
Orbix Mainframe 6.3.1

Artix Transport User’s Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
https://www.microfocus.com

© Copyright 2020-2021 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2021-03-18

https://www.microfocus.com

Contents

List of Figures v

List of Tables vii

Preface ix

Chapter 1 Introduction 1
Artix Transport Overview 2
Web Services Overview 9

Purpose and Advantages 10
Background Standards 11

HTTP Overview 13
SOAP Overview 20

Background to SOAP 21
SOAP Messages 24
SOAP Encoding of Data Types 30

Chapter 2 Getting Started 39
Overview of Steps 40
Generating the SOAP Descriptor File 41
Building and Running the Server 42
Building and Running a Web Consumer 52
Further Information Sources 53

Chapter 3 Configuration 55
Introduction to Orbix Mainframe Configuration 56
Common Configuration Items 58

Sample Configuration Overview 59
Configuration Details 60

CICS-Specific Configuration Items 62
Sample Configuration Overview 63
Configuration Details 65
iii

CONTENTS
IMS-Specific Configuration Items 69
Sample Configuration Overview 70
Configuration Details 72

Chapter 4 SOAP Security Considerations 77
Security Architecture Overview for SOAP Mode 79
Summary of Security Features and Credentials 80
User Name and Password Checking 83
Kerberos Ticket Checking 86
SSO Token Checking 93
HTTP Basic Authentication 96
Client Principal Support 98
SAF Checking 102
HTTPS Security 104

Chapter 5 Common Tasks 107
Accessing WSDL Contracts 108
Enabling Logging on the Server 112
Modifying the Extent and Range of Logging 114
Enabling Logging of HTTP Requests and Responses 117
Enabling Logging of HTTPS Requests and Responses 118
Enabling User Name and Password Checking by RACF 119
Enabling User Name and Password Checking by iSF 120
Enabling Client Principal Support 121

Appendix A Default Type Mappings 123

Index 125
 iv

List of Figures

Figure 1: Exposing Batch Server as Web Service 3

Figure 2: Exposing CICS or IMS Server as Web Service 4

Figure 3: Exposing Batch Server as Web Service and CORBA Object 6

Figure 4: Exposing CICS or IMS Server as Web Service and CORBA Object 8

Figure 5: Overview of Role of SOAP Encoding and Decoding 31

Figure 6: Orbix Mainframe SOAP Mode Security Architecture 79

Figure 7: Username/Password Checking in Security Architecture 83

Figure 8: Kerberos Ticket Checking in Security Architecture 86

Figure 9: SSO Token Checking in Security Architecture 93

Figure 10: Request for and Propagation of SSO tokens 94

Figure 11: HTTP Basic Authentication in Security Architecture 96

Figure 12: Calling up available services 108

Figure 13: Selecting a service 109
v

LIST OF FIGURES
 vi

List of Tables

Table 1: Default IDL-to-WSDL Type Mappings 123
vii

LIST OF TABLES
 viii

Preface
The Artix Transport component of Orbix Mainframe enables existing or new
CORBA servers on the mainframe to be exposed as Web services to the
network. Specifically, it allows distributed client applications across the
Internet to integrate with Orbix COBOL or Orbix PL/I servers running in
batch, CICS, or IMS on z/OS, using SOAP over HTTP(S) as the
communications protocol. It enables Orbix servers on the mainframe to be
exposed as Web services, without the need for any code changes to those
applications. It therefore provides a powerful mechanism for the rapid
integration of distributed network components, allowing Orbix Mainframe
servers to participate fully in the business flow.

Standards compliance The Artix Transport component complies with the following W3C
specifications:

• SOAP 1.1

• HTTP 1.0 and 1.1

• WSDL 1.1

The Artix Transport component complies with the Web Services
Interoperability Organization specification, Basic Profile Version 1.0.

The Artix Transport component complies with the OASIS Web Services
Security UsernameToken Profile 1.0 specification for credentials checking
in SOAP headers.
ix

PREFACE
Interoperability The Artix Transport has been tested and certified for use with Web
consumers developed using the following Web services products:

• Micro Focus Artix 3.x/4.x/5.x

• Microsoft .NET 2.0

• BEA WebLogic 9.2 MP1

Any Web services product that complies with the W3C and WS-I standards
mentioned in “Standards compliance” on page ix can interoperate with
applications deployed using the Artix Transport.

Audience This guide is intended for z/OS systems programmers who want to use the
Artix Transport component to configure and expose Orbix Mainframe
applications on z/OS as Web services to the network. It is assumed that the
reader is familiar with CICS and IMS administration and with Orbix
Mainframe application development.

Related reading The Orbix Mainframe library provides details of the following related topics:

• Orbix Mainframe application development in COBOL and PL/I.

• Non-SOAP related configuration details.

• CICS and IMS server adapter usage.

• Security-related issues.

The Orbix Mainframe library is available from:

https://www.microfocus.com/documentation/orbix/

Prerequisites See the Orbix Mainframe Installation Guide for a full list of supported
platforms, supported compilers, and other prerequisites to using Orbix
Mainframe and the Artix Transport component.
 x

https://www.microfocus.com/documentation/orbix/

PREFACE
Organization of this guide This guide includes the following:

Chapter 1, “Introduction”

This chapter provides an introductory overview of the Artix Transport
component, Web services in general, HTTP, and SOAP.

Chapter 2, “Getting Started”

This chapter is provided as a means to getting started with the Artix
Transport component. It walks you through a simple demonstration that
shows how to expose an existing Orbix server on z/OS as a Web service that
can be contacted by various different types of clients.

Chapter 3, “Configuration”

This chapter provides the information needed to deploy and configure an
existing Orbix Mainframe server so that it can be exposed as a Web service
that accepts SOAP/HTTP(S) requests from distributed clients across the
Internet. First it provides an overview of the steps involved in deploying an
Orbix Mainframe server as a Web service. Then it provides details of the
configuration items involved in enabling an Orbix server to accept SOAP/
HTTP(S) requests.

Chapter 4, “SOAP Security Considerations”

This chapter provides details of the different security mechanisms supported
by the Artix Transport component in terms of how they can be configured
and what they involve.

Chapter 5, “Common Tasks”

This chapter provides details of topics that might be of interest to more
advanced users of the Artix Transport component. These include a
discussion of the different WSDL encoding styles supported and made
available by the Artix Transport, and an explanation of how to perform
various tasks relating to topics such as event logging and username and
password checking in SOAP servers on the mainframe.

Appendix A, “Default Type Mappings”

This appendix provides a listing of the default type mappings that the Artix
Transport component supports.
xi

PREFACE
Additional resources The Knowledge Base contains helpful articles, written by experts, about
Orbix Mainframe, and other products:

https://community.microfocus.com/t5/Orbix/ct-p/Orbix

If you need help with Orbix Mainframe or any other products, contact
technical support:

https://www.microfocus.com/en-us/support/

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
Italic Italic words in normal text represent emphasis and

new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.
 xii

https://community.microfocus.com/t5/Orbix/ct-p/Orbix
https://www.microfocus.com/en-us/support/

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xiii

PREFACE
 xiv

CHAPTER 1

Introduction
The Artix Transport component of Orbix Mainframe enables
existing or new CORBA servers on the mainframe to be exposed
as Web services to the network. Specifically, it allows
distributed client applications across the Internet to integrate
with Orbix COBOL or Orbix PL/I servers running in batch, CICS,
or IMS on z/OS, using SOAP over HTTP(S) as the
communication protocol. It enables Orbix servers on the
mainframe to be exposed as Web services, without the need
for any code changes to these applications. It therefore
provides a powerful mechanism for the rapid integration of
distributed network components, allowing Orbix Mainframe
servers to participate fully in the business flow. This chapter
provides an introductory overview of the Artix Transport
component, Web services in general, HTTP, and SOAP.

In this chapter This chapter discusses the following topics:

Artix Transport Overview page 2

Web Services Overview page 9

HTTP Overview page 13

SOAP Overview page 20
1

CHAPTER 1 | Introduction
Artix Transport Overview

Overview This section provides an introductory overview of the Artix Transport
component in terms of its purpose and how it works. It discusses the
following topics:

• “What is the Artix Transport component?” on page 2.

• “Graphical overview of batch server invocation” on page 3.

• “Graphical overview of CICS or IMS server invocation” on page 4.

• “Explanation of graphical overviews” on page 5.

• “Data encoding mechanisms” on page 5.

What is the Artix Transport
component?

The Artix Transport component enables integration of existing and new Orbix
Mainframe server applications with other applications in a heterogeneous
environment, using SOAP over HTTP(S) as the communications protocol.
(See “HTTP Overview” on page 13 and “SOAP Overview” on page 20 for
more details of HTTP(S) and SOAP respectively.) It enables Orbix Mainframe
servers to be exposed as Web services to Windows and UNIX clients across
the Internet or Intranet.

The Artix Transport component is a powerful tool in that it allows you to
combine the dynamic features offered by Web services technology with the
reliability and scalability offered by Orbix. Combining standards such as
SOAP, HTTP, and CORBA, it provides a fast and robust solution to your
enterprise computing needs. Additionally, because it involves a simple
matter of configuring your Orbix servers to determine whether they accept
SOAP or IIOP requests, it provides the added advantage of requiring no
modifications to your existing Orbix Mainframe server implementations.

Note: The Artix Transport can not be used to consume Web services.
Orbix Mainframe applications can not make client invocations on SOAP
endpoints. Orbix Mainframe only supports CORBA/GIOP client invocations
using the client adapter for Orbix applications running in IMS and CICS.
The same client invocation restriction applies to Orbix COBOL and PL/I
applications running in batch.
 2

Artix Transport Overview
Graphical overview of batch server
invocation

Figure 1 provides a graphical overview of how the Artix Transport
component allows an Orbix COBOL or Orbix PL/I server running in batch to
be contacted by a Web services client using SOAP over HTTP(S).

Figure 1: Exposing Batch Server as Web Service

Note: For the purposes of illustration, Figure 1 shows a direct persistent
batch Orbix Mainframe server being exposed as a Web service.

SOAP
over

HTTP(S)

Web Services Client
(for example, Artix,
.NET, or WebLogic)

Client Platform

z/OS

Orbix COBOL
or

 Orbix PL/I
Server

SOAP
Descriptor File

File read

SOAP
3

CHAPTER 1 | Introduction
Graphical overview of CICS or IMS
server invocation

Figure 2 provides a graphical overview of how the Artix Transport
component allows an Orbix COBOL or Orbix PL/I server running in CICS or
IMS to be contacted (using the CICS or IMS server adapter) by a Web
services client using SOAP over HTTP(S).

Figure 2: Exposing CICS or IMS Server as Web Service

z/OS

Orbix
CICS or IMS

Server Adapter

SOAP
over

HTTP(S)

EXCI or
APPC
using

cicsraw

File read

EXCI or
APPC

File read

SOAP

Web Services Client
(for example, Artix,
.NET, or WebLogic)

Client Platform

Type Information
Source

Mapping
Repository

SOAP Descriptor
File

File read

CICS or IMS

Existing
Program or
Transaction

New
Program or
Transaction

Orbix COBOL
runtime or
Orbix PL/I
 runtime
 4

Artix Transport Overview
Explanation of graphical
overviews

As shown in Figure 1 on page 3 and Figure 2 on page 4, the Web services
client uses SOAP over HTTP(S) to contact the server. The server-side SOAP
plug-in in turn exposes a SOAP interface to the client. Server-side processing
is performed in exactly the same way as per the processing of IIOP client
requests, except for one extra feature required by SOAP—a SOAP descriptor
file is required by the SOAP plug-in for marshalling purposes.

Data encoding mechanisms Because the Artix Transport component can enable an Orbix Mainframe
application to support Web service client calls over SOAP, it supports
various Web service encoding mechanisms for the transfer of data across
the Internet. These Web service encoding mechanisms include:

• Document literal encodings—This is a document-oriented service that
uses literal or schema-defined encoding rules to format
request/response messages. Document literal is a reader-makes-right
encoding. This means that the receiver is expected to use the schema
definitions defined in the WSDL contract to drive encoding/decoding of
parameters in request/response messages.

There are two contract variants for this encoding: wrapped and
unwrapped (or bare). The wrapped convention is generally the
accepted best practice approach. The Artix Transport only supports the
wrapped variant.

• RPC literal encodings—This is an RPC-based service that uses literal
or schema-defined encoding rules to format request/response
messages. RPC literal (like document literal) is a reader-makes-right
encoding. This means that the receiver is expected to use the schema
definitions defined in the WSDL contract to drive encoding/decoding of
parameters in request/response messages.

• RPC SOAP encodings—This is an RPC-based service that uses the
SOAP encoding rules to format request and response messages. To
work around problems in various client-side SOAP stacks, there are
two contract variants available for RPC SOAP encodings. The contract
variant for use by .NET clients explicitly encodes sequences of

Note: References to server in this case relate to a batch server, a CICS
server adapter, or an IMS server adapter.
5

CHAPTER 1 | Introduction
elements as soapenc:Array elements whereas the variant for use by
other client SOAP stacks encodes sequences of elements as a schema
defined sequence of those elements. See “Web Services Overview” on
page 9 for more details of SOAP encoding rules.

Exposing a server as both a
CORBA object and Web service

Figure 3 provides a graphical overview of how Orbix Mainframe allows you
to expose the same Orbix Mainframe batch server as both a CORBA object
and a Web service.

Figure 3: Exposing Batch Server as Web Service and CORBA Object

SOAP
over

HTTP(S)

CORBA Client
(for example, Orbix or

Orbacus)

Client Platform

z/OS

Orbix COBOL
or

 Orbix PL/I
Server

SOAP
Descriptor File

Locator
Daemon

IIOP

IIOP

Node Daemon

IIOP

Web Services Client
(for example, Artix,
.NET, or WebLogic)

SOAP

IIOP

File read
 6

Artix Transport Overview
Figure 4 provides a graphical overview of how Orbix Mainframe allows an
Orbix COBOL or Orbix PL/I server running in CICS or IMS to be exposed
(using the CICS or IMS server adapter) as both a CORBA object and a Web
service.

Note: For the purposes of illustration, both Figure 3 and Figure 4 on
page 8 show a locator and node daemon being contacted. If a batch server
or a CICS or IMS server adapter is configured to run in direct persistence
mode, however, the locator and node daemon are not required. See
“Configuration” on page 55 for more details about configuration.
7

CHAPTER 1 | Introduction
Figure 4: Exposing CICS or IMS Server as Web Service and CORBA
Object

z/OS

CICS or IMS
Server Adapter

CICS or IMS

Existing
Program or
Transaction

SOAP
over

HTTP(S)

EXCI or
APPC
using

cicsraw

New
Program or
Transaction

Orbix COBOL
runtime or
Orbix PL/I
 runtime

File read

EXCI or
APPC

IIOP

File read

IIOP or File read

IIOP

Web Services Client (for
example, Artix, .NET, or

WebLogic)

Client Platform

Type Information
Source

Mapping
Repository

Node Daemon

Locator Daemon

SOAP Descriptor
File

IIOP

CORBA Client (for
example, Orbix or

Orbacus)

IIOP

SOAP
 8

Web Services Overview
Web Services Overview

Overview The Artix Transport component allows you to expose existing and new Orbix
Mainframe servers as Web services across the Internet. This section
provides an introductory overview of Web services technology in general and
the existing standards on which it is based.

In this section This section discusses the following topics:

Purpose and Advantages page 10

Background Standards page 11
9

CHAPTER 1 | Introduction
Purpose and Advantages

Overview This subsection provides an introductory overview of the purpose and
advantages of Web services technology. It discusses the following topics:

• “Purpose” on page 10.

• “Advantages” on page 10.

Purpose Web services technology is a means by which an organisation can expose its
data and services across the Internet to other distributed web users and
web-connected programs. Typical examples of services range from
large-scale storage management or customer relationship management to
small-scale furnishing of stock quotes or checking of auction bids.

Web services technology is not tied to the more traditional client-server
model of computing, where a web browser client communicates with a web
server using some graphical user interface. Instead, Web services allow for
the interchange of data and services between organisations through the use
of programmatic interfaces (APIs), and at a peer-to-peer level where both
parties could equally be supplying services to each other. For this reason,
Web services are sometimes referred to as application services, and
providers of Web services are known as application service providers.

Advantages The advantages of Web services technology include:

• It combines existing standards such as XML, SOAP, WSDL, UDDI, and
HTML, to offer a standardized, standards-based way of integrating
web-based applications.

• It defines data in XML, which is an easy-to-read format for human
consumption.

• It offers an integration solution that does not require peers to have
extensive knowledge of each other’s IT infrastructure behind the
security firewall.

• It offers an integration solution that does not care how components are
implemented, because all services are described in a standard manner
using WSDL, and all communication is standards-based using XML,
SOAP and HTTP.
 10

Web Services Overview
Background Standards

Overview Web services technology offers a standardized way of integrating web-based
applications. It is a popular, standards-based solution that combines various
existing standards. This subsection provides an introductory overview of
each of these standards in turn. It discusses the following topics:

• “XML” on page 11.

• “HTTP” on page 11.

• “SOAP” on page 11.

• “WSDL” on page 11.

• “UDDI” on page 12.

XML The Extensible Markup Language (XML) is used to define the data being
made available by a Web service. See “Background to SOAP” on page 21
for more details about XML.

HTTP The Hypertext Transfer Protocol (HTTP) is used as the transport protocol
between distributed peers across the Internet. See “HTTP Overview” on
page 13 for more details about HTTP.

SOAP The Simple Object Access Protocol (SOAP) is used for data transfer
between distributed peers across the Internet. See “SOAP Overview” on
page 20 for more details about SOAP.

WSDL The Web Services Description Language (WSDL) is used to describe the
services being made available by a Web service. WSDL is an XML document
format that describes a Web service as a collection of communication
endpoints that are able to exchange messages. Each endpoint is defined by
binding an abstract operation description to a concrete data format and
specifying a network protocol and address for this binding. Because the
abstract definitions of operations and messages are separated from the
concrete data format and network protocol details, the abstract definitions
can be reused and recombined to define various endpoints.
11

CHAPTER 1 | Introduction
UDDI The Universal Discovery, Description and Integration (UDDI) directory is
used to list available services. UDDI is an XML-based, distributed registry
(or directory) on the World Wide Web that helps to streamline online
transactions by enabling companies to list themselves on the Internet, find
each other, and make their systems interoperable for e-commerce for the
purposes of conducting business. A business can list itself by name,
product, location, or the Web services it offers. Comparable to a phone
book’s yellow and white pages, UDDI therefore acts as the service discovery
protocol for Web services.
 12

HTTP Overview
HTTP Overview

Overview This section provides an introductory overview of the Hypertext Transfer
Protocol (HTTP). It discusses the following topics:

• “What is HTTP?” on page 13.

• “Resources and URLs” on page 14.

• “HTTP transaction processing” on page 14.

• “Format of HTTP client requests” on page 15.

• “Format of HTTP server responses” on page 16.

• “HTTP properties” on page 18.

What is HTTP? HTTP is used as the transport protocol between distributed peers across the
Internet. It is the standard TCP/IP-based transport used for client-server
communications on the World Wide Web. Its main function is to establish
connections between distributed web browsers (clients) and web servers for
the purposes of exchanging files and possibly other information across the
Internet.

HTTP is termed an application protocol. It defines how messages between
web browsers and web servers should be formatted and transmitted. It also
defines how web browsers and web servers should behave in response to
various commands. HTTP is available on all platforms, and HTTP requests
are usually allowed through security firewalls.

Note: A complete introduction to HTTP is outside the scope of this guide.
For more details see the W3C HTTP 1.1 specification at
http://www.w3.org/Protocols/rfc2616/rfc2616.html. The Artix Transport
component supports both version 1.0 and 1.1 of the W3C HTTP
specification.
13

http://www.w3.org/Protocols/rfc2616/rfc2616.html

CHAPTER 1 | Introduction
Resources and URLs The files and other information that can be transmitted are collectively
known as resources. A resource is basically a block of information. Files are
the most common example of resources and they can be in various
multimedia formats, such as text, graphics, sound, and video. Other
examples of resources are server-side script output or dynamically generated
query results.

A resource is identifiable by a uniform resource locator (URL). As its name
suggests, a URL is the address or location of a resource. A URL typically
consists of protocol information followed by host (and optionally port)
information followed by the full path to the resource. HTTP is not the only
protocol or mechanism for data transfer; other examples include TELNET or
the file transfer protocol (FTP). Each of the following is an example of a
URL:

• https://www.microfocus.com/documentation/orbix/orbixmf631/
index.html

• ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf
• telnet://xyz.com
In the first of the preceding examples, https: denotes that the protocol for
data transfer is HTTPS, //www.microfocus.com denotes the hostname
where the resource resides, and
/documentation/orbix/orbixmf631/index.html is the full path to the
resource (in this case, an HTML text file). The other URLs follow similar
patterns.

HTTP transaction processing When a web user on the client-side requests a resource, either by typing a
URL or by clicking on a hypertext link, the client browser builds an HTTP
request and opens a TCP/IP socket connection to send the request to the
internet protocol (IP) address for the host denoted by the URL for the
requested resource. The web server host contains an HTTP daemon that
waits for client browser requests and handles them when they arrive. When
the HTTP daemon receives a request, the requested resource is then
returned to the client browser. The server’s response can take the form of
HTML pages and possibly other programs in the form of ActiveX controls or
Java applets.
 14

HTTP Overview
Format of HTTP client requests The following is an example of the typical format of an HTTP client request:

The preceding code can be explained as follows:

GET REQUEST-URI HTTP/1.1
header field: value
header field: value

HTTP request body (if applicable)

GET This is an HTTP method that instructs the server to return
the requested resource.

Other HTTP methods might be used here instead. These
include:

• HEAD—this instructs the server to just return
information about the resource (in headers) but not
the actual resource itself.

• POST—this can be used if you want to send data in
the body of the request for subsequent processing
by the server.

• PUT—this can be used to replace the contents of the
target resource with data from the client.

Note: GET and POST are the most commonly used
methods in HTTP client requests.

REQUEST-URI This represents the URL of the resource that the client is
requesting. The typical format of a URL is:

http://hostname/path-to-resource
For example:
https://www.microfocus.com/documentation/orbix/
orbixmf631/index.html

HTTP/1.1 This indicates that the client is using HTTP to transmit
the request, and the version of HTTP that the client is
using (in this example, 1.1).
15

CHAPTER 1 | Introduction
Format of HTTP server responses The following is an example of the typical format of an HTTP server
response:

The preceding code can be explained as follows:

header field Header information can be included to provide
information about the request. In HTTP 1.1, the only
mandatory header field is Host:, to identify the host
where the requested resource resides.

In Artix, a number of HTTP client request headers can be
configured and sent as part of a client request to a server.
See the Artix documentation set for more details.

HTTP request
body

This can contain user-entered data or files that are being
sent to the server for processing.

Note: This is typically blank in an HTTP request unless
the PUT or POST method is specified.

HTTP/1.1 200 OK
header field: value
header field: value

HTTP response body

HTTP/1.1 This indicates that the server is using HTTP to transmit
the response, and the version of HTTP that the server is
using (in this example, 1.1).
 16

HTTP Overview
200 OK This is status information that indicates whether the
request was processed successfully. The 3-digit code is
meant to be machine-readable, and the accompanying
descriptive text is for human consumption.

Status codes can be broadly described as follows:

• 2xx—A status code starting with 2 means the
request was processed successfully.

• 3xx—A status code starting with 3 means the
resource is now located elsewhere and the client
should redirect the request to that new location.

• 4xx—A status code starting with 4 means that the
request has failed because the client has either sent
a request in the wrong syntax, or it might have
requested a resource that is invalid or that it is not
authorized to access.

• 5xx—A status code starting with 5 means that the
request has failed because the server has
experienced internal problems or it does not support
the request method specified.

header field Header information can be included to provide
information about the response itself or about the
information contained in the body of the response.

HTTP response
body

This is where the requested resource is returned to the
client, if the request has been processed successfully.
Otherwise, it might contain some explanatory text as to
why the request was not processed successfully.

The data in the body of the response can be in a variety
of formats, such as HTML or XML text, GIF or JPEG
image, and so on.
17

CHAPTER 1 | Introduction
HTTP properties The basic properties of HTTP can be summarized as follows:

• Comprehensive addressing—The target resource on which a client
request is to be invoked is indicated by means of a universal resource
identifier (URI), either as a location (URL) or name (URN). As
explained in “Resources and URLs” on page 14, a URL consists of
protocol information followed, typically, by host (and optionally port)
information followed by the full path to the resource. For example:

See “Resources and URLs” on page 14 for more details.

• Request/response paradigm—A client (web browser) can establish an
HTTP connection with a web server by means of a URI, to send a
request to that server. See “Format of HTTP client requests” on
page 15 for details of the format of a client request message. See
“Format of HTTP server responses” on page 16 for details of the format
of a server response message.

• Connectionless protocol—HTTP is termed a connectionless protocol
because an HTTP connection is typically closed after a single
request/response operation. While it is possible for a client to request
the server to keep a connection open for subsequent request/response
operations, the server is not obliged to keep the connection open. The
advantage of closing connections is that it does not incur any overhead
in terms of session housekeeping; however, the disadvantage is that it
makes it difficult to track user behavior.

• Stateless protocol—Because HTTP connections are typically closed
after each request/response operation, there is no memory or footprint
between connections. A workaround to this, in CGI applications, is to
encode state information in hidden fields, in the path information, or in
URLs in the form returned to the client browser. State can also be

https://www.microfocus.com/documentation/orbix/orbixmf631/
index.html

Note: A potential workaround to tracking user behavior is through
the use of cookies. A cookie is a string sent by a web server to a web
browser and which is then sent back to the web server again each
time the browser subsequently contacts that server.
 18

HTTP Overview
saved in a file, rather than being encoded, as in the typical example of
a visitor counter program, where state is identified by means of a
unique identifier in the form of a sequential integer.

• Multimedia support—HTTP supports the transfer of various types of
data, such as text (for example, HTML or XML files), graphics (for
example, GIF or JPEG files), sound, and video. These types are
commonly referred to as multipart internet mail extension (MIME)
types. A server response can include header information that informs
the client of the MIME type of the information being sent by the server.

• Proxies and caches—The communication chain between a client and
server might include intermediary programs known as proxies. A proxy
can receive client requests, possibly modify the request in some way,
and then forward the request along the chain possibly to another proxy
or to the target server. Such intermediaries can employ caches to store
responses that might be appropriate for subsequent requests. Caches
can be shared (public) or private. Specific directives can be established
in relation to cache behavior and not all responses might be cacheable.

• Security—Secure HTTP connections that run over the secure sockets
layer (SSL) or transport layer security (TLS) protocol can also be
established. A secure HTTP connection is referred to as HTTPS and
uses port 443 by default. (A non-secure HTTP connection uses port 80
by default.)
19

CHAPTER 1 | Introduction
SOAP Overview

Overview This section provides an introductory overview of the simple object access
protocol (SOAP) in terms of its purpose, how it evolved, the elements of a
SOAP message, and how it handles (encodes) application data types.

In this section This section discusses the following topics:

Background to SOAP page 21

SOAP Messages page 24

SOAP Encoding of Data Types page 30

Note: A complete introduction to SOAP is outside the scope of this guide.
For more details see the W3C SOAP 1.1 specification at
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. The Artix
Transport component supports only version 1.1 of the W3C SOAP
specification.
 20

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

SOAP Overview
Background to SOAP

Overview This subsection discusses the purpose of SOAP and how it evolved. It
discusses the following topics:

• “What is SOAP?” on page 21.

• “XML” on page 21.

• “XML and Unicode” on page 22.

• “HTTP” on page 22.

• “SOAP specification” on page 23.

What is SOAP? SOAP is a lightweight, XML-based protocol that is used for client-server
communications on the World Wide Web. The primary function of SOAP is
to enable access to distributed services and to facilitate the exchange of
structured and typed information between peers across the Web.

With the evolution of the Web, and the ever-increasing need to do business
more quickly and more proactively across it, there arose a need to have a
dynamic, flexible, extensible, but standards-based system of communication
between applications across the Internet. SOAP evolved as a solution to this
need, by combining existing standards such as extensible markup language
(XML) and the hypertext transfer protocol (HTTP).

SOAP is termed a messaging protocol. It is a framework for transporting
client request and server response messages in the form of XML documents
over (usually) the HTTP transport.

XML XML is a simple form of standard generalized markup language (SGML). The
purpose of a markup language is to facilitate preparation of electronic
documents, by allowing information to be added to the document text that
indicates the logical components of the document or how they are to be
formatted. SGML describes the relationship between a document’s content
and its structure.

XML uses user-defined tags to describe the actual data elements contained
within a web page or file. (This is unlike the hypertext markup language
(HTML), which can only use a limited set of predefined tags to describe how
the contents of a web page or file are to be formatted.) XML tags are
21

CHAPTER 1 | Introduction
unlimited, because they can be defined at the user’s discretion, depending
on the data elements that need to be defined. This is why XML is termed
extensible. XML processors now exist for any common platform or language.

XML and Unicode XML works on the assumption that all character data belongs to the
universal character set (UCS). UCS is more commonly known as Unicode.
This is a mechanism for setting up binary codes for text or script characters
that relate to the principal written languages of the world. Unicode therefore
provides a standard means of interchanging, processing, and displaying
written texts in diverse languages. See http://www.unicode.org for details.

Because Unicode uses 16 bits to represent a particular character, it can
represent more than 65,000 different international text characters. This
makes Unicode much more powerful than other text representation formats,
such as ASCII (American standard code for information interchange), which
only uses 7 bits to represent a particular character and can only represent
128 characters. Unicode uses a conversion method called UTF (universal
transformation format) that can convert text to 8–bit or 16–bit Unicode
characters. To this effect, there are UTF–8 and UTF–16 encoding formats.
All XML processors, regardless of the platform or programming language for
which they are implemented, must accept character data encoded using
UTF–8 or UTF–16 encoding formats.

HTTP HTTP is used as the transport protocol between distributed peers across the
Internet. It is the standard TCP/IP-based transport used for client-server
communications on the World Wide Web. Its main function is to establish
connections between distributed web browsers (clients) and web servers for
exchanging files and possibly other information across the Internet. HTTP is
available on all platforms, and HTTP requests are usually allowed through
security firewalls. See “HTTP Overview” on page 13 for more details.

Given the dynamic features of XML and HTTP, SOAP has therefore become
regarded as the optimum tool for enabling communication between
distributed, heterogeneous applications over the Internet.

Note: Although most implementations of SOAP are HTTP-based, SOAP
can be used with any transport that supports transmission of XML data.
Depending on the particular transport in use, SOAP can also be
implemented to support different types of message-exchange patterns,
such as one-way or request-response.
 22

SOAP Overview
SOAP specification SOAP is a framework for transporting client request and server response
messages in the form of XML documents over HTTP or some other
transport. The W3C SOAP specification at http://www.w3.org/TR/SOAP/
defines the standards for SOAP in relation to:

• Format and components of SOAP messages.

• SOAP usage with HTTP.

• SOAP encoding rules for application-defined data types.

• SOAP standards for representing remote procedure calls (RPCs) and
responses.

“SOAP Messages” on page 24 briefly discusses the format and components
of SOAP messages, and their use with HTTP. “SOAP Encoding of Data
Types” on page 30 briefly discusses how data types are handled in SOAP.
Again, a complete introduction to these topics is outside the scope of this
guide, and you should see the W3C SOAP 1.1 specification at
http://www.w3.org/TR/SOAP/ for full details.
23

CHAPTER 1 | Introduction
SOAP Messages

Overview This subsection uses an example of a simple client-server application to
outline the typical format of a SOAP request and response message. It
discusses the following topics:

• “Example overview” on page 24.

• “Example of SOAP request message” on page 25.

• “Explanation of SOAP request message” on page 25.

• “Example of SOAP response message” on page 26.

• “Explanation of SOAP response message” on page 27.

• “Example of SOAP response with fault” on page 27.

• “Explanation of SOAP response with fault” on page 28.

Example overview The distributed application in this example involves a client that invokes a
GetStudentGrade method on a target server. The client passes a student
code and subject name, both of type string, as input parameters to the
method request. On processing the request, the server returns the grade
achieved by that student for that subject—the grade is of type int. The
following example shows the logical definition of this application in a WSDL
contract:

Example 1: Example of logical definition in WSDL

…
<message name="GetStudentGrade">
 <part name="StudentCode" type="xsd:string"/>
 <part name="Subject" type="xsd:string"/>
</message>
<message name="GetStudentGradeResponse">
 <part name="Grade" type="xsd:int"/>
</message>
<portType name="StudentPortType">
 <operation name="GetStudentGrade">
 <input message="tns:GetStudentGrade" name="GetStudentGrade"/>
 <output message="tns:GetStudentGradeResponse" name="GetStudentGradeResponse"/>
 </operation>
</portType>
…

 24

SOAP Overview
Example of SOAP request
message

Example 2 shows an example of the format of a typical SOAP request
message, based on Example 1 on page 24 (in this case, the client has
passed student code 815637 and subject History as input parameters):

Explanation of SOAP request
message

Example 2 on page 25 can be explained as follows:

1. The first five lines represent HTTP header information (in this example,
the SOAP request is running over HTTP). When a SOAP request is
running over HTTP, the HTTP method must be set to POST, the HTTP
Content-Type header must be set to text/xml, and a SOAPAction
HTTP header should also be included that specifies a URI indicating
what is being requested. (However, the SOAPAction field can be left
blank, in which case the URI specified in the first couple of lines is
taken to indicate the intent of the request instead.)

Example 2: Example of a SOAP Request Message

1 POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<?xml version="1.0" encoding='UTF-8'?>
2 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
 encoding/"/>

3 <SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="Some-URI">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note: See "Using the HTTP Plug-in" chapter for more details of the
format of HTTP request headers.
25

CHAPTER 1 | Introduction
2. The SOAP Envelope is the top-level element and is mandatory in every
SOAP message. It defines a framework for describing what is in the
message and how to process it.

3. The SOAP Body element is mandatory in every SOAP message. It holds
the actual message data in sub-elements called body entries. Each
body entry relates to a particular data type and must be encoded as an
independent element. Body entries can contain attributes called
encodingStyle, id, and href (see “SOAP Encoding of Data Types” on
page 30 for more details of these).

In Example 2 on page 25, the SOAP Body contains two body entries,
StudentCode and Subject, within a wrapper element that corresponds
to the GetStudentGrade operation. The two body entries in this case
correspond to the two input parameters for the GetStudentGrade
operation.

Example of SOAP response
message

Example 3 shows an example of the format of a typical SOAP response
message, based on Example 1 on page 24 (in this case, the server has
returned grade A):

Example 3: Example of a SOAP Response Message

1 HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<?xml version="1.0" encoding='UTF-8'?>
2 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
 encoding/"/>

3 <SOAP-ENV:Body>
 <m:GetStudentGradeResponse xmlns:m="Some-URI">
 <Grade>A</Grade>
 </m:GetStudentGradeResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
 26

SOAP Overview
Explanation of SOAP response
message

Example 3 can be explained as follows:

1. The first three lines represent HTTP header information (in this
example, the SOAP response is running over HTTP). See "Using the
HTTP Plug-in" chapter for more details of the format of HTTP response
headers.

2. The explanation of the SOAP Envelope element is the same as in
“Explanation of SOAP request message” on page 25.

3. The explanation of the SOAP Body element is the same as in
“Explanation of SOAP request message” on page 25, except in this
case the SOAP Body contains one body entry, Grade, within a wrapper
element that corresponds to the server response part of the
GetStudentGrade operation. The body entry in this case corresponds to
the output parameter returned by the server in response to the client
request (that is, the grade for the student and subject combination
specified by the client).

Example of SOAP response with
fault

If an error occurs during the processing of a SOAP request, the server can
handle and report the error within the SOAP Body of the response.
Example 4 shows an example of the format of a typical SOAP response
message indicating an error.

Example 4: Example of SOAP Response with Error Information

1 HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>

2 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Server Error</faultstring>
 <detail>
 <e:myfaultdetails xmlns:e="Some-URI">
 <message>
 Application did not work
 </message>
 <errorcode>
27

CHAPTER 1 | Introduction
Explanation of SOAP response
with fault

Example 4 on page 27 can be explained as follows:

1. The first three lines represent HTTP header information (in this
example, the SOAP response is running over HTTP). See "Using the
HTTP Plug-in" chapter for more details of the format of HTTP response
headers.

2. Errors are reported within a SOAP Fault element within the SOAP
Body. In this case, the SOAP Body must not contain any other
elements. Only one SOAP Fault element can be defined in any SOAP
message. SOAP Fault in turn defines the following four sub-elements:

 1001
 </errorcode>
 </e:myfaultdetails>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 4: Example of SOAP Response with Error Information

faultcode This describes the error. The default faultcode values
defined by the W3C SOAP specification are:

• VersionMismatch—This means the SOAP
Envelope was associated with an invalid
namespace (that is, a namespace other than
http://schemas.xmlsoap.org/soap/envelope/).

• MustUnderstand—This means a header element
that needed to be processed was not processed
correctly.

• Client—This means the message was not
properly formed or did not contain appopriate
information to be successfully processed.

• Server—This means the message could not be
processed, but not due to message contents.

faultstring This provides a human-readable explanation of the
fault.
 28

SOAP Overview
faultactor This indicates where the fault originated along the
message path. This element is mandatory for an
intermediary proxy application along the message
path, but it is optional for the ultimate target server.

Example 4 on page 27 is an example of an error being
reported by the ultimate target server, and it omits a
faultactor attribute.

detail This in turn contains sub-elements, called detail
elements, that hold application-specific error
information when the fault is due to unsuccessful
processing of the SOAP Body.
29

CHAPTER 1 | Introduction
SOAP Encoding of Data Types

Overview This subsection provides an overview of the concepts of SOAP encoding. It
discusses the following topics:

• “What is encoding?” on page 30.

• “Role of SOAP encoding” on page 30.

• “SOAP encoding styles” on page 32.

• “Encoding simple types” on page 32.

• “Encoding complex struct types” on page 34.

• “Encoding complex array types” on page 36.

What is encoding? Encoding is the process of converting application-defined data to binary
form for transfer across a network. Decoding is the process of converting
binary data back to an application-defined format. XML encoding and
decoding rules, such as UTF-8 or UTF-16, define how data is to be
converted between application-defined and binary form.

SOAP encoding rules define how application data types are to be structured
in an XML document before being converted to binary. The overall process
of encoding, data transfer, and subsequent decoding is termed serialization.

Role of SOAP encoding XML uses the UTF-8 and UTF-16 encoding formats to convert data to binary
form. As explained in “Background to SOAP” on page 21, all XML
processors (regardless of platform or programming language) must accept
character data encoded using UTF-8 or UTF-16 formats.

Problems can arise, however, when converting data to and from binary, if
the data is represented differently by different applications. For example,
some systems might have an integer as a 32-bit value, while others might
have it as a 16-bit value. Such disparities can lead to data corruption during
the data conversion process.

To avoid potential data corruption due to differences between source and
target systems, SOAP encoding and decoding rules are used as a stepping
stone between the expression of data types in a particular programming
language and the XML UTF-8 or UTF-16 encoding or decoding rules used to
convert those data types to and from binary. (See Figure 5 on page 31 for
 30

SOAP Overview
more details.) SOAP encoding rules, therefore, define the elements and data
types that are designed to support serialization of data between disparate
systems.

As shown in Figure 5, all data transferred as part of a SOAP payload is
marshalled across the network as UTF-encoded binary strings.

Figure 5: Overview of Role of SOAP Encoding and Decoding

ArtixTransport Layer
(for example, HTTP)

Transport Layer
(for example, HTTP)

Application Data

SOAP Message

Binary data

Application Data

SOAP Message

Binary data

Network

UTF-decoded
binary strings

UTF-encoded
binary strings
31

CHAPTER 1 | Introduction
SOAP encoding styles A standard XML schema for SOAP encoding has been developed by the
W3C and is located at http://schemas/xmlsoap/org/soap/encoding/. This
W3C SOAP encoding schema uses the following namespace declaration:

It is recommended, but not mandatory, that a SOAP implementation
adheres to the encoding style based on the W3C SOAP encoding schema.
The W3C SOAP specification states that a company can use alternative
encoding styles if it wants. To this effect, an encodingStyle attribute can be
specified for any element within a SOAP message, to indicate the encoding
rules that apply to that particular element.

An encodingStyle attribute can take one or more URIs as its value, with
each URI denoting the location of a particular set of encoding rules. If
specifying a list of URIs, each URI should be separated by a space. A list
should also be ordered so that the URI relating to the most restrictive set of
encoding rules is specified first, and the URI relating to the least restrictive
set of encoding rules is specified last.

Encoding simple types The W3C SOAP specification states that SOAP encodings can support all
the simple types that are specified in the W3C XML Schema Part 2:
Datatypes specification at http://www.w3.org/TR/SOAP/#XMLS2. In other
words, a SOAP encoding should support any simple type that can be used in
XML schema definition language.

The W3C SOAP encoding schema defines elements whose names
correspond to each of the simple types defined in the W3C XML Schema
Part 2: Datatypes specification. Among the simple types supported are
integers, floats, doubles, booleans, and so on. Other types considered
simple for the purposes of a SOAP encoding are strings, enumerations, and
arrays of bytes.

In a SOAP encoding, each data value must be specified within an element.
The type of a particular value can be denoted by the element name that
encompasses it, provided that element name has been defined in the

xmlns:SOAP-ENC="http://schemas.xmlsoap/org/soap/encoding/"
 32

SOAP Overview
encoding schema as a derived type. The following is an example of a
schema fragment that defines a series of elements (for example, an element
called age of type int, an element called height of type float, and so on):

The following is an example of how the elements defined in the preceding
sample schema might then be used in a SOAP encoding:

If an element name in a SOAP encoding has not been defined as a derived
type in an encoding schema (for example, the element name relating to a
member of an array), that element must include an xsi:type attribute in the
SOAP encoding to indicate the data type. See “Encoding complex array
types” on page 36 for an example of this.

<element name="age" type="int"/>
<element name="height" type="float"/>
<element name="displacement" type="negativeInteger"/>
<element name="color">
 <simpleType base="xsd:string">
 <enumeration value="Blue"/>
 <enumeration value="Brown"/>
 </simpleType>
</element>

<age>34</age>
<height>6.0</height>
<displacement>-350</displacement>
<color>Brown</color>
33

CHAPTER 1 | Introduction
Encoding complex struct types The W3C SOAP specification defines two complex data types—structs and
arrays. A struct is a compound value whose members are each
distinguished by a unique name (also known as that member’s accessor).

The following is an example of a schema fragment that defines elements
called Book, Author, and Address respectively, each of which is a structure
containing a series of types:

<element name="Book">
<complexType>
 <sequence>
 <element name="title" type="xsd:string"/>
 <element name="author" type="tns:Author"/>
 </sequence>
</complexType>
</e:Book>
<element name="Author">
<complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="address" type="tns:Address"/>
 </sequence>
</complexType>
</e:Author>
<element name="Address">
<complexType>
 <sequence>
 <element name="street" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="country" type="xsd:string"/>
 </sequence>
</complexType>
</e:Address>
 34

SOAP Overview
The following is an example of how the preceding schema definition could
be subsequently used in a SOAP encoding (the following example shows
embedded single-reference values for the author and address):

In some cases an element might potentially contain more than one possible
value. For example, if there was another book also called Great
Expectations, written by some other author, there could be potentially more
than one possible value for the author and address in the preceding
example. When an element can contain more than one possible value it is
termed multireference. In this case, an id attribute must be used to identify
a multireference element, and a href attribute can be used to reference that
element. For example, the href attribute of the <author> element in the
following example refers to the id attribute of the multireference <Person>
element. Similarly, the href attribute of the <address> element refers to the
id attribute of the multireference <Home> element (this is assuming the
author in question has more than one home).

<e:Book>
 <title>Great Expectations</title>
 <author>
 <name>Charles Dickens</name>
 <address>
 <street>Whitechurch Road</street>
 <city>London</city>
 <country>England</country>
 </address>
 </author>
</e:Book>

<e:Book>
 <title>Great Expectations</title>
 <author href="#Person-1"/>
</e:Book>
<e:Person id="Person-1">
 <name>Charles Dickens</name>
 <address> href="Home-1"/>
</e:Person>
<e:Home id="Home-1"/>
 <street>Whitechurch Road</street>
 <city>London</city>
 <country>England</country>
</e:Home>
35

CHAPTER 1 | Introduction
Encoding complex array types The W3C SOAP specification defines two complex data types—structs and
arrays. An array is a compound value whose member values are
distinguished by means of ordinal position within the array. An array in
SOAP is of type SOAP-ENC:Array or a type derived from that.

The following is an example (taken from the W3C SOAP specification) of a
schema fragment that defines an element called myFavoriteNumbers that is
of type SOAP-ENC:Array:

The following is an example (taken from the W3C SOAP specification) of
how the array defined in the preceding sample schema could be
subsequently used in a SOAP encoding:

The preceding example shows an array of two integers, with both members
of the array called number (this is unlike the members of a struct which must
all have unique names). The members of a SOAP array do not have to be all
of the same type. The following is an example of the SOAP encoding for an
array where an xsi:type attribute is used to specify the type of each
member of the array:

<element name="myFavoriteNumbers"
 type="SOAP-ENC:Array"/>

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int[2]">
 <number>3</number>
 <number>4</number>
</myFavoriteNumbers>>

Note: As explained in “Encoding simple types” on page 32, if the type of
a value is not identifiable from the element name (or accessor)
corresponding to that value, an xsi:type attribute must be used in the
SOAP encoding.

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:ur-type[4]">
 <thing xsi:type="xsd:int">98765</thing>
 <thing xsi:type="xsd:decimal">3.857</thing>
 <thing xsi:type="xsd:string">The cat sat on the mat</thing>
 <thing

xsi:type="xsd:uriReference">http://www.microfocus.com</thing>
</SOAP-ENC:Array>
 36

SOAP Overview
SOAP encoding rules also support:

• Arrays of complex structs or other arrays.

• Multi-dimensional arrays.

• Partially transmitted arrays.

• Sparse arrays.

See the W3C SOAP specification for more details of the encoding guidelines
for arrays.
37

CHAPTER 1 | Introduction
 38

CHAPTER 2

Getting Started
This chapter is provided as a means to getting started with the
Artix Transport component. It walks through a simple
demonstration showing how to expose an existing Orbix server
on z/OS as a Web service that can be consumed using the
Web services client platform of your choice.

In this chapter This chapter discusses the following topics:

Overview of Steps page 40

Generating the SOAP Descriptor File page 41

Building and Running the Server page 42

Building and Running a Web Consumer page 52

Further Information Sources page 53

Note: The instructions provided in this chapter describe how to deploy
the non-secure version of the simple demonstration.
39

CHAPTER 2 | Getting Started
Overview of Steps

Overview This section provides an overview of the steps involved in this demonstration
walkthrough.

Summary The steps to run the demonstration can be summarized as follows:

• Generate the SOAP descriptor file

• Build and run the server

• Develop a client

• Build and run the client

The rest of this chapter describes each of these steps.

Demonstration versions Your installation of the Artix Transport component includes a simple
demonstration that illustrates how to expose an existing Orbix Mainframe
server as a Web service. The Orbix Mainframe simple demonstration server
is used for this purpose. Several variants of the simple demonstration are
supplied with Orbix Mainframe, corresponding to the different languages
and environments supported. For the purposes of demonstrating the Artix
Transport component, any of the following COBOL or PL/I variants of the
simple demonstration can be used:

• COBOL batch server

• PL/I batch server

• COBOL CICS server (using the CICS server adapter)

• PL/I CICS server (using the CICS server adapter)

• COBOL IMS server (using the IMS server adapter)

• PL/I IMS server (using the IMS server adapter)

Sample code for the Web consumer of this service is not provided. As
mentioned in the preface, any Web services development product that
supports the same WS-I standards as the Artix Transport can be used.

For sample purposes such as this, a Web services testing tool such as
SOAPScope is also recommended.
 40

Generating the SOAP Descriptor File
Generating the SOAP Descriptor File

Overview To expose an Orbix Mainframe resource as a Web service, a SOAP
descriptor file is required. As shown in Figure 1 on page 3 and Figure 2 on
page 4, a SOAP descriptor file is used by the SOAP plug-in on the server
side for the purposes of marshalling SOAP requests. This section describes
how to generate the SOAP descriptor file for the demonstration(s).

Sample JCL Run the following supplied JCL to generate the SOAP descriptor file (where
orbixhlq represents the high-level qualifier for your installation):

For the purposes of this demonstration, the generated file is saved by default
to orbixhlq.DEMO.TYPEINFO(SIMPLEB).

orbixhlq.DEMO.ARTIX.BLD.JCLLIB(SIMPLESI)

Note: The location that the SOAP plug-in uses to retrieve SOAP
descriptor files is specified using the plugins:soap:type_info:source
configuration item.
41

CHAPTER 2 | Getting Started
Building and Running the Server

Overview This section describes how to build and run the various types of simple
demonstration server that are supplied. It discusses the following topics:

• “Steps for simple batch COBOL server” on page 42.

• “Steps for simple batch PL/I server” on page 43.

• “Steps for simple CICS COBOL server” on page 44.

• “Steps for simple CICS PL/I server” on page 46.

• “Steps for simple IMS COBOL server” on page 48.

• “Steps for simple IMS PL/I server” on page 50.

Follow the instructions that are relevant to the type of demonstration server
you want to use.

Steps for simple batch COBOL
server

The steps to build and run the simple batch COBOL server are:

1. Run the Orbix IDL compiler by submitting
orbixhlq.DEMO.CBL.BLD.JCLLIB(SIMPLIDL). This takes as input the
sample IDL in orbixhlq.DEMO.IDL(SIMPLE), and subsequently
generates the relevant COBOL copybooks, which are stored in the
orbixhlq.DEMO.CBL.COPYLIB PDS.

2. Build the server executable by submitting
orbixhlq.DEMO.CBL.BLD.JCLLIB(SIMPLESB). This creates the server
load module, which is automatically stored in the
orbixhlq.DEMO.CBL.LOADLIB PDS.

3. Run the server by submitting
orbixhlq.DEMO.CBL.RUN.JCLLIB(SIMPLESV).

Note: The source code for the demonstration is already supplied in the
orbixhlq.DEMO.CBL.SRC PDS, so the options to generate it are disabled in
the SIMPLIDL JCL, to avoid overwriting the shipped code.
 42

Building and Running the Server
4. To ensure the server is running successfully, open a web browser and
enter the following URL (where remotehost represents the z/OS TCP/IP
hostname and 5105 is the port that the server uses to listen for
incoming requests):

If the server returns the WSDL for the Web service, this means it is
successfully up and running.

Steps for simple batch PL/I server The steps to build and run the simple batch PL/I server are:

1. Run the Orbix IDL compiler by submitting
orbixhlq.DEMO.PLI.BLD.JCLLIB(SIMPLIDL). This takes as input the
sample IDL in orbixhlq.DEMO.IDL(SIMPLE), and subsequently
generates the relevant PL/I include members, which are stored in the
orbixhlq.DEMO.PLI.PLINCL PDS.

2. Build the server executable by submitting
orbixhlq.DEMO.PLI.BLD.JCLLIB(SIMPLESB). This creates the server
load module, which is automatically stored in the
orbixhlq.DEMO.PLI.LOADLIB PDS.

3. Run the server by submitting
orbixhlq.DEMO.PLI.RUN.JCLLIB(SIMPLESV).

4. To ensure the server is running successfully, open a web browser and
enter the following URL (where remotehost represents the z/OS TCP/IP
hostname and 5105 is the port that the server uses to listen for
incoming requests):

If the server returns the WSDL for the Web service, this means it is
successfully up and running.

http://remotehost:5105/ionasoap/Simple_SimpleObject?wsdl=doc_literal

Note: The source code for the demonstration is already supplied in the
orbixhlq.DEMO.PLI.SRC PDS, so the options to generate it are disabled in
the SIMPLIDL JCL, to avoid overwriting the shipped code.

http://remotehost:5105/ionasoap/Simple_SimpleObject?wsdl=doc_literal
43

CHAPTER 2 | Getting Started
Steps for simple CICS COBOL
server

The steps to build and run the simple CICS COBOL server are:

1. Run the Orbix IDL compiler by submitting
orbixhlq.DEMO.CICS.CBL.BLD.JCLLIB(SIMPLIDL). This takes as input
the sample IDL in orbixhlq.DEMO.IDL(SIMPLE), and subsequently
generates:

♦ The relevant COBOL copybooks for the CICS server, which are
stored in the orbixhlq.DEMO.CICS.CBL.COPYLIB PDS.

♦ The source code for the CICS server mainline program, which is
stored in orbixhlq.DEMO.CICS.CBL.SRC(SIMPLESV).

♦ The CICS server adapter mapping file, which is stored in the
orbixhlq.DEMO.CICS.MFAMAP PDS.

2. Build the server executable by submitting
orbixhlq.DEMO.CICS.CBL.BLD.JCLLIB(SIMPLESB). This creates the
CICS server load module, which is stored in the
orbixhlq.DEMO.CICS.CBL.LOADLIB PDS.

3. Define a transaction definition for the server, to allow it to run in CICS.
See orbixhlq.JCLLIB(ORBIXCSD) for an example of the transaction
definition for the supplied demonstration.

4. Provide the server load module to the CICS region that is to run the
transaction, by adding orbixhlq.DEMO.CICS.CBL.LOADLIB and
orbixhlq.MFA.LOADLIB to the DFHRPL for that CICS region.

Note: The server implementation code is already supplied in
orbixhlq.DEMO.CICS.CBL.SRC(SIMPLES), so the option to generate it is
disabled in the SIMPLIDL JCL, to avoid overwriting the shipped code.

Note: If you are using the CICS APPC plug-in, first edit the SIMPLIDL
JCL to ensure that the following two lines appear as follows (that is,
ensure the first line is commented out and the second one is not):

//* IDLPARM='-cobol:-S:-TCICS -mfa:-tSIMPLESV'
// IDLPARM='-cobol:-S:-TCICS -mfa:-tSMSV'
 44

Building and Running the Server
5. In orbixhlq.DOMAINS(FILEDOMA), ensure that the
plugins:cicsa:mapping_file configuration item (within the
iona_services.cicsa scope) specifies the full path to the mapping file
that contains the relevant mapping entries. As explained in point 1, the
sample mapping entries for the demonstration are generated in
orbixhlq.DEMO.CICS.MFAMAP(SIMPLEA)by default.

6. If the CICS server adapter is already running, it must be refreshed to
pick up the mapping file updates. To do this, follow the instructions in
orbixhlq.JCLLIB(ORXADMIN) for performing an itadmin mfa reload.
If the CICS server adapter is not already running, start it as described
in the CICS Adapters Administrator’s Guide.

7. To ensure the server is running successfully, open a web browser and
enter the following URL (where remotehost represents the z/OS TCP/IP
hostname and 5105 is the port that the server uses to listen for
incoming requests):

If the server returns the WSDL for the Web service, this means it is
successfully up and running.

Note: You can only use the itadmin mfa reload and itadmin mfa
refresh commands if you are licensed to use Orbix Mainframe (that
is, if you have a valid IIOP license). Otherwise, you must manually
stop and restart the adapter to perform the equivalent of a reload and
refresh.

http://remotehost:5051/ionasoap/Simple_SimpleObject?wsdl=doc_literal
45

CHAPTER 2 | Getting Started
Steps for simple CICS PL/I server The steps to build and run the simple CICS PL/I server are:

1. Run the Orbix IDL compiler by submitting
orbixhlq.DEMO.CICS.PLI.BLD.JCLLIB(SIMPLIDL). This takes as input
the sample IDL in orbixhlq.DEMO.IDL(SIMPLE), and subsequently
generates:

♦ The relevant PL/I include files for the CICS server, which are
stored in the orbixhlq.DEMO.CICS.PLI.PLINCL PDS.

♦ The source code for the CICS server mainline program, which is
stored in orbixhlq.DEMO.CICS.PLI.SRC(SIMPLEV).

♦ The CICS server adapter mapping file, which is stored in the
orbixhlq.DEMO.CICS.MFAMAP PDS.

2. Build the server executable by submitting
orbixhlq.DEMO.CICS.PLI.BLD.JCLLIB(SIMPLESB). This creates the
CICS server load module, which is stored in the
orbixhlq.DEMO.CICS.PLI.LOADLIB PDS.

3. Define a transaction definition for the server, to allow it to run in CICS.
See orbixhlq.JCLLIB(ORBIXCSD) for an example of the transaction
definition for the supplied demonstration.

4. Provide the server load module to the CICS region that is to run the
transaction, by adding orbixhlq.DEMO.CICS.PLI.LOADLIB and
orbixhlq.MFA.LOADLIB to the DFHRPL for that CICS region.

5. In orbixhlq.DOMAINS(FILEDOMA), ensure that the
plugins:cicsa:mapping_file configuration item (within the
iona_services.cicsa scope) specifies the full path to the mapping file
that contains the relevant mapping entries. As explained in point 1, the
sample mapping entries for the demonstration are generated in
orbixhlq.DEMO.CICS.MFAMAP(SIMPLEA) by default.

Note: The server implementation code is already supplied in
orbixhlq.DEMO.CICS.PLI.SRC(SIMPLEI), so the option to generate it is
disabled in the SIMPLIDL JCL, to avoid overwriting the shipped code.
 46

Building and Running the Server
6. If the CICS server adapter is already running, it must be refreshed to
pick up the mapping file updates. To do this, follow the instructions in
orbixhlq.JCLLIB(ORXADMIN) for performing an itadmin mfa reload.
If the CICS server adapter is not already running, start it as described
in the CICS Adapters Administrator’s Guide.

7. To ensure the server is running successfully, open a web browser and
enter the following URL (where remotehost represents the z/OS TCP/IP
hostname and 5105 is the port that the server uses to listen for
incoming requests):

If the server returns the WSDL for the Web service, this means it is
successfully up and running.

Note: You can only use the itadmin mfa reload and itadmin mfa
refresh commands if you are licensed to use Orbix Mainframe (that
is, if you have a valid IIOP license). Otherwise, you must manually
stop and restart the adapter to perform the equivalent of a reload and
refresh.

http://remotehost:5051/ionasoap/Simple_SimpleObject?wsdl=doc_literal
47

CHAPTER 2 | Getting Started
Steps for simple IMS COBOL
server

The steps to build and run the simple IMS COBOL server are:

1. Run the Orbix IDL compiler by submitting
orbixhlq.DEMO.IMS.CBL.BLD.JCLLIB(SIMPLIDL). This takes as input
the sample IDL in orbixhlq.DEMO.IDL(SIMPLE), and subsequently
generates:

♦ The relevant COBOL copybooks for the IMS server, which are
stored in the orbixhlq.DEMO.IMS.CBL.COPYLIB PDS.

♦ The source code for the IMS server mainline program, which is
stored in orbixhlq.DEMO.IMS.CBL.SRC(SIMPLESV).

♦ The IMS server adapter mapping file, which is stored in the
orbixhlq.DEMO.IMS.MFAMAP PDS.

2. Build the server executable by submitting
orbixhlq.DEMO.IMS.CBL.BLD.JCLLIB(SIMPLESB). This creates the IMS
server load module, which is stored in the
orbixhlq.DEMO.IMS.CBL.LOADLIB PDS.

3. If not already done, define a transaction definition for the server in IMS,
using an IMS GEN, to allow it to run in IMS. For example, the following
transaction definition is already defined for the supplied
demonstration:

Note: The IMS server implementation code is already supplied in
orbixhlq.DEMO.IMS.CBL.SRC(SIMPLES), so the option to generate it is
disabled in the SIMPLIDL JCL, to avoid overwriting the shipped code.

APPLCTN GPSB=SIMPLESV, x
 PGMTYPE=(TP,,2), x
 SCHDTYP=PARALLEL,LANG=COBOL
TRANSACT CODE=SIMPLESV,
 EDIT=(ULC) x
 48

Building and Running the Server
4. Provide the server load module to the IMS region that is to run the
transaction, by adding orbixhlq.DEMO.IMS.CBL.LOADLIB and
orbixhlq.MFA.LOADLIB to the STEPLIB for that IMS region.

5. In orbixhlq.DOMAINS(FILEDOMA), ensure that the
plugins:imsa:mapping_file configuration item (within the
iona_services.imsa scope) specifies the full path to the mapping file
that contains the relevant mapping entries. As explained in point 1, the
sample mapping entries for the demonstration are generated in
orbixhlq.DEMO.IMS.MFAMAP(SIMPLEA) by default.

6. If the IMS server adapter is already running, it must be refreshed to
pick up the mapping file updates. To do this, follow the instructions in
orbixhlq.JCLLIB(ORXADMIN) for performing an itadmin mfa reload.
If the IMS server adapter is not already running, start it as described in
the IMS Adapters Administrator’s Guide.

7. To ensure the server is running successfully, open a web browser and
enter the following URL (where remotehost represents the z/OS
hostname and 5105 is the server port):

If the server returns the WSDL for the Web service, this means it is
successfully up and running.

Note: You can only use the itadmin mfa reload and itadmin mfa
refresh commands if you are licensed to use Orbix Mainframe (that
is, if you have a valid IIOP license). Otherwise, you must manually
stop and restart the adapter to perform the equivalent of a reload and
refresh.

http://remotehost:5050/ionasoap/Simple_SimpleObject?wsdl=doc_literal
49

CHAPTER 2 | Getting Started
Steps for simple IMS PL/I server The steps to build and run the simple IMS PL/I server are:

1. Run the Orbix IDL compiler by submitting
orbixhlq.DEMO.IMS.PLI.BLD.JCLLIB(SIMPLIDL). This takes as input
the sample IDL in orbixhlq.DEMO.IDL(SIMPLE), and subsequently
generates:

♦ The relevant PL/I include members for the IMS server, which are
stored in the orbixhlq.DEMO.IMS.PLI.PLINCL PDS.

♦ The source code for the IMS server mainline program, which is
stored in orbixhlq.DEMO.IMS.PLI.SRC(SIMPLEV).

♦ The IMS server adapter mapping file, which is stored in the
orbixhlq.DEMO.IMS.MFAMAP PDS.

2. Build the server executable by submitting
orbixhlq.DEMO.IMS.PLI.BLD.JCLLIB(SIMPLESB). This creates the IMS
server load module, which is stored in the
orbixhlq.DEMO.IMS.PLI.LOADLIB PDS.

3. If not already done, define a transaction definition for the server in IMS,
using an IMS GEN, to allow it to run in IMS. For example, the following
transaction definition is already defined for the supplied
demonstration:

4. Provide the server load module to the IMS region that is to run the
transaction, by adding orbixhlq.DEMO.IMS.PLI.LOADLIB and
orbixhlq.MFA.LOADLIB to the STEPLIB for that IMS region.

Note: The IMS server implementation code is already supplied in
orbixhlq.DEMO.IMS.PLI.SRC(SIMPLEI), so the option to generate it is
disabled in the SIMPLIDL JCL, to avoid overwriting the shipped code.

APPLCTN GPSB=SIMPLESV, x
 PGMTYPE=(TP,,2), x
 SCHDTYP=PARALLEL,LANG=PL/I
TRANSACT CODE=SIMPLESV,
 EDIT=(ULC) x
 50

Building and Running the Server
5. In orbixhlq.DOMAINS(FILEDOMA), ensure that the
plugins:imsa:mapping_file configuration item (within the
iona_services.imsa scope) specifies the full path to the mapping file
that contains the relevant mapping entries. As explained in point 1, the
sample mapping entries for the demonstration are generated in
orbixhlq.DEMO.IMS.MFAMAP(SIMPLEA)by default.

6. If the IMS server adapter is already running, it must be refreshed to
pick up the mapping file updates. To do this, follow the instructions in
orbixhlq.JCLLIB(ORXADMIN) for performing an itadmin mfa reload.
If the IMS server adapter is not already running, start it as described in
the IMS Adapters Administrator’s Guide.

7. To ensure the server is running successfully, open a web browser and
enter the following URL (where remotehost represents the z/OS
hostname and 5105 is the server port):

If the server returns the WSDL for the Web service, this means it is
successfully up and running.

Note: You can only use the itadmin mfa reload and itadmin mfa
refresh commands if you are licensed to use Orbix Mainframe (that
is, if you have a valid IIOP license). Otherwise, you must manually
stop and restart the adapter to perform the equivalent of a reload and
refresh.

http://remotehost:5050/ionasoap/Simple_SimpleObject?wsdl=doc_literal

Note: If no parameter is specified in the wsdl HTTP query part of the
URL, the wrapped document literal (doc_literal) encoding style is
assumed by default. For example:
http://remotehost:5050/ionasoap/Simple_SimpleObject?wsdl
51

CHAPTER 2 | Getting Started
Building and Running a Web Consumer

Overview The previous section outlined how to obtain the WSDL from the deployed
Web service running on the mainframe.

A simple SOAP client can now be developed using your Web consumer
authoring tool of choice. You can use the HTTP URL directly in your client
application, or save the WSDL to a local file on the client-side platform and
use a file URL or path name as appropriate.

Sample input The call_me() operation takes no data input arguments. For wrapped
document literal, which is the recommended encoding convention, this
means that an empty XML element is sent in the SOAP input message body.
For example:

Expected Output The call_me() operation returns no output data. For wrapped document
literal, this means that an empty XML element is sent in the SOAP output
message body. For example:

<soapenv:Body>
 <sim:call_me xmlns:sim="http://artixmf.iona.com/Simple_SimpleObject" />
</soapenv:Body>

<env:Body>
 <call_meResponse xmlns="http://artixmf.iona.com/Simple_SimpleObject">
 </call_meResponse>
</env:Body>
 52

Further Information Sources
Further Information Sources

Overview This section provides a pointer to further sources of information that you
might need to perform various tasks. It discusses the following topics:

• “Configuration”.

• “Adapter usage”.

• “Server development”.

• “Security”.

Configuration For details about configuring an Orbix Mainframe server to use the Artix
Transport component, and the steps to deploy an Orbix Mainframe server as
a Web service, see “Configuration” on page 55 of this guide.

For other general configuration details relating to batch servers, see the
Orbix Configuration Reference.

For other general configuration details relating to CICS and IMS servers, see
the CICS Adapters Administrator’s Guide and IMS Adapters Administrator’s
Guide.

Adapter usage For details about general CICS or IMS server adapter usage, see the CICS
Adapters Administrator’s Guide and IMS Adapters Administrator’s Guide.

Server development For details about developing Orbix Mainframe servers in COBOL or PL/I, see
the COBOL Programmer’s Guide and Reference and PL/I Programmer’s
Guide and Reference.

Security For details about general security-related issues, see the Mainframe
Security Guide.

For details about security issues relating specifically to CICS and IMS, see
the CICS Adapters Administrator’s Guide and IMS Adapters Administrator’s
Guide.

Note: All user manuals referred to in this section are in the Orbix
Mainframe 6.3 library unless otherwise specified.
53

CHAPTER 2 | Getting Started
 54

CHAPTER 3

Configuration
This chapter provides the information needed to configure
Orbix Mainframe to use the Artix Transport component.

In this chapter This chapter discusses the following topics:

Note: The information provided in this chapter relates specifically to
configuring the Artix Transport component of Orbix Mainframe in either
secure or insecure mode. For details of configuration items general to Orbix
Mainframe as a whole see the CICS Adapters Administrator’s Guide, the
IMS Adapters Administrator’s Guide, and the Mainframe Security Guide.

Introduction to Orbix Mainframe Configuration page 56

Common Configuration Items page 58

CICS-Specific Configuration Items page 62

IMS-Specific Configuration Items page 69
55

CHAPTER 3 | Configuration
Introduction to Orbix Mainframe Configuration

Overview This section provides an introductory overview of the files used for Orbix
Mainframe configuration.

Configuration files summary Orbix Mainframe employs a rich and flexible file-based configuration. By
default, the Orbix Mainframe configuration domain is defined to
orbixhlq.CONFIG(DEFAULT@) and it references several configuration
fragments:

• orbixhlq.DOMAIN(FILEDOMA) or orbixhlq.DOMAIN(TLSBASE)
This is the main configuration domain for an Orbix Mainframe
deployment. It contains settings that are common to both secure and
insecure deployments (for example, CICS and IMS adapter transport
plug-in settings).

• orbixhlq.DOMAINS(TLSDOMA)
For secure Orbix Mainframe deployments, this contains additional
security-related settings, such as ciphersuite lists, iiop_tls ports, and
so on.

• orbixhlq.CONFIG(ARTIX)
This contains all the settings necessary for use of the Artix Transport
plug-in (that is, for use of the SOAP plug-in).

• orbixhlq.CONFIG(ORXINTRL)
This contains internal configuration settings that should not generally
need to be modified.

You may choose to use a different location for your configuration domain.
There are several mechanisms by which this can be accomplished. See the
Mainframe Installation Guide for more details.
 56

Introduction to Orbix Mainframe Configuration
Configuring the Artix Transport
component

All the configuration items necessary for use of the Artix Transport
component are contained in the ARTIX configuration fragment.

The include statement for the ARTIX configuration file is commented out by
default in the main configuration file. The comment character should be
removed from this include statement as part of the Artix Transport
customization steps that are described in the Mainframe Installation Guide.

Note: This chapter focuses specifically on how to configure the Artix
Transport component. For details of configuration topics general to Orbix
Mainframe as a whole, see the CICS Adapters Administrator’s Guide, the
IMS Adapters Administrator’s Guide, and the Mainframe Security Guide.

Note: Where this chapter makes reference to the location of configuration
items, these relate to default locations.
57

CHAPTER 3 | Configuration
Common Configuration Items

Overview This subsection describes the common configuration items for the Artix
Transport component that are relevant regardless of whether used in
conjunction with a batch, CICS-based, or IMS-based Orbix Mainframe
server.

In this section This section discusses the following topics:

Note: All the items discussed in this section are within the global scope
in the ARTIX configuration domain.

Sample Configuration Overview page 59

Configuration Details page 60
 58

Common Configuration Items
Sample Configuration Overview

Overview This subsection provides an overview of the common configuration items
(that is, relevant to batch, CICS and IMS) for using the Artix Transport
component.

Sample configuration The following is a sample configuration extract for the common
configuration items in the ARTIX configuration domain.

Note: The example provided here shows only the contents of the
configuration file that are relevant to common Artix Transport
configuration. (Ellipses are used to denote text that has been omitted for
brevity.)

Artix Configuration Template. The variables in this
file are required when communicating over SOAP.
#
Set the following policy to determine the context name
to use in the URL for your web service.
#
plugins:soap:insecure:root_context_name = "/ionasoap";
plugins:soap:secure:root_context_name = "/secureionasoap";

Set the following policy to "true" in order for HTTP or HTTPS
messages to be sent to the log stream as INFO messages.
#
policies:http:trace_requests:enabled = "false";
policies:https:trace_requests:enabled = "false";

The following settings allow navigation of available HTTP/SOAP
endpoints in a server. It is recommended that these be disabled
for a production system.
#
policies:http:browser_navigation:enabled = "true";

plugins:soap:signature_provider = "type_info";
plugins:soap:type_info:source = "DD:TYPEINFO";

…

59

CHAPTER 3 | Configuration
Configuration Details

Overview This subsection provides details of the common configuration items that are
relevant regardless of whether used in conjunction with a batch,
CICS-based, or IMS-based Orbix Mainframe server. It discusses the
following topics:

• “Root context name” on page 60.

• “Sending INFO messages to log stream” on page 60.

• “Navigating available HTTP endpoints” on page 60.

• “Operation signatures provider” on page 61.

• “Location of type information file” on page 61.

Root context name The related configuration items are plugins:soap:insecure:root_context_
name and plugins:soap:secure:root_context_name, and they should be
added to the global scope. They respectively specify the root context name
that is to be used in URLs for insecure and secure invocations on target Web
services. These items can be set to any value, but for demonstration
purposes the insecure item is set to "/ionasoap". and the secure item is set
to "/secureionasoap".

Sending INFO messages to log
stream

The related configuration items are policies:http:trace_requests:
enabled and policies:https:trace_requests:enabled, and are within the
global scope. They respectively indicate whether HTTP messages should be
sent to the log stream as INFO messages when running in insecure or secure
mode. If no value is specified for these items, they default to "false", to not
send INFO messages to the log stream.

Navigating available HTTP
endpoints

The related configuration item is policies:http:browser_navigation:
enabled. It indicates whether navigation of available HTTP endpoints is
enabled for the server.

The recommended setting for a development environment is "true", to
enable the easy location of supported WSDL interfaces. The recommended
setting for a production environment is "false", to not enable endpoint
navigation.
 60

Common Configuration Items
Operation signatures provider The related configuration item is plugins:soap:signature_provider. It
determines the mechanism to be used for communication between SOAP
and the server side. For the purposes of using the Artix Transport
component, this is set to "type_info".

Location of type information file The related configuration item is plugins:soap:type_info:source. It
specifies the location of the XML type information store used by the server.

The value for this variable can be set to the one of the following:

• An HFS directory (UNIX System Services)—Specifies that a directory is
to be used as the source of the type information file. All entries in this
directory are accessed as type information files.

• A PDS (native z/OS)—Specifies that the entire data set is to be used as
the source of the type information file. All entries in this PDS are
accessed as type information files.

• A DD statement (native z/OS)—Specifies the DD name in the JCL that
specifies the PDS to be used for the type information file.
61

CHAPTER 3 | Configuration
CICS-Specific Configuration Items

Overview This subsection describes the configuration items for the Artix Transport
component that are specific to using the CICS server adapter.

In this section This section discusses the following topics:

Note: All the items discussed in this section are within the
iona_services.cicsa scope in the ARTIX configuration domain.

Sample Configuration Overview page 63

Configuration Details page 65
 62

CICS-Specific Configuration Items
Sample Configuration Overview

Overview This subsection provides an overview of the CICS-specific configuration
items for using the Artix Transport component.

Sample configuration The following is a sample configuration extract for the CICS-specific
configuration items in the ARTIX configuration domain.

Note: The example provided here shows only the contents of the
configuration file that are relevant to CICS-specific Artix Transport
configuration. (Ellipses are used to denote text that has been omitted for
brevity.)

…
iona_services
{
 …
 cicsa
 {
 orb_plugins = ["local_log_stream", "http", "soap"];

 event_log:filters = ["*=WARN+ERROR+FATAL",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 plugins:cicsa:direct_persistence = "yes";

 plugins:cicsa:use_soap = "yes";

 binding:server_binding_list = ["SOAP", ""];

 policies:well_known_addressing_policy:http:addr_list =
 ["%{LOCAL_HOSTNAME}:5051"];

 plugins:cicsa:repository_id = "type_info";

 plugins:cicsa:type_info:source = "DD:TYPEINFO";
 plugins:soap:type_info:source = "DD:TYPEINFO";

 # set the following to true to enable user/password
 # authentication check
 plugins:soap:check_header_password = "false";
63

CHAPTER 3 | Configuration
 secure
 {
 orb_plugins = ["local_log_stream", "https", "soap"];

 binding:server_binding_list = ["SOAP"];
 policies:well_known_addressing_policy:https:addr_list =
 ["%{LOCAL_HOSTNAME}:5061"];
 };
 64

CICS-Specific Configuration Items
Configuration Details

Overview This subsection provides details of the Artix Transport configuration items
that are specific to using the CICS server adapter. It discusses the following
topics:

• “ORB plug-ins list” on page 65.

• “Event logging” on page 66.

• “Persistence mode” on page 66.

• “Register supported interfaces with SOAP plug-in” on page 66.

• “Server binding list” on page 67.

• “Port on which server adapter listens” on page 67.

• “Type information repository used” on page 67.

• “Location of adapter type_info store” on page 67.

• “Location of SOAP type_info store” on page 68.

• “Username and password checking” on page 68.

ORB plug-ins list The related configuration item is orb_plugins. It specifies the ORB-level
plug-ins that the CICS server adapter should load at ORB_init() time when
using the SOAP plug-in. If you want the CICS server adapter to accept
insecure HTTP connections, ensure that you include "http" as a setting for
this item under the iona_services.cicsa scope. If you want the CICS
server adapter to accept secure HTTP connections, ensure that you include
"https" as a setting for this item under the iona_services.cicsa.secure
scope. For example:

orb_plugins = ["local_log_stream", "https", "soap"];
65

CHAPTER 3 | Configuration
Event logging The related configuration item is event_log:filters. It is used to specify
the types of events that the CICS server adapter logs and the extent to which
it logs them. To obtain events specific to the CICS server adapter, the
IT_MFA event logging subsystem can be added to this list item. For example:

Based on the preceding example, all IT_MFA events (except for INFO_LOW—
low priority informational events), and any warning, error, and fatal events
will be logged. The level of detail that is provided for IT_MFA events can
therefore be controlled by setting the relevant logging levels.

The following is a categorization of the informational events associated with
the IT_MFA subsystem.

Persistence mode The related configuration item is plugins:cicsa:direct_persistence. It
specifies the persistence mode policy adopted by the CICS server adapter.
To allow the CICS server adapter to run as a standalone service, set this to
"yes". Otherwise set it to "no", in which case the server adapter contacts
and registers with the locator service.

Register supported interfaces with
SOAP plug-in

The related configuration item is plugins:cicsa:use_soap. It instructs the
CICS server adapter to register the CORBA interfaces it supports as services
with the SOAP plug-in. If no value is specified for this item, it defaults to
"no", to not register supported interfaces as services with the SOAP plug-in.
Thus, this variable must be set to “yes” to expose these interfaces as SOAP
endpoints.

event_log:filters = ["*=WARN+ERROR+FATAL",
 "IT_MFA=INFO_HI+INFO_MED+WARN+ERROR+FATAL",
 "IT_ATLI2_IP=*"];

INFO_HI Configuration settings and server adapter startup and
shutdown messages.

INFO_MED Mapping gateway actions and CICS EXCI, IMS APPC or
IMS OTMA calls, including return codes.

INFO_LOW CICS or IMS segment data streams.
 66

CICS-Specific Configuration Items
Server binding list The related configuration item is binding:server_binding_list. It specifies
the server-side transport bindings that can be used by the CICS server
adapter. By default, "SOAP" is the only option specified. If you want to run
the CICS server adapter in IIOP mode, add "" to the list.

If you want the CICS server adapter to run in insecure mode, set this item
under the iona_services.cicsa scope. If you want the CICS server adapter
to run in secure mode, set this item under the
iona_services.cicsa.secure scope.

Port on which server adapter
listens

The related configuration items are policies:well_known_addressing_
policy:http:addr_list and policies:well_known_addressing_
policy:https:addr_list. They respectively specify the port on which the
CICS server adapter listens for client requests when running in insecure or
secure mode. The insecure version of this item is under the
iona_services.cicsa scope. The secure version of this item is under the
iona_services.cicsa.secure scope.

Type information repository used The related configuration item is plugins:cicsa:repository_id. It
specifies the type information repository used by the CICS server adapter to
store operation signatures for the processing of SOAP requests. This source
supplies the CICS server adapter with operation signatures as required.
Valid values are "ifr", "type_info", and "none".
If no value is specified for this item, it defaults to "ifr". However, the
recommended setting for SOAP is "type_info". See the CICS Adapters
Administrator’s Guide for more details about using type_info as a source of
type information.

Location of adapter type_info
store

The related configuration item is plugins:cicsa:type_info:source. It
specifies the location of the type_info store that the adapter plug-in should
use if it has been configured to use this particular type repository
mechanism.

If no value is specified, the current working directory is used by default. The
sample ARTIX configuration dataset uses a DD name for this setting.
67

CHAPTER 3 | Configuration
Location of SOAP type_info store The related configuration item is plugins:soap:type_info:source. It
specifies the location of the type_info store that the SOAP plug-in should
use to process SOAP payloads.

If no value is specified, the current working directory is used by default. The
sample ARTIX configuration dataset uses a DD name for this setting.

It is recommended that the same location be used (for example, the same
DD name) as that which is used by the adapter (see “Location of adapter
type_info store” on page 67).

Username and password checking The related configuration item is plugins:soap:check_header_password. It
indicates whether the user name and password passed in the header of a
SOAP request are to be checked for authentication purposes. If no value is
specified for this item, it defaults to "false", to not check the user name
and password.
 68

IMS-Specific Configuration Items
IMS-Specific Configuration Items

Overview This subsection describes the configuration items for the Artix Transport
component that are specific to using the IMS server adapter.

In this section This section discusses the following topics:

Note: All the items discussed in this section are within the
iona_services.imsa scope in the ARTIX configuration domain.

Sample Configuration Overview page 70

Configuration Details page 72
69

CHAPTER 3 | Configuration
Sample Configuration Overview

Overview This subsection provides an overview of the IMS-specific configuration items
for using the Artix Transport component.

Sample configuration The following is a sample configuration extract for the IMS-specific
configuration items in the ARTIX configuration domain.

Note: The example provided here shows only the contents of the
configuration file that are relevant to IMS-specific Artix Transport
configuration. (Ellipses are used to denote text that has been omitted for
brevity.)

...
iona_services
{
 imsa
 {
 event_log:filters = ["*=WARN+ERROR+FATAL","IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 plugins:imsa:direct_persistence = "yes";

 plugins:imsa:use_soap = "yes";

 orb_plugins = ["local_log_stream", "http", "soap"];

 binding:server_binding_list = ["SOAP", ""];

 policies:well_known_addressing_policy:http:addr_list = ["%{LOCAL_HOSTNAME}:5050"];

 plugins:imsa:repository_id = "type_info";

 plugins:soap:type_info:source = "DD:TYPEINFO";
 plugins:imsa:type_info:source = "DD:TYPEINFO";
 70

IMS-Specific Configuration Items
 # Set the following to true to enable user/password authentication check
 plugins:soap:check_header_password = "false";

 # Included to improve output of imsraw demo
 plugins:ims_otma:output_segment_num = "5";

 secure
 {
 orb_plugins = ["local_log_stream", "https", "soap"];

 binding:server_binding_list = ["SOAP"];

 policies:well_known_addressing_policy:https:addr_list = ["%{LOCAL_HOSTNAME}:5060"];
 };
...
71

CHAPTER 3 | Configuration
Configuration Details

Overview This subsection provides details of the Artix Transport configuration items
that are specific to using the IMS server adapter. It discusses the following
topics:

• “ORB plug-ins list” on page 72.

• “Event logging” on page 73.

• “Persistence mode” on page 73.

• “Register supported interfaces with SOAP plug-in” on page 73.

• “Server binding list” on page 74.

• “Port on which server adapter listens” on page 74.

• “Type information repository used” on page 74.

• “Location of adapter type_info store” on page 74

• “Location of SOAP type_info store” on page 75

• “Username and password checking” on page 75.

• “Number of initial output segments allocated” on page 75.

ORB plug-ins list The related configuration item is orb_plugins. It specifies the ORB-level
plug-ins that the IMS server adapter should load at ORB_init() time when
using the SOAP plug-in. If you want the IMS server adapter to accept
insecure HTTP connections, ensure that you include "http" as a setting for
this item under the iona_services.imsa scope. If you want the IMS server
adapter to accept secure HTTP connections, ensure that you include
"https" as a setting for this item under the iona_services.imsa.secure
scope. For example:

orb_plugins = ["local_log_stream", "https", "soap"];
 72

IMS-Specific Configuration Items
Event logging The related configuration item is event_log:filters. It is used to specify
the types of events that the IMS server adapter logs and the extent to which
it logs them. To obtain events specific to the IMS server adapter, the IT_MFA
event logging subsystem can be added to this list item. For example:

Based on the preceding example, all IT_MFA events (except for INFO_LOW—
low priority informational events), and any warning, error, and fatal events
will be logged. The level of detail that is provided for IT_MFA events can
therefore be controlled by setting the relevant logging levels.

The following is a categorization of the informational events associated with
the IT_MFA subsystem.

Persistence mode The related configuration item is plugins:imsa:direct_persistence. It
specifies the persistence mode policy adopted by the IMS server adapter. To
allow the IMS server adapter to run as a standalone service, set this to
"yes". Otherwise set it to "no", in which case the server adapter contacts
and registers with the locator service.

Register supported interfaces with
SOAP plug-in

The related configuration item is plugins:imsa:use_soap. It instructs the
IMS server adapter to register the CORBA interfaces it supports as services
with the SOAP plug-in. If no value is specified for this item, it defaults to
"no", to not register supported interfaces as services with the SOAP plug-in.
Thus, this variable must be set to “yes” to expose these interfaces as SOAP
endpoints.

event_log:filters = ["*=WARN+ERROR+FATAL",
 "IT_MFA=INFO_HI+INFO_MED+WARN+ERROR+FATAL",

"IT_ATLI2_IP=*"];

INFO_HI Configuration settings and server adapter startup and
shutdown messages.

INFO_MED Mapping gateway actions and CICS EXCI, IMS APPC or
IMS OTMA calls, including return codes.

INFO_LOW CICS or IMS segment data streams.
73

CHAPTER 3 | Configuration
Server binding list The related configuration item is binding:server_binding_list. It specifies
the server-side transport bindings that can be used by the IMS server
adapter. By default, "SOAP" is the only option specified. If you want to run
the IMS server adapter in IIOP mode, add "" to the list.

If you want the IMS server adapter to run in insecure mode, set this item
under the iona_services.imsa scope. If you want the IMS server adapter to
run in secure mode, set this item under the iona_services.imsa.secure
scope.

Port on which server adapter
listens

The related configuration items are policies:well_known_addressing_
policy:http:addr_list and policies:well_known_addressing_
policy:https:addr_list. They respectively specify the port on which the
IMS server adapter listens for client requests when running in insecure or
secure mode. The insecure version of this item is under the
iona_services.imsa scope. The secure version of this item is under the
iona_services.imsa.secure scope.

Type information repository used The related configuration item is plugins:imsa:repository_id. It specifies
the type information repository used by the IMS server adapter to store
operation signatures for the processing of SOAP requests. This source
supplies the IMS server adapter with operation signatures as required. Valid
values are "ifr", "type_info", and "none".
If no value is specified for this item, it defaults to "ifr". However, the
recommended setting for SOAP is "type_info". See the IMS Adapters
Administrator’s Guide for more details about using type_info as a source of
type information.

Location of adapter type_info
store

The related configuration item is plugins:imsa:type_info:source. It
specifies the location of the type_info store that the adapter plug-in should
use if it has been configured to use this particular type repository
mechanism.

If no value is specified, the current working directory is used by default. The
sample ARTIX configuration dataset uses a DD name for this setting.
 74

IMS-Specific Configuration Items
Location of SOAP type_info store The related configuration item is plugins:soap:type_info:source. It
specifies the location of the type_info store that the SOAP plug-in should
use to process SOAP payloads.

If no value is specified, the current working directory is used by default. The
sample ARTIX configuration dataset uses a DD name for this setting.

It is recommended that the same location be used (for example, the same
DD name) as that which is used by the adapter (see “Location of adapter
type_info store” on page 74).

Username and password checking The related configuration item is plugins:soap:check_header_password. It
indicates whether the user name and password passed in the header of a
SOAP request are to be checked for authentication purposes. If no value is
specified for this item, it defaults to "false", to not check the user name
and password.

Number of initial output segments
allocated

The related configuration item is plugins:ims_otma:output_segment_num. It
specifies the number of initial output segments to be allocated by the
OTMA-based IMS server adapter for the processing of SOAP requests. If no
value is specified for this item, it defaults to "5".

Note: This setting only applies if you have configured your IMS server
adapter to use the ims_otma plug-in.
75

CHAPTER 3 | Configuration
 76

CHAPTER 4

SOAP Security
Considerations
This chapter provides details of the different security
mechanisms supported by the Artix Transport component in
terms of how they can be configured and what they involve.

In this chapter This chapter discusses the following topics:

Security Architecture Overview for SOAP Mode page 79

Summary of Security Features and Credentials page 80

User Name and Password Checking page 83

Kerberos Ticket Checking page 86

SSO Token Checking page 93

HTTP Basic Authentication page 96

Client Principal Support page 98

SAF Checking page 102

HTTPS Security page 104
77

CHAPTER 4 | SOAP Security Considerations
Note: This chapter provides details of Orbix Mainframe security
considerations when running in SOAP mode. For details of Orbix
Mainframe security considerations when running in IIOP mode, see the
Mainframe Security Guide. Additionally, for details of security
considerations that are specific to CICS or IMS, see the CICS Adapters
Administrator’s Guide or IMS Adapters Administrator’s Guide.
 78

Security Architecture Overview for SOAP Mode
Security Architecture Overview for SOAP
Mode

Overview This subsection provides an overview of the architecture of the Orbix
Mainframe security framework when running in SOAP mode.

Graphical overview Figure 6 provides a graphical overview of the architecture of the Orbix
Mainframe security framework when running in SOAP mode.

Figure 6: Orbix Mainframe SOAP Mode Security Architecture

OS/390

SAF
e.g. RACF

On-host
authenticator

CICS or IMS
(not relevant to batch servers)

Kerberos
Key

Distribution
Center

is2_user_password_file.txt

Server Adapter ID
or

Client Principal

Kerberos
Keytab

File

Web Service Client

SOAP

HTTP (not TLS-enabled)
or HTTPS (TLS-enabled)

Batch Server
or

CICS or IMS Server Adapter

Kerberos
Ticket

checking

SSO
Token

checking

Client
Principal
Support

SAF
Username/
Password
checking

GSP

SOAP

is2.properties

Props

User
Data

WSSE credentials

HTTP Basic
Authentication

HTTP(S)

X.509
certificate
(for TLS)

iS2 Security Service
Off-host authenticator

IIOP (not TLS-enabled) or IIOP over TLS

File
Adapter
79

CHAPTER 4 | SOAP Security Considerations
Summary of Security Features and Credentials

Overview This subsection provides an overview of the various types of security
features and credentials supported by the Artix Transport component. It also
outlines the order of precedence used for checking security credentials with
a Web service request, and the different mechanisms that can be used to
perform such checks.

Summary of security features The Artix Transport component supports the following security features:

• User name and password checking—This involves checking a
username/password combination sent in a SOAP header for the
purposes of Web service client authentication.

• Kerberos ticket checking—This involves checking a Kerberos security
ticket sent in a SOAP header for the purposes of Web service client
authentication.

• Single Sign-On (SSO) token checking—This involves checking an SSO
token that a client may use instead of its username/password to
communicate with other applications, for the purposes of Web service
client authentication.

• HTTP Basic Authentication—This involves checking a
username/password combination sent in an HTTP header for the
purposes of Web service client authentication.

• SSL/TLS security—This involves encrypting data on-the-wire and
performing client authentication checks using trusted certificates.

• Client Principal support—This involves enabling the CICS or IMS server
adapter to run CICS and IMS applications under the client’s user ID
instead of under its own user ID.

• SAF checking—This involves checking a Principal value sent in a SOAP
header for the purposes of controlling client access to specific
operations and servers.

Each of these features is described in turn later in this chapter.
 80

Summary of Security Features and Credentials
Summary of security credentials The various types of security credentials supported by the Artix Transport
component include:

• WSSE username token—This relates to user name and password
checking. The Web service security extension (WSSE) UsernameToken
is a username/password combination that can be sent in a SOAP
header. The specification of WSSE UsernameToken is contained in the
WSS UsernameToken Profile 1.0 document from OASIS at
www.oasis-open.org.

• WSSE Kerberos ticket—The WSSE Kerberos specification is used to
send a Kerberos security ticket in a SOAP header. If you use Kerberos,
you must also configure the off-host Security Service (iSF) to use the
Kerberos adapter.

• SSO token—An SSO token is propagated in the context of a system
that uses single sign-on. This means that after initially signing on, a
client communicates with other applications by passing an SSO token
in place of the original username and password. This helps to minimize
the exposure of user names and passwords to snooping.

• HTTP Basic Authentication—HTTP Basic Authentication is used to
propagate username/password credentials in an HTTP header.

• X.509 certificate—This relates to SSL/TLS security, which ensures
that data is encrypted on-the-wire and that client authentication is
performed using trusted certificates.

Order of precedence for Web
service credentials checking

The following is the order of precedence for checking the various security
credentials that may be sent as part of a Web service client request
(assuming Orbix Mainframe is configured to support all such checks):

1. Perform user name and password checking. That is, check the WSSE
username token in the SOAP header.

2. If a username/password is not present in the SOAP header, and if the
HTTP layer has received username/password credentials using HTTP
Basic Authentication, check these HTTP credentials.

3. If a username/password is not present in either the SOAP or HTTP
header, perform Kerberos ticket checking.
81

CHAPTER 4 | SOAP Security Considerations
4. If the check in point 3 fails, or a Kerberos ticket is not present, perform
SSO token checking.

Checking credentials on-host or
off-host

For the purposes of credentials checking, Orbix Mainframe gives you the
option of using either on-host SAF security facilities (such as RACF) or the
off-host Security Service (iSF).

The plugins:soap:use_security_service configuration item allows you to
determine whether credentials checking is to be performed on-host or
off-host. The default value for this configuration item is "false", which
indicates that all credentials checking is to be performed by the on-host SAF
security facilities. If you specify a value of "true", this indicates that all
credentials checking is to be performed off-host by iSF.

All credentials checking for the same client request must be performed
either on-host or off-host. There is no option to mix and match between
on-host and off-host credentials checking in the same request.

Note: SSO token checking can only be performed off-host by iSF. It is not
supported by on-host SAF security facilities. For this reason, if you want to
enable SSO token checking for a particular request, all other credentials
checking for that request must also be performed by off-host iSF.
 82

User Name and Password Checking
User Name and Password Checking

Overview Orbix Mainframe can be configured to perform client authentication checks
against a WSSE username token (that is, a username/password combination
sent in a SOAP header). These authentication checks can be performed
on-host by SAF security facilities (such as, RACF, CA-ACF/2 and
CA-TopSecret) or off-host by the Security Service (iSF).

Graphical overview Figure 7 provides a graphical overview of how user name and password
checking is handled in the Orbix Mainframe security architecture.

Figure 7: Username/Password Checking in Security Architecture

z/OS

SAF
e.g. RACF

On-host
authenticator

CICS or IMS
(not relevant to batch servers)

is2_user_password_file.txt

Server Adapter ID
or

Client Principal

Web Service Client

SOAP

HTTP (not TLS-enabled)
or HTTPS (TLS-enabled)

Batch Server
or

CICS or IMS Server Adapter

Kerberos
Ticket

checking

SSO
Token

checking

Client
Principal
Support

SAF
Username/
Password
checking

GSP

SOAP

is2.properties

Props

User
Data

Username/
password

HTTP(S)

X.509
certificate
(for TLS)

iS2 Security Service
Off-host authenticator

IIOP (not TLS-enabled) or IIOP over TLS

File
Adapter
83

CHAPTER 4 | SOAP Security Considerations
Purpose of password checking The purpose of password checking is to enable the server to authenticate
the client that is invoking a Web service request. If password checking is
enabled in the server configuration, the client application must send a user
name and password in the header of a SOAP request. If the user name and
password are valid, the server can accept the client request (and, in the
case of the CICS or IMS server adapter, forward it to the relevant CICS
program or IMS transaction). However, if a SOAP request contains an
invalid user name or password, or a non-existent header, the request fails if
the server has no other way of authenticating the client.

Enabling user name and password
checking

Password checking is enabled by setting the following configuration item in
the configuration scope of the server:

This configuration item is set to "false" by default, which means password
checking is not enabled by default.

If you want on-host RACF facilities to check the user name and password,
set the plugins:soap:use_security_service configuration item to
"false". Alternatively, if you want the off-host Security Service (iSF) to
check the user name and password, set the
plugins:soap:use_security_service configuration item to "true" (the
default value).

Format of the user ID and
password in a request

The server requires that the user name and password are transmitted in the
format prescribed by the OASIS Web Services Security (WSS)
UsernameToken Profile specification. The server first reads the user name
and password from the SOAP header. Depending on where credentials
checks are being performed, the server then makes a call to either on-host

plugins:soap:check_header_password = "true";
 84

User Name and Password Checking
SAF security facilities or off-host iSF, to check if the password is correct for
the specified user name. The header passed from the client to the server
should take the following format, as described by the WSS specification:

A number of more recent Web services client development products provide
the ability to set this profile in a simple manner. Others enable the setting of
SOAP Headers, which can be used to achieve the same results. Refer to the
documentation of your Web services client development tool for details on
how to create this security profile.

Setting up required privileges for
on-host checks

If you want the server to perform password checks against on-host SAF
security facilities, additional security settings might be required. The
requirements vary, as follows, depending on whether the FACILITY RACF
class profile BPX.DAEMON is defined on your system:

• If BPX.DAEMON is defined, the caller’s user ID must have READ access to
the BPX.DAEMON profile. Additionally, all programs running in the
address space must be loaded from a library controlled by a security
product. A library identified to RACF Program Control is one example.

• If BPX.DAEMON is not defined, this user ID must have a UID of 0
assigned to it in the OMVS segment of its RACF user profile.

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
 <S:Header>
 …
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>JSMITH</wsse:Username>
 <wsse:Password>PASS</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 …
 </S:Header>
 …
</S:Envelope>
85

CHAPTER 4 | SOAP Security Considerations
Kerberos Ticket Checking

Overview Orbix Mainframe can be configured to perform client authentication checks
against a Kerberos ticket sent in a SOAP header. These authentication
checks can be performed on-host by SAF security facilities (such as, RACF,
CA-ACF/2 and CA-TopSecret) or off-host by the Security Service (iSF).

Graphical overview Figure 8 provides a graphical overview of how Kerberos ticket checking is
handled in the Orbix Mainframe security architecture.

Figure 8: Kerberos Ticket Checking in Security Architecture

z/OS

SAF
e.g. RACF

On-host
authenticator

CICS or IMS

Kerberos
Key

Distribution
Center

is2_user_password_file.txt

Server Adapter ID
or

Client Principal

Kerberos
Keytab

File

Web Service Client

SOAP

HTTP (not TLS-enabled)
or HTTPS (TLS-enabled)

Batch Server
or

CICS or IMS Server Adapter

Kerberos
Ticket

checking

SSO
Token

checking

Client
Principal
Support

SAF
Username/
Password
checking

GSP

SOAP

is2.properties

Props

User
Data

Kerberos ticket

HTTP(S)

X.509
certificate
(for TLS)

iS2 Security Service
Off-host authenticator

IIOP (not TLS-enabled) or IIOP over TLS

File
Adapter
 86

Kerberos Ticket Checking
What is Kerberos? Kerberos is an authentication system used for authenticating service
requests in a computer network. It allows two parties to exchange private
information across an otherwise public network. It provides a means by
which servers can authenticate the clients that are requesting their services,
without the need for the client’s password to pass through the open
network.

How Kerberos works The following is an overview of the Kerberos authentication process:

1. A client requests a session key—a ticket-granting ticket—from a
central authority called the Key Distribution Center (KDC).

2. The KDC authenticates the client and generates the ticket-granting
ticket based on the user’s password and a randomly generated key
representing the requested service. The KDC then sends the
ticket-granting ticket to the client and places the randomly generated
key in a keytab file for subsequent use by the server.

3. When the client wants to request a particular service, it requests a
service ticket from the KDC, and sends its ticket-granting ticket as part
of this request.

By sending the ticket-granting ticket along with its service ticket
request, the client can identify itself to the KDC without needing to be
prompted again for its password.

4. The KDC generates a service ticket based on the requested server’s key
and encodes the ticket with the client’s password. The service ticket is
also time-stamped, so that the client can use it to make additional
service requests within a certain time period without needing to be
reauthenticated or request another service ticket. The KDC then sends
the service ticket to the client.

5. The client decodes the reply from the KDC, using the appropriate
password, and embeds the service ticket in the request message it
sends to the server.

Note: Kerberos deals only with authentication checking and does not in
any way facilitate authorization checks. In other words, while it can be
used to identify a particular client, it cannot be used to determine whether
that client has the authority to request a particular service.
87

CHAPTER 4 | SOAP Security Considerations
6. The server decodes the ticket, knowing that the client has already been
authenticated by the KDC.

Kerberos concepts The Key Distribution Center (KDC) is a central component in Kerberos
security. As described in “How Kerberos works” on page 87, the KDC is
responsible for initial client authentication, and for issuing ticket-granting
tickets for particular client sessions and service tickets for particular service
requests.

A realm is the scope or domain of the KDC. A realm name is usually based
on the name of the TCP/IP subdomain it covers (for example,
microfocus.com). Each client and server exists in a single realm, but there
can be cross-realm authentication between clients and servers in different
realms. By convention, realm names are written in uppercase (for example,
MICROFOCUS.COM).
A principal is the name or token by which clients and servers are known to
the KDC and each other. For client users, the token takes the form
name@realm (for example, John Smith@MICROFOCUS.COM). For servers, the
token takes the form name/instance@realm, where instance is usually the
hostname on which the server is running (for example,
foo/mymachine.dublin.emea.microfocus.com@MICROFOCUS.COM).
A credentials cache is a list of recently used tickets, including the
ticket-granting ticket, for a particular user. It is usually stored in memory or
in a temporary file with no shared permissions. The use of a credentials
cache reduces the number of calls a client needs to make on the KDC.
Kerberos provides the following command-line utilities to manage a
credentials cache:

Note: At this point, the server can choose to accept or reject the client
request. It is beyond the scope of Kerberos to determine whether a client
has the authority to request a particular service. However, the security
service (iSF) can do so, using a “roles” XML file for authorization purposes.

kinit This lets the user initialize the credentials cache with
their client principal name. The kinit command also
automatically stores the ticket-granting ticket for the user
in the credentials cache.

klist This displays the contents of the credentials cache.

kdestroy This deletes the contents of the credentials cache.
 88

Kerberos Ticket Checking
Kerberos on z/OS The Network Authentication Service is IBM’s implementation of Kerberos on
z/OS. All Kerberos information on z/OS is stored in RACF. RACF user profiles
have an extra KERB segment that contains the user’s Kerberos principal and
Kerberos password. (The Kerberos password is generated automatically by
RACF whenever the user changes their z/OS password). KERBLINK profiles
are used to map Kerberos principals to z/OS user IDs. When a RACF user
profile is allocated a new KERB segment, z/OS automatically creates a
KERBLINK profile that maps the Kerberos principal to the corresponding
user ID.

The KDC component of Kerberos on z/OS runs as a started task. However, it
reads its configuration details from the hierarchical file system. Generated
keytab files on z/OS are always HFS files, and are never stored in data sets.

Enabling Kerberos ticket checking Kerberos ticket checking is enabled by setting the following configuration
items in the configuration scope of the server:

If you want on-host RACF facilities to check the Kerberos ticket, set the
plugins:soap:use_security_service configuration item to "false".
Alternatively, if you want the off-host Security Service (iSF) to check the
Kerberos ticket, set the plugins:soap:use_security_service configuration
item to "true" (the default value).

plugins:soap:check_header_tokenThis indicates whether to check the
Kerberos ticket in incoming SOAP
headers. This must be set to "true" to
enable Kerberos ticket checking. The
default is "false".

kerberos:server_principal This specifies the name to be used for
validation of incoming Kerberos tickets.
If this is not specified, the WSDL
service name is used by default.
89

CHAPTER 4 | SOAP Security Considerations
On-host RACF checking If plugins:soap:use_security_service is set to "false", Kerberos ticket
checking is performed using on-host RACF facilities. In this case, the token
check uses the standard GSS-API. For this reason, Orbix Mainframe requires
that a Kerberos token is a base64-encoded GSS-API token. The token can
be checked using RACF in either of two ways:

• The key can be looked up in the user’s RACF profile provided all of the
following apply:

♦ The KRB5_SERVER_KEYTAB environment variable is set to 1.
♦ The user ID that the server is running under has read access to

IRR.RUSERMAP.FACILITY.
♦ The server principal matches the default Kerberos principal for

the user ID.

• The key is looked up in the keytab file, which contains an entry for the
server principal.

Off-host iSF checking If plugins:soap:use_security_service is set to "true", Kerberos ticket
checking is performed off-host using an instance of the Security Service
(iSF). In this case, all the following apply:

• Ensure that the following configuration items are included in the
configuration scope of the server:

♦ initial_references:IT_SecurityService:reference—This
must specify the object reference to be used for contacting the iSF
server.

♦ initial_references:IT_CSIAuthenticationObject:plugin—
This must specify a value of "gsp", so that the GSP plug-in can
be loaded, as required.

Note: In this case, no keytab file is necessary.
 90

Kerberos Ticket Checking
• Ensure that iSF is configured to use the Kerberos adapter. For example,
consider the following example is2.properties file:

• Ensure that iSF specifies the correct Kerberos server principal. For
example, consider the following example jaas.conf file:

• Because iSF can use only a single server principal, ensure that each
server has its own instance of iSF with which it can communicate, or
alternatively ensure that all servers share the same Kerberos principal.

Sample is2.properties file
com.iona.isp.adapters=krb5

com.iona.isp.adapter.krb5.class=com.microfocus.security.is2adapter.krb5.IS2KerberosAdapter
com.iona.isp.adapter.krb5.param.java.security.krb5.realm=DUBLIN.EMEA.MICROFOCUS.COM
com.iona.isp.adapter.krb5.param.java.security.krb5.kdc=

mymachine.dublin.emea.microfocus.com
com.iona.isp.adapter.krb5.param.java.security.auth.login.config=/opt/jaas.conf
com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly=false
com.iona.isp.adapter.krb5.param.sun.security.krb5.debug=true

/**
 * Sample jaas.conf file
 */
com.sun.security.jgss.accept {
 com.sun.security.auth.module.Krb5LoginModule required debug=true storeKey=true doNotPrompt=true
 principal="test_server/mymachine.dublin.emea.microfocus.com@DUBLIN.EMEA.MICROFOCUS.COM"
 useKeyTab=true keyTab="/home/bnorth/kerberos/keytab" ;
};
91

CHAPTER 4 | SOAP Security Considerations
Extracting a valid client principal
from an authenticated Kerberos
ticket

You can use the plugins:soap:extract_token_principal configuration
item to enable the server to set the GIOP requesting principal for an
incoming request to an MVS user ID that matches the Kerberos principal
found in the authenticated Kerberos ticket.

This option uses the RACF callable service, R_usermap. The R_usermap
callable service requires that:

• The user making the call (that is, the server ID) has READ access to the
FACILITY class IRR.RUSERMAP.

• A KERBLINK profile exists that maps the Kerberos principal being
checked to the MVS user ID.

R_usermap does not require that the Kerberos KDC is running on z/OS, so
plugins:soap:extract_token_principal can be set to "true" regardless of
whether client authentication is to be performed on-host by RACF or off-host
by iSF (that is, regardless of whether plugins:soap:use_security_service
is set to "true" or "false").
 92

SSO Token Checking
SSO Token Checking

Overview Orbix Mainframe can be configured to perform client authentication checks
against a Single Sign-On (SSO) token sent in a SOAP header. These
authentication checks can be performed off-host by the Security Service
(iSF).

Graphical overview Figure 9 provides a graphical overview of how SSO token checking is
handled in the Orbix Mainframe security architecture.

Figure 9: SSO Token Checking in Security Architecture

z/OS

SAF
e.g. RACF

On-host
authenticator

CICS or IMS
(not relevant to batch servers)

is2_user_password_file.txt

Server Adapter ID
or

Client Principal

Web Service Client

SOAP

HTTP (not TLS-enabled)
or HTTPS (TLS-enabled)

Batch Server
or

CICS or IMS Server Adapter

Kerberos
Ticket

checking

SSO
Token

checking

Client
Principal
Support

SAF
Username/
Password
checking

GSP

SOAP

is2.properties

Props

User
Data

SSO token

HTTP(S)

X.509
certificate
(for TLS)

iS2 Security Service
Off-host authenticator

IIOP (not TLS-enabled) or IIOP over TLS

File
Adapter
93

CHAPTER 4 | SOAP Security Considerations
What is SSO? Single sign-on (SSO) is an Orbix Security Framework feature that is used to
minimize the exposure of user names and passwords to snooping. After
initially signing on, a client communicates with other applications by
passing an SSO token in place of the original username and password.

Graphical overview of how SSO
works

Figure 10 provides a graphical overview of how a client first requests an
SSO token and then propagates it as part of a Web service request.

How SSO works The following is an overview of how SSO token checking works (see
Figure 10):

1. The Web service client first invokes the login() method, to
communicate with the Login Service, which might be running
separate to or within the Security Service (iSF).

2. The client passes a user name and password, which the Login Service
authenticates against iSF.

Figure 10: Request for and Propagation of SSO tokens

Web Service
Client

Username/
password

Login Service iS2

SSO token

SSO token
Batch Server

or
CICS or IMS Server Adapter

z/OS
 94

SSO Token Checking
3. If the client credentials are valid, the Login Service returns an SSO
token to the client.

4. The client sends the SSO token in the SOAP header of its Web service
request. In this case, the username field is populated with
_SSO_TOKEN_, and the password field is populated with the actual SSO
token.

5. The server invokes the authenticate() method, to request off-host iSF
to authenticate the SSO token.

Enabling SSO token checking Because SSO token checking is part of the family of WSSE credentials
(along with username/password and Kerberos ticket checking), it is enabled
by setting the following configuration item in the configuration scope of the
server:

This configuration item is set to "false" by default, which means SSO token
checking is not enabled by default.

SSO token checking can only be performed off-host by the iSF security
service. For this reason, the plugins:soap:use_security_service
configuration item must be set to "true".

plugins:soap:check_header_token = "true";

Note: If you wish to pass an SSO token in the SOAP header, this means
that any other credentials checking must also be performed off-host.
95

CHAPTER 4 | SOAP Security Considerations
HTTP Basic Authentication

Overview Orbix Mainframe can be configured to perform client authentication checks
against a username/password combination sent in an HTTP header. These
authentication checks can be performed on-host by SAF security facilities
(such as, RACF, CA-ACF/2 and CA-TopSecret) or off-host by the Security
Service (iSF).

Graphical overview Figure 5 provides a graphical overview of how HTTP Basic Authentication is
handled in the Orbix Mainframe security architecture.

Figure 11: HTTP Basic Authentication in Security Architecture

z/OS

SAF
e.g. RACF

On-host
authenticator

CICS or IMS
(not relevant to batch servers)

is2_user_password_file.txt

Server Adapter ID
or

Client Principal

Web Service Client

SOAP

HTTP (not TLS-enabled)
or HTTPS (TLS-enabled)

Batch Server
or

CICS or IMS Server Adapter

Kerberos
Ticket

checking

SSO
Token

checking

Client
Principal
Support

SAF
Username/
Password
checking

GSP

SOAP

is2.properties

Props

User
Data

HTTP Basic
Authentication

HTTP(S)

X.509
certificate
(for TLS)

iS2 Security Service
Off-host authenticator

IIOP (not TLS-enabled) or IIOP over TLS

File
Adapter
 96

HTTP Basic Authentication
Enabling HTTP Basic
Authentication

HTTP Basic Authentication is enabled in the same way that you can enable
checking of the username/password in the SOAP header; that is, by setting
the following configuration item in the configuration scope of the server:

This configuration item is set to "false" by default, which means HTTP
Basic Authentication is not enabled by default.

If you want on-host RACF facilities to perform the authentication check on
the credentials received in the HTTP header, set the
plugins:soap:use_security_service configuration item to "false".
Alternatively, if you want the off-host Security Service (iSF) to perform the
check, set the plugins:soap:use_security_service configuration item to
"true" (the default value).

plugins:soap:check_header_password = "true";
97

CHAPTER 4 | SOAP Security Considerations
Client Principal Support

Overview The CICS or IMS server adapter can be configured to run a CICS program or
IMS transaction under the client user ID (that is, the client principal) rather
than under the server adapter’s own user ID. This subsection discusses the
following topics:

• “Using a principal” on page 98.

• “Enabling client principal support” on page 99.

• “Mapping client principal values to z/OS user IDs” on page 99.

• “Switching threads” on page 99.

• “Setting up required privileges” on page 100.

• “Further reading” on page 101.

Using a principal The client principal (that is, client user ID) must be passed in the SOAP
request as part of the SOAP header. It must be similar to the following:

In the preceding example, JSMITH is the client principal.

Note: User name and password checking must be activated, as described
in “User Name and Password Checking” on page 83“, to allow client
principal support to be activated.

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
 <S:Header>
 …
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>JSMITH</wsse:Username>
 </wsse:UsernameToken>
 </wsse:Security>
 …
 </S:Header>
 …
</S:Envelope>
 98

Client Principal Support
Enabling client principal support Client principal support is enabled by setting the plugins:cicsa:
use_client_principal or plugins:imsa:use_client_principal
configuration item to "yes" in the configuration domain for the server
adapter.

When this item is set to "yes", the principal is to be obtained from the
SOAP request, truncated to eight characters, and converted to uppercase.
The server adapter assumes the identity of the client and then runs the CICS
program or IMS transaction, using the client principal rather than under the
server adapter’s own user ID. If no principal is available or it is invalid, the
transaction fails. This results in CICS or IMS, and their associated plug-ins,
making their security checks against the client principal.

If client principal support is not enabled, the CICS program or IMS
transaction runs under the server adapter’s own user ID, and security checks
are made against this user ID. This requires that the server adapter has
access to all the resources it needs.

Mapping client principal values to
z/OS user IDs

For the purposes of checking access to CICS or IMS resources, the only
translation that the server adapter performs between the client Principal
value and the z/OS user ID is to convert lowercase letters to uppercase and
to restrict the ID to no more than eight characters. Long Principal values
from other platforms have their Principals truncated to eight characters. This
means that Principals longer than eight characters must have their first
eight characters match a valid z/OS user ID. Principals with eight characters
or less in length must entirely match a valid z/OS user ID. This means that
users must have the same name on the client platform and z/OS.

Switching threads When client principal support is enabled, the server adapter uses the
pthread_security_np() call on the thread that is processing the client
request, to switch that thread to run the under the requested user ID (client

Note: This configuration item is not included by default in the
configuration file, so you must add it to the server adapter configuration if
you want to activate client principal support. You can add it within the
global scope, or alternatively within the iona_services.cicsa or
iona_services.imsa scope.
99

CHAPTER 4 | SOAP Security Considerations
principal). It then makes the request, using the client principal. For this to
work, the server adapter must be program-controlled. See “Setting up
required privileges” next for details of how to do this.

Setting up required privileges If client principal support is enabled, the user ID under which the server
adapter runs (that is, the client principal) might need to be granted special
privileges to enable thread-level security environments. The requirements
vary, as follows, depending on whether the FACILITY RACF class profile
BPX.SERVER is defined on your system:

• If BPX.SERVER is defined, the user ID must have READ access to the
BPX.SERVER profile. Otherwise, EPERM errors result when the server
adapter is trying to switch identities on the thread. Additionally, the
server adapter executable must reside in a z/OS load library that is
PADS-defined. (PADS is the acronym for Program Access to Data
Sets.)

• If BPX.SERVER is not defined, this user ID must have a UID of 0
assigned to it in the OMVS segment of its RACF user profile.

Additionally, because the server adapter is processing requests for users
without having their passwords, you must activate the SURROGAT RACF class
and define profiles in it that allow the server adapter’s user ID to
impersonate particular users. You can do this by establishing a profile for
each potential client user. For example:

Alternatively, you might want to use a generic profile that allows the server
adapter to impersonate any client user. For example:

RDEFINE SURROGAT BPX.SRV.client1 UACC(NONE)
PERMIT BPX.SRV.client1 CLASS(SURROGAT) ID(Adapter_ID)

ACCESS(READ)
RDEFINE SURROGAT BPX.SRV.client2 UACC(NONE)
PERMIT BPX.SRV.client2 CLASS(SURROGAT) ID(Adapter_ID)

ACCESS(READ)

Note: In the preceding example, Adapter_ID represents the RACF user ID
for the server adapter.

RDEFINE SURROGAT BPX.SRV.* UACC(NONE)
PERMIT BPX.SRV.* CLASS(SURROGAT) ID(Adapter_ID) ACCESS(READ)
 100

Client Principal Support
Access to such profiles should be very tightly controlled.

Further reading See the IBM publication Planning:OpenEdition MVS, SC23-3015 for more
information on enabling thread-level security for servers.

Note: If, at this point, the address space is still not program-controlled,
the server adapter throws an exception back to the client and logs an error
message, to indicate that it could not switch to that user ID and is
therefore not going to attempt to start the CICS program or IMS
transaction.
101

CHAPTER 4 | SOAP Security Considerations
SAF Checking

Overview The SAF plug-in provides optional Principal-based access control. A server
might accept or reject incoming requests, based upon a Principal value in
the SOAP request header. The value is treated as a z/OS user ID and access
is checked against an operation-specific SAF profile name. Access can
therefore be controlled on a per-operation basis, or (using generic profiles)
on a per-server basis.

Enabling SAF checking The steps to enable SAF checking are:

1. Add "saf" to the list of values for the orb_plugins configuration item
in the configuration scope of the server, as follows:

2. Add "SAF" to the list of values for the binding:server_binding_list
configuration item in the configuration scope of the server, as follows:

3. Ensure that the plugins:soap:check_header_password configuration
item is set to "true".

4. If you want to specify a profile class other than "IONA", add the
following configuration item to the global scope, to ensure that the SAF
plug-in uses the correct SAF resource class (where MYCLASS represents
the name of your SAF resource class):

…
orb_plugins=["local_log_stream", "saf", "http", "soap"];
…

…
binding:server_binding_list = ["SAF+SOAP", "SAF"];
…

plugins:saf:profile_class = "MYCLASS";
 102

SAF Checking
5. If you want Orbix Mainframe to use an ORB name other than
"iona_services.imsa" or "iona_services.cicsa", to build up the
resource name, add the following configuration item to the global
scope:

6. If the SAF FACILITY class profile, BPX.SERVER, is defined, ensure that
the user ID under which the server runs has READ access to this
profile.

Alternatively, if the SAF FACILITY class profile, BPX.SERVER, is not
defined, ensure that the user ID under which the server runs has a UID
of zero.

Note: If your chosen resource class does not exist, ask your systems
programmer to add an entry for it in both the RACF Class Descriptor
Table and the RACF Router Table. The IBM publication z/OS Security
Server (RACF) System Programmer’s Guide provides details of how
to do this.

plugins:saf:service_name = "MYSERVICE";
103

CHAPTER 4 | SOAP Security Considerations
HTTPS Security

Overview Depending on the security requirements at your site, the activation of
HTTPS (an SSL/TLS-based security system) should be considered. The use
of SSL/TLS security ensures that data is encrypted on-the-wire and that
client authentication is performed using trusted SSL certificates.
Additionally, if user name and password checking is enabled (see “User
Name and Password Checking” on page 83), SSL/TLS ensures that the
password in the header of a SOAP request cannot be intercepted while it is
travelling with the request.

Generating SSL certificates SSL/TLS security uses a system of trusted X.509 certificates for client
authentication. Orbix Mainframe allows you to generate these certificates as
follows:

1. Customize the orbixhlq.JCLLIB(GENCERT) JCL supplied with your
Orbix Mainframe installation.

2. If you have existing SSL certificates under your user ID, either delete
them using orbixhlq.JCLLIB(DELCERT), or ensure that the certificates
you are about to generate have a different name (DN) and label.

3. Submit the orbixhlq.JCLLIB(GENCERT) JCL, to generate the following
certificates that the server is to use for identification purposes when
running in secure mode:

♦ orbixhlq.CERT.USERID.CA
♦ orbixhlq.CERT.USERID.CLNT

Note: Details of how to do this are provided in the GENCERT JCL
itself.

Note: This step is optional but recommended.
 104

HTTPS Security
4. By default, the Artix Transport server demonstrations use the
credentials defined to the PKCS#12 file orbixhlq.CERT.USERID.CLNT.
To allow clients such as Artix, .NET, or WebLogic Web service clients
to perform server authentication, the CA certificate that was used to
generate this identity should be copied to the client system. Use FTP to
copy the CA certificate orbixhlq.CERT.USERID.CA in ASCII format to
the client system. Ensure that Orbix security policies have specified
that server authentication is required.

Similarly, if the server is to perform client authentication, trusted CA
certificates must be made available to the server.

Enabling the server to support
SSL/TLS security

To enable the server to support SSL/TLS security:

1. Orbix Mainframe services (such as the CICS or IMS server adapters)
require access to some IBM System SSL modules. You must therefore
include the System SSL load library in the STEPLIB of
orbixhlq.PROCLIB(ORXG). You can do this by removing the comment
character (*) from the following line in the ORXG procedure:

Refer to the ORXVARS include member for details on the setting of the
SSLLOAD variable. By default, this is set to SYS1.SIEALNKE.

2. A TLS-enabled configuration domain can be set up, using the JCL
supplied in orbixhlq.JCLLIB(DEPLOYT). This JCL copies the secure
template configuration that is provided with your installation in
orbixhlq.CONFIG(TLSTMPL) to orbixhlq.DOMAINS(TLSDOMA). It also
customizes it, allowing services and applications to run securely.

By default, a secure installation includes this configuration file. This
means that orbixhlq.CONFIG(DEFAULT@) contains the following line:

Note: See the Mainframe Security Guide for more details on
security policies.

//* DD DISP=SHR,DSN=&SSLLOAD

…
include "//orbixhlq.CONFIG(TLSDOMA)";
…

105

CHAPTER 4 | SOAP Security Considerations
3. Open the secure configuration domain (this is TLSDOMA by default) and
customize the following configuration items:

Note: If you have already previously deployed a secure CORBA
domain, the TLSTMPL member should have already been copied to the
orbixhlq.DOMAINS PDS. Therefore, you might choose to reuse the
TLSDOMA member from your CORBA configuration domain.

Note: If you have changed the member names for the relevant
configuration files, substitute the names in the preceding instruction,
as appropriate.

policies:well_known_addressing_
policy:https:addr_list

This specifies the hostname on
which the server is running in
SOAP mode, and the port
number that it uses to listen for
incoming secure Web service
client requests.

orb_plugins Ensure that this includes
"https" (rather than "http")
among its settings.

Note: See the Mainframe Security Guide for more information on Orbix
Mainframe security and for full details of all the configuration items that
need to be set to enable TLS security.
 106

CHAPTER 5

Common Tasks
This chapter provides details of topics that might be of interest to more
advanced users of the Artix Transport component. These include a discussion
of the different WSDL encoding styles supported and made available by the
Artix Transport, and an explanation of how to perform various tasks relating
to topics such as event logging and username and password checking in SOAP
servers on the mainframe.

In this chapter This chapter discusses the following topics:

Accessing WSDL Contracts page 108

Enabling Logging on the Server page 112

Modifying the Extent and Range of Logging page 114

Enabling Logging of HTTP Requests and Responses page 117

Enabling Logging of HTTPS Requests and Responses page 118

Enabling User Name and Password Checking by RACF page 119

Enabling User Name and Password Checking by iSF page 120

Enabling Client Principal Support page 121
107

CHAPTER 5 | Common Tasks
Accessing WSDL Contracts

Overview This section discusses how Orbix Mainframe servers that are being exposed
as Web services publish their WSDL. It also describes how a different
contract is made available for each WSDL encoding style and provides
instructions on how to access these various contracts.

This section discusses the following topics:

• “WSDL contracts in Artix Transport”.

• “Calling up available services”.

• “Selecting a service”.

• “Data encoding mechanisms”.

• “Accessing a particular WSDL contract directly”.

WSDL contracts in Artix Transport The Artix Transport component publishes WSDL contracts for
mainframe-based Web services. These contracts are made available from an
HTTP or HTTPS endpoint directly on the Web service that is running on the
mainframe.

Calling up available services To view the WSDL contracts that are available on a server, you can call up
the entire list of services available from an Internet browser, using a URL of
the form http://hostname:port/ionasoap. (For secure domains, use a URL
of the form https://hostname:port/secureionasoap).
Figure 12 shows an example of the output from a batch simple
demonstration server.

Figure 12: Calling up available services
 108

Accessing WSDL Contracts
Selecting a service From the resulting service navigation page, you can select a service by
clicking on it in the list. This in turn opens a WSDL contract selection page,
as shown in Figure 13.

From this WSDL contract selection page, you can view several variants of
the WSDL contract for the selected service. These variants use different
styles of WSDL encoding, and allow different client development
environments to be supported, as follows:

• Wrapped document-literal encoding

• RPC-literal encoding

• RPC-Soap encoding (for .NET clients)

• RPC-Soap encoding (for Artix and WebLogic clients)

Note: For IMS and CICS, hostname and port refer to the host and port on
which the IMS or CICS server adapter is running. Typically, a server
adapter exposes many servers.

Figure 13: Selecting a service

Note: See “Data encoding mechanisms” next for an overview of the
different encoding styles.
109

CHAPTER 5 | Common Tasks
Data encoding mechanisms Because the Artix Transport component can enable an Orbix Mainframe
application to support Web service client calls over SOAP, it supports
various Web service encoding mechanisms for the transfer of data across
the Internet. These Web service encoding mechanisms include:

• Document literal encodings—This is a document-oriented service that
uses literal or schema-defined encoding rules to format
request/response messages. Document literal is a reader-makes-right
encoding. This means that the receiver is expected to use the schema
definitions defined in the WSDL contract to drive encoding/decoding of
parameters in request/response messages.

There are two contract variants for this encoding: wrapped and
unwrapped (or bare). The wrapped convention is generally the
accepted best practice approach. The Artix Transport only supports the
wrapped variant.

• RPC literal encodings—This is an RPC-based service that uses literal
or schema-defined encoding rules to format request/response
messages. RPC literal (like document literal) is a reader-makes-right
encoding. This means that the receiver is expected to use the schema
definitions defined in the WSDL contract to drive encoding/decoding of
parameters in request/response messages.

• RPC SOAP encodings—This is an RPC-based service that uses the
SOAP encoding rules to format request and response messages. To
work around problems in various client-side SOAP stacks, there are
two contract variants available for RPC SOAP encodings:

♦ .NET

♦ Artix/WebLogic

It is not possible to provide a single WSDL mapping for arrays that is
acceptable to all SOAP packages, using RPC-SOAP as the encoding
style. Therefore, the Artix Transport exposes both .NET and
Artix/WebLogic variants of RPC-SOAP-encoded WSDL.
 110

Accessing WSDL Contracts
This is necessary because a WSDL mapping for array types that works
with Microsoft .NET does not necessarily work for other products, such
as BEA Weblogic. See “SOAP Overview” on page 20 for more details.

Accessing a particular WSDL
contract directly

Wsdl contracts for the different encoding styles are available directly using
the following URLS:

• Wrapped document-literal
http://host:port/ionasoap/ServiceName?wsdl=doc_literal
or

http://host:port/ionasoap/ServiceName?wsdl
• Document-literal

http://host:port/ionasoap/ServiceName?wsdl=doc_literal
• RPC-literal

http://host:port/ionasoap/ServiceName?wsdl=rpc_literal
• RPC-SOAP (.NET)

http://host:port/ionasoap/ServiceName?wsdl=soap_encoded_array
s

• RPC-SOAP (Artix and WebLogic)
http://host:port/ionasoap/ServiceName?wsdl=soap_encoded_array
s

Note: This encoding style is now deprecated by the WS-I, but is included
here for completeness. Literal encodings are the preferred convention.
111

CHAPTER 5 | Common Tasks
Enabling Logging on the Server

Overview This section provides instructions on how to enable more detailed logging for
the server and how to write this output to the server’s JES2 output file and
to the operator console (if required). This allows server events to be
monitored.

Steps The steps to complete this task are:

1. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

2. To enable logging to the server’s JES2 output file, ensure that the
orb_plugins configuration item includes "local_log_stream" among
its settings in the configuration scope of the server, as follows:

3. To enable logging to the operator console, ensure that the orb_plugins
configuration item includes "wto_log_stream" among its settings in
the configuration scope of the server, as follows:

…
orb_plugins = ["local_log_stream", "https", "soap"];
…

Note: The "local_log_stream" setting is included by default.

…
orb_plugins = ["local_log_stream", "wto_log_stream",

"https", "soap"];
…

 112

Enabling Logging on the Server

If you want to modify the extent of what is logged, see “Modifying the Extent
and Range of Logging” on page 114 for more details.

Note: The "wto_log_stream" setting is not included by default, so
you need to add it. Removal of the "local_log_stream" variable in
this case is at the user’s discretion. If both "local_log_stream" and
"wto_log_stream" are specified, both logging mechanisms are used
simultaneously.
113

CHAPTER 5 | Common Tasks
Modifying the Extent and Range of Logging

Overview This section provides instructions on how to customize both the extent to
which logging is to be performed (for example, only log fatal errors) and the
range of system components that are to be logged (for example, only log
SAF-related messages).

Steps The steps to complete this task are:

1. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

2. Ensure that the event_log:filters configuration item in the
configuration scope of the server specifies the level of logging desired.
(See “Format” for details of how to set values for event_log:filters.)

Format The format of the configuration settings for event_log:filters is as follows:

Valid values This is a sample range of valid values that can pertain to component_to_log:

…
event_log:filters = ["component_to_log=events_to_log",

"component_to_log=events_to_log",
 …]
…

IT_MFA IMS/CICS Mainframe adapter events (for example,
IMS/CICS transport configuration settings).

IT_SAF SAF events (for example, SAF authorization checks)

IT_HTTP HTTP events (for example, HTTP requests/responses)

IT_HTTPS HTTPS events (for example, HTTPS requests/responses)

IT_ATLI2_SOAP SOAP events (for example, registration of service
endpoint)

IT_ATLI2_IP IP events (for example, received inbound connection)

IT_CORE Core events (for example, plug-in loaded)
 114

Modifying the Extent and Range of Logging
The full range of valid values that can pertain to events_to_log are:

Examples The following are examples of possible settings for event_log:filters,
based on the preceding format:

• The following indicates that all warnings and errors for all system
components should be logged, and that information messages specific
to the server adapter should also be logged:

• The following indicates that all events should be logged for all system
components:

"NONE" No events

"INFO_ALL" All informational (non-warning, non-error) messages

"INFO_LO" Low-priority informational (non-warning, non-error)
messages

"INFO" Low-priority informational (non-warning, non-error)
messages

"INFO_HI" High-priority informational (non-warning, non-error)
messages

"INFO_MED" Medium-priority informational (non-warning, non-error)
messages

"WARN" Warning (non-error) messages

"ERR" Error messages

"FATAL" Fatal error messages

event_log:filters = ["*=WARN+ERROR+FATAL",
"IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

event_log:filters = ["*=*"];
115

CHAPTER 5 | Common Tasks
• The following indicates that only errors should be logged for all system
components:

• The following indicates that only errors for HTTP messages should be
logged:

event_log:filters = ["*=ERROR+FATAL"];

event_log:filters = ["IT_HTTP=ERROR+FATAL"];
 116

Enabling Logging of HTTP Requests and Responses
Enabling Logging of HTTP Requests and
Responses

Overview This section provides instructions on how to enable logging at the insecure
HTTP request/response level.

Steps The steps to complete this task are:

1. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

2. Ensure that the orb_plugins configuration item includes
"local_log_stream" among its settings in the configuration scope of
the server, as follows:

3. Ensure that the event_log:filters configuration item (in the global
configuration scope) includes "IT_HTTP=*" among its settings. For
example:

4. Ensure that the policies:http:trace_requests:enabled
configuration item (in the global scope) is set to "true".

…
orb_plugins = ["local_log_stream", "http", "soap"];
…

Note: The "local_log_stream" setting is included by default.

…
event_log:filters = ["IT_HTTP=*"];
…

117

CHAPTER 5 | Common Tasks
Enabling Logging of HTTPS Requests and
Responses

Overview This section provides instructions on how to enable logging at the secure
HTTPS request/response level.

Steps The steps to complete this task are:

1. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

2. Ensure that the orb_plugins configuration item includes
"local_log_stream" among its settings in the configuration scope of
the server, as follows:

3. Ensure that the event_log:filters configuration item (in the global
configuration scope) includes "IT_HTTPS=*" among its settings. For
example:

4. Ensure that the policies:https:trace_requests:enabled
configuration item (in the global scope) is set to "true".

…
orb_plugins = ["local_log_stream", "https", "soap"];
…

Note: The "local_log_stream" setting is included by default.

…
event_log:filters = ["IT_HTTPS=*"];
…

 118

Enabling User Name and Password Checking by RACF
Enabling User Name and Password Checking
by RACF

Overview This section provides instructions on how to configure the server to require
clients to send an identifying user name and password in the SOAP header
of a client request, and use on-host RACF facilities to authenticate the
client’s credentials.

User name and password checking can be used in combination with:

• SAF—to enforce access control.

• Client principal activation—to allow the CICS or IMS server adapter to
start transactions under the client user ID rather than under its own
user ID.

Steps The steps to complete this task are:

1. If the FACILITY RACF class profile, BPX.DAEMON, is defined on your
system, ensure that the caller’s user ID has READ access to the
BPX.DAEMON profile. Alternatively, if BPX.DAEMON is not defined, ensure
that the caller’s user ID has a UID of 0 assigned to it in the OMVS
segment of its RACF user profile.

2. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

3. Ensure that the plugins:soap:use_security_service configuration
item is set to "false" in the configuration scope of the server.

4. Ensure that the plugins:soap:check_header_password configuration
item is set to "true" in the configuration scope of the server.
119

CHAPTER 5 | Common Tasks
Enabling User Name and Password Checking
by iSF

Overview This section provides instructions on how to configure the server to require
clients to send an identifying user name and password in the SOAP header
of a client request, and use the off-host Security Service (iSF) to
authenticate the client’s credentials.

User name and password checking can be used in combination with:

• SAF—to enforce access control.

• Client principal activation—to allow the CICS or IMS server adapter to
start transactions under the client user ID rather than under its own
user ID.

Steps The steps to complete this task are:

1. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

2. Ensure that the plugins:soap:use_security_service configuration
item is set to "true" in the configuration scope of the server.

3. Ensure that the plugins:soap:check_header_password configuration
item is set to "true" in the configuration scope of the server.
 120

Enabling Client Principal Support
Enabling Client Principal Support

Overview This section provides instructions on how to configure the CICS or IMS
server adapter to be able to start CICS programs or IMS transactions under
the client user ID rather than under the server adapter’s own user ID.

Steps The steps to complete this task are:

1. If the FACILITY RACF class profile, BPX.SERVER, is defined on your
system, ensure that the caller’s user ID has READ access to the
BPX.SERVER profile. Alternatively, if BPX.SERVER is not defined, ensure
that the caller’s user ID has a UID of 0 assigned to it in the OMVS
segment of its RACF user profile.

2. Activate the SURROGAT RACF class and define profiles in it that allow
the server adapter’s user ID to impersonate particular users. You can
do this by establishing a profile for each potential client user. For
example:

3. Open your Orbix Mainframe configuration file (by default, this is
TLSDOMA for secure deployments or FILEDOMA for insecure
deployments).

4. Locate the iona_services.imsa scope (if you are using the IMS server
adapter) or the iona_services.cicsa scope (if you are using the CICS
server adapter).

Note: This requires that user name and password checking is also
enabled, as described in “Enabling User Name and Password Checking by
RACF” on page 119.

RDEFINE SURROGAT BPX.SRV.client1 UACC(NONE)
PERMIT BPX.SRV.client1 CLASS(SURROGAT) ID(Transformer_ID)

ACCESS(READ)
RDEFINE SURROGAT BPX.SRV.client2 UACC(NONE)
PERMIT BPX.SRV.client2 CLASS(SURROGAT) ID(Transformer_ID)

ACCESS(READ)
121

CHAPTER 5 | Common Tasks
5. If you are using the IMS server adapter, add the following configuration
item:

Alternatively, if you are using the CICS server adapter, add the
following configuration item:

plugins:imsa:use_client_principal = "yes";

plugins:cicsa:use_client_principal = "yes";

Note: The configuration item is not included by default in the
configuration file, so you must add it if you want to activate client
principal support. As an alternative to adding it in the scopes
mentioned in point 4, you could add it within the global scope,
 122

APPENDIX A

Default Type
Mappings
This appendix provides a listing of the default type mappings
that the Artix Transport component supports.

List of mappings Table 1 provides a listing of the default OMG IDL-to-WSDL type mappings
that the Artix Transport component supports.

Note: In addition to the following table, see also the COBOL
Programmer’s Guide and Reference or PL/I Programmer’s Guide and
Reference for details of programming language limitations and supported
types for the language you are using.

Table 1: Default IDL-to-WSDL Type Mappings (Sheet 1 of 2)

OMG IDL Type WSDL Type Details

CORBA::Long xsd:Int -2147483648 -> 2147483647

CORBA::ULong xsd:unsignedInt 0 -> 4294967295

CORBA::Short xsd:short -32768 -> 32768

CORBA::UShort xsd:unsignedShort 0 -> 65535

CORBA::Octet xsd:unsignedByte 0 -> 255

CORBA::Char xsd:short -32768 -> 32768
123

CHAPTER A | Default Type Mappings
CORBA::String xsd:string Contents restricted by UTF-8 and
UTF-16 encoding

CORBA::Wchar xsd:short -32768 -> 32768

CORBA::Wstring xsd:string Contents restricted by UTF-8 and
UTF-16 encoding

CORBA::Float xsd:float

CORBA::Double xsd:double

CORBA::Boolean xsd:boolean Valid values are:

0 = False

1 = True

CORBA::LongLong xsd:long -9223372036854775808 ->

9223372036854775807

CORBA::UlongLong xsd:unsignedLong 0 -> 18446744073709551615

CORBA::LongDouble xsd:double

CORBA::Fixed xsd:decimal Constrained digits and scale

CORBA::StringSeq xsd:base64Binary Base-64-encoded buffer

CORBA::OctetSeq xsd:base64Binary Base-64-encoded buffer

CORBA arrays minOccurs="dim" maxOccurs="dim"

CORBA sequences minOccurs="0" maxOccurs="dim/unbounded"

CORBA::Object Not supported

CORBA::TypeCode Not supported

CORBA::ValueBase Not supported

CORBA unions xsd:choice

Table 1: Default IDL-to-WSDL Type Mappings (Sheet 2 of 2)

OMG IDL Type WSDL Type Details
 124

Index

B
batch server

building and running for COBOL
demonstration 42

building and running for PL/I demonstration 43
invoking on 3

binding:server_binding_list configuration item 67,
74

C
CICS server

building and running for COBOL
demonstration 44

building and running for PL/I demonstration 46
invoking on 4

CICS server adapter
usage 53

client principal support 98, 121
COBOL server

building and running for batch demonstration 42
building and running for CICS demonstration 44
building and running for IMS demonstration 48

communication endpoints 11
configuration

introduction to 56
configuration items

binding:server_binding_list 67, 74
event_log:filters 66, 73
initial_references:IT_CSIAuthenticationObject:plug

in 90
initial_references:IT_SecurityService:reference 90
kerberos:server_principal 89
orb_plugins 65, 72, 106
plugins:cicsa:direct_persistence 66, 73
plugins:cicsa: use_client_principal 99
plugins:imsa:bridge_type_info:source 61
plugins:imsa:use_client_principal 99
plugins:saf:profile_class 102
plugins:saf:service_name 103
plugins:soap:check_header_password 84, 97
plugins:soap:check_header_token 89, 95
plugins:soap:extract_token_principal 92
plugins:soap:insecure:root_context_name 60
plugins:soap:signature_provider 61
plugins:soap:use_security_service 84
policies:https:trace_requests:enabled 60
policies:well_known_addressing_policy:http:addr_

list 67, 74
policies:well_known_addressing_

policy:https:addr_list 106
credentials checking, order of precedence for Web

service security 81

D
data

defining using XML 11
transferring using SOAP 11

data types, SOAP encoding of 30
DELCERT JCL 104
direct persistence mode 7

E
encoding

complex array types 36
complex struct types 34
overview of 30
simple types 32

endpoints 11
event_log:filters configuration item 66, 73

G
GENCERT JCL 104

H
HTTP 11

client requests, format of 15
header information 25, 27
overview 13–19
properties 18
server responses, format of 16

HTTP Basic Authentication 96

I
IDL-to-WSDL type mappings 123
125

INDEX
IMS server
building and running for COBOL

demonstration 48
building and running for PL/I demonstration 50
invoking on 4

IMS server adapter
usage 53

initial_references:IT_CSIAuthenticationObject:plugin
configuration item 90

initial_references:IT_SecurityService:reference
configuration item 90

J
JCL

DELCERT 104
GENCERT 104

K
kerberos:server_principal configuration item 89
Kerberos ticket checking 86

L
locator daemon 7
logging 112

modifying extent and range of 114
of HTTP requests and responses 117
of HTTPS requests and responses 118

M
mapping IDL to WSDL types 123

N
node daemon 7

O
ORBIXCSD JCL 44, 46
Orbix server development 53
orb_plugins configuration item 65, 72, 106
ORXADMIN JCL 45, 47, 49, 51

P
password checking 119
PL/I server

building and running for batch demonstration 43
building and running for CICS demonstration 46
building and running for IMS demonstration 50
 126
plugins:cicsa:direct_persistence configuration
item 66, 73

plugins:cicsa: use_client_principal configuration
item 99

plugins:imsa:bridge_type_info:source configuration
item 61

plugins:imsa:use_client_principal configuration
item 99

plugins:saf:profile_class configuration item 102
plugins:saf:service_name configuration item 103
plugins:soap:check_header_password configuration

item 84, 97
plugins:soap:check_header_token configuration

item 89, 95
plugins:soap:extract_token_principal configuration

item 92
plugins:soap:insecure:root_context_name

configuration item 60
plugins:soap:signature_provider configuration

item 61
plugins:soap:use_security_service configuration

item 84
policies:https:trace_requests:enabled configuration

item 60
policies:well_known_addressing_

policy:https:addr_list configuration item 106
policies:well_known_addressing_policy:https:addr_li

st configuration item 67, 74
pthread_security_np() call 99

R
RACF 119

S
SAF checking 102
security, general 53
security architecture overview

for SOAP mode 79
security features and credentials

for SOAP mode 80
security firewalls 22
Security Service 120
serialization 30
server

enabling logging for 112
servers

building and running for demonstration 42–51
services

INDEX
describing using WSDL 11
listing using UDDI 12

SIMPLESB JCL
building batch COBOL demonstration 42
building batch PL/I demonstration 43
building CICS COBOL demonstration 44
building CICS PL/I demonstration 46
building IMS COBOL demonstration 48
building IMS PL/I demonstration 50

SIMPLESI JCL 41
SIMPLESV JCL

running batch COBOL demonstration 42
running batch PL/I demonstration 43

SIMPLIDL JCL
generating batch COBOL source 42
generating batch PL/I source 43
generating CICS COBOL source 44
generating CICS PL/I source 46
generating IMS COBOL source 48
generating IMS PL/I source 50

SOAP 11
Body element 26, 27
encoding of data types 30
encoding styles 32
Envelope element 26, 27
Fault element 28
overview 20–37
request messages, example of 25
response messages, example of 26
response with fault, example of 27
specification 23

SOAP descriptor file
generating for demonstration 41
introduction to 5

SSL/TLS security
for SOAP mode 104

SSO token checking
for SOAP mode 93

standards, background to Web services 11

T
type mappings, IDL-to-WSDL 123

U
UDDI 12
Unicode 22
universal character set See Unicode
universal transformation format 22
user name and password checking 83
user name checking

by RACF 119
by Security Service 120

UTF-16 22, 30
UTF-8 22, 30
UTF-encoded binary strings 31

W
W3C

HTTP specification 13
SOAP specification 20, 23

Web service credentials checking, order of
precedence 81

Web services
overview 9

WSDL
mappings, choosing for client applications 108
overview 11

X
XML 11, 21
127

INDEX
 128

	List of Figures
	List of Tables
	Preface
	Introduction
	Artix Transport Overview
	Web Services Overview
	Purpose and Advantages
	Background Standards

	HTTP Overview
	SOAP Overview
	Background to SOAP
	SOAP Messages
	SOAP Encoding of Data Types

	Getting Started
	Overview of Steps
	Generating the SOAP Descriptor File
	Building and Running the Server
	Building and Running a Web Consumer
	Further Information Sources

	Configuration
	Introduction to Orbix Mainframe Configuration
	Common Configuration Items
	Sample Configuration Overview
	Configuration Details

	CICS-Specific Configuration Items
	Sample Configuration Overview
	Configuration Details

	IMS-Specific Configuration Items
	Sample Configuration Overview
	Configuration Details

	SOAP Security Considerations
	Security Architecture Overview for SOAP Mode
	Summary of Security Features and Credentials
	User Name and Password Checking
	Kerberos Ticket Checking
	SSO Token Checking
	HTTP Basic Authentication
	Client Principal Support
	SAF Checking
	HTTPS Security

	Common Tasks
	Accessing WSDL Contracts
	Enabling Logging on the Server
	Modifying the Extent and Range of Logging
	Enabling Logging of HTTP Requests and Responses
	Enabling Logging of HTTPS Requests and Responses
	Enabling User Name and Password Checking by RACF
	Enabling User Name and Password Checking by iSF
	Enabling Client Principal Support

	Default Type Mappings
	Index

