS property 64
MaxRetries QoS property 64, 67
MaxRetryTimeout QoS property 64
MaxSuppliers administration property 65
mechanism_policy variable 73
minor codes, for system exceptions 24
mkdirit command 82
multiple location forward 142
multi-threaded request processing 41

N
NamingContextExt interface 59, 126
naming service

and #pragma prefix 100
and NamingContextExt interface 126
C++ code sample 129
extensions 59
interoperability 59, 126
Java code sample 130
load-balancing extensions 59
source code compatibility 59
stub code 127

_narrow() function 98
and NamingContext 127
semantics 99

narrow characters
and codeset negotiation 144

negotiate_transmission_codeset variable
and codeset negotiation 150
setting 146

new_group command 84
newncns command 84
node daemon 72, 80
notification console 66
notification service

administration properties 65
any-style clients 62
CORBA compliance 61
deprecated features 67
management 66
migrating 61
overview 60
PacingInterval type, migrating 64

INDEX
Quality-of-Service properties 64
starting 66
subscribing and publishing, updates 61
TimeBase::TimeT, migrating 63
unstructured events 62

NotificationService object ID 61

O
object-by-value 15
ObjectGroup interface 39
object groups

and load balancing 39
object IDs

converting to marker 29
OBJECT_NOT_EXIST system exception

and new semantics 111
launch and invoke rights 92
migration 24
new semantics 117
old semantics 111
Orbix 2000 semantics 111

object_to_string() function 99
ObtainInfoMode enumeration 62
obtain_offered_types() operation 61
obtain_subscription_types() operation 61
OIDTag type 71
opaque type 15
OpenSSL proprietary private key format 76
operation signatures 23

context clause 14
ORB_CTRL_MODEL policy 44
orbixd daemon 80, 82

chmodit utility 92
invoke rights 92
launch rights 92

OrbixNotification 3 60
OrbixSSL 3.x configuration, migrating 73
OrbixWeb3.cfg configuration file 119
outgoing_connections:hard_limit 54
outgoing_connections:soft_limit 54
out parameters

and C++ function signatures 28

P
PacingInterval type 64
PEM format 75
pick_member command 84
piggybacking
in filters 41
migrating to Orbix 2000 43

pingit command 82
PKCS#12 format 75
PKCS#1 format 76
PKCS#8 format 76
plug-ins

iiop_tls 72
lease 56

POA
and object identities 30
creating 32
names, administering 81
replacing the BOA 31

POA policies
and POA creation 32
for callback objects 22

policies
allow_wchar_types_in_1_0 146
negotiate_transmission_codeset 146, 150
threading policies 44

policy-based API 69
portable interceptors

and logging 42
replacement for filters 41

Principal type 16, 92
interoperability 16

prioritized request processing 44
privacy enhanced mail format 75
private keys

IONA proprietary KEYENC format 76
migrating 76
OpenSSL proprietary format 76
PKCS#1 format 76
PKCS#8 format 76

psit command 82
publication

to notification channel 61
PullInterval QoS property 65
putidl command 83
putit command 83
putncns command 84
putnewncns command 84
putns command 84

Q
QOPPolicy interface 73
QoS properties 64

MaxEventsPerConsumer 64
155

INDEX
MaxRetries 64, 67
MaxRetryTimeout 64
PullInterval 65
RequestTimeout 65
RetryMultiplier 65
RetryTimeout 64

Quality-of-Service properties 64

R
readifr command 83
record() function 47
rename() function 48
replace() function 23
replies

LOCATION_FORWARD status 123
repository IDs 98

and #pragma ID 101
reputncns command 84
reputns command 84
request processing

prioritized 44
RequestTimeout QoS property 65
RetryMultiplier QoS property 65
RetryTimeout QoS property 64
rmdirit command 83
rmidl command 83
rmit command 83
rmns command 84

S
save() function 47
saving persistent objects 47
security 41

and filters 120
and transformers 52
ASN_OID structure 71
AVA interface 70
AVAList interface 70
CertError interface 70
CertValidator interface 71
CertValidatorPolicy interface 71
configuration variables 73
enabling 72
EstablishTrustPolicy interface 73
Extension interface 70
ExtensionList interface 70
IT_AVA interface 70
IT_AVAList interface 70
 156
IT_CertError structure 70
IT_Certificate interface 70
IT_CRL_List interface 70
IT_Extension interface 70
IT_ExtensionList interface 70
IT_OID structure 71
IT_OIDTag type 71
IT_SSL interface 71
IT_TLS_API interface 70
IT_TLS interface 70
IT_UTCTime interface 71
IT_ValidateX509CertCB 71
IT_X509CertChain interface 71
IT_X509Cert interface 71
IT_X509_CRL_Info interface 71
IT_X509_Revoked interface 71
IT_X509_RevokedList interface 71
OIDTag type 71
QOPPolicy interface 73
UTCTime type 71
X509CertChain interface 71
X509Cert interface 71

SecurityLevel1 module 69
SecurityLevel2 module 69
Security module 69
security service 45
send_locate_request variable 93
send_principal variable 93
servant activator 47
ServantActivator class 47
servant locator 47
servant manager 47
servant objects 30
server clusters 38
servergroups command 83
serverhosts command 83
service contexts

CodeSets 144, 146
replacement for piggybacking filters 43

session_cache_size variable 73
session_cache_validity_period variable 73
session_caching_policy variable 73
session management

and I/O callbacks 53
client migration 56
overview 56
server migration 56

SetConfigValue() function 113
and listen queue size 141

INDEX
SINGLE_THREAD_MODEL policy 44
smart proxies

caching 51
definition 49
migrating to Orbix 2000 50

socket-level information 45
startHealthCheck() function 67
stopHealthCheck() function 67
string events 67
subscription

to notification channel 61
system exception

minor code differences 24
system exceptions

and IT_USE_ORBIX3_STYLE_SYS_EXC 108
BAD_PARAM 148
changes in semantics 24
COMM_FAILURE 118
compatibility matrix 114, 119
FILTER_SUPPRESS 120
INV_OBJREF 111, 117, 148
IT_USE_ORBIX3_STYLE_SYS_EXC variable 115
new semantics 108, 115
OBJECT_NOT_EXIST 111, 117
old semantics 108, 115
semantics 108
TRANSIENT 118
UNKNOWN 120, 121

T
TAG_CODE_SETS IOR component 144, 146, 148
target_secure_invocation_policy variable 73
TCP/IP

accessing details 45
accessing from application 53
and session management 56

templates
and tie approach 34

thread filter
migrating to Orbix 2000 44

tie approach 34
TIE macro 34
TimeBase::TimeT 63

replacing PacingInterval type 64
TLS

policy-based API 69
transformation of exceptions

and IT_USE_ORBIX3_STYLE_SYS_EXC 110
transformers 52
TRANSIENT system exception 24
new semantics 112, 118
old semantics 112, 118

transmission codesets 144, 148
transports

accessing TCP/IP layer 53
trusted CA certificate list 77
trusted_ca_list variable 73

U
UNKNOWN system exception 120, 121
UnknownUserException user exception class 122
unstructured events 62
URL

corbaloc format 19
user exceptions

and DII 121
parsing with dynamic any 122
UnknownUserException 122

UTCTime type 71

W
wchar type 144, 146

interoperating 104
wide characters

and codeset negotiation 144
Wonderwall 137
WorkQueue policy 41
work queues 44

automatic 44
manual 44

wstring type
interoperating 104

X
X509CertChain interface 71
X509Cert interface 71
157

INDEX
 158

	CORBA Migration and Interoperability Guide
	Preface
	Part I Overview of Migration
	1 Introduction
	Orbix E2A Advantages
	Migration Resources
	Migration Options
	Migrating to Orbix E2A
	Mixed Deployment

	Part II Migrating to Orbix E2A
	2 IDL Migration
	The context Clause
	The opaque Type
	The Principal Type

	3 Client Migration
	Replacing the _bind() Function
	Callback Objects
	IDL-to-C++ Mapping
	System Exception Semantics
	Dynamic Invocation Interface

	4 Server Migration
	Function Signatures
	Object IDs versus Markers
	CORBA Objects versus Servant Objects
	BOA to POA Migration
	Creating an Object Adapter
	Defining an Implementation Class
	Creating and Activating a CORBA Object

	5 Migrating Proprietary Orbix 3 Features
	Orbix 3 Locator
	Filters
	Request Logging
	Piggybacking Data on a Request
	Multi-Threaded Request Processing
	Accessing the Client's TCP/IP Details
	Security Using an Authentication Filter

	Loaders
	Smart Proxies
	Transformers
	I/O Callbacks
	Connection Management
	Session Management

	6 CORBA Services
	Interface Repository
	Naming Service
	Notification Service
	CORBA Specification Updates
	Quality of Service Properties
	Configuration / Administration Changes
	Deprecated Features

	SSL/TLS Toolkit
	Changes to the Programming Interfaces
	Configuration and Administration
	Migrating Certificate and Private Key Files

	7 Administration
	Orbix Daemons
	POA Names
	Command-Line Administration Tools
	Activation Modes

	Part III Interoperability
	8 Configuring for Interoperability
	Interoperability Overview
	Launch and Invoke Rights
	GIOP Versions

	9 IDL Issues
	Use of #pragma prefix
	Use of #pragma ID in IDL
	Fixed Data Type and Interoperability
	Use of wchar and wstring
	C++ Keywords as Operation Names

	10 Exceptions
	Orbix 3.3 C++ Edition—System Exceptions
	The INV_OBJREF and OBJECT_NOT_EXIST Exceptions
	The TRANSIENT and COMM_FAILURE Exceptions
	Orbix 3.3 C++ Edition and Orbix E2A

	Orbix 3.3 Java Edition—System Exceptions
	The INV_OBJREF and OBJECT_NOT_EXIST Exceptions
	The TRANSIENT and COMM_FAILURE Exceptions
	Orbix 3.3 Java Edition and Orbix E2A

	FILTER_SUPPRESS Exception
	Dynamic Invocation Interface and User�Exceptions
	Dynamic Invocation Interface and LOCATION_FORWARD

	11 Services
	The Orbix E2A Interoperable Naming Service
	Interface Repository Interoperability
	SSL/TLS Toolkit Interoperability
	High Availability and Orbix 3.3 Clients

	12 Connection Management
	Orbix E2A Active Connection Management
	Callbacks and Bi-Directional IIOP
	Setting the Listen Queue Size in Orbix�3.3�C++ Edition
	Multiple LOCATION_FORWARD

	13 Codeset Negotiation
	Codeset Negotiation for Narrow and Wide Characters
	Configuring Orbix E2A to Support Legacy Behavior
	Orbix E2A Codeset Negotiation Details
	Sample Codeset Conversion Scenarios

	Index

