
Orbix Mainframe®

IMS Adapters Administrator’s
Guide

Version 6.3, July 2009

© 2009 Progress Software Corporation and/or its affiliates or subsidiaries. All rights reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation and/or its affiliates or subsidiaries. The information in these materials is subject to change
without notice, and Progress Software Corporation and/or its affiliates or subsidiaries assume no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are
subject to change.

Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design), Artix, Business
Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend,
Empowerment Center, Fathom, IntelliStream, IONA, IONA (and design), Mindreef, Neon, Neon New Era of
Networks, ObjectStore, OpenEdge, Orbix, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier,
Progress, Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress
Software Developers Network, Progress Sonic, ProVision, PS Select, SequeLink, Shadow, SOAPscope,
SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software (and design),
SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your
Software, Our Technology-Experience the Connection are registered trademarks of Progress Software
Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect Spy, DataDirect
SupportLink, FUSE, FUSE Mediation Router, FUSE Message Broker, FUSE Services Framework, Future Proof,
GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess,
Orbacus, Pantero, POSSE, ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress
Event Engine, Progress RFID, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartComponent,
SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects,
SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic
Workbench, Sonic XML Server, StormGlass, The Brains Behind BAM, WebClient, Who Makes Progress, and Your
World. Your SOA. are trademarks or service marks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks contained herein
are the property of their respective owners.

Third Party Acknowledgments:
1. The Product incorporates IBM-ICU 2.6 (LIC-255) technology from IBM. Such technology is subject to the
following terms and conditions: Copyright (c) 1995-2009 International Business Machines Corporation and
others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright
holder. All trademarks and registered trademarks mentioned herein are the property of their respective owners.
2. The Product incorporates IDL Compiler Front End Technology from Sun Microsystems, Inc. Such technology
is subject to the following terms and conditions: Copyright 1992, 1993, 1994 Sun Microsystems, Inc. Printed in
the United States of America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front End (CFE) is made
available for your use provided that you include this license and copyright notice on all media and
documentation and the software program in which this product is incorporated in whole or part. You may copy
and extend functionality (but may not remove functionality) of the Interface Definition Language CFE without
charge, but you are not authorized to license or distribute it to anyone else except as part of a product or
program developed by you or with the express written consent of Sun Microsystems, Inc. ("Sun"). The names of
Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used in advertising or publicity
pertaining to distribution of Interface Definition Language CFE as permitted herein. This license is effective until
terminated by Sun for failure to comply with this license. Upon termination, you shall destroy or return all code
and documentation for the Interface Definition Language CFE. The Interface Definition Language CFE may not be
exported outside of the United States without first obtaining the appropriate government approvals.
INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. INTERFACE
DEFINITION LANGUAGE CFE IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF
SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION OR
ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO
THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE DEFINITION LANGUAGE
CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE
FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL DAMAGES, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
Sun, Sun Microsystems and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc.
SunSoft, Inc. 2550 Garcia Avenue Mountain View, California 94043. NOTE: SunOS, SunSoft, Sun, Solaris, Sun
Microsystems or the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc.

Updated: August 4, 2009

Contents

List of Figures 11

List of Tables 13

Preface 15

Part 1 Introduction

Chapter 1 Introduction to CORBA and Orbix 21
Overview of CORBA 22

Why CORBA? 23
CORBA Objects 25
The ORB 27
CORBA Application Basics 28

Overview of Orbix 31
Simple Orbix Application 32
Broader Orbix Environment 35

Chapter 2 Introduction to the IMS Adapters 37
Overview of the IMS Server Adapter 39

Role of the IMS Server Adapter 40
IMS Server Adapter Processing of IDL Operations 43
The IMS Server Adapter imsraw Interface 44
Unsupported IDL Types 53

Overview of the Client Adapter 54
5

CONTENTS
Part 2 Configuring the IMS Server Adapter and the Orbix
Runtime in IMS

Chapter 3 Introduction to IMS Server Adapter Configuration 59
An IMS Server Adapter Sample Configuration 60
Configuration Summary of Adapter Plug-Ins 65

Chapter 4 IMS Server Adapter Configuration Details 77
IMS Server Adapter Service Configuration 78

Chapter 5 Configuring the IMS Server Adapter OTMA Plug-In 89
Setting Up OTMA for the IMS Server Adapter 90
OTMA Plug-In Configuration Items 93

Chapter 6 Configuring the IMS Server Adapter APPC Plug-In 97
Setting Up APPC for the IMS Server Adapter 98

Defining LUs to APPC 99
Defining an APPC Destination Name for the IMS LU 101
Defining LUs to VTAM 103

Additional RACF Customization Steps for APPC 106
APPC Plug-In Configuration Items 109

Chapter 7 Configuring the IMS Server Adapter RRS Plug-In 111
Introduction to RRS 112
Setting up RRS for the IMS Server Adapter 113
RRS Plug-In Configuration Items 120

Chapter 8 Configuring the IMS Server Adapter for Client Principals 121
Activating Client Principal Support 123
Setting up the Required Privileges 127
Additional Requirements for IMS Protocol Plug-Ins 129

Chapter 9 Configuring the Orbix Runtime in IMS 133
Customizing the IMS JCL 134
Customizing Orbix Event Logging 135
 6

CONTENTS
Chapter 10 IDL Compiler Configuration 137
Orbix IDL Compiler Settings 138

Part 3 Configuring the Client Adapter and the Orbix
Runtime in IMS

Chapter 11 Introduction to Client Adapter Configuration 143
A Client Adapter Sample Configuration 144
Configuration Summary of Client Adapter Plug-Ins 147

Chapter 12 Client Adapter General Configuration 153
Core Client Adaptor Configuration 154

Chapter 13 Configuring the Client Adapter AMTP_APPC Plug-in 157
Setting Up APPC for the Client Adapter 158

Defining LUs to APPC 159
Defining an APPC Destination Name for the Client Adapter 162
Defining LUs to VTAM 166

Additional RACF Customization Steps for APPC 171
LU-to-LU Security Verification 172
Protecting LUs 174
Enabling APPC/IMS 176

AMTP_APPC Plug-In Configuration Items 177

Chapter 14 Configuring the Client Adapter AMTP_XMEM Plug-in 179
Prerequisites and Further Reading 180
Running the Client Adapter APF-Authorized 181
Running the Client Adapter in Non-Swappable Address Space 183
Understanding the Impact of Cross memory Communication 185
AMTP_XMEM Plug-In Configuration Items 187

Chapter 15 Configuring the Client Adapter Subsystem 189
Client Adaptor Subsystem Configuration 190
7

CONTENTS
Chapter 16 Configuring the Orbix Runtime in IMS 193
Customizing the IMS JCL 194
Customizing Orbix Configuration 195
Customizing Orbix Event Logging 197
Customizing Orbix Maximum Segment Size 199
Customizing Orbix Function Timeout 201
Customizing Orbix Symbolic Destination 203
Customizing Orbix Local LU 205

Part 4 Securing and Using the IMS Server Adapter

Chapter 17 Securing the IMS Server Adapter 209
Security Configuration Items 210
Common Security Considerations 219
APPC-Based Security Considerations 221
OTMA-Based Security Considerations 227
IMS Server Adapter Security Modes 229
Choosing between OTMA and APPC Modes 232
Setting up APPC and OTMA Modes 233

Chapter 18 Mapping IDL Interfaces to IMS 235
The Mapping File 236

Characteristics of the Mapping File 237
Generating a Mapping File 239

Using the IFR as a Source of Type Information 242
Introduction to Using the IFR 243
Registering IDL interfaces with the IFR 245
Informing IMS Server Adapter of a New Interface in the IFR 248
Using an IFR Signature Cache File 250

Using type_info store as a Source of Type Information 252
Introduction to Using a type_info Store 253
Generating type_info Files using the IDL Compiler 255
Informing IMS Server Adapter of a new type_info Store File 257

Chapter 19 Using the IMS Server Adapter 261
Preparing the Server Adapter 263
 8

CONTENTS
Starting the Server Adapter 267
Stopping the IMS Server Adapter 269
Running Multiple Server Adapters Simultaneously 270
Performance Considerations 272
Using the MappingGateway Interface 273
Locating IMS Server Adapter Objects Using itmfaloc 276
WFI Support for IMS Transactions 279
Conversational Support 280
LTERM Propagation 284
Adding a Portable Interceptor to the IMS Server Adapter 285

Developing the Portable Interceptor 286
Compiling the Portable Interceptor 291
Loading the Portable Interceptor into the IMS Server Adapter 293

Enabling the GIOP Request Logger Interceptor 296
Gathering Accounting Information in the Server Adapter 298

Customizing the Accounting DLL 299
Compiling the Customized Accounting DLL 302
Activating the Accounting DLL in the Server Adapter 303

Exporting Object References at Runtime 304
Configuration Items for Exporting Object References 305
Exporting Object References to a File 311
Exporting Object References to Naming Service Context 312
Exporting Object References to Naming Service Object Group 314

Part 5 Securing and Using the Client Adapter

Chapter 20 Securing the Client Adapter 321
Security Configuration Items 322
Common Security Considerations 328
APPC Security Considerations 330

LU Security 331
Conversation Security 335

Chapter 21 Using the Client Adapter 339
Starting the Client Adapter 340
Stopping the Client Adapter 342
Running Multiple Client Adapters Simultaneously 343
9

CONTENTS
Load Balancing with Multiple Client Adapters 344
Running Two Client Adapters on the Same z/OS Host 346

Part 6 Appendices

Appendix A Troubleshooting 351

Appendix B Glossary of Acronyms 355

Index 359
 10

List of Figures

Figure 1: The Nature of Abstract CORBA Objects 25

Figure 2: Role of the ORB in the Basic CORBA Model 27

Figure 3: Invoking on a CORBA Object 29

Figure 4: Overview of a Simple Orbix Application 32

Figure 5: Graphical Overview of the Role of the IMS Server Adapter 41

Figure 6: Graphical Overview of the Role of the Client Adapter 56

Figure 7: Graphical Overview of a Load Balancing Scenario 344

Figure 8: Running Two Client Adapters on the Same z/OS Host 347
11

LIST OF FIGURES
 12

List of Tables

Table 1: Initial and Maximum Log Stream Sizes 115

Table 2: Client Principal Support and imsa Plug-In Configuration Items 124

Table 3: Event Logging Settings for the IMS Server Adapter 135

Table 4: Server Adapter Mapping Member Configuration Settings 139

Table 5: Client Adapter ORB Names 144

Table 6: S390 Assembler Program Variables and Default Values 196

Table 7: Event Logging Settings for the IMS Server Adapter 197

Table 8: IMS LU and Client Adapter LU Required Keyword Definitions 331

Table 9: Glossary of Acronym Extensions 355
13

LIST OF TABLES
 14

Preface
Orbix is a full implementation from of the Common Object Request Broker
Architecture (CORBA), as specified by the Object Management Group. Orbix
complies with the following specifications:

� CORBA 2.6

� GIOP 1.2 (default), 1.1, and 1.0

Orbix Mainframe is an implementation of the CORBA standard for the z/OS
platform. Orbix Mainframe documentation is periodically updated. New
versions between releases are available at:

http://www.iona.com/support/docs.

Audience This guide is intended for IMS system programmers who want to configure,
secure, and use the IMS server adapter and client adapter that are supplied
with Orbix Mainframe. It is assumed that the reader is familiar with the
basic concepts of CORBA 2.6 and IMS administration.

Related documentation Orbix Mainframe documentation includes the following related guides:

� CICS Adapters Administrator�s Guide

� COBOL Programmer�s Guide and Reference

� PL/I Programmer�s Guide and Reference

� CORBA Programmer�s Guide, C++

� CORBA Programmer�s Reference, C++

� CORBA Administrator�s Guide

� Mainframe Security Guide

� Mainframe Migration Guide
15

http://www.iona.com/support/docs/

PREFACE
� Mainframe Management Guide

� Mainframe CORBA Concepts Guide

� Mainframe OTS Guide

� Artix Transport User�s Guide

The Orbix IMS Adapter Programmer�s Guide, which is based on Orbix 2.3.x
rather than Orbix Mainframe 6.x, is also a useful reference. For migration
issues refer to the Mainframe Migration Guide.

For the latest versions of product documentation, see:

http://www.iona.com/support/docs

Organization of this guide This guide is divided into the following parts:

Part 1, �Introduction�

This part introduces Common Object Request Broker Architecture (CORBA),
and Orbix, IONA�s implementation of CORBA. It also introduces IMS server
adapter which is an Orbix server that can connect with IMS, as well as the
client adapter which is an Orbix client that allows IMS transactions to act as
clients to Orbix servers.

Part 2, �Configuring the IMS Server Adapter and the Orbix Runtime in IMS�

This part describes how to configure the IMS server adapter and the Orbix
runtime inside IMS.

Part 3, �Configuring the Client Adapter and the Orbix Runtime in IMS�

This part describes how to configure the client adapter and the Orbix
runtime inside IMS.

Part 4, �Securing and Using the IMS Server Adapter�

This part explains security considerations for the IMS server adapter, and
how the server adapter can be used as a bridge between CORBA-based
messages and IMS programs.

Part 5, �Securing and Using the Client Adapter�

This part explains security considerations for the client adapter, and how the
client adapter can be used as a bridge between IMS programs and
CORBA-based messages.
 16

http://www.iona.com/support/docs/index.xml

PREFACE
Appendix A, �Troubleshooting�

This chapter provides an overview of the MCLOOKUP utility that can be
used for troubleshooting.

Appendix B, �Glossary of Acronyms�

This glossary provides an expansion for each of the acronyms used in this
guide.

Additional resources The Knowledge Base contains helpful articles, written by experts, about
Orbix Mainframe, and other products:

http://www.iona.com/support/kb/

If you need help with Orbix Mainframe or any other products, contact
technical support:

http://www.progress.com/support

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code, and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Code italic Italic words or characters in code and commands
represent variable values that you must supply; for
example:

install-dir/etc/domains

Code Bold Code bold is used to highlight a piece of code within a
particular code sample.
17

http://www.iona.com/support/kb/
http://www.progress.com/support

PREFACE
Keying conventions This guide might use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

$ A dollar sign represents the z/OS UNIX System
Services command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.
 18

Part 1
Introduction

In This part This part contains the following chapters:

Introduction to CORBA and Orbix page 21

Introduction to the IMS Adapters page 37

CHAPTER 1

Introduction to
CORBA and Orbix
The Common Object Request Broker Architecture (CORBA)
standard is specified by the Object Management Group (OMG)
and provides the foundation for flexible and open systems. It
underlies some of the Internet�s most successful e-business
sites, and some of the world�s most complex and demanding
enterprise information systems. Orbix is a full implementation
of the CORBA standard. Orbix Mainframe is IONA�s
implementation of CORBA for the z/OS platform. This chapter
provides an introductory overview of both CORBA and Orbix.

In this chapter This chapter discusses the following topics:

Overview of CORBA page 22

Overview of Orbix page 31
21

CHAPTER 1 | Introduction to CORBA and Orbix
Overview of CORBA

Overview The Common Object Request Broker Architecture (CORBA) provides the
foundation for flexible and open systems. It underlies some of the Internet�s
most successful e-business sites and some of the world�s most complex and
demanding enterprise information systems. This section provides an
overview of CORBA in terms of the enterprise information solutions that it
provides and the basic principles on which it is based.

In this section This section discusses the following topics:

Why CORBA? page 23

CORBA Objects page 25

The ORB page 27

CORBA Application Basics page 28
 22

Overview of CORBA
Why CORBA?

Overview CORBA is a standard middleware architecture that can be used to develop
and integrate a wide variety of distributed systems that use a variety of
hardware, operating systems, and programming languages.

This subsection discusses the following topics:

� Need for open systems

� Need for high-performance systems

� Open standard solution

� Widely available solution

Need for open systems Today�s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages that need to work together
to make the enterprise function.

Need for high-performance
systems

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
COBOL, PL/I, C++, or Java that interoperate, via the standard IIOP
protocol, with applications built on any CORBA-compliant technology.

Open standard solution CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network, using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

Widely available solution CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I, COM, LISP, Python, and XML, running on embedded systems,
PCs, UNIX hosts, and mainframes. CORBA objects running in these
environments can cooperate seamlessly. Through COMet, IONA�s dynamic
23

CHAPTER 1 | Introduction to CORBA and Orbix
bridge between CORBA and COM, they can also interoperate with COM
objects. CORBA offers an extensive infrastructure that supports all the
features required by distributed business objects. This infrastructure
includes important distributed services, such as transactions, messaging,
and security.
 24

Overview of CORBA
CORBA Objects

In This Section This subsection describes the most basic components of a CORBA system.
It discusses the following topics:

� Nature of abstract CORBA objects

� Object references

� IDL interfaces

� Advantages of IDL

Nature of abstract CORBA objects A CORBA system provides distributed object capability between applications
in a network. A client in a CORBA system is any program that invokes the
services (or functions) of a CORBA object. A server in a CORBA system is
any program that contains instances of CORBA objects.

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server within the system.

Figure 1: The Nature of Abstract CORBA Objects

A server
implements a
CORBA object

IDL interface definitions
specify CORBA objects

Clients access
CORBA objects
via object
references
25

CHAPTER 1 | Introduction to CORBA and Orbix
Object references An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as COBOL, PL/I, C++, or Java.

For integration with existing transactions in IMS, you can:

� Use the Orbix IMS server adapter to receive CORBA client requests and
translate them to transaction invocations in IMS.

� Use the Orbix IMS client adapter to allow transactions in IMS to initiate
CORBA client requests to servers running outside of IMS.

IDL interfaces Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which operations (member functions), data types, attributes, and
exceptions are available to a client, without making any assumptions about
an object�s implementation. Not all IDL data types are supported by the IMS
server and client adapters. Refer to �Unsupported IDL Types� on page 53
for more information.

Advantages of IDL With a few calls to an Object Request Broker�s (ORB�s) application
programming interface (API), servers can make CORBA objects available to
client programs in your network.

To call member functions on a CORBA object, a client programmer needs
only to refer to the object�s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object�s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object�s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients
that access the object. You can also make existing objects available across a
network.
 26

Overview of CORBA
The ORB

Overview CORBA defines a standard architecture for object request brokers (ORBs).
An ORB is a software component that mediates the transfer of messages
from a program to an object located on a remote network host. The ORB
hides the underlying complexity of network communications from the
programmer.

This subsection discusses the following topics:

� Role of an ORB

� Graphical overview

Role of an ORB An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

Graphical overview When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Figure 2: Role of the ORB in the Basic CORBA Model

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Server
27

CHAPTER 1 | Introduction to CORBA and Orbix
CORBA Application Basics

In This Section This subsection describes the basics of how CORBA applications work. It
discusses the following topics:

� Developing application interfaces

� Client invocations on CORBA objects

� IDL operation parameters

� Parameter-passing mode qualifiers

Developing application interfaces The first step in developing a CORBA application is to define interfaces to
objects in your system, in CORBA IDL. Then compile these interfaces with
an IDL compiler. An IDL compiler can generate COBOL, PL/I, C++ or Java
from IDL definitions. The generated code includes client stub code
(excluding COBOL and PL/I), which you use to develop client programs; and
object skeleton code, which you use to implement CORBA objects in server
programs.

Your installation of the IMS server adapter includes a server application that
runs on z/OS and acts as the CORBA gateway to the IMS system. Your
installation of the IMS client adapter includes a client application that runs
on z/OS and acts as the CORBA gateway outbound from the IMS system.
Sample demonstrations are provided with both the IMS server and client
adapter installation programs. These demonstrations are located in the
orbixhlq.DEMO.IMS.** PDS range. Samples of both COBOL and PL/I IMS
servers and clients are provided. For more details about the COBOL
demonstrations, see the sections in the COBOL Programmer�s Guide and
Reference on developing an IMS server and an IMS client. For more details
about the PL/I demonstrations, see the sections in the PL/I Programmer�s
Guide and Reference on developing an IMS server and an IMS client.

Note: With Orbix Mainframe, you can use the IDL compiler to generate
only COBOL or PL/I server skeleton code from IDL definitions. The IDL
compiler does not generate COBOL or PL/I client stub code.
 28

Overview of CORBA
Client invocations on CORBA
objects

When a client wants to invoke operations on a CORBA object, it invokes on
an object reference that it obtains from the server process. As shown in
Figure 3 on page 29, a client call is transferred through the client stub code
to the ORB. The ORB then passes the function call through the object
skeleton code to the target object. Because the implemented object is not
located in the client�s address space, CORBA objects are represented in
client code by proxy objects.

IDL operation parameters Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The Orbix IMS runtime uses
parameter-passing modes to determine in which direction (or directions) it
must marshal a parameter.

Parameter-passing mode
qualifiers

There are three parameter-passing mode qualifiers:

Figure 3: Invoking on a CORBA Object

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

in This means that the parameter is initialized only by the client and
is passed to the object.
29

CHAPTER 1 | Introduction to CORBA and Orbix
out This means that the parameter is initialized only by the object and
is passed to the client.

inout This means that the parameter is initialized by the client and
passed to the server; the server can modify the value before
returning it to the client.
 30

Overview of Orbix
Overview of Orbix

Overview Orbix is IONA�s implementation of the CORBA standard. This section
provides an example of a simple Orbix application and an introduction to the
broader Orbix environment.

In this section This section discusses the following topics:

Simple Orbix Application page 32

Broader Orbix Environment page 35
31

CHAPTER 1 | Introduction to CORBA and Orbix
Simple Orbix Application

Overview A simple Orbix application might contain a client and a server along with
one or more objects (see Figure 4). In this model, the client obtains
information about the object it seeks, using object references. An object
reference uniquely identifies a local or remote object instance.

This subsection discusses the following topics:

� Graphical overview

� Explanation of simple application

� Portable object adapter

� Limitations of a simple application

Graphical overview Figure 4 provides a graphical overview of a simple Orbix application.

Figure 4: Overview of a Simple Orbix Application

Network

Client Host

Object
Client

ORB ORB

12

3

Server Host

Naming
Service
 32

Overview of Orbix
Explanation of simple application Figure 4 on page 32 shows how an ORB enables a client to invoke on a
remote object:

Portable object adapter For simplicity, Figure 4 on page 32 omits details that all applications
require. For example, Orbix applications use a Portable Object Adapter
(POA), to manage access to server objects. A POA maps object references to
their concrete implementations on the server. Given a client request for an
object, a POA can invoke the referenced object locally.

The client request embeds the POA name and object ID taken from the
published object reference. The server then uses the POA name to invoke
the POA. The POA uses the object ID to invoke the desired object, if it exists
on the server.

Refer to either the COBOL Programmer�s Guide and Reference or the PL/I
Programmer�s Guide and Reference for details about the Orbix Mainframe
POA.

Limitations of a simple application This simple model uses a naming service to pass object references to
clients. The naming service has some limitations and does not support all
the needs of enterprise-level applications. For example, naming services are
often not designed to handle frequent updates. They are designed to store
relatively stable information that is not expected to change very often. If a
process stops and restarts frequently, a new object reference must be
published with each restart. In production environments where many

Step Action

1 When a server starts, it creates one or more objects and
publishes their object references in a naming service. A naming
service uses simple names to make object references
accessible to prospective clients. Servers can also publish
object references in a file or a URL.

2 The client program looks up the object reference by name in
the naming service. The naming service returns the server�s
object reference.

3 The client ORB uses the object reference to pass a request to
the server object.
33

CHAPTER 1 | Introduction to CORBA and Orbix
servers start and stop frequently, this can overwork a naming service.
Enterprise applications also have other needs that are not met by this simple
model�for example, on-demand activation, and centralized administration.
These needs are met in a broader Orbix environment, as described in
�Broader Orbix Environment� on page 35.
 34

Overview of Orbix
Broader Orbix Environment

Overview Along with the naming service, Orbix offers a number of features that are
required by many distributed applications, for flexibility, scalability, and
ease of use. This subsection provides an overview of these features. It
discusses the following topics:

� Location domains

� Managing object availability

� Configuration domains

� Interface Repository

Location domains Location domains enable a server and its objects to move to a new process
or host, and to be activated on demand. An Orbix location domain consists
of two components�a locator daemon and a node daemon:

� locator daemon�This is a CORBA service that acts as the control
center for the entire location domain. The locator daemon has two
roles:

♦ Manage the configuration information used to find, validate, and
activate servers running in the location domain.

♦ Act as the contact point for clients trying to invoke on servers in
the domain.

� node daemon�This acts as the control point for a single host machine
in the system. Every machine that runs an application server must run
a node daemon. The node daemon starts, monitors, and manages
application servers on its machine. The locator daemon relies on node
daemons to start processes and tell it when new processes are
available.
35

CHAPTER 1 | Introduction to CORBA and Orbix
Managing object availability A server makes itself available to clients by publishing Interoperable Object
References (IORs). An IOR contains an object's identity and address. Refer
to �Sample configuration file� on page 265 for an example of an IOR.

When a client invokes on a object, Orbix locates the object as follows:

1. The ORB sends the invocation to the locator daemon.

2. The locator daemon searches the implementation repository for the
actual address of a server that runs this object.

3. The locator daemon returns this address to the client.

4. The client connects to the returned server address and directs this and
all subsequent requests for this object to that address.

Configuration domains Configuration domains allow you to organize ORBs into independently
manageable groups. This brings scalability and ease of use to the largest
environments.

Interface Repository The Interface Repository (IFR) provides a source of type information, and
allows clients to discover and use additional objects in the environment�
even if clients do not know about these objects at compile time. Orbix
Mainframe also supplies an alternative to using the IFR; refer to �Using
type_info store as a Source of Type Information� on page 252 for more
information.
 36

CHAPTER 2

Introduction to the
IMS Adapters
The Orbix Mainframe IMS server adapter provides a simple way
to integrate distributed CORBA and EJB clients on various
platforms with existing and new IMS transactions running on
z/OS. It allows you to develop and deploy Orbix COBOL and
Orbix PL/I servers in IMS, and to integrate these IMS servers
with distributed CORBA clients running on various platforms.
It also facilitates the integration of existing IMS transactions,
not developed using Orbix, with distributed CORBA clients,
without the need for code changes to these existing
transactions. The IMS server adapter itself can execute in a
native z/OS or UNIX System Services address space.

The Orbix Mainframe client adapter provides a simple way for
IMS transactions to act as clients of distributed CORBA servers
on various platforms. It allows you to develop and deploy Orbix
COBOL and Orbix PL/I clients in IMS. The client adapter itself
can execute in a native z/OS or UNIX System Services address
space.

This chapter provides an introductory overview of both the IMS
server adapter and the client adapter that are supplied with
Orbix Mainframe.
37

CHAPTER 2 | Introduction to the IMS Adapters
In this chapter This chapter discusses the following topics:

Overview of the IMS Server Adapter page 39

Overview of the Client Adapter page 54
 38

Overview of the IMS Server Adapter
Overview of the IMS Server Adapter

Overview The IMS server adapter is an Orbix service that can be deployed in either a
native z/OS or UNIX System Services environment. Its function is to
integrate distributed CORBA or EJB clients (or both) running on various
platforms with existing or new IMS applications (or both) running on z/OS.

In This Section This section discusses the following topics:

Role of the IMS Server Adapter page 40

IMS Server Adapter Processing of IDL Operations page 43

The IMS Server Adapter imsraw Interface page 44

Unsupported IDL Types page 53
39

CHAPTER 2 | Introduction to the IMS Adapters
Role of the IMS Server Adapter

Overview The IMS server adapter acts as a bridge between CORBA/EJB clients and
IMS servers. It allows you to set up a distributed system that combines the
powerful online transaction processing capabilities of IMS with the
consistent and well-defined structure of a CORBA environment.

This subsection discusses the following topics:

� Characteristics of the IMS server adapter

� IMS server adapter functions

� Graphical overview

� Graphical overview explanation

Characteristics of the IMS server
adapter

The IMS server adapter has the following characteristics:

� It is a fully dynamic bridge, because the interfaces that it provides to
CORBA clients can be changed at runtime.

� It is an Orbix server that is used to allow IMS transactions to process
IDL-defined operations. Refer to �IMS Server Adapter Processing of IDL
Operations� on page 43 for more details.

� It implements the imsraw IDL interface. Refer to �The IMS Server
Adapter imsraw Interface� on page 44 for more details.

IMS server adapter functions The IMS server adapter performs the following functions:

1. It accepts an IDL request or a set of input message segments from the
client.

2. It provides accepted IDL requests or input message segments to the
IMS input message queue.

3. It runs the IMS transaction. If it is an IDL-based request, the server
adapter marshals the operation parameters for the implementation
server program in IMS, performing any necessary data conversion;
otherwise, it simply runs the requested transaction with the supplied
input message segments.

4. In the same way, it receives the results from IMS and returns them to
the client.
 40

Overview of the IMS Server Adapter
Graphical overview Figure 5 provides a graphical overview of the role of the IMS server adapter.

Figure 5: Graphical Overview of the Role of the IMS Server Adapter

Windows
NT Client

Solaris
Client

Java
Client

z/OS
(native or UNIX

System Services)

Orbix IMS
Server Adapter

IMS

Existing
Transaction

IIOP
over

TCP/IP

IIOP
over

TCP/IP

IIOP
over

TCP/IP

OTMA or
APPC
using

imsraw

Orbix
Daemon

Mapping
Repository

Type
Information
Repository

New
Transaction

COBOL
Runtime

or
PL/I

Runtime

IIOP

IIOP orFile read

OTMA
or

APPC

File read
41

CHAPTER 2 | Introduction to the IMS Adapters
Graphical overview explanation Figure 5 on page 41 provides an overview of the role of the IMS server
adapter in integrating distributed CORBA or EJB clients (or both) on
different platforms with IMS transactions running on z/OS. The CORBA or
EJB clients can be written in languages such as C++ or Java.

The IMS server adapter communicates with IMS using either IBM�s Open
Transaction Manager Access (OTMA) or Advanced Program to Program
Communications (APPC) protocol. As discussed, the IMS server adapter
acts as a bridge between CORBA/EJB clients that can be running on various
platforms and servers that are running in IMS.
 42

Overview of the IMS Server Adapter
IMS Server Adapter Processing of IDL Operations

Overview The IMS server adapter is an Orbix server that allows IMS transactions to
process IDL-defined operations. When the server adapter receives a request
from a CORBA/EJB client, it looks up the appropriate IMS transaction name,
based on the requested interface and operation name. The server adapter
then marshals incoming data and submits the request to IMS with that
transaction name. When the IMS transaction receives control via the normal
IMS dispatching process, it uses the set of Orbix-provided services to read in
the operation�s parameters and marshal the return data, and returns the
result to the client.

This subsection discusses the following topics:

� List of required IDL interfaces

� IMS server adapter type information

List of required IDL interfaces The list of interfaces that the IMS server adapter needs to provide to its
clients is provided to the server adapter in the form of a mapping file. Refer
to �The Mapping File� on page 236 for more details.

IMS server adapter type
information

The IMS server adapter obtains IDL interface information (operation
signatures) from either the IFR or from a type_info store, depending on the
configuration values used. This enables the server adapter to unmarshal the
data received from client programs and marshal the response back to the
client. (Marshalling is the process whereby the communicated data is
converted to a byte stream, so that it can be sent between the client and the
server).

The exact manner in which information is loaded depends on the type
information mechanism employed (that is, IFR or type_info store). Refer to
�Mapping IDL Interfaces to IMS� on page 235 for more information on these
mechanisms.
43

CHAPTER 2 | Introduction to the IMS Adapters
The IMS Server Adapter imsraw Interface

Overview This subsection provides an introductory overview of the imsraw IDL
interface, which the IMS server adapter implements. It discusses the
following topics:

� What is the imsraw interface?

� Definition of the imsraw IDL

� Explanation of the imsraw IDL

� Demonstration of the imsraw interface

What is the imsraw interface? The IMS server adapter exposes a CORBA IDL interface, called imsraw, to its
clients. The imsraw IDL interface defines operations to:

� Specify an IMS transaction name and set of input segments.

� Queue the transaction to IMS for dispatching.

� Receive the resulting output segments.

Definition of the imsraw IDL The following shows the IDL definitions contained within the imsraw IDL
interface:

Note: If you used the previous versions of the IMS server adapter, the
imsraw IDL interface has been modified to scope the imsraw interface
inside a module called IT_MFA_IMS. However, to maintain backwards
compatibility with older client applications, the IMS server adapter can be
configured to expose the legacy unscoped imsraw API (see the Mainframe
Migration and Upgrade Guide for more details). Also, as stated in the IDL
of previous adapter versions, the do_trans() operation has been removed.

Example 1: The imsraw IDL Interface (Sheet 1 of 4)

//IDL
1 #pragma prefix "iona.com"
2 module IT_MFA_IMS {

interface imsraw {
3 typedef string<8> tranName;

typedef sequence<char> CharSegment;
typedef sequence<CharSegment> CharSegments;
typedef sequence<octet> ByteSegment;
 44

Overview of the IMS Server Adapter
typedef sequence<ByteSegment> ByteSegments;

4 exception IMSunavailable { string reason; };
exception unknownTransactionName {};
exception segmentTooLarge {};
exception userNotAuthorized { string reason; };
exception transactionFailed { string reason; };
exception internalError { string reason; };

//
// Methods for invoking IMS transactions.
// The first uses CharSegments, so data is subject
// to ASCII-EBCDIC conversion across platforms. The
// second uses ByteSegments, so no conversion will be
// done.
//

5 CharSegments run_transaction(in tranName tran_name,
 in CharSegments din)
 raises(segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

5 ByteSegments run_transaction_binary(in tranName tran_name,
 in ByteSegments din)
 raises(segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

//
// Methods for invoking IMS transactions that do not
// return a reply.
// The first uses CharSegments, so data is subject
// to ASCII-EBCDIC conversion across platforms. The
// second uses ByteSegments so no conversion will be
// done.

// Methods run_transaction_no_reply() and
// run_transaction_binary_no_reply() are only

Example 1: The imsraw IDL Interface (Sheet 2 of 4)
45

CHAPTER 2 | Introduction to the IMS Adapters
// supported in the IMS/APPC adapter.
//

6 CharSegments run_transaction_no_reply(in tranName tran_name,
 in CharSegments din)
 raises (segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

6 ByteSegments run_transaction_binary_no_reply(in tranName
 tran_name, in ByteSegments din)
 raises (segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 transactionFailed,
 internalError);

7 readonly attribute unsigned long maxSegmentSize;
};

//
// Run conversational imsraw transactions
//

8 typedef sequence<octet> SessionHandle;

//
// Start the conversation in IMS/OTMA
// or IMS/APPC
//

9 void start_session(in tranName tran_name,
 out SessionHandle session)
 raises(internalError);

//
// Methods for invoking conversational IMS transactions.
// The first uses CharSegments, so data is subject
// to ASCII-EBCDIC conversion cross-platforms, the
// second uses ByteSegments so no conversion will be done.
//

10 CharSegments run_conv_transaction(
 in SessionHandle session,

Example 1: The imsraw IDL Interface (Sheet 3 of 4)
 46

Overview of the IMS Server Adapter
Explanation of the imsraw IDL The imsraw interface can be explained as follows:

1. This pragma prefix indicates that the IDL was developed by IONA.

2. The imsraw interface is within the IT_MFA_IMS module scope. The IT_
prefix is a naming convention that is used to signify IDL modules
developed by IONA Technologies. This helps to avoid naming clashes
in the global scope.

3. It defines five data types:

♦ tranName, which is a bounded string of up to eight characters.

♦ CharSegment, which is a sequence of char types.

♦ CharSegments, which is a sequence of CharSegment types.

♦ ByteSegment, which is a sequence of octet types.

♦ ByteSegments, which is a sequence of ByteSegment types.

 in CharSegments din)
 raises(segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

10 ByteSegment run_conv_transaction_binary(
 in SessionHandle session,
 in ByteSegments din)
 raises(segmentTooLarge,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

// End the conversation in IMS/OTMA or IMS/APPC
//

11 void end_session(in SessionHandle session)
 raises(internalError);

};

Example 1: The imsraw IDL Interface (Sheet 4 of 4)
47

CHAPTER 2 | Introduction to the IMS Adapters
4. It defines a series of exceptions that can be used to describe errors that
might occur when running an IMS transaction. Any such errors are
returned to the client, using this series of exceptions. This means that a
client program can catch and handle any errors that might be used for
diagnostic purposes or for which a useful response is possible. See
�Exception information for APPC� on page 50 or �Exception
information for OTMA� on page 51 for more details of these
exceptions.

5. It defines operations called run_transaction() and
run_transaction_binary(). These operations are similar in that:

♦ They are both provided for passing message segments to a
specified IMS transaction.

♦ They both take two in parameters, called tran_name and din.
The tran_name parameter specifies the IMS transaction that the
client wants to invoke. The din parameter contains the message
segments that the client wants to pass to the IMS transaction.

The two operations differ in the type of the din parameter and the
return value. For example:

♦ The din parameter and return value for run_transaction() is of
the CharSegments type. This means that the IMS server adapter
performs ASCII-to-EBCDIC translations when it is sending the
buffer that contains the message segments across different
platforms.

♦ The din parameter and return value for
run_transaction_binary() is of the ByteSegments type. This
means that the IMS server adapter passes the message segments
intact to the IMS transaction, without translating them. The
message segments are also passed intact from IMS back to the
client via the IMS server adapter.
 48

Overview of the IMS Server Adapter
6. It defines operations called run_transaction_no_reply() and
run_transaction_binary_no_reply(). These operations are similar in
that:

♦ They are both provided for passing message segments to a
specified IMS transaction.

♦ They both take two in parameters, called tran_name and din.
The tran_name parameter specifies the IMS transaction that the
client wants to invoke. The din parameter contains the message
segments that the client wants to pass to the IMS transaction.

♦ They both return void. No reply data is expected from the IMS
transaction.

♦ They both throw exceptions for some problems, such as if the
specified transaction does not exist or if IMS is unavailable.
Because the two operations do not receive a reply from IMS, they
cannot report transaction results. The transaction might have
completed without problems, it might be queued, or it might have
ended abnormally (abended).

♦ For the OTMA-based server adapter, IMS fast-path transactions,
protected transactions, and conversational transactions cannot be
used. Additionally, for the OTMA-based server adapter, a TPIPE
(transaction pipe) must be configured, using the
plugins:ims_otma:xcf_tpipe_name configuration item. See
�OTMA/IMS XCF TPIPE name� on page 94 for more details.

The two operations differ in the type of the din parameter. For
example:

♦ The din parameter and return value for
run_transaction_no_reply() is of the CharSegments type. This
means that the IMS server adapter performs ASCII-to-EBCDIC
translations when it is sending the buffer that contains the
message segments across different platforms.

♦ The din parameter for run_transaction_binary_no_reply() is of
the ByteSegments type. This means that the IMS server adapter
passes the message segments intact to the IMS transaction,
without translating them.
49

CHAPTER 2 | Introduction to the IMS Adapters
7. The readonly attribute, maxSegmentSize, allows the client to retrieve
the maximum segment length for which the IMS server adapter was
configured when it was started. Because this is a readonly attribute,
clients can read its value, but they cannot set it.

No changes are required to your IMS transaction.

8. An IMS conversational transaction (that is, a program using a Save
Program Area (SPA)) executes as a session. The SessionHandle data
type is the handle used to indicate which calls belong to the same
conversation.

9. The start_session operation creates a conversation session with IMS
and returns a handle to this conversation.

10. To navigate all the screens in the transaction, as many calls as
necessary are made to the run_conv_transaction() or
run_conv_transaction_binary() operation. One such call is
necessary for each screen in the transaction, and each call is made
with the handle returned by the start_session operation.

The run_conv_transaction() and run_conv_transaction_binary()
operations work in the same way as run_transaction() and
run_transaction_binary() described in point 5. The only difference is
that run_conv_transaction() and run_conv_transaction_binary()
use a session name (rather than a transaction name) to indicate the
conversational session being used.

11. When the conversation is finished, a call must be made to the
end_session() operation, to free the session handle for the
conversational transaction, and to release the resources associated
with it in IMS and the Orbix IMS adapter.

Exception information for APPC For APPC, the exception information that can be raised by the imsraw
interface can be explained as follows:

� reason

The reason string is usually created from a call to ATBEES3(), with
some other available information, such as the return code from the
ATBxxx call, added where applicable. For failures that do not involve
APPC, a reason string is generated by the adapter to describe the
failure.
 50

Overview of the IMS Server Adapter
� exception IMSunavailable { string reason; };

An IMSunavailable exception is thrown when ATBALC5() fails with
k_badDestname, k_remoteLUnotActive, or k_remoteLUnotActive2.

� exception unknownTransactionName {};

An unknownTransactionName exception is thrown when ATBSEND(),
ATBRCVW(), or ATBDEAL() fails with CM_TPN_NOT_RECOGNIZED.

� exception segmentTooLarge {};

A segmentTooLarge exception is thrown if one of the input segments
exceeds the maximum length specified for segments in the adapter
configuration file.

� exception userNotAuthorized { string reason;];

A userNotAuthorized exception is thrown when ATBSEND(),
ATBRCVW(), or ATBDEAL() fails with CM_SECURITY_NOT_VALID. It can
also be thrown if the plugins:imsa:use_client_principal
configuration item is set to yes but the principal received does not look
like a valid RACF user ID.

� exception transactionFailed { string reason; };

A transactionFailed exception is thrown when ATBSEND() fails with
CM_PROGRAM_ERROR_NO_TRUNC.

� exception internalError { string reason; };

An internalError exception is thrown for all other failures. Refer to
the adapter event log output for more details on what caused a specific
exception.

Exception information for OTMA For OTMA, the exception information that can be raised by the imsraw
interface can be explained as follows:

� reason

The reason string is usually created either from the error message that
is returned by IMS over OTMA, or from OTMA return codes via the use
of a look-up table for known return codes. For OTMA return codes that
are not known to the adapter, the reason string contains the return and
reason codes. For failures that do not involve OTMA, a reason string is
generated by the adapter to describe the failure.
51

CHAPTER 2 | Introduction to the IMS Adapters
� exception IMSunavailable { string reason; };

An IMSunavailable exception is never thrown for OTMA, because the
IMS server adapter cannot start in OTMA mode if IMS is not available.

� exception unknownTransactionName {};

An unknownTransactionName exception is thrown if an error message
containing DFS064 is returned from IMS along with return code 20. It
can also be thrown if otma_send_async() returns with return code 8
and reason code 10.

� exception segmentTooLarge {};

A segmentTooLarge exception is thrown if one of the input segments
exceeds the maximum length specified for segments in the adapter
configuration file. It can also be thrown for OTMA return code 8 with
reason code 32.

� exception userNotAuthorized { string reason;];

A userNotAuthorized exception is thrown if an error message
containing DFS1292E is returned from IMS along with return code 20. It
can also be thrown if the plugins:imsa:use_client_principal
configuration item is set to yes but the principal received does not look
like a valid RACF user ID.

� exception transactionFailed { string reason; };

A transactionFailed exception is thrown for all OTMA failures relating
to otma_send_receive() and otma_send_async(), with a return code
20, that are not covered by the other exceptions. The reason string is
based on the error message returned by OTMA. It can also be thrown if
a transaction is timed-out, or if RRS/OTS is used but the context
switching for RRS fails.

� exception internalError { string reason; };

An internalError exception is thrown for all other failures. Refer to
the adapter event log output for more details on what caused a specific
exception.

Demonstration of the imsraw
interface

A C++ demonstration client for the imsraw interface is supplied with the
other C++ demonstrations in your Orbix Mainframe installation. Follow the
instructions in the supplied readme to run the client application.
 52

Overview of the IMS Server Adapter
Unsupported IDL Types

Overview This subsection provides an overview of the IDL types that the IMS server
adapter does not support.

Unsupported types The following IDL types are not currently supported by the IMS server
adapter:

� Object references.

� Value types, and other Pseudo-object types.

� wchar and wstring

Refer to the COBOL Programmer's Guide and Reference and the PL/I
Programmer's Guide and Reference for details.
53

CHAPTER 2 | Introduction to the IMS Adapters
Overview of the Client Adapter

Overview The Orbix Mainframe client adapter is an Orbix service that can be deployed
in a native z/OS or UNIX System Services environment. Its function is to
allow IMS transactions to act as clients of CORBA servers running on various
platforms.

The client adapter acts as a bridge between IMS client transactions and
CORBA servers. The client adapter allows you to set up a distributed system
that combines the powerful online transaction processing capabilities of IMS
with the consistent and well-defined structure of a CORBA environment.

This section discusses the following topics:

� Characteristics of the client adapter

� Client adapter functions

� Graphical overview

Characteristics of the client
adapter

The client adapter has the following characteristics:

� It is a mirror implementation of the IMS server adapter in that it adapts
CORBA requests that originate in IMS, whereas the IMS server adapter
adapts CORBA requests destined for IMS. Figure 6 on page 56
provides an overview of the role of the client adapter in integrating IMS
client transactions with distributed CORBA servers on different
platforms.

� It uses APPC or cross memory to communicate with IMS.

� It implements the CORBA invocation facility using the Orbix Dynamic
Invocation Interface (DII), and uses the IFR server or a type_info store
to obtain type information. Refer to the CORBA Programmer�s Guide,
C++ for more information on the DII.

� It provides an optional caching feature to improve performance. It can
cache target object references and type information for operations.
 54

Overview of the Client Adapter
� It is a multi-threaded application that can service multiple concurrent
client requests.

� It can service multiple IMS regions.

� It supports two-phase commit processing initiated from IMS
transactions when using APPC communication.

Client adapter functions The client adapter performs the following functions:

� It accepts a request from an IMS client transaction.

� It locates the target CORBA object and invokes the requested
operation.

� It returns the CORBA object reply to the IMS client transaction.

Graphical overview Figure 6 on page 56 provides an overview of the role of the client adapter in
integrating distributed CORBA servers on different platforms with IMS client
transactions running on z/OS.

The IMS client transactions can be written in COBOL or PL/I. The clients
make a call to the COBOL or PL/I runtime that identifies both the target
object and the operation to perform, and supplies in, inout, and out
parameters. The COBOL or PL/I runtime uses the APPC protocol or cross
memory to communicate with the client adapter, and passes the client
request to it. The client adapter locates the target server object and invokes
the requested operation. The results are then returned back to the IMS client
transaction. An IMS client transaction can process requests to servers using
two-phase commit processing when using APPC for communication.
55

CHAPTER 2 | Introduction to the IMS Adapters

Figure 6: Graphical Overview of the Role of the Client Adapter
 56

Part 2
Configuring the IMS Server

Adapter and the Orbix
Runtime in IMS

In this part This part contains the following chapters:

Introduction to IMS Server Adapter Configuration page 59

IMS Server Adapter Configuration Details page 77

Configuring the IMS Server Adapter OTMA Plug-In page 89

Configuring the IMS Server Adapter APPC Plug-In page 97

Configuring the IMS Server Adapter RRS Plug-In page 111

Configuring the IMS Server Adapter for Client Principals page 121

Configuring the Orbix Runtime in IMS page 133

IDL Compiler Configuration page 137

CHAPTER 3

Introduction to
IMS Server
Adapter
Configuration
This chapter provides information needed to configure the IMS
server adapter and its components (plug-ins). It provides
descriptions of all the configuration items involved in running
the server adapter. It also provides details on configuring the
various system components used by the server adapter. These
components include IMS, OTMA, APPC/IMS, and RRMS.

In this chapter This chapter discusses the following topics:

An IMS Server Adapter Sample Configuration page 60

Configuration Summary of Adapter Plug-Ins page 65
59

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
An IMS Server Adapter Sample Configuration

Overview A sample configuration member is supplied with your Orbix Mainframe
installation that provides an example of how you might configure and deploy
the IMS server adapter on both native z/OS and UNIX System Services.

This section discusses the following topics:

� Location of configuration templates

� Configuration scope

� Configuration scope example

Location of configuration
templates

Sample configuration templates are supplied with your Orbix Mainframe
installation in the following locations:

� Non-TLS template: orbixhlq.CONFIG(BASETMPL)

� TLS template: orbixhlq.CONFIG(TLSTMPL)

Configuration scope An ORBname of iona_services.imsa has been chosen for the IMS server
adapter service. Therefore, the corresponding configuration items that are
specific to the server adapter are scoped within an iona_services.imsa
configuration scope.

Configuration scope example The following is an example of the iona_services.imsa configuration
scope.

Note: Further configuration resides in orbixhlq.CONFIG(ORXINTRL). This
contains internal configuration that should not usually require any
modifications.

Example 2: iona_services:imsa Configuration Scope (Sheet 1 of 4)

iona_services
{
 thread_pool:high_water_mark = "100";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop", "ots"];
 60

An IMS Server Adapter Sample Configuration
 generic_server:wto_announce:enabled = "true";
 �
 imsa
 {
 event_log:filters = ["*=WARN+ERROR+FATAL", "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 plugins:imsa:direct_persistence = "no";
 plugins:imsa:poa_prefix = "IT_MFA_IMS_";
 #
 # Settings for well-known addressing:
 # (mandatory if direct_persistence is enabled)
 #
 # plugins:imsa:iiop:port = "5006";
 # plugins:imsa:iiop:host = "%{LOCAL_HOSTNAME}";
 #
 # List of mappings of interface/operation -> IMS tran name
 # PDS member or HFS filename may be specified
 #
 plugins:imsa:mapping_file = "DD:MFAMAPS";

 # The adapter may be configured to use type_info files or to contact
 # the IFR to attain type information dynamically during runtime.
 #
 # * To configure to use type_info files:
 # (note: source may be a PDS or HFS pathname)
 # plugins:imsa:repository_id = "type_info";
 # plugins:imsa:type_info:source = "%{LOCAL_HFS_ROOT}/info.txt";
 #
 # * To configure to use the IFR:
 # plugins:imsa:repository_id = "ifr";
 # plugins:imsa:ifr:cache = "";
 #
 plugins:imsa:repository_id = "type_info";
 plugins:imsa:type_info:source = "DD:TYPEINFO";
 plugins:imsa:ifr:cache = "";

 # Use the following to display timing information on adapter requests
 # plugins:imsa:display_timings = "yes";

 # Choose an IMS protocol plugin: ims_otma or ims_appc
 #
 initial_references:IT_imsraw:plugin = "ims_otma";
 #initial_references:IT_imsraw:plugin = "ims_appc";

 plugins:ims_otma:xcf_group_name = "IMSG";

Example 2: iona_services:imsa Configuration Scope (Sheet 2 of 4)
61

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
 plugins:ims_otma:xcf_adapter_member_name = "ORXIMSG";
 plugins:ims_otma:xcf_ims_member_name = "IMS";
 plugins:ims_otma:xcf_tpipe_prefix = "ORX1";
 plugins:ims_otma:xcf_tpipe_name = "ORXASYNC";
 plugins:ims_otma:timeout = "30";
 plugins:ims_otma:mq_length = "1024";
 plugins:ims_otma:output_segment_num = "2";

 plugins:ims_appc:ims_destination_name = "ORBIXIMS";
 plugins:ims_appc:appc_outbound_lu_name = "";
 plugins:ims_appc:timeout = "30";
 plugins:ims_appc:mq_length = "1024";

 # Activate this to display accounting info
 # plugins:imsa:call_accounting_dll = "yes";
 #
 # Update the following to enable GIOP request logging:
 # orb_plugins = ["local_log_stream", "request_logger", ...];
 # binding:server_binding_list = ["request_logger", ""];
 # event_log:filters = ["IT_REQUEST_LOGGER=*", ...];
 #
 # For RRS/OTS support, add:
 # plugins:rrs:rm_name = "TEST.IMSRAW.IONA.UA";
 # initial_references:IT_RRS:plugin = "rrs";
 #
 # Note: ensure that you have TLIM set to zero for the IMS regions involved,
 # because IMS counts rollbacks using RRS for the TLIM region shutdown counter.
 #
 # For client principal support, add/update:
 # plugins:imsa:use_client_principal = "yes";
 # plugins:imsa:use_client_password = "no";
 #
 # And add the following if the client cannot send principals in a
 # service context over GIOP 1.2 in a format recognised by the GIOP plugin
 # policies:iiop:server_version_policy = "1.1";
 #
 # For publishing IORs from the adapter, add:
 #
 # Publishing to a USS file:
 # plugins:imsa:object_publishers = ["filesystem"];
 # plugins:imsa:object_publisher:filesystem:filename = "%{LOCAL_HFS_ROOT}/test.txt";
 #
 # Publishing to a DD file that has to be defined in the JCL:
 # plugins:imsa:object_publishers = ["filesystem"];
 # plugins:imsa:object_publisher:filesystem:filename = "DD:MFAIORS";

Example 2: iona_services:imsa Configuration Scope (Sheet 3 of 4)
 62

An IMS Server Adapter Sample Configuration
 #
 # Publishing to a naming service context:
 # plugins:imsa:object_publishers = ["naming_service"];
 # plugins:imsa:object_publisher:naming_service:context = "test_context";
 # plugins:imsa:object_publisher:naming_service:context:auto_create = "true";
 # plugins:imsa:object_publisher:naming_service:update_mode = "current";
 # plugins:imsa:object_publisher:naming_service:nested_scopes = "false";
 #
 # Publishing to a naming service group:
 # plugins:imsa:object_publishers = ["naming_service"];
 # plugins:imsa:object_publisher:naming_service:group:prefix = "group1_";
 # plugins:imsa:object_publisher:naming_service:group:member_name = "adapter2";
 # plugins:imsa:object_publisher:naming_service:update_mode = "current";
 # plugins:imsa:object_publisher:naming_service:nested_scopes = "false";

 # For the Adapter portable interceptor demo, please add "demo_sec"
 # and "portable_interceptor" to your orb_plugins list.
 # If you need an example, please refer to the orb_plugins list
 # in the iona_services scope. Afterwards, please uncomment the next
 # three configuration settings.
 #
 # orb_plugins = [... , "demo_sec", "portable_interceptor"];
 #
 # binding:server_binding_list = ["DemoPI"];
 # plugins:demo_sec:shlib_name = "SECPI";
 # plugins:demo_sec:shlib_version = "1";
 #
 # Performance management logging: enable the remote
 # logging feature by updating/adding the following:
 #
 # orb_plugins = [..., "it_response_time_logger"];

 # binding:server_binding_list = ["it_response_time_logger"];
 # plugins:it_response_time_collector:period = "60"; # secs
 # plugins:it_response_time_collector:server-id = "imsa_1";
 # plugins:it_response_time_collector:remote_logging_enabled = "true";
 # initial_references:IT_PerfLoggingReceiver:reference
 # = "..."; # IOR or corbaloc of remote logger
 };
 �
 };

Example 2: iona_services:imsa Configuration Scope (Sheet 4 of 4)
63

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
Configuring a domain Refer to the CORBA Administrator�s Guide for more details on how to
configure an Orbix configuration domain.

Note: The configuration items shown in Example 2 can be used to deploy
an insecure server adapter. See �Securing and Using the IMS Server
Adapter� on page 207 for more details about the configuration items that
are involved in deploying a server adapter in secure mode.
 64

Configuration Summary of Adapter Plug-Ins
Configuration Summary of Adapter Plug-Ins

Overview Orbix configuration allows you to configure an application on a per-plug-in
basis. This section provides a summary of the configuration items
associated with plug-ins specific to the IMS server adapter.

This section discusses the following topics:

� IMS server adapter plug-ins

� Summary of items for the imsa plug-in

� Summary of items for the ims_otma plug-in

� Summary of items for the ims_appc plug-in

� Summary of items for the rrs plug-in

� Summary of remaining configuration items

IMS server adapter plug-ins There are four plug-ins associated with the IMS server adapter:

� The imsa plug-in is the core IMS server adapter plug-in.

� The ims_otma plug-in is used specifically for communications with IMS
over OTMA.

� The ims_appc plug-in is used specifically for communications with IMS
over APPC.

� The rrs plug-in provides integration for the Object Transaction Service
(OTS) and IMS commit processing. This plug-in is optional and can
only be used if RRS is configured and RRS support in IMS is enabled.
It can only be used with the ims_otma plug-in.

Note: See �Securing the IMS Server Adapter� on page 209 for more
details about the items relating to the iSF security plug-in.

Note: Either the OTMA or APPC plug-in should be selected with the
initial_references:IT_imsraw:plugin configuration variable.
65

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
Summary of items for the imsa
plug-in

The following is a summary of the configuration items associated with the
imsa plug-in. Refer to �IMS Server Adapter Configuration Details� on
page 77 for more details.

iiop:port Specifies the TCP/IP port number that the
IMS server adapter uses to listen for incoming
requests. Valid values are in the range 1025�
65535. This is an optional item.

direct_persistence Specifies the persistence mode adopted by
the IMS server adapter service. This is an
optional item. iiop:port is required if this is
specified as yes.

poa_prefix Specifies the POA prefix name. This is an
optional item. The default value is IT_MFA_.

iiop:host Specifies the host name that is contained in
IORs exported by the IMS server adapter.

alternate_endpoint Allows requests to the MappingGateway
administrative interface to be processed by
threads on an alternate workqueue instead of
using the thread resources of the main
automatic workqueue.

mapping_file This file contains the mapping entries. Refer
to �The Mapping File� on page 236 for more
details. Optional.

repository_id Specifies the type information source to use.
This source supplies the IMS server adapter
with operation signatures, as required. Valid
values are ifr, type_info, and none. The
default is ifr. Refer to �Type information
mechanism� on page 84 for more
information.

ifr:cache This value is used if repository_id is set to
�ifr�. The ifr:cache configuration item is
optional, specifying the location of an
(operation) signature cache file. This
signature cache file contains a cache of
operation signatures from a previous run of
this server adapter. The default is no
signature cache file (��).
 66

Configuration Summary of Adapter Plug-Ins
type_info:source This value is used if repository_id is set to
�type_info�. The type_info:source variable
denotes the location of a type_info store from
which the server adapter can obtain operation
signatures. Refer to �type_info store� on
page 85 for more information

use_client_principal Indicates that the IMS server adapter should
verify the client principal user ID with SAF
before trying to start the target IMS
transaction under that ID. The default is no.

use_client_password Indicates that the IMS server adapter should
use a client password when it wants to switch
the thread that is making the request to IMS
to the user ID passed in the client principal,
instead of using SURROGAT rights.

display_timings Displays timestamps at various processing
points for a request with information being
written to SYSPRINT. Refer to �Displaying
transaction processing times� on page 82 for
more details.

display_timings_in_logfile Displays timestamps at various processing
points for a request with information being
written to the Orbix event log. This sends
messages to SYSOUT by default. Refer to
�Displaying transaction processing times� on
page 82 for more details.

call_accounting_dll If set to yes, this causes the accounting DLL
to be called and accounting statistics to be
displayed after each client request has been
processed by the adapter. The default is no.

Refer to �Gathering Accounting Information in
the Server Adapter� on page 298 for more
details.

capture_first_argument
_in_dynany

If set to yes, this passes the first argument of
the request to the IT_MFA_display_account_
information() function as a dynamic any.
The default is no. Refer to �Gathering
Accounting Information in the Server
Adapter� on page 298 for more details.
67

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
object_publishers Specifies where the adapter can publish its
object references. Valid options are
naming_service to publish object references
to the Naming Service, and filesystem to
publish object references to file. The default
value is "".

write_iors_to_file This item has now been deprecated and is
superseded by the plugins:imsa:object_
publisher:filesystem:filename
configuration item described next.

object_publisher:
filesystem:filename

This supersedes the plugins:imsa:write_
iors_to_file configuration item. It specifies
the file that should be used if you want the
adapter to export object references to a file.
You can specify the full path to an HFS
filename, a PDS member name, or a PDS
name as the value for this item. If this
configuration item is not included in the
adapter�s configuration, no object references
are exported to file. Refer to �Exporting Object
References at Runtime� on page 304 for
more details.

write_iors_to_ns_context This item has now been deprecated and is
superseded by the
plugins:imsa:object_publisher:naming_se
rvice:context configuration item described
next.

object_publisher:
naming_service:context

This supersedes the
plugins:imsa:write_iors_to_ns_context
configuration item. It specifies the Naming
Service context that should be used if you
want the adapter to export object references
to a Naming Service context. If this
configuration item is not included in the
adapter�s configuration, no object references
are exported to a Naming Service context.
Refer to �Exporting Object References at
Runtime� on page 304 for more details.
 68

Configuration Summary of Adapter Plug-Ins
object_publisher:
naming_service:context:
auto_create

This specifies whether the Naming Service
context specified by
plugins:imsa:object_publisher:
naming_service:context should be created if
it does not exist. Valid options are true and
false. The default value is true.

object_publisher:
naming_service:
update_mode

Specifies whether adapter-deployed objects
should only be published during start-up, or
whether updates should also be published.
Valid values are startup and current. The
default value is startup.

place_iors_in_nested_ns_sc
opes

This item has been deprecated and is
superseded by the plugins:imsa:object_
publisher:naming_service:nested_scope
configuration item described next.

object_publisher:
naming_service:
nested_scopes

This supersedes the plugins:imsa:place_
iors_in_nested_ns_scopes configuration
item. If this configuration item is set to false,
the IOR is stored in the specified scope in the
Naming Service. If this configuration item is
set to true, the module name(s) of the
interface for the IOR are used to navigate
subscopes from the configuration scope, with
the same names as the module names, and
the IOR is then placed within the relevant
subscope. The default is false.

When using Naming Service contexts and
plugins:imsa:object_publisher:
naming_service:context:auto_create is set
to true, contexts are created for IDL module
scopes. For example, Simple/SimpleObject
with plugins:imsa:object_publisher:
naming_service:context set to base creates
a context tree of /base/Simple for
SimpleObject.

The default for
plugins:imsa:object_publisher:
naming_service:nested_scopes is false.
69

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
publish_all_iors If set to yes, this instructs the adapter to
export object references for the
MappingGateway interface, the imsraw
interface, and all interfaces specified in the
adapter mapping file.

If set to no, this instructs the adapter to
export object references for the
MappingGateway and imsraw interfaces only.
The default is no. Refer to �Exporting Object
References at Runtime� on page 304 for
more details.

Note: This configuration item is only used by
the deprecated object publishing
configuration items. When using the new
object publishing configuration items, all
IORs are published.

remove_ns_iors_on
_shutdown

If set to yes, this instructs the adapter to
unbind the object references from the Naming
Service when shutting down normally. The
default is no. Refer to �Exporting Object
References at Runtime� on page 304 for
more details.

Note: This configuration item is only used by
the deprecated object publishing
configuration items. When using the new
object publishing configuration items, the
setting of plugins:imsa:object_publisher:
naming_service:update_mode determines if
the server adapter attempts to unbind object
references from the Naming Service when it
shuts down normally. A setting of current
causes the server adapter to attempt to
unbind references at shutdown.

write_iors_to_ns_group
_with_prefix

This item has been deprecated and is
superseded by the plugins:imsa:object_
publisher:naming_service:group:prefix
configuration item described next.
 70

Configuration Summary of Adapter Plug-Ins
Summary of items for the
ims_otma plug-in

The following is a summary of the configuration items associated with the
ims_otma plug-in. Refer to �OTMA Plug-In Configuration Items� on page 93
for more details.

object_publisher:naming_se
rvice:group:prefix

This supersedes the plugins:imsa:write_
iors_to_ns_group_with_prefix
configuration item. It specifies the prefix that
should be attached to each generated name
indicating an interface, if you want the
adapter to export object references to a
Naming Service object group. This prefix is
attached to the generated name, to specify
the object group that is to be used.

If this configuration item is not included in
the adapter�s configuration, no object
references are exported to any Naming
Service object groups. Refer to �Exporting
Object References at Runtime� on page 304
for more details.

write_iors_to_ns_group
_member_name

This item has been deprecated and is
superseded by the plugins:imsa:object_
publisher:naming_service:group:member_n
ame configuration item described next.

object_publisher:naming_se
rvice:group:member_name

This supersedes the plugins:imsa:write_
iors_to_ns_group_member_name
configuration item. It specifies the member
name that the adapter should use in the
object group. A unique member name must
be specified for each adapter; otherwise, one
adapter might end up replacing the object
group members of another adapter. Refer to
�Exporting Object References at Runtime� on
page 304 for more details.

xcf_group_name Specifies the name of the Cross-Coupling Facility
(XCF) group that you want the IMS server adapter
to join. Default value is IMSG.

xcf_Adapter_member_nameSpecifies the member name automatically
allocated to the IMS server adapter within the
XCF group. Default value is IONAIMS.
71

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
xcf_ims_member_name Specifies the IMS control region�s member name
in the XCF group. Default value is IMS.

xcf_tpipe_prefix Specifies the 4-character prefix used for the
name of the TPIPE opened between the IMS
server adapter and the IMS region. Default value
is ORX1.

output_segment_num Specifies the number of initial output segments to
be allocated by the IMS server adapter. The
default value is 5.

mq_length Specifies the maximum size, in bytes, of the data
portion of a record on the IMS message queue.
Default value is 32767.

timeout Specifies the number of seconds that the IMS
server adapter can wait for a response from IMS
before cancelling the request. Default value is no
timeout.

Note: If OTMA is being used, an override of the
default timeout value can also be supplied as
part of the transaction name. The transaction
name can be specified in the format
transaction:timeout to indicate an override
timeout. For example, PART:40 runs the PART
transaction with a 40-second timeout. This is
only necessary if the default timeout supplied as
part of the adapter configuration is not suitable
for a specific transaction (for example, for a very
long running transaction).

use_sync_level_one Indicates whether OTMA calls are performed
using OTMA Sync level 0 or Sync level 1. Default
value is true.

xcf_tpipe_name Specifies the TPIPE opened between the IMS
server adapter and the IMS region for IMS
transactions that do not return a reply to the
client. Default value is ORXASYNC.
 72

Configuration Summary of Adapter Plug-Ins
Summary of items for the
ims_appc plug-in

The following is a summary of the configuration items associated with the
ims_appc plug-in. Refer to the �APPC Plug-In Configuration Items� on
page 109 for more details.

Summary of items for the rrs
plug-in

The following is a summary of the configuration items associated with the
rrs plug-in. Refer to �RRS Plug-In Configuration Items� on page 120 for
more details.

ims_destination_name Specifies the APPC LU (Logical Unit) name for the
IMS region to which the IMS server adapter
connects. Default value is ORBIXIMS.

appc_outbound_lu_nameSpecifies the IMS server adapter�s APPC LU name.
The default value is none, which means that the
system base LU is used.

timeout Specifies the number of minutes that the IMS server
adapter can wait for a response from IMS before
cancelling the request. Default value is no timeout.

mq_length Specifies the maximum size, in bytes, of the data
portion of a record on the IMS message queue.
Default value is 500.

rm_name The resource manager name that the
IMS server adapter uses to register
with RRS. Ensure that this variable is
not specified in the configuration scope
of the server adapter, if you do not
want the RRS plug-in loaded.

initial_references:IT_RRS:pluginIndicates to the IMS server adapter
that it is the plug-in to load to enable
communication with RRS. This is
required if the rrs plug-in is used.
73

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
Summary of remaining
configuration items

The following is a summary of the remaining configuration items. Refer to
�IMS Server Adapter Configuration Details� on page 77 and the CORBA
Administrator�s Guide for more details.

thread_pool:initial_threads Specifies the initial number of
threads that are created in the
thread pool to send requests to
IMS. This item is optional. The
default value is 5.

thread_pool:high_water_mark Specifies the maximum number
of threads created in the IMS
server adapter thread pool to
send requests to IMS. This item
is optional. Default value is -1.

event_log:filters Specifies the types of events that
the IMS server adapter logs.

orb_plugins The list of standard ORB
plug-ins the IMS server adapter
should load.

initial_references:IT_MFA:reference The IOR used by itadmin to
contact the IMS server
adapter�added to configuration
after the server adapter has been
run in prepare mode.

initial_references:IT_imsraw:plugin Specifies the IMS transport-level
plug-in that is to be loaded.
Valid values are ims_otma and
ims_appc.

initial_references:IT_WTO_Announce:
plugin

This is used in conjunction with
generic_server:wto_announce:
enabled to enable the loading of
the WTO announce plug-in in an
Orbix service, such as the IMS
server adapter. This item must
be set to wto_announce to
enable messages to be written to
the operator console on starting
or shutting down successfully.
 74

Configuration Summary of Adapter Plug-Ins
generic_server:wto_announce:enabled This is used in conjunction with
initial_references:IT_WTO_
Announce:plugin to enable the
loading of the WTO announce
plug-in in an Orbix service, such
as the IMS server adapter. This
item must be set to true to
enable messages to be written to
the operator console on starting
or shutting down successfully.

policies:iiop:server_version_policy If this is set to 1.1, the server
adapter publishes a version 1.1
IOR which instructs clients to
communicate over GIOP 1.1. If
this is set to 1.2 (the default),
1.2 is used as the default GIOP
version. See �Configuring the
IMS Server Adapter for Client
Principals� on page 121 for
more details.

policies:giop:interop_policy:
enable_principal:service_context

For GIOP 1.2, if this is set to
true, it instructs the CICS server
adapter to look for the principal
string in a service context. The
default is false. See
�Configuring the IMS Server
Adapter for Client Principals� on
page 121 for more details.

policies:giop:interop_policy:
principal_service_context_id

If principal_service_context_
id is set to true, this item
specifies the service context ID
from which the CICS server
adapter attempts to read the
principal string. See �Configuring
the IMS Server Adapter for Client
Principals� on page 121 for
more details.
75

CHAPTER 3 | Introduction to IMS Server Adapter Configuration
 76

CHAPTER 4

IMS Server
Adapter
Configuration
Details
This chapter provides details of the configuration items for the
IMS Server Adapter�s application service plug-in. These items
are used to specify parameters such as TCP/IP transport
details, the level of Orbix event logging, and mapping
information for mapping IDL operations to IMS transactions.

In this chapter This chapter discusses the following topics:

IMS Server Adapter Service Configuration page 78
77

CHAPTER 4 | IMS Server Adapter Configuration Details
IMS Server Adapter Service Configuration

Overview This chapter discusses the following topics:

� Persistence mode

� Well known addressing

� Alternate workqueue for the MappingGateway

� IT_imsraw initial reference

� Orbix event logging

� ORB plug-ins list

� POA prefix

� Displaying transaction processing times

� Mapping file

� Type information mechanism

� IFR signature cache file

� type_info store

Persistence mode The related configuration item is plugins:imsa:direct_persistence. It
specifies the persistence mode policy adopted by the IMS server adapter. If
you want the server adapter to run as a standalone service, set this to yes. If
you set this to no, the server adapter contacts and registers with the locator
service.

Host name The related configuration item is plugins:imsa:iiop_host. It specifies the
name of the host on which the IMS server adapter is running. This host
name is contained in IORs exported by the IMS server adapter.

Well known addressing Configuration items for well known addressing can be specified on the IIOP
and secure IIOP plug-ins that are loaded by the IMS server adapter. For
example, you can use plugins:imsa:iiop:port to specify a fixed TCP/IP
port that the IMS server adapter uses to listen for insecure incoming CORBA
requests. If the adapter is running with direct persistence enabled, the
specified port number is published in the IORs generated by the adapter in
prepare mode, and in any IORs returned by the MappingGateway interface.
 78

IMS Server Adapter Service Configuration
Refer to �Using the MappingGateway Interface� on page 273 for more
details. If the adapter is running in indirect persistent mode, the locator�s
addressing information is published in the IORs; however, in this case, the
adapter still listens on the specified port.

The specified port number cannot be less than 1025, because the TCP/IP
port numbers up to and including 1024 are reserved for TCP/IP services.
Therefore, ensure that you do not use a port that is allocated to some other
TCP/IP service on the machine. The server adapter checks to see if the port
is available before it attempts to use it.

Initial threads in thread pool The related configuration item is thread_pool:initial_threads. It specifies
the initial number of threads that are created in the thread pool to send
requests to IMS. This item is optional. The default value is 5.

Maximum threads in thread pool The related configuration item is thread_pool:high_water_mark. It specifies
the maximum number of threads created in the IMS server adapter thread
pool to send requests to IMS. This item is optional. The default value is -1.

Alternate workqueue for the
MappingGateway

The related configuration item is plugins:imsa:alternate_endpoint. It
allows the IMS server adapter to be configured so that requests to the
MappingGateway administrative interface are processed by threads on an
alternate workqueue instead of using the thread resources of the main
automatic workqueue. This allows the main workqueue to remain dedicated
to processing requests that are destined for IMS.

The associated thread pool settings can then be configured as follows:

The preceding values correspond to the default settings that are assumed if
these items are omitted from the IMS server adapter configuration. See the
CORBA Administrator�s Guide for general information on thread pools and
workqueues.

plugins:imsa:alternate_endpoint:thread_pool:high_water_mark =
"-1";

plugins:imsa:alternate_endpoint:thread_pool:low_water_mark =
"-1";

plugins:imsa:alternate_endpoint:thread_pool:initial_threads =
"2";

plugins:imsa:alternate_endpoint:thread_pool:max_queue_size =
"-1";
79

CHAPTER 4 | IMS Server Adapter Configuration Details
If you have configured the IMS server adapter to use direct persistence, you
must specify the addressing information for the listener associated with the
MappingGateway interface�s alternate endpoint. You can specify well-known
addressing information as follows:

The IOR that is published by the server adapter for the MappingGateway
interface now includes this addressing information.

IT_imsraw initial reference The related configuration item is initial_references:IT_imsraw:plugin.
The imsa plug-in uses this configuration item to establish the name of the
IMS transport-level plug-in to be loaded. To load the IMS OTMA plug-in, set
this item to ims_otma. To load the IMS APPC plug-in, set this item to
ims_appc.

This plug-in is used by the IMS server adapter service to communicate with
IMS�it is therefore required for processing both the imsraw interface and
mapped IDL interface requests. This item is required.

IT_MFA initial reference The related configuration item is initial_references:IT_MFA:reference.
This specifies the IOR that is used by itadmin to contact the IMS server
adapter. This is added to the adapter configuration after the server adapter
has been run in prepare mode.

Orbix event logging The related configuration item is event_log:filters. It is used in Orbix
configuration to specify the level of event logging. To obtain events specific
to the IMS server adapter, the IT_MFA event logging subsystem can be
added to this list item. For example:

This then logs all IT_MFA events (except for INFO_LOW � low priority
informational events), and any warning, error, and fatal events from all other
subsystems (for example, IT_CORE, IT_GIOP, and so on). The level of detail
that is provided for IT_MFA events can therefore be controlled by setting the
relevant logging levels. Refer to the CORBA Administrator�s Guide for more
details.

plugins:imsa:alternate_endpoint:iiop:port = "5007";
plugins:imsa:alternate_endpoint:iiop:host = "hostname";

event_log:filters = ["*=WARN+ERROR+FATAL",
"IT_MFA=INFO_HI+INFO_MED+WARN+ERROR+FATAL"];
 80

IMS Server Adapter Service Configuration
The following is a categorization of the informational events associated with
the IT_MFA subsystem.

WTO announce plug-in Orbix applications may be configured to write messages to the operator
console on starting or shutting down successfully. This can be useful for
automated operations software to keep track of these events. The WTO
announce plug-in is used to implement this feature.

To enable the loading of the WTO announce plug-in in an Orbix service,
such as the IMS server adapter, add the following two configuration items in
the iona_services.imsa scope:

� initial_references:IT_WTO_Announce:plugin = "wto_announce";
� generic_server:wto_announce:enabled = "true";

When you load the WTO announce plug-in, a WTO message is issued when
the server adapter ORB starts up and shuts down. Messages take the
following format:

On UNIX System Services, <process id> is a PID. On native z/OS,
<process id> is a job name and an A=xxxx job identifier.

INFO_HI configuration settings and IMS server adapter startup and
shutdown messages

INFO_MED mapping gateway actions and IMS OTMA/APPC calls,
including return codes

INFO_LOW IMS segment data streams and RRS actions

Note: For customer-developed Orbix applications (for example, a batch
COBOL or PL/I server), the wto_announce plug-in should be added to the
end of the orb_plugins list in that particular application�s ORB
configuration. (See �ORB plug-ins list� next for more details.) However, for
all Orbix services (by default, in the iona_services configuration scope), it
is recommended that you load the wto_announce plug-in by specifying the
two preceding configuration items rather than by adding the wto_announce
plug-in to the orb_plugins list.

+ORX2001I ORB iona_services.imsa STARTED (HOSTNAME:<process id>)
+ORX2002I ORB iona_services.imsa ENDED (HOSTNAME: <process id>)
81

CHAPTER 4 | IMS Server Adapter Configuration Details
ORB plug-ins list The related configuration item is orb_plugins. It specifies the ORB-level
plug-ins that should be loaded in your application at ORB_init() time. On
z/OS, you can add the WTO announce plug-in support to any
customer-developed Orbix application by updating this list in the relevant
configuration scope. For example:

In the case of the IMS server adapter�s configuration (that is, in the
iona_services.imsa scope itself) the wto_announce plug-in should not be
included in this list, as discussed in �WTO announce plug-in� on page 81.

If RRS support is required, you can add the OTS plug-in to this list. For
example, in the iona_services.imsa scope:

POA prefix The related configuration item is plugins:imsa:poa_prefix. It specifies the
prefix to be assigned to the POA name used by the IMS server adapter. The
default value is IT_MFA_. This POA name is embedded in the object key of
the IOR that is published by the server adapter in prepare mode, and
obtained with resolve from the Mapping Gateway interface. The POA name
is not significant in a server that runs in direct persistent mode; however, it
can be useful for the purposes of keeping track of IORs in an environment
where multiple IMS server adapters are being deployed.

Displaying transaction processing
times

The related configuration items are plugins:imsa:display_timings and
plugins:imsa:display_timings_in_logfile. Both items are set to no by
default. The difference between these settings is where the data is printed.
display_timings sends timing information to SYSPRINT.
display_timings_in_logfile sends timing information to the Orbix event
log, which sends messages to SYSOUT by default.

If you set plugins:imsa:display_timings or
plugins:imsa:display_timings_in_logfile to yes, the server adapter
produces output similar to the following:

orb_plugins = ["iiop_profile", "giop", "iiop",
 "local_log_stream", "wto_announce"];

orb_plugins = ["iiop_profile", "giop", "iiop",
 "local_log_stream", "ots"];

2005-05-20 02:07:46: Simple/SimpleObject: call_me: 1: +0 ms, 2: +37 ms, 3: +45 ms, 4: +51 ms
 82

IMS Server Adapter Service Configuration
Each item of output contains one line. Each line shows the date and time
when the corresponding request was completed, the name of the interface
and operation, and the timestamps at each of the four measurement points
(in milliseconds). All timestamps are relative to the first measurement point.
Therefore, the first measurement point always shows zero milliseconds.

The four measurement points taken are:

1. After the dispatching handler thread gets the request from the server
adapter's pending request work queue.

2. Before sending the request to IMS.

3. After receiving the response from IMS.

4. Before sending the response back to the client, using IIOP.

The times measured do not include any time that the request has waited for
a server adapter processing thread to become available. If you therefore
have five threads in the server adapter, and send six requests at exactly the
same moment, the times displayed for the sixth request do not include the
time it waited in the server adapter input queue for a thread to become
available.

The first measurement point is taken before the data is marshalled from the
IIOP request buffer, and is exactly the same point in the source code for
each version of the server adapter.

The second and third measurement points are only approximately the same
point in the source code for each version of the server adapter IMS transport
(OTMA or APPC) plug-ins.

The fourth point is taken after the data has been marshalled back into the
IIOP request buffer, but before it is transmitted to the client. It is also exactly
the same point in the source code for each version of the server adapter.

No information is displayed for threads with IDs greater than 99. The use of
plugins:imsa:display_timings or
plugins:imsa:display_timings_in_logfile can cause a small decrease in
the performance of server adapters, as opposed to when the server adapters
are running without these configuration settings.

Mapping file The related configuration item is plugins:imsa:mapping_file. You can use
this to specify either a native z/OS dataset name or a fully qualified
pathname to a z/OS UNIX System Services file. The contents of the specified
file represent the mappings between IDL operations that the adapter
83

CHAPTER 4 | IMS Server Adapter Configuration Details
supports and target IMS transaction names. The mapping file is read by the
adapter when it starts. Refer to �The Mapping File� on page 236 for more
details.

Type information mechanism The related configuration item is plugins:imsa:repository_id. It specifies
the repository used by the IMS server adapter to store operation signatures.
Two repositories are supported: IFR (ifr) and type_info store (type_info).
The default is ifr. Refer to �Using type_info store as a Source of Type
Information� on page 252 for more information on the role of type
information. You can also set this item to none, to indicate that the adapter
should only support imsraw and not attempt to read type information from
anywhere.

IFR signature cache file If the IMS server adapter is configured to use the IFR as the type information
repository (a store of operation signatures), an IFR signature cache file can
be used to improve performance. The related configuration item is
plugins:imsa:ifr:cache. Refer to �Using an IFR Signature Cache File� on
page 250 for more information on how IFR signature cache files work.
 84

IMS Server Adapter Service Configuration
The filename specification for the signature cache file can take one of
several forms:

� The following example reads the mappings from a file in the z/OS UNIX
System Services hierarchical file system (HFS):

� The following example shows the syntax to indicate that the mappings
are cached in a flat file (PS) data set, which is created with the default
attributes used by the LE runtime:

The data set is created with the default attributes used by the LE runtime.
Depending on the number of interfaces and the complexity of the types
used, this might not be large enough. In this case, the IMS server adapter
saves as many cache entries as possible and then issues error messages. If
this occurs, you should preallocate a larger data set with the same
attributes, and use this name the next time you start the server adapter.

type_info store If the IMS server adapter is configured to use a type_info store as the type
information repository (a store of operation signatures), the location of the
store must be supplied. The related configuration item is
plugins:imsa:type_info:source.

plugins:imsa:ifr:cache = "/home/user/sigcache.txt;"

plugins:imsa:ifr:cache = "//HLQ.DEMO.IFRCACHE";

Note: Do not use members of partitioned data sets as a signature cache
file.
85

CHAPTER 4 | IMS Server Adapter Configuration Details
The plugins:imsa:type_info:source variable can be set to one of the
following:

� An HFS file (z/OS UNIX System Services)

Specifies a file to use as a type_info source. Operation signatures are
read from this file during start-up. If a refresh is requested (via itadmin
mfa refresh for example), this file is re-read. For example:

� An HFS directory (z/OS UNIX System Services)

Specifies a directory to use as a type_info source. Operation signatures
are read from all files in this directory during start-up. If a refresh is
requested, all files in the directory are browsed until the relevant
operation signature(s) are found. For example:

� A PDS member (native z/OS)

Specifies a PDS member (batch) to use as a type_info source.
Operation signatures are read from this member during start-up. If a
refresh is requested, this member is re-read. For example:

� A PDS (native z/OS)

Specifies a dataset to use as a type_info source. Operation signatures
are read from all member in this dataset during start-up. If a refresh is
requested, all member in the dataset are browsed until the relevant
operation signature(s) are found. For example:

For PDS names, you can use a DD name, as long as this is defined to the
IMS server adapter start JCL, orbixhlq.JCLLIB(IMSA)

plugins:imsa:type_info:source = "/home/bob/type_info.txt";

plugins:imsa:type_info:source = "/home/bob/typeinfo_store";

plugins:imsa:type_info:source = "//MY1.TYPEINFO(MYINFS)";

plugins:imsa:type_info:source = "//MY1.TYPEINFO";

Note: The use of HFS directories or a PDS is preferable to the use of flat
files, because these methods are better suited to the dynamic addition or
removal of interface information, and they can also address IDL versioning.
 86

IMS Server Adapter Service Configuration
87

CHAPTER 4 | IMS Server Adapter Configuration Details
 88

CHAPTER 5

Configuring the
IMS Server
Adapter OTMA
Plug-In
This chapter describes how to configure the IMS server adapter
to use OTMA to communicate with IMS.

In this chapter This chapter discusses the following topics:

Setting Up OTMA for the IMS Server Adapter page 90

OTMA Plug-In Configuration Items page 93
89

CHAPTER 5 | Configuring the IMS Server Adapter OTMA Plug-In
Setting Up OTMA for the IMS Server Adapter

Overview This section describes the steps to set up OTMA for the IMS server adapter.
It discusses the following topics:

� Prerequisites to enabling OTMA for IMS

� Activating OTMA for IMS

� Further reading

Prerequisites to enabling OTMA
for IMS

To use the OTMA version of the IMS server adapter, OTMA and the OTMA
C/I must be enabled for IMS. APARs provide all the binaries needed for the
OTMA C/I to function on your IMS system for IMS version 6, and it comes
with the base IMS install for IMS version 7. Also, ensure that all the latest
OTMA and OTMA C/I APARs have been applied to your IMS system.

Activating OTMA for IMS OTMA is activated by providing the following three parameters (PARM1) for
the IMS proclib DFSPBxxx member (which starts the IMS control region):

OTMA=Y The OTMA parameter indicates whether OTMA should be
activated at start-up. If you specify N for this parameter, but
still provide the other two parameters, you can start OTMA in
IMS with the following command:

/START OTMA

GRNAME=IMSG The GRNAME parameter provides the name of the XCF group
that IMS creates or joins (or both). The name IMSG is provided
as an example. You need to provide the relevant name for your
site to the IMS server adapter, using the xcf_group_name
configuration item.

OTMANM=IMS The OTMANM parameter specifies the name that IMS has within
this XCF group. The name IMS is provided as an example. The
member name for your site must be provided to the IMS server
adapter, using the xcf_ims_member_name configuration item.
You need to decide on names for the XCF group, IMS in the
group, the server adapter member name(s), and the
four-character TPIPE prefix to set up the RACF security needed
by OTMA.
 90

Setting Up OTMA for the IMS Server Adapter
You can find the procedure to activate the OTMA C/I in the IBM publication
OTMA C/I, SC26-8743. This guide lists the following steps:

Example 3: Steps to Activate the OTMA C/I

One of the OTMA C/I modules, DFSYSVC0, needs to be loaded and
registered to the SVC services by an authorized address space
running on the same OS/390 image as the application programs that
will be accessing it.

OTMA Callable Services provides a stand-alone program, DFSYSVI0,
that must be run after MVS IPL to initalize the OTMA C/I.

You must add an entry in the MVS program properties table (PPT)
for the OTMA Callable Services initalization program. The steps
for doing this are:
 1. Edit the SCHEDxx member of the SYS1.PARMLIB data set.
 2. Add the following entry to the SCHEDxx member:
 PPT PGMNAME(DFSYSVI0)
 CANCEL
 KEY(7)
 SWAP
 NOPRIV
 DSI
 PASS
 SYST
 AFF(NONE)
 NOPREF
3. Take one of the following actions to make the SCHEDxx changes
effective:
 Re-IPL the MVS system.
 or
 Issue the �MVS SET SCH=� command.

RELATED READING: For additional reading about updating the
program properties table, see MVS/ESA Initialization and Tuning
Reference.
A sample JCL proc for running DFSYSVI0 is as follows:
 //OTMAINIT PROC RGN=3000K,SOUT=A
 //IEFPROC EXEC PGM=DFSYSVI0,
 // REGION=&RGN
 //STEPLIB DD DISP=SHR,UNIT=SYSDA,
 // DSN=IMSVS.RESLIB
 //SYSPRINT DD SYSOUT=&SOUT
 //SYSUDUMP DD SYSOUT=&SOUT
91

CHAPTER 5 | Configuring the IMS Server Adapter OTMA Plug-In
Ensure that the OTMAINIT procedure is re-executed after every IPL. If you get
a SF92 abend when the OTMA-enabled IMS server adapter starts, this
usually means the OTMAINIT job was not executed since the last IPL.

Further reading Refer to the IBM publication OTMA C/I, SC26-8743 to set up the RACF
security for the resource IMSXCF.OTMACI.

You can find detailed documentation to activate OTMA for IMS in the IBM
publication Open Transaction Manager Access Guide and Reference,
SC26-8743.

Refer to the section on security in the IBM publication OTMA reference,
SC26-8743 for details on security-related questions.
 92

OTMA Plug-In Configuration Items
OTMA Plug-In Configuration Items

In this section This section discusses the following topics:

� OTMA/IMS XCF group name

� OTMA/IMS XCF IMS server adapter member name

� OTMA/IMS XCF IMS member name

� OTMA/IMS XCF TPIPE prefix name

� OTMA/IMS XCF TPIPE name

� OTMA/IMS transaction request timeout

� Number of output segments allocated at startup

� IMS message queue length

� OTMA/IMS sync level one

OTMA/IMS XCF group name The related configuration item is plugins:ims_otma:xcf_group_name. It
specifies the name of the XCF group that the IMS server adapter is to join.
This must be the same as the value for the GRNAME parameter that is
specified to the IMS control region when it is being started. This is the name
displayed under the GROUP heading when the /DIS OTMA command is
entered in IMS. If you do not specify a value for the XCF group name, the
default is IMSG. Example 4 illustrates how the IMS console might appear
when you enter the /DIS OTMA command:

OTMA/IMS XCF IMS server
adapter member name

The related configuration item is
plugins:ims_otma:xcf_adapter_member_name. It specifies the member
name that the IMS server adapter has in the XCF group. If you do not specify
a member name, the default name is IONAIMS. In the preceding Example 4,

Example 4: Example of Output from the /DIS OTMA Command

/DIS OTMA

 GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
 IMSG
 - IMS ACTIVE SERVER FULL
 - IONAIMS NOT DEFINED DISCONNECTED
93

CHAPTER 5 | Configuring the IMS Server Adapter OTMA Plug-In
the status of the server adapter in the XCF group is displayed as being
disconnected. The name of the IMS server adapter is displayed on this list
only if it has previously connected to the group.

OTMA/IMS XCF IMS member
name

The related configuration item is plugins:ims_otma:xcf_ims_member_name.
It specifies the IMS control region�s member name in the XCF group. The
IMS server adapter directs all requests to this member name. In the
preceding Example 4 on page 93 the member name is IMS. This means that
when you enter the /DIS OTMA command in IMS, the member name is
shown as the value in the GROUP/MEMBER column that corresponds to the
value of SERVER in the USER-STATUS column. If you do not specify a value for
the IMS member name, the default is IMS. The IMS member name specified
must match the value for the OTMANM parameter relating to the IMS control
region being connected to.

OTMA/IMS XCF TPIPE prefix
name

The related configuration item is plugins:ims_otma:xcf_tpipe_prefix. It
specifies the four-character prefix that is used for the name of the TPIPE
that is opened between the IMS server adapter and the IMS region. The
OTMA C/I generates the rest of the name internally. If you do not specify a
value for the TPIPE prefix name, the default is ORX1.

OTMA/IMS XCF TPIPE name The related configuration item is plugins:ims_otma:xcf_tpipe_name. It
specifies the TPIPE name that is opened between the IMS server adapter
and the IMS region. It is used for client requests to IMS transactions that do
not return a reply message to the client. These are transactions initiated via
calls to the run_transaction_no_reply and
run_transaction_binary_no_reply operations in the imsraw interface. The
value for this configuration item must be different from the value for the
plugins:ims_otma:xcf_tpipe_prefix configuration item. It can be up to
eight characters in length. If you do not specify a value for the TPIPE name,
the default is ORXASYNC.
 94

OTMA Plug-In Configuration Items
OTMA/IMS transaction request
timeout

The related configuration item is plugins:ims_otma:timeout. It specifies
the number of seconds that the IMS server adapter waits for a response
from IMS before cancelling the request, and prevents the server adapter
from having to wait indefinitely for a response from IMS if the transaction
has stopped for some reason. The default is no timeout.

Number of output segments
allocated at startup

The related configuration item is plugins:ims_otma:output_segment_num.
OTMA obtains more output segments in the IMS server adapter as it needs
them. If IMS needs to resize the output area, it issues a User 119 abend to
cancel the transaction, so the server adapter can re-issue the transaction
with a larger output area. You can prevent this abend by allocating enough
output segments when starting the server adapter for the size of the data
that you expect back from IMS.

If a request asks for more output segments than are available, the increased
number of output segments is also available to future requests on that
thread.

IMS message queue length The related configuration item is plugins:ims_otma:mq_length. The IMS
server adapter forwards a request to IMS by placing data in segments onto
the IMS message queue. This setting specifies how big each segment can
be. If a data segment does not fit into a single IMS message queue dataset
segment, IMS allows the segment to be spanned across multiple message
queue records.

The best choice of IMS message queue length is usually at or just below
32KB, which is the limit for segment lengths. There are two distinct
advantages in sending up to 32KB in each data segment:

� Sending the maximum limit in each data segment results in the least
amount of wasted space in the IMS message queue. For big requests it
means that each IMS message queue record is filled completely,

Note: If OTMA is being used, an override of the default timeout value can
also be supplied as part of the transaction name. The transaction name
can be specified in the format transaction:timeout to indicate an
override timeout. For example, PART:40 runs the PART transaction with a
40-second timeout. This is only necessary if the default timeout supplied
as part of the adapter configuration is not suitable for a specific transaction
(for example, for a very long running transaction).
95

CHAPTER 5 | Configuring the IMS Server Adapter OTMA Plug-In
except for the last one used for each segment. This is preferable than
trying to match the message queue record length, because this value
can be difficult to match exactly, resulting in a small amount of space
being wasted in each record.

� Sending a couple of big segments is faster than sending a lot of small
segments, because the communication overhead per segment is
reduced in OTMA.

Setting a big value for plugins:ims_otma:mq_length does not cause any
extra overhead for small requests, because the IMS server adapter only uses
what it needs up to this maximum. For a small request, therefore, only the
small message is transmitted between the adapter and IMS.

OTMA/IMS sync level one The related configuration item is plugins:ims_otma:use_sync_level_one. It
indicates whether OTMA calls are performed using OTMA Sync level 0 or
Sync level 1. If Sync level 0 is used, the response times might be improved,
but OTMA timeouts are ignored; also, if IMS returns more output to the
adapter than the adapter expects, the extra output is lost. Refer to the IBM
IMS OTMA Guide for more details on OTMA Sync levels. The use of Sync
level 0 is desirable if shared message queues are used for IMS, to avoid the
creation of cascaded RRS units of recovery. The default is true, to use Sync
level 1.
 96

CHAPTER 6

Configuring the
IMS Server
Adapter APPC
Plug-In
This chapter describes how to configure the IMS server adapter
to use APPC to communicate with IMS.

In this chapter This chapter discusses the following topics:

Setting Up APPC for the IMS Server Adapter page 98

Additional RACF Customization Steps for APPC page 106

APPC Plug-In Configuration Items page 109
97

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
Setting Up APPC for the IMS Server Adapter

Prerequisites to using APPC Before you can run an Orbix IMS application in your region, you must
perform a number of additional steps to enable the required APPC
functionality on your z/OS system. Depending on your installation, one or all
of these tasks might already have been completed.

Further reading For more information on setting up APPC/MVS, refer to the IBM publication
MVS Planning: APPC/MVS Management, GC28-107.

In addition, you can find specific information on the use of APPC by IMS in
the chapter on �Administering APPC/IMS and LU 6.2 Devices� in IMS/ESA
Administration Guide: Transaction Manager, SC26-8104.

In this section This section discusses the following topics:

Defining LUs to APPC page 99

Defining an APPC Destination Name for the IMS LU page 101

Defining LUs to VTAM page 103

Additional RACF Customization Steps for APPC page 106
 98

Setting Up APPC for the IMS Server Adapter
Defining LUs to APPC

Overview An LU (Logical Unit) name identifies each side of an APPC conversation. It
is defined to APPC/MVS in the APPCPMxx member of SYS1.PARMLIB. You must
define at least two LU names to use the IMS server adapter: one for the IMS
server adapter, and one for IMS.

This section discusses the following topics:

� Associating an IMS LU with a specific IMS region

� LU names and outbound-only communication

� Specifying the APPC-side information dataset name

� Using other IMS-on-APPC functions

� Running multiple server adapters

Associating an IMS LU with a
specific IMS region

The IMS LU definition is associated with a specific IMS region by specifying
the name of that region (IMSID from the IMSCTRL macro in the IMS system
generation) as the transaction scheduler for the LU. For example:

LU names and outbound-only
communication

The LU name to be used by the IMS server adapter is only used for
outbound communication. It can therefore be specified as follows:

Specifying the APPC-side
information dataset name

The only other requirement in SYS1.PARMLIB(APPCPMxx) is the specification
of the name of the VSAM data set where APPC-side information can be
found�for example, SIDEINFO DATASET(SYS1.APPCSI).

This data set is used to define APPC destination names. If your installation
does not already have one, see SYS1.SAMPLIB(ATBSIVSM) for sample JCL to
create one.

LUADD ACBNAME(IMSLU01)
BASE
SCHED(IMS1)

LUADD ACBNAME(ORXLU01)
NOSCHED
99

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
Using other IMS-on-APPC
functions

Although this is all that is required for Orbix, other keywords might be
needed if your system is using other IMS-on-APPC functions, such as
initiating outbound conversations from within IMS.

Running multiple server adapters If you want to run multiple server adapters, you might want to set up
separate LUs for each one.
 100

Setting Up APPC for the IMS Server Adapter
Defining an APPC Destination Name for the IMS LU

Overview The IMS server adapter connects to an IMS region through an APPC
destination name rather than directly through the IMS LU name. The APPC
destination name is used to establish various default characteristics for the
APPC conversation being initiated; including the name of the partner LU,
the transaction program name, and a logon mode name.

This section discusses the following topics:

� Storage of the APPC destination name

� Example of the APPC-side information JCL

� Explanation of example JCL

Storage of the APPC destination
name

All this information is stored in the APPC-side information data set. This
data set is updated using the ATBSDFMU APPC/MVS utility program.

Example of the APPC-side
information JCL

The following is an example of JCL to load an entry into the APPC-side
information data set:

Example 5: Example of APPC-Side Information JCL

//SIADDEXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA
SIADD

1 DESTNAME(ORBIXIMS)
2 TPNAME(DFSAPPC)
3 MODENAME(APPCHOST)
4 PARTNER_LU(IMSLU01)

/*
101

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
Explanation of example JCL The example APPC-side information JCL can be explained as follows:

1. For the purposes of the IMS server adapter, DESTNAME is used to name
the string that is to be passed to the server adapter when it is started.

2. The TPNAME specification is used to name an IMS transaction to run.
However, this is overridden by the server adapter for each
conversation. Therefore, its value here is not important.

3. The MODENAME parameter is used to name an entry in the VTAM logon
mode table. This specifies other characteristics that are to be used in
the conversation. See the SYS1.SAMPLIB(ATBLMODE)data set for a
definition of the APPCHOST logon mode, and the
SYS1.SAMPLIB(ATBLJOB) data set for the JCL to install it.

4. PARTNER_LU must specify the previously defined IMS LU.
 102

Setting Up APPC for the IMS Server Adapter
Defining LUs to VTAM

Overview APPC/MVS expects its LUs to be defined as VTAM resources, so that they
can access a SNA network. This subsection discusses the following topics:

� VTAM requirements for LUs

� Using SYS1.SAMPLIB(ATBAPPL)

� APPC definition parameter security requirements

VTAM requirements for LUs Although the IMS server adapter is usually run on the same system as the
IMS region with which it communicates (that is, an LU=LOCAL conversation),
VTAM application program definition (APPL) macros must still be coded for
each LU. See SYS1.SAMPLIB(ATBAPPL) for a sample APPL definition of an
APPC LU.

Using SYS1.SAMPLIB(ATBAPPL) The following definitions for the IMS and IMS server adapter LUs use the
SYS1.SAMPLIB(ATBAPPL) definition, with some changes (which are
highlighted):

Example 6: Example of APPL Definitions for IMS and IMS Server Adapter
LUs (Sheet 1 of 2)

1 IMSLU01 APPL ACBNAME=IMSLU01, C
APPC=YES, C

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

AUTOSES=0, C
DDRAINL=NALLOW, C
DLOGMOD=APPCHOST, C
DMINWNL=5, C
DMINWNR=5, C
DRESPL=NALLOW, C
DSESLIM=10, C
LMDENT=19, C
MODETAB=LOGMODES, C
PARSESS=YES, C
SRBEXIST=YES, C
VPACING=1

1 ORXLU01 APPLACBNAME=ORXLU01, C
APPC=YES, C

2 SECACPT=CONV, C
103

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
APPC definition parameter
security requirements

The following requirements exist:

1. Both the ACBNAME= parameter and the APPL statement label should
match the LU name defined to APPC.

2. The SECACPT= and VERIFY= parameters specify which authentication
and access checks are made when initiating conversations between the
two LUs. Because both sides of an APPC conversation must agree on
the level of conversation security to use, it is important that both LU
definitions specify the same values for these two parameters.

SECACPT=CONV indicates that a partner LU must provide user and
password information to authenticate itself before being allowed
access to resources on the local system. This protects your IMS region
from unauthorized access by users on other systems in your SNA
network.

3 VERIFY=OPTIONAL, C
AUTOSES=0, C
DDRAINL=NALLOW, C
DLOGMOD=APPCHOST, C
DMINWNL=5, C
DMINWNR=5, C
DRESPL=NALLOW, C
DSESLIM=10, C
LMDENT=19, C
MODETAB=LOGMODES, C
PARSESS=YES, C
SRBEXIST=YES, C
PACING=1

Example 6: Example of APPL Definitions for IMS and IMS Server Adapter
LUs (Sheet 2 of 2)
 104

Setting Up APPC for the IMS Server Adapter
3. VERIFY=OPTIONAL indicates that the password requirement can be
bypassed if LU-LU session-level verification can be performed. This
allows the server adapter to get access (via the session keys in the
APPC-LU profiles described in �RACF APPCLU profile contents and
operation� on page 107) to the IMS region without having to know the
passwords of all its clients.

If there is no possibility of unauthorized access from other systems in
your SNA network, you might prefer to code SECACPT=ALREADYV and
VERIFY=NONE to indicate that partner LUs do not need to be
authenticated. This is safe for LU=LOCAL conversations because user
information is provided directly by APPC/MVS. Therefore, there is no
opportunity for the programmers of the partner LU to fabricate his
identity. Refer to �Securing the IMS Server Adapter� on page 209 for
more details about APPC conversation security and session-level
verification.
105

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
Additional RACF Customization Steps for
APPC

Overview There are a number of RACF definitions related to APPC that you might
need to add or change to run the IMS server adapter. Refer to �Securing the
IMS Server Adapter� on page 209 for more details about how the server
adapter fits into a secure system environment.

Much of the information provided in this section can be found in the
sections relating to LU Security and Conversation Security in the Setting up
Network Security chapter in the IBM publication MVS Planning: APPC/MVS
Management, GC28-1807.

This section discusses the following topics:

� Partner LUs and user ID requirements

� Bypassing partner LU user ID and password requirements

� RACF APPCLU profile contents and operation

� Accessing RACF APPCLU profiles

� Controlling access to RACF APPCLU profiles

� Enabling APPC/IMS

Partner LUs and user ID
requirements

If you have defined the IMS LU to VTAM as having SECACPT=CONV and
VERIFY=OPTIONAL, partner LUs that initiate a conversation must provide a
user ID and password to authenticate themselves to the IMS LU. This
ensures that the IMS transactions being submitted over the conversation can
run under that user ID. The IMS server adapter does not have passwords for
all its clients, so it cannot meet this requirement directly. If you are running
OS/390 V1R3 or later, this option is enforced.

Bypassing partner LU user ID and
password requirements

You can bypass this requirement by defining two RACF APPCLU profiles with
a shared session key that essentially acts as a password replacement for
conversations between the LUs named in the profiles.

Each RACF APPCLU profile name has the form:
�networkid.local-lu-name.partner-lu-name� and contains information to
be used by APPC/MVS on one side of a conversation between the two
 106

Additional RACF Customization Steps for APPC
named LUs. This means each side of a conversation has its own specific
profile. For example, if LU ORXLU01 initiates a conversation with LU
IMSLU01, APPC/MVS on the initiating (outbound) side examines the
�networkid.ORXLU01.IMSLU01� profile, and APPC/MVS on the receiving
(inbound) side examines the �networkid.IMSLU01.ORXLU01� profile.

RACF APPCLU profile contents
and operation

Each profile contains a session key, which is a string of letters or numbers,
and a CONVSEC setting. When a conversation is initiated between these two
LUs, APPC/MVS on the outbound side passes the session key found in its
profile to APPC/MVS on the inbound side. If APPC/MVS on the inbound side
finds that the received session key matches the session key in its own
profile, it overrides the VTAM SECACPT= setting with the CONVSEC setting from
its profile. Thus, to allow the IMS server adapter to authenticate itself to IMS
without passwords, the following definitions might be used:

Accessing RACF APPCLU profiles It is not necessary to permit the IMS server adapter or IMS region to have
user IDs for the RACF APPCLU profiles. However, access to the profiles
should be tightly controlled to ensure that only appropriate users can read or
change the session keys.

If you have set up the RACF APPCLU profiles that allow a conversation
between two specific LU names to bypass password-checking, you should
limit the users that can initiate or receive conversations using those LU
names.

Controlling access to RACF
APPCLU profiles

You can control access to RACF APPCLU profiles by creating RACF APPCPORT
profiles for each LU name and by permitting only certain users access to
those profiles. For example:

RDEFINE APPCLU P390.ORXLU01.IMSLU01
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))
RDEFINE APPCLU P390.IMSLU1.ORXLU01
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

SETROPTS CLASSACT(APPCLU)

RDEFINE APPCPORT IMSLU01 UACC(NONE)
PERMIT IMSLU01 CLASS(APPCPORT) ID(IMS1) ACCESS(READ)
107

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
By having an ORXLU01 profile, you are restricting the users that can take
advantage of the session-level verification provided by the APPCLU profiles.
By having an IMSLU01 profile, you are preventing users from being able to
masquerade as an IMS region.

You might also want to be able to completely disallow a connection to the
IMS LU on a per-user basis. For example, if a user initiates an APPC
conversation with the IMS LU (either by using the IMS server adapter or a
custom APPC program) from an LU for which no APPCLU profiles exist, and
SECACPT=CONV is coded on the VTAM ACB for the IMS LU, users cannot be
authenticated unless they provide a password. However, this does not
prevent the conversation from being initiated; it simply means the
transaction runs under no user. (This is known as a security_none
conversation.)

If you want to prevent such connections, you can create a RACF APPL profile
for the IMS LU name, and only grant access to specific users. For example:

Enabling APPC/IMS To enable APPC/IMS, specify APPC=Y in the start-up parameters, or enter the
following command on a running system:

/START APPC

To enable APPC/IMS security, specify APPCSE=F at start-up, or enter the
following command:

/SECURE APPC FULL

RDEFINE APPCPORT ORXLU01 UACC(NONE)
PERMIT ORXLU01 CLASS(APPCPORT) ID(Adapter) ACCESS(READ)

SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)

RDEFINE APPL IMSLU01 UACC(NONE)
PERMIT IMSLU01 CLASS(APPL) ID(Adapter) ACCESS(READ)

SETROPTS CLASSACT(APPL) RACLIST(APPL)
 108

APPC Plug-In Configuration Items
APPC Plug-In Configuration Items

Overview This section provides a detailed description of the APPC plug-in
configuration items. It discusses the following topics:

� IMS APPC destination LU name

� Server Adapter outbound LU name

� APPC/IMS transaction request timeout

� IMS message queue length

IMS APPC destination LU name The related configuration item is
plugins:ims_appc:ims_destination_name. This specifies the APPC LU
name for the IMS region to which the IMS server adapter connects. All
incoming client requests are forwarded into the specific IMS region that is
associated with this destination name. The default value is ORBIXIMS.

The specified APPC destination name is verified only when the server
adapter first attempts to issue a request to the specified IMS region. This
means that the IMS region does not have to be available when you start the
APPC-based adapter.

Server Adapter outbound LU
name

The related configuration item is
plugins:ims_appc:appc_outbound_lu_name. This specifies the APPC LU
name that the server adapter uses to initiate communication with IMS. This
is useful when security considerations prohibit APPC connections between
the system base LU and IMS. Refer to �APPC-Based Security
Considerations� on page 221 for more details. Refer to �Defining LUs to
APPC� on page 99 for an example where the LU name is created as
ORXLU01.

APPC/IMS transaction request
timeout

The related configuration item is plugins:ims_appc:timeout. It specifies
the number of minutes that the IMS server adapter waits for a response from
IMS before cancelling the request. It prevents the server adapter from having
to wait indefinitely for a response from IMS if the transaction has stopped for
some reason. The default is no timeout.
109

CHAPTER 6 | Configuring the IMS Server Adapter APPC Plug-In
IMS message queue length The related configuration item is plugins:ims_appc:mq_length. The IMS
server adapter forwards a request to IMS by placing data in segments onto
the IMS message queue. This setting specifies how big each segment can
be. If a data segment does not fit into a single IMS message queue dataset
segment, IMS allows the segment to be spanned across multiple message
queue records.

The best choice of IMS message queue length is usually at or just below
32K, which is the limit for segment lengths. There are two distinct
advantages in sending up to 32K in each data segment:

� Sending the maximum limit in each data segment results in the least
amount of wasted space in the IMS message queue. For big requests it
means that each IMS message queue record is filled completely,
except for the last one used for each segment. This is preferable than
trying to match the message queue record length, because this value
can be difficult to match exactly, resulting in a small amount of space
being wasted in each record.

� Sending a couple of big segments is faster than sending a lot of small
segments, because the communication overhead per segment is
reduced in APPC.

Setting a big value for plugins:ims_appc:mq_length does not cause any
extra overhead for small requests, because the IMS server adapter only uses
what it needs up to this maximum. For a small request, therefore, only the
small message is transmitted between the adapter and IMS.
 110

CHAPTER 7

Configuring the
IMS Server
Adapter RRS
Plug-In
The RRS plug-in provides integration facilities between the
CORBA OTS service in the IMS server adapter and the
commit/rollback processing of IMS. This chapter provides an
introduction to RRS functionality, shows you how to set up
RRS for the IMS server adapter, and provides details of the
RRS plug-in configuration items.

In this chapter This chapter discusses the following topics:

Introduction to RRS page 112

Setting up RRS for the IMS Server Adapter page 113

RRS Plug-In Configuration Items page 120
111

CHAPTER 7 | Configuring the IMS Server Adapter RRS Plug-In
Introduction to RRS

RRS plug-in functionality This plug-in can only be used in conjunction with the OTMA transport
plug-in. The RRS plug-in only becomes involved in the request if the client
sends the request with a transaction context. The server adapter therefore
supports both transactional and non-transactional requests when the RRS
plug-in is enabled. The transactional performance overheads only affect
transactional requests. With RRS support, the server adapter only commits
or rolls back transactions in IMS when the client program issues the commit
or rollback call for a transactional request.

This section discusses the following topics:

� IORs and transaction support

� Further reading

IORs and transaction support IORs for IDL interfaces that support transactional processing have an extra
component to indicate to the client that transactional support is available in
the server (the server adapter in this case). Ensure that you obtain new IORs
from the IMS server adapter, using prepare and resolve, and so on, after you
have enabled the RRS plug-in. This is because transactional communication
between the client program and the server adapter only works with these
new IORs with the transaction support component.

Further reading For further information, refer to the IBM publication OS/390 MVS Setting
up a Sysplex, GC28-1779.

Further information about System Logger is available in the IBM publication
OS/390 MVS Setting up a Sysplex, GC28-1779.
 112

Setting up RRS for the IMS Server Adapter
Setting up RRS for the IMS Server Adapter

In this section This section describes what you need to do to use the RRS plug-in with the
IMS server adapter. It discusses the following topics:

� IPL your z/OS system in Sysplex mode

� Defining the required log streams

� Managing log streams

� Starting RRS

� Stopping RRS

� Restarting IMS when RRS is available on the system

IPL your z/OS system in Sysplex
mode

RRS requires the use of a sysplex couple data set, which means that your
z/OS system must be configured as part of a single-system or multi-system
sysplex.

The following steps are required.

Step Action

1 Change the PLEXCFG parameter in SYS1.PARMLIB(IEASYSxx) to
PLEXCFG=MONOPLEX for a single-system sysplex or
PLEXCFG=MULTISYSTEM for a multi-system sysplex. PLEXCFG=ANY
is also valid.

2 Specify COUPLExx in SYS1.PARMLIB(IEASYSxx) to identify the
COUPLExx parmlib member that describes the sysplex
environment.
113

CHAPTER 7 | Configuring the IMS Server Adapter RRS Plug-In
Defining the required log streams There are two types of log streams:

� Coupling facility log streams.

� DASD-only log streams.

The main difference between the two types of log streams is the storage
medium used to hold interim log data. In a coupling facility log stream,
interim storage for log data is contained in coupling facility list structures. In

3 Use the XCF couple dataset format utility (IXCL1DSU) to create
and format all sysplex couple data sets before IPLing a system
that is to use them. The following JCL can be used:

//STEP1 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.XCF.CDS01) VOLSER(S27VL1)
 MAXSYSTEM(8)
 CATALOG
 DATA TYPE(SYSPLEX)
 ITEM NAME(GROUP) NUMBER(50)
 ITEM NAME(MEMBER) NUMBER(120)
 ITEM NAME(GRS) NUMBER(1)
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.XCF.CDS02) VOLSER(S27VL2)
 MAXSYSTEM(8)
 CATALOG
 DATA TYPE(SYSPLEX)
 ITEM NAME(GROUP) NUMBER(50)
 ITEM NAME(MEMBER) NUMBER(120)
 ITEM NAME(GRS) NUMBER(1)
/*

4 Create a COUPLExx member in SYS1.PARMLIB that includes the
couple data sets you have just defined; for example:

COUPLE SYSPLEX(IONAPLEX)

 PCOUPLE(SYS1.XCF.CDS01)

 ACOUPLE(SYS1.XCF.CDS02)

5 IPL your system for the above changes to take effect.

Step Action
 114

Setting up RRS for the IMS Server Adapter
a DASD-only log stream, interim storage for log data is contained in local
storage buffers on the system. For the purposes of this demonstration,
DASD-only log streams are used.

Prerequisites to running the log
streams

RRS requires five log streams to be defined to System Logger. The IBM
publication OS/390 MVS Programming: Resource Recovery, GC28-1739
lists the following initial and recommended sizes for the log streams:

The initial sizes listed should be sufficient to run the demonstration, but the
log streams should be set up with the maximum sizes, if possible, to
facilitate future use of RRS on the system. This is because production-level
applications require the maximum sizes listed. Also, the ARCHIVE stream is
not required, but setting it up could help to trace any problems with RRS
later on.

Table 1: Initial and Maximum Log Stream Sizes

Log Stream Initial Size Maximum Size

RM.Data 1 MB I MB

MAIN.UR 5 MB 50 MB

DELAYED.UR 5 MB 50 MB

RESTART 1 MB 5 MB

ARCHIVE 5 MB 50 MB
115

CHAPTER 7 | Configuring the IMS Server Adapter RRS Plug-In
Managing log streams Log streams are managed based on the policy information that is placed in
the LOGR couple data set. To do this perform the following steps.

Step Action

1 Create and format the LOGR couple data set. The following JCL
can be used:

//STEP1 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.SLC.FDSS1) VOLSER(S27VL1)
 DATA TYPE(LOGR)
 ITEM NAME(LSR) NUMBER(100)
 ITEM NAME(LSTRR) NUMBER(50)
 ITEM NAME(DSEXTENT) NUMBER(20)
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.SLC.FDSS2) VOLSER(S27VL2)
 DATA TYPE(LOGR)
 ITEM NAME(LSR) NUMBER(100)
 ITEM NAME(LSTRR) NUMBER(50)
 ITEM NAME(DSEXTENT) NUMBER(20)
/*

2 Update the SYS1.PARMLIB(COUPLExx) member to include the
LOGR data sets you have just defined. For example:

DATA

 TYPE(LOGR)

 PCOUPLE(SYS1.SLC.FDSS1)

 ACOUPLE(SYS1.SLC.FDSS2)
 116

Setting up RRS for the IMS Server Adapter
3 Make the LOGR couple data sets available. You can use either of
the following ways to make the LOGR datasets available to the
system:

� IPL the system to activate the newly defined
specifications in the COUPLxx member.

� Issue the following SETXCF operator commands to bring
the LOGR data sets online without an IPL:

SETXCF COUPLE,TYPE=LOGR,PCOUPLE=(SYS1.SLC.FDSS1)

SETXCF COUPLE,TYPE=LOGR,ACOUPLE=(SYS1.SLC.FDSS2)

Step Action
117

CHAPTER 7 | Configuring the IMS Server Adapter RRS Plug-In
4 Define the log streams, using the IXCMIAPU utility provided in
SYS1.MIGLIB. The following JCL can be used:

//STEP1 EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(LOGR) REPORT(YES)
 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.ARCHIVE)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.RM.DATA)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.MAIN.UR)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.DELAYED.UR)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.RESTART)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)
/*

Step Action
 118

Setting up RRS for the IMS Server Adapter
Starting RRS Perform the following steps to start RRS:

Stopping RRS To stop RRS, issue the following command:

SETRRS CANCEL

Restarting IMS when RRS is
available on the system

Restart the IMS control region. The following message must appear in the
IMS control region output to indicate that IMS has attached to RRS:

For recent versions of IMS, such as IMS v8 (with very up-to-date
maintenance) and IMS v9, you might also need to specify RRS=Y as a
start-up parameter to the IMS control region, before RRS can be activated in
IMS.

Step Action

1 Update the IEFSSNxx member of SYS1.PARMLIB to add RRS as
a z/OS subsystem as follows:

SUBSYS SUBNAME(RRS)

An IPL is required to activate this change. Dynamic subsystem
definition is not supported by RRS, so you cannot use the
SETSSI ADD,SUBNAME=RRS command to define RRS.

2 Copy SYS1.SAMPLIB(ATRRRS) to SYS1.PROCLIB(RRS)

3 Start RRS by issuing the following operator command:

S RRS

DFS0653I PROTECTED CONVERSATION PROCESSING WITH RRS/MVS ENABLED
119

CHAPTER 7 | Configuring the IMS Server Adapter RRS Plug-In
RRS Plug-In Configuration Items

In this section This section provides a detailed description of the RRS plug-in configuration
items. It discusses the following topics:

� Server adapter resource manager name

� Initial reference name for RRS plug-in

Server adapter resource manager
name

The related configuration item is plugins:rrs:rm-name. It specifies the
resource manager name that the IMS server adapter uses to register with
RRS. The server adapter registers with RRS as a communications resource
manager, because it only forwards transactional requests and does not itself
manage incoming data on a transactional basis (that is, it supports only
communication and is not a database). Each server adapter should have its
own resource manager name that it uses to register with RRS. The resource
manager name should also be in a dot-separated format; for example, as
follows: TEST.IMSADAP1.IONA.UA

According to the rules of RRS on the naming of resource managers, the
resource manager name for the server adapter must be suffixed with .UA.
This indicates to RRS that the server adapter might run without APF
authorization and that it does not use any of the RRS services that require
APF authorization. The second last item in the name should be the
company name that provides this resource manager. Depending on the
naming schemes in your company, this should either be IONA or the name
of your company. Using IONA is usually the best option, to ensure that the
resource manager names do not conflict with resource managers provided
by other companies. The rest of the name should be specified in such a way
that it is unique for each server adapter.

The presence of this configuration item triggers the server adapter to
attempt to load RRS.

Initial reference name for RRS
plug-in

The related configuration item is initial_references:IT_RRS:plugin. It
specifies that the RRS plug-in should be used for RRS services in the server
adapter. This should always be set to rrs and is a required item if RRS is
used.
 120

CHAPTER 8

Configuring the
IMS Server
Adapter for Client
Principals
The IMS server adapter can be configured to read the client
principal from incoming GIOP 1.0 and 1.1 requests. It can
also be configured to read the principal from a service context
for GIOP 1.2. If the server adapter reads the principal from
the GIOP request, it passes it into IMS for mapped requests.
The server adapter can also run the transaction in IMS under
the user principal obtained from the client. This chapter
explains how to configure the server adapter to use client
principals.

In this chapter This chapter discusses the following topics:

Activating Client Principal Support page 123

Setting up the Required Privileges page 127
121

CHAPTER 8 | Configuring the IMS Server Adapter for Client Principals
Additional Requirements for IMS Protocol Plug-Ins page 129

Note: See �Securing and Using the IMS Server Adapter� on page 207 for
more details about the use of client principals when running the server
adapter in secure mode.
 122

Activating Client Principal Support
Activating Client Principal Support

Overview For IDL mapped requests, the server adapter marshals the principal data
into IMS, making it available to the Orbix server inside IMS. The server
adapter can also be configured to run the transaction in IMS under this
client�s user ID for both imsraw requests and mapped requests.

This section discusses the following topics:

� Using CORBA::Principal

� Configuring the imsa plug-in

Using CORBA::Principal CORBA::Principal has been deprecated by the OMG in GIOP 1.2 and
higher. Hence the principal can only be made available to the server adapter
via GIOP 1.0 or 1.1 client requests. However, GIOP 1.2 can still be used. In
this case, the client must pass the principal string in a service context and
the server adapter must be configured to read the principal from this service
context.

Configuring the imsa plug-in To configure client_principal support, the following items within the
server adapter�s configuration scope must be reviewed.
123

CHAPTER 8 | Configuring the IMS Server Adapter for Client Principals
Table 2: Client Principal Support and imsa Plug-In Configuration Items
(Sheet 1 of 3)

Configuration Item Description

plugins:imsa:use_client_principal When this item is set to true, the principal is to be obtained
from GIOP, truncated to eight characters and converted to
uppercase. The IMS server adapter then also runs the
transaction under the user ID. If no principal is available or it is
invalid, the transaction fails.

Setting this item to true, therefore, instructs the IMS server
adapter to use z/OS services, to assume the identity of the
client when communicating with IMS. This results in IMS and
either APPC or OTMA making their security checks against
that user ID. If this option is not specified, the security checks
are made against the user ID of the server adapter itself. The
use of this option requires that the server adapter has special
privileges set up. See �Securing the IMS Server Adapter� on
page 209 for more details about using this configuration item.
When this item is set to false, the transaction runs under the
server adapter's user ID.

When this item is set to true or false, the principal is still
obtained from GIOP and passed as is (apart from being
converted from ASCII to EBCDIC) to the transaction inside
IMS, if imsraw is not being used. If the client principal is not
available from GIOP, it is not passed as part of the request to
IMS, but the transaction is still executed.

The default is false.
 124

Activating Client Principal Support
plugins:imsa:use_client_password When this item is set to yes, it indicates that the IMS server
adapter should use a client password when it wants to switch
the thread that is making the request to IMS to the user ID
passed in the client principal, instead of using SURROGAT rights.
The format of the principal sent by the client application must
then take the form userid;password (that is, user ID and
password separated by a colon) instead of the normal userid
format.

When using this option, there is a risk that the password might
be displayed in the IMS server adapter output or that the
password might be obtained from the IIOP message on the
network if TLS is not used. You should therefore consider these
security implications before using this configuration item to
send passwords from the client. The default is no.

policies:iiop:server_version_policy If this is set to 1.1, the server adapter publishes a version 1.1
IOR which instructs clients to communicate over GIOP 1.1. In
this case, the principal is transmitted in the CORBA::Principal
field.

If this is set to 1.2 (the default), 1.2 is used as the default
GIOP version. In this case, the principal must be transmitted in
the request message using an alternative mechanism (that is,
a service context).

Note: Orbix does not support publishing 1.0 version IORs.
Therefore, this configuration item must be set to 1.1 or 1.2.

Note: Even if this configuration item is set to 1.2, clients may
still choose to communicate using a lower GIOP version, if the
client ORB is capable of parsing a 1.2 IOR. For example, Orbix
clients can use the policies:iiop:client_version_policy
configuration item to communicate with the server adapter
over GIOP 1.0 or 1.1.

policies:giop:interop_policy:enable_
principal_service_context

For GIOP 1.2, if this item is set to true, it instructs the server
adapter to look for the principal string in a service context. The
default value is false.

Table 2: Client Principal Support and imsa Plug-In Configuration Items
(Sheet 2 of 3)

Configuration Item Description
125

CHAPTER 8 | Configuring the IMS Server Adapter for Client Principals
policies:giop:interop_policy:principal
_service_context_id

This item specifies the service context ID from which the IMS
server adapter attempts to read the principal string if
policies:giop:interop_policy:enable_principal_service_
context is set to true. The default service context ID where
the server adapter looks for the principal string is 0x49545F44.

Table 2: Client Principal Support and imsa Plug-In Configuration Items
(Sheet 3 of 3)

Configuration Item Description
 126

Setting up the Required Privileges
Setting up the Required Privileges

Overview If the IMS server adapter is to be run using the use_client_principal
configuration item in the APPC or OTMA plug-ins, the user ID under which
the server adapter runs might need to be granted special privileges to enable
thread-level security environments. The requirements vary, depending on
whether the FACILITY RACF class profile BPX.SERVER is defined on your
system.

This section discusses the following topics:

� Requirements when BPX.SERVER is defined

� Requirements when BPX.SERVER is not defined

� Impersonating users

Requirements when
BPX.SERVER is defined

If BPX.SERVER is defined, the user ID does not need to have a UID of 0, but it
must have READ access to the BPX.SERVER profile. In addition, the server
adapter executable must reside in a z/OS load library that is PADS-defined.
(PADS is the acronym for Program Access to Data Sets.)

Requirements when
BPX.SERVER is not defined

If BPX.SERVER is not defined, this user ID must have a UID of 0 assigned to it
in the OMVS segment of its RACF user profile.

Impersonating users Additionally, because the IMS server adapter is processing requests for users
without having their passwords, you must activate the SURROGAT RACF class
and define profiles in it that allow the server adapter�s user ID to
impersonate particular users. You can do this by establishing a profile for
each potential client user. For example:

RDEFINE SURROGAT BPX.SRV.client1 UACC(NONE)
PERMIT BPX.SRV.client1 CLASS(SURROGAT) ID(Adapter) ACCESS(READ)
RDEFINE SURROGAT BPX.SRV.client2 UACC(NONE)
PERMIT BPX.SRV.client2 CLASS(SURROGAT) ID(Adapter) ACCESS(READ)
127

CHAPTER 8 | Configuring the IMS Server Adapter for Client Principals
Alternatively, you might want to use a generic profile that allows the IMS
server adapter to impersonate any client user. For example:

Access to such profiles should be very tightly controlled.

RDEFINE SURROGAT BPX.SRV.* UACC(NONE)
PERMIT BPX.SRV.* CLASS(SURROGAT) ID(Adapter) ACCESS(READ)
 128

Additional Requirements for IMS Protocol Plug-Ins
Additional Requirements for IMS Protocol
Plug-Ins

Overview When running authorized and using the use_client_principal
configuration item in the APPC or OTMA plug-in, the IMS server adapter
changes the ID of the thread processing the request to that of the client
principal. It then makes the request under the new ID; so, in this case, the
request should start the IMS transaction with an ACEE for the client ID.

This section discusses the following topics:

� Switching threads

� Making the IMS server adapter program-controlled

� Making the IMS OTMA server adapter APF-authorized

� Address space not program-controlled

� OTMA adapter address space not authorized

� Further reading

Switching threads The IMS server adapter uses the pthread_security_np() call on the thread
that is processing the client request, to switch that thread to run under the
requested user ID (client principal). For OTMA, it then issues the
otma_alloc() call, passing this ID to allocate the session with IMS. For
APPC, it issues the APPC calls now that the thread is running under this
user ID. For this to work, an OTMA or APPC server adapter must be
program-controlled. Additionally, an OTMA server adapter must be
APF-authorized.
129

CHAPTER 8 | Configuring the IMS Server Adapter for Client Principals
Making the IMS server adapter
program-controlled

To make the IMS server adapter program-controlled, you need to consider
the following issues:

Step Action

1 If the server adapter user ID does not have READ access to the
BPX.SERVER RACF resource, in the FACILITY class, you get the
EPERM errors when the server adapter is trying to switch
identities on the thread. The server adapter user ID also needs
access to the BPX.SRV.userid resource in the RACF SURROGAT
class where userid is the client principal in question. If the
user ID under which the server adapter runs is well controlled,
you could possibly give it read access to the BPX.SRV.*
resource, to enable the server adapter to handle requests from
any client principal.

2 When deploying in UNIX System Services, the IMS server
adapter must run in its own address space. You must ensure
that the _BPX_SHAREAS variable is not set in the server adapter's
environment. The supplied itimsa shell script handles this, by
unsetting this variable before running the server adapter
program.

3 When deploying in UNIX System Services, you must ensure
that any UNIX System Services files that are involved in
running the server adapter have the appropriate extended
attributes set. Your systems programmer might execute the
extattr command, as follows, to make these files
program-controlled:

$ cd $IT_PRODUCT_DIR
$ extattr +p shlib/* asp/6.0/bin/itimsa

The command ls -E can be used to display the extended file
attributes in the UNIX System Services shell.
 130

Additional Requirements for IMS Protocol Plug-Ins
Making the IMS OTMA server
adapter APF-authorized

In addition to running program-controlled, if the server adapter is
communicating with IMS over OTMA, the address space must be running
APF-authorized. This means that all load modules (executables) used by an
IMS OTMA server adapter must reside in an APF-authorized location. To
ensure that an IMS OTMA server adapter is running APF-authorized:

1. The following load libraries must be APF-authorized:

♦ orbixhlq.LPA

♦ orbixhlq.RUN

This is required regardless of whether the IMS OTMA server adapter is
deployed in a native z/OS or UNIX System Services environment.

2. When deploying in UNIX System Services, you must ensure that any
additional UNIX System Services files involved in running the adapter
have the appropriate extended attributes set. Your systems
programmer might execute the extattr command, as follows, to make
these files APF-authorized:

The command ls -E can be used to display the extended file
attributes in the UNIX System Services shell.

Address space not
program-controlled

If, at this point, the address space is still not program-controlled, the server
adapter throws an exception back to the client and logs an error message to
indicate that it could not switch to that user ID, and therefore it is not going
to attempt to start the transaction in IMS.

Note: When running in native z/OS, all libraries in the STEPLIB
must be APF-authorized.

$ cd $IT_PRODUCT_DIR
$ extattr +a shlib/* asp/6.0/bin/itimsa
131

CHAPTER 8 | Configuring the IMS Server Adapter for Client Principals
OTMA adapter address space not
authorized

If, at this point, the address space for the OTMA-based server adapter is still
not authorized, OTMA ignores the supplied ID and uses the primary address
space ID without notifying the server adapter that it has done so. This
therefore explains why, if the server adapter address space is not fully
authorized, you might see a message from the server adapter saying it is
making the request in the client�s ID, but the request arrives in IMS with the
server adapter's ID. In this case, verify that you have completed all the
above steps.

Further reading Refer to the IBM publications z/OS V1R2.0 UNIX System Services
Planning, GA22-7800-01 or Planning: OpenEdition MVS, SC23-3015 for
more information on enabling thread-level security for servers.
 132

CHAPTER 9

Configuring the
Orbix Runtime in
IMS
This chapter provides information on configuring the Orbix
runtime that is used by Orbix servers running in IMS.

In this chapter This chapter discusses the following topics:

Customizing the IMS JCL page 134

Customizing Orbix Event Logging page 135
133

CHAPTER 9 | Configuring the Orbix Runtime in IMS
Customizing the IMS JCL

Overview This section describes how to customize the IMS JCL used to run Orbix
servers inside IMS.

Customizing IMS JCL To customize the IMS JCL perform the following steps:

Step Action

1 The following library should be added to the IMS message
region's STEPLIB concatenation as follows:

DD DSN=HLQ.ORBIX60.MFA.LOAD,DISP=SHR

2 Check if the following entries are already defined in the IMS
message region's JCL. If not, they should be added, to ensure
you receive all output from your IMS servers:

SYSPRINT DD SYSOUT=*

CEEDUMP DD SYSOUT=*

CEEOUT DD SYSOUT=*

SYSOUT DD SYSOUT=*

3 Recycle the message regions to pick up these libraries.
 134

Customizing Orbix Event Logging
Customizing Orbix Event Logging

Overview For the Orbix runtime in IMS, most of the configuration settings are fixed.
However, the level of event logging performed by the runtime can be
customized for the server adapter.

This section discusses the following topics:

� Customizing the level of event logging

� Event logging settings

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

Customizing the level of event
logging

This is done by modifying the ORXMFACx DLL. This DLL contains an S390
Assembler CSECT that supplies the event logging string to the runtime.

Event logging settings The event logging settings are as follows:

Table 3: Event Logging Settings for the IMS Server Adapter

Value Description

0 LOG_NONE� no logging in IMS is performed.

1 LOG_ERROR�only log errors.

2 LOG_WARNING�log warnings and errors.

3 LOG_INFO_HIGH�log high priority informational messages,
warnings and errors.

4 LOG_INFO_MED�log medium priority informational messages,
high priority informational messages, warnings and errors.

5 LOG_INFO_LOW�log low priority informational messages,
medium priority informational messages, high priority
informational messages, warnings and errors.

6 LOG_INFO_ALL�log all messages.
135

CHAPTER 9 | Configuring the Orbix Runtime in IMS
ORXMFACx DLL setting The ORXMFACx DLL shipped with the IMS server adapter has a setting of 2 for
event logging in IMS.

This setting can be modified to some other setting. For example, to help
trace a problem with a transaction in IMS, it can be changed to 6.

Modifying the ORXMFACx DLL
setting

This is done using the MFACLINK JCL member supplied in orbixhlq.JCLLIB.
In this JCL, the LOGLVL variable can be modified to contain the new event
logging value. It can then be run to create a new version of the ORXMFACx
DLL with this new value. Ensure that you make a backup copy of ORXMFACx,
before running this JCL member. After this re-link of the DLL, make it
available to the IMS region in which you are testing, for the new setting to
come into effect. After the testing is complete, consider copying back the
original DLL, to revert to the normal logging levels.
 136

CHAPTER 10

IDL Compiler
Configuration
This chapter describes Orbix IDL compiler settings for the mfa
plug-in, which is used to generate IMS server adapter mapping
files and type_info files.

In this chapter This chapter discusses the following topics:

Orbix IDL Compiler Settings page 138
137

CHAPTER 10 | IDL Compiler Configuration
Orbix IDL Compiler Settings

Overview The �mfa plug-in allows the IDL compiler to generate IMS server adapter
mapping members and IMS server adapter type_info files from IDL. The
behavior of the Orbix IDL compiler is defined by the IDL compiler
configuration file, orbixhlq.CONFIG(IDL). This section details the default
settings used and describes how these can be modified.

Configuration settings The IMS server adapter mapping member configuration is listed under
MFAMappings as follows:

Note: IDL compiler configuration is separate from standard Orbix
configuration and is contained in its own configuration member
(orbixhlq.CONFIG(IDL)).

MFAMappings
{
 Switch = "mfa";
 ShlibName = "ORXBMFA";
 ShlibMajorVersion = "6";
 IsDefault = "NO";
 PresetOptions = "";

Mapping & Type Info file suffix and ext. may be overridden
The default mapping file suffix is A
The default mapping file ext. is .map and none for OS/390
The default type info file suffix is B
The default type info file ext. is .inf and none for OS/390
MFAMappingExtension = "";
MFAMappingSuffix = "";
TypeinfoFileExtension = "";
TypeinfoFileSuffix = "";

};

Note: Settings listed with a # are considered to be comments and are not
in effect.
 138

Orbix IDL Compiler Settings
Mandatory settings The first three of the preceding settings are mandatory and must not be
altered. They inform the Orbix IDL compiler how to recognize the server
adapter mapping member switch, and what name the DLL plug-in is stored
under.

User-defined settings All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you want,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

List of available settings Table 4 provides an overview and description of the available settings.

setting_name = "value";

Table 4: Server Adapter Mapping Member Configuration Settings

Setting Name Description Default

IsDefault Indicates whether the Orbix IDL
compiler generates server
adapter mapping members by
default from IDL. If this is set to
YES, you do not need to specify
the -mfa switch when running
the compiler.

 NO

PresetOptions The arguments that are passed
by default as parameters to the
Orbix IDL compiler for the
purposes of generating server
adapter mapping members.

MFAMappingExtension Extension for the server adapter
mapping file (on UNIX System
Services).

map

TypeinfoFileExtension Extension for server adapter
type_info files (on UNIX System
Services).

inf
139

CHAPTER 10 | IDL Compiler Configuration
TypeinfoFileSuffix Suffix for server adapter
type_info files (on native z/OS
and UNIX System Services). If
you do not supply a value for
this, a default suffix of B is used.

B

MFAMappingSuffix Suffix for the server adapter
mapping member on z/OS. If you
do not specify a value for this, a
default suffix of A is used.

A

Table 4: Server Adapter Mapping Member Configuration Settings

Setting Name Description Default
 140

Part 3
Configuring the Client
Adapter and the Orbix

Runtime in IMS

In this part This part contains the following chapters:

Introduction to Client Adapter Configuration page 143

Client Adapter General Configuration page 153

Configuring the Client Adapter AMTP_APPC Plug-in page 157

Configuring the Client Adapter AMTP_XMEM Plug-in page 179

Configuring the Client Adapter Subsystem page 189

Configuring the Orbix Runtime in IMS page 193

CHAPTER 11

Introduction to
Client Adapter
Configuration
This chapter provides information needed to configure the
client adapter and its components (plug-ins). It provides
descriptions of all the configuration items involved in running
the client adapter. It also provides details on configuring the
various system components used by the client adapter.

In this chapter This chapter discusses the following topics:

A Client Adapter Sample Configuration page 144

Configuration Summary of Client Adapter Plug-Ins page 147
143

CHAPTER 11 | Introduction to Client Adapter Configuration
A Client Adapter Sample Configuration

Overview A sample configuration member is supplied with your Orbix Mainframe
installation that provides an example of how you might configure and deploy
the client adapter on both native z/OS and UNIX System Services.

This section discusses the following topics:

� Location of configuration templates

� Configuration scope

� Configuration scope example

� Configuring a domain

Location of configuration
templates

Sample configuration templates are supplied with your Orbix Mainframe
installation in the following locations:

� Non-TLS template: orbixhlq.CONFIG(BASETMPL)

� TLS template: orbixhlq.CONFIG(TLSTMPL)

Configuration scope The client adapter uses one of the following ORB names:

The items specific to the client adapter configuration are scoped in these
configuration scopes.

Note: Further configuration resides in orbixhlq.CONFIG(ORXINTRL). This
contains internal configuration that should not usually require any
modifications.

Table 5: Client Adapter ORB Names

ORBname Transport

iona_services.ims_client APPC

iona_services.ims_client.cross_memory Cross memory
communication
 144

A Client Adapter Sample Configuration
Configuration scope example The following is an example of the iona_services.ims_client configuration
scope. It includes the cross_memory sub-scope, which is used for the cross
memory communication transport.

Example 7: An iona_services.ims_client Configuration Scope Example

iona_services
{
 ims_client
 {
 event_log:filters = ["*=WARN+ERROR+FATAL","IT_MFA=INTO_HI+WARN+ERROR+FATAL",
 "IT_MFU=INFO_HI+WARN+ERROR+FATAL"];

 plugins:imsa:direct_persistence = "yes";
 plugins:imsa:iiop:host = "%{LOCAL_HOSTNAME}";
 plugins:imsa:iiop:port = "5072";

 plugins:client_adapter:repository_id = "type_info";
 plugins:client_adapter:type_info:source = "DD:TYPEINFO";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop", "ots", "amtp_appc"];

 # Client Adapter amtp_appc plugin

 plugins:amtp_appc:symbolic_destination = "ORXCLNT1";
 plugins:amtp_appc:appc_function_wait = "5";
 plugins:amtp_appc:min_comm_threads = "5";
 plugins:amtp_appc:max_comm_threads = "10";

 #For two-phase commit support uncomment the following lines:
 #
 #plugins:amtp_appc:maximum_sync_level = "2";
 #initial_references:TransactionFactory:reference = "%{LOCAL_OTSTM_REFERENCE}";

 # Client Adapter mfu plugin
 #
 plugins:ots_lite:use_internal_orb = "true";
 plugins:ots_lite:orb_name = "iona_services.ims_client.ots";

 ots
 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop"];
 };
145

CHAPTER 11 | Introduction to Client Adapter Configuration
Configuring a domain Refer to the CORBA Administrator�s Guide for details on how to configure
an Application Server Platform domain.

 # Cross memory transport
 cross_memory
 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop"
 "iiop", "amtp_xmem"];

 plugins:amtp_xmem:symbolic_destination = "ORXCLNT1";
 plugins:amtp_xmem:min_comm_threads = "5";
 plugins:amtp_xmem:max_comm_threads = "10";
 plugins:amtp_xmem:max_segment_size = "32760";
 };
 };
};

Example 7: An iona_services.ims_client Configuration Scope Example
 146

Configuration Summary of Client Adapter Plug-Ins
Configuration Summary of Client Adapter
Plug-Ins

Overview Orbix configuration allows you to configure an application on a per-plug-in
basis. This section provides a summary of the configuration items
associated with plug-ins specific to the client adapter.

This section discusses the following topics:

� Client adapter components

� Summary of items for the amtp_appc plug-in

� Summary of items for the amtp_xmem plug-in

� Summary of items for the client adapter subsystem

� Summary of remaining configuration items

Client adapter components The main components of the client adapter include:

� A client adapter subsystem, which is loaded by the adapter executable
(many subsystems can be run by the same application).

� The amtp_appc plug-in, which is used to provide APPC transport
between IMS client transactions and the client adapter.

� The amtp_xmem plug-in, which is used to provide cross memory
communication transport between IMS client transactions and the
client adapter.

� The common_adapter plug-in, which exposes common functionality
such as support for different signature repositories (that is, type_info,
IFR, and so on).
147

CHAPTER 11 | Introduction to Client Adapter Configuration
Summary of items for the
amtp_appc plug-in

The following is a summary of the configuration items associated with the
amtp_appc plug-in. Refer to �AMTP_APPC Plug-In Configuration Items� on
page 177 for more details.

symbolic_destinationSpecifies the APPC/MVS symbolic destination name
the client adapter uses for APPC services. The Orbix
Runtime in IMS uses the symbolic destination to
send IMS client transaction requests to the client
adapter. The default value is �ORXCLNT1�.

appc_function_wait Specifies the number of minutes that the client
adapter can wait for a response from an IMS client
transaction before canceling the request. Valid
values are in the range 0�1440. The default value is 5
minutes.

min_comm_threads Specifies the minimum number of client adapter
threads used to service requests from IMS client
transactions. Each thread processes a request from
an IMS client transaction. A valid value is greater
than 0. The default value is 5 threads.

max_comm_threads Specifies the maximum number of client adapter
threads that can be used to service requests from
IMS client transactions. If all client adapter threads
are busy, and the client adapter receives another
request, it dynamically starts more threads up to this
maximum number. The default value is 10 threads.

maximum_sync_level Specifies the maximum APPC synchronization level
supported by the client adapter. The value can be 0
or 2. A value of 0 does not allow IMS client
transactions to perform two-phase commit
processing. A value of 2 allows IMS client
transactions to perform two-phase commit
processing. The default value is 0.
 148

Configuration Summary of Client Adapter Plug-Ins
Summary of items for the
amtp_xmem plug-in

The following is a summary of the configuration items associated with the
amtp_xmem plug-in. Refer to �AMTP_XMEM Plug-In Configuration Items� on
page 187 for more details..

Note: The cross memory transport does not support two-phase commit
processing.

symbolic_destination This is a symbolic name that identifies the IMS
client adapter. It can be up to eight characters in
length. The Orbix runtime in IMS is configured to
use this destination. IMS client transactions have
their requests sent to the client adapter using this
symbolic destination. The default value is
ORXCLNT1.

Note: The value for this configuration item must
be unique for each instance of the client adapter.
Unlike APPC, the cross memory communication
plug-in does not allow multiple instances of the
client adapter to use the same symbolic
destination.

min_comm_threads Specifies the minimum number of client adapter
threads used to service requests from IMS client
transactions. Each thread processes a request from
a IMS client transaction. A valid value is greater
than 0. The default value is 5 threads.

max_comm_threads Specifies the maximum number of client adapter
threads that can be used to service requests from
IMS client transactions. If all client adapter threads
are busy, and the client adapter receives another
request, it dynamically starts more threads up to
this maximum number. The default value is 10
threads.
149

CHAPTER 11 | Introduction to Client Adapter Configuration
Summary of items for the client
adapter subsystem

The following is a summary of the configuration items associated with the
client adapter subsystem. Refer to �Configuring the Client Adapter
Subsystem� on page 189 for more details.

max_segment_size Specifies the maximum segment size that the client
adapter can receive from a client. The Orbix
runtime in IMS is configured with a maximum
segment size. The client adapter might be servicing
one or more IMS regions. The value for
plugins:amtp_xmem:max_segment_size must be
equal to or greater than the largest segment size
defined in the configuration for the Orbix runtime in
IMS.

repository_id Specifies the type information source to use. This
source supplies the client adapter with operation
signatures as required. Valid values are ifr and
type_info. The default is ifr. Refer to �Type
information mechanism� on page 190 for more
information.

ifr:cache This value is used if repository_id is set to ifr.
The ifr:cache configuration item is optional. It
specifies the location of an (operation) signature
cache file. This signature cache file contains a cache
of operation signatures from a previous run of this
client adapter. The default is no signature cache file
(" ").

type_info:source This value is used if repository_id is set to
type_info. The type_info:source variable denotes
the location of a type_info store from which the
client adapter can obtain operation signatures. Refer
to �type_info store� on page 191 for more
information.
 150

Configuration Summary of Client Adapter Plug-Ins
Summary of remaining
configuration items

The following is a summary of the remaining configuration items. Refer to
�Client Adapter General Configuration� on page 153 and the CORBA
Administrator�s Guide for more details.

event_log:filters Specifies the types of events the client adapter
logs.

orb_plugins List of standard ORB plug-ins the client adapter
should load.

initial_references:
TransactionFactory:
reference

Specifies the IOR of the RRS OTSTM service that
coordinates two-phase commit processing
initiated by IMS client transactions. The IOR is
obtained by running orbixhlq.JCLLIB(DEPLOY3).
See the Mainframe Installation Guide for more
details. The RRS OTSTM service must be running
for an IMS client transaction to be able to perform
two-phase commit processing.
151

CHAPTER 11 | Introduction to Client Adapter Configuration
 152

CHAPTER 12

Client Adapter
General
Configuration
This chapter provides details of the configuration items for the
core client adapter. These details specify the level of Orbix
Event logging and plug-ins to be loaded when the ORB is
initializing.

In this chapter This chapter discusses the following topic:

Core Client Adaptor Configuration page 154
153

CHAPTER 12 | Client Adapter General Configuration
Core Client Adaptor Configuration

Overview This section includes the following

� Orbix event logging

� WTO announce plug-in

� ORB plug-ins list

Orbix event logging The related configuration item is event_log:filters. It specifies the level of
event logging. To obtain events specific to the client adapter, the IT_MFU
event logging subsystem can be added to this list item. For example:

This logs all IT_MFU events (except for INFO_LOW � low priority informational
events), and any warning, error, and fatal events from all other subsystems
(for example, IT_CORE, IT_GIOP, and so on). The level of detail provided for
IT_MFU events can be controlled by setting the relevant logging levels. Refer
to the CORBA Administrator�s Guide for more details.

The following is a categorization of the informational events associated with
the IT_MFU subsystem.

WTO announce plug-in Orbix applications may be configured to write messages to the operator
console on starting or shutting down successfully. This can be useful for
automated operations software to keep track of these events. The WTO
announce plug-in is used to implement this feature.

event_log:filters = ["*=WARN+ERROR+FATAL", "IT_MFU=INFO_HI+INFO_MED+WARN+ERROR+FATAL"];

INFO_HI Configuration settings and client adapter start-up and shutdown
messages

INFO_MED APPC informational messages

INFO_LOW IMS segment data streams and two-phase commit events.
 154

Core Client Adaptor Configuration
To enable the loading of the WTO announce plug-in in an Orbix service,
such as the client adapter, add the following two configuration items in the
iona_services.ims_client scope:

� initial_references:IT_WTO_Announce:plugin = "wto_announce";
� generic_server:wto_announce:enabled = "true";

When you load the WTO announce plug-in, a WTO message is issued when
client adapter ORB starts up and shuts down. Messages take the following
format:

On z/OS UNIX System Services, <process id> is a PID. On native z/OS,
<process id> is a job name and an A=xxxx job identifier.

ORB plug-ins list The related configuration item is orb_plugins. It specifies the ORB-level
plug-ins that should be loaded in your application at ORB_init() time. On
z/OS, you can add the WTO announce plug-in support to any
customer-developed Orbix application by updating this list in the relevant
configuration scope. For example:

In the case of the IMS client adapter�s configuration (that is, in the
iona_services.ims_client scope) the wto_announce plug-in should not be
included in this list, as discussed in �WTO announce plug-in� on page 154.

Note: For customer-developed Orbix applications (for example, a batch
COBOL or PL/I server), the wto_announce plug-in should be added to the
end of the orb_plugins list in that particular application�s ORB
configuration. (See �ORB plug-ins list� next for more details.) However, for
all Orbix services (by default, within the iona_services configuration
scope), it is recommended that you load the wto_announce plug-in by
specifying the two preceding configuration items rather than by adding the
wto_announce plug-in to the orb_plugins list.

+ORX2001I ORB iona_services.ims_client STARTED

 (HOSTNAME:<process id>)

+ORX2002I ORB iona_services.ims_client ENDED (HOSTNAME:

 <process id>)

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop", "ots", "amtp_appc", "wto_announce"];
155

CHAPTER 12 | Client Adapter General Configuration
 156

CHAPTER 13

Configuring the
Client Adapter
AMTP_APPC
Plug-in
The AMTP_APPC plug-in for the client adapter uses APPC to
communicate with client transactions. This chapter describes
how to configure APPC for IMS, and the client adapter
AMTP_APPC plug-in configuration.

In this chapter This chapter discusses the following topics:

Setting Up APPC for the Client Adapter page 158

Additional RACF Customization Steps for APPC page 171

AMTP_APPC Plug-In Configuration Items page 177
157

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Setting Up APPC for the Client Adapter

Prerequisites to using APPC Before you can run the client adapter, you must first enable the required
APPC functionality on your z/OS system. Depending on your installation, one
or all of these tasks might already have been completed.

Further reading For more information on setting up APPC/MVS, refer to the IBM publication
MVS Planning: APPC/MVS Management, GC28-107.

Additionally, you can find specific information on how IMS uses APPC in the
chapter on �Administering APPC/IMS and LU 6.2 Devices� in the IBM
publication IMS/ESA Administration Guide: Transaction Manager,
SC26-8104.

In this section This section discusses the following topics:

Defining LUs to APPC page 159

Defining an APPC Destination Name for the Client Adapter page 162

Defining LUs to VTAM page 166
 158

Setting Up APPC for the Client Adapter
Defining LUs to APPC

Overview A Logical Unit (LU) name identifies each side of an APPC conversation. It is
defined to APPC/MVS in the APPCPMxx member of SYS1.PARMLIB. You must
define at least two LU names to use the client adapter�one for the client
adapter, and one for IMS.

This section discusses the following topics:

� Associating an IMS LU with a specific IMS region

� Client adapter LU

� Specifying the APPC/MVS-side information dataset name

� Client adapter LU name and security

� Running multiple client adapters

Associating an IMS LU with a
specific IMS region

The IMS LU definition is associated with a specific IMS region by specifying
the name of that region (IMSID from the IMSCTRL macro in the IMS system
generation) as the transaction scheduler for the LU. For example:

Refer to �Customizing Orbix Local LU� on page 205 for information on
where the IMS LU must be configured for the Orbix runtime in IMS.

Client adapter LU The client adapter LU is used by the client adapter to receive requests from
IMS client transactions, and to return replies back to IMS client
transactions. It can be defined as follows:

LUADD ACBNAME(IMSLU01)

BASE

SCHED(IMS1)

Note: If you are using the IMS APPC plug-in for the IMS server adapter,
this step might already have been performed. Refer to �Associating an IMS
LU with a specific IMS region� on page 99 for more details.

LUADD ACBNAME(ORXLUCA1)
NOSCHED
159

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Specifying the APPC/MVS-side
information dataset name

The APPC/MVS side information dataset contains APPC symbolic
destination names. If your installation does not have a side information
dataset, see SYS1.SAMPLIB(ATBSIVSM) for sample JCL to create one.

The name of the side information dataset must be defined in
SYS1.PARMLIB(APPCPMxx) (for example, SIDEINFO DATASET(SYS1.APPCSI)).

Client adapter LU name and
security

If you define a new LU for the client adapter (for example, ORXLUCA1), its LU
name must be used as part of the APPCLU RACF profile name when securing
LU conversations. Refer to �APPCLU profiles� on page 172 for more
information.

Running multiple client adapters If you want to run multiple client adapters, you must first decide if you want
the client adapters to share APPC/MVS allocation queues.

APPC/MVS allocation queues hold requests to start APPC conversations. As
client transactions initiate requests to the client adapter, they are first
placed in an APPC/MVS allocation queue. The requests designate which LU
and Transaction Program Name (TPN) they are destined for. The client
adapter registers with APPC/MVS and specifies the LU and TPN requests it
expects to process. (Refer to �Defining an APPC Destination Name for the
Client Adapter� on page 162 for details of how to set up the LU and TPN
name used by the client adapter.) APPC/MVS delivers the requests from the
allocation queue to the client adapter.

You can choose to run multiple client adapters that specify the same LU and
TPN. The client adapters all share the same APPC/MVS allocation queue.
APPC/MVS chooses one of the client adapters to deliver the request to. This
approach can be used as a form of load balancing where the load is spread
over multiple client adapters. This approach also provides a measure of fault
tolerance. If a client adapter is stopped or goes down, allocation requests
from client transactions can still be processed by other client adapters.

Note: If you are using the IMS APPC plug-in for the IMS server adapter,
this step might have already been performed. Refer to �Specifying the
APPC-side information dataset name� on page 99 for more details.
 160

Setting Up APPC for the Client Adapter
You can alternatively choose to run multiple client adapters where each
client adapter specifies a different LU and TPN. The client adapters all have
their own APPC/MVS allocation queue. This approach is useful for setting up
a test client adapter along with a production client adapter. The Orbix
runtime inside the test IMS region is configured to direct allocation requests
to the test client adapter, while the Orbix runtime inside the production IMS
region is configured to direct allocation requests to the production client
adapter.
161

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Defining an APPC Destination Name for the Client Adapter

Overview An IMS client transaction connects to the client adapter through an APPC
destination name rather than directly through the client adapter LU name.
The APPC destination name is used to establish various default
characteristics for the APPC conversation being initiated, including the
name of the partner LU, the TPN, and a logon mode name.

This section discusses the following topics:

� Storage of the APPC destination name

� Example of the APPC destination name JCL

� Explanation of the APPC destination name JCL

� Example of multiple APPC destination names JCL

� Explanation of multiple APPC destination names JCL

Storage of the APPC destination
name

The APPC destination name information is stored in the APPC-side
information data set. This data set is updated using the ATBSDFMU
APPC/MVS utility program.

Example of the APPC destination
name JCL

The following is an example of defining an APPC destination name.

Example 8: JCL Example for Defining an APPC Destination Name

//SIADDEXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA
 SIADD

1 DESTNAME(ORXCLNT1)
2 TPNAME(ORXCLNT1)
3 MODENAME(APPCHOST)
4 PARTNER_LU(ORXLUCA1)

/*
 162

Setting Up APPC for the Client Adapter
Explanation of the APPC
destination name JCL

The JCL example for defining an APPC destination name can be explained
as follows:

1. The DESTNAME is a symbolic name that contains the TPNAME, MODENAME,
and PARTNER_LU. It is used in two places:

♦ The Orbix runtime inside IMS configuration specifies which
destname the IMS region uses for APPC communication with the
client adapter.

♦ The amtp_appc plug-in configuration item symbolic_destination,
which tells the client adapter which LU and TPN to use for APPC
communication. The LU/TPN define the APPC/MVS allocation
queue from which the client adapter receives allocation requests.

2. The TPNAME specification forms part of the APPC/MVS allocation queue
designation. If you want to run a test client adapter along with a
production client adapter, two symbolic destinations can be defined.
They can each specify the same MODENAME and PARTNER_LU, but each
can specify a different TPNAME. (Refer to �Example of multiple APPC
destination names JCL� on page 164 for more information.)

3. The MODENAME parameter is used to name an entry in the VTAM logon
mode table. This specifies other characteristics that are to be used in
the conversation. See the SYS1.SAMPLIB(ATBLMODE) data set for a
definition of the APPCHOST logon mode, and the
SYS1.SAMPLIB(ATBLJOB) data set for the JCL to install it.

4. PARTNER_LU must specify the client adapter LU name.
163

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Example of multiple APPC
destination names JCL

You might want to define multiple APPC destination names to allow
multiple client adapters that do not share APPC/MVS allocation queues. A
good example of this is to have a production client adapter processing
requests from a production IMS region, and a test client adapter processing
requests from a test IMS region.

Explanation of multiple APPC
destination names JCL

The JCL example for defining multiple APPC destination names can be
explained as follows:

1. The first SIADD statement defines the production destination, as
explained in �Explanation of the APPC destination name JCL� on
page 163.

2. A second DESTNAME is defined for the test destination. It defines a
different name from the production DESTNAME. The production IMS
region and production client adapter are configured to use the
production DESTNAME. The test IMS region and test client adapter are
configured to use the test DESTNAME.

Example 9: JCL Example for Defining Multiple APPC Destination Names

//SIADDEXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA

1 SIADD
DESTNAME(ORXCLNT1)
TPNAME(ORXCLNT1)
MODENAME(APPCHOST)
PARTNER_LU(ORXLUCA1)
SIADD

2 DESTNAME(ORXTEST)
3 TPNAME(ORXTEST)
4 MODENAME(APPCHOST)
5 PARTNER_LU(ORXLUCA1)

/*
 164

Setting Up APPC for the Client Adapter
3. The test DESTNAME defines a TPNAME that is different from the
production TPNAME. This causes APPC/MVS to use separate allocation
queues for the production and test client adapters.

4. The test MODENAME is the same as the production MODENAME.

5. The test PARTNER_LU is the same as the production PARTNER_LU. This
means you can run multiple client adapters that do not share
APPC/MVS allocation queues, yet still use the same LU name for each.
165

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Defining LUs to VTAM

Overview APPC/MVS expects its LUs to be defined as VTAM resources, so that they
can access a SNA network.

This section discusses the following topics:

� VTAM requirements for LUs

� Using SYS1.SAMPLIB(ATBAPPL)

� APPC definition parameter security requirements

VTAM requirements for LUs Although the client adapter is usually run on the same system as the IMS
region with which it communicates (that is, an LU=LOCAL conversation),
VTAM application program definition (APPL) macros must still be coded for
each LU. See SYS1.SAMPLIB(ATBAPPL) for a sample APPL definition of an
APPC LU.

Using SYS1.SAMPLIB(ATBAPPL) The following definitions for the IMS and client adapter LUs use the
SYS1.SAMPLIB(ATBAPPL) definition, with some changes (which are
highlighted). If you are using the IMS APPC plug-in for the IMS server
adapter, the IMS LU might already be defined. Refer to �Using
SYS1.SAMPLIB(ATBAPPL)� on page 103 for more information.

Example 10: Example of APPL Definitions for Client Adapter LUs

1 IMSLU01 APPL ACBNAME=IMSLU01, C
 APPC=YES, C

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1
 166

Setting Up APPC for the Client Adapter
APPC definition parameter
security requirements

The code for APPL definitions for client adapter LUs can be explained as
follows:

1. Both the ACBNAME= parameter and the APPL statement label should
match the LU name defined to APPC.

The VERIFY= and SECACPT= parameters specify the security levels for
each LU. Determining the correct values for these parameters depends
on the environment in which IMS and the client adapter are running. A
test environment might not require the same level of security that a
production environment does.

2. SECACPT= specifies the greatest level of security information passed on
a conversation allocation request from an IMS client transaction to the
client adapter. If the LUs are secured using RACF APPCLU profiles, this
level of security information can be overridden to the value set in the
APPCLU profile. Refer to �Additional RACF Customization Steps for
APPC� on page 106 for more details.

♦ SECACPT=NONE�If you do not require security, use SECACPT=NONE
for both IMSLU01 and ORXLUCA1.

♦ SECACPT=CONV�If you require security, use SECACPT=CONV for
IMSLU01. In this case, ORXLUCA1 requires a different setting, as
described in the next point.

1 ORXLUCA1 APPL ACBNAME=ORXLCA1, C
 APPC=YES, C

2 SECACPT=ALREADYV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1

Example 10: Example of APPL Definitions for Client Adapter LUs
167

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
♦ SECACPT=ALREADYV�If you require security, use
SECACPT=ALREADYV for ORXLUCA1.

If you are using security, you can verify that the SECACPT setting is
correct, by issuing the following command after IMSLU01 has
established sessions with ORXLUCA1:

The message IST1005I should appear as part of the display results.
Ensure that CONVSECL=ALREADYV appears in the message. If not, you
might have to modify LU ORXLUCA1 in APPC/MVS. For more details of
how to modify a local LU see the IBM publication MVS Planning:
APPC/MVS Management, GC28-107.

3. VERIFY= specifies that VTAM should verify the identity of partner LUs
that attempt to establish sessions with this LU. Generally each LU has
the same value for VERIFY=, but there are valid cases where the values
can be different.

♦ VERIFY=NONE�VTAM should not verify partner LUs. Use this
value if security is not required.

♦ VERIFY=OPTIONAL�VTAM should verify those LUs that have
session keys defined. The session keys are defined in the RACF
APPCLU profile. Refer to the topic on �LU 6.2 Security� in the IBM
publication SNA Network Implementation Guide, SC31-8562 for
more information on how VTAM verifies the partner LU. Use this
value when security is desired.

♦ VERIFY=REQUIRED�VTAM should verify every partner LU. This
provides even tighter security control. The IMS LU can be defined
with VERIFY=OPTIONAL, and the client adapter LU can be defined
with VERIFY=REQUIRED. This provides two benefits:

♦ Compatibility with the IMS server adapter if it is being used.

♦ Only those LUs defined with a proper RACF APPCLU profile can
connect to the client adapter.

D NET,CNOS,ID=ORXLUCA1,LUNAME=IMSLU01
 168

Setting Up APPC for the Client Adapter
If there is no possibility of unauthorized access from other systems in
your SNA network, you might prefer to code SECACPT=ALREADYV and
VERIFY=NONE to indicate that partner LUs do not need to be
authenticated. This is safe for LU=LOCAL conversations because user
information is provided directly by APPC/MVS. Therefore, there is no
opportunity for the programmer of the partner LU to fabricate his or her
identity. Refer to �Securing the Client Adapter� on page 321 for more
details about APPC conversation security and session-level verification.

APPC definitions for two-phase
commit

To support two-phase commit processing, define the VTAM LUs with the
ATNLOSS and SYNCLVL operands as follows:

Example 11: Example of APPL Definitions for Two-Phase Commit

1 IMSLU01 APPL ACBNAME=IMSLU01, C
 APPC=YES, C

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1 C
 ATNLOSS=ALL, C
 SYNCLVL=SYNCPT

1 ORXLUCA1 APPL ACBNAME=ORXLCA1, C
 APPC=YES, C

3 SECACPT=CONV, C
169

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
3 VERIFY=OPTIONAL, C
 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1, C
 ATNLOSS=ALL, C
 SYNCLVL=SYNCPT

Example 11: Example of APPL Definitions for Two-Phase Commit
 170

Additional RACF Customization Steps for APPC
Additional RACF Customization Steps for
APPC

Overview There are a number of RACF definitions related to APPC that you might
need to add or change to run the client adapter. Refer to �Securing the
Client Adapter� on page 321 for more details about how the client adapter
fits into a secure system environment.

Much of the information provided in this section can be found in the
sections relating to LU Security and Conversation Security in the IBM
publication MVS Planning: APPC/MVS Management, GC28-1807.

In this section This section discusses the following topics:

LU-to-LU Security Verification page 172

Protecting LUs page 174

Enabling APPC/IMS page 176
171

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
LU-to-LU Security Verification

Overview LU-LU security verification provides a means of controlling which LUs can
establish sessions with a particular LU. RACF provides the APPCLU class for
this purpose.

This section discusses the following topics:

� APPCLU profiles

� APPCLU profile contents and operation

� Accessing APPCLU profiles

APPCLU profiles APPCLU profiles can be defined to control which LUs can establish sessions
with a particular LU.

Each APPCLU profile name has the form:

�networkid.local-lu-name.partner-lu-name�.

Each profile contains information to be used by APPC/MVS on one side of a
session between the two named LUs. This means each side of a session has
its own specific profile. For example, if LU IMSLU01 attempts to establish a
session with LU ORXLUCA1, APPC/MVS on the initiating (outbound) side
examines the �networkid.IMSLU01.ORXLUCA1� profile, and APPC/MVS on
the receiving (inbound) side examines the �networkid.ORXLUCA1.IMSLU01�
profile.

APPCLU profile contents and
operation

Each APPCLU profile contains a session key, which is a string of letters or
numbers, and a CONVSEC setting. When a session is initiated between two
LUs, APPC/MVS on the initiating (outbound) side passes the session key
found in its APPCLU profile to APPC/MVS on the receiving (inbound) side. If
APPC/MVS on the inbound side finds that the received session key matches
the session key in its own APPCLU profile, it overrides the VTAM SECACPT=
 172

Additional RACF Customization Steps for APPC
setting with the CONVSEC setting from its profile. Thus, to allow an IMS client
transaction to authenticate itself to the client adapter, the following
definitions might be used:

To refresh the profiles in VTAM, use the following VTAM commands:

Accessing APPCLU profiles It is not necessary to permit the client adapter or IMS region to have user
IDs for the APPCLU profiles. However, access to the profiles should be tightly
controlled to ensure that only appropriate users can read or change the
session keys.

RDEFINE APPCLU P390.ORXLUCA1.IMSLU01
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

RDEFINE APPCLU P390.IMSLU01.ORXLUCA1
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

SETROPTS CLASSACT(APPCLU)

F VTAM,PROFILES,ID=IMSLU01
F VTAM,PROFILES,ID=ORXLUCA1
173

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Protecting LUs

Overview Protecting LUs involves controlling the users that are permitted to use the
IMS local LU that initiates requests to the client adapter LU, and controlling
the users that are permitted to use the client adapter LU that receives
requests from IMS.

This section discusses the following topics:

� Controlling access to the IMS local LU

� Controlling access to the client adapter LU

Controlling access to the IMS local
LU

The IMS local LU initiates requests to allocate conversations with the client
adapter. This LU is considered the APPC port of entry. It can be secured by
controlling the users that are permitted to use the LU. The RACF APPCPORT
class provides this security control. First, a profile is defined for the IMS
local LU that permits no access. A PERMIT is then issued for each user that
requires access to the IMS local LU. For example:

Controlling access to the client
adapter LU

The client adapter LU receives requests initiated by the IMS local LU. The
client adapter LU can be secured by controlling the users that are permitted
to use this LU. The RACF APPL class provides this security control. First, a
profile is defined for the client adapter LU that permits no access. A PERMIT
is then issued for each user that requires access to the client adapter LU.
For example:

RDEFINE APPCPORT IMSLU01 UACC(NONE)
PERMIT IMSLU01 CLASS(APPCPORT) ID(USER1) ACCESS(READ)
PERMIT IMSLU01 CLASS(APPCPORT) ID(USER2) ACCESS(READ)
�

SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)

Note: To allow IMS to provide the user ID of the user that is running the
transaction, rather than the user ID of the user that started the IMS control
region, IMS exit DFSBEX0 must be used. See the IBM publication
IMS/ESA Customization Guide, SC28-8732 for more details.
 174

Additional RACF Customization Steps for APPC
RDEFINE APPL ORXLUCA1 UACC(NONE)
PERMIT ORXLUCA1 CLASS(APPL) ID(USER1) ACCESS(READ)
PERMIT ORXLUCA1 CLASS(APPL) ID(USER2) ACCESS(READ)

SETROPTS CLASSACT(APPL) RACLIST(APPL)
SETROPTS RACLIST(APPL) REFRESH

Note: To allow IMS to provide the user ID of the user that is running the
transaction, rather than the user ID of the user that started the IMS control
region, IMS exit DFSBSEX0 must be used. See the IBM publication
IMS/ESA Customization Guide, SC28-8732 for more details.
175

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Enabling APPC/IMS

Overview This section describes how to enable APPC/IMS. It discusses the following
topics:

� Enabling APPC/IMS

� Enabling APPC/IMS security

Enabling APPC/IMS To enable APPC/IMS, specify APPC=Y in the IMS JCL start-up parameters, or
enter the following command on a running system:

Enabling APPC/IMS security To enable APPC/IMS security, specify APPCSE=F in the IMS JCL start-up
parameters, or enter the following command on a running system:

/START APPC

/SECURE APPC FULL

Note: If you are using the IMS APPC plug-in for the IMS server adapter,
APPC/IMS might already be enabled.
 176

AMTP_APPC Plug-In Configuration Items
AMTP_APPC Plug-In Configuration Items

Overview This section discusses the following topics:

� APPC destination

� AMTP function timeout

� APPC minimum communication threads

� APPC maximum communication threads

� AMTP maximum sync level

APPC destination The related configuration item is
plugins:amtp_appc:symbolic_destination. This specifies the APPC/MVS
symbolic destination name that identifies the LU, TPN, and LOGMODE the
client adapter uses. The Orbix runtime in IMS is configured to use this
destination. Refer to �Customizing Orbix Symbolic Destination� on page 203
for more information on configuring the destination in the Orbix runtime in
IMS. IMS client transactions have their requests sent to the client adapter
using this symbolic destination. The default value is ORXCLNT1.

The specified symbolic destination name is verified only when an IMS client
transaction attempts to send a request to the client adapter. This means the
IMS region does not have to be available when you start the client adapter.
Refer to �Example of the APPC destination name JCL� on page 162 for
details of how to define the symbolic destination to APPC/MVS.

AMTP function timeout The related configuration item is plugins:amtp_appc:function_wait. It
specifies the number of minutes the client adapter waits for a response from
the IMS client transaction before canceling the request. It prevents the client
adapter from having to wait indefinitely for a response from the IMS client
transaction if the transaction has stopped for some reason. The default is 5
minutes.
177

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
APPC minimum communication
threads

The related configuration item is plugins:amtp_appc:min_comm_threads. It
specifies the minimum number of client adapter threads that are used to
service IMS client transaction requests. Each thread services a single client
transaction request. Multiple threads allow for multiple concurrent client
requests to be processed. The default is 5 threads.

APPC maximum communication
threads

The related configuration item is plugins:amtp_appc:max_comm_threads. It
specifies the maximum number of client adapter threads that can be used to
service IMS client transaction requests. If all client adapter threads are busy,
and another request arrives, further threads are started dynamically up to
this maximum number. The default is 10 threads.

AMTP maximum sync level The related configuration item is plugins:amtp_appc:maximum_sync_level.
It specifies the maximum APPC synchronization level supported by the
client adapter. The value can be 0 or 2. A value of 0 indicates that
two-phase commit processing will not be used by IMS transactions. A value
of 2 indicates that two-phase commit processing is available for IMS
transactions to use. Transactions that do not require two-phase commit
processing can still function correctly if the maximum sync level is set to 2.
The default value is 0.
 178

CHAPTER 14

Configuring the
Client Adapter
AMTP_XMEM
Plug-in
The AMTP_XMEM plug-in for the client adapter uses cross
memory communication to communicate with client
transactions. This chapter describes how to set up and
configure the client adapter for cross memory communication.

In this chapter This chapter discusses the following topics:

Prerequisites and Further Reading page 180

Running the Client Adapter APF-Authorized page 181

Running the Client Adapter in Non-Swappable Address Space page 183

Understanding the Impact of Cross memory Communication page 185

AMTP_XMEM Plug-In Configuration Items page 187
179

CHAPTER 14 | Configuring the Client Adapter AMTP_XMEM Plug-in
Prerequisites and Further Reading

Prerequisites to using cross
memory communication

Cross memory communication is integrated into the z/OS operating system.
Before using cross memory communication as the transport mechanism
between IMS and the client adapter, be aware of the following restrictions.

� The client adapter must be run APF-authorized.

� The client adapter must run in a non-swappable address space.

� After the client adapter is stopped, its address space ID becomes
unavailable until the next IPL.

� IMS and the client adapter must be running on the same LPAR.

� Two-phase commit processing is not supported when using the cross
memory communication transport.

Further reading For more information on cross memory communication, refer to the
following IBM publication:

MVS Programming: Extended Addressability Guide, SA22-7614.
 180

Running the Client Adapter APF-Authorized
Running the Client Adapter APF-Authorized

Overview To enable the IMS client adapter to use cross memory communication, its
load libraries must be APF-authorized. This subsection discusses the
following topics:

� �Data sets that must be APF-authorized�

� �Authorizing the data sets�

Data sets that must be
APF-authorized

All data sets in the STEPLIB concatenation of the orbixhlq.JCLLIB(IMSCA)
JCL, which is used to run the IMS client_adapter, must be
APF-authorized. These data sets include:

� orbixhlq.ADMIN.LOADLIB
� orbixhlq.LOADLIB
� orbixhlq.LPALIB
� cpphlq.SCLBDLL
� lehlq.SCEERUN

In the preceding list, cpphlq represents the high-level qualifier for the C++
data sets. While lehlq represents the high-level qualifier for the LE
(Language Environment) data sets.

Authorizing the data sets Your systems programmer can authorize the necessary data sets. There are
two methods available to authorize a data set. Users with the relevant
authority can do either of the following:

� Issue the SETPROG command to dynamically make a data set
APF-authorized. For example, to dynamically authorize an
SMS-managed data set, issue the following command:

Note: If the STEPLIB contains other data sets, they must also be
APF-authorized.

SETPROG APF,ADD,DSNAME=orbixhlq.LOADLIB,SMS
181

CHAPTER 14 | Configuring the Client Adapter AMTP_XMEM Plug-in
After issuing the command, authorization can be verified by issuing the
following command:

If the data set is authorized, it appears in the command output.

� Add the dataset name to the PROGxx parmlib member and issue the
SET PROG=xx command. This method ensures that the data set is
authorized across IPLs if the PROGxx member is referenced during the
IPL.

D PROG,APF
 182

Running the Client Adapter in Non-Swappable Address Space
Running the Client Adapter in Non-Swappable
Address Space

Overview The IMS client adapter provides a Program Call (PC) routine when running
in client mode. The IMS address space calls this PC routine to transfer data
between IMS and the IMS client adapter. A PC routine must run in an
address space that cannot be swapped out.

This section discusses the following topics:

� �Defining the client adapter to run in non-swappable address space�

� �Skipping the definition�

Defining the client adapter to run
in non-swappable address space

The IMS client adapter can be defined to the system as a non-swappable
address space by providing a PPT definition in the SCHEDxx member of
SYS1.PARMLIB. Your systems programmer can set up this definition:

For this change to take effect, issue the SET SCH=xx z/OS command.

Skipping the definition The preceding PPT definition is not required for the IMS client adapter to
run in a non-swappable address space. The client adapter issues a SYSEVENT
TRANSWAP macro to put itself into non-swap mode. This works regardless of
whether or not a PPT definition exists.

Even though it is not required, a PPT definition might prove useful for the
purposes of providing documentation on programs that run on in a
non-swappable address space.

PPT PGMNAME(ORXIMSA)
 NOSWAP
 NOPREF
183

CHAPTER 14 | Configuring the Client Adapter AMTP_XMEM Plug-in
However, you might choose to not provide a PPT definition, if the IMS client
adapter and IMS server adapter are both run on the same LPAR. Both
adapters use the same program name of ORXIMSA.

A PPT definition causes both adapters to run in a non-swappable address
space. Because the server adapter does not require the non-swap property,
an installation might want to skip the PPT definition, resulting in only the
client adapter running in a non-swappable address space.
 184

Understanding the Impact of Cross memory Communication
Understanding the Impact of Cross memory
Communication

Overview The use of cross memory communication involves multiple address spaces
communicating with each other. The address spaces communicate by
calling PC routines. For example, the IMS address space communicates
with the IMS client adapter by calling a PC routine provided by the IMS
client adapter.

Two ways to set up authorization To enable one IMS address space to call a PC routine in another address
space, proper authorization must be granted, and system tables must be
connected between the two address spaces. This setup can be shared
between the client address space (IMS) and the server address space (IMS
client adapter). Alternatively, the server address space can perform the
entire setup.

Shared setup If the setup is shared between address spaces, this requires the client (IMS)
to run with its entire set of load libraries APF-authorized. If it is not desirable
in a particular installation to run IMS with APF-authorized load libraries, the
shared setup can be avoided by having the server address space perform the
entire setup.

Server address space setup To avoid the need to have IMS load libraries APF-authorized, the client
adapter currently supports only server address space setup. However,
allowing the server address space to perform the entire cross memory
communication setup comes at a cost. When the IMS client adapter is
started, it is assigned an address space ID (ASID). When the IMS client
adapter is subsequently stopped, its ASID becomes unavailable until the
next IPL. A message similar to the following appears in the system log:

IEF352I ADDRESS SPACE UNAVAILABLE
185

CHAPTER 14 | Configuring the Client Adapter AMTP_XMEM Plug-in
Because the IMS client adapter is intended to be a long-running service, and
not frequently stopped and restarted between IPLs, this should not result in
many ASIDs becoming unavailable.

For more information on cross memory communication, and why ASIDs
become unavailable, refer to the following IBM publication:

MVS Programming: Extended Addressability Guide, SA22-7614.

ASID reuse Since z/OS 1.9, the operating system can reuse an ASID. This facility is
enabled by adding the following to the SYS1.PARMLIB(DIAGxx) member:

You must perform the following steps when starting the client adapter:

1. Place the client adapter JCL in a suitable PROCLIB.

2. Use the START command to start the client adapter.

3. Use the REUSASID parameter of the START command.

For example, to start an instance of the client adapter in
SYS1.PROCLIB(MYXFRMR), issue the following command:

For more information on reusable ASIDs, see the following IBM publication:

MVS Programming: Extended Addressability Guide, SA22-7614.

REUSASID(YES)

Note: Simply submitting a job to start the client adapter results in a lost
ASID when the client adapter is stopped.

START MYXFRMR, REUSASID=YES
 186

AMTP_XMEM Plug-In Configuration Items
AMTP_XMEM Plug-In Configuration Items

Overview This section discusses the following topics:

� �Cross memory communication destination�

� �Cross memory communication minimum threads�

� �Cross memory communication maximum threads�

� �Cross memory communication maximum segment size�

Cross memory communication
destination

The related configuration item is
plugins:amtp_xmem:symbolic_destination. This is a symbolic name that
identifies the IMS client adapter. It can be up to eight characters in length.
The Orbix runtime in IMS is configured to use this destination. IMS client
transactions have their requests sent to the client adapter using this
symbolic destination. The default value is ORXCLNT1.

Cross memory communication
minimum threads

The related configuration item is plugins:amtp_xmem:min_comm_threads. It
specifies the minimum number of client adapter threads that are used to
service IMS client transaction requests. Each thread services a single client
transaction request. Multiple threads allow for multiple concurrent client
requests to be processed. The default is 5 threads.

Cross memory communication
maximum threads

The related configuration item is plugins:amtp_xmem:max_comm_threads. It
specifies the maximum number of client adapter threads that can be used to
service IMS client transaction requests. If all client adapter threads are busy,
and another request arrives, further threads are started dynamically up to
this maximum number. The default is 10 threads.

Note: The value for this configuration item must be unique for each
instance of the client adapter. Unlike APPC, the cross memory
communication plug-in does not allow multiple instances of the client
adapter to use the same symbolic destination.
187

CHAPTER 14 | Configuring the Client Adapter AMTP_XMEM Plug-in
Cross memory communication
maximum segment size

The related configuration item is plugins:amtp_xmem:max_segment_size. It
specifies the maximum segment size that the client adapter can receive
from a client. The Orbix runtime in IMS is configured with a maximum
segment size. The client adapter might be servicing one or more IMS
regions. The value for plugins:amtp_xmem:max_segment_size must be
equal to or greater than the largest segment size defined in the configuration
for the Orbix runtime in IMS.
 188

CHAPTER 15

Configuring the
Client Adapter
Subsystem
The client adapter receives IMS client transaction requests
from the AMTP_APPC or AMTP_XMEM plug-ins. The client
adapter then locates target objects, invokes operations, and
returns results to the AMTP_APPC or AMTP_XMEM plug-in.
This functionality is implemented as a client adapter
subsystem that is dynamically loaded by the adapter
application. This chapter describes how to configure the client
adapter subsystem.

In this chapter This chapter discusses the following topic:

Client Adaptor Subsystem Configuration page 190
189

CHAPTER 15 | Configuring the Client Adapter Subsystem
Client Adaptor Subsystem Configuration

Overview This section includes the following:

� Type information mechanism

� IFR signature cache file

� type_info store

Type information mechanism The related configuration item is plugins:client_adapter:repository_id.
It specifies the repository used by the client adapter to store operation
signatures. Two repositories are supported: ifr and type_info store. The
default is type_info. Refer to �Using type_info store as a Source of Type
Information� on page 252 for more information on the role of type
information.

IFR signature cache file If the client adapter is configured to use the IFR as the type information
repository (a store of operation signatures), an IFR signature cache file can
be used to improve performance. The related configuration item is
plugins:client_adapter:ifr:cache. Refer to �Using an IFR Signature
Cache File� on page 250 for more information on how IFR signature cache
files work.

The filename specification for the signature cache file can take one of
several forms:

� The following example reads the mappings from a file in the z/OS UNIX
System Services hierarchical file system (HFS):

plugins:client_adapter:ifr:cache =
"/home/user/sigcache.txt;"
 190

Client Adaptor Subsystem Configuration
� The following example shows the syntax to indicate that the mappings
are cached in a flat file (PS) data set, which is created with the default
attributes used by the LE runtime:

The data set is created with the default attributes used by the LE runtime.
Depending on the number of interfaces and the complexity of the types
used, this might not be large enough. In this case, the client adapter saves
as many cache entries as possible and then issues error messages. If this
occurs, you should preallocate a larger data set with the same attributes,
and use this name the next time you start the client adapter.

type_info store If the client adapter is configured to use a type_info store as the type
information repository (a store of operation signatures), the location of the
store must be supplied. The related configuration item is
plugins:client_adapter:type_info:source.

The plugins:client_adapter:type_info:source variable can be set to one
of the following:

� An HFS file (z/OS UNIX System Services)

Specifies a file to use as a type_info source. Operation signatures are
read from this file during start-up. If a refresh is requested (via itadmin
mfa refresh for example), this file is re-read. For example:

plugins:client_adapter:ifr:cache =
"//orbixhlq.DEMO.IFRCACHE";

Note: Do not use members of partitioned data sets as a signature cache
file.

plugins:client_adapter:type_info:source =
"/home/bob/type_info.txt";
191

CHAPTER 15 | Configuring the Client Adapter Subsystem
� An HFS directory (z/OS UNIX System Services)

Specifies a directory to use as a type_info source. Operation signatures
are read from all files in this directory during start-up. If a refresh is
requested, all files in the directory are browsed until the relevant
operation signature(s) are found. For example:

� A PDS member (native z/OS)

Specifies a PDS member (batch) to use as a type_info source.
Operation signatures are read from this member during start-up. If a
refresh is requested, this member is re-read. For example:

� A PDS (native z/OS)

Specifies a dataset to use as a type_info source. Operation signatures
are read from all members in this data set during start-up. If a refresh
is requested, all members in the data set are browsed until the relevant
operation signature(s) are found. For example:

For PDS names, you can use a DD name, as long as this is defined to the
client adapter start JCL, orbixhlq.JCLLIB(IMSCA)

plugins:client_adapter:type_info:source =
"/home/bob/typeinfo_store";

plugins:client_adapter:type_info:source =
"//MY1.TYPEINFO(MYINFS)";

plugins:client_adapter:type_info:source = "//MY1.TYPEINFO";

Note: The use of HFS directories or a PDS is preferable to the use of flat
files, because these methods are better suited to the dynamic addition or
removal of interface information, and they can also address IDL versioning.
 192

CHAPTER 16

Configuring the
Orbix Runtime in
IMS
This chapter provides information on configuring the Orbix
runtime that is used by Orbix clients running in IMS.

In this chapter This chapter discusses the following topics:

Customizing the IMS JCL page 194

Customizing Orbix Event Logging page 197

Customizing Orbix Maximum Segment Size page 199

Customizing Orbix Function Timeout page 201

Customizing Orbix Symbolic Destination page 203

Customizing Orbix Local LU page 205
193

CHAPTER 16 | Configuring the Orbix Runtime in IMS
Customizing the IMS JCL

Overview The IMS JCL must be updated to add the Orbix IMS runtime library to the
IMS message region�s STEPLIB.

Customizing IMS JCL To customize IMS JCL perform the following steps.

Note: If you are using the IMS server adapter, this might have already
been performed.

Step Action

1 The following library should be added to the IMS message
region's STEPLIB concatenation as follows:

DD DSN=HLQ.ORBIX60.MFA.LOAD,DISP=SHR

2 Check if the following entries are already defined in the IMS
message region's JCL. If not, they should be added to ensure
you receive all output from your IMS servers.

� SYSPRINT DD SYSOUT=*

� CEEDUMP DD SYSOUT=*

� CEEOUT DD SYSOUT=*

� SYSOUT DD SYSOUT=*

3 Recycle the message regions to pick up these libraries.
 194

Customizing Orbix Configuration
Customizing Orbix Configuration

Overview The Orbix configuration inside IMS is DLL-based. (DLL is the acronym for
Dynamic Link Library.) The Orbix runtime inside IMS does not access a file
for configuration information, but instead gets configuration information
from a DLL. The DLL resides in the Orbix IMS runtime library that was
added to the IMS message region�s STEPLIB. The ORXMFACx member is the
configuration DLL.

This section discusses the following topics:

� How the configuration is changed

� Steps to change the configuration

� S390 Assembler program variables

How the configuration is changed Changing the configuration involves updating the configuration DLL. The
DLL is updated by assembling and linking an S390 Assembler program that
defines the configuration settings. See orbixhlq.JCLLIB(MFACLINK) for
sample JCL to update the DLL. The sample JCL runs the Assembler and
re-links the configuration in the DLL. The JCL contains the S390 Assembler
program that defines the configuration settings.

Steps to change the configuration Perform the following steps to update the configuration DLL:

Step Action

1 Make a backup of your current configuration DLL. The
configuration DLL is in orbixhlq.MFA.LOADLIB(ORXMFACx).

2 Make the appropriate changes to the
orbixhlq.JCLLIB(MFACLINK) JCL, as outlined in the JCL
comments.

3 Change the S390 Assembler program to define the new
configuration settings.

4 Submit the JCL.
195

CHAPTER 16 | Configuring the Orbix Runtime in IMS
S390 Assembler program
variables

The following table lists the S390 Assembler program variables that can be
changed in order to change the configuration

5 Make the updated DLL available to your IMS region for the
configuration changes to take effect.

Step Action

Table 6: S390 Assembler Program Variables and Default Values

Assembler Variable Description Default Value

LOGLVL Event logging level 2

MAXSEG Maximum segment size 32760

TIMEOUT Maximum time for a client request to complete.

For APPC, the value is in minutes. For cross memory, the value
is in seconds.

5

SYMBDST Symbolic destination ORXCLNT1

LOCALLU For APPC, the APPC LU IMS uses to communicate with the
client adapter,

For cross memory, the value is IT_XMEM, which tells the runtime
inside IMS to use cross memory communication.

IMSLU01
 196

Customizing Orbix Event Logging
Customizing Orbix Event Logging

Customizing the level of event
logging

The level of logging performed by the Orbix IMS runtime can be configured.

This section discusses the following topics:

� Customizing the level of event logging

� Event logging settings

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

Customizing the level of event
logging

This is done by modifying the ORXMFACx DLL. This DLL contains an S390
Assembler CSECT that supplies the event logging string to the runtime.

Event logging settings The event logging settings are as follows:

Note: If you are using the IMS server adapter, this might have already
been performed.

Table 7: Event Logging Settings for the IMS Server Adapter

Value Description

0 LOG_NONE�no logging in IMS is performed.

1 LOG_ERROR�only log errors.

2 LOG_WARNING�log warnings and errors.

3 LOG_INFO_HIGH�log high priority informational messages,
warnings and errors.

4 LOG_INFO_MED�log medium priority informational messages,
high priority informational messages, warnings and errors.

5 LOG_INFO_LOW�log low priority informational messages,
medium priority informational messages, high priority
informational messages, warnings and errors.
197

CHAPTER 16 | Configuring the Orbix Runtime in IMS
ORXMFACx DLL setting The ORXMFACx DLL shipped with the IMS server adapter has a setting of 2 for
event logging in IMS. This means that all warning and error messages are
displayed, but none of the informational messages are displayed.

Modifying the ORXMFACx DLL
setting

The ORXMFACx DLL setting can be modified to some other value. For
example, to help trace a problem with a transaction in IMS, it can be
changed to 6.

6 LOG_INFO_ALL�log all messages.

Table 7: Event Logging Settings for the IMS Server Adapter

Value Description
 198

Customizing Orbix Maximum Segment Size
Customizing Orbix Maximum Segment Size

Overview The Orbix runtime inside IMS sends client transaction data to the client
adapter in a stream of segments. The maximum size of these segments can
be customized.

This section discusses the following topics:

� Customizing the maximum segment size

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

� Maximum segment size constraints

Customizing the maximum
segment size

Customizing the maximum segment size is done by modifying the ORXMFACx
DLL. This DLL contains an S390 Assembler CSECT that supplies the
maximum segment size to the Orbix runtime.

ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has a setting of 32760 for
the maximum segment size. (This is 32K rounded down to be a multiple of
eight.)

Modifying the ORXMFACx DLL
setting

The Orbix runtime in IMS builds up segments of this size. For APPC,
multiple segments of this size are used to transmit data. The 32K APPC
limit for a single segment applies, but all the segments together can be more
than 32K. Depending on your network definitions, these segments can be
further broken up into smaller segments by VTAM and chained when they
are transmitted.

For cross memory, segments of this size are moved directly between IMS
and the client adapter address space.

The ORXMFACx DLL setting can be modified to be some other value, if, for
example, your installation has restrictions on the size of APPC buffers. For
example, it might be changed to 4096 to meet an installation requirement.
199

CHAPTER 16 | Configuring the Orbix Runtime in IMS
Maximum segment size
constraints

When choosing a value for the maximum segment size consider the
following:

� The value must be a multiple of 8

� The minimum value is 32

� The maximum value is 32760

� The default value is 32760
 200

Customizing Orbix Function Timeout
Customizing Orbix Function Timeout

Overview The time it takes the Orbix runtime in IMS to send a message to the client
adapter and wait for a response is timed. If this time exceeds the configured
function timeout value, the message can time out, allowing the Orbix
runtime in IMS to continue processing other work.

When using APPC, the Orbix runtime in IMS issues an APPC send to send
data to the client adapter, and issues an APPC receive to receive data from
the client adapter. The amount of time the Orbix runtime in IMS allows the
APPC receive to wait before it times out can be customized. The value is in
increments of minutes.

When using cross memory, the Orbix runtime in IMS sends data directly to
the client adapter address space, and waits for a reply. The amount of time
the Orbix runtime in IMS waits for the reply before it times out can be
customized. The value is in increments of seconds.

This section discusses the following topics:

� Customizing the function timeout

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

� Function timeout restrictions

Customizing the function timeout Customizing the function timeout is done by modifying the ORXMFACx DLL.
This DLL contains an S390 Assembler CSECT that supplies the function
timeout to the Orbix runtime.

ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has a setting of 5. For
APPC, this value represents five minutes. For cross memory, this value
represents five seconds.

Modifying the ORXMFACx DLL
setting

The ORXMFACx DLL setting can be modified to some other value. For
example, when using APPC, if your installation considers any response that
takes longer than two minutes to be a problem, the function timeout can be
changed to 2.
201

CHAPTER 16 | Configuring the Orbix Runtime in IMS
Function timeout restrictions When choosing a value for the function timeout, consider the following:

� The value must be in the range 0 to 1440.

� A value of 0 means no timeout. Do not use a value of zero for cross
memory.

� The value designates a timeout value in minutes for APPC, and in
seconds for cross memory.

� The default value is five minutes for APPC, five seconds for cross
memory.
 202

Customizing Orbix Symbolic Destination
Customizing Orbix Symbolic Destination

Overview The Orbix runtime in IMS uses APPC or cross memory when communicating
with the client adapter.

When using APPC, an APPC allocate is used to initiate an APPC
conversation with the client adapter. The APPC allocate must identify the
client adapter as the target of the allocate request. An APPC symbolic
destination is used to identify the client adapter. The symbolic destination
can be customized.

When using cross memory, the PC (program call) number of the PC routine
residing in the client adapter address space is determined by using
name/token services. The symbolic destination is the name portion of the
name/token. The PC number is found in the token portion of the name
token. The client adapter publishes the name token, and the runtime in IMS
uses the symbolic destination to lookup the name/token.

This section discusses the following topics:

� Customizing the symbolic destination

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

� Symbolic destination restrictions

Customizing the symbolic
destination

Customizing the symbolic destination is done by modifying the ORXMFACx
DLL. This DLL contains an S390 Assembler CSECT that supplies the
symbolic destination to the Orbix runtime.

ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has a setting of ORXCLNT1
for the symbolic destination.
203

CHAPTER 16 | Configuring the Orbix Runtime in IMS
Modifying the ORXMFACx DLL
setting

The ORXMFACx DLL setting can be modified to some other value.

When using APPC, if your installation has naming standards for APPC
symbolic destinations, it can be changed to, for example, PRODCADP. Change
SYMBDST in the Assembler program to modify the APPC symbolic
destination.

When using cross memory, use a name that corresponds to a valid
name/token pair name.

Symbolic destination restrictions When using APPC, consider the following when choosing a value for the
symbolic destination:

� The default value is ORXCLNT1.

� The value must match the client adapter�s amtp_appc plug-in
plugins:amtp_appc:symbolic_destination configuration item setting.
Refer to �APPC destination� on page 177 for more information on the
amtp_appc plug-in configuration setting.

� Refer to �Defining an APPC Destination Name for the Client Adapter�
on page 162 for more information on how to define a symbolic
destination to APPC/MVS.

When using cross memory, consider the following when choosing a value for
the symbolic destination:

� The default value is ORXCLNT1.

� The value must match the client adapter�s setting for the AMTP_XMEM
plug-in configuration item
(plugins:amtp_xmem:symbolic_destination). Refer to �Cross memory
communication destination� on page 187 for more information on the
AMTP_XMEM plug-in configuration setting.
 204

Customizing Orbix Local LU
Customizing Orbix Local LU

Overview The Orbix runtime in IMS uses APPC or cross memory when communicating
with the client adapter. For APPC, it issues an APPC allocate to initiate an
APPC conversation with the client adapter. The APPC allocate must
identify the local LU it uses to communicate with the client adapter�s LU.
The local LU can be customized. For cross memory, the local LU name
determines if cross memory is to be used. When the name is IT_XMEM, this
informs the runtime inside IMS to use cross memory.

This section discusses the following topics:

� Customizing the local LU

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

� Local LU restrictions

Customizing the local LU This is done by modifying the ORXMFACx DLL. This DLL contains an S390
Assembler CSECT that supplies the local LU to the Orbix runtime.

ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has the following setting
for the local LU: IMSLU01

Modifying the ORXMFACx DLL
setting

This setting can be modified to be some other setting. If your installation has
a different name for the Orbix runtime in IMS local LU, it can, for example,
be changed to: OURIMSLU. To specify that the cross memory transport be
used, change the local LU to IT_XMEM.

Local LU restrictions Note the following when choosing a value for the local LU:

� The default value is IMSLU01.

� Refer to �Associating an IMS LU with a specific IMS region� on
page 99 for more information on where the IMS local LU is defined.
This is the value that must be defined for the local LU.

� Use a value of IT_XMEM to indicate the cross memory transport be
used.
205

CHAPTER 16 | Configuring the Orbix Runtime in IMS
 206

Part 4
Securing and Using the IMS

Server Adapter

In this part This part contains the following chapters:

Securing the IMS Server Adapter page 209

Using the IMS Server Adapter page 261

CHAPTER 17

Securing the IMS
Server Adapter
This chapter provides details of security considerations
involved in using the IMS server adapter. It provides a review
of general Orbix security implications and the relevant IMS,
APPC, and OTMA security mechanisms. It describes the two
security modes that the server adapter supports, with
particular emphasis on how each mode affects the existing
IMS security mechanisms.

In this chapter The following topics are discussed in this chapter:

Security Configuration Items page 210

Common Security Considerations page 219

APPC-Based Security Considerations page 221

OTMA-Based Security Considerations page 227

IMS Server Adapter Security Modes page 229

Choosing between OTMA and APPC Modes page 232

Setting up APPC and OTMA Modes page 233
209

CHAPTER 17 | Securing the IMS Server Adapter
Security Configuration Items

Overview This section provides an example and details of how to configure the IMS
server adapter to run with Transport Layer Security (TLS) enabled. The
sample configuration includes an isf sub-scope that highlights the
configuration items required to integrate with the IONA Security Framework
(iSF) and, in particular, enable CSIv2-based authentication using the
off-host Security service. The isf sub-scope also includes configuration
items that allow you to deploy a fully standalone IMS adapter service.

Sample configuration Example 12 provides an overview of the configuration items used to enable
security with the server adapter.

Example 12:Sample Security Configuration for IMS Server Adapter (Sheet
1 of 4)

 plugins:security:share_credentials_across_orbs = "true";

 # By default, use TLS V1. Downgrade to SSL V3 if the remote
 # peer is unable to support TLS V1.
 policies:mechanism_policy:protocol_version = ["TLS_V1", "SSL_V3"];

 # Please change the following if you have only export strength
 # encryption available on the machine.
 policies:mechanism_policy:ciphersuites = ["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_RC4_128_MD5"];

 plugins:systemssl_toolkit:saf_keyring
 = "%{LOCAL_SSL_USER_SAF_KEYRING}";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";

 # By default, use the 'iona_services' certificate from the keyring
 principal_sponsor:auth_method_data = ["label=iona_services"];

 # By default the following policies are used to deploy a
 # fully secure domain where client authentication is not required:
 #
 policies:target_secure_invocation_policy:requires =
 ["Confidentiality", "DetectMisordering",
 210

Security Configuration Items
 "DetectReplay", "Integrity"];
 policies:target_secure_invocation_policy:supports =
 ["Confidentiality", "EstablishTrustInTarget",
 "EstablishTrustInClient", "DetectMisordering",
 "DetectReplay", "Integrity"];
 policies:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget",
 "DetectMisordering", "DetectReplay", "Integrity"];
 policies:client_secure_invocation_policy:supports =
 ["Confidentiality", "EstablishTrustInClient",
 "EstablishTrustInTarget", "DetectMisordering",
 "DetectReplay", "Integrity"];

 # For semi-secure services, the following policies would be used:
 #
 #policies:target_secure_invocation_policy:requires =
 # ["NoProtection"];
 #policies:target_secure_invocation_policy:supports =
 # ["NoProtection", "Confidentiality",
 # "EstablishTrustInTarget", "EstablishTrustInClient",
 # "DetectMisordering", "DetectReplay", "Integrity"];
 #policies:client_secure_invocation_policy:requires =
 # ["NoProtection"];
 #policies:client_secure_invocation_policy:supports =
 # ["NoProtection", "Confidentiality",
 # "EstablishTrustInTarget", "EstablishTrustInClient",
 # "DetectMisordering", "DetectReplay", "Integrity"];
 #
 # If you are going to use a semi-secure approach, please
 # search this file for "orb_plugins" and add "iiop" into
 # the list.

 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop_tls", "wto_announce"];

 IT_LocatorReplicas = ["iona_services.locator=corbaloc:iiops:1.2@%{LOCAL\
 _HOSTNAME}:%{LOCAL_TLS_LOCATOR_PORT},it_iiops:1.2@%{LOCAL_HOSTNAME}:%{L\
 OCAL_TLS_LOCATOR_PORT},iiop:1.2@%{LOCAL_HOSTNAME}:%{LOCAL_LOCATOR_PORT}\
 /IT_LocatorReplica"];

 iona_services
 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop_tls", "ots"];

Example 12:Sample Security Configuration for IMS Server Adapter (Sheet
2 of 4)
211

CHAPTER 17 | Securing the IMS Server Adapter

 generic_server:wto_announce:enabled = "true";
 �
 imsa
 {
 #
 # Settings for well-known addressing:
 # (mandatory if direct_persistence is enabled)
 #
 # plugins:imsa:iiop_tls:host = "%{LOCAL_HOSTNAME}";
 # plugins:imsa:iiop_tls:port = "5106";

 isf
 {
 # enable ISF authentication
 #

 orb_plugins = ["iiop_profile", "giop",
 "iiop_tls", "local_log_stream",
 "ots", "gsp"];

 event_log:filters = ["IT_CSI=*", "IT_GSP=*",
 "IT_IIOP_TLS=*",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 binding:server_binding_list
 = ["CSI+GSP+OTS", "CSI+GSP", "CSI+OTS", "CSI"];

 # standalone ISF-enabled adapter
 #
 plugins:imsa:direct_persistence = "yes";
 plugins:imsa:iiop:port = "5006";
 plugins:imsa:iiop_tls:port = "5106";

 # search for an access ID in the received credentials,
 # and if available, use that ID to perform SAF checks
 # when starting IMS transactions
 #
 plugins:imsa:use_client_principal = "yes";
 plugins:imsa:check_security_credentials = "yes";

 # IOR for the off-host Security Service -
 # not required if the adapter is only intended to
 # perform identity assertion on the propagated

Example 12:Sample Security Configuration for IMS Server Adapter (Sheet
3 of 4)
 212

Security Configuration Items
 # CSI::IdentityToken.
 #
 initial_references:IT_SecurityService:reference = "";

 policies:csi:auth_over_transport:target_supports =
 ["EstablishTrustInClient"];

 # allow non-CSIv2 based requests to proceed for
 # demonstrational purposes. Insert this config item
 # to enforce CSIv2 authentication:
 #
 # policies:csi:auth_over_transport:target_requires =
 # ["EstablishTrustInClient"];

 policies:csi:auth_over_transport:server_domain_name =
 "IONA";

 policies:csi:attribute_service:target_supports =
 ["IdentityAssertion"];
 #
 # ISF Authorization:
 #
 # - this variable can be used to disable authorization:
 plugins:gsp:enable_authorization = "false";
 #
 # If the above setting is omitted, or set to true, please
 # review the following primary settings for ISF authorization:
 #
 # - use local store for ACL (default: local):
 # plugins:gsp:authorization_policy_store_type = "local";
 #
 # - and, specify file URL (UTF-8 encoded data in USS):
 # plugins:gsp:action_role_mapping_file =
 # "file:///my/action/role/mapping.xml";
 #
 # - or, use centralized support:
 # plugins:gsp:authorization_policy_store_type = "centralized";
 #
 };
 };
�
};

Example 12:Sample Security Configuration for IMS Server Adapter (Sheet
4 of 4)
213

CHAPTER 17 | Securing the IMS Server Adapter
Summary of global scope
configuration items

The following is a summary of the security-related configuration items
associated with the global scope:

plugins:security:share_
credentials_across_orbs

Enables own security credentials to be
shared across ORBs. Normally, when
you specify an own SSL/TLS
credential (using the principal sponsor
or the principal authenticator), the
credential is available only to the ORB
that created it. By setting this
configuration item to true, however,
the own SSL/TLS credentials created
by one ORB are automatically made
available to any other ORBs that are
configured to share credentials.

policies:mechanism_policy:
protocol_version

Specifies the protocol version used by
a security capsule (ORB instance). It
can be set to SSL_V3 or TLS_V1.

policies:mechanism_policy:
ciphersuites

Specifies a list of cipher suites for the
default mechanism policy.

plugins:systemssl_toolkit:
saf_keyring

Specifies the RACF keyring to be used
as the source of X.509 certificates.

principal_sponsor:use_principal_
sponsor

This must be set to true to indicate
that the certificate information is to be
specified in the configuration file.

principal_sponsor:auth_method_id This must be set to security_label
to indicate that the certificate lookup
should be performed using the label
mechanism.

principal_sponsor:auth_method_
data

If you are using TLS security, this
specifies the label that should be used
to look up the SSL/TLS certificate in
the SAF key store. The specified label
name must match the label name
under which the server certificate was
imported into, or created in, the key
store (for example, in RACF).
 214

Security Configuration Items
Summary of iSF configuration
items

The following is a summary of the configuration items associated with the
iona_services:imsa:isf sample configuration scope:

policies:target_secure_
invocation_policy:requires

Specifies the invocation policy
required by the server for accepting
secure SSL/TLS connection attempts.

policies:target_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the server for accepting
secure SSL/TLS connection attempts.

policies:client_secure_
invocation_policy:requires

Specifies the invocation policy
required by the client for opening
secure SSL/TLS connections.

policies:client_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the client for opening
secure SSL/TLS connections.

orb_plugins The iiop_tls plugin must be added
to this list, to enable TSL support.

Note: Remove the iiop plugin if you
explicitly wish to disable all insecure
communications.

Note: See the Mainframe Security Guide for more details of these
configuration items.

orb_plugins List of standard ORB plug-ins the
IMS server adapter should load
when running in secure mode.

event_log:filters Specifies the types of events that
the IMS server adapter logs in
secure mode.

binding:client_binding_list Specifies a list of potential
client-side bindings.

binding:server_binding_list Specifies a list of potential
server-side bindings.
215

CHAPTER 17 | Securing the IMS Server Adapter
plugins:imsa:direct_persistence Specifies the persistence mode
adopted by the IMS server adapter
service in secure mode. This is an
optional item. iiop_tls:port is
required if this is specified as yes.

plugins:imsa:iiop_tls:port Specifies the TCP/IP port number
that the IMS server adapter uses to
listen for incoming secure requests.
Valid values are in the range 1025�
65535. This is an optional item.
Default is 5106.

plugins:imsa:iiop:port Specifies the TCP/IP port number
that the IMS server adapter uses to
listen for incoming insecure
requests. Valid values are in the
range 1025�65535. This is an
optional item. Default is 5006.

plugins:imsa:use_client_
principal

Indicates whether the IMS server
adapter should verify the client
principal user ID with SAF before
trying to start the target IMS
transaction under that ID. The
default is no.

plugins:imsa:check_security_
credentials

Indicates whether the IMS server
adapter should query the CSI
received credentials for a user ID
before defaulting to the GIOP
Principal value, on receiving a client
request.

initial_references:
IT_SecurityService:reference

Specifies the IOR for the off-host
Security service.

policies:csi:auth_over_transport:t
arget_supports

Specifies that the target server
supports receiving
username/password authentication
data from the client.

policies:csi:auth_over_transport:t
arget_requires

Specifies that the target server
requires the client to send
username/password authentication
data.
 216

Security Configuration Items
plugins:imsa:direct_persistence Specifies the persistence mode
adopted by the IMS server adapter
service in secure mode. This is an
optional item. iiop_tls:port is
required if this is specified as yes.

plugins:imsa:iiop_tls:port Specifies the TCP/IP port number
that the IMS server adapter uses to
listen for incoming secure requests.
Valid values are in the range 1025�
65535. This is an optional item.
Default is 5106.

plugins:imsa:iiop:port Specifies the TCP/IP port number
that the IMS server adapter uses to
listen for incoming insecure
requests. Valid values are in the
range 1025�65535. This is an
optional item. Default is 5006.

plugins:imsa:use_client_
principal

Indicates whether the IMS server
adapter should verify the client
principal user ID with SAF before
trying to start the target IMS
transaction under that ID. The
default is no.

plugins:imsa:check_security_
credentials

Indicates whether the IMS server
adapter should query the CSI
received credentials for a user ID
before defaulting to the GIOP
Principal value, on receiving a client
request.

initial_references:
IT_SecurityService:reference

Specifies the IOR for the off-host
Security service.

policies:csi:auth_over_transport:t
arget_supports

Specifies that the target server
supports receiving
username/password authentication
data from the client.

policies:csi:auth_over_transport:t
arget_requires

Specifies that the target server
requires the client to send
username/password authentication
data.
217

CHAPTER 17 | Securing the IMS Server Adapter
policies:csi:auth_over_transport:s
erver_domain_name

Specifies the server�s CSIv2
authentication domain name.

policies:csi:attribute_service:
target_supports

Specifies that the target server
supports receiving propagated user
identities from the client.

plugins:gsp:enable_authorization Specifies if an iSF authorization
check should be made based upon
the received CSI credentials.

plugins:gsp:
authorization_policy_store_type

Indicates which ACL store to use for
obtaining authorization policy
information. A value of local
specifies that the local file system is
to be used. A value of centralized
indicates that the information is to
be obtained using the remote iSF
Security Service. The default is
local.

plugins:gsp:
action_role_mapping_file

If a local policy store is being used,
this variable must be set to indicate
the location of the authorization
mapping file. A file:// URL must be
specified, and the file itself must
reside in the Unix System Services
file system. In addition, the XML
data in this file must be encoded in
UTF-8.
 218

Common Security Considerations
Common Security Considerations

Overview This section provides details of common security considerations involved in
using the IMS server adapter. These security considerations are relevant
regardless of which protocol the server adapter is using to communicate
with IMS.

This section discusses the following topics:

� Orbix SSL/TLS

� iSF integration

� Client authorization

� SAF plug-in

� Mapping client principal values to z/OS user IDs

� RACF program control

Orbix SSL/TLS Orbix provides transport layer security (TLS) that enables secure connectivity
over IIOP. TLS includes authentication, encryption, and message integrity.
As with all Orbix servers, you can configure the IMS server adapter to use
TLS. See the Mainframe Security Guide for details on securing CORBA
applications with SSL/TLS.

iSF integration The IONA security framework (iSF) provides a common security framework
for all Orbix components in your system. This framework is involved at both
the transport layer (using TLS) and the application layer (using the CORBA
CSIv2 protocol and the IONA generic security plug-in (GSP). At the
application level, one of the following authentication credentials can be
passed, using the CSIv2 protocol:

� username/password/domain name

� propagated username

� Single sign-on (SSO) token

You can configure the IMS server adapter to use CSI/GSP support. See the
Mainframe Security Guide for details on iSF and integration with an off-host
Security service.
219

CHAPTER 17 | Securing the IMS Server Adapter
Client authorization Authorization checks can be performed in the following ways:

� Using the GSP realm/role authorization functionality.

� Using the SAF plug-in, which provides Principal-based access control.
Refer to �SAF plug-in� for more details.

� As part of the IMS security mechanisms (for example, checking that
the user is allowed to run the specified program). Refer to
�APPC-Based Security Considerations� on page 221 and
�OTMA-Based Security Considerations� on page 227 for more details.

The client�s Principal value is a string that is passed as part of an Orbix
request that identifies the user on the client side. If Orbix SSL/TLS has not
been configured, this value cannot be authenticated in any way.
Sophisticated client-side users could fabricate this value, and therefore gain
access to server-side resources that those users would not otherwise be
allowed to use.

SAF plug-in This Orbix plug-in provides optional Principal-based access control, similar
to that found in IONA�s Orbix 2.3-based mainframe solutions. A server
might accept or reject incoming requests, based upon a CORBA::Principal
value in the request header. The value is treated as a z/OS user ID and
access is checked against an operation-specific SAF profile name. Access
can therefore be controlled on a per-operation basis, or (using generic
profiles) on a per-server basis. More details can be found in the
orbixhlq.DOC PDS which is created as part of the software installation.

Mapping client principal values to
z/OS user IDs

For the purposes of checking access to IMS resources, the only translation
that the server adapter performs between the client principal value and the
z/OS user ID is to convert lowercase letters to uppercase and to restrict the
ID to no more than 8 characters. Long principal values from other platforms
have their principals truncated to 8 characters. This means principals longer
than 8 characters must have the first 8 characters match a valid z/OS user
ID. Principals with 8 characters or less in length must entirely match a valid
z/OS user ID.

RACF program control If RACF program control is in use on your system, appropriate RACF
definitions must be defined for Orbix. Refer to your RACF manuals for
further details.
 220

APPC-Based Security Considerations
APPC-Based Security Considerations

Overview This section provides details of security considerations that are specific to
using the APPC-based server adapter. It describes the various security
modes that the APPC-based server adapter supports, with particular
emphasis on how each mode affects the existing IMS security mechanisms.

This section discusses the following topics:

� Overview of APPC (LU 6.2 Protocol)

� Characteristics of the APPC-based server adapter

� LU 6.2 conversation security levels

� Preventing unauthorized access

� Security for users already logged on

� Session-level verification

� APPCLU class profiles

� Restricting authorized use of LU names

� Extra IMS command for securing conversations

Overview of APPC (LU 6.2
Protocol)

APPC is an implementation of the SNA LU 6.2 protocol for
program-to-program communication across networks. An LU allocates a
conversation to another LU and exchanges data with it. LU 6.2 defines a
number of characteristics that can be established for a conversation. These
include throughput, transactional behavior, and levels of security. APPC
provides a set of programming interfaces that are used to construct
programs that can send or receive LU 6.2 conversations.

Characteristics of the APPC-based
server adapter

In version 4, IMS first provided an APPC transaction program that could act
as an inbound (or receiver) LU. Its function is to accept data from an
outbound LU, queue it as segments to the IMS message queue for
scheduling as an IMS transaction, and then return any output segments
from the transaction to the outbound LU.

The APPC-based Adapter has been constructed as an outbound LU. This
means that it accepts data from CORBA clients on a TCP/IP network, sends
that data on to the IMS LU via an LU 6.2 conversation, and then returns the
data it receives from IMS back to the TCP/IP network.
221

CHAPTER 17 | Securing the IMS Server Adapter
LU 6.2 conversation security
levels

The LU 6.2 protocol, of which APPC/MVS is an implementation, defines
three levels of conversation security:

security_none No user identification is passed during the conversation.
Access to resources on the receiving (inbound) side is
limited to those that are universally available. In RACF
terms, this means that the only resources used are those
protected by profiles with a UACC other than NONE.

When the receiving side is an IMS LU, this results in the
IMS transaction being scheduled under no user, with a
blank value in the userid field of the I/O PCB.

security_same The identity of the initiating (outbound) user is passed
when starting the conversation. On the receiving side,
access is granted to all resources for which that user has
appropriate permissions. Essentially, the program
running on the receiving side is expected to have the
same access privileges as if the user had logged in
directly. No authentication of the user is performed,
because the inbound side of the conversation is expected
to pass an already verified flag, to indicate that the
user�s identity has already been checked.

The IMS server adapter attempts to use security_same
when allocating its conversations with the APPC/IMS
inbound transaction program. This allows the IMS
transaction that is being scheduled to be associated with
a particular user, so that existing IMS mechanisms can
be used for resource-access checking (for example, TIMS
RACF class profiles) and auditing (for example, the
userid value in the I/O PCB). However, security_none
might be used if VTAM refuses already verified
connections to the LU. This is explained in more detail
later in �Security for users already logged on� on
page 223.
 222

APPC-Based Security Considerations
Preventing unauthorized access Generally, in a network environment, it is a ridiculous idea that a client
should be authenticated by a server merely on the basis that it claims to
have been already-verified. After all, it is possible for a sophisticated user
on a workstation to forge any desired identity merely by fabricating the
appropriate LU 6.2 protocol exchanges with the z/OS host. Therefore, to
prevent such unauthorized access, z/OS provides a way to specify what
information must be passed, to connect to a particular LU. This is done by
specifying the SECACPT=CONV key in the APPL definition for the VTAM ACB
associated with the LU.

When allocating a conversation with an LU defined in this way, the initiating
LU must provide a user ID and password: the already-verified indicator is
not accepted. If the required data is not passed, VTAM permits the
connection, but the level of conversation security is reduced to
security_none, and only universally available resources are accessible on
the receiving side. Therefore, to get access to resources on the inbound side,
the outbound user must provide a password.

Security for users already logged
on

Consider the special case of a user already logged onto the host, who is
using APPC/MVS to communicate with an LU on the same z/OS host. This
is known as an LU=LOCAL conversation. In this case, the security information
that is passed between the two sides for a security_same conversation is
contained entirely within APPC/MVS itself: the outbound LU extracts the
user�s identity automatically for presentation to the inbound LU. There is no

security_pgm The initiating side sends a user identity value to be used
on the receiving side. This is not necessarily the identity
of the user initiating the conversation. The program on
the receiving side is expected to run with the privileges of
the specified user. For authentication purposes, the
inbound side must also send an associated password
value for the user, which is checked via RACF services.

A conversation using security_pgm is not possible with
the IMS server adapter, because it has no access to
passwords for its clients.

Note: Although the LU 6.2 protocol can be used for network
communication, the IMS server adapter is only intended to be run on the
same machine as the IMS region with which it is communicating.
223

CHAPTER 17 | Securing the IMS Server Adapter
opportunity for the user to insert a fabricated identity. In such cases, there
should be no need for APPC/MVS to enforce the password requirement: the
user has already provided a password to gain access to the host in the first
place.

When running on z/OS, the IMS server adapter is in a similar situation to a
logged-on user. If it initiates conversations to the IMS LU under its own
identity (the default mode), that identity has either been verified when the
user that started the server adapter logged on (if the server adapter is
submitted as a job or started interactively), or it has been assigned by the
security product when the work is started by an operator (if the server
adapter is run as a started task). Even if the server adapter is initiating
conversations under the identity of its clients, with the
plugins:imsa:use_client_principal configuration item set to yes, it can
only do that if it is running under a user ID that has been given authority to
do that. Additionally, it must have gone through at least one of the checks
already mentioned, to run under that user ID.

Session-level verification A secure but efficient APPC environment is, therefore, one that permits only
security_pgm conversations from remote machines, but which allows
security_same for LU=LOCAL conversations. In fact, prior to OS/390 V1R3,
this is what APPC/MVS provided for LUs defined with SECACPT=CONV,
because VTAM did not enforce the SECACPT=CONV specification for LU=LOCAL
conversations. Since OS/390 V1R3, however, this is enforced1, so an
alternate means of allowing security_same for LU=LOCAL conversations must
be used. This is accomplished on z/OS, using session-level verification.

Session-level verification introduces the concept of a session key that can be
used instead of a password for conversations between two specific LU
names only. If VERIFY=OPTIONAL is coded on the APPL definition of the VTAM
ACB for an LU, VTAM allows a security_same conversation to be
established, provided the other LU can correctly respond to a demand for
the session key that has been defined for these two LU names. On z/OS,
these session keys are maintained by RACF in APPCLU class profiles.

APPCLU class profiles APPCLU class profiles have names that take the following form:

1. Refer to the IBM publication OS/390 V1R3.0 MVS Conversion Notebook,
GC28-1747 for more details.

�networkid.local-lu-name.partner-lu-name�
 224

APPC-Based Security Considerations
They contain information to be used by APPC/MVS on one side of a
conversation. Even if both LUs are on the same z/OS host, each LU
examines a different profile, because each side of the conversation considers
itself to be the local LU.

For example, if an LU named OUTLU initiates a conversation with an LU
named INLU that has SECACPT=CONV and VERIFY=OPTIONAL coded on its
ACB, APPC/MVS on the inbound side determines the correct session key by
consulting the networkid.INLU.OUTLU APPCLU profile. On the outbound
side, when challenged for a session key, the initiating APPC/MVS consults
the networkid.OUTLU.INLU profile, for the key value to return. VTAM, on
the inbound side, permits the conversation to proceed as security_same,
only if the key values in the two profiles match and CONVSEC(ALREADYV) is
also coded in the inbound APPCLU profile.

Restricting authorized use of LU
names

Additionally, because session-level verification is performed on the basis of
LU name rather than on the basis of user name, it is necessary to restrict
the users that are authorized to use those particular LU names. This is done
via the RACF APPCPORT class. By defining a profile in this class with the
name of an LU, you can use its access list to control who can initiate or
accept APPC conversations with that LU on this system.

Extra IMS command for securing
conversations

The IMS support for APPC includes an extra command for securing LU 6.2
conversations into IMS. The options are as follows:

/SECURE APPC FULL RACF calls are made to check access to
transactions, using the TIMS class. Additionally, a
complete security environment for the user ID that is
provided by the IMS server adapter is set up in the
dependent region. This is the recommended option.

/SECURE APPC CHECK The RACF checks are made, but the security
environment is not cloned.

/SECURE APPC NONE RACF security calls are not made. Users are allowed
to invoke transactions, regardless of the
corresponding RACF TIMS class profile.
225

CHAPTER 17 | Securing the IMS Server Adapter
/SECURE APPC PROFILE Either FULL, CHECK, or PROFILE is used, depending
on the value specified in the APPC transaction
program profile data set (typically called
SYS1.APPCTP) for the transaction. It is not necessary
to define separate TP profiles for each IMS
transaction to use the IMS server adapter, and this is
not recommended.
 226

OTMA-Based Security Considerations
OTMA-Based Security Considerations

Overview OTMA security is provided by the IMSXCF.group.member and IMSXCF.OTMACI
resources in the RACF facilities class.

Refer to the IBM publications OTMA Guide and Reference, SC26-8743 and
OTMA C/I, SC26-8743-01 for details about how to set up the RACF classes
for OTMA. The IBM redbook IMS V6 Security Guide, SG24-5363 also
provides details about how to set up the RACF security for OTMA and OTMA
C/I.

This section discusses the following topics:

� Joining the XCF group

� Setting the OTMA security level

Joining the XCF group The user ID under which the server adapter is started is used for security
when joining the XCF group. If the plugins:imsa:use_client_principal
configuration item is set to no, this user name is also used for each
transaction invocation. If plugins:imsa:use_client_principal is set to
yes, the client Principal is used as the user ID for each transaction
invocation. The group name used for each transaction is read from SAF by
the OTMA C/I. Access to transactions is controlled using the standard TIMS
RACF class.

If IMSXCF.group.member is defined in the FACILITY class (where group is
the XCF group for IMS, and member is the member name of IMS or the IMS
server adapter or both), and if IMS security is not set to NONE, the user token
must be a valid SAF user with at least READ access. The user token can be
either the client Principal or the user ID that is used to start the server
adapter, depending on whether the �S parameter is used.

If IMSXCF.OTMACI is defined in the FACILITY class, the user ID under which
the server adapter is started must have at least READ access.

Any transactions not listed in the TIMS class are allowed using /SECURE
OTMA, regardless of the option that is set.
227

CHAPTER 17 | Securing the IMS Server Adapter
Setting the OTMA security level IMS supports the following commands to set the OTMA security level:

/SECURE OTMA FULL The user token passed to IMS is verified, using SAF.
If the plugins:imsa:use_client_principal
configuration item is set to yes, this token is the
client Principal; otherwise, it is the user ID under
which the server adapter was started. Full security
is the recommended option in a production
environment.

/SECURE OTMA PROFILE This provides the same level of security as FULL in
the case of the IMS server adapter.

/SECURE OTMA NONE The user token passed to IMS by the IMS server
adapter is not validated. This is useful for
development environments where full security is not
always required.
 228

IMS Server Adapter Security Modes
IMS Server Adapter Security Modes

Overview The IMS server adapter supports two modes of operation with regard to
security. The two modes are distinguished by which user identity is made
available to IMS and to either APPC or OTMA.

This section discusses the following topics:

� Determining the user ID

� Default mode

� use_client_principal mode for APPC-based adapters

� use_client_principal mode for OTMA-based adapters

� check_security_credentials iSF option

Determining the user ID For every incoming client request, the IMS server adapter has two user IDs
at its disposal:

� Its own user ID (that is, the ID under which the server adapter
executable is running).

� The client user ID (that is, the Principal value converted to uppercase,
and potentially truncated, to match the requirements of z/OS).

By default, the client user ID is the string value that is passed in the GIOP
Principal field. For GIOP 1.2 or later versions, the CORBA::Principal field
has been deprecated; however, as an alternative, Orbix can be configured to
pass the Principal user ID in a special service context that is marshaled by
the GIOP plug-in.

For installations that have been configured to use the Security service, the
client user ID can be obtained from the CSI received credentials. If a user ID
is not available in the security credentials, the GIOP Principal value is used
instead. See �check_security_credentials iSF option� on page 230 for more
details.

The Orbix IMS security mode that is chosen when starting the server adapter
determines the user ID that is used for security.
229

CHAPTER 17 | Securing the IMS Server Adapter
Default mode In the default mode, IMS and either APPC or OTMA use the IMS server
adapter�s user ID to verify access to the LU names, to the IMS region, to the
IMS transaction, to PSBs and databases, and so on. This means that the
server adapter�s user ID must be given access to not just the APPC or OTMA
resources, but also to every IMS resource that any potential client can
access. Otherwise, an incoming request might fail, even though the client
itself has access to every IMS resource it needs.

use_client_principal mode for
APPC-based adapters

If you set the plugins:imsa:use_client_principal configuration item to
yes, the APPC-based server adapter assumes the identity of the client before
initiating the APPC conversation. This means that the client Principal is
used for the APPC and IMS checks. In this mode, the server adapter is more
transparent, and security checking is similar to that of a user working from a
3270 terminal. Although users now require access to the server adapter LU
and the IMS LU, the remaining resources to which users need access should
be the same as if they had signed in from a terminal.

The use_client_principal mode works by having the server adapter use
the services of z/OS to establish a thread-level security environment with the
identity of the client for portions of its processing. This causes APPC and
IMS to use that user ID for their checks. This does incur some extra
overhead on each client request compared to the default mode.

Because of the requirements of the pthread_security_np() service, the
server adapter must be either run as super-user or given access to the
BPX.SERVER RACF FACILITY class profile and have its executable placed in a
controlled library. Refer to �Additional Requirements for IMS Protocol
Plug-Ins� on page 129 for more details.

use_client_principal mode for
OTMA-based adapters

If you set the plugins:imsa:use_client_principal configuration item to
yes, the client Principal is used as the user ID for each transaction
invocation on the OTMA C/I. The same runtime requirements apply as for
the APPC version of the server adapter. Additionally, the OTMA-based server
adapter must be run APF-authorized, regardless of whether it is running on
native z/OS or UNIX System Services.

check_security_credentials iSF
option

If you set the plugins:imsa:check_security_credentials configuration
item to yes, the IMS server adapter queries the CSI received credentials for
a user ID before defaulting to the GIOP Principal value, on receiving a client
 230

IMS Server Adapter Security Modes
request. Assuming that the plugins:imsa:use_client_principal
configuration item is set to yes, it then attempts to verify that this user ID is
authorized to run the specified transaction.

When the plugins:imsa:check_security_credentials is set to yes, the
client access ID that is used is one of the following (in order of priority):

1. The propagated user ID that is passed using the identity assertion
mechanism.

2. The GSSUP token username.

3. The GIOP Principal.

If a user ID is not available from any of these sources, the client request is
rejected.

Note: The plugins:imsa:check_security_credentials item only takes
effect if the Orbix domain has been configured to use iSF. See the
Mainframe Security Guide for more details.
231

CHAPTER 17 | Securing the IMS Server Adapter
Choosing between OTMA and APPC Modes

Overview This section discusses security-related issues relevant to OTAM and APPC.
It discusses the following topics:

� Transparency versus non-authentication

� Administrative overhead and requirements

Transparency versus
non-authentication

The use_client_principal security mode allows for the most
transparency, because it brings the identity of the Orbix client all the way
into the IMS region, for authority checking and auditing. However, because
Orbix clients are not yet authenticated, you might want to run in the default
mode.

Administrative overhead and
requirements

The administrative overhead of each mode is approximately the same.
Choosing the use_client_principal mode means having to permit all
potential clients access to the APPC or OTMA resources that are needed to
conduct conversations. Choosing the default mode, however, means having
to permit the IMS server adapter user ID access to all the IMS resources that
its clients might need.

If your installation already has a RACF group profile that allows selected
user IDs to have global access to IMS resources (such as those of other IMS
regions or IMS administrators), it is probably easier to add the server
adapter to that group and run in the default mode.
 232

Setting up APPC and OTMA Modes
Setting up APPC and OTMA Modes

Overview This section summarizes the steps involved in setting up security for both
APPC-based and OTMA-based server adapters. It discusses the following
topics:

� Summary of steps for APPC-based adapters

� Summary of steps for OTMA-based adapters

Summary of steps for APPC-based
adapters

The following is a summary of the APPC-specific steps involved in setting up
a secure environment that lacks only the authentication of the server
adapter�s clients:

Step Action

1 Define unique LU names for the server adapter and for IMS.
Use RACF APPCPORT profiles to restrict the use of these LU
names. Use the -L argument when starting the IMS server
adapter to specify the server adapter�s LU name. Specify the
IMS LU name to IMS by using the ID of the region as a
scheduler name for the LU in SYS1.PARMLIB(APPCPMxx).

2 Define VTAM APPLs for the IMS server adapter and IMS LUs
with SECACPT=CONV and VERIFY=OPTIONAL, to ensure
authenticated conversations with network users.

3 If you are using OS/390 V1R3 or later versions, or you want to
ease the eventual migration to that release, define RACF
APPCLU class profiles for each side of the conversation that
include identical session keys and CONVSEC(ALREADYV). These
profiles should specify UACC(NONE) to protect the session-key
values from being exposed to unauthorized users.
233

CHAPTER 17 | Securing the IMS Server Adapter
Summary of steps for
OTMA-based adapters

The following is a summary of the OTMA-specific steps involved in setting
up a secure environment that lacks only the authentication of the IMS server
adapter�s clients:

4 Specify APPCSE=F as an IMS start-up parameter, or issue
/SECURE APPC FULL on a running IMS system. This ensures
that existing IMS resource-access checks are made against the
user ID presented by the server adapter. Using the
use_client_principal option means that this is the
(unauthenticated) Principal of the client; otherwise, it is the
IMS server adapter user ID.

5 If Orbix SSL/TLS for z/OS is used with the IMS server adapter,
you can also authenticate client certificates by setting
certificate constraints in the server adapter�s configuration.

Step Action

Step Action

1 Define the IMSXCF.group.member and IMSXCF.OTMACI resources
in the RACF facilities class. If you do not define these, universal
access is assumed by OTMA.

2 If the clients (that is, Principal values) have valid RACF user
IDs, use the use_client_principal option of the IMS server
adapter, and use the usual TIMS and GIMS RACF classes to
control access to IMS transactions.

3 If Orbix SSL/TLS for z/OS is used with the IMS server adapter,
you can also authenticate client certificates by setting
certificate constraints in the server adapter�s configuration.
 234

CHAPTER 18

Mapping IDL
Interfaces to IMS
This chapter provides information on how an IMS server
adapter exposes IMS transactions as CORBA servers. It details
the role that the mapping file plays in mapping CORBA
operations and attributes for a given interface to a target
transaction. It also details the role of the type information
source (IFR or type_info store) in marshalling data from a client
request.

In this chapter This chapter discusses the following topics:

The Mapping File page 236

Using the IFR as a Source of Type Information page 242

Using type_info store as a Source of Type Information page 252
235

CHAPTER 18 | Mapping IDL Interfaces to IMS
The Mapping File

Overview This section describes how the mapping file is used by the IMS server
adapter. It also describes the contents of this file and how it can be
generated using the Orbix IDL compiler.

In this section This section discusses the following topics:

Characteristics of the Mapping File page 237

Generating a Mapping File page 239
 236

The Mapping File
Characteristics of the Mapping File

Overview This subsection describes the mapping file, its format, how it supports IDL
attributes, and its relationship with type information sources.

This subsection discusses the following topics:

� Description

� Mapping file format

� Support for IDL attributes

Description The mapping file is a simple text file that determines what interfaces and
operations the IMS server adapter supports, and the transaction names to
which it should map each operation. The file is read when the IMS server
adapter starts, and can be written or re-read during the server adapter
operation by using the MappingGateway interface or the itadmin mfa
commands. Refer to �Using the MappingGateway Interface� on page 273
for more details.

Mapping file format Each mapping entry in the file is specified as a tuple that specifies the
following:

Tuples can span lines. All white space (including blanks embedded in
names) is ignored.

In the tuples, if an IDL interface is scoped within a module or modules, the
module name or names must then be included in the interface name. The
module names are separated from each other and from the interface name
with / characters. The interface name therefore has the following layout if it
is scoped within two modules:

module_name/module_name/interface_name.

(interface name, operation name, IMS transaction name)
237

CHAPTER 18 | Mapping IDL Interfaces to IMS
Support for IDL attributes Attributes of IDL interfaces are supported by using _get_attribute and
_set_attribute to read and write a particular attribute. For example,
consider the Simple IDL:

The following file maps the operation call_me on the SimpleObject
interface to the IMS transaction named SIMPLESV:

(Simple/SimpleObject, call_me, SIMPLESV)

If the SimpleObject interface had a read-only attribute; for example,
something (which it does not have in the sample application supplied by
IONA), it needs an entry as follows in the mapping file:

(Simple/SimpleObject, _get_something, SIMPLESV)

Because the something attribute of the SimpleObject interface is specified
as read-only in the IDL file, no _set_something operation is necessary.

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };
 238

The Mapping File
Generating a Mapping File

Overview An IDL compiler plug-in is available, called mfa, that is used to generate IMS
server adapter mapping files.

This subsection discusses the following topics:

� Adapter mapping file versus other mapping files

� Sample IDL

� Generating mapping files on z/OS UNIX System Services

� Generating mapping files on native z/OS

� Making runtime modifications to mappings

Adapter mapping file versus other
mapping files

The IMS server adapter mapping file is completely unrelated to the mapping
file used by the COBOL and PL/I IDL compilers. The IMS server adapter
mapping file is used by the server adapter to select which transaction to run
inside IMS, while the mapping file used by the COBOL and PL/I IDL
compilers changes the names of specific items of source code generated by
the IDL compiler.

Sample IDL The code samples for generating an IMS server adapter mapping file are
based on Simple IDL:

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };
239

CHAPTER 18 | Mapping IDL Interfaces to IMS
Generating mapping files on z/OS
UNIX System Services

To generate a mapping file on z/OS UNIX System Services, run the following
command:

The -t parameter specifies the transaction that is run inside IMS for each
IDL operation.

Refer to �Mapping file format� on page 237 for details of the format of the
mapping file generated.

Generating mapping files on
native z/OS

The following is an example of JCL you can use to generate a mapping file
on native z/OS:

The -t parameter specifies the transaction that is run inside IMS for each
IDL operation.

Refer to �Mapping file format� on page 237 for details of the format of the
mapping file generated.

idl -mfa:-tSIMPLESV simple.idl

//MAPFILE JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//*
//* Generate an operation mapping file IMS Server Adapter
//*
//IDLMAP EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMO.IDL,
// IDLPARM='-mfa:-tSIMPLESV'
//IDLMFA DD DISP=SHR,DSN=&ORBIX..DEMO.IMS.MFAMAP

Note: If the -mfa option is specified to the Orbix IDL compiler, the IDLMFA
DD statement defines the PDS used to store the generated IMS server
adapter mapping file.
 240

The Mapping File
Making runtime modifications to
mappings

An IMS server adapter caches mapping files internally during execution. This
cache can be modified allowing mappings to be added, changed, or deleted.
This functionality is exposed by the itadmin mfa command (refer to �Using
the MappingGateway Interface� on page 273 for a complete list of itadmin
mfa commands). The syntax is as follows:

The contents of this internal cache can be re-written (using mfa save) to file,
to ensure that the mapping file is kept up-to-date. To refresh an internal
cache from file, you can use mfa reload or mfa switch. The syntax is as
follows:

mfa
 add -interface <name> -operation <name> <mapped value>
 change -interface <name> -operation <name> <mapped value>
 delete -interface <name> -operation <name>

mfa
 reload
 save [<mapping_file name>]
 switch <mapping_file name>
241

CHAPTER 18 | Mapping IDL Interfaces to IMS
Using the IFR as a Source of Type Information

Overview This section describes how the IFR can be used as the source of type
information by the IMS server adapter.

In this section This section discusses the following topics:

Introduction to Using the IFR page 243

Registering IDL interfaces with the IFR page 245

Informing IMS Server Adapter of a New Interface in the IFR page 248

Using an IFR Signature Cache File page 250
 242

Using the IFR as a Source of Type Information
Introduction to Using the IFR

Overview This subsection introduces how the IFR can be used to supply type
information to the IMS server adapter. It details how interfaces can be
registered with the IFR, and the operation of the server adapter when using
the IFR. It also describes how an IFR cache can be employed to improve
performance.

This subsection discusses the following topics:

� Description of the IFR

� Configuring the IFR

� Operation of IFR when no IFR signature cache file is specified

� Steps for using the IFR

Description of the IFR The IDL for the interfaces and operations specified in the mapping file must
be available to the IFR server that the IMS server adapter uses. This
information is required by the server adapter to marshal a request from a
client. Therefore, IDL for supported interfaces must be added to the IFR.
The steps for doing this are detailed below. To improve performance the IFR
can be used with an optional IFR signature cache file.

Configuring the IFR If you want to use the IFR you must ensure that the appropriate
configuration variables are set. Additionally, if you want to use an IFR
signature cache file, the relevant configuration variable must also be set.
Refer to �IFR signature cache file� on page 84 for more information.

Operation of IFR when no IFR
signature cache file is specified

The server adapter contacts the IFR during start-up and attains operation
signatures for operations defined in the mapping file. If an operation
signature changes (for example, changing the return type from void to
float) and the server adapter is notified (for example, if itadmin mfa
refresh is called), it contacts the IFR to retrieve this modified signature.

If you want to use the IFR signature cache file refer to �Using an IFR
Signature Cache File� on page 250.
243

CHAPTER 18 | Mapping IDL Interfaces to IMS
Steps for using the IFR To use the IFR follow these steps:

Step Action

1 Register IDL interfaces with the IFR. Refer to �Registering
IDL interfaces with the IFR� on page 245 for further details.

2 Inform the IMS server adapter that the contents of the IFR
have been modified. Refer to �Informing IMS Server Adapter
of a New Interface in the IFR� on page 248 for more details.
 244

Using the IFR as a Source of Type Information
Registering IDL interfaces with the IFR

Overview This subsection describes how to register IDL interfaces with the IFR. It
discusses the following topics:

� Sample IDL

� Registering IDL on native z/OS

� Registering IDL on z/OS UNIX System Services

� Specifying a -ORB argument

Sample IDL The code samples for registering IDL with the IFR are based on the following
Simple::SimpleObject interface in the simple.idl file:

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };
245

CHAPTER 18 | Mapping IDL Interfaces to IMS
Registering IDL on native z/OS To add IDL (for example, the SIMPLE IDL member) to the IFR on native z/OS,
use the following JCL:

Registering IDL on z/OS UNIX
System Services

To add IDL (for example, the simple.idl file) to the IFR on z/OS UNIX
System Services, use the following command:

//ADDIFR JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change the 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//* Add an interface to the IFR
//*
//IDLMAP EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMO.IDL,
// IDLPARM='-R'
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ idl -R simple.idl
 246

Using the IFR as a Source of Type Information
Specifying a -ORB argument When registering IDL with the IFR, the idl -R command invokes an IDL
back end that acts as a CORBA client to the IFR server. The client sends the
IDL definitions by invoking CORBA calls on the IFR. Therefore, you might
want to specify an ORB argument that can be used in the client�s
ORB_init() call before it communicates with the IFR. For example, to
specify a different Orbix domain name on z/OS UNIX System Services, enter
the following command:

idl -R:-ORBdomain_name=domain2
247

CHAPTER 18 | Mapping IDL Interfaces to IMS
Informing IMS Server Adapter of a New Interface in the IFR

Overview After you add an interface to the IFR, the IMS server adapter must be
notified for the updates to take effect. If adding support for a new interface
or operation, the itadmin mfa add command can be used. In addition to
creating a new binding between operation and IMS transaction in the
mapping file, it also causes the IMS server adapter to contact the IFR to
retrieve the operation signature for the new operation.

This subsection discusses the following:

� Informing the server adapter of a new IDL interface on native z/OS

� Informing the server adapter of a new IDL interface on z/OS UNIX
System Services

� Notifying the server adapter of modifications to the IFR

Informing the server adapter of a
new IDL interface on native z/OS

To inform the IMS server adapter that the SimpleObject interface (see
�Sample IDL� on page 255 for an example) has been added to the IFR on
native z/OS, use the following JCL:

//ADDMFA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//* Add an interface mapping to the IMS Adapter
//*
//IMSADD EXEC ORXADMIN,
// PPARM='-ORBname iona_services.imsa'
 248

Using the IFR as a Source of Type Information
Informing the server adapter of a
new IDL interface on z/OS UNIX
System Services

To inform the IMS server adapter that the SimpleObject interface (see
�Sample IDL� on page 255 for an example) has been added to the IFR on
z/OS UNIX System Services, use the following command:

Notifying the server adapter of
modifications to the IFR

The itadmin mfa refresh command is used to notify the IMS server
adapter that an already supported operation signature has changed. It
causes the IMS server adapter to contact the IFR and retrieve the updated
operation signature and place this in its internal cache.

You can also use refreshInterface() or refreshOperation(). These
functions are available via the MappingGateway interface and can be used to
refresh the server adapter�s internal cache of operation signatures by
contacting the IFR. This requires that a corresponding entry exist for the
operation(s) in the mapping file.

//SYSIN DD *
 mfa add \
 �interface Simple/SimpleObject \
 �operation call_me \
 SIMPLESV
/*
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ itadmin �ORBname iona_services.imsa mfa add �interface
Simple/SimpleObject �operation call_me SIMPLESV
249

CHAPTER 18 | Mapping IDL Interfaces to IMS
Using an IFR Signature Cache File

Overview This subsection describes how an IFR signature cache file can be used in
conjuction with the IFR to improve performance of the IMS server adapter. It
discusses the following topics:

� Prerequisites to using the IFR signature cache file

� First run of the server adapter after configuration

� Subsequent runs of the server adapter

� Runtime modifications to the IFR

� Updating an IFR signature cache file

Prerequisites to using the IFR
signature cache file

Before you use a signature cache file you must specify the name of the
signature cache file you want to use, in the plugins:imsa:ifr:cache
configuration item in the iona_services:imsa configuration scope. Refer to
�IFR signature cache file� on page 84 for more details.

First run of the server adapter after
configuration

When the server adapter is started after this configuration item is set, a new
signature cache file is generated with this name, and the contents of the IFR
are saved to it. If an operation signature is not available for an operation
defined to the IMS server adapter via the mapping file, a warning message is
output. For example, the warning message for an IDL interface called
Simple/SimpleObject with a single operation called call_me is similar to
the following:

Subsequent runs of the server
adapter

With subsequent runs of the server adapter the IFR is not contacted during
start-up. Instead it reads the list of operation signatures directly from the
signature cache file. This should lead to an improvement in how long it
takes to start the server adapter, especially if you need to start multiple
server adapters simultaneously. This means the server adapters can be
ready and available more quickly for client requests.

Tue, 03 Dec 2002 12:35:30.0000000 [MYMACHINE:16777601]
(IT_MFA:100) W - synchronization problem occurred for mapping
(Simple/SimpleObject,call_me) - unable to obtain type
information for the operation
 250

Using the IFR as a Source of Type Information
Runtime modifications to the IFR During runtime, the IMS server adapter can contact the IFR to load or
refresh an operation entry. Upon shutdown, the server adapter updates the
signature cache file with the operation signatures it has used.

Updating an IFR signature cache
file

If type information subsequently changes in the IFR, you can update the
information in the signature cache file in either of the following ways:

� refreshInterface() or refreshOperation()

If you are using the IFR signature cache file, either or both of these can
be used on the MappingGateway interface, to consult the IFR and
update the cached IFR operation signatures in-memory in the IMS
server adapter with a specified interface or operation (or both).

� Stop the IMS server adapter, delete the IFR signature cache file and
restart the server adapter.

When the server adapter is restarted it automatically uploads the
operation signatures from the IFR into the IFR signature cache file.
There is no need to inform the server adapter that the IFR signature
cache file has been updated.

Note: The IFR signature cache file is only ever accessed twice. First, it is
first accessed in read mode, during start-up. This boosts performance by
preventing the IFR being contacted initially. Second, it is accessed in write
mode, during shut-down. This dumps the operation signatures used by the
server adapter to a signature cache file, so that this may be used when the
server adapter is restarted.
251

CHAPTER 18 | Mapping IDL Interfaces to IMS
Using type_info store as a Source of Type
Information

Overview This section describes how a type_info store can be used as the source of
type information by the IMS server adapter.

In this section This section discusses the following topics:

Introduction to Using a type_info Store page 253

Generating type_info Files using the IDL Compiler page 255

Informing IMS Server Adapter of a new type_info Store File page 257
 252

Using type_info store as a Source of Type Information
Introduction to Using a type_info Store

Overview This subsection describes the type_info store in terms of how the Orbix IDL
compiler can be used to generate these files, the operation of the server
adapter when using a type_info store, and how the store can be updated.

This subsection discusses the following topics:

� Description

� Configuration

� Operation of IMS server adapter using type_info stores

� Steps for using a type_info store

Description The type_info store is one method of supplying IDL interface information to
the IMS server adapter. It is an alternative approach to the IFR, and uses a
file-based approach to represent operation signatures. The IMS server
adapter can access these files at start-up and runtime, to obtain operation
signatures, which it requires to marshal data from the CORBA client.

Configuration If you want to use a type_info source you must ensure that the appropriate
configuration items are set. Refer to �type_info store� on page 85 for more
information.

Operation of IMS server adapter
using type_info stores

The Orbix IDL compiler generates type_info files. When the IMS server
adapter is started it accesses the type_info store and, for all operations for
which an operation-to-transaction mapping entry exists, it loads the
operation signatures into an internal cache. These operation signatures are
required by the IMS server adapter to unmarshal operation arguments from
a client request, and to marshal the response back.

Note: If you are using a type_info store, the IMS server adapter does not
require the IFR. This means that an IMS server adapter using a type_info
store can be run in standalone mode, by configuring it to run in direct
persistent mode.
253

CHAPTER 18 | Mapping IDL Interfaces to IMS
During runtime, the type_info store can be updated dynamically (for
example, to add support for a new interface, or to reflect a change in one or
more operation signatures). This simply requires generating a new type_info
file and then requesting the IMS server adapter to refresh its internal
operation signature cache with the latest version in the type_info store.

Steps for using a type_info store To use a type_info store do the following:

Step Action

1 Use the IDL compiler to generate (or regenerate for subsequent
additions or other modifications) a type_info file for IDL. Refer
to �Generating type_info Files using the IDL Compiler� on
page 255 for further details.

2 Inform the IMS server adapter of a new or modified interface.
Refer to �Informing IMS Server Adapter of a new type_info
Store File� on page 257 for further details.
 254

Using type_info store as a Source of Type Information
Generating type_info Files using the IDL Compiler

Overview This subsection describes the process of generating type_info store files. It
discusses the following topics:

� Sample IDL

� On z/OS UNIX System Services

� On native z/OS

Sample IDL The code samples for generating a type_info file are based on Simple IDL:

On z/OS UNIX System Services To generate a type_info file on z/OS UNIX System Services for the Simple
IDL, run the IDL compiler as follows:

This generates a type_info file named simpleB.inf.

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };

idl �mfa:-inf simple.idl

Note: By default, the mfa backend generates type_info files with a suffix
of B. This can be modified by editing the MFAMappings scope in
orbixhlq.CONFIG(IDL).
255

CHAPTER 18 | Mapping IDL Interfaces to IMS
On native z/OS To generate a type_info file on native z/OS for the Simple IDL, submit the
following JCL to run the IDL compiler:

This generates a type_info file named orbixhlq.DEMO.TYPEINFO(SIMPLEB).

//ADDMFA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//*
//* Add an interface mapping to the IMS Server Adapter
//*
//IDLCBL EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMO.IDL,
// COPYLIB=&ORBIX..DEMO.IMS.CBL.COPYLIB,
// IMPL=&ORBIX..DEMO.IMS.CBL.SRC,
// IDLPARM='-mfa:-inf'
//IDLTYPEI DD DISP=SHR,DSN=&ORBIX..DEMO.TYPEINFO

Note: By default, the mfa backend generates type_info files with a suffix
of B. This can be modified by editing the MFAMappings scope in
HLQ.ORBIX60.CONFIG(IDL).

Note: If the -mfa:-inf option is specified to the Orbix IDL compiler, the
IDLTYPEI DD statement defines the PDS used to store the generated
type_info file.
 256

Using type_info store as a Source of Type Information
Informing IMS Server Adapter of a new type_info Store File

Overview After you add a file to the type_info store, the IMS server adapter must be
notified for the updates to take effect. If adding support for a new interface
or operation, the itadmin mfa add command can be used. In addition to
creating a new binding between operation and IMS transaction in the
mapping file, it also causes the IMS server adapter to access the type_info
store to retrieve the operation signature for the new operation.

This subsection discusses the following:

� Informing the server adapter of a new IDL interface on z/OS UNIX
System Services

� Informing the server adapter of a new IDL interface on native z/OS

� Notifying the server adapter of modifications to the type_info store

Informing the server adapter of a
new IDL interface on z/OS UNIX
System Services

To inform the IMS server adapter that the SimpleObject interface (see
�Sample IDL� on page 255 for an example) has been added to the type_info
store on z/OS UNIX System Services, use the following command:

$ itadmin �ORBname iona_services.imsa mfa add �interface
Simple/SimpleObject �operation call_me SIMPLESV
257

CHAPTER 18 | Mapping IDL Interfaces to IMS
Informing the server adapter of a
new IDL interface on native z/OS

To inform the IMS server adapter that the SimpleObject interface (see
�Sample IDL� on page 255 for an example) has been added to the type_info
store on native z/OS, use the following JCL:

Notifying the server adapter of
modifications to the type_info
store

The itadmin mfa refresh command is used to notify the IMS server
adapter that an already supported operation signature has changed. It
causes the IMS server adapter to access the type_info store and retrieve the
updated operation signature and place this in its internal cache.

//ADDMFA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//* Add an interface mapping to the IMS Adapter
//*
//IMSADD EXEC ORXADMIN,
// PPARM='-ORBname iona_services.imsa'
//SYSIN DD *
 mfa add \
 �interface Simple/SimpleObject \
 �operation call_me \
 SIMPLESV
/*
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR
 258

Using type_info store as a Source of Type Information
You can also use refreshInterface() or refreshOperation(). These
functions are available via the MappingGateway interface and can be used to
refresh the server adapter�s internal cache of operation signatures by
accessing the type_info store. This requires that a corresponding entry exists
for the operation(s) in the mapping file.
259

CHAPTER 18 | Mapping IDL Interfaces to IMS
 260

CHAPTER 19

Using the IMS
Server Adapter
This chapter provides information on running and using the
IMS server adapter. It provides details on how to start and stop
the server adapter. It provides details on how to use the server
adapter to act as a dynamic bridge to pass IDL-based requests
into IMS. It describes how to use the MappingGateway
interface of the server adapter. It explains how to run mapped
IMS transactions in Wait-For-Input (WFI) mode as well as how
to add a portable interceptor to the server adapter and gather
accounting information in the server adapter. It also explains
how to enable the server adapter to export object references
for the interfaces it supports either to a file or to the Naming
Service.

In this chapter This chapter discusses the following topics:

Preparing the Server Adapter page 263

Starting the Server Adapter page 267

Stopping the IMS Server Adapter page 269

Running Multiple Server Adapters Simultaneously page 270
261

CHAPTER 19 | Using the IMS Server Adapter
Performance Considerations page 272

Using the MappingGateway Interface page 273

Locating IMS Server Adapter Objects Using itmfaloc page 276

WFI Support for IMS Transactions page 279

Conversational Support page 280

LTERM Propagation page 284

Adding a Portable Interceptor to the IMS Server Adapter page 285

Enabling the GIOP Request Logger Interceptor page 296

Gathering Accounting Information in the Server Adapter page 298

Exporting Object References at Runtime page 304
 262

Preparing the Server Adapter
Preparing the Server Adapter

Overview This section describes what needs to be done to run the server adapter in
prepare mode. It discusses the following topics:

� Prerequisites to running the server adapter in prepare mode

� Running the IMS server adapter in prepare mode

� Sample JCL to run the IMS server adapter in prepare mode

� Location of IMS server adapter IORs

� The IT_MFA IOR

� The IT_MFA_IMSRAW IOR

� Sample configuration file

� Running the IMS server adapter on z/OS UNIX System Services

Prerequisites to running the server
adapter in prepare mode

If you are using a type_info store as the type information source (as is the
default), you can run the IMS server adapter in standalone mode, if you
wish. This requires setting the IMS server adapter to run in direct persistent
mode. In direct persistent mode, the IMS server adapter does not require the
other Orbix Mainframe services.

If you are using the IFR as the type information source, you must first run
the locator, node daemon, and IFR in prepare mode. Ensure that these are
prepared as described in the Mainframe Installation Guide and that they
are running.

Running the IMS server adapter in
prepare mode

Run the server adapter in prepare mode. This generates two IORs and writes
them to a file, which you can then include in your configuration file. A job to
run the IMS server adapter in prepare mode is provided in
orbixhlq.JCLLIB(PREPIMSA).
263

CHAPTER 19 | Using the IMS Server Adapter
Sample JCL to run the IMS server
adapter in prepare mode

This JCL contains the default high-level qualifier, so change it to reflect the
proper value for your installation:

//PREPIMSA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Prepare the Orbix IMS Adapter
//* Make the following changes before running this JCL:
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* &ORBIXCFG(ORBARGS) has the domain name used by DEPLOY1
//* (or DEPLOYT).
//*
//PREPARE EXEC PROC=ORXG,
// PROGRAM=ORXIMSA,
// PPARM='prepare -publish_to_file=DD:ITCONFIG(IORIMSA)'
//TYPEINFO DD DUMMY
//MFAMAPS DD DUMMY
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
//*
//* Update configuration domain with IMS Adapter�s IOR
//*
//ITCFG1 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:3 //DD:ITCONFIG(IORIMSA) \
 LOCAL_MFA_IMS_REFERENCE
/*
//ORBARGS DD DSN=&ORBIX..CONFIG(ORBARGS),DISP=SHR
//*
//* Update configuration domain with IMSRAW IOR
//*
//ITCFG2 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 264

Preparing the Server Adapter
Location of IMS server adapter
IORs

When complete, the IORs for the server adapter should be in
orbixhlq.CONFIG(IORIMSA). The file contains two IORs.

The IT_MFA IOR One IOR is for IT_MFA. This is the IOR for the server adapter
MappingGateway interface. The orbixhlq.JCLLIB(PREPIMSA) JCL copies this
IOR into the LOCAL_MFA_IMS_REFERENCE configuration item, which is found
in the orbixhlq.CONFIG PDS, in the member that corresponds to your
configuration domain name. (The default configuration domain name is
DEFAULT@.) This IOR is used by itadmin to contact the correct server
adapter. Refer to �Using the MappingGateway Interface� on page 273 for
more details.

The IT_MFA_IMSRAW IOR The other IOR is for IT_MFA_IMSRAW. This is the IOR for the IMS server
adapter imsraw interface. This IOR should be made available to client
programs of the server adapter that want to use the imsraw interface. Refer
to �The IMS Server Adapter imsraw Interface� on page 44 for more details.

Sample configuration file The following is an extract from a working configuration file for you to
compare your file with.

 -type string \
 -value -- from_file:6 //DD:ITCONFIG(IORIMSA) \
 initial_references:IT_MFA_CICSRAW:reference
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR

Note: The position of the first quote is moved to the next line, directly
preceding the start of the IOR. (Ellipses denote text omitted for the sake of
brevity.)

�
LOCAL_MFA_IMS_REFERENCE =
 "IOR:000000000000002549444c3a696f6e612e636f6d2f49545f/
4c6f636174696f6e2f4c6f6361746f723a312e300000000000000001000000/
0000007e00010200000000056a756e6f00003a99000000253a3e0233311752/
5706c69636174656453696e676c65746f6e504f410007d3968381a39699000/
0000000003000000010000001c000000001002041700000001000100010001/
10000000001000101090000001a00000004010000000000000600000006000/
0000001c";
�

265

CHAPTER 19 | Using the IMS Server Adapter
Running the IMS server adapter
on z/OS UNIX System Services

You can also run the IMS server adapter in prepare mode from the UNIX
System Services prompt. The command is as follows:

The two IORs for IT_MFA and IT_MFA_IMSRAW are then displayed on the
console. You can copy them to the appropriate places as described above.
However, in general, it might be easier to obtain the IT_MFA IOR, using the
orbixhlq.JCLLIB(PREPIMSA) JCL. This is because it is then already in the
correct format to place it in the PDS-based configuration file.

$ itimsa -ORBname iona_services.imsa prepare
 266

Starting the Server Adapter
Starting the Server Adapter

Overview This section describes how to start the IMS server adapter. It discusses the
following topics:

� Starting the server adapter on native z/OS

� Starting the server adapter on z/OS UNIX System Services

� Adapter logging information

Starting the server adapter on
native z/OS

In a native z/OS environment, you can start the IMS server adapter in any of
the following ways:

� As a batch job.

� Using a TSO command.

� As a started task (by converting the batch job into a started task).

The default IMS server adapter is the server adapter whose configuration is
defined directly in the iona_services.imsa scope, and not in some
sub-scope of this. The following is sample JCL to run the default IMS server
adapter:

//IMSA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Orbix IMS Adapter
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
267

CHAPTER 19 | Using the IMS Server Adapter
Starting the server adapter on
z/OS UNIX System Services

On z/OS UNIX System Services, you can start the IMS server adapter from
the shell. The command to run the default IMS server adapter is similar to
the following if you have an initial_references:IT_MFA:reference entry
in the root scope (that is, not inside any {} brackets) of your configuration
file:

The command to run extra server adapters is similar to the following:

Refer to �Running Multiple Server Adapters Simultaneously� on page 270
for more details on running multiple server adapters.

Adapter logging information When the adapter is started, if a sufficient logging level is enabled, some
basic information is displayed on how the particular adapter is configured,
including which region it is going to connect with. If client principal support
is not enabled, the logged information includes the user ID under which the
server adapter is running. This is normally the TSO/E user ID running the
adapter. However, if a USERIDALLIASTABLE is in use in z/OS UNIX System
Services, the user ID that is displayed instead is the alias associated with
the user ID. Regardless of which user ID (that is, TSO/E or alias) is
displayed, for z/OS it is the same user ID, so it does not affect the
functionality of the server adapter.

//GO EXEC PROC=ORXG,
// PROGRAM=ORXIMSA,
// PPARM='run'
//MFAMAPS DD DUMMY
//TYPEINFO DD DUMMY
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ itimsa

$ itimsa -ORBname iona_services.imsa.gateway2
 268

Stopping the IMS Server Adapter
Stopping the IMS Server Adapter

Overview This section describes how to stop the server adapter. It discusses the
following topics:

� Stopping the adapter via the admin interface

� Stopping the adapter on native z/OS

� Stopping the adapter on z/OS UNIX System Services

Stopping the adapter via the
admin interface

The IONA administrative interface is used to configure and manage Orbix
installations. This interface can be invoked using the ORXADMIN JCL on z/OS
or the itadmin shell command on z/OS UNIX System Services. As with other
Orbix services, you can stop the IMS server adapter by issuing an admin
stop command that uses the appropriate admin plug-in (in this case, the
mfa plug-in). For example, the format of the command is as follows on z/OS
UNIX System Services:

This instructs the adapter to shut down.

Stopping the adapter on native
z/OS

To stop an IMS server adapter job on native z/OS, issue the STOP (P)
operator command from the console.

Stopping the adapter on z/OS
UNIX System Services

To stop an IMS server adapter process on z/OS UNIX System Services, use
the kill command or, if the adapter is running in an active rlogin shell,
press Ctrl-C.

% itadmin mfa stop
269

CHAPTER 19 | Using the IMS Server Adapter
Running Multiple Server Adapters
Simultaneously

Overview This section describes how to run multiple server adapters simultaneously.
It discusses the following topics:

� Running multiple server adapters simultaneously

� Using itadmin on z/OS UNIX System Services

Running multiple server adapters
simultaneously

To run multiple IMS server adapters perform the following steps.

Step Action

1 Set up a configuration scope for each server adapter (for
example, the gateway2 scope) in the partial configuration file.
(Refer to the example in �An IMS Server Adapter Sample
Configuration� on page 60.)

2 Set up a corresponding configuration scope for usage with the
admin utility. For example, add a gateway2 sub-scope to the
iona_utilities.imsa scope in the configuration file, and add
the following configuration setting under it:

initial_references:IT_MFA:reference=%{LOCAL_MFA_IMS_
REFERENCE2}

3 Specify a unique imsa:poa_prefix variable for each server
adapter if you are using the locator (indirect persistent).

This is a good idea anyway, even for direct persistent server
adapters, because the IORs are easier to distinguish when
examined with the iordump utility.

4 Set the unique port number.
 270

Running Multiple Server Adapters Simultaneously
Using itadmin on z/OS UNIX
System Services

It might be useful to run in shell mode, so that you do not have to type the
long ORBname in the JCL�s itadmin parameter. To run itadmin on z/OS UNIX
System Services:

5 Get the initial reference for each adapter.

On native z/OS, change the IMS server adapter prepare JCL to
use the new ORBname, and replace the LOCAL variable with the
new LOCAL_MFA_IMS_REFERENCE2 variable.

On z/OS UNIX System Services, enter the following command
to obtain the IOR:
$ itimsa -ORBname iona_services.imsa.gateway2 prepare

Enter the following command on z/OS UNIX System Services,
to add the new reference to the configuration file:
$ itadmin variable create -value IOR:00000�0

 LOCAL_MFA_IMS_REFERENCE2.

6 Ensure that each server adapter has:

� A unique mapping file.

� A unique IFR signature cache file, if one is being used.

� A unique type-info store, if one is being used.

� A unique XCF member name, if OTMA is being used.

� A unique resource manager name, if RRS is being used.

Step Action

$ itadmin -ORBname iona_utilities.imsa.gateway2
 % mfa list
 % mfa resolve

Note: When using JCL to issue itadmin commands on native z/OS,
include the full ORBname in the JCL�s itadmin parameter.
271

CHAPTER 19 | Using the IMS Server Adapter
Performance Considerations

Overview This section outlines various methods for improving the performance of
Orbix and the IMS server adapter. These methods include:

� Preloading DLLs

� Configuring PWFI for the IMS regions

� Event logging inside IMS

Preloading DLLs It is recommended that the Orbix DLLs should be preloaded into all IMS
regions that use them. You can do this by adding the DLLs in the
orbixhlq.MFA.LOADLIB PDS to the relevant IMSx10.PROCLIB(DFSMPLxx)
member for each IMS message processing region.

Configuring PWFI for the IMS
regions

If PWFI is enabled for an IMS region, that region might be able to process
multiple requests designated for the same transaction, without requiring
that the transaction is restarted between each request. This can lead to
significant performance improvements.

To ensure even better performance for a region that is designated for only
one transaction, you can use WFI instead of PWFI.

Event logging inside IMS By default, information event logging is disabled inside IMS. It can,
however, be enabled by modifying the ORXMFACx DLL as described in
�Customizing the level of event logging� on page 135. If you enable event
logging, ensure that you disable it again after the problem has been
resolved. Otherwise, the extra output generated by event logging might have
a significant impact on performance.
 272

Using the MappingGateway Interface
Using the MappingGateway Interface

Overview The MappingGateway interface is used to control a running IMS server
adapter. It discusses the following topics:

� Uses of the MappingGateway interface

� Access to the MappingGateway interface

� Selecting a specific server adapter

Uses of the MappingGateway
interface

You can use MappingGateway interface to list the transaction mappings that
the server supports, to add or delete individual interfaces and operations, or
to alter the transaction to which an operation is mapped. You can use it to
read a new mapping file, or write an existing mapping to a new file.

Additionally, the MappingGateway interface provides the means by which
IIOP clients can invoke on the exported interfaces. Using the resolve
operation, an IOR can be retrieved for any exported interface. This IOR can
then be used directly by IIOP clients, or registered with an OrbixNames
server as a way of publishing the availability of the interface.

Access to the MappingGateway
interface

The MappingGateway interface is provided both via the itadmin interface and
as an IDL interface. The IDL for the MappingGateway interface is provided
with the other IDL in the installation and can be used by client applications
to invoke operations on the MappingGateway interface.

Access to the MappingGateway interface, using itadmin, is provided as a
plug-in. This plug-in is selected with the mfa keyword. This itadmin mfa
plug-in is an IONA-supplied client of the MappingGateway interface, and is
provided to make it easier to access the MappingGateway interface. For
example, to obtain a list of all the operations provided by the mfa itadmin
plug-in, issue the following command (from the UNIX System Services shell
or via JCL on native z/OS):

$ itadmin mfa �help
273

CHAPTER 19 | Using the IMS Server Adapter
The output looks as follows:

Items shown in angle brackets (<�>) must be supplied and items shown in
square brackets ([�]) are optional. Module names form part of the interface
name and are separated from the interface name with a / character.

The parameter after mfa specifies the operation to be invoked. The options
are:

mfa list
 add -interface <name> -operation <name> <mapped value>
 change -interface <name> -operation <name> <mapped value>
 delete -interface <name> -operation <name>
 resolve <interface name>
 refresh [-operation <name>] <interface name>
 reload
 save [<mapping_file name>]
 switch <mapping_file name>
 stats
 resetcon
 stop

list This prints a list of the (interface, operation, and name) mappings
that the IMS server adapter currently supports.

add This allows you to add a new mapping.

change This allows you to change the transaction to which an existing
operation is mapped.

delete This allows you to get the IMS server adapter to stop exporting a
particular operation.

resolve This prints a stringified IOR for the object in the server adapter
that supports the specified interface. This IOR string can then be
given to clients of that interface, or stored in an OrbixNames
server. The IOR produced contains the TCP/IP port number for
the locator if the IMS server adapter is running with direct
persistence set to no; otherwise, it contains the IMS server
adapter�s port number.

refresh This causes the IMS server adapter to obtain up-to-date type
information for the specified operation. If you omit the operation
argument, all operations being mapped in the specified interface
are refreshed.

reload This causes the IMS server adapter to reload the list of mappings
from its mapping file.
 274

Using the MappingGateway Interface
Selecting a specific server adapter To select a specific server adapter, provide the ORBname for the server
adapter on a request. For example, to obtain the IOR for the SimpleObject
interface, use the following command:

save This causes the IMS server adapter to save its current mappings
to either its current mapping file or to a filename you provide.

switch This causes the IMS server adapter to switch over to a new
mapping file, and to export only the mappings contained within
it.

stats Displays some statistical information on the running server
adapter. Information includes the current time according to the
server adapter, the pending request queue length, the total
number of worker threads, worker threads currently active, total
number of requests processed by the server adapter since
start-up, and the server adapter start-up time.

resetcon If the server adapter is using OTMA to communicate with IMS,
when this operation on the MappingGateway interface is called,
the server adapter closes its connection with OTMA and
reconnect. This is done in such a way that it does not affect any
clients connected to the server adapter, by briefly queueing client
requests in the server adapter until the connection is
re-established. The purpose of this operation is to free any cached
security ACEE's on the OTMA connection. This operation should
therefore be used after changes in the security profiles of the
users in the z/OS security package, for example RACF, have been
made that would affect their access to IMS.

stop Instructs the IMS server adapter to shut down.

Note: The add, change, and delete operations only update the IMS
server adapter internal information, unless a save operation is issued, in
which case the new details are written to the server adapter mapping file.

itadmin -ORBname iona_utilities.imsa mfa resolve
Simple/SimpleObject
275

CHAPTER 19 | Using the IMS Server Adapter
Locating IMS Server Adapter Objects Using
itmfaloc

Overview The IMS server adapter maintains object references that identify CORBA
server programs running in IMS. A client must obtain an appropriate object
reference to access the target server. The itmfaloc URL resolver plug-in
supplied with your Orbix Mainframe installation facilitates and simplifies
this task.1

This section discusses the following topics:

� Locating IMS servers using IORs

� Locating objects using itmfaloc

� Format of an itmfaloc URL

� What happens when itmfaloc is used

� Example of using itmfaloc

Locating IMS servers using IORs One way of obtaining an object reference for a target server, managed by the
IMS server adapter, is to retrieve the IOR via the itadmin utility. This calls
the resolve method on the server adapter's MappingGateway interface and
returns a stringified IOR. For example, to retrieve an IOR for the
SimpleObject IDL interface, issue the following command:

After it has been retrieved, the IOR can be distributed to the client and used
to invoke on the target server running inside IMS.

Locating objects using itmfaloc In some cases, the use of itadmin and the need to persist stringified IORs is
not very manageable, and thus a more dynamic approach is desirable. The
itmfaloc resolver is designed to provide an alternative approach. It follows a
similar scheme to that of the corbaloc URL technique. (Refer to the CORBA
Programmer�s Guide, C++ for more information).

1. This plug-in is not yet available on other Orbix platforms.

itadmin mfa resolve Simple/SimpleObject
 276

Locating IMS Server Adapter Objects Using itmfaloc
In this way, the Orbix CORBA client can specify a very simple URL format
which identifies the target service required. This text string can therefore be
used programmatically in place of the rather cumbersome stringified IOR
representation.

Format of an itmfaloc URL An itmfaloc URL is a string of the format:

In the preceding example, <InterfaceName> represents the fully scoped
name of the IDL interface implemented by the target IMS server, as
specified in the server adapter mapping file.

What happens when itmfaloc is
used

When an itmfaloc URL is used in place of an IOR, the Orbix client
application contacts the server adapter to attain an object reference for the
desired IMS server. The itmfaloc URL string only encodes the interface
name, not the server adapter�s location. To establish the initial connection
to the server adapter, the IT_MFA:initial_references configuration item is
used.

If multiple server adapters are deployed, it is imperative that the client
application specifies the correct IT_MFA:initial_references setting, to talk
to the correct IMS server adapter. This can be achieved by specifying the
appropriate ORBname which represents the particular configuration scope;
for example, -ORBname iona_utilities.imsa.

If the client application successfully connects to the server adapter, it then
calls the resolve operation on the MappingGateway object reference, thus
retrieving an object reference for the target server managed by the IMS
server adapter.

itmfaloc:<InterfaceName>
277

CHAPTER 19 | Using the IMS Server Adapter
Example of using itmfaloc The simple demonstration client code that is shipped with Orbix uses a
file-based mechanism to access the target server's stringified IOR. If the
target server resides in IMS, an alternative approach is to specify an itmfaloc
URL string in the string-to-object call. For example:

The relevant Orbix APIs are:

� str2obj (PL/I)

� STRTOOBJ (COBOL)

� string_to_object() (C++)

itmfaloc:Simple/SimpleObject
 278

WFI Support for IMS Transactions
WFI Support for IMS Transactions

Overview The IMS server adapter runtime inside IMS provides implicit support to run
mapped transactions in Wait-for-Input (WFI) or Pseudo Wait-for-Input
(PWFI) mode.

This section discusses the following topics:

� Running the IMS server adapter in WFI mode

� Defining a WFI transaction

Running the IMS server adapter in
WFI mode

In WFI mode, the server mainline code is executed only once and the
transaction then waits in IMS for additional requests. (It therefore works
similar to a batch server.) Only the implementation code then runs for each
transaction. Refer to the COBOL Programmer�s Guide and Reference and
the PL/I Programmer�s Guide and Reference for details on the difference
between the server mainline code and the server implementation code. The
IMS server adapter continues to wait for input requests until one of the
normal IMS events (for example, a timeout) takes place and the server
transaction then stops running.

Defining a WFI transaction A transaction can be defined as WFI as follows:

No changes to the IMS Orbix server source code are needed. The Orbix DLLs
inside IMS handle the processing of multiple transactions in a single
scheduling session.

TRANSACT
CODE=SIMPLESV,
EDIT=(ULC),WFI,
PROCLIM=(60,60)
279

CHAPTER 19 | Using the IMS Server Adapter
Conversational Support

Overview The IMS server adapter provides a facility to run conversational transactions,
using the OTMA or APPC plug-in. The imsraw interface has four operations
that makes this possible. This section describes how to use imsraw to
access conversational transactions. It discusses the following topics:

� Steps to run a conversational transaction

� imsraw IDL example

� imsraw IDL explanation

� Client code examples

Steps to run a conversational
transaction

Running a conversational transaction in IMS consists of three steps:

1. Start the conversational transaction.

2. Issue a set of requests on the conversational transaction, receiving a
reply for each request. This set of requests and replies should follow
the logical flow of the transaction to its conclusion.

3. End the conversational session, thereby freeing up the resources it
used in the server adapter, OTMA or APPC (depending on the plug-in
used), and IMS.

imsraw IDL example The IDL in the imsraw interface that handles conversational transactions is
as follows:

Example 13: imsraw IDL Interface

module IT_MFA_IMS
{
 interface imsraw {
 �
 �
 // Run conversational imsraw transactions
 //
 typedef sequence<octet> SessionHandle;

 // Start the conversation in IMS
1 void start_session(in tranName tran_name,
 280

Conversational Support
 out SessionHandle session)
 raises(internalError);
 //
 // Methods for invoking conversational IMS transactions.
 // The first uses CharSegments, so data is subject
 // to ASCII-EBCDIC conversion cross-platforms, the
 // second uses ByteSegments so no conversion will be
 // done.
 //

2 CharSegments run_conv_transaction(in SessionHandle session,
 in CharSegments din)
 raises(segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

2 ByteSegments run_conv_transaction_binary(
 in SessionHandle session,
 in ByteSegments din)
 raises(segmentTooLarge,
 IMSunavailable,
 unknownTransactionName,
 userNotAuthorized,
 transactionFailed,
 internalError);

 // End the conversation in IMS
3 void end_session(in SessionHandle session)

 raises(internalError);
 };
 �
 �
};

Example 13: imsraw IDL Interface
281

CHAPTER 19 | Using the IMS Server Adapter
imsraw IDL explanation Example 13 can be explained as follows:

1. The first operation in the imsraw interface for conversational
transactions is start_session(). This operation takes one input
parameter (that is, the IMS transaction name) and returns a session
handle for the transaction. The returned session handle must be used
on all subsequent operations for this transaction.

2. The next two operations�run_conv_transaction() and
run_conv_transaction_binary()�are used to interact with the
transaction during the conversation. They work in the same way as the
non-conversational operations. The only difference is that they take a
session handle instead of a transaction name. This session handle is
the one created via the start_session() call. Also, these operations
can be called as often as is necessary to complete a conversation.

3. The end_session() operation is used to free the resources of a
conversation after the conversation has been completed. After this call
has been made, the session handle is no longer valid and should not
be used. Again, it uses the session handle created via the
start_session() call.

Client code examples The C++ client code to create a session is as follows:

The C++ client code to interact with another screen in the conversation is
as follows:

IT_MFA_IMS::imsraw_var IMSBridge = �;
const char* tran_name = �XXXXXXXX�;
IT_MFA_IMS::imsraw::SessionHandle_var session;
// Start the session
IMSBridge->start_session(tran_name, session);

IT_MFA_IMS::imsraw::CharSegments in;
IT_MFA_IMS::imsraw::CharSegments_var result;

// Fill in the input segments here
�
// Call the conversation transaction
result = IMSBridge->run_conv_transaction(session, in);
 282

Conversational Support
The C++ client code to end the session when the conversation is finished is
as follows:

See the imsraw sample application supplied with your Orbix Mainframe
installation for an example of how to obtain the IMSBridge object reference
and handle the input and subsequent results from each transaction call.

// Free the conversation session
IMSBridge->end_session(session);
283

CHAPTER 19 | Using the IMS Server Adapter
LTERM Propagation

Overview The OTMA-based server adapter can propagate into IMS a logical terminal
(LTERM) field that originates from the client application. It can also
subsequently return the LTERM value obtained from IMS back to the client.

Passing the LTERM field The client application uses a request service context to send the LTERM
value to the OTMA-based server adapter. The service context ID allocated
for this purpose is Ox49545F46. The client application can use a portable
interceptor to set the LTERM service context with the appropriate LTERM
value. See the CORBA Programmer�s Guide, C++ for details on writing a
portable interceptor.

The OTMA-based server adapter looks for the LTERM service context in
requests that it receives from the client. If the LTERM service context is
present, the LTERM value in the service context is used in the
otma_send_receive() call that sends the client request into IMS.

When the otma_send_receive() call completes in the OTMA-based server
adapter, the LTERM value (which might have been updated inside IMS) is
returned to the client. The return value is sent in a reply service context that
uses the same LTERM service context ID as that used for the request service
context (that is, Ox49545F46).

The client application�s portable interceptor is then responsible for retrieving
the LTERM value that is returned in the LTERM service context. An IDL
constant declaration for the LTERM ID can be located in the imsraw IDL
definition file in your Orbix Mainframe installation. The LTERM value itself is
encoded as a CORBA string in the service context. The adapter truncates the
received value to eight characters, if necessary, before starting the IMS
transaction.

Note: No additional Orbix configuration is required to enable this feature.
See the portable interceptor ORB service demonstration supplied with your
Orbix Mainframe installation at
install-dir/asp/Version/demos/corba/orb/
portable_interceptor/orb_service for an example of how a client can
pass a string within a service context.
 284

Adding a Portable Interceptor to the IMS Server Adapter
Adding a Portable Interceptor to the IMS
Server Adapter

Overview This section describes how to add a portable interceptor (or multiple
interceptors) to the server adapter. This can be used to perform the usual
functions available in portable interceptors. Refer to the CORBA
Programmer�s Reference, C++ and CORBA Programmer�s Guide, C++ for
more details on portable interceptors. Additionally, a portable interceptor
can be used to manipulate the client principal that the IMS server adapter
receives from the client. It can also be used to inspect the operation
arguments sent in the request.

In this section This section discusses the following topics:

Developing the Portable Interceptor page 286

Compiling the Portable Interceptor page 291

Loading the Portable Interceptor into the IMS Server Adapter page 293
285

CHAPTER 19 | Using the IMS Server Adapter
Developing the Portable Interceptor

Overview A portable interceptor should be developed as described in the CORBA
Programmer�s Guide, C++. For the server adapter, only server-side
interceptors are of interest, because the IMS server adapter is a CORBA
server.

This subsection discusses the following topics:

� Server adapter portable interceptor sample locations

� Contents of the ORB plug-in implementation

� Contents of the ORB initializer implementation

� Contents of the server interceptor implementation

� Server interceptor sample code

� Server interceptor sample code explanation

Server adapter portable
interceptor sample locations

An example of a portable interceptor framework for use in the server adapter
is provided in orbixhlq.DEMO.CPP.SRC and orbixhlq.DEMO.CPP.H. The
header file members are ORBINITI and SRVINTRC. The source file members
are PLUGIN, ORBINITI, and SRVINTRC.

For a z/OS UNIX System Services installation, the demonstration is located
in $IT_PRODUCT_DIR/asp/Version/demos/corba/pdk/security_pi. The
header files are located in orb_initializer_impl.h and
server_interceptor_impl.h. The implementation files are located in
plugin.cxx, orb_initializer_impl.cxx and
server_interceptor_impl.cxx.

The portable interceptor is packaged as a standard ORB plug-in, to enable it
to be loaded by an existing Orbix server (in this case, the IMS server
adapter).
 286

Adding a Portable Interceptor to the IMS Server Adapter
Contents of the ORB plug-in
implementation

The ORB plug-in implementation contains code to register this DLL as an
ORB plug-in. The ORB plug-in implementation also contains code in its
ORB_init() method to register the portable interceptor�s ORB initializer
object with the ORB. The ORB plug-in mechanism is used here to enable
the server adapter to load this DLL when the adapter is started. (See
�Loading the Portable Interceptor into the IMS Server Adapter� on
page 293.) Sample source is provided in the PLUGIN member on z/OS and in
the plugin.cxx file on z/OS UNIX System Services.

Contents of the ORB initializer
implementation

The ORB initializer implementation contains code to register the server
request interceptor with the ORB. Refer to the CORBA Programmer�s Guide,
C++ for details on how to implement an ORB initializer. The initializer is
registered in the IT_Security_PlugIn class (that is, the ORB plug-in
implementation). Sample source is provided in the ORBINITI members on
z/OS, and in the orb_initializer.h and orb_initializer.cxx files on
z/OS UNIX System Services.

Contents of the server interceptor
implementation

The server request interceptor implementation illustrates how you can
intercept the incoming CORBA request and check the following:

� Principal�You can inspect the GIOP principal value, and potentially
modify this principal value before it is subsequently used by the server
adapter. (See �Activating Client Principal Support� on page 123 for
more details.) This is done by invoking on the GIOP Current API.

� Arguments�You can inspect the operation arguments that have been
sent in the request. This is done by invoking on the server adapter�s
IT_MFA Current API.

To achieve this functionality, the interceptor only implements the
receive_request() interception point. This is the point at which both the
principal and operation arguments have been read in from the GIOP request
message. Sample source is available in the SRVINTRC dataset members on
z/OS, and in the server_interceptor_impl.h and
server_interceptor_impl.cxx files on z/OS UNIX System Services.
287

CHAPTER 19 | Using the IMS Server Adapter
The IT_MFA Current API The Current API is specific to the server adapter and enables PDK
application-level code to access the operation arguments in the form of a
sequence of octets. The IDL is located in your Orbix Mainframe installation
at orbixhlq.INCLUDE.ORBIX@PD.IDL(MFA@CUR) on z/OS, or at
install-dir/asp/6.x/idl/orbix_pdk/mfa_current.idl on z/OS UNIX
System Services.

The Current API can only be used to inspect arguments for a mapped
operation. This means that requests targeting the imsraw interface or the
MappingGateway interface cause a CORBA::BAD_INV_ORDER system exception
to be thrown. A CORBA::BAD_INV_ORDER exception is also thrown if the
Current API is invoked from within an unsuitable interception point. The
request_message_body() operation must be called in the
receive_request() interception point. The reply_body_length()
operation, which returns the length of the reply returned from IMS, must be
called from the send_reply() interception point.

Server interceptor sample code The receive_request() method makes calls to inspect the GIOP principal
and the operation arguments (if appropriate). The following code example
focuses on the GIOP principal checking:

Example 14:Sample Server Interceptor code (Sheet 1 of 2)

void
Demo_ServerInterceptorImpl::inspect_giop_principal(
 PortableInterceptor::ServerRequestInfo_ptr ri
) IT_THROW_DECL((
 CORBA::SystemException,
 PortableInterceptor::ForwardRequest
))
{

1 CORBA::OctetSeq_var received_val_binary =
 m_current->received_principal();

2 if (received_val_binary->length() != 0)
 {
 288

Adding a Portable Interceptor to the IMS Server Adapter
3 if (received_val_binary[received_val_binary->length()-1]
 == '\0')
 {
 cout << "Received a string principal in PI" << endl;
 }
 else
 {
 cout << "Received a binary principal in PI" << endl;
 return;
 }
 }
 else
 {
 cout << "Did not received any principal!" << endl;
 return;
 }

4 // Show the principal value
 CORBA::String_var received_val =
 m_current->received_principal_as_string();

 if (strlen(received_val.in()) != 0)
 {
 cout << "Received principal string in PI "
 << received_val.in() << endl;

5 // This is very contrived, but shows how to change a principal
 cout << "If principal is JOHN, change to PETER" << endl;
 if (strcmp(received_val.in(),"JOHN") == 0)
 {
 char* new_user = "PETER";

6 m_current->change_received_principal_as_string(new_user);
 }
 }
 else
 {
 cout << "Did not received any principal!" << endl;
 }
}

Example 14:Sample Server Interceptor code (Sheet 2 of 2)
289

CHAPTER 19 | Using the IMS Server Adapter
Server interceptor sample code
explanation

The sample server interceptor code can be explained as follows:

1. Obtain the principal in binary format. In binary format, the principal
value does not undergo ASCII-to-EBCDIC conversion.

2. Check if a principal has been received.Check if the principal value ends
in a null terminator, which indicates that it is probably a string. (This
depends on the conventions agreed with the client application.)

3. Because the interceptor returns if the principal value is not a string, it
now re-obtains the principal value as a string with ASCII-to-EBCDIC
conversion taking place.

4. In this example, it checks if the principal is JOHN.

5. If the principal is JOHN, it is changed to PETER. This is just an example
to show how to change a principal. Production applications probably
have more complex rules for modifying principals.

6. Other interceptor points can also be implemented. For example, the
send_exception() interceptor point can be implemented if tracking or
logging of exceptions is desired. The
receive_request_service_contexts() interceptor can be
implemented if access to additional service contexts is required.
Additionally, send_reply() can be used to check the length of the
reply message, using the reply_body_length() method from the
IT_MFA Current API.
 290

Adding a Portable Interceptor to the IMS Server Adapter
Compiling the Portable Interceptor

Overview This subsection outlines the build information used to compile the portable
interceptor demonstration. It also provides information about the naming of
the compiled DLL, and the location of the readme files that provide
additional information about compiling the portable interceptor.

This section discusses the following topics:

� Compiling on native z/OS

� Compiling on z/OS UNIX System Services

� Specifying the correct DLL name when loading the portable interceptor

� Location of additional information for compiling the portable
interceptor

Compiling on native z/OS Sample JCL to compile the portable interceptor can be found in
orbixhlq.DEMO.CPP.BLD.JCLLIB(ADTPICL). This compiles the two sample
source files and links them into a DLL called SECPI1.

Compiling on z/OS UNIX System
Services

The $IT_PRODUCT_DIR/asp/Version/demos/corba/pdk/security_pi
directory contains a makefile that is used to build the SECPI1 DLL on z/OS
UNIX System Services.

Specifying the correct DLL name
when loading the portable
interceptor

The DLL name, SECPI1, has been chosen for this example, because it is a
valid name in both a native z/OS and z/OS UNIX System Services
environment. Any valid DLL name can be used for your target deployment
environment. The correct DLL name must then be specified when selecting
the portable interceptor that is to be loaded into the server adapter. Refer to
�Loading the Portable Interceptor into the IMS Server Adapter� on page 293
for more details.
291

CHAPTER 19 | Using the IMS Server Adapter
Location of additional information
for compiling the portable
interceptor

On native z/OS, the ADTPI member in orbixhlq.DEMO.CPP.README also
provides a description of how to compile the portable interceptor. You can
refer to this for additional information.

On z/OS UNIX System Services, similar information tailored to compiling the
portable interceptor is provided in $IT_PRODUCT_DIR/asp/Version/demos/
corba/pdk/security_pi/README_CXX.txt.
 292

Adding a Portable Interceptor to the IMS Server Adapter
Loading the Portable Interceptor into the IMS Server Adapter

Overview This subsection describes how the portable interceptor is loaded into the
IMS server adapter. It discusses the following topics:

� Loading the portable interceptor on native z/OS

� Loading the portable interceptor on z/OS UNIX System Services

� Setting related configuration items

� Sample IMS server adapter configuration scope

Loading the portable interceptor
on native z/OS

Add the PDS containing the portable interceptor DLL to the STEPLIB for the
IMS server adapter. On native z/OS, this can be done by updating the JCL
used to run the server adapter. For example, add a LOADLIB value as
follows:

Loading the portable interceptor
on z/OS UNIX System Services

If the server adapter is run from z/OS UNIX System Services, and the
portable interceptor was built using JCL on native z/OS, so the SECPI1 DLL
resides in a PDS, add the PDS to the STEPLIB environment variable. The
following is an example of how to do this, where IT_PRODUCT_HLQ is set to
the relevant Orbix HLQ install area:

If the server adapter is run from z/OS UNIX System Services, and the
portable interceptor was built in z/OS UNIX System Services using a
makefile (so the SECPI1 DLL resides in a UNIX System Services directory),
add the directory that contains the SECPI1 DLL to the LIBPATH environment

//GO EXEC PROC=ORXG,
// PROGRAM=ORXIMSA,
// LOADLIB=&ORBIX..DEMO.CPP.LOADLIB,
// PPARM='run'

Note: If the LOADLIB symbolic is already in use, you might wish to update
the ORXG procedure and add the PDS that contains the portable interceptor
into the STEPLIB concatenation.

export STEPLIB=$IT_PRODUCT_HLQ.DEMO.CPP.LOADLIB:$STEPLIB
293

CHAPTER 19 | Using the IMS Server Adapter
variable. The following is an example of how to do this, where
IT_PRODUCT_DIR is set to the relevant Orbix install area for z/OS UNIX
System Services:

Setting related configuration
items

The following configuration items must be set to load the plug-in:

export LIBPATH=$IT_PRODUCT_DIR/asp/Version/demos/corba/pdk/
security_pi:$LIBPATH

orb_plugins The list must include the
demo_sec ORB plug-in,
which is the name that
was used in the ORB
plug-in demonstration
code. This plug-in must
appear before the
portable_interceptor
plug-in in the
orb_plugins list.

The list must also
include the
portable_interceptor
plug-in, to allow for
portable interceptor
support to be activated.

binding:server_binding_list The name of the server
request interceptor must
be added to this list, to
allow it to gain control
when a server request is
being processed. For the
purposes of this
example, add the DemoPI
interceptor.

plugins:demo_sec:shlib_name Specifies the name of
the ORB plug-in library,
without the version
suffix.
 294

Adding a Portable Interceptor to the IMS Server Adapter
Sample IMS server adapter
configuration scope

For example, the following can be added to the IMS server adapter�s
configuration scope:

When the IMS server adapter is then started, the portable interceptor should
be loaded and included in the server-side communication bindings.

plugins:demo_sec:shlib_version Specifies the version
number of the ORB
plug-in library.

Note: On z/OS, unlike
on other platforms, a
particular ORB plug-in
DLL name is resolved
from the Orbix
configuration simply by
appending the
shlib_version to the
shlib_name.

orb_plugins = ["iiop_profile", "giop", "iiop",
"local_log_stream", "ots", "demo_sec",
"portable_interceptor"];

binding:server_binding_list = ["DemoPI"];
plugins:demo_sec:shlib_name = "SECPI";
plugins:demo_sec:shlib_version = "1";
295

CHAPTER 19 | Using the IMS Server Adapter
Enabling the GIOP Request Logger Interceptor

Overview The request logger plug-in uses the interceptor approach to log accounting
information for each request and reply message. The request logger uses the
ORB's event log to perform the logging.

Format of log messages The log messages take the following format:

The components of the preceding log messages can be explained as follows:

Request message: [REQUEST], peer IP address, peer port number,
principal, operation, transaction name

Reply message: [REPLY], peer IP address, peer port number,
principal, operation, transaction name, reply status

principal This is the user ID as specified in the incoming GIOP
request. NO_PRINCIPAL is displayed if the principal was
not sent by the client.

transaction_nameThis field is specific to the imsraw interface that is
exposed by the server adapter (see �The IMS Server
Adapter imsraw Interface� on page 44). It refers to the
transaction name as passed in the first argument of the
run_transaction operations. For all other
interfaces/operations, this field does not appear.

reply status This indicates the success status of the invocation.
Values can be:

� NO_EXCEPTION�success: reply data is being sent
back to the client.

� SYSTEM_EXCEPTION�failure: a CORBA system
exception is being thrown.

� USER_EXCEPTION�failure: a CORBA user exception
is being thrown.
 296

Enabling the GIOP Request Logger Interceptor
Sample log output The following is an example of some log output:

Configuration To enable the request logger, the following configuration items must be
modified:

Sample configuration scope For example, the following can be added to the IMS server adapter's
configuration scope:

Also ensure that the following global variables are specified in the ORXINTRL
configuration file:

� plugins:request_logger:shlib_name = "ORXRLOG";
� plugins:request_logger:shlib_version = "5";

Mon, 01 May 2006 14:38:52.0000000 [thehost:IMSA,A=0040]
(IT_REQUEST_LOGGER:202) I - [REQUEST] 10.2.100.8, 1408,
johndoe, run_transaction(), PART

Mon, 01 May 2006 14:38:53.0000000 [thehost:IMSA,A=0040]
(IT_REQUEST_LOGGER:202) I - [REPLY] 10.2.100.8, 1408,
johndoe, run_transaction(), PART, NO_EXCEPTION

orb_plugins The request_logger plug-in must be added to the
orb_plugins list. Also, ensure that this list includes a
log stream plug-in (for example, the local_log_stream).

binding:server_
binding_list

The name of the server request interceptor must appear
in the list of allowable server bindings. The interceptor
is also called request_logger.

event_log:filtersThe request logger event subsystem can be enabled by
adding IT_REQUEST_LOGGER=* to the list of filters. This
indicates that all event log messages from this plug-in
are to be enabled.

orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "request_logger"];
binding:server_binding_list = ["request_logger"];
event_log:filters = ["IT_REQUEST_LOGGER=*",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];
297

CHAPTER 19 | Using the IMS Server Adapter
Gathering Accounting Information in the
Server Adapter

Overview This section describes how to activate a DLL in the IMS server adapter that
can gather and log accounting type information.

A sample accounting DLL is provided in your Orbix installation in the
orbixhlq.LOADLIB load library. You can customize the behavior of this DLL
to suit your needs.

In this section This section discusses the following topics:

Customizing the Accounting DLL page 299

Compiling the Customized Accounting DLL page 302

Activating the Accounting DLL in the Server Adapter page 303

Note: For testing purposes, you may choose to use the sample DLL
directly as shipped. In this case, there is no need to perform any of the
DLL customization tasks as outlined in this section.
 298

Gathering Accounting Information in the Server Adapter
Customizing the Accounting DLL

Overview The accounting DLL consists of a call to the function
IT_MFA_display_account_information() for mapped requests, and a call
to the function IT_MFA_display_raw_interface_account_information()
for imsraw requests, after each IMS server adapter request has been
completed. You can implement your own version of these functions and
replace the DLL called ORXACCT2, to gather the customized accounting
information.

This subsection discusses the following topics:

� IT_MFA_display_account_ information() parameters

� Sample use of IT_MFA_display_ account_information()

� Location of sample source code

IT_MFA_display_account_
information() parameters

The parameters for the function contain the following information:

interface This is the interface name of the request.

operation This is the operation name of the request.

mapped_name This is the transaction or program name that is invoked in
IMS.

request_lengthThis is the total length of inbound data received from
TCP/IP, excluding the 12-byte fixed GIOP header.

reply_length This is the total length of outbound data sent back via
TCP/IP, excluding the 12-byte fixed GIOP header.

principal The Client principal, if available; otherwise, an empty
string.

local_arglist This is an NVList of all the arguments for the request. This
NVList is in the state after the reply has been transmitted
back to the client application, so only limited data is
available in it.

dynany_set Indicates if the first argument has been saved in a dynamic
any when the request was received from the client. This
dynamic any is the next parameter. Saving the argument
has to be activated via configuration.
299

CHAPTER 19 | Using the IMS Server Adapter
Sample use of IT_MFA_display_
account_information()

Here is an example of what can be done in the function:

da First argument, if saved. Refer to the chapter on Any�s and
Dynamic Any�s in the CORBA Programmer�s Guide, C++
for details on how to access the data contained in this
parameter.

orb Pointer to the server adapter ORB, if needed, for example,
to call resolve_initial_references() to obtain a current
object.

Example 15:Sample use of IT_MFA_display_account_information() (Sheet
1 of 2)

#include <it_cal/iostream.h>
#include <it_cal/fstream.h>
#include <string.h>
#include <it_mfa/account.h>

IT_USING_NAMESPACE_STD
void
IT_MFA_display_account_information(
 const char* interface,
 const char* operation,
 const char* mapped_name,
 CORBA::Long request_length,
 CORBA::Long reply_length,
 const char* principal,
 CORBA::NVList_ptr local_arglist,
 CORBA::Boolean dynany_set,
 DynamicAny::DynAny_ptr da,
 CORBA::ORB_ptr orb
)
{
 cout << "Accounting information: " << endl;
 cout << " Interface: " << interface << endl;
 cout << " Operation: " << operation << endl;
 cout << " Tran: " << mapped_name << endl;
 cout << " Request len: " << request_length << endl;
 cout << " Reply len: " << reply_length << endl;
 cout << " Principal: " << principal << endl;
 300

Gathering Accounting Information in the Server Adapter
Location of sample source code The source code for this sample function is contained in
orbixhlq.DEMO.CPP.SRC(ACCOUNT). This example can be used as a basis for
a function which logs the request accounting information in the desired
format.

// Gather type information from the NVList
 cout << " Number of Arguments: " << local_arglist->count() <<

endl;

 // Display information from the first parameter
 if (dynany_set == IT_TRUE)
 {
 CORBA::TypeCode_ptr type = da->type();

 cout << " Kind: " << type->kind() << endl;
 cout << " Id: " << type->id() << endl;
 if ((type->kind() == CORBA::tk_struct))
 {
 cout << " Member count: " << type->member_count() <<

endl;
 for (int ii=0; ii < type->member_count(); ii++)
 {
 CORBA::TypeCode_ptr type1 = type->member_type(ii);
 cout << " Kind of member: " << type1->kind() <<

endl;
 }
 }
 }
 cout << endl;
}

Example 15:Sample use of IT_MFA_display_account_information() (Sheet
2 of 2)
301

CHAPTER 19 | Using the IMS Server Adapter
Compiling the Customized Accounting DLL

Overview The functions IT_MFA_display_account_information() and
IT_MFA_display_raw_interface_account_information() must be
compiled into a C++ DLL, called ORXACCT2. This is the name of the library
that the IMS server adapter uses when it is configured to call out to these
functions.

This subsection discusses the following topics:

� Location of sample JCL to compile IT_MFA_display_account_
information()

� Location of additional information for compiling IT_MFA_display_
account_information()

Location of sample JCL to compile
IT_MFA_display_account_
information()

Sample JCL to compile the DLL can be found in
orbixhlq.DEMO.CPP.BUILD.JCLLIB(ACCTCL).By default, this job generates
the customized ORXACCT2 DLL in the orbixhlq.DEMO.CPP.LOADLIB PDS.

Location of additional information
for compiling IT_MFA_display_
account_information()

The orbixhlq.DEMO.CPP.README(ACCOUNT) file also provides a description of
how to compile the DLL, which can be referred to for additional information.
 302

Gathering Accounting Information in the Server Adapter
Activating the Accounting DLL in the Server Adapter

Overview This subsection describes how the customized accounting DLL can be
loaded into the server adapter at runtime. It also describes how to activate
this functionality. It discusses the following topics:

� Loading the accounting DLL on native z/OS

� Loading the accounting DLL on z/OS UNIX System Services

� Setting required configuration variables

Loading the accounting DLL on
native z/OS

To load the customized accounting DLL on native z/OS, add the PDS
containing your customized version of the accounting DLL to the STEPLIB
concatenation for the server adapter. This can be done by updating the
server adapter JCL. For example, add a LOADLIB value as follows:

Loading the accounting DLL on
z/OS UNIX System Services

To load the customized accounting DLL on z/OS UNIX System Services, add
the PDS to the STEPLIB environment variable, for example using:

In the preceding example, orbixhlq represents the relevant high-level
qualifier for the PDS.

Setting required configuration
variables

If the plugins:imsa:call_accounting_dll configuration item is set to yes,
the server adapter invokes on the appropriate accounting function after it
has processed each request and sent the reply from IMS back to the client.

If the plugins:imsa:capture_first_argument_in_dynany configuration
item is set to yes, the first argument of the request, if it is an input
argument, is also preserved and passed to the function.

//GO EXEC PROC=ORXG,
// PROGRAM=ORXIMSA,
// LOADLIB=&ORBIX..DEMO.CPP.LOADLIB,
// PPARM='run'

export STEPLIB=orbixhlq.DEMO.CPP.LOAD:$STEPLIB
303

CHAPTER 19 | Using the IMS Server Adapter
Exporting Object References at Runtime

Overview When you start the server adapter it can export object references for the
interfaces it supports. These object references relate to the MappingGateway
interface, the imsraw interface, and (optionally) any other mapped interfaces
that have been defined to the server adapter via its mapping file at start-up.
The server adapter can export these object references to a file, to the
Naming Service, or both.

In this section This section discusses the following topics:

Configuration Items for Exporting Object References page 305

Exporting Object References to a File page 311

Exporting Object References to Naming Service Context page 312

Exporting Object References to Naming Service Object Group page 314
 304

Exporting Object References at Runtime
Configuration Items for Exporting Object References

Overview This subsection describes the configuration items that are used to control
the export of object references from the server adapter.

Configuration items summary The following table summarizes the configuration items that are used to
control the export of object references from the server adapter:

Note: None of these configuration items are included by default in the
adapter configuration file. If you want to configure the server adapter to
export object references, you must add these configuration items, as
appropriate.

plugins:imsa:object_publishers This specifies where the adapter can
publish its object references. Valid
options are naming_service to publish
object references to the Naming
Service, and filesystem to publish
object references to file. the default
value is "".

plugins:imsa:write_iors_to_file This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
filesystem:filename configuration
item described next.

plugins:imsa:object_publisher:
filesystem:filename

This supersedes the plugins:imsa:
write_iors_to_file configuration
item. It specifies the file that is to be
used if you want the adapter to export
object references to a file. You can
specify the full path to an HFS
filename, a PDS member name, or a
PDS name as the value for this item. If
this configuration item is not included
in the adapter�s configuration, no
object references are exported to file.
See �Configuration example� on
page 311 for more details.
305

CHAPTER 19 | Using the IMS Server Adapter
plugins:imsa:write_iors_to_ns
_context

This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
naming_service:context
configuration item.

plugins:imsa:object_publisher:
naming_service:context

This supersedes the plugins:imsa:
write_iors_to_ns_context
configuration item. It specifies the
Naming Service context that is to be
used if you want the adapter to export
object references to a Naming Service
context. If this configuration item is
not included in the adapter�s
configuration, no object references are
exported to a Naming Service context.
If you specify a value of "", the object
references are written to the root
context of the Naming Service.

plugins:imsa:object_publisher:
naming_service:context:
auto_create

This specifies whether the Naming
Services context specified by
plugins:imsa:object_publisher:nam
ing_service:context should be
created if it does not exist. Valid
options are true and false. The
default value is true.

plugins:imsa:object_publisher:
naming_service:update_mode

This specifies whether
adapter-deployed objects are to be
published during start-up only or
whether updates are also to be
published. Valid options are startup
and current. The default value is
startup.

plugins:imsa:place_iors_in_
nested_ns_scopes

This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
naming_service:nested_scopes
configuration item described next.
 306

Exporting Object References at Runtime
plugins:imsa:write_iors_to_ns
_context

This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
naming_service:context
configuration item.

plugins:imsa:object_publisher:
naming_service:context

This supersedes the plugins:imsa:
write_iors_to_ns_context
configuration item. It specifies the
Naming Service context that is to be
used if you want the adapter to export
object references to a Naming Service
context. If this configuration item is
not included in the adapter�s
configuration, no object references are
exported to a Naming Service context.
If you specify a value of "", the object
references are written to the root
context of the Naming Service.

plugins:imsa:object_publisher:
naming_service:context:
auto_create

This specifies whether the Naming
Services context specified by
plugins:imsa:object_publisher:nam
ing_service:context should be
created if it does not exist. Valid
options are true and false. The
default value is true.

plugins:imsa:object_publisher:
naming_service:update_mode

This specifies whether
adapter-deployed objects are to be
published during start-up only or
whether updates are also to be
published. Valid options are startup
and current. The default value is
startup.

plugins:imsa:place_iors_in_
nested_ns_scopes

This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
naming_service:nested_scopes
configuration item described next.
307

CHAPTER 19 | Using the IMS Server Adapter
plugins:imsa:object_publisher:
naming_service:nested_scopes

This supersedes the plugins:imsa:
place_iors_in_nested_ns_scopes
configuration item. If this
configuration item is set to false, the
IOR is stored in the specified scope in
the Naming Service. If this
configuration item is set to true, the
module name(s) of the interface for
the IOR are used to navigate
subscopes from the configured scope,
with the same names as the module
names, and the IOR is then placed
within the relevant subscope. The
default is false.

When using Naming Service contexts
and
plugins:imsa:object_publisher:
naming_service:context:
auto_create is set to true, contexts
are created for IDL module scopes.
For example, Simple/SimpleObject
with
plugins:cicsa:object_publisher:
naming_service:context set to base
creates a context tree of /base/Simple
for SimpleObject.

The default for
plugins:imsa:object_publisher:nam
ing_service:nested_scopes is false.
 308

Exporting Object References at Runtime
plugins:imsa:publish_all_iors If this is set to yes, the object
references for the MappingGateway
interface, the imsraw interface, and all
interfaces specified in the adapter
mapping file are exported. If this is set
to no, only the object references for
the MappingGateway and imsraw
interfaces are exported. The default is
no.

Note: This configuration item is only
used by the deprecated object
publishing configuration items. When
using the new object publishing
configuration items, all IORs are
published.

plugins:imsa:remove_ns_iors
_on_shutdown

If this is set to yes, the server adapter
attempts to unbind the object
references from the Naming Service
when it shuts down normally (for
example, via an operator stop
command). The default is no.

This configuration item is only used by
the deprecated object publishing
configuration items. When using the
new object publishing configuration
items, the setting of
plugins:imsa:object_publisher:nam
ing_service:update_mode determines
if the server adapter attempts to
unbind object references from the
Naming Service when it shuts down
normally. A setting of current will
cause the server adapter to attempt to
unbind references at shutdown.

plugins:imsa:write_iors_to_ns
_group_with_prefix

This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
naming_service:group:prefix
configuration item described next.
309

CHAPTER 19 | Using the IMS Server Adapter
plugins:imsa:object_publisher:
naming_service:group:prefix

This supersedes the plugins:imsa:
write_iors_to_ns_group_with_
prefix configuration item. It specifies
the prefix that is to be added to each
generated name indicating an
interface. The specified prefix is
attached to the generated name, to
specify the object group that is to be
used. If a prefix of �� is specified, no
prefix is added. If this configuration
setting is not present, no object
references are exported to any object
groups.

plugins:imsa:write_iors_to_ns
_group_member_name

This item has now been deprecated
and is superseded by the
plugins:imsa:object_publisher:
naming_service:group:member_name
configuration item described next.

plugins:imsa:object_publisher:
naming_service:group:
member_name

This supersedes the plugins:imsa:
write_iors_to_ns_group_member_
name configuration item. It specifies
the member name that the server
adapter is to use in the object group. A
unique member name must be
specified for each adapter; otherwise,
one adapter might end up replacing
the object group members of another
adapter.
 310

Exporting Object References at Runtime
Exporting Object References to a File

Overview When it comes to the server adapter exporting object references, the
simplest option is to have the adapter export them to a file. This subsection
provides an example of the configuration settings that are required to enable
the export of object references to a file, and the subsequent output
produced.

Configuration example The following configuration settings indicate that the server adapter should
export object references for all the interfaces it supports to the home
directory of user1:

Alternatively, the following configuration settings indicate that the server
adapter should export object references for only the MappingGateway and
imsraw interfaces to a data set called MFAIORS:

Example output The following is an example of the output produced in the file for the first of
the preceding configuration examples, assuming the simple demonstration
has been added to the adapter mapping file:

plugins:imsa:object_publishers = ["file_system"];
plugins:imsa:object_publisher:fileystem:filename = "/home/user1/test.txt";

plugins:imsa:object_publishers = ["file_system"];
plugins:imsa:object_publisher:fileystem:filename = " DD:MFAIORS";

IT_MFA = IOR:0000000000000027494�
Simple:SimpleObject = IOR:000000000000001c4944�
IT_MFA_IMS:imsraw = IOR:00000000000000254944�
311

CHAPTER 19 | Using the IMS Server Adapter
Exporting Object References to Naming Service Context

Overview When it comes to exporting object references to the Naming Service, the
server adapter can be configured to export to either a Naming Service
context or a Naming Service object group. This subsection provides details
about exporting to a Naming Service context.

Prerequisites If the server adapter is configured to export its object references to a Naming
Service context, the following prerequisites apply:

� The Naming Service used must support the
CosNaming::NamingContextExt interface.

� The initial reference for this Naming Service must be supplied to the
adapter either in the adapter�s configuration file or via the command
line at start-up.

Configuration The plugins:imsa:object_publisher:naming_service:context
configuration item specifies the Naming Service context to which the
adapter should export its object references. If a value of "" (that is, an
empty context) is specified for this item, the object references are written to
the root context. To indicate a nested context, the specified value must take
a format of context/context/context.

If plugins:imsa:object_publisher:naming_service:update_mode is set to
current, the adapter calls unbind() on the object references in the Naming
Service as part of a normal shut-down operation.

Note: The context must exist when the adapter is started. See the Orbix
Administrator�s Guide for details of how to create contexts with itadmin,
in particular how to create and specify nested Naming Service contexts.

However, if
plugins:imsa:object_publisher:naming_service:context:auto_create
is set to true, the context is created automatically if it does not already
exist.
 312

Exporting Object References at Runtime
Object ID The ID for the object bound into the Naming Service is derived from the
module and interface name. First, all the module names are used and then
the interface name, each separated by a colon. For example, the ID for the
interface for the simple demonstration is Simple:SimpleObject. The kind
parameter is always left empty. The MappingGateway interface uses IT_MFA
as the ID.

rebind() function The adapter uses rebind() to add the object references to the Naming
Service, so any existing object reference with the same name in the same
context is replaced.

Example The following itadmin command creates a context called test in the
Naming Service:

The following configuration settings indicate that when the adapter starts, it
should write all of its object references to the Naming Service context called
test, which is created if it does not already exist. It subsequently removes
the object references again on shutting down (during a normal shut-down):

itadmin ns newnc test

Note: You can also create a context using an equivalent piece of JCL.

Note: If
plugins:imsa:object_publisher:naming_service:context:auto_create
is set to true, the Naming Service context is created automatically, and
the preceding itadmin command is not necessary.

plugins:imsa:object_publishers = ["naming_service"];
plugins:imsa:object_publisher:naming_service:context = "test";
plugins:imsa:object_publisher:naming_service:context:auto_create = "true";
plugins:imsa:object_publisher:naming_service:update_mode = "current";
plugins:imsa:object_publisher:naming_service:nested_scopes = "false";
313

CHAPTER 19 | Using the IMS Server Adapter
Exporting Object References to Naming Service Object Group

Overview When it comes to exporting object references to the Naming Service, the
server adapter can be configured to export to either a Naming Service
context or a Naming Service object group. This subsection provides details
about exporting to a Naming Service object group.

Prerequisites If the server adapter is configured to export its object references to a set of
Naming Service object groups, the following prerequisites apply:

� The Naming Service used must support the Orbix load balancing
extensions to the Naming Service.

� The initial reference for the Naming Service must be available to the
adapter either in the adapter�s configuration file or via the command
line at start-up.

� The object group must be predefined, so that the load balancing
algorithm defined for each object group can be used�the load
balancing algorithm might be round-robin, random, or some other
custom load balancing algorithm.

Summary of rules The following rules apply when mapping object references to a Naming
service object group:

� An object group must be created for each object before the adapter is
started; otherwise, the objects will not be exported. If you are unsure
about the names of the object groups, start the adapter without any
object groups created and check the error messages to see which
object groups are needed.

� The object groups must then be bound to �objects�, so that clients can
locate them. The fact that object groups are used is transparent to the
clients.

Note: See the Orbix Administrator�s Guide for more details on Naming
Service object groups.
 314

Exporting Object References at Runtime
� Each adapter must have a unique member name to ensure that it does
not overwrite object group members created by other adapters.

� Members are only removed if the adapter shuts down normally; for
example, by using an operator Stop command, by using itadmin mfa
stop, or by calling the stop operation on the adapter�s MappingGateway
interface.

Configuration Both the plugins:imsa:object_publisher:naming_service:group:prefix
and plugins:imsa:object_publisher:naming_service:group:member_
name configuration items indicate that the adapter should write its object
references to a Naming Service object group.

If a value of "" (that is, an empty prefix) is specified for
plugins:imsa:object_publisher:naming_service:group:prefix, the
object references are written to object groups derived from the interface
name only; otherwise, the prefix is attached to the derived names for each
object group.

The object reference for each interface is placed in the relevant object group,
with the member name obtained from the object_publisher:naming_
service:group:member_name configuration variable. A unique member
name must be specified for each adapter that is to use the set of object
groups.

Object group name The object group name used for each object bound into the Naming Service
is derived from the module and interface name. First, all the module names
are used and then the interface name, each separated by a colon. For
example, the object group name for the interface for the simple
demonstration is Simple:SimpleObject. If the prefix is not blank, it is
attached to the start of each derived object group name before the object
group is located in the naming service. The MappingGateway interface uses
IT_MFA as the object group name.

Note: The object groups must exist when the adapter is started. See the
Orbix Administrator�s Guide for details on how to create and specify
nested Naming Service contexts.
315

CHAPTER 19 | Using the IMS Server Adapter
rebind() function The adapter uses rebind() to add the object references to the Naming
Service, so any existing member in the object group is replaced.

Example For example, consider the following configuration settings:

Assuming the interface for the simple demonstration is the only one
exported by the adapter, the following itadmin commands create object
groups called group1_IT_MFA, group1_IT_MFA_IMS:imsraw, and
group1_Simple:SimpleObject:

Now, with the three round-robin object groups created, each needs to be
bound to a context in the Naming Service, so that clients can locate the
object references. For example, the following command creates a context
called testog:

Each object group should be subsequently created in this context, using the
following commands, so that clients can locate the objects:

plugins:imsa:object_publishers = ["naming_service"];
plugins:imsa:object_publisher:naming_service:group:prefix = "group1_";
plugins:imsa:object_publisher:naming_service:group:member_name = "adapter1";
plugins:imsa:object_publisher:naming_service:update_mode = "current";
plugins:imsa:object_publisher:naming_service:nested_scopes = "false";

itadmin nsog create -type rr group1_IT_MFA
itadmin nsog create -type rr group1_IT_MFA_IMS:imsraw
itadmin nsog create -type rr group1_Simple:SimpleObject

Note: You can also create object groups via an equivalent piece of JCL.

itadmin ns newnc testog

itadmin nsog bind -og_name group1_IT_MFA testog/IT_MFA
itadmin nsog bind -og_name group1_IT_MFA_IMS:imsraw testog/imsraw
itadmin nsog bind -og_name group1_ Simple:SimpleObject testog/simple
 316

Exporting Object References at Runtime
Based on the preceding command, the content of the testog context should
now be listed as follows (when you specify an itadmin ns list testog
command):

If a client now resolves one of the object references before any adapter is
started, a nil object will be returned. For example, consider the following
command:

If the preceding itadmin command is entered before an adapter is started,
the following output is returned:

If the preceding itadmin command is entered after an adapter is started, the
following output is returned:

Running simultaneous adapters If more than one adapter is started, each time resolve() is used it gives a
different object reference, based on the load balancing algorithm specified
when the object group was created. If all the adapters are stopped normally
and the following setting has been specified, resolve again returns a nil
object reference:.

IT_MFA Object
imsraw Object
simple Object

itadmin ns resolve testog/imsraw

IOR:00000000000000010000000000000000

IOR:00000000000000254944�

plugins:imsa:object_publisher:naming_service:update_mode = "current"
317

CHAPTER 19 | Using the IMS Server Adapter
 318

Part 5
Securing and Using the

Client Adapter

In this part This part contains the following chapters:

Securing the Client Adapter page 321

Using the Client Adapter page 339

CHAPTER 20

Securing the Client
Adapter
This chapter provides details of security considerations
involved in using the client adapter. It provides a review of
general Orbix security implications and the relevant IMS and
APPC security mechanisms. It describes the two security
modes that the client adapter supports, with particular
emphasis on how each mode affects the existing IMS security
mechanisms.

In this chapter This chapter discusses the following topics:

Security Configuration Items page 322

Common Security Considerations page 328

APPC Security Considerations page 330
321

CHAPTER 20 | Securing the Client Adapter
Security Configuration Items

Overview This section provides an example and details of how to configure the IMS
client adapter to run with Transport Layer Security (TLS) enabled. The
sample configuration includes a csiv2 sub-scope that highlights the
configuration items required to propagate CSIv2 user/password credentials
to CSIv2-enabled targets.

Sample configuration Example 16 provides an overview of the configuration items used to enable
security with the client adapter.

Example 16:Sample Security Configuration for Client Adapter (Sheet 1 of
3)

 plugins:security:share_credentials_across_orbs = "true";

 # By default, use TLS V1. Downgrade to SSL V3 if the remote
 # peer is unable to support TLS V1.
 policies:mechanism_policy:protocol_version = ["TLS_V1", "SSL_V3"];

 # Please change the following if you have only export strength
 # encryption available on the machine.
 policies:mechanism_policy:ciphersuites = ["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_RC4_128_MD5"];

 plugins:systemssl_toolkit:saf_keyring
 = "%{LOCAL_SSL_USER_SAF_KEYRING}";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";

 # By default, use the 'iona_services' certificate from the keyring
 principal_sponsor:auth_method_data = ["label=iona_services"];

 # By default the following policies are used to deploy a
 # fully secure domain where client authentication is not required:
 #
 policies:target_secure_invocation_policy:requires =
 ["Confidentiality", "DetectMisordering",
 "DetectReplay", "Integrity"];
 policies:target_secure_invocation_policy:supports =
 322

Security Configuration Items
 ["Confidentiality", "EstablishTrustInTarget",
 "EstablishTrustInClient", "DetectMisordering",
 "DetectReplay", "Integrity"];
 policies:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget",
 "DetectMisordering", "DetectReplay", "Integrity"];
 policies:client_secure_invocation_policy:supports =
 ["Confidentiality", "EstablishTrustInClient",
 "EstablishTrustInTarget", "DetectMisordering",
 "DetectReplay", "Integrity"];

 iona_services
 {
 �
 ims_client
 {
 plugins:imsa:iiop_tls:host = "%{LOCAL_HOSTNAME}";
 plugins:imsa:iiop_tls:port = "5170";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop_tls", "ots", "amtp_appc"];

 ots
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop_tls"];
 };

 csiv2
 {
 # enable csiv2 authentication
 #

 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop_tls", "ots", "csi",
 "amtp_appc"];

 event_log:filters = ["IT_CSI=*", "IT_IIOP_TLS=*",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 binding:client_binding_list
 = ["OTS+TLS_Coloc+POA_Coloc",
 "TLS_Coloc+POA_Coloc",
 "OTS+POA_Coloc", "POA_Coloc",

Example 16:Sample Security Configuration for Client Adapter (Sheet 2 of
3)
323

CHAPTER 20 | Securing the Client Adapter
 "CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
 "CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS",
 "CSI+OTS+GIOP+IIOP", "OTS+GIOP+IIOP",
 "CSI+GIOP+IIOP", "GIOP+IIOP"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";

 policies:csi:auth_over_transport:client_supports =
 ["EstablishTrustInClient"];

 # Provide the correct username, password, and domain
 # for the user you would like to authenticate.
 principal_sponsor:csi:auth_method_data = ["username=IONAAdmin",
 "password=admin",
 "domain=IONA"];
 };
 };

Example 16:Sample Security Configuration for Client Adapter (Sheet 3 of
3)
 324

Security Configuration Items
Summary of global scope
configuration items

The following is a summary of the security-related configuration items
associated with the global scope:

plugins:security:share_
credentials_across_orbs

Enables own security credentials to be
shared across ORBs. Normally, when
you specify an own SSL/TLS
credential (using the principal sponsor
or the principal authenticator), the
credential is available only to the ORB
that created it. By setting this
configuration item to true, however,
the own SSL/TLS credentials created
by one ORB are automatically made
available to any other ORBs that are
configured to share credentials.

policies:mechanism_policy:
protocol_version

Specifies the protocol version used by
a security capsule (ORB instance). It
can be set to SSL_V3 or TLS_V1.

policies:mechanism_policy:
ciphersuites

Specifies a list of cipher suites for the
default mechanism policy.

plugins:systemssl_toolkit:
saf_keyring

Specifies the RACF keyring to be used
as the source of X.509 certificates.
This must match the keyring you
specified in the GENCERT JCL.

principal_sponsor:use_principal_
sponsor

This must be set to true to indicate
that the certificate information is to be
specified in the configuration file.

principal_sponsor:auth_method_id This must be set to security_label
to indicate that the certificate lookup
should be performed using the label
mechanism.

principal_sponsor:auth_method_
data

If you are using TLS security, this
specifies the label that should be used
to look up the SSL/TLS certificate in
the SAF key store. The specified label
name must match the label name
under which the server certificate was
imported into, or created in, the key
store (for example, in RACF).
325

CHAPTER 20 | Securing the Client Adapter
Summary of CSIV2 configuration
items

The following is a summary of the configuration items associated with the
iona_services:ims_client:csiv2 security plug-in:

policies:target_secure_
invocation_policy:requires

Specifies the invocation policy
required by the server for accepting
secure SSL/TLS connection attempts.

policies:target_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the server for accepting
secure SSL/TLS connection attempts.

policies:client_secure_
invocation_policy:requires

Specifies the invocation policy
required by the client for opening
secure SSL/TLS connections.

policies:client_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the client for opening
secure SSL/TLS connections.

orb_plugins The iiop_tls plugin must be added
to this list, to enable TSL support.

Note: Remove the iiop plugin if you
explicitly wish to disable all insecure
communications.

Note: See the Mainframe Security Guide for more details of these
configuration items.

orb_plugins The csi plugin must be added to this
list for CSIv2 credentials propagation.

Note: The iiop_tls plugin is a
prerequisite for CSIv2 and must also
be included if the csi plugin is used.

event_log:filters All CSIv2-specific messages
(informational and otherwise) can be
enabled by adding IT_CSI=* to this
list.

binding:client_binding_list Specifies a list of potential client-side
binding chains. The CSI binding must
be added to the relevant chains to
effect CSIv2 credential propagation
at invocation time.
 326

Security Configuration Items
principal_sponsor:csi:
use_principal_sponsor

This must be set to true to indicate
that the CSIv2 credential information
is to be specified in the configuration
file.

principal_sponsor:csi:
auth_method_id

This must be set to GSSUPMech.

policies:csi:auth_over_transport:
client_supports

This must be set to
EstablishTrustInClient to indicate
that the client is capable of
propagating credentials.

principal_sponsor:csi:
auth_method_data

This list is used to specify the
credentials information.
327

CHAPTER 20 | Securing the Client Adapter
Common Security Considerations

Overview This section provides details of common security considerations involved in
using the IMS client adapter. It discusses the following topics:

� Orbix SSL/TLS

� iSF integration

� Principal propagation

Orbix SSL/TLS Orbix provides Transport Layer Security (TLS) that enables secure
connectivity over IIOP. TLS includes authentication, encryption, and
message integrity. As with all Orbix applications, you can configure the IMS
client adapter to use TLS. See the Mainframe Security Guide for details on
securing CORBA applications with SSL/TLS.

iSF integration The IONA security framework (iSF) provides a common security framework
for all Orbix components in your system. This framework is involved at both
the transport layer (using TLS) and the application layer (using the CORBA
CSIv2 protocol and the IONA generic security plug-in (GSP)). At the
application level, in terms of the IMS client adapter, one of the following
authentication credentials can be passed:

� username/password/domain name

� Single sign-on (SSO) token

You can configure the client adapter to use CSI/GSP support. See the
Mainframe Security Guide for details on iSF and integration with an off-host
Security service.

Principal propagation By default, when an Orbix IMS client invokes a request via the client
adapter, it passes the user ID of the running IMS transaction to the client
adapter as part of the requesting message. The client adapter will then
interact with the GIOP Current interface to set the outgoing principal
identifier to this IMS user ID. If the GIOP plug-in has been configured
appropriately, this ID is then sent as part of the CORBA request to the target
server.
 328

Common Security Considerations
The following table highlights the pertinent GIOP configuration settings:

policies:giop:interop_policy:
send_principal = "true";

This instructs GIOP to propagate a
principal value if one has been
specified for the outgoing client
request. For example, the
local_principal_as_string()
attribute in the GIOP Current
interface can be used to set a
text-based user ID.

policies:giop:interop_policy:
enable_principal_service_context

For GIOP 1.2, if this item is set to
true, it instructs the client adapter
to insert the outgoing principal
string in a service context. This is
required because the
CORBA::Principal field is not
available in the request header for
GIOP 1.2 messages. The default
value is false.

policies:giop:interop_policy:
principal_service_context_id

This item specifies the service
context ID into which the IMS
client adapter attempts to insert
the principal string, if
policies:giop:interop_policy:
enable_principal_service_
context has been set to true. If
this configuration setting is not
specified, a default ID of
0x49545F44 is used to create the
service context.

Note: You cannot configure the
default processing behavior of the
client adapter. For example, setting
the use_client_principal
configuration item has no effect in
this case. To customize the
processing behavior of the client
adapter (for example, to map the
IMS user ID to a network ID), you
can use the Orbix PDK to develop a
client-side interceptor.
329

CHAPTER 20 | Securing the Client Adapter
APPC Security Considerations

Overview This section provides details on how to secure the client adapter in an APPC
environment. APPC/MVS provides the following levels of security:

� LU security

� Conversation security

In this section This section discusses the following topics:

LU Security page 331

Conversation Security page 335
 330

APPC Security Considerations
LU Security

Overview The client adapter processes client transactions from IMS. Therefore, IMS
should be allowed to establish sessions with the client adapter. Other APPC
applications on the network, however, are not intended to process requests
via the client adapter. In some environments it might be considered a
security breach if any application other than IMS establishes an APPC
connection with the client adapter.

This subsection discusses the following topics:

� Preventing non-IMS applications establishing sessions with the client
adapter

� Defining VTAM APPLs for IMS and the client adapter

� Sample RACF APPCLU profile names for IMS and client adapter LUs

� Defining profiles for IMS and client adapter LUs example

� Activating the profiles in RACF

� Refreshing the profiles in VTAM

Preventing non-IMS applications
establishing sessions with the
client adapter

To prevent applications other than IMS from establishing sessions with the
client adapter, APPC LU security can be used. Enable APPC LU security by
doing the following:

� Define the VTAM APPLs for IMS and the client adapter with the
appropriate keywords.

� Define APPCLU RACF profiles.

Defining VTAM APPLs for IMS
and the client adapter

Make sure the following keywords are defined on the VTAM APPL definition:

Table 8: IMS LU and Client Adapter LU Required Keyword Definitions

Keyword Description

IMS LU required keyword definitions
331

CHAPTER 20 | Securing the Client Adapter
SECACPT=CONV This keyword allows IMS to provide security
information on a request to allocate a conversation.
The security information includes the user ID
making the request to allocate the conversation,
the user�s group ID, and an �already verified�
indicator.

VERIFY=OPTIONAL If there is a RACF APPCLU profile defined for this
LU, this keyword instructs VTAM to verify that the
session keys defined in the RACF APPCLU profiles
match for the IMS LU and the client adapter LU. If
the keys do not match, the session between the
IMS LU and the client adapter LU cannot be
established.

VERIFY=REQUIRED could be defined for even tighter
security. However, an installation might be using
the IMS server adapter as well as the client
adapter, and the IMS server adapter security asks
for VERIFY=OPTIONAL on the IMS LU APPL
definition.

Client Adapter LU required keyword definitions

SECACPT=ALREADYV This keyword allows the client adapter to receive
security information on the conversation allocation
request. The security information includes the user
ID making the request to allocate the conversation,
the user�s group ID, and an already verified
indicator.

VERIFY=REQUIRED This keyword requires that a RACF APPCLU profile
is defined for this LU and for any LU that attempts
to establish a session with it. If RACF APPCLU
profiles do not exist, the session cannot be
established. If profiles do exist, the session keys in
each profile must match; otherwise, the session
cannot be established.

Table 8: IMS LU and Client Adapter LU Required Keyword Definitions

Keyword Description
 332

APPC Security Considerations
SECACPT=CONV This keyword allows IMS to provide security
information on a request to allocate a conversation.
The security information includes the user ID
making the request to allocate the conversation,
the user�s group ID, and an �already verified�
indicator.

VERIFY=OPTIONAL If there is a RACF APPCLU profile defined for this
LU, this keyword instructs VTAM to verify that the
session keys defined in the RACF APPCLU profiles
match for the IMS LU and the client adapter LU. If
the keys do not match, the session between the
IMS LU and the client adapter LU cannot be
established.

VERIFY=REQUIRED could be defined for even tighter
security. However, an installation might be using
the IMS server adapter as well as the client
adapter, and the IMS server adapter security asks
for VERIFY=OPTIONAL on the IMS LU APPL
definition.

Client Adapter LU required keyword definitions

SECACPT=ALREADYV This keyword allows the client adapter to receive
security information on the conversation allocation
request. The security information includes the user
ID making the request to allocate the conversation,
the user�s group ID, and an already verified
indicator.

VERIFY=REQUIRED This keyword requires that a RACF APPCLU profile
is defined for this LU and for any LU that attempts
to establish a session with it. If RACF APPCLU
profiles do not exist, the session cannot be
established. If profiles do exist, the session keys in
each profile must match; otherwise, the session
cannot be established.

Table 8: IMS LU and Client Adapter LU Required Keyword Definitions

Keyword Description
333

CHAPTER 20 | Securing the Client Adapter
Sample RACF APPCLU profile
names for IMS and client adapter
LUs

The IMS LU and the client adapter LU require RACF APPCLU profiles. The
names have the following pattern:

NETID represents your network ID. LU01 and LU02 are the LU names to be
secured. Each LU requires its own profile. The profile name in the
preceding example would be for LU01. The profile name for LU02 would be
as follows:

Defining profiles for IMS and
client adapter LUs example

The following is an example of defining the profiles for the IMS LU and the
client adapter LU:

Activating the profiles in RACF To activate the profiles in RACF, use the following command:

Refreshing the profiles in VTAM To refresh the profile in VTAM, use the following VTAM command:

In the preceding example, VTAM is the name of the procedure used to start
VTAM.

NETID.LU01.LU02

NETID.LU02.LU01

RDEFINE APPCLU P390.IMSLU01.ORXLUCA1
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

RDEFINE APPCLU P390.ORXLUCA1.IMSLU01
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

SETROPTS CLASSACT(APPCLU)

F VTAM,PROFILES,ID=IMSLU01
F VTAM,PROFILES,ID=ORXLUCA1

Note: Although APPC can be used for networked communication, the
client adapter is only intended to be run on the same machine as the IMS
region with which it is communicating.
 334

APPC Security Considerations
Conversation Security

Overview There are three levels of conversation security:

� security_none

� security_same

� security_pgm

The Orbix runtime inside IMS uses security_same when allocating its
conversations with the client adapter.

A conversation using security_pgm is not possible with the client adapter,
because the Orbix runtime inside IMS has no access to client passwords.

Refer to �LU 6.2 conversation security levels� on page 222 for more details
on each conversation security level.

This subsection discusses the following topics:

� Controlling access to the client adapter LU

� Activating the APPL class

� Refreshing the RACLIST

� Controlling access to the IMS LU

Controlling access to the client
adapter LU

Some environments might want very strict controls regarding which users
are permitted access to the client adapter. A RACF APPL class can be
defined for the client adapter LU specifying a universal access of NONE.
Individual users can then be permitted access to the client adapter LU.

An example of defining the RACF APPL class is as follows:

Individual users can then be permitted access to the client adapter LU:

RDEFINE APPL ORXLUCA1 UACC(NONE)

PERMIT ORXLUCA1 CLASS(APPL) ID(USER1) ACCESS(READ)
PERMIT ORXLUCA1 CLASS(APPL) ID(USER2) ACCESS(READ)
�

335

CHAPTER 20 | Securing the Client Adapter
Activating the APPL class Activate the APPL class as follows:

Refreshing the RACLIST Refresh the RACLIST as follows:

Controlling access to the IMS LU Access to the client adapter LU can be controlled by controlling access to
the IMS LU that wants to establish communications with the client adapter
LU. The IMS LU is considered an APPC port of entry and can be secured
with the RACF APPCPORT class.

Define the APPCPORT profile for the IMS LU as follows:

This profile defines a universal access of NONE to the IMS LU. To permit
access to users, use the RACF PERMIT command:

Activate the APPCPORT class as follows:

When changes are made to an APPCPORT profile, refresh the profile for the
change to take effect:

Note: To allow IMS to provide the user ID of the user that is running the
transaction, rather than the user ID of the user that started the IMS control
region, IMS exit DFSBSEX0 must be used. See the IBM publication
IMS/ESA Customization Guide, SC28-8732 for more details.

SETROPTS CLASSACT(APPL) RACLIST(APPL)

SETROPTS RACLIST(APPL) REFRESH

RDEFINE APPCPORT IMSLU01 UACC(NONE)

PERMIT IMSLU01 CLASS(APPCPORT) ID(USER1) ACCESS(READ)
PERMIT IMSLU01 CLASS(APPCPORT) ID(USER2) ACCESS(READ)
�

SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)

SETROPTS RACLIST(APPCPORT) REFRESH
 336

APPC Security Considerations
Note: To allow IMS to provide the user ID of the user that is running the
transaction, rather than the user ID of the user that started the IMS control
region, IMS exit DFSBSEX0 must be used. See the IBM publication
IMS/ESA Customization Guide, SC28-8732 for more details.
337

CHAPTER 20 | Securing the Client Adapter
 338

CHAPTER 21

Using the Client
Adapter
This chapter provides information on running and using the
client adapter. It provides details on how to start and stop the
client adapter, and also provides details on how to run multiple
client adapters.

In this chapter This chapter discusses the following topics:

Starting the Client Adapter page 340

Stopping the Client Adapter page 342

Running Multiple Client Adapters Simultaneously page 343
339

CHAPTER 21 | Using the Client Adapter
Starting the Client Adapter

Overview This section describes how to start the client adapter. It discusses the
following topics:

� Starting the client adapter on native z/OS

� Starting the client adapter on z/OS UNIX System Services

Starting the client adapter on
native z/OS

In a native z/OS environment, you can start the client adapter in any of the
following ways:

� As a batch job.

� Using a TSO command.

� As a started task (by converting the batch job into a started task).

The default client adapter is the client adapter for which configuration is
defined directly in the iona_services.ims_client scope, and not in some
sub-scope of this. The following is sample JCL to run the default client
adapter:

//IMSCA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Orbix IMS Client Adapter
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
 340

Starting the Client Adapter
Starting the client adapter on z/OS
UNIX System Services

On z/OS UNIX System Services, you can start the client adapter from the
shell. The following command is used to run the default client adapter:

Running with a different
configuration scope

To run the client adapter with a different configuration scope:

� On native z/OS, set the value of PPARM to the new scope. For example:

� On z/OS UNIX System Services, run a command similar to the
following:

Refer to �Running Multiple Client Adapters Simultaneously� on page 343 for
more details on running multiple client adapters.

//GO EXEC PROC=ORXG,
// PROGRAM=ORXIMSA,
// PPARM='run -ORBname iona_services.ims_client'
//TYPEINFO DD DUMMY
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ itimsca

PPARM=�-ORBname iona_services.ims_client�

$ itimsa -ORBname iona_services.ims_client
341

CHAPTER 21 | Using the Client Adapter
Stopping the Client Adapter

Overview This section describes how to stop the client adapter. It discusses the
following topics:

� Stopping the client adapter on native z/OS

� Stopping the client adapter on z/OS UNIX System Services

Stopping the client adapter on
native z/OS

To stop a client adapter job on native z/OS, issue the STOP (P) operator
command from the console.

Stopping the client adapter on
z/OS UNIX System Services

To stop a client adapter process on z/OS UNIX System Services, use the
kill command or press Ctrl-C if it is running in an active rlogin shell.
 342

Running Multiple Client Adapters Simultaneously
Running Multiple Client Adapters
Simultaneously

Overview This section describes how to run multiple client adapters simultaneously.

In this section This section discusses the following topics:

Load Balancing with Multiple Client Adapters page 344

Running Two Client Adapters on the Same z/OS Host page 346
343

CHAPTER 21 | Using the Client Adapter
Load Balancing with Multiple Client Adapters

Overview The client adapter is a multithreaded application that can concurrently
service multiple requests. However, an installation can choose to run
multiple client adapters to spread the workload over multiple address
spaces when using APPC. When using cross memory, this scenario does not
apply.

This subsection discusses the following topics:

� Load balancing scenario

� Graphical overview

� Load balancing scenario explanation

Load balancing scenario Suppose there are three IMS regions that can run client transactions to be
processed using the client adapter. An installation might choose to run two
client adapters to process the load. If one of the client adapters is stopped,
the other can still service client requests from IMS.

Graphical overview Figure 7 illustrates the load balancing scenario.

Figure 7: Graphical Overview of a Load Balancing Scenario

IMS Region
1

IMS Region
2

IMS Region
3

APPC/IMS

Client
Adapter 1

Client
Adapter 2

Target
Object

Target
Object

 Configuration
 344

Running Multiple Client Adapters Simultaneously
Load balancing scenario
explanation

Each IMS region contains an Orbix runtime. Each Orbix runtime has a
configuration that specifies the same symbolic destination. The symbolic
destination determines the client adapter that IMS client transaction
requests are being directed to. From the IMS perspective, it appears as if
there is only one client adapter running.

APPC/MVS processes the IMS client transaction requests. It queues the
requests in an allocation queue. The allocation queue is determined by the
symbolic destination. Because all IMS regions are using the same symbolic
destination, IMS client transaction requests are directed to a single
allocation queue.

Both client adapters are using the same configuration file and same
configuration scope. Therefore, they are using the same symbolic
destination, and share the same allocation queue that APPC/MVS uses for
IMS client transaction requests. Each client adapter has one or more threads
that are waiting for allocation requests from APPC/MVS, all from the same
allocation queue.

APPC/MVS hands off an allocation request to a thread in one of the client
adapters. Determining which thread to give an allocation request to is an
internal function of APPC/MVS. Therefore, it is APPC/MVS that spreads the
load over the two client adapters. If one of the client adapters is stopped,
APPC/MVS hands off all allocation requests to the client adapter that is still
running.
345

CHAPTER 21 | Using the Client Adapter
Running Two Client Adapters on the Same z/OS Host

Overview An installation might choose to run a test and production client adapter on
the same z/OS host. In this scenario, when using APPC, it is not desirable
for the client adapters to share the APPC/MVS allocate queues.

This subsection discusses the following topics:

� Running a test and production client adapter on the same host

� Graphical overview

� Setting up a test and a production client adapter on the same host

Running a test and production
client adapter on the same host

Each IMS region contains an Orbix runtime. Each Orbix runtime has a
configuration that specifies different symbolic destinations. The production
IMS region is configured to communicate with the production client adapter.
The test IMS region is configured to communicate with the test client
adapter.

Using APPC

When using APPC, APPC/MVS processes the IMS client transaction
requests. It queues the requests to separate allocation queues�one for the
production client adapter using the production symbolic destination, and
one for the test client adapter using the test symbolic destination.

Both client adapters are using the same configuration file but different
configuration scopes. The configuration scopes define different symbolic
destinations. Therefore, the client adapters each have their own allocation
queues.

Using cross memory

When using cross memory, the data from the IMS client transaction is sent
directly to the client adapter address space. The data from the production
IMS is sent directly to the production client adapter, and the data from the
test IMS is sent directly to the test client adapter.

Both client adapters are using the same configuration file but different
configuration scopes. The configuration scopes can define different symbolic
destinations. Therefore, the client adapters each have their own name/token
pairs.
 346

Running Multiple Client Adapters Simultaneously
Graphical overview Figure 8 illustrates how two client adapters can run on the same z/OS host
when using APPC.

Setting up a test and a production
client adapter on the same host

The steps to set up a test and production client adapter on the same z/OS
host are as follows:

Figure 8: Running Two Client Adapters on the Same z/OS Host

IMS Test
Region

IMS
Production

Region

APPC/IMS

Production
Client

Adapter

Test Client
Adapter

Target
Object

Target
Object

 Configuration
 Production scope

 & Test scope

Step Action

1 When using APPC, define separate symbolic destinations in
APPC/MVS for the test and production client adapters to use.

Refer to �Defining an APPC Destination Name for the Client
Adapter� on page 162 for more information on defining
symbolic destinations.

2 Configure the Orbix runtime inside IMS for the test and
production regions. The test region is configured with the test
symbolic destination. The production region is configured with
the production symbolic destination.

Refer to �Customizing Orbix Symbolic Destination� on
page 203 for more information on configuring the symbolic
destination.
347

CHAPTER 21 | Using the Client Adapter
3 Define a test configuration scope in the client adapter
configuration file such as iona_services.ims_test_client.
The existing iona_services.ims_client configuration scope
can be used for production. Set the test symbolic destination in
the test configuration scope, and set the production symbolic
destination in the production configuration scope.

Refer to �Customizing Orbix Symbolic Destination� on
page 203 for more information on configuring the symbolic
destination.

When using APPC, refer to �APPC destination� on page 177 for
more information on configuring the symbolic destination.

When using cross memory, refer to �Cross memory
communication destination� on page 187 for more information
on configuring the symbolic destination.

4 Start the production client adapter, specifying a configuration
scope of iona_services:ims_client. Start the test client
adapter, specifying the test configuration scope defined in step
3 (that is, iona_services.ims_test_client).

Refer to �Starting the Client Adapter� on page 340 for more
information on running the client adapter with a different
configuration scope.

Step Action
 348

Part 6
Appendices

In this part This part contains the following chapters:

Troubleshooting page 351

Glossary of Acronyms page 355

APPENDIX A

Troubleshooting
This chapter provides an overview of the MCLOOKUP utility
that can be used for troubleshooting.

In this chapter This chapter discusses the following topics:

Overview page 352

Starting the MCLOOKUP utility on native z/OS page 352

Starting the MCLOOKUP utility on z/OS UNIX System Services
page 353
351

CHAPTER A | Troubleshooting
Overview The MCLOOKUP utility is supplied with your Orbix Mainframe installation and
can be used to perform lookups on system exception minor codes. It serves
as a troubleshooting tool in cases where an errant CORBA application
reports a minor code but does not display a useful message.

Starting the MCLOOKUP utility on
native z/OS

In a native z/OS environment, you can start the MCLOOKUP utility using the
following sample JCL:

Note: In the following example, a minor code value of Ox49540102 is
passed across to MCLOOKUP for investigation.

//MCLOOKUP JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX63.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Minor Code Lookup utility
//*
//* Please customise the search criteria via the PPARM variable
//* before running this utility
//*
//* Usage:
//* MCLOOKUP .query options.
//*
//* Query options (include a subset of the following):
//* -mcv/-minor_code_value .val. Specify minor code value
//* as search criteria
//* -exn/-exception_name .val. Specify exception name
//* as search criteria
//* -sbn/-subsystem_name .val. Specify subsystem name
//* as search criteria
//* -mcn/-minor_code_name .val. Specify minor code name
//* as search criteria
//*
//* Examples:
//* MCLOOKUP -mcv 0x49540102
//* MCLOOKUP -mcv 1230242050 -exn TRANSIENT
 352

Starting the MCLOOKUP utility on
z/OS UNIX System Services

On z/OS UNIX System Services, use the following command to run the
MCLOOKUP utility:

For example:

//*
//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXMCLUP,
// PPARM='-mcv 0x49540102'

mclookup -mcv minor_code

mclookup -mcv 0x49540102
353

CHAPTER A | Troubleshooting
 354

APPENDIX B

Glossary of
Acronyms
This glossary provides an expansion for each of the acronyms
used in this guide.

For more details of each of these terms, refer to the following, as
appropriate:

� The IBM documentation series at http://www.ibm.com.

� The OMG CORBA specification at http://www.omg.org.

� The Sun Microsystems J2EE specification at http://www.sun.com.

Table 9: Glossary of Acronym Extensions

Acronym Extension

ACB Access Control Block

ACEE Accessor Environment Entry

APAR Application Program Authorized Report

APPC Advanced Program to Program Communication

ASCII American National Standard Code for Information
Interchange

C/I Callable Interface

CORBA Common Object Request Broker Architecture
355

http://www.ibm.com
http://www.ibm.com
http://www.ibm.com

CHAPTER B | Glossary of Acronyms
DASD Direct Access Storage Device

DLL Dynamic Link Library

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise Java Beans

GIOP General Inter-ORB Protocol

HFS Hierarchal File System

IDL Interface Definition Language

IFR Interface Repository

IIOP Internet Inter-ORB Protocol

IMS Information Management System

IOR Interoperable Object Reference

IPL Initial Program Load

JCL Job Control Language

LE Language Environment

LU Logical Unit

MVS Multiple Virtual Systems

OMG Object Management Group

OMVS Open Multiple Virtual Systems

ORB Object Request Broker

OTMA Open Transaction Manager Access

OTS Object Transaction Service

PADS Program Access to Data Sets

PCB Program Control Block

Table 9: Glossary of Acronym Extensions

Acronym Extension
 356

PDS Partitioned Data Set

PSB Program Specification Block

PWFI Pseudo Wait-for-Input mode

RACF Resource Access Control Facility

RRS Resource Recovery Services

SAF System Authorization Facility

SNA System Network Architecture

SPA Save Program Area

TCP/IP Transmission Control Protocol over Internet Protocol

TP Transaction Program

TPN Transaction Program Name

TLS Transport Layer Security

TSO Time Sharing Option

USS UNIX System Services

VTAM Virtual Telecommunications Access Method

WFI Wait For Input

WTO Write-To-Operator

XCF Cross-Coupling Facility

Table 9: Glossary of Acronym Extensions

Acronym Extension
357

CHAPTER B | Glossary of Acronyms
 358

Index

A
abends

SF92 92
User 119 95

ACBNAME= parameter 104
accounting DLL

developing 299
loading into Server Adapter 303

address space, non-swappable 183
address space ID 185
amtp_appc plug-in 148
AMTP function timeout 177
amtp_xmem 149
AMTP_XMEM plug-in 179
APAR�s for OTMA 90
APF-authorized 181
APPC 144
APPC/IMS, enabling 108
APPC communication threads 178
APPC destination 177
APPC destination names 99, 101

defining 162
multiple 164

APPCHOST logon mode 102, 163
APPCLU class profiles 224
APPC LU name for IMS region 109
APPCLU profile name format 106
APPCLU profiles, accessing 107
APPC-side information data set example 101
APPC symbolic destination name 160
APPL class, activating 336
APPL definition of the VTAM ACB 224
APPL macros 103
APPL statement label 104
ASCII-to-EBCDIC

binary format 290
plugins:imsa:use_client_principal 124

ASCII-to-EBCDIC translation 48, 49
ASID 185
ATBSDFMU APPC/MVS utility program 101, 162

B
BPX.SERVER 127
Server Adapter user ID 130
BPX.SERVER RACF FACILITY class profile 230
ByteSegments 47, 48, 49

C
CharSegments 47, 48, 49
Client Adapter

APPC security 330
characteristics and functions 54
defining new configuration scope 348
event logging 154
graphical overview 55
load balancing 344
multiple Client Adapters 160
multiple on same z/OS host 346
starting 340
stopping 342

Client Adapter LU 159
access to 174, 335
RACF APPCLU profiles 334

Client Adapter LU name and APPCLU profile
name 160

Client Adapter LU required keywords 332, 333
client_principal support, configuring 123
Client Principal value

user ID 220
client Principal value 220
clients 27

invoking on CORBA objects 29
using naming service 33

client stub code 28
Configuration domains 36
configuration scope example 60
configuration templates 60
conversation security, Client Adapter 335
conversation security levels for LU 6.2 222
CORBA 23

application basics 28
introduction to 22

CORBA::Principal 123
CORBA objects 25

and IDL 26
client invocations on 29
359

INDEX
COUPLExx parmlib member 113
coupling facility log streams 114
cross memory communication 144, 181
CSECT 135, 197

D
DASD-only log streams 114
data types for imsraw IDL interface 47
DESTNAME 102, 163
DFSPBxxx 90
din parameter 48, 49
DIS OTMA command 93
DLL names for portable interceptor 291
do_trans() operation 44

E
EBCDIC, translating from ASCII 48, 49
EPERM errors 130
errors in execution of IMS transactions 48
event_log:filters 80, 154
event logging 135, 197
exception information

for APPC 50
for OTMA 51

exceptions
address space not programmed controlled 131
imsraw 48
portable interceptor 290
server interceptor and 290

F
function timeout, customizing 202

G
GIOP

12 by fixed header 299
CORBA::Principal 123
use_client_principal 124

GRNAME parameter 90

I
IDL compiler 28

configuration file 138
-mfa plug-in 138
operation parameters 29

IDL exceptions, imsraw interface 48
IDL interfaces 26
 360
located for Server Adapter 43
IDL operations 29

parameter passing modes 29
Server Adapter processing of 43

IDL types, unsupported 53
IEFSSNxx member 119
IFR 36

introduction to 243
modifications to and the Server Adapter 248, 257
registering IDL with 245

IFR cache file 250
IFR cache file configuration items 84, 190
IIOP 23

imsa plug-in configuration 66
mapping gateway interface 273
TCP-IP port number 78
timestamps 83

imsa plug-in configuration items 66
ims_appc plug-in configuration items 73
IMS control region

and RRS 119
IMS JCL, customizing 134
IMS local LU

access to 174
IMS LU

access to 336
IMS LU, access to 108
IMS LU definition 99
IMS LU definition, Client Adapter 159
IMS LU name and APPC destination name 101
IMS LU required keyword 331
IMS message queue length 95
IMS message queue length configuration 110
IMS on APPC functions, non-Orbix 100
ims_otma plug-in configuration items 71
imsraw IDL interface 44

ByteSegments attribute 47, 48, 49
C++ demo client 52
CharSegments attribute 47, 48, 49
din parameter 48, 49
maxSegmentSize attribute 50
run_transaction_binary operation 48
run_transaction operation 48
tran_name parameter 48, 49

ims_rrs plug-in configuration items 73
IMS security mechanisms 220
IMS versions and OTMA callable interface 90
IMSXCF.group.member 227
IMSXCF.OTMACI 92, 227

INDEX
initial_references:IT_imsraw:plugin 80
initial_references:IT_ismraw:plugin 65
initial_references:IT_MFA:reference 80
initial_references:IT_RRS:plugin 120
Interface Definition Language See IDL
Interface Repository See IFR
IONAIMS 93
iona_services.imsa configuration scope example 60
iona_services.ims_client 144
iona_services.ims_client.cross_memory 144
iona_services.mfu configuration scope sample 145
IORs 36

IT_MFA 265
IT_MFA_IMSRAW 265
transactional processing support 112

IsDefault setting 139
itadmin mfa commands 273
IT_MFA_display_account_information()

parameters 299
sample use of 300

IT_MFA events 80
IT_MFA_IMS module 44
itmfaloc

format 277
using 276

IT_MFU event logging subsystem 154
IXCL1DSU 114
IXCMIAPU utility 118

L
local LU, customizing 205
Location domains 35
locator daemon 35
LOGLVL variable 136
LOGR couple data set 116
log streams 114

defining 118
IBM recommended sizes 115

LU 6.2 conversations
securing 225
security levels 222

LU 6.2 networked Server Adapter, unauthorized
access 223

LU 6.2 protocol 221
LU-LU session-level verification 105
LU names

access to default mode 230
LU names, restricting use of 225
LUs
Client Adapter 334
defining to VTAM 166
protecting 174
VTAM requirements for 103

M
mapping file 43

and attributes 238
characteristics and format 237
generating 240
runtime modifications 241

Mapping Gateway interface 273
maxSegmentSize attribute 50
MCLOOKUP utility 351
MFACLINK JCL member 136
MFAMappingExtension 139
MFAMappingSuffix 140
mfa plug-in

generating a mapping file 239
MODENAME parameter 102, 163

N
naming service 33
node daemon 35
non-swappable address space 183

O
object ID 33
object references 26, 32

and the POA 33
ORB (Object Request Broker) 27

and the naming service 33
ORB_init() 82
ORBINITI files 286
Orbix 23
Orbix application 32
Orbix IMS runtime

configuration 135
parameter-passing modes 29

Orbix security mechanisms 220
OrbixSSL for z/OS 234
ORBname 60, 144
orb_plugins 82

Client Adapter 155
portable interceptor 294

ORXACCT2 DLL 302
ORXMFACx 195
ORXMFACx DLL 136, 198
361

INDEX
OTMA C/I, activating 91
OTMAINIT procedure 92
OTMANM parameter 90
OTMA parameter 90
output segments 95

P
parameter-passing mode qualifiers 29
PARM1 90
PARTNER_LU 102
partner LUs 106
passwords

bypassing 107
requirements 105

PLEXCFG parameter 113
plugins:amtp_appc:function_wait 177
plugins:amtp_appc:max_comm_threads 178
plugins:amtp_appc:maximum_sync_level 178
plugins:amtp_appc:min_comm_threads 178
plugins:amtp_appc:symbolic_destination 177
plugins:amtp_xmem:max_comm_threads 187
plugins:amtp_xmem:max_segment_size 188
plugins:amtp_xmem:min_comm_threads 187
plugins:amtp_xmem:symbolic_destination 187
plugins:client_adapter:ifr:cache 190
plugins:client_adapter:repository_id. 190
plugins:client_adapter:type_info:source 191
plugins:imsa:alternate_endpoint 79
plugins:imsa:call_accounting_dll 303
plugins:imsa:capture_first_argument_in_dynany 30

3
plugins:imsa:direct_persistence 78
plugins:imsa:display_timings 82
plugins:imsa:display_timings_in_logfile 82
plugins:imsa:ifr:cache 84, 250
plugins:imsa:iiop_host 78
plugins:imsa:mapping_file 83
plugins:imsa:poa_prefix 82
plugins:imsa:repository_id. 84
plugins:imsa:type_info:source 85
plugins:imsa:use_client_password 125
plugins:imsa:use_client_principal 124

and security 230
plugins:ims_appc:appc_outbound_lu_name 109
plugins:ims_appc:ims_destination_name 109
plugins:ims_appc:mq_length 110
plugins:ims_appc:timeout 109
plugins:ims_appc:use_client_principal 224
plugins:ims_otma:mq_length 95
 362
plugins:ims_otma:output_segment_num 95
plugins:ims_otma:timeout 95
plugins:ims_otma:use_client_principal 227
plugins:ims_otma:use_sync_level_one 96
plugins:ims_otma:xcf_adapter_member_name 93
plugins:ims_otma:xcf_group_name 93
plugins:ims_otma:xcf_ims_member_name 94
plugins:ims_otma:xcf_tpipe_name 94
plugins:ims_otma:xcf_tpipe_prefix 94
plugins:rrs:rmname 120
PLUGIN source file 286
POA (Portable Object Adapter) 33
POA name 82
policies:giop:interop_policy:enable_principal_service

_context 125
policies:giop:interop_policy:principal_service_context

_id 126
policies:iiop:client_version_policy 125
policies:iiop:server_version_policy 125
portable interceptor

compiling 291
developing 286
loading into Server Adapter 293

portable object adapter See POA
pragma prefix 47
PREPIMSA member 263
PresetOptions setting 139
principal values, mapping to z/OS user IDs 220
PROGxx parmlib 182
proxy objects 29
pthread_security_np() 129
pthread_security_np() service 230

R
RACF 222
RACF APPCLU profiles, defining 106
RACF APPCPORT class 225
RACF FACILITY class 227
RACF group profile and security 232
RACF security calls 225
RACF user profile 127
receive_request_service_contexts() interceptor 290
RRS

starting and stopping 119
RRS Server Adapter resource manager name 120
run_transaction 48
run_transaction_binary 48

INDEX
S
SAF Plug-In 220
SECACPT=CONV key 223
SECACPT= parameter 104, 167
SECURE APPC CHECK 225
SECURE APPC FULL 225
SECURE APPC NONE 225
SECURE APPC PROFILE 226
SECURE OTMA FULL 228
SECURE OTMA NONE 228
SECURE OTMA PROFILE 228
security

APPC, default for 230
APPC, setting up 233
APPC issues 221
choosing OTMA or APPC 232
common issues 219, 328
determining mode 229
OTMA, setting up 234
OTMA issues 227
user already logged on 223

security_none 222
security_none conversation 108
security_pgm 223
security_same 222
segment size, customizing 199
send_exception() interceptor point 290
Server Adapter

adding a portable interceptor 285
characteristics and functions 40
first run 250
gathering account information 298
graphical overview 42
LU name 99
obtaining operation signatures 43
passwords 106
plug-ins 65
preparing to run 263
running multiple 100, 270
selecting a specific 275
starting 267
stopping 269
using previous versions 44
WFI mode 279

Server Adapter ORBname 60
Server Adapter outbound LU name 109
servers 27
service context ID 126
session key 106
and APPCLU class profiles 225
session-level verification 224
SETPROG 181
SETRRS CANCEL command 119
SET SCH 183
SETSSI ADD,SUBNAME=RRS command 119
SETXCF operator commands 117
SF92 abend 92
SIADD statement 164
skeleton code 28
SNA network 103
SPA 50
S RRS command 119
SRVINTRC files 286
STEPLIB 181
SYS1.MIGLIB 118
SYS1.PARMLIB 183
SYS1.SAMPLIB(ATBAPPL) definition 103, 166
SYSEVENT TRANSWAP 183
sysplex and RRS 113
System Logger and RRS 115

T
thread-level security environments 127
thread_pool:high_water_mark 74, 79
thread_pool:initial_threads 74, 79
TIMS RACF class 227
TPIPE prefix 90
TPIPE prefix name 94
TPNAME specification 102, 163
tran_name parameter 48, 49
transactional requests 112
transaction processing times, displaying 82
transaction request timeout 109
troubleshooting 351
TypeinfoFileExtension 139
TypeinfoFileSuffix 140
type information mechanism, configuration items 84
type_info store

configuration 85, 191
generating files 255
introduction 253

U
use_client_principal security mode 232
User 119 Abend 95
user ID

client principle values 220
363

INDEX
determining 229
partner LUs 106

V
VERIFY= parameter 104, 168
VSAM data set APPC-side information 99
VTAM logon mode table 163

W
WFI support 279
WTO announce plug-in 82

Client Adapter 155

X
XCF couple data set format utility 114
XCF group, joining 227
 364

	Preface
	Introduction
	Introduction to CORBA and Orbix
	Overview of CORBA
	Why CORBA?
	CORBA Objects
	The ORB
	CORBA Application Basics

	Overview of Orbix
	Simple Orbix Application
	Broader Orbix Environment

	Introduction to the IMS Adapters
	Overview of the IMS Server Adapter
	Role of the IMS Server Adapter
	IMS Server Adapter Processing of IDL Operations
	The IMS Server Adapter imsraw Interface
	Unsupported IDL Types

	Overview of the Client Adapter

	Configuring the IMS Server Adapter and the Orbix Runtime in IMS
	Introduction to IMS Server Adapter Configuration
	An IMS Server Adapter Sample Configuration
	Configuration Summary of Adapter Plug-Ins

	IMS Server Adapter Configuration Details
	IMS Server Adapter Service Configuration

	Configuring the IMS Server Adapter OTMA Plug-In
	Setting Up OTMA for the IMS Server Adapter
	OTMA Plug-In Configuration Items

	Configuring the IMS Server Adapter APPC Plug-In
	Setting Up APPC for the IMS Server Adapter
	Defining LUs to APPC
	Defining an APPC Destination Name for the IMS LU
	Defining LUs to VTAM

	Additional RACF Customization Steps for APPC
	APPC Plug-In Configuration Items

	Configuring the IMS Server Adapter RRS Plug-In
	Introduction to RRS
	Setting up RRS for the IMS Server Adapter
	RRS Plug-In Configuration Items

	Configuring the IMS Server Adapter for Client Principals
	Activating Client Principal Support
	Setting up the Required Privileges
	Additional Requirements for IMS Protocol Plug-Ins

	Configuring the Orbix Runtime in IMS
	Customizing the IMS JCL
	Customizing Orbix Event Logging

	IDL Compiler Configuration
	Orbix IDL Compiler Settings

	Configuring the Client Adapter and the Orbix Runtime in IMS
	Introduction to Client Adapter Configuration
	A Client Adapter Sample Configuration
	Configuration Summary of Client Adapter Plug-Ins

	Client Adapter General Configuration
	Core Client Adaptor Configuration

	Configuring the Client Adapter AMTP_APPC Plug-in
	Setting Up APPC for the Client Adapter
	Defining LUs to APPC
	Defining an APPC Destination Name for the Client Adapter
	Defining LUs to VTAM

	Additional RACF Customization Steps for APPC
	LU-to-LU Security Verification
	Protecting LUs
	Enabling APPC/IMS

	AMTP_APPC Plug-In Configuration Items

	Configuring the Client Adapter AMTP_XMEM Plug-in
	Prerequisites and Further Reading
	Running the Client Adapter APF-Authorized
	Running the Client Adapter in Non-Swappable Address Space
	Understanding the Impact of Cross memory Communication
	AMTP_XMEM Plug-In Configuration Items

	Configuring the Client Adapter Subsystem
	Client Adaptor Subsystem Configuration

	Configuring the Orbix Runtime in IMS
	Customizing the IMS JCL
	Customizing Orbix Configuration
	Customizing Orbix Event Logging
	Customizing Orbix Maximum Segment Size
	Customizing Orbix Function Timeout
	Customizing Orbix Symbolic Destination
	Customizing Orbix Local LU

	Securing and Using the IMS Server Adapter
	Securing the IMS Server Adapter
	Security Configuration Items
	Common Security Considerations
	APPC-Based Security Considerations
	OTMA-Based Security Considerations
	IMS Server Adapter Security Modes
	Choosing between OTMA and APPC Modes
	Setting up APPC and OTMA Modes

	Mapping IDL Interfaces to IMS
	The Mapping File
	Characteristics of the Mapping File
	Generating a Mapping File

	Using the IFR as a Source of Type Information
	Introduction to Using the IFR
	Registering IDL interfaces with the IFR
	Informing IMS Server Adapter of a New Interface in the IFR
	Using an IFR Signature Cache File

	Using type_info store as a Source of Type Information
	Introduction to Using a type_info Store
	Generating type_info Files using the IDL Compiler
	Informing IMS Server Adapter of a new type_info Store File

	Using the IMS Server Adapter
	Preparing the Server Adapter
	Starting the Server Adapter
	Stopping the IMS Server Adapter
	Running Multiple Server Adapters Simultaneously
	Performance Considerations
	Using the MappingGateway Interface
	Locating IMS Server Adapter Objects Using itmfaloc
	WFI Support for IMS Transactions
	Conversational Support
	LTERM Propagation
	Adding a Portable Interceptor to the IMS Server Adapter
	Developing the Portable Interceptor
	Compiling the Portable Interceptor
	Loading the Portable Interceptor into the IMS Server Adapter

	Enabling the GIOP Request Logger Interceptor
	Gathering Accounting Information in the Server Adapter
	Customizing the Accounting DLL
	Compiling the Customized Accounting DLL
	Activating the Accounting DLL in the Server Adapter

	Exporting Object References at Runtime
	Configuration Items for Exporting Object References
	Exporting Object References to a File
	Exporting Object References to Naming Service Context
	Exporting Object References to Naming Service Object Group

	Securing and Using the Client Adapter
	Securing the Client Adapter
	Security Configuration Items
	Common Security Considerations
	APPC Security Considerations
	LU Security
	Conversation Security

	Using the Client Adapter
	Starting the Client Adapter
	Stopping the Client Adapter
	Running Multiple Client Adapters Simultaneously
	Load Balancing with Multiple Client Adapters
	Running Two Client Adapters on the Same z/OS Host

	Appendices
	Troubleshooting
	Glossary of Acronyms

	Index

