
Orbix Mainframe 6.3.1

Security Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
https://www.microfocus.com

© Copyright 2021 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2021-03-18

https://www.microfocus.com

Contents

List of Tables ix

List of Figures xi

Preface xiii

Part 1 Introducing Security

Chapter 1 Orbix Security Framework 1
Introduction to the iSF 2

iSF Features 3
Example of an iSF System 4
Security Standards 6

Orbix Security Service 7
Orbix Security Service Architecture 8
iSF Server Development Kit 9

Secure Applications 10
ART Security Plug-Ins 11
Secure CORBA Applications 13

Administering the iSF 15
Overview of iSF Administration 16
Secure ASP Services 18

Part 2 Orbix Security Framework Administration

Chapter 2 Transport Layer Security 21
What does Orbix Provide? 22
How TLS Provides Security 24

Authentication in TLS 25
iii

CONTENTS
Certificates in TLS Authentication 27
Privacy of TLS Communications 28
Integrity of TLS Communications 29

Chapter 3 Securing Applications and Services 31
Connecting to an Off-Host iS2 Server 32
Securing CORBA Applications 33

Overview of CORBA Security 34
Securing Communications with SSL/TLS 36
Specifying Fixed Ports for SSL/TLS Connections 46
Securing Two-Tier CORBA Systems with iSF 48
Securing Three-Tier CORBA Systems with iSF 53

Securing Orbix Services 59
Caching of Credentials 60

Chapter 4 Managing Access Control Lists 61
CORBA ACLs 62

Overview of CORBA ACL Files 63
CORBA Action-Role Mapping ACL 64

Centralized ACL 68
Local ACL Scenario 69
Centralized ACL Scenario 71
Customizing Access Control Locally 77

Chapter 5 Managing Certificates 79
What are X.509 Certificates? 80
Certification Authorities 82

Commercial Certification Authorities 83
Private Certification Authorities 84

Certificate Chaining 85
PKCS#12 Files 87
Managing Certificates on z/OS 88

Importing Certificates from Another Platform into RACF 89
Creating Certificates for an Application Using RACF 94
Specifying the Source of Certificates for an z/OS Application 95
 iv

CONTENTS
Part 3 SSL/TLS Administration

Chapter 6 Choosing an SSL/TLS Toolkit 99
Toolkit Replaceability 100
System SSL Toolkit on z/OS 101

Chapter 7 Configuring SSL/TLS Secure Associations 103
Overview of Secure Associations 104
Setting Association Options 106

Secure Invocation Policies 107
Association Options 108
Choosing Client Behavior 110
Choosing Target Behavior 112
Hints for Setting Association Options 114

Specifying Cipher Suites 119
Supported Cipher Suites 120
Setting the Mechanism Policy 126

Chapter 8 Configuring SSL/TLS Authentication 131
Requiring Authentication 132

Target Authentication Only 133
Target and Client Authentication 136

Specifying an Application’s Own Certificate 139
Advanced Configuration Options 142

Setting a Maximum Certificate Chain Length 143
Applying Constraints to Certificates 144

Part 4 CSIv2 Administration

Chapter 9 Introduction to CSIv2 149
CSIv2 Features 150
Basic CSIv2 Scenarios 152

CSIv2 Authentication over Transport Scenario 153
CSIv2 Identity Assertion Scenario 154
v

CONTENTS
Chapter 10 Configuring CSIv2 Authentication over Transport 157
CSIv2 Authentication Scenario 158
SSL/TLS Prerequisites 162
Requiring CSIv2 Authentication 164
Providing an Authentication Service 167
Providing a Username and Password 168
Sample Configuration 172

Sample Client Configuration 173
Sample Server Configuration 175

Chapter 11 Configuring CSIv2 Identity Assertion 177
CSIv2 Identity Assertion Scenario 178
SSL/TLS Prerequisites 182
Enabling CSIv2 Identity Assertion 184
Sample Configuration 186

Sample Client Configuration 187
Sample Intermediate Server Configuration 189
Sample Target Server Configuration 191

Part 5 CORBA Security Programming

Chapter 12 Programming Policies 195
Setting Policies 196
Programmable SSL/TLS Policies 199

Introduction to SSL/TLS Policies 200
The QOPPolicy 202
The EstablishTrustPolicy 203
The InvocationCredentialsPolicy 204
Interaction between Policies 205

Programmable CSIv2 Policies 206

Chapter 13 Authentication 209
Using the Principal Authenticator 210

Introduction to the Principal Authenticator 211
Creating SSL/TLS Credentials 214
Creating CSIv2 Credentials 217
 vi

CONTENTS
Using a Credentials Object 221
Retrieving Own Credentials 223

Retrieving Own Credentials from the Security Manager 224
Parsing SSL/TLS Own Credentials 225

Retrieving Target Credentials 226
Retrieving Target Credentials from an Object Reference 227
Parsing SSL/TLS Target Credentials 229

Retrieving Received Credentials 230
Retrieving Received Credentials from the Current Object 231
Parsing SSL/TLS Received Credentials 232

Chapter 14 Validating Certificates 233
Overview of Certificate Validation 234
The Contents of an X.509 Certificate 237
Parsing an X.509 Certificate 238
Controlling Certificate Validation 239

Certificate Constraints Policy 240
Certificate Validation Policy 243

Obtaining an X.509 Certificate 247

Part 6 Appendices

Appendix A Security Configuration 251
Applying Constraints to Certificates 253
initial_references 255
plugins:atli2_tls 256
plugins:csi 257
plugins:gsp 258
plugins:https 263
plugins:iiop_tls 264
plugins:security 269
plugins:systemssl_toolkit 270
policies 272
policies:csi 279
policies:https 282
policies:iiop_tls 289
principal_sponsor 300
vii

CONTENTS
principal_sponsor:csi 304

Appendix B ASN.1 and Distinguished Names 307
ASN.1 308
Distinguished Names 309

Appendix C Association Options 313
Association Option Semantics 314

Appendix D SSL/TLS Sample Configurations 317
SSL/TLS Sample Configurations on z/OS 318

Appendix E Security Recommendations 323
General Recommendations 324
Orbix Services 325

Appendix F Action-Role Mapping DTD 327

Index 331
 viii

List of Tables

Table 1: Terminology Describing Secure Client Sample Configurations 36

Table 2: Terminology Describing Secure Server Sample Configurations 38

Table 3: Description of Different Types of Association Option 115

Table 4: Setting EstablishTrustInTarget and EstablishTrustInClient Association Options 116

Table 5: Setting Quality of Protection Association Options 116

Table 6: Setting the NoProtection Association Option 118

Table 7: Cipher Suite Definitions 122

Table 8: Policy Management Objects 196

Table 9: Commonly Used Attribute Types 310

Table 10: AssociationOptions for Client and Target 314
ix

LIST OF TABLES
 x

List of Figures

Figure 1: Example System with a Standalone Orbix Security Service 4

Figure 2: Security Plug-Ins in a CORBA Application 13

Figure 3: A Secure CORBA Application within the iSF 34

Figure 4: Two-Tier CORBA System in the iSF 48

Figure 5: Three-Tier CORBA System in the iSF 53

Figure 6: Local ACL Scenario 69

Figure 7: Centralized ACL scenario 71

Figure 8: Custom ClientAccessDecision in an Orbix Application 77

Figure 9: A Certificate Chain of Depth 2 85

Figure 10: A Certificate Chain of Depth 3 86

Figure 11: Configuration of a Secure Association 105

Figure 12: Target Authentication Only 133

Figure 13: Target and Client Authentication 136

Figure 14: Elements in a PKCS#12 File 140

Figure 15: Basic CSIv2 Authentication over Transport Scenario 153

Figure 16: Basic CSIv2 Identity Assertion Scenario 154

Figure 17: CSIv2 Authentication Over Transport Scenario 159

Figure 18: Java Dialog Window for GSSUP Username and Password 169

Figure 19: CSIv2 Identity Assertion Scenario 179

Figure 20: Validating a Certificate 234

Figure 21: Using a CertValidator Callback 236
xi

LIST OF FIGURES
 xii

Preface
What is Covered in this Book
This book is a guide to administering and programming secure CORBA
applications with Orbix.

The Orbix security framework (iSF) provides the underlying security
infrastructure for performing authentication and authorization.

Who Should Read this Book
This guide is intended for the following audience:

• Security administrators.

• CORBA C++ developers.

• CORBA Java developers.

A prior knowledge of CORBA is assumed.

Organization of this guide
This guide is divided into the following parts:

Part I “Introducing Security”

This part describes how TLS provides security, and how Orbix works.

Part II “Orbix Security Framework Administration”

This part describes how to administer the Orbix Security Framework.

Part III “SSL/TLS Administration”

This part explains how to configure and manage Orbix in detail.
xiii

PREFACE
Part IV “CSIv2 Administration”

This part explains how to configure and manage CSIv2 in detail.

Part V “CORBA Security Programming”

This part explains how to program the SSL/TLS and CSIv2 APIs in your
security-aware CORBA applications.

Appendices

The appendices list further technical details.

Related Documentation
The Orbix Programmer’s Guide C++ Edition and Orbix Programmer’s
Reference C++ Edition provide details about developing Orbix applications
in C++ in various environments, including z/OS.

The latest updates to the Orbix documentation can be found at:

https://www.microfocus.com/documentation/orbix/

Additional Resources
The Knowledge Base contains helpful articles, written by experts, about
Orbix Mainframe, and other products:

https://community.microfocus.com/t5/Orbix/ct-p/Orbix

If you need help with Orbix Mainframe or any other products, contact
technical support:

https://www.microfocus.com/en-us/support/
 xiv

https://www.microfocus.com/documentation/orbix/
https://community.microfocus.com/t5/Orbix/ct-p/Orbix
https://www.microfocus.com/en-us/support/

PREFACE
Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
Italic Italic words in normal text represent emphasis and

new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xv

PREFACE
Keying Conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the Windows command
prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xvi

Part 1
Introducing Security

In this part This part contains the following chapters:

Orbix Security Framework page 1

Transport Layer Security page 21

CHAPTER 1

Orbix Security
Framework
The Orbix Security Framework provides the common
underlying security framework for all types of applications in
Orbix, including CORBA and Web services applications. This
chapter provides an introduction to the main features of the
iSF.

In this chapter This chapter discusses the following topics:

Introduction to the iSF page 2

Orbix Security Service page 7

Secure Applications page 10

Administering the iSF page 15
1

CHAPTER 1 | Orbix Security Framework
Introduction to the iSF

Overview This section provides a brief overview of and introduction to the Orbix
Security Framework, which provides a common security framework for all
components of Orbix.

In this section This section contains the following subsections:

iSF Features page 3

Example of an iSF System page 4

Security Standards page 6
 2

Introduction to the iSF
iSF Features

Overview The Orbix Security Framework is a scalable, standards-based security
framework with the following features:

• Pluggable integration with third-party enterprise security systems.

• Out-of-the-box integration with flat file, or LDAP security systems.

• Centralized management of user accounts.

• Role-Based Access Control.

• Role-to-permission mapping supported by access control lists.

• Unified security platform works across CORBA and Web services.

• Security platform is ART-based.

• Logging.
3

CHAPTER 1 | Orbix Security Framework
Example of an iSF System

Overview Figure 1 shows an example of an iSF system that features a standalone
Orbix security service (iS2 server), which can service remote requests for
security-related functions.

Orbix security service The Orbix security service is the central component of the Orbix Security
Framework, providing an authentication service, an authorization service
and a repository of user information and credentials. When the Orbix
security service is deployed in standalone mode, all kinds of applications,
including CORBA applications and Web services, can call it remotely.

Figure 1: Example System with a Standalone Orbix Security Service
 4

Introduction to the iSF
Enterprise security service The Orbix security service is designed to integrate with a third-party
enterprise security service (ESS), which acts as the primary repository for
user information and credentials. Integration with an ESS is supported by a
variety of iSF adapters. The following adapters are currently supported by
iSF:

• LDAP adapter.

The following adapter is provided for use in simple demonstrations (but is
not supported in production environments):

• File adapter.

In addition, it is possible to build your own adapters using the iSF Adapter
SDK—see “iSF Server Development Kit” on page 9.

Propagating security credentials The example in Figure 1 on page 4 assumes that a user’s credentials can be
propagated from one application to another. There are fundamentally two
different layers that can propagate security credentials between processes in
an iSF distributed system:

• Transport layer.

• Application layer.

Transport layer Security at the transport layer enables security information to be exchanged
during the security handshake, which happens while the connection is being
established. For example, the SSL/TLS standard enables X.509 certificates
to be exchanged between a client and a server during a security handshake.

Application layer Security at the application layer enables security information to be
propagated after connection establishment, using a protocol layered above
the transport. For example, the CORBA common secure interoperability
v2.0 (CSIv2) protocol propagates security information by embedding
security data in IIOP messages, which are layered above TCP/IP.

The CSIv2 protocol can be used to propagate any of the following kinds of
credential:

• Username/password/domain.

• Username only.

• Single-sign on (SSO) token.
5

CHAPTER 1 | Orbix Security Framework
Security Standards

Overview One of the goals of the iSF is to base the security framework on established
security standards, thereby maximizing the ability of iSF to integrate and
interoperate with other secure systems. This section lists the security
standards currently supported by the iSF.

Standards supported by iSF The following security standards are supported by iSF:

• HTTP login mechanisms—that is, HTTP basic authentication and
HTTP form-based authentication.

• Secure Sockets Layer / Transport Layer Security (SSL/TLS), from the
Internet Engineering Task Force, which provides data security for
applications that communicate across networks.

• CCITT X.509, which governs the form of security certificates based on
public (asymmetric) key systems)

• OMG Common Secure Interoperability specification (CSIv2)

• The XML Key management Specification (XKMS), which specifies the
protocols for distributing and registering public keys. XKMS is
composed of the XML Key Information Service Specification (X-KISS),
and the XML Key Registration Service Specification (X-KRSS). XKMS
provides the Public Key Infrastructure (PKI) support in iSF.

• Security Assertion Markup Language (SAML) from the Organization for
the Advancement of Structured Information Standards (OASIS), which
is the XML security standard for exchanging authentication and
authorization information. The SAML specification provides bindings
for various transport protocols including HTTP/HTTPS and SOAP.

• Secure Multipurpose Internet Mail Extensions (S/MIME), which is a
specification for secure electronic mail, and is designed to add security
to e-mail messages in MIME format.

• WS-Security, which a proposed standard from Microsoft, IBM, and
VeriSign. It defines a standard set of SOAP extensions, or message
headers, that can be used to implement integrity and confidentiality in
Web services applications.

• Java Authentication and Authorization Service (JAAS)
 6

Orbix Security Service
Orbix Security Service

Overview The Orbix security service is the central component of the Orbix Security
Framework. This section provides an overview of the main Orbix security
service features.

In this section This section contains the following subsections:

Orbix Security Service Architecture page 8

iSF Server Development Kit page 9
7

CHAPTER 1 | Orbix Security Framework
Orbix Security Service Architecture

iSF client API The GSP plug-in accesses the Orbix security service through the iSF client
API, which is a private Orbix-proprietary API. This API exposes general
security operations, such as authenticating a username and password,
retrieving a user’s roles, and so on. Two language versions of the iSF client
API are used internally by Orbix:

• C++.

• Java.

Remote connections to the Orbix
security service

Orbix plug-ins can communicate with the Orbix security service through an
IIOP/TLS connection.

Standalone or embedded
deployment

The iSF server module can be packaged in the following different ways:

• Standalone deployment (default)—the iSF server module is packaged
as a standalone server process, the Orbix security service, that services
requests through a CORBA interface (IIOP or IIOP/TLS).

• Embedded deployment—the iSF server module is packaged as a JAR
library that can be loaded directly into a Java application. In this case,
service requests are made as local calls.

iSF adapter API Integration with third-party enterprise security systems is facilitated by the
iSF adapter API that enables the Orbix security service to delegate security
operations to other security systems.

iSF adapters Orbix provides several ready-made adapters that are implemented with the
iSF adapter API. The following adapters are available:

• LDAP adapter.

• File adapter (demonstration only—not supported in production
environments).
 8

Orbix Security Service
iSF Server Development Kit

Overview The iSF server development kit (SDK) enables you to implement custom
extensions to the iSF. The iSF SDK is divided into the following parts:

• iSF adapter SDK.

• iSF client SDK.

iSF adapter SDK The iSF adapter SDK provides an API implementing custom iSF adapters.
Using this API, you can integrate any enterprise security system with the
iSF.

This API is available in both C++ and Java.

iSF client SDK The iSF client SDK provides an API for Orbix to access the iSF server
module’s core functionality directly (usually through remote calls).

This is a private API intended only for internal use by Orbix.
9

CHAPTER 1 | Orbix Security Framework
Secure Applications

Overview This section explains how applications from various technology domains are
integrated into the Orbix Security Framework.

In this section This section contains the following subsections:

ART Security Plug-Ins page 11

Secure CORBA Applications page 13
 10

Secure Applications
ART Security Plug-Ins

Overview To participate in the Orbix Security Framework, applications load one or
more of the ART security plug-ins. Because Orbix is built using a common
ART platform, an identical set of security plug-ins are used across the
different technology domains of CORBA and Web services. This has the
advantage of ensuring maximum security compatibility between these
different technology domains.

What is ART? Orbix’s Adaptive Runtime Technology (ART) is a modular framework for
constructing distributed systems, based on a lightweight core and an
open-ended set of plug-ins. ART is the underlying technology in Orbix.

Security plug-ins An application can load any of the following security plug-ins to enable
particular security features and participate in the Orbix Security Framework:

• IIOP/TLS.

• HTTPS.

• CSIv2.

• GSP.

IIOP/TLS The IIOP/TLS plug-in provides applications with the capability to establish
secure connections using IIOP over a TLS transport. Authentication is also
performed using X.509 certificates. For example, this plug-in is used by
CORBA applications.

HTTPS The HTTPS plug-in provides the capability to establish secure connections
using HTTP over a TLS transport. Authentication is also performed using
X.509 certificates. For example, this plug-in is used by the Web container to
enable secure communications with Web clients.
11

CHAPTER 1 | Orbix Security Framework
CSIv2 The Common Secure Interoperability (CSIv2) plug-in provides support for
authentication based on a username and password. The CSIv2 plug-in also
enables applications to forward usernames or security tokens to other
applications over an IIOP or IIOP/TLS connection.

GSP The GSP plug-in provides an authorization capability for the iSF—that is,
the capability to restrict access to certain methods, operations, or attributes,
based on the configuration values stored in an external action-role mapping
XML file. The GSP plug-in works in tandem with the Orbix security service to
realize a complete system of role-based access control.
 12

Secure Applications
Secure CORBA Applications

Overview Figure 2 shows how the security plug-ins in a CORBA application cooperate
to provide security for the application.

IIOP/TLS plug-in in CORBA a
application

The IIOP/TLS plug-in enables the CORBA application to establish
connections secured by SSL/TLS. This layer of security is essential for
providing data encryption.

Figure 2: Security Plug-Ins in a CORBA Application
13

CHAPTER 1 | Orbix Security Framework
CSIv2 plug-in in a CORBA
application

The CSIv2 plug-in provides CORBA applications with the following features:

• The capability to log in with a username and password.

• Screening incoming IIOP invocations by making sure that the
username/password combination is correct.

• Transmission of a username/password/domain combination to other
applications.

• Transmission of a username or security token to other applications.

GSP plug-in in a CORBA
application

The GSP plug-in restricts access to a CORBA server’s operations and
attributes, only allowing user’s with certain specified roles to proceed with
an invocation.
 14

Administering the iSF
Administering the iSF

Overview This section provides an overview of the main aspects of configuring and
administering the iSF.

In this section This section contains the following subsections:

Overview of iSF Administration page 16

Secure ASP Services page 18
15

CHAPTER 1 | Orbix Security Framework
Overview of iSF Administration

Overview There are several different aspects of iSF administration to consider, as
follows:

• Orbix configuration file.

• iSF properties file.

• Enterprise security service administration.

• Access control lists.

Orbix configuration file The Orbix configuration file, DomainName.cfg (or, alternatively, the CFR
service), is used to configure the security policies for all of the applications
and services in a particular location domain. For example, the following
kinds of security policy are specified in the Orbix configuration file:

• The list of security plug-ins to be loaded by an application.

• Whether an application accepts both secure and insecure connections,
or secure connections only.

• The name of the iSF authorization realm to which an application
belongs.

These are just some of the security policies that can be configured—see
“Security Configuration” on page 251.

iSF properties file The iSF properties file is used to configure the core properties of the Orbix
security service. This file primarily configures the properties of an iSF
adapter that connects to an enterprise security backend. This file also
configures the optional single sign-on and authorization manager features.

Enterprise security service
administration

Because the Orbix security service is capable of integrating with a
third-party enterprise security service, you can continue to use the native
third-party administration tools for your chosen enterprise security service.
These tools would be used to administer user accounts, including such data
as usernames, passwords, user groups, and roles.
 16

Administering the iSF
Access control lists To complete a system of role-based access control, it is necessary to provide
individual applications with an access control list (ACL) file that is
responsible for mapping user roles to particular permissions.

For example, the ACL associated with a CORBA server could specify that
only a specified set of roles are allowed to invoke a particular IDL operation.

There is one type of ACL file used within the iSF, as follows:

• Action-role mapping (proprietary format).
17

CHAPTER 1 | Orbix Security Framework
Secure ASP Services

Overview When you create a secure location domain, all of the standard ASP services
are secure by default. The default configuration can be used to test sample
applications, but is not genuinely secure. Before the ASP services can be
used in a real deployment, it is necessary to customize the security
configuration.

Customizing the security
configuration

For a real deployment, certain aspects of the security configuration for ASP
services would be customized, as follows:

• X.509 certificates associated with ASP services—the sample
certificates initially associated with the ASP services must all be
replaced, because they are not secure.

• Default security policies—for the ASP services might need to be
changed before deployment.
 18

Part 2
Orbix Security Framework

Administration

In this part This part contains the following chapters:

Securing Applications and Services page 31

Managing Access Control Lists page 61

CHAPTER 2

Transport Layer
Security
Transport Layer Security provides encryption and
authentication mechanisms for your Orbix system.

In this chapter This chapter discusses the following topics:

What does Orbix Provide? page 22

How TLS Provides Security page 24
21

CHAPTER 2 | Transport Layer Security
What does Orbix Provide?

Security plug-ins Orbix provides the core security infrastructure to a distributed system based
on Orbix’s Adaptive Runtime Technology (ART). It is implemented as a
symmetric set of plug-ins for Orbix. When the security plug-ins are installed
in an application, the communication layers consist of the CORBA standard
Internet Inter-ORB Protocol (IIOP), layered above TLS and TCP/IP.

Transport Layer Security Transport Layer Security (TLS) is an IETF Open Standard. It is based on,
and is the successor to, Secure Sockets Layer (SSL), long the standard for
secure communications.

The TLS Protocol provides the most critical security features to help you
preserve the privacy and integrity of your system:

• Authentication (based on RSA with X.509v3 certificates).

• Encryption (based on, for example, AES, Triple DES, IDEA).

• Message integrity (SHA1, SHA256).

• A framework that allows new cryptographic algorithms to be
incorporated into the TLS specification.

CORBA Security Level 2 Orbix is based on the CORBA Security Level 2 policies and API’s (RTF 1.7).
It implements a set of policies from the CORBA specification that enable you
to control encryption and authentication at a fine level.

Added-value policies and APIs Orbix also has added-value policies and APIs that provide more control for
SSL/TLS applications than provided by CORBA Security.

Security-unaware and
security-aware applications

There are two basic approaches to using security in your applications:

• Security-unaware applications—Modify the Orbix configuration to
enable and configure security for your application. This approach to
security is completely transparent to the application, requiring no code
changes or recompilation.
 22

What does Orbix Provide?
• Security-aware applications—In addition to modifying the Orbix
configuration to enable security, you can customize application security
using both the standard CORBA security API and the Orbix
added-value APIs.
23

CHAPTER 2 | Transport Layer Security
How TLS Provides Security

Basic TLS security features TLS provides the following security for communications across TCP/IP
connections:

In this section This section contains the following subsections:

Authentication This allows an application to verify the identity of
another application with which it communicates.

Privacy This ensures that data transmitted between
applications can not be eavesdropped on or understood
by a third party.

Integrity This allows applications to detect if data was modified
during transmission.

Authentication in TLS page 25

Certificates in TLS Authentication page 27

Privacy of TLS Communications page 28

Integrity of TLS Communications page 29
 24

How TLS Provides Security
Authentication in TLS

Public key cryptography TLS uses Rivest Shamir Adleman (RSA) public key cryptography for
authentication. In public key cryptography, each application has an
associated public key and private key. Data encrypted with the public key
can be decrypted only with the private key. Data encrypted with the private
key can be decrypted only with the public key.

Public key cryptography allows an application to prove its identity by
encoding data with its private key. As no other application has access to this
key, the encoded data must derive from the true application. Any
application can check the content of the encoded data by decoding it with
the application’s public key.

The TLS Handshake Protocol Consider the example of two applications, a client and a server. The client
connects to the server and wishes to send some confidential data. Before
sending application data, the client must ensure that it is connected to the
required server and not to an impostor.

When the client connects to the server, it confirms the server identity using
the TLS handshake protocol. A simplified explanation of how the client
executes this handshake in order to authenticate the server is as follows:

Stage Description

1 The client initiates the TLS handshake by sending the initial
TLS handshake message to the server.

2 The server responds by sending its certificate to the client. This
certificate verifies the server's identity and contains the
certificate’s public key.

3 The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key with the
extracted public key.
25

CHAPTER 2 | Transport Layer Security
Optimized handshake The TLS protocol permits a special optimized handshake in which a
previously established session can be resumed. This has the advantage of
not needing expensive private key computations. The TLS handshake also
facilitates the negotiation of ciphers to be used in a connection.

Client authentication The TLS protocol also allows the server to authenticate the client. Client
authentication, which is supported by Orbix, is optional in TLS
communications.

4 The server uses its private key to decrypt the encrypted session
key which it will use to encrypt and decrypt application data
passing to and from the client. The client will also use the
shared session key to encrypt and decrypt messages passing to
and from the server.

Stage Description
 26

How TLS Provides Security
Certificates in TLS Authentication

Purpose of certificates A public key is transmitted as part of a certificate. The certificate is used to
ensure that the submitted public key is, in fact, the public key that belongs
to the submitter. The client checks that the certificate has been digitally
signed by a certification authority (CA) that the client explicitly trusts.

Certification authority A CA is a trusted authority that verifies the validity of the combination of
entity name and public key in a certificate. You must specify trusted CAs in
order to use Orbix.

X.509 certificate format The International Telecommunications Union (ITU) recommendation,
X.509, defines a standard format for certificates. TLS authentication uses
X.509 certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

• The name of the entity identified by the certificate.

• The public key of the entity.

• The name of the certification authority that issued the certificate.

The role of a certificate is to match an entity name to a public key.

Access to certificates According to the TLS protocol, it is unnecessary for applications to have
access to all certificates. Generally, each application only needs to access its
own certificate and the corresponding issuing certificates. Clients and
servers supply their certificates to applications that they want to contact
during the TLS handshake. The nature of the TLS handshake is such that
there is nothing insecure in receiving the certificate from an as yet untrusted
peer. The certificate will be checked to make sure that it has been digitally
signed by a trusted CA and the peer will have to prove its identity during the
handshake.
27

CHAPTER 2 | Transport Layer Security
Privacy of TLS Communications

Establishing a symmetric key Immediately after authentication, the client sends an encoded data value to
the server (using the server’s public key). This unique session encoded value
is a key to a symmetric cryptographic algorithm. Only the server is able to
decode this data (using the corresponding private key).

Symmetric cryptography A symmetric cryptographic algorithm is an algorithm in which a single key is
used to encode and decode data. Once the server has received such a key
from the client, all subsequent communications between the applications
can be encoded using the agreed symmetric cryptographic algorithm. This
feature strengthens TLS security.

Examples of symmetric cryptographic algorithms used to maintain privacy in
TLS communications are 3DES and AES.
 28

How TLS Provides Security
Integrity of TLS Communications

Message authentication code The authentication and privacy features of TLS ensure that applications can
exchange confidential data that cannot be understood by an intermediary.
However, these features do not protect against the modification of encrypted
messages transmitted between applications.

To detect if an application has received data modified by an intermediary,
TLS adds a message authentication code (MAC) to each message. This code
is computed by applying a function to the message content and the secret
key used in the symmetric cryptographic algorithm.

Guaranteeing message integrity An intermediary cannot compute the MAC for a message without knowing
the secret key used to encrypt it. If the message is corrupted or modified
during transmission, the message content will not match the MAC. TLS
automatically detects this error and rejects corrupted messages.
29

CHAPTER 2 | Transport Layer Security
 30

CHAPTER 3

Securing
Applications and
Services
This chapter describes how to enable security in the context
of the Orbix Security Framework for different types of
applications and services.

In this chapter This chapter discusses the following topics:

Connecting to an Off-Host iS2 Server page 32

Securing CORBA Applications page 33

Securing Orbix Services page 59

Caching of Credentials page 60
31

CHAPTER 3 | Securing Applications and Services
Connecting to an Off-Host iS2 Server

Overview Many of the examples in this chapter use the Orbix Security Framework
(iSF), which requires access to the iS2 server. Because Orbix Mainframe 6.x
does not support the iS2 server on z/OS, it is necessary to run the iS2 server
off-host (for example, on UNIX or Windows) and connect your mainframe
applications to this off-host service.

Configure and run the iS2 server
on another host

For detailed instructions on how to configure and run an iS2 server off-host,
see the version of the Orbix Security Guide for the UNIX and Windows
platforms.

Modify the Orbix configuration on
z/OS

To configure your z/OS applications to use an off-host iS2 server, perform
the following steps:

1. On the host where the iS2 server is running (UNIX or Windows), open
the local Orbix configuration file, iS2Domain.cfg, and look for a
configuration entry of the following form:

Copy the initial_references:IT_SecurityService:reference entry
from the iS2Domain.cfg file.

2. On the z/OS host, open the Orbix configuration file located in the
HLQ.DOMAINS PDS and paste the
initial_references:IT_SecurityService:reference setting from the
iS2 host (either adding the entry or replacing an existing entry).

Orbix Configuration File
...
initial_references:IT_SecurityService:reference =

"IOR:0100...";
 32

Securing CORBA Applications
Securing CORBA Applications

Overview Using Orbix’s modular ART technology, you make a CORBA application
secure just by configuring it to load the relevant security plug-ins. This
section describes how to load and configure security plug-ins to reach the
appropriate level of security for your CORBA applications.

In this section This section contains the following subsections:

Overview of CORBA Security page 34

Securing Communications with SSL/TLS page 36

Specifying Fixed Ports for SSL/TLS Connections page 46

Securing Two-Tier CORBA Systems with iSF page 48

Securing Three-Tier CORBA Systems with iSF page 53
33

CHAPTER 3 | Securing Applications and Services
Overview of CORBA Security

Overview There are two main components of security for CORBA applications: IIOP
over SSL/TLS (IIOP/TLS), which provides secure communication between
client and server; and the iSF, which is concerned with higher-level security
features such as authentication and authorization.

The following combinations are recommended:

• IIOP/TLS only—for a pure SSL/TLS security solution.

• IIOP/TLS and iSF—for a highly scalable security solution, based on
username/password client authentication.

CORBA applications and iSF Figure 3 shows the main features of a secure CORBA application in the
context of the iSF.

Figure 3: A Secure CORBA Application within the iSF
 34

Securing CORBA Applications
Security plug-ins Within the iSF, a CORBA application becomes fully secure by loading the
following plug-ins:

• IIOP/TLS plug-in

• CSIv2 plug-in (Java only)

• GSP plug-in

IIOP/TLS plug-in The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to transmit
and receive IIOP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing Communications with SSL/TLS” on page 36 for details on
how to enable IIOP/TLS in a CORBA application.

CSIv2 plug-in (Java only) The CSIv2 plug-in, csi, provides a mechanism for propagating
username/password credentials between CORBA applications. When the
CSIv2 plug-in is combined with the GSP plug-in, the username and
password are forwarded to a central iS2 server to be authenticated. This
plug-in is needed to support the iSF.

GSP plug-in The GSP plug-in provides an authentication capability for the iSF. When the
GSP plug-in is loaded into an Orbix application, CSI credentials are
automatically forwarded to the iS2 server to be authenticated.This plug-in is
needed to support the iSF.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSIv2 authentication mechanisms are independent of each other and can
be used simultaneously.
35

CHAPTER 3 | Securing Applications and Services
Securing Communications with SSL/TLS

Overview This section describes how to configure an application to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain

Configuration samples Appendix D on page 317 includes a variety of SSL/TLS configuration scopes
that you can use as a starting point for configuring your own applications.
The following sample SSL/TLS configuration scopes are available:

• demos.tls.secure_client_with_no_cert
• demos.tls.secure_client_with_cert
• demos.tls.semi_secure_client_with_cert
• demos.tls.semi_secure_client_with_no_cert
• demos.tls.secure_server_no_client_auth
• demos.tls.secure_server_request_client_auth
• demos.tls.secure_server_enforce_client_auth
• demos.tls.semi_secure_server_no_client_auth
• demos.tls.semi_secure_server_request_client_auth
• demos.tls.semi_secure_server_enforce_client_auth

Secure client terminology The terminology used to describe the preceding client configuration scopes
is explained in Table 1.

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_client The client opens only secure SSL/TLS connections to the server. If the server does
not support secure connections, the connection attempt will fail.
 36

Securing CORBA Applications
semi_secure_client The type of connection opened by the client depends on the disposition of the
server:

• If the server is insecure (listening only on an insecure IIOP port), an insecure
connection is established.

• If the server is secure (listening only on a secure IIOP/TLS port), a secure
SSL/TLS connection is established.

• If the server is semi-secure (listening on both an IIOP port and on an
IIOP/TLS port), the type of connection established depends on the client’s
binding:client_binding_list.
♦ If, in the client’s binding:client_binding_list, a binding with the

IIOP interceptor appears before a binding with the IIOP_TLS
interceptor, an insecure connection is established.

♦ Conversely, if a binding with the IIOP_TLS interceptor appears before a
binding with the IIOP interceptor, a secure connection is established.

with_no_cert No X.509 certificate is associated with the client (at least, not through
configuration).

with_cert An X.509 certificate is associated with the client by setting the principal sponsor
configuration variables.

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description
37

CHAPTER 3 | Securing Applications and Services
Secure server terminology The terminology used to describe the preceding server configuration scopes
is explained in Table 2.

Table 2: Terminology Describing Secure Server Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_server The server accepts only secure SSL/TLS connection attempts. If a remote client
does not support secure connections, the connection attempt will fail.

semi_secure_server The server accepts both secure and insecure connection attempts by remote
clients.

no_client_auth The server does not support client authentication over SSL/TLS. That is, during an
SSL/TLS handshake, the server will not request the client to send an X.509
certificate.

request_client_auth The server allows a connecting client the option of either authenticating itself or
not authenticating itself using an X.509 certificate.

enforce_client_auth The server requires a connecting client to authenticate itself using an X.509
certificate.
 38

Securing CORBA Applications
Outline of a sample configuration
scope

For example, the demos.tls.secure_server_no_client_auth configuration
defines a server configuration that is secured by SSL/TLS but does not
expect clients to authenticate themselves. This configuration has the
following outline:

Three significant groups of configuration variables contribute to the
secure_server_no_client_auth configuration, as follows:

1. General configuration at root scope—these configuration settings are
common to all applications, whether secure or insecure.

2. Common SSL/TLS configuration settings—specify the basic settings
for SSL/TLS security. In particular, the orb_plugins list defined in this
scope includes the iiop_tls plug-in.

3. Specific server configuration settings—define the settings specific to
the secure_server_no_client_auth configuration.

Orbix Configuration File
...
General configuration at root scope.
...
demos {
 ...
 tls {
 # Common SSL/TLS configuration settings.
 ...
 secure_server_no_client_auth {
 # Specific server configuration settings.
 ...
 };
 };
};
...
39

CHAPTER 3 | Securing Applications and Services
Sample client configuration For example, consider a secure SSL/TLS client whose configuration is
modelled on the demos.tls.secure_client_with_no_cert configuration.
Example 1 shows how to configure such a sample client.

Example 1: Sample SSL/TLS Client Configuration

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 # (copied from ’demos.tls’)

1 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];

2 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP", "OTS+GIOP+IIOP_TLS",
"GIOP+IIOP_TLS"];

3 policies:mechanism_policy:protocol_version = "TLS_V1_2";
 policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_AES_256_CBC_SHA256",

 "RSA_WITH_RC4_128_MD5",
 "RSA_WITH_AES_256_CBC_SHA",
 "RSA_WITH_DES_CBC_SHA",
 "RSA_WITH_3DES_EDE_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA256"];

4 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific SSL/TLS client configuration settings
 # (copied from ’demos.tls.secure_client_with_no_cert’)

5 principal_sponsor:use_principal_sponsor = "false";

6 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
 40

Securing CORBA Applications
The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope
includes the iiop_tls plug-in.

If you plan to use the full Orbix Security Framework, you should
include the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with iSF” on page 48.

2. Make sure that the binding:client_binding_list variable includes
bindings with the IIOP_TLS interceptor. Your can use the value of the
binding:client_binding_list shown here.

If you plan to use the full Orbix Security Framework, you should use
the binding:client_binding_list as shown in “Client configuration”
on page 49 instead.

3. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 119.

4. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

5. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal_sponsor:use_principal_sponsor to
false.

 };
};
...

Example 1: Sample SSL/TLS Client Configuration

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure IIOP) from the ORB plug-ins list. This renders the
application incapable of making insecure IIOP connections.

For semi-secure applications, however, you should include the iiop
plug-in in the ORB plug-ins list.
41

CHAPTER 3 | Securing Applications and Services
6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

♦ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.
Hence, the sample server described here is a hybrid of the following two
demonstration configurations:

• demos.tls.secure_server_request_client_auth
• demos.tls.secure_client_with_cert
Example 2 shows how to configure such a sample server.

Example 2: Sample SSL/TLS Server Configuration

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 # (copied from ’demos.tls’)
 ...
 my_server {
 # Specific SSL/TLS server configuration settings
 # (from ’demos.tls.secure_server_request_client_auth’)

2 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "security_label";
 42

Securing CORBA Applications
The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 40

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

♦ Supported options—all of the target association options are
supported.

3. A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

4. This line specifies that the X.509 certificate is contained in an RACF
key ring or an HFS database. For more details, see “Specifying an
Application’s Own Certificate” on page 139.

5 principal_sponsor:auth_method_data = ["label=RingLabel"];

6 # Choose an SAF key ring or an HFS key database:
 # plugins:systemssl_toolkit:saf_keyring = "SAFKeyRing";
 # plugins:systemssl_toolkit:hfs_keyring_filename =

"HFSKeyRing";

 # Specific SSL/TLS client configuration settings
 # (copied from ’demos.tls.secure_client_with_cert’)

7 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...

Example 2: Sample SSL/TLS Server Configuration
43

CHAPTER 3 | Securing Applications and Services
5. Replace the X.509 certificate, by editing the label option in the
principal_sponsor:auth_method_data configuration variable to point
at a custom X.509 certificate in an RACF key ring or HFS database.
For more details, see “Specifying an Application’s Own Certificate” on
page 139.

6. Uncomment one of the following lines, setting one of the variables to
choose either an RACF key ring or a HFS key database as the source of
X.509 certificates. See “Specifying the Source of Certificates for an
z/OS Application” on page 95 for more details.

7. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

♦ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Mixed security configurations Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 42. Then configure the
client role by adding (or modifying) the following lines to the
my_secure_apps.my_server configuration scope:

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection"];
 44

Securing CORBA Applications
The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure IIOP) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

Customizing SSL/TLS security
policies

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

• “Configuring SSL/TLS Secure Associations” on page 103.

• “Configuring SSL/TLS Authentication” on page 131.
45

CHAPTER 3 | Securing Applications and Services
Specifying Fixed Ports for SSL/TLS Connections

Overview Orbix allows you to specify a fixed IP port on which a server listens for
SSL/TLS connections. This subsection provides an overview of the
programming and configuration requirements for setting IIOP/TLS fixed
ports.

POA policies required for setting
fixed ports

The main prerequisite for configuring fixed ports is that a CORBA developer
programs the application to create a POA instance with the following
policies:

• PortableServer::LifespanPolicy—the value of this POA policy
should be set to PERSISTENT, indicating that the objects managed by
this POA can outlive the server process.

• IT_CORBA::WellKnownAddressingPolicy—the value of this POA policy
is a string that defines a well-known addressing prefix, <wka_prefix>,
for host/port configuration variables that an administrator can edit in
the Orbix configuration.

• IT_PortableServer::PersistenceModePolicy—the value of this POA
policy can be set to either of the following values:

♦ DIRECT_PERSISTENCE, indicating that the POA is configured to
receive connection attempts directly from clients. The server
listens on the fixed port (well-known address) and exports IORs
containing its own host and fixed port.

♦ INDIRECT_PERSISTENCE, indicating that connection attempts will
be redirected to the server by the locator service. The server
listens on the fixed port (well-known address), but exports IORs
containing the locator’s host and port.

Programming the required POA
policies

For details of how to program POA policies, see the CORBA Programmer’s
Guide.
 46

Securing CORBA Applications
Fixed port configuration variables The following IIOP/TLS configuration variables can be set for a POA that
supports the well-known addressing policy with the <wka_prefix> prefix:

<wka_prefix>:iiop_tls:host = "<host>";
Specifies the hostname, <host>, to publish in the IIOP/TLS profile of
server-generated IORs.

<wka_prefix>:iiop_tls:port = "<port>";
Specifies the fixed IP port, <port>, on which the server listens for
incoming IIOP/TLS messages. This port value is also published in the
IIOP/TLS profile of generated IORs.

<wka_prefix>:iiop_tls:listen_addr = "<host>";
Restricts the IIOP/TLS listening point to listen only on the specified
host, <host>. It is generally used on multi-homed hosts to limit
incoming connections to a particular network interface.

<wka_prefix>:iiop_tls:addr_list =
["<optional_plus_sign><host>:<port>", ...];

In the context of server clustering, this configuration variable specifies
a list of host and port combinations, <host>:<port>, for the
<wka_prefix> persistent POA instance.

One of the host and port combinations, <host>:<port> (lacking a +
prefix), specifies the POA’s own listening point. The other host and port
combinations, +<host>:<port> (including a + prefix), specify the
listening points for other servers in the cluster.

Note: The *:addr_list variable takes precedence over the other
host/port configuration variables (*:host, *:port, and
*:listen_addr).
47

CHAPTER 3 | Securing Applications and Services
Securing Two-Tier CORBA Systems with iSF

Overview This section describes how to secure a two-tier CORBA system using the
iSF. The client supplies username/password authentication data which is
then authenticated on the server side. The following configurations are
described in detail:

• Client configuration.

• Target configuration.

Prerequisites Before implementing this scenario on the z/OS platform, you must configure
your domain to use an off-host iS2 server.

See “Connecting to an Off-Host iS2 Server” on page 32.

Two-tier CORBA system Figure 4 shows a basic two-tier CORBA system in the iSF, featuring a client
and a target server.

Figure 4: Two-Tier CORBA System in the iSF
 48

Securing CORBA Applications
Scenario description The scenario shown in Figure 4 on page 48 can be described as follows:

Client configuration The CORBA client from Figure 4 on page 48 can be configured as shown in
Example 3.

Stage Description

1 The user enters a username, password, and domain name on
the client side (user login).

Note: The domain name is currently ignored by the iSF.

2 When the client makes a remote invocation on the server, the
iSF transmits the username/password/domain authentication
data to the target along with the invocation request.

3 The server authenticates the received username and password
by calling out to the external iS2 server.

4 If authentication is successful, the iS2 server returns a
successful status.

Example 3: Configuration of a CORBA client in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "ots", "gsp"];

3 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

4 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 ...
 my_client {
49

CHAPTER 3 | Securing Applications and Services
The preceding client configuration can be explained as follows:

1. The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing Communications with SSL/TLS” on
page 36 for details of the SSL/TLS configuration.

2. Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_tls and the gsp plug-ins in the order shown.

3. Make sure that the binding:client_binding_list variable includes
bindings with the CSI interceptor. Your can use the value of the
binding:client_binding_list shown here.

4. Make sure that the binding:server_binding_list variable includes
bindings with both the CSI and GSP interceptors. Your can use the
value of the binding:server_binding_list shown here.

5. The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing Communications with SSL/TLS” on
page 36.

6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

5 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

6 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

7 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
...

Example 3: Configuration of a CORBA client in the iSF
 50

Securing CORBA Applications
7. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user’s authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

For more details on the CSI principal sponsor, see “Providing a
Username and Password” on page 168.

Target configuration The CORBA target server from Figure 4 on page 48 can be configured as
shown in Example 4.

Note: If the client runs on the z/OS platform, you would have to
specify the CSI username and password explicitly in the configuration
file. z/OS cannot prompt the user for a username and a password.

Example 4: Configuration of a Second-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_two_tier_target {

1 # Specific SSL/TLS configuration settings.
 ...
 # Specific iSF configuration settings.

2 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

3 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";
51

CHAPTER 3 | Securing Applications and Services
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing Communications with
SSL/TLS” on page 36.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name. This setting is ignored by the iSF.

5. You should also set iSF client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

5 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Username", "password=Pass", domain="DEFAULT"];
 };
};

Example 4: Configuration of a Second-Tier Target Server in the iSF

Note: The value of the principal_sponsor:csi:auth_method_data
configuration variable must be set explicitly in the configuration file
on the z/OS platform.
 52

Securing CORBA Applications
Securing Three-Tier CORBA Systems with iSF

Overview This section describes how to secure a three-tier CORBA system using the
iSF. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

• Intermediate configuration.

• Target configuration.

Prerequisites Before implementing this scenario on the z/OS platform, you must configure
your domain to use an off-host iS2 server.

See “Connecting to an Off-Host iS2 Server” on page 32.

Three-tier CORBA system Figure 5 shows a basic three-tier CORBA system in the iSF, featuring a
client, an intermediate server and a target server.

Figure 5: Three-Tier CORBA System in the iSF
53

CHAPTER 3 | Securing Applications and Services
Scenario description The second stage of the scenario shown in Figure 5 on page 53
(intermediate server invokes an operation on the target server) can be
described as follows:

Client configuration The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 49.

Intermediate configuration The CORBA intermediate server from Figure 5 on page 53 can be
configured as shown in Example 5.

Stage Description

1 The intermediate server sets its own identity by extracting the
user identity from the received username/password credentials.
Hence, the intermediate server assumes the same identity as
the client.

2 When the intermediate server makes a remote invocation on
the target server, the iSF also transmits the user identity data to
the target.

3 The target server then obtains the user’s realms and roles.

4 The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 54

Securing CORBA Applications
The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing
Communications with SSL/TLS” on page 36.

2. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

3. This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

4. This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

5. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name. This setting is ignored by the iSF.

 my_three_tier_intermediate {
1 # Specific SSL/TLS configuration settings.

 ...
 # Specific iSF configuration settings.

2 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

3 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

5 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

6 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Username", "password=Pass", domain="DEFAULT"];
 };
};

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF
55

CHAPTER 3 | Securing Applications and Services
6. You should also set iSF client configuration variables in the
intermediate server configuration scope, because a secure server
application usually behaves as a secure client of the core CORBA
services. For example, almost all CORBA servers need to contact both
the locator service and the CORBA naming service.

Target configuration The CORBA target server from Figure 5 on page 53 can be configured as
shown in Example 6.

Note: The value of the principal_sponsor:csi:auth_method_data
configuration variable must be set explicitly in the configuration file
on the z/OS platform.

Example 6: Configuration of a Third-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common iSF configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_three_tier_target {
 # Specific SSL/TLS configuration settings.

1 ...
2 policies:iiop_tls:target_secure_invocation_policy:requires

= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

3 policies:iiop_tls:certificate_constraints_policy =
[ConstraintString1, ConstraintString2, ...];

 # Specific iSF configuration settings.
4 policies:csi:attribute_service:target_supports =

["IdentityAssertion"];
 56

Securing CORBA Applications
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing Communications with
SSL/TLS” on page 36.

2. It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

You can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

3. In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 144.

5 # iSF client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Username", "password=Pass", domain="DEFAULT"];
 };
};

Example 6: Configuration of a Third-Tier Target Server in the iSF

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.
57

CHAPTER 3 | Securing Applications and Services
4. This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

5. You should also set iSF client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Note: The value of the principal_sponsor:csi:auth_method_data
configuration variable must be set explicitly in the configuration file
on the z/OS platform.
 58

Securing Orbix Services
Securing Orbix Services

Overview In a secure system, all Orbix services should be capable of servicing secure
connections. A minimal system typically includes the following secure
services:

• Locator,

• Node daemon,

• Naming service,

• Interface repository (IFR),

• IMS/CICS adapters.

Additionally, your system might also require certificates for the events,
notification, and OTS services.

Configuring the Orbix services Before deploying the Orbix services, you must customize the security
configuration, replacing demonstration certificates by custom certificates
and so on. The procedure for securing Orbix services is similar to the
procedure for securing regular CORBA applications.

See “Securing CORBA Applications” on page 33.
59

CHAPTER 3 | Securing Applications and Services
Caching of Credentials

Overview To improve the performance of servers within the Orbix Security Framework,
the GSP plug-in implements caching of credentials (that is, the
authentication and authorization data received from the iS2 server).

The GSP credentials cache reduces a server’s response time by reducing the
number of remote calls to the iS2 security service. On the first call from a
given user, the server calls iS2 and caches the received credentials. On
subsequent calls from the same user, the cached credentials are used,
thereby avoiding a remote call to iS2.

Cache time-out The cache can be configured to time-out credentials, forcing the server to
call iS2 again after using cached credentials for a certain period.

Cache size The cache can also be configured to limit the number of stored credentials.

Configuration variables The following variables configure the credentials cache in the context of the
Orbix Security Framework:

plugins:gsp:authentication_cache_size
The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:gsp:authentication_cache_timeout
The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with iS2 on the next call from that user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.
 60

CHAPTER 4

Managing
Access Control
Lists
The Orbix Security Framework defines access control lists
(ACLs) for mapping roles to resources. The ACLs are specific
to particular technology domains, such as CORBA. They can
be deployed either together with each secure server or centrally
in the Orbix security service.

In this chapter This chapter discusses the following topics:

CORBA ACLs page 62

Centralized ACL page 68
61

CHAPTER 4 | Managing Access Control Lists
CORBA ACLs

Overview This section discusses the ACL files that control access to IDL operations
and attributes in a CORBA server. The ACL files for CORBA servers provide
role-based access control with granularity down to the level of IDL
operations, and attributes.

In this section This section contains the following subsections:

Overview of CORBA ACL Files page 63

CORBA Action-Role Mapping ACL page 64
 62

CORBA ACLs
Overview of CORBA ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific IDL operations and attributes).

GSP plug-in The GSP plug-in is a component of the iSF that provides support for
action-role mapping. This plug-in must be loaded in order to use the
action-role mapping ACL file (see Appendix A for details of how to configure
the GSP plug-in).

File restrictions The following restrictions apply to the use of action role mapping files on
z/OS:

• File system—XML ACL files must be stored in the hierarchical file
system (USS).

• XML encoding—the XML must use an ASCII-based encoding. The XML
data itself must be ASCII-based (for example, UTF-8), as well as the
encoding attribute in the XML prolog (if present). This restriction is
imposed by the underlying IBM for XML Toolkit (Xerces C++ parser),
which is unable to handle the inclusion of the DTD file when an
EBCDIC encoding is used.
63

CHAPTER 4 | Managing Access Control Lists
CORBA Action-Role Mapping ACL

Overview This subsection explains how to configure the action-role mapping ACL file
for CORBA applications. Using an action-role mapping file, you can specify
that access to IDL operations and attributes is restricted to specific roles.

File location In your Orbix configuration file, the
plugins:gsp:action_role_mapping_file configuration variable specifies
the location URL of the action-role mapping file, action_role_mapping.xml,
for a CORBA server. For example:

Example IDL For example, consider how to set the operation and attribute permissions for
the IDL interface shown in Example 7.

Orbix Configuration File
...
my_server_scope {
 plugins:gsp:action_role_mapping_file =
 "file:///security_admin/action_role_mapping.xml";
};

Example 7: Sample IDL for CORBA ACL Example

// IDL
module Simple
{
 interface SimpleObject
 {
 void call_me();
 attribute string foo;
 };
};
 64

CORBA ACLs
Example action-role mapping Example 8 shows how you might configure an action-role mapping file for
the Simple::SimpleObject interface given in the preceding Example 7 on
page 64.

The preceding action-role mapping example can be explained as follows:

1. If the directory containing the actionrolemapping.dtd file includes
spaces, the spaces should be replaced by %20 in the <!DOCTYPE> tag.

2. The <allow-unlisted-interfaces> tag specifies the default access
that applies to interfaces not explicitly listed in the action-role mapping
file. The tag contents can have the following values:

♦ true—for any interfaces not listed, access is allowed for all roles.
If the remote user is unauthenticated (in the sense that no GSSUP
credentials are sent by the client), access is also allowed.

Example 8: CORBA Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
1 <!DOCTYPE secure-system SYSTEM

"InstallDir/etc/domains/Domain/actionrolemapping.dtd">
<secure-system>

2 <allow-unlisted-interfaces>false</allow-unlisted-interfaces>

3 <action-role-mapping>
4 <server-name>gsp_basic_test.server</server-name>
5 <interface>
6 <name>IDL:Simple/SimpleObject:1.0</name>

 <action-role>
7 <action-name>call_me</action-name>

 <role-name>corba-developer</role-name>
 <role-name>guest</role-name>
 </action-role>
 <action-role>

8 <action-name>_get_foo</action-name>
 <role-name>corba-developer</role-name>
 <role-name>guest</role-name>
 </action-role>
 </interface>

 </action-role-mapping>
</secure-system>
65

CHAPTER 4 | Managing Access Control Lists
♦ false—for any interfaces not listed, access is denied for all roles.
Unauthenticated users are also denied access. This is the default.

3. The <action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

4. The <server-name> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly.

5. The <interface> tag contains all of the access permissions for one
particular IDL interface.

6. The <name> tag identifies the IDL interface using the interface’s OMG
repository ID. The repository ID normally consists of the characters
IDL: followed by the fully scoped name of the interface (using /
instead of :: as the scoping character), followed by the characters
:1.0. Hence, the Simple::SimpleObject IDL interface is identified by
the IDL:Simple/SimpleObject:1.0 repository ID.

7. The call_me action name corresponds to the call_me() operation in
the Simple::SimpleObject interface. The action name corresponds to
the GIOP on-the-wire form of the operation name (usually the same as
it appears in IDL).

Note: The ORB name also determines which configuration scopes
are read by the server. See the Administrator’s Guide for details.

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.
For example, the CosNaming::NamingContext interface in the naming
service module, which uses the omg.org prefix, has the following
repository ID: IDL:omg.org/CosNaming/NamingContext:1.0
 66

CORBA ACLs
8. The _get_foo action name corresponds to the foo attribute accessor.
In general, any read/write attribute, AttributeName, has the following
action names:

♦ _get_AttributeName (for the attribute accessor)

♦ _set_AttributeName (for the attribute modifier)

In general, the accessor or modifier action names correspond to the
GIOP on-the-wire form of the attribute accessor or modifier.

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 327 for details.
67

CHAPTER 4 | Managing Access Control Lists
Centralized ACL

Overview By default, a secure Orbix application is configured to store its ACL file
locally. Hence, in a large deployment, ACL files might be scattered over
many hosts, which could prove to be a nuisance for administrators.

An alternative approach, as described in this section, is to configure your
secure applications to use a centralized ACL repository. This allows you to
administer all of the ACL data in one place, making it easier to update and
maintain.

In this section This section contains the following subsections:

Local ACL Scenario page 69

Centralized ACL Scenario page 71

Customizing Access Control Locally page 77
 68

Centralized ACL
Local ACL Scenario

Overview This section briefly describes the behavior of a secure server whose
operations are protected by a local ACL file.

Local ACL scenario Figure 6 shows an outline of the local ACL scenario, where the ACL file is
stored on the same host as the target server. You configure the server to
load the ACL file from the local file system by setting the
plugins:gsp:action_role_mapping_file variable in the target server’s
configuration scope.

Figure 6: Local ACL Scenario
69

CHAPTER 4 | Managing Access Control Lists
Scenario description The local ACL scenario shown in Figure 6 can be described as follows:

Stage Description

1 The client invokes an operation on the secure target server,
requiring an access decision to be made on the server side.

2 The GSP plug-in calls a function on the internal
ClientAccessDecision object to check whether the current
user has permission to invoke the current operation.

3 If this is the first access decision required by the target server,
the ClientAccessDecision object reads the contents of the
local ACL file (as specified by the
plugins:gsp:action_role_mapping_file variable) and stores
the ACL data in a cache.

For all subsequent access decisions, the
ClientAccessDecision object reads the cached ACL data for
efficiency.
 70

Centralized ACL
Centralized ACL Scenario

Overview From an administrative point of view, it is often more convenient to gather
ACL files onto a central host, rather than leaving them scattered on different
hosts. The centralized ACL feature enables you to create such a central
repository of ACL files. The ACL files are stored on the same host as the
Orbix security service, which serves up ACL data to remote Orbix servers on
request.

Centralized ACL scenario Figure 7 shows an outline of a centralized ACL scenario, where the ACL files
are stored on the same host as the Orbix security service.

Figure 7: Centralized ACL scenario
71

CHAPTER 4 | Managing Access Control Lists
Scenario description The centralized ACL scenario shown in Figure 7 can be described as
follows:

Modify the Orbix configuration file To configure an application (such as the target server shown in Figure 7 on
page 71) to use a centralized ACL, you must modify its configuration scope
as shown in Example 9. In this example, it is assumed that the application’s
ORB name is my_secure_apps.my_two_tier_target.

Stage Description

1 The client invokes an operation on the secure target server,
requiring an access decision to be made on the server side.

2 The GSP plug-in calls a function on the internal
ClientAccessDecision object to check whether the current
user has permission to invoke the current operation.

3 If this is the first access decision required by the target server,
the ClientAccessDecision object contacts the Orbix security
service to obtain the ACL data.

For all subsequent access decisions, the
ClientAccessDecision object reads the cached ACL data for
efficiency.

4 When the security service is requested to provide ACL data, it
selects the appropriate ACL file from its repository of ACL files.

By default, the Orbix security service selects the ACL file whose
ORB name (as specified in the <server-name> tag) matches
that of the request.

5 The security service returns the ACL data in the form of an XML
string, which is then cached by the ClientAccessDecision
object.

Example 9: Configuration of a Second-Tier Target Server in the iSF

Orbix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 72

Centralized ACL
The preceding Orbix configuration can be described as follows:

1. The plugins:gsp:action_role_mapping_file setting is ignored when
you have centralized ACL enabled. You can either comment out this
line, as shown here, or delete it.

2. Setting the plugins:gsp:authorization_policy_store_type variable
to centralized configures the application to retrieve its ACL data from
the Orbix security service (which is then stored in a local cache).

3. Setting the plugins:gsp:authorization_policy_enforcement_point
variable to local specifies that the ACL logic is implemented locally (in
the target server). Currently, this is the only option that is supported.

Modify the is2.properties file To configure the Orbix security service to support centralized ACL, you
should edit its is2.properties (normally located in the
OrbixInstallDir/etc/domains/DomainName directory) to add or modify the
following settings:

The ACLFileListFile is the name of a file (specified in the local file format)
which contains a list of the centrally stored ACL files.

 ...
 my_two_tier_target {
 ...
 plugins:gsp:authorization_realm = "AuthzRealm";

1 # plugins:gsp:action_role_mapping_file = "ActionRoleURL";
2 plugins:gsp:authorization_policy_store_type =

"centralized";
3 plugins:gsp:authorization_policy_enforcement_point =

"local";
 };
};

Example 9: Configuration of a Second-Tier Target Server in the iSF

is2.properties File for the Orbix Security Service
...
com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;
73

CHAPTER 4 | Managing Access Control Lists
Create an ACL file list file The ACL file list file is a list of filenames, each line of which has the
following format:

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key (see “Selection by ACL
key” on page 76). The ACL file, ACLFileName, is specified using an
absolute pathname in the local file format.

For example, on Windows you could specify a list of ACL files as follows:

Selecting the ACL file When the Orbix security service responds to a request to provide ACL data,
it chooses an ACL file using one of the following selection criteria:

• Selection by ORB name.

• Selection by override value.

• Selection by ACL key.

Selection by ORB name The default selection criterion is selection by ORB name. The target
application includes its ORB name in the request it sends to the security
service. The security service then selects the data from the ACL file which
includes a <server-name> tag with the specified ORB name.

[ACLKey=]ACLFileName

Note: On Windows, you should replace backslashes by forward slashes
in the pathname.

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml

Note: The security service reads and returns all of the data from the
selected ACL file. Even if the ACL file contains multiple <server-name>
tags labelled by different ORB names, the data from the enclosing
<action-role-mapping> tags with non-matching ORB names are also
returned.
 74

Centralized ACL
For example, if the application’s ORB name is
my_secure_apps.my_two_tier_target, the security service will select the
data from the ACL file containing the following <server-name> tag:

Selection by override value Alternatively, you can use selection by override value to override the value
of the ORB name sent to the Orbix security service. The override value must
be set in the Orbix configuration using the
plugins:gsp:acl_policy_data_id variable.

For example, suppose you want to select ACL data that has the ORB name,
my_secure_apps.my_two_tier_target.alt_acl. You would specify the
override value using the plugins:gsp:acl_policy_data_id variable as
follows:

The security service would then select the data from the ACL file containing
the following <server-name> tag:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "DTDFileForOrbixACL">
<secure-system>
 <action-role-mapping>
 <server-name>my_secure_apps.my_two_tier_target</server-name>
 ...
 </action-role-mapping>
 ...
</secure-system>

Orbix Configuration File
...
Add this line to the application’s configuration scope
plugins:gsp:acl_policy_data_id =

"my_secure_apps.my_two_tier_target.alt_acl";

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "DTDFileForOrbixACL">
<secure-system>
 <action-role-mapping>

<server-name>my_secure_apps.my_two_tier_target.alt_acl</serve
r-name>

 ...
 </action-role-mapping>
 ...
</secure-system>
75

CHAPTER 4 | Managing Access Control Lists
Selection by ACL key A more flexible system of selection is selection by ACL key. In this case, the
application specifies an ACL key in its Orbix configuration and the security
service matches this key to an entry in the ACL file list file.

For example, consider an application that defines an ACL key, bank_data, in
its configuration scope. You would specify the key using the
plugins:gsp:acl_policy_data_id variable as follows:

The security service then selects the entry from the ACL file list labelled with
the bank_data key:

Orbix Configuration File
...
Add this line to the application’s configuration scope
plugins:gsp:acl_policy_data_id = "aclkey:bank_data";

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
bank_data=U:/orbix_security/etc/acl_files/server_C.xml
 76

Centralized ACL
Customizing Access Control Locally

Overview Orbix allows you to customize access control locally by implementing a
plug-in that overrides the implementation of the ClientAccessDecision
object. This gives you complete control over the access decision logic in an
Orbix application.

Custom ClientAccessDecision in
an Orbix application

Figure 8 shows an outline of an ACL scenario, where the default
ClientAccessDecision object is replaced by a customized implementation.

Note: Detailed instructions on how to implement a
ClientAccessDecision plug-in are not provided here. Because this task
requires a detailed understanding of Orbix plug-ins, we recommend that
you contact Micro Focus for further assistance.

Figure 8: Custom ClientAccessDecision in an Orbix Application
77

CHAPTER 4 | Managing Access Control Lists
Scenario variants Replacing the ClientAccessDecision object with a customized
implementation effectively gives you complete control over the access
decision logic in an Orbix application. The system shown in Figure 8 can be
adapted to a variety of scenarios, as follows:

• Storing the ACL data locally, but using a customized file format.

• Customizing both the ClientAccessDecision object and the
ServerAccessDecision object to implement a centralized ACL with
custom features. In particular, this approach would enable you to store
and transmit ACL data in a custom format.

• Retrieving ACL data from a custom server. In this case, you could have
a centralized ACL repository that bypasses the Orbix security service.
 78

CHAPTER 5

Managing
Certificates
TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Orbix applications.

In this chapter This chapter contains the following sections:

What are X.509 Certificates? page 80

Certification Authorities page 82

Certificate Chaining page 85

PKCS#12 Files page 87

Managing Certificates on z/OS page 88
79

CHAPTER 5 | Managing Certificates
What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

The contents of an X.509
certificate

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

WARNING: Most of the demonstration certificates supplied with Orbix are
signed by the CA abigbank_ca.pem. This CA is completely insecure
because anyone can access its private key. To secure your system, you
must create new certificates signed by a trusted CA. This chapter
describes the set of certificates required by an Orbix application and shows
you how to replace the default certificates.
 80

What are X.509 Certificates?
• A serial number that uniquely identifies the certificate.

• A subject DN that identifies the certificate owner.

• The public key associated with the subject.

• An issuer DN that identifies the CA that issued the certificate.

• The digital signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

Distinguished names A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 307 for more details about
DNs.
81

CHAPTER 5 | Managing Certificates
Certification Authorities

Choice of CAs A CA must be trusted to keep its private key secure. When setting up an
Orbix system, it is important to choose a suitable CA, make the CA
certificate available to all applications, and then use the CA to sign
certificates for your applications.

There are two types of CA you can use:

• A commercial CA is a company that signs certificates for many
systems.

• A private CA is a trusted node that you set up and use to sign
certificates for your system only.

In this section This section contains the following subsections:

Commercial Certification Authorities page 83

Private Certification Authorities page 84
 82

Certification Authorities
Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

• What are the certificate-signing policies of the commercial CAs?

• Are your applications designed to be available on an internal network
only?

• What are the potential costs of setting up a private CA?
83

CHAPTER 5 | Managing Certificates
Private Certification Authorities

Choosing a CA software package If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

Choosing a host for a private
certification authority

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Orbix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

Security precautions If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

• Do not connect the CA to a network.

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an RF-shield.
 84

Certificate Chaining
Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 9 shows an example of a simple certificate chain.

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Figure 9: A Certificate Chain of Depth 2
85

CHAPTER 5 | Managing Certificates
Certificates signed by multiple
CAs

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of Micro
Focus, which in turn is signed by a self-signed commercial CA. Figure 10
shows what this certificate chain looks like.

Trusted CAs An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

Maximum chain length policy You can limit the length of certificate chains accepted by your applications,
with the maximum chain length policy. You can set a value for the
maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy configuration variables for
IIOP/TLS and HTTPS respectively.

Figure 10: A Certificate Chain of Depth 3
 86

PKCS#12 Files
PKCS#12 Files

Contents of a PKCS#12 file A PKCS#12 file contains the following:

• An X.509 peer certificate (first in a chain).

• All the CA certificates in the certificate chain.

• A private key.

The file is encrypted with a password.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer. They are also used in Orbix. Orbix does not
support .pem format certificate chains, however.

z/OS Platform The trusted CA list policy is not used on the z/OS platform if you configure
your applications to use SAF key rings.
87

CHAPTER 5 | Managing Certificates
Managing Certificates on z/OS

Certificate management
using RACF

On z/OS, certificates are managed and stored in a different way from other
platforms. This section describes the management of certificates on z/OS
using RACF. Users of other z/OS security products should refer to the
relevant product documentation.

X.509 certificates provide a common, secure and reliable method of
authenticating your application objects. If a component of your application
must prove its identity during SSL authentication, that component requires a
certificate signed by your chosen CA. In a secure system, this always
includes the locator, the node daemons, the Orbix utilities, the Orbix
services, and your server programs. If you use client authentication, your
clients also require certificates.

HFS key databases It is also possible to use HFS key databases for some of the items discussed
below. Key databases are discussed in the IBM manual, Cryptographic
Services System Secure Sockets Layer Programming. Using a key database
is an option in a test environment. However, key databases are currently
limited in the types of PKCS#12 certificates they import, so they are not so
easy to use with externally provided certificates.

In this section This section contains the following subsections:

Importing Certificates from Another Platform into RACF page 89

Creating Certificates for an Application Using RACF page 94

Specifying the Source of Certificates for an z/OS Application page 95
 88

Managing Certificates on z/OS
Importing Certificates from Another Platform into RACF

Certificate import options You can obtain certificates using one of the following options:

• Import certificates from another platform.

• Import certificates from a party, such as a public CA.

• Generate certificates using RACF.

This section explains how to import certificates from another platform.

The RACDCERT command This section provides some examples of the RACDCERT command usage. A
full description of this command can be found in the IBM manual, z/OS
Security Server (RACF) Command Language Reference. Refer to the
manual for details on setting up the permissions in RACF to use the
RACDCERT commands.

Importing certificates into RACF To import certificates in to RACF from another platform, perform the
following steps:

1 Allocate the datasets on z/OS.

To set up the secure certificates on z/OS in RACF, you need temporary
datasets that will contain the certificates transmitted from the other
platform. You usually need to create at least two datasets. One is for a text
format (PEM) Certification Authority (CA) certificate. The other one is for a
binary format (PKCS#12) application certificate. Both datasets need to be
variable length record datasets.

The datasets do not have to be very big. The following allocation parameters
should be sufficient in most cases:

Organization PS
Record format VB
Record length 1024
Block size 32760
Allocated blocks 2
Allocated extents 1
89

CHAPTER 5 | Managing Certificates
For example, to import some of the demonstration certificates supplied with
Orbix on other platforms, you could create the following two datasets:

USERID.CERT.IONACA.PEM
USERID.CERT.BANKSRV.P12
The following sections use these two names, where USERID is your user ID
or any suitable top-level name. The first name, USERID.CERT.IONACA.PEM,
stores the demonstration CA certificate. The second name,
USERID.CERT.BANKSRV.P12, stores the bankserver.p12 certificate.
However, any suitable dataset names can be used.

2 FTP the certificates into the z/OS datasets.

Below is an example where the two certificates are copied from a UNIX
machine to z/OS. An important thing to note is that the PEM (ASCII) format
CA certificate is copied in ascii mode and that the binary PKCS#12
certificate is copied in binary mode. In this example userid is the user name
and the hostname is the z/OS hostname.

13:02:34 userid - 15> pwd
…/etc/tls/x509/certs/demos
13:02:34 userid - 15> ftp hostname
Connected to hostname.iona.com.
220-FTPD1 IBM FTP CS V2R8 at hostname.iona.com, 09:26:01 on

2001-08-15.
220 Connection will close if idle for more than 5 minutes.
Name (hostname:userid):
331 Send password please.
Password:
230 USERID is logged on. Working directory is "USERID.".
ftp> ascii
200 Representation type is Ascii NonPrint
ftp> put ca_list1.pem 'USERID.CERT.IONACA.PEM'
200 Port request OK.
125 Storing data set USERID.CERT.IONACA.PEM
250 Transfer completed successfully.
local: ca_list1.pem remote: 'USERID.CERT.IONACA.PEM'
1670 bytes sent in 0.021 seconds (76.46 Kbytes/s)
ftp> bin
200 Representation type is Image
ftp> put bank_server.p12 'USERID.CERT.BANKSRV.P12'
200 Port request OK.
125 Storing data set USERID.CERT.BANKSRV.P12
250 Transfer completed successfully.
local: bank_server.p12 remote: 'USERID.CERT.BANKSRV.P12'
3538 bytes sent in 0.014 seconds (253.10 Kbytes/s)
 90

Managing Certificates on z/OS
ftp> quit
221 Quit command received. Goodbye.
13:02:34 userid - 15>
After the FTP transfer, you can inspect the datasets using an editor like
ISPF. The CA dataset must be in readable format and looks something like:

-----BEGIN CERTIFICATE-----
MIIBjDCCATagAwIBAgIIv5hpmk5TOF8wDQYJKoZIhvcNAQEEBQAwSzELMAkGA1UE
...
...
oudXbfbjlQZQ+TPKvJHe9w==
-----END CERTIFICATE-----
The bank server certificate is in binary format and is not readable.

The certificates are now ready to be added to an RACF key ring.

3 Import the certificates into RACF using RACDCERT commands.

The next step is to import the certificates into RACF. The RACDCERT
command is used for this. The first certificate to import is the CA certificate.
The following JCL imports the certificate into RACF:

//RACFCERT JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT CERTAUTH ADD('USERID.CERT.IONACA.PEM') -
 WITHLABEL('ionaca')
/*
For the CA certificate, you have to specify CERTAUTH so that RACF is aware
that the certificate is a CA certificate. Also, case is important, so if ionaca is
specified in lowercase in this job, the same has to be done in all the other
jobs using this label.

The command to import the bank server certificate is:

//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(USERID) ADD('USERID.CERT.BANKSRV.P12') -
 WITHLABEL('bank_server') PASSWORD('bankserverpass')
/*
91

CHAPTER 5 | Managing Certificates
For PKCS#12 files, a password needs to be supplied. The password is the
one used to encrypt the private key in the PKCS#12 file. The certificate
private key is then stored in the RACF database and the password does not
have to be used again.

It is now possible to view the content of the certificate. Use the following
command to verify the content of the certificate:

//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT LIST(LABEL('bank_server'))
/*
This displays all kinds of information about the certificate, including the
status, the name on the certificate and the dates for which it is valid.

4 Add the certificates to the user key ring.

The final step is to create the user key ring and to add the certificates to the
key ring. The first item is to create the key ring. For example, a key ring
called TESTRING can be created as follows:

//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ADDRING(TESTRING)
/*
The certificates can then be added to the key ring. You have to add both the
CA certificate and the user certificate to the key ring. The following
command adds the CA certificate:

//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT CONNECT(CERTAUTH LABEL('ionaca') RING(TESTRING))
/*
The following command adds the user certificate:

//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT CONNECT(ID(USERID) LABEL('bank_server')

RING(TESTRING))
/*
You can check if both certificates were successfully added by listing the
contents of the key ring.
 92

Managing Certificates on z/OS
//STEP1 EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT LISTRING(TESTRING)
/*
The output should look something like this:

RACDCERT LISTRING(TESTRING)

Digital ring information for user USERID:

 Ring:
 >TESTRING<
 Certificate Label Name Cert Owner USAGE DEFAULT
 ------------------------- ------------ -------- -------
 bank_server ID(USERID) PERSONAL NO

 ionaca CERTAUTH CERTAUTH NO
The key ring is now ready for use. You can repeat the preceding steps to add
more certificates to RACF and to the key ring, if you wish.
93

CHAPTER 5 | Managing Certificates
Creating Certificates for an Application Using RACF

Using RACF as a CA It is also possible to use RACF as a Certification Authority for in-house
certificates. There are three steps required to do this:

1. Set up a CA.

2. Use the CA to create signed certificates.

3. Deploy the signed certificates into the user key rings.

References These steps are fully described in the following IBM manuals:

• Cryptographic Services System Secure Sockets Layer Programming

• Security Server (RACF) - Command Language Reference
 94

Managing Certificates on z/OS
Specifying the Source of Certificates for an z/OS Application

Alternative certificate sources A source of certificates must be specified for every secure z/OS application
(both clients and servers). The following alternatives are supported:

• SAF key ring.

• HFS key database.

SAF/RACF key ring To use an SAF/RACF key ring, TESTRING, set the saf_keyring configuration
variable as follows:

plugins:systemssl_toolkit:saf_keyring = "TESTRING";
For details of how to create the TESTRING key ring, see “Importing
Certificates from Another Platform into RACF” on page 89.

HFS key database Alternatively, to use a HFS key database, set the hfs_keyring_filename
configuration variable to specify the key database file. For example, you can
specify a /keyring/key.kdb database file, as follows:

plugins:systemssl_toolkit:hfs_keyring_filename =
"/keyring/key.kdb";

For a description of how to set up a HFS key database, please consult the
IBM document Cryptographic Services System Secure Sockets Layer
Programming from the Cryptographic Services bookshelf.

Password for HFS key database A password must also be specified for the HFS key database. There are two
alternatives:

• To specify the password directly in the configuration file, set the
hfs_keyring_file_password configuration variable, as follows:
plugins:systemssl_toolkit:hfs_keyring_file_password =

"password";
• To use a password stash file, passfile.stash, set the

hfs_keyring_file_stashfile configuration variable, as follows:
plugins:systemssl_toolkit:hfs_keyring_file_stashfile =

"passfile.stash";

Note: When using an SAF key ring, do not specify a password or
password stash file.
95

CHAPTER 5 | Managing Certificates
The passfile.stash file contains an encrypted password. See the IBM
document Cryptographic Services System Secure Sockets Layer
Programming for details of how to create a password stash file.
 96

Part 3
SSL/TLS Administration

In this part This part contains the following chapters:

Choosing an SSL/TLS Toolkit page 99

Managing Certificates page 79

Configuring SSL/TLS Secure Associations page 103

Configuring SSL/TLS Authentication page 131

CHAPTER 6

Choosing an
SSL/TLS Toolkit
This chapter describes the SSL/TLS toolkit replaceability
feature, which enables you to replace the underlying
third-party toolkit that implements the SSL/TLS protocol for
Orbix applications.

In this chapter This chapter contains the following sections:

Toolkit Replaceability page 100

System SSL Toolkit on z/OS page 101
99

CHAPTER 6 | Choosing an SSL/TLS Toolkit
Toolkit Replaceability

Overview In Orbix, the underlying SSL/TLS security layer is provided by a third-party
security toolkit. The Orbix security configuration variables and programming
APIs wrap the third-party toolkit in order to integrate it with CORBA
technology.

Orbix provides a toolkit replaceability feature by exploiting Orbix’s Adaptive
Runtime Technology (ART) to encapsulate third-party SSL/TLS toolkits in an
ART plug-in. Using this modular approach, you can replace the SSL/TLS
security layer underlying Orbix by specifying a different ART plug-in to load
at runtime.

Toolkits for C++ applications The following SSL/TLS toolkits are currently available for use with Orbix
C++ applications:

• “System SSL Toolkit on z/OS” on page 101.

Custom toolkit plug-in for C++ Orbix also provides an option to develop a custom toolkit plug-in for C++
applications, using the Orbix plug-in development kit (PDK). You can use
this feature to integrate any third-party SSL/TLS toolkit with Orbix.

Please contact Professional Services for more details:

https://www.microfocus.com/en-us/support/consulting-professional-services
 100

https://www.microfocus.com/en-us/support/consulting-professional-services

System SSL Toolkit on z/OS
System SSL Toolkit on z/OS

Overview This section describes how to configure Orbix to use the System SSL toolkit,
which is native to the z/OS platform.

Choosing the System SSL toolkit
for C++ applications

To ensure that Orbix uses the System SSL toolkit for C++ applications, you
must add the settings shown in Example 10 to your Orbix configuration.

These settings are specified in the Orbix internal configuration file,
orbix_internal.cfg file, (the ORXINTRL dataset member).

Example 10:Configuring Orbix to use the System SSL Toolkit in C++

Orbix configuration file
initial_references:IT_TLS_Toolkit:plugin = "systemssl_toolkit";
plugins:systemssl_toolkit:shlib_name = "ORXSSSL";
101

CHAPTER 6 | Choosing an SSL/TLS Toolkit
 102

CHAPTER 7

Configuring
SSL/TLS Secure
Associations
You can govern the behavior of client-server connections by
setting configuration variables to choose association options
and to specify cipher suites.

In this chapter This chapter discusses the following topics:

Overview of Secure Associations page 104

Setting Association Options page 106

Specifying Cipher Suites page 119
103

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Overview of Secure Associations

Secure association Secure association is the CORBA term for any link between a client and a
server that enables invocations to be transmitted securely. In practice, a
secure association is often realized as a TCP/IP network connection
augmented by a particular security protocol (such as TLS) but many other
realizations are possible.

In the context of Orbix, secure associations always use TLS.

TLS session A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Orbix.

Colocation For colocated invocations, that is where the calling code and called code
share the same address space, Orbix supports the establishment of
colocated secure associations. A special interceptor, TLS_Coloc, is provided
by the security plug-in to optimize the transmission of secure, colocated
invocations.

Configuration overview The security characteristics of an association can be configured through the
following CORBA policy types:

• Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 110 for details.

• Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 112 for details.

• Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
Cipher Suites” on page 119 for details.
 104

Overview of Secure Associations
Figure 11 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

Figure 11: Configuration of a Secure Association
105

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Setting Association Options

Overview This section explains the meaning of the various SSL/TLS association
options and describes how you can use the SSL/TLS association options to
set client and server secure invocation policies for both SSL/TLS and HTTPS
connections.

In this section The following subsections discuss the meaning of the settings and flags:

Secure Invocation Policies page 107

Association Options page 108

Choosing Client Behavior page 110

Choosing Target Behavior page 112

Hints for Setting Association Options page 114
 106

Setting Association Options
Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements of objects in your system
with two types of security policy:

• Client secure invocation policy—specifies the client association
options.

• Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

OMG-defined policy types The client and target secure invocation policies correspond to the following
policy types, as defined in the OMG security specification:

• Security::SecClientSecureInvocation
• Security::SecTargetSecureInvocation
These policy types are, however, not directly accessible to programmers.

Configuration example For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Orbix Configuration File
secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 // Other settings (not shown)...
};
107

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Association Options

Available options You can use association options to configure Orbix. They can be set for
clients or servers where appropriate. These are the available options:

• NoProtection
• Integrity
• Confidentiality
• DetectReplay
• DetectMisordering
• EstablishTrustInTarget
• EstablishTrustInClient

NoProtection Use the NoProtection flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoProtection) the object can accept secure and insecure
invocations. This is the equivalent to SEMI_SECURE servers in OrbixSSL.

Integrity Use the Integrity flag to indicate that the object supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as SHA256, SHA1).

Confidentiality Use the Confidentiality flag if your object requires or supports at least
confidentiality-protected invocations. The object can support this feature if
the cipher suites specified by the MechanismPolicy support
confidentiality-protected invocations.

DetectReplay Use the DetectReplay flag to indicate that your object supports or requires
replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

DetectMisordering Use the DetectMisordering flag to indicate that your object supports or
requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.
 108

Setting Association Options
EstablishTrustInTarget The EstablishTrustInTarget flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client supports
and requires unless anonymous cipher suites are supported.

EstablishTrustInClient Use the EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.

Note: On z/OS, the EstablishTrustInTarget policy setting is ignored.
The peer client always performs server authentication. This is because the
underlying IBM System SSL toolkit always enforces authentication of the
target and cannot be configured to do otherwise.

Note: Examples of all the common cases for configuring association
options can be found in the default Orbix configuration file—see the
demos.tls scope of the ASPInstallDir/etc/domains/DomainName.cfg
configuration file.
109

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Choosing Client Behavior

Client secure invocation policy The Security::SecClientSecureInvocation policy type determines how a
client handles security issues.

IIOP/TLS configuration You can set this policy for IIOP/TLS connections through the following
configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
IIOP/TLS connections.

HTTPS configuration You can set this policy for HTTPS connections through the following
configuration variables:

policies:https:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish a HTTPS connection.

policies:https:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
HTTPS connections.

Association options In both cases, you provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 108 and
Appendix C on page 313.

Default value The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget
 110

Setting Association Options
Example In the default configuration file, the demos.tls.bank_client scope specifies
the following association options:

Orbix Configuration File
In ’demos.tls’ scope
 bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 };
 ...
};
111

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Choosing Target Behavior

Target secure invocation policy The Security::SecTargetSecureInvocation policy type operates in a
similar way to the Security::SecClientSecureInvocation policy type. It
determines how a target handles security issues.

IIOP/TLS configuration You can set the target secure invocation policy for IIOP/TLS connections
through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
IIOP/TLS connections.

HTTPS configuration You can set the target secure invocation policy for HTTPS connections
through the following configuration variables:

policies:https:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept a HTTPS connection.

policies:https:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
HTTPS connections.

Association options In both cases, you can provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 108 and
Appendix C on page 313.

Default value The default value for the target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering
 112

Setting Association Options
Example In the default configuration file, the demos.tls.bank_server scope specifies
the following association options:

Orbix Configuration File
In ’demos.tls’ scope
 ...
 bank_server {
 ...
 policies:iiop_tls:target_secure_invocation_policy:requires =
 ["Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 ...
 };
 ...
113

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Hints for Setting Association Options

Overview This section gives an overview of how association options can be used in
real applications.

Use the sample scopes The quickest way to configure a secure SSL/TLS application is by basing the
configuration on one of the sample demos.tls scopes in the
DomainName.cfg configuration file. In demos.tls, there are sample scopes
that match all of the common use cases for SSL/TLS configuration.

For more details, see “Configuration samples” on page 36.

Rules of thumb The following rules of thumb should be kept in mind:

• If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

• It is important to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is,
the association options effective for a particular secure association
depend on the available cipher suites (see “Constraints Imposed on
Cipher Suites” on page 124).

• The NoProtection option must appear alone in a list of required
options. It does not make sense to require other security options in
addition to NoProtection.
 114

Setting Association Options
Types of association option Association options can be categorized into the following different types, as
shown in Table 3.

EstablishTrustInTarget and
EstablishTrustInClient

These association options are used as follows:

• EstablishTrustInTarget—determines whether a server sends its own
X.509 certificate to a client during the SSL/TLS handshake. In
practice, secure Orbix applications must enable
EstablishTrustInTarget, because all of the cipher suites supported
by Orbix require it.

The EstablishTrustInTarget association option should appear in all
of the configuration variables shown in the relevant row of Table 4.

• EstablishTrustInClient—determines whether a client sends its own
X.509 certificate to a server during the SSL/TLS handshake. The
EstablishTrustInClient feature is optional and various combinations
of settings are possible involving this assocation option.

Table 3: Description of Different Types of Association Option

Description Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quality of protection. Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.
115

CHAPTER 7 | Configuring SSL/TLS Secure Associations
The EstablishTrustInClient association option can appear in any of
the configuration variables shown in the relevant row of Table 4.

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there
are a couple of integrity-only ciphers that do not support Confidentiality
(see Table 8 on page 125). As a rule of thumb, if you want security you
generally would want all of these association options.

Table 4: Setting EstablishTrustInTarget and EstablishTrustInClient
Association Options

Association Option Client side—can appear in... Server side—can appear in...

EstablishTrustInTarget policies:client_secure_invocation_pol
icy:supports
policies:client_secure_invocation_pol
icy:requires

policies:target_secure_invoca
tion_policy:supports

EstablishTrustInClient policies:client_secure_invocation_pol
icy:supports

policies:target_secure_invoca
tion_policy:supports
policies:target_secure_invoca
tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
policies:allow_unauthenticated_clients_policy configuration
variable. See “policies” on page 272.

Table 5: Setting Quality of Protection Association Options

Association Options Client side—can appear in... Server side—can appear in...

Confidentiality,
Integrity,
DetectReplay, and
DetectMisordering

policies:client_secure_invocation_pol
icy:supports
policies:client_secure_invocation_pol
icy:requires

policies:target_secure_invoca
tion_policy:supports
policies:target_secure_invoca
tion_policy:requires
 116

Setting Association Options
A typical secure application would list all of these association options in all
of the configuration variables shown in Table 5.

NoProtection The NoProtection association option is used for two distinct purposes:

• Disabling security selectively—security is disabled, either in the client
role or in the server role, if NoProtection appears as the sole required
association option and as the sole supported association option in a
secure invocation policy. This mechanism is selective in the sense that
the client role and the server role can be independently configured as
either secure or insecure.

• Making an application semi-secure—an application is semi-secure,
either in the client role or in the server role, if NoProtection appears as
the sole required association option and as a supported association
option along with other secure association options. The meaning of
semi-secure in this context is, as follows:

♦ Semi-secure client—the client will open either a secure or an
insecure connection, depending on the disposition of the server
(that is, depending on whether the server accepts only secure
connections or only insecure connections). If the server is
semi-secure, the type of connection opened depends on the order
of the bindings in the binding:client_binding_list.

Note: Some of the sample configurations appearing in the generated
configuration file require Confidentiality, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support Confidentiality also support the other
qualities of protection. This is an example of where the security
mechanism policy interacts with the secure invocation policies.

Note: In this case, the orb_plugins configuration variable should
include the iiop plug-in to enable insecure communication.
117

CHAPTER 7 | Configuring SSL/TLS Secure Associations
♦ Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Table 6 shows the configuration variables in which the NoProtection
association option can appear.

References For more information about setting association options, see the following:

• “Securing Communications with SSL/TLS” on page 36.

• The demos.tls scope in a generated Orbix configuration file.

Note: In this case, the orb_plugins configuration variable should
include both the iiop_tls plug-in and the iiop plug-in.

Table 6: Setting the NoProtection Association Option

Association Option Client side—can appear in... Server side—can appear in...

NoProtection policies:client_secure_invocation_pol
icy:supports
policies:client_secure_invocation_pol
icy:requires

policies:target_secure_invoca
tion_policy:supports
policies:target_secure_invoca
tion_policy:requires
 118

Specifying Cipher Suites
Specifying Cipher Suites

Overview This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
secure associations. During a security handshake, the client chooses a
cipher suite that matches one of the cipher suites available to the server.
The cipher suite then determines the security algorithms that are used for
the secure association.

In this section This section contains the following subsections:

Supported Cipher Suites page 120

Setting the Mechanism Policy page 126

Constraints Imposed on Cipher Suites page 124
119

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Supported Cipher Suites

Orbix cipher suites The following cipher suites are supported by Orbix:

TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_AES_256_GCM_SHA384
TLS_AES_128_GCM_SHA256
TLS_CHACHA20_POLY1305_SHA256
 120

Specifying Cipher Suites
Security algorithms Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

• Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.

• Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

• Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

Key exchange algorithms The following key exchange algorithms are supported by Orbix:

Encryption algorithms The following encryption algorithms are supported by Orbix:

DHE Diffie-Hellman public key exchange

ECDHE Elliptic Curve Diffie-Hellman public key exchange

ECDSA Elliptic Curve Digital Signature Algorithm

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.

RSA_EXPORT RSA public key encryption using X.509v3 certificates.
Key size restricted to 512 bits.

RC4_40 A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4_128 RC4 with a 128-bit key.

DES40_CBC Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES_CBC DES with a 56-bit key.

3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

AES_128_CBC An AES (Advanced Encryption Standard) block cipher,
with a 128-bit key, used for cipher block chaining.
121

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Secure hash algorithms The following secure hash algorithms are supported by Orbix:

Cipher suite definitions The Orbix cipher suites are defined as follows:

AES_128_GCM As AES_128, but using Galois Counter Mode to provide
authentication.

AES_256_CBC An AES block cipher, with a 256-bit key, used for cipher
block chaining.

AES_256_GCM As AES_256, but using Galois Counter Mode to provide
authentication.

MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

SHA Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

SHA-256 A development of the SHA algorithm that produces a
256-bit digest.

SHA-384 A truncated version of SHA-512 that produces a 384-bit
digest.

Table 7: Cipher Suite Definitions

Cipher Protocol
first

enabled

Key
Exchange

Auth. Encryption Mac /
Hash

RSA_WITH_NULL_MD5 SSLv3 Kx=RSA Au=RSA Enc=NULL Mac=MD5
RSA_WITH_NULL_SHA SSLv3 Kx=RSA Au=RSA Enc=NULL Mac=SHA1
RSA_EXPORT_WITH
_RC4_40_MD5

SSLv3 Kx=RSA_EXP
ORT

Au=RSA Enc=RC4(40) Mac=MD5

RSA_WITH_RC4_128
_MD5

SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5

RSA_WITH_RC4_128
_SHA

SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
 122

Specifying Cipher Suites
RSA_EXPORT_WITH_RC2
_CBC_40_MD5

SSLv3 Kx=RSA_EXP
ORT

Au=RSA Enc=RC2(40) Mac=MD5

RSA_WITH_DES_CBC
_SHA

SSLv3 Kx=RSA Au=RSA Enc=DES(56) Mac=SHA1

RSA_WITH_3DES_EDE
_CBC_SHA

SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1

RSA_WITH_AES_128
_CBC_SHA

SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1

RSA_WITH_AES_256
_CBC_SHA

SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1

RSA_WITH_AES_128
_CBC_SHA256

TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256

RSA_WITH_AES_256
_CBC_SHA256

TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256

DHE_DSS_WITH_AES
_128_CBC_SHA256

TLSv1.2 Kx=DH Au=DSS Enc=AES(128) Mac=SHA256

DHE_RSA_WITH_AES
_128_CBC_SHA256

TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256

DHE_DSS_WITH_AES
_256_CBC_SHA256

TLSv1.2 Kx=DH Au=DSS Enc=AES(256) Mac=SHA256

DHE_RSA_WITH_AES
_256_CBC_SHA256

TLSv1.2 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256

RSA_WITH_AES_128
_GCM_SHA256

TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=SHA256

RSA_WITH_AES_256
_GCM_SHA384

TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD

Table 7: Cipher Suite Definitions

Cipher Protocol
first

enabled

Key
Exchange

Auth. Encryption Mac /
Hash
123

CHAPTER 7 | Configuring SSL/TLS Secure Associations
DHE_RSA_WITH_AES
_128_GCM_SHA256

TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD

DHE_RSA_WITH_AES
_256_GCM_SHA384

TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD

DHE_DSS_WITH_AES
_128_GCM_SHA256

TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(128) Mac=AEAD

DHE_DSS_WITH_AES
_256_GCM_SHA384

TLSv1.2 Kx=any Au=DSS Enc=AESGCM(256) Mac=AEAD

TLS_AES_128_GCM
_SHA256

TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=SHA256

TLS_AES_256_GCM
_SHA384

TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=SHA384

TLS_CHACHA20
_POLY1305_SHA256

TLSv1.3 Kx=any Au=any Enc=CHACHA20/
POLY1305(256)

Mac=SHA256

ECDHE_ECDSA_WITH
_RC4_128_SHA

SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1

ECDHE_ECDSA_WITH
_3DES_EDE_CBC_SHA

SSLv3 Kx=ECDH Au=ECDSA Enc=3DES(168) Mac=SHA1

ECDHE_ECDSA_WITH
_AES_128_CBC_SHA

SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1

ECDHE_ECDSA_WITH
_AES_256_CBC_SHA

SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1

ECDHE_RSA_WITH_RC4
_128_SHA

SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1

ECDHE_RSA_WITH_3DES
_EDE_CBC_SHA

SSLv3 Kx=ECDH Au=RSA Enc=3DES(168) Mac=SHA1

Table 7: Cipher Suite Definitions

Cipher Protocol
first

enabled

Key
Exchange

Auth. Encryption Mac /
Hash
 124

Specifying Cipher Suites
Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.

ECDHE_RSA_WITH_AES
_128_CBC_SHA

SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1

ECDHE_RSA_WITH_AES
_256_CBC_SHA

SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1

ECDHE_ECDSA_WITH
_AES_128_CBC_SHA256

TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256

ECDHE_ECDSA_WITH
_AES_256_CBC_SHA384

TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AED

ECDHE_RSA_WITH_AES
_128_CBC_SHA256

TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256

ECDHE_RSA_WITH_AES
_256_CBC_SHA384

TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384

ECDHE_ECDSA_WITH
_AES_128_GCM_SHA256

TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD

ECDHE_ECDSA_WITH
_AES_256_GCM_SHA384

TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384

ECDHE_RSA_WITH_AES
_128_GCM_SHA256

TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD

ECDHE_RSA_WITH_AES
_256_GCM_SHA384

TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD

Table 7: Cipher Suite Definitions

Cipher Protocol
first

enabled

Key
Exchange

Auth. Encryption Mac /
Hash
125

http://www.ietf.org

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Setting the Mechanism Policy

Mechanism policy To specify cipher suites, use the mechanism policy. The mechanism policy
is a client and server side security policy that determines

• Which TLS protocol is used, and

• Which specific cipher suites are to be used.

The protocol_version
configuration variable

You can specify which TLS protocol versions are used with a transport
protocol by assigning a list of protocol versions to the
policies:iiop_tls:mechanism_policy:protocol_version configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:protocol_version configuration
variable for HTTPS. For example:

You can set the protocol_version configuration variable to include one or
more of the following protocols:

TLS_V1_3
TLS_V1_2
TLS_V1_1
TLS_V1
SSL_V3
And a special setting for interoperating with an application deployed on the
z/OS platform (to work around a bug in IBM’s System/SSL toolkit):

SSL_V2V3

The order of the entries in the protocol_version list is unimportant. During
the SSL/TLS handshake, the highest common protocol will be negotiated.

Notes when using TLS v1.3 Be aware of the following when using TLS v1.3:

• TLS v1.3 supports only these cipher suites:

•TLS_AES_128_GCM_SHA256

Orbix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",

"TLS_V1_2"];

This special SSL_V2V3 setting is not required for z/OS 1.5 or higher.
 126

Specifying Cipher Suites
•TLS_AES_256_GCM_SHA384

•TLS_CHACHA20_POLY1305_SHA256

Be sure to configure at least one of these cipher suites when using TLS
v1.3.

• If TLS v1.3 is configured as part of a range of protocols but no TLS
v1.3 supported cipher suites are configured, TLS v1.3 is effectively
"turned off" and will not be used.

• If TLS v1.3 is configured as part of a range of protocols, be sure to
configure non-TLS v1.3 cipher suites in addition to the TLS v1.3 cipher
suites. A handshake failure can occur if the correct set of cipher suites
is not configured.

• TLS v1.3 has the following certificate requirements:

•An RSA key size of 2048 or greater

•An ECC key size of 256 or greater

• Ensure you have the correct RACF authority to use a certificate with an
RSA key size of 2048 or greater with TLS v1.3. If not, handshake
failures can occur.

• If using a certificate with an ECC key, signed by a Certificate Authority
that uses an RSA key, handshake failures can occur when using
protocol TLS v1.1 or older, as SystemSSL will want to negotiate cipher
suites that are not supported by Orbix Mainframe. A certificate with an
ECC key signed by a Certificate Authority that also uses an ECC key
will not encounter this issue with TLS v1.1 or older.

The cipher suites configuration
variable

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechanism_policy:ciphersuites configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:ciphersuites configuration variable
for HTTPS. For example:

Orbix Configuration File
policies:iiop_tls:mechanism_policy:ciphersuites =
 ["TLS_AES_256_GCM_SHA384","RSA_WITH_AES_256_CBC_SHA256",
 "RSA_WITH_AES_256_CBC_SHA", "RSA_WITH_AES_128_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA256"];
127

CHAPTER 7 | Configuring SSL/TLS Secure Associations
Cipher suite order The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ciphersuites list.

Valid cipher suites You can specify any of the following cipher suites:

RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA
RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA
RSA_WITH_AES_128_CBC_SHA
RSA_WITH_AES_256_CBC_SHA
RSA_WITH_AES_128_CBC_SHA256
RSA_WITH_AES_256_CBC_SHA256
DHE_DSS_WITH_AES_128_CBC_SHA256
DHE_RSA_WITH_AES_128_CBC_SHA256
DHE_DSS_WITH_AES_256_CBC_SHA256
DHE_RSA_WITH_AES_256_CBC_SHA256
RSA_WITH_AES_128_GCM_SHA256
RSA_WITH_AES_256_GCM_SHA384
DHE_RSA_WITH_AES_128_GCM_SHA256
DHE_RSA_WITH_AES_256_GCM_SHA384
DHE_DSS_WITH_AES_128_GCM_SHA256
DHE_DSS_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 128

Specifying Cipher Suites
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_AES_256_GCM_SHA384
TLS_AES_128_GCM_SHA256
TLS_CHACHA20_POLY1305_SHA256

Default values If no cipher suites are specified through configuration or application code,
the following apply:

TLS_AES_256_GCM_SHA384
RSA_WITH_AES_256_CBC_SHA256
RSA_WITH_AES_256_CBC_SHA
RSA_WITH_AES_128_CBC_SHA
RSA_WITH_AES_128_CBC_SHA256
129

CHAPTER 7 | Configuring SSL/TLS Secure Associations
 130

CHAPTER 8

Configuring
SSL/TLS
Authentication
This chapter describes how to configure the authentication
requirements for your application.

In this chapter This chapter discusses the following topics:

Requiring Authentication page 132

Specifying an Application’s Own Certificate page 139

Advanced Configuration Options page 142
131

CHAPTER 8 | Configuring SSL/TLS Authentication
Requiring Authentication

Overview This section discusses how to specify whether a target object must
authenticate itself to a client and whether the client must authenticate itself
to the target. For a given client-server link, the authentication requirements
are governed by the following policies:

• Client secure invocation policy.

• Target secure invocation policy.

• Mechanism policy.

These policies are explained in detail in “Configuring SSL/TLS Secure
Associations” on page 103. This section focuses only on those aspects of
the policies that affect authentication.

In this section There are two possible arrangements for a TLS secure association:

Target Authentication Only page 133

Target and Client Authentication page 136
 132

Requiring Authentication
Target Authentication Only

Overview When an application is configured for target authentication only, the target
authenticates itself to the client but the client is not authenticated to the
target object—see Figure 12.

Security handshake Prior to running the application, the client and server should be set up as
follows:

• A certificate chain is associated with the server—the certificate chain is
provided in the form of a PKCS#12 file. See “Specifying an
Application’s Own Certificate” on page 139.

• One or more lists of trusted certification authorities (CA) are made
available to the client.

During the security handshake, the server sends its certificate chain to the
client—see Figure 12. The client then searches its trusted CA lists to find a
CA certificate that matches one of the CA certificates in the server’s
certificate chain.

Figure 12: Target Authentication Only
133

CHAPTER 8 | Configuring SSL/TLS Authentication
Client configuration For target authentication only, the client policies should be configured as
follows:

• Client secure invocation policy—must be configured both to require
and support the EstablishTrustInTarget association option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix support target authentication.

Server configuration For target authentication only, the target policies should be configured as
follows:

• Target secure invocation policy—must be configured to support the
EstablishTrustInTarget association option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix support target authentication.
 134

Requiring Authentication
Example of target authentication
only

The following sample extract from an Orbix configuration file shows a
configuration for a CORBA client application, bank_client, and a CORBA
server application, bank_server, in the case of target authentication only.

Orbix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version =

"TLS_V1_2";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_AES_256_CBC_SHA256",
 "RSA_WITH_RC4_128_MD5",
 "RSA_WITH_AES_256_CBC_SHA",
 "RSA_WITH_DES_CBC_SHA",
 "RSA_WITH_3DES_EDE_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA256"];

bank_server {
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
135

CHAPTER 8 | Configuring SSL/TLS Authentication
Target and Client Authentication

Overview When an application is configured for target and client authentication, the
target authenticates itself to the client and the client authenticates itself to
the target. This scenario is illustrated in Figure 13. In this case, the server
and the client each require an X.509 certificate for the security handshake.

Figure 13: Target and Client Authentication
 136

Requiring Authentication
Security handshake Prior to running the application, the client and server should be set up as
follows:

• Both client and server have an associated certificate chain (PKCS#12
file)—see “Specifying an Application’s Own Certificate” on page 139.

• Both client and server are configured with lists of trusted certification
authorities (CA).

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 12.

Client configuration For target and client authentication, the client policies should be configured
as follows:

• Client secure invocation policy—must be configured both to require
and support the EstablishTrustInTarget association option. The
client also must support the EstablishTrustInClient association
option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication.

Server configuration For target and client authentication, the target policies should be configured
as follows:

• Target secure invocation policy—must be configured to support the
EstablishTrustInTarget association option. The target must also
require and support the EstablishTrustInClient association option.

• Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target and client authentication.
137

CHAPTER 8 | Configuring SSL/TLS Authentication
Example of target and client
authentication

The following sample extract from an Orbix configuration file shows a
configuration for a client application, secure_client_with_cert, and a
server application, secure_server_enforce_client_auth, in the case of
target and client authentication.

Orbix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version =

"TLS_V1_2";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_AES_256_CBC_SHA256",
 "RSA_WITH_RC4_128_MD5",
 "RSA_WITH_AES_256_CBC_SHA",
 "RSA_WITH_DES_CBC_SHA",
 "RSA_WITH_3DES_EDE_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA",
 "RSA_WITH_AES_128_CBC_SHA256"];

secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
 138

Specifying an Application’s Own Certificate
Specifying an Application’s Own Certificate

Overview To enable an Orbix application to identify itself, it must be associated with
an X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

• Security unaware—configuration only,

• Security aware—configuration or programming.

This section describes how to specify a certificate by configuration only. For
details of the programming approach, see “Authentication” on page 209.

PKCS#12 files In practice, the TLS protocol needs more than just an X.509 certificate to
support application authentication. Orbix therefore stores X.509 certificates
in a PKCS#12 file, which contains the following elements:

• The application certificate, in X.509 format.

• One or more certificate authority (CA) certificates, which vouch for the
authenticity of the application certificate (see also “Certification
Authorities” on page 82).

• The application certificate’s private key (encrypted).

In addition to the encryption of the private key within the certificate, the
whole PKCS#12 certificate is also stored in encrypted form.

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by
Orbix.
139

CHAPTER 8 | Configuring SSL/TLS Authentication
Figure 14 shows the typical elements in a PKCS#12 file.

SSL/TLS principal sponsor The SSL/TLS principal sponsor is a piece of code embedded in the security
plug-in that obtains SSL/TLS authentication information for an application.
It is configured by setting variables in the Orbix configuration.

Single or multiple certificates The SSL/TLS principal sponsor is limited to specifying a single certificate for
each ORB scope. This is sufficient for most applications.

Specifying multiple certificates for a single ORB can only be achieved by
programming (see “Authentication” on page 209). If an application is
programmed to own multiple certificates, that application ought to be
accompanied by documentation that explains how to specify the certificates.

Figure 14: Elements in a PKCS#12 File
 140

Specifying an Application’s Own Certificate
Credentials sharing Normally, when you specify an own credential using the SSL/TLS principal
sponsor, the credential is available only to the ORB that created it. By
setting the plugins:security:share_credentials_across_orbs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

Specifying the HFS database or
RACF key ring

Before setting the principal sponsor configuration variables on z/OS, you
must also indicate the name of a HFS key database or an RACF key ring to
use. See “Specifying the Source of Certificates for an z/OS Application” on
page 95.

Principal sponsor configuration To use a principal sponsor, set the principal_sponsor configuration
variables, as follows:

1. Set the variable principal_sponsor:use_principal_sponsor to true.
2. Provide values for the principal_sponsor:auth_method_id and

principal_sponsor:auth_method_data variables.

Example configuration For example, to use a certificate labelled bank_server, (as used in
“Importing Certificates from Another Platform into RACF” on page 89) set
the principal_sponsor configuration variables as follows:

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "security_label";
principal_sponsor:auth_method_data = ["label=bank_server"];
The principal_sponsor:auth_method_id configuration variable indicates
the source that Orbix should use to get the certificate. In this case the
security_label value indicates a label in a key ring.
141

CHAPTER 8 | Configuring SSL/TLS Authentication
Advanced Configuration Options

Overview For added security, Orbix allows you to apply extra conditions on
certificates. Before reading this section you might find it helpful to consult
“Managing Certificates” on page 79, which provides some background
information on the structure of certificates.

In this section This section discusses the following advanced configuration options:

Setting a Maximum Certificate Chain Length page 143

Applying Constraints to Certificates page 144
 142

Advanced Configuration Options
Setting a Maximum Certificate Chain Length

Max chain length policy You can use the MaxChainLengthPolicy to enforce the maximum length of
certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the
TrustedCAListPolicy).

Example For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

Configuration variable You can specify the maximum length of certificate chains used in
MaxChainLengthPolicy with the
policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy configuration variables. For
example:

policies:iiop_tls:max_chain_length_policy = "4";

Default value The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA’s.

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
143

CHAPTER 8 | Configuring SSL/TLS Authentication
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
 ["CN=Johnny*,OU=[unit1|IT_SSL],O=Orbix
 Services,C=Ireland,ST=Dublin,L=Earth","CN=Paul*,OU=SSLTEAM,O=
 Orbix Services,C=Ireland,ST=Dublin,L=Earth",
"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

 * Matches any text. For example:

an* matches ant and anger, but not aunt
[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 144

Advanced Configuration Options
If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.
The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 307.
145

CHAPTER 8 | Configuring SSL/TLS Authentication
 146

Part 4
CSIv2 Administration

In this part This part contains the following chapters:

Introduction to CSIv2 page 149

Configuring CSIv2 Authentication over Transport page 157

Configuring CSIv2 Identity Assertion page 177

CHAPTER 9

Introduction to
CSIv2
CSIv2 is the OMG’s Common Secure Interoperability protocol
v2.0, which can provide the basis for application-level security
in CORBA applications. The Orbix Security Framework uses
CSIv2 to transmit usernames and passwords, and asserted
identities between applications.

In this chapter This chapter discusses the following topics:

CSIv2 Features page 150

Basic CSIv2 Scenarios page 152
149

CHAPTER 9 | Introduction to CSIv2
CSIv2 Features

Overview This section gives a quick overview of the basic features provided by CSIv2
application-level security. Fundamentally, CSIv2 is a general, interoperable
mechanism for propagating security data between applications. Because
CSIv2 is designed to complement SSL/TLS security, CSIv2 focuses on
providing security features not covered by SSL/TLS.

Application-level security CSIv2 is said to provide application-level security because, in contrast to
SSL/TLS, security data is transmitted above the transport layer and the
security data is sent after a connection has been established.

Transmitting CSIv2-related
security data

The CSIv2 specification defines a new GIOP service context type, the
security attribute service context, which is used to transmit CSIv2-related
security data. There are two important specializations of GIOP:

• IIOP—the Internet inter-ORB protocol, which specialises GIOP to the
TCP/IP transport, is used to send CSIv2 data between CORBA
applications.

• RMI/IIOP—RMI over IIOP, which is an IIOP-compatible version of
Java’s Remote Method Invocation (RMI) technology, is used to send
CSIv2 data between EJB applications and also for CORBA-to-EJB
interoperability.

CSIv2 mechanisms The following CSIv2 mechanisms are supported:

• CSIv2 authentication over transport mechanism.

• CSIv2 identity assertion mechanism.

CSIv2 authentication over
transport mechanism

The CSIv2 authentication over transport mechanism provides a simple client
authentication mechanism, based on a username and a password. This
mechanism propagates a username, password, and domain name to the
server. The server then authenticates the username and password before
allowing the invocation to proceed.
 150

CSIv2 Features
CSIv2 identity assertion
mechanism

The CSIv2 identity assertion mechanism provides a way of asserting the
identity of a caller without performing authentication. This mechanism is
usually used to propagate a caller identity that has already been
authenticated at an earlier point in the system.

Applicability of CSIv2 CSIv2 is applicable to both CORBA technology. CSIv2 can be used by the
following kinds of application:

• CORBA C++ applications.

• CORBA Java applications.
151

CHAPTER 9 | Introduction to CSIv2
Basic CSIv2 Scenarios

Overview The CSIv2 specification provides two independent mechanisms for sending
credentials over the transport (authentication over transport, and identity
assertion), but the CSIv2 specification does not mandate how the
transmitted credentials are used. Hence, there are many different ways of
using CSIv2 and different ways to integrate it into a security framework
(such as iSF).

This section describes some of the basic scenarios that illustrate typical
CSIv2 usage.

In this section This section contains the following subsections:

CSIv2 Authentication over Transport Scenario page 153

CSIv2 Identity Assertion Scenario page 154
 152

Basic CSIv2 Scenarios
CSIv2 Authentication over Transport Scenario

Overview Figure 15 shows a basic CSIv2 scenario where a CORBA client and a
CORBA server are configured to use the CSIv2 authentication over transport
mechanism.

Scenario description The scenario shown in Figure 15 can be described as follows:

More details For more details about authentication over transport, see “Configuring CSIv2
Authentication over Transport” on page 157.

Figure 15: Basic CSIv2 Authentication over Transport Scenario

Stage Description

1 The user enters a username, password, domain name on the
client side (user login).

2 When the client makes a remote invocation on the server,
CSIv2 transmits the username/password/domain authentication
data to the server in a security attribute service context.

3 The server authenticates the received username/password
before allowing the invocation to proceed.
153

CHAPTER 9 | Introduction to CSIv2
CSIv2 Identity Assertion Scenario

Overview Figure 16 shows a basic CSIv2 scenario where a client and an intermediate
server are configured to use the CSIv2 authentication over transport
mechanism, and the intermediate server and a target server are configured
to use the CSIv2 identity assertion mechanism. In this scenario, the client
invokes on the intermediate server, which then invokes on the target server.

Scenario description The second stage of the scenario shown in Figure 16 (intermediate server
invokes an operation on the target server) can be described as follows:

Figure 16: Basic CSIv2 Identity Assertion Scenario

Stage Description

1 The intermediate server can set the identity that will be
asserted to the target in one of two ways:

• Implicitly—if the execution context has an associated
CSIv2 received credentials, the intermediate server
extracts the user identity from the received credentials, or

• Explicitly—by programming.

2 When the intermediate server makes a remote invocation on
the target server, CSIv2 transmits the user identity data to the
server in a security attribute service context.
 154

Basic CSIv2 Scenarios
More details For more details about identity assertion, see “Configuring CSIv2 Identity
Assertion” on page 177.

3 The target server can access the propagated user identity
programmatically (by extracting it from a
SecurityLevel2::ReceivedCredentials object).

Stage Description
155

CHAPTER 9 | Introduction to CSIv2
 156

CHAPTER 10

Configuring CSIv2
Authentication
over Transport
This chapter explains the concepts underlying the CSIv2
authentication over transport mechanism and provides details
of how to configure a client and a server to use this mechanism.

In this chapter This chapter discusses the following topics:

CSIv2 Authentication Scenario page 158

SSL/TLS Prerequisites page 162

Requiring CSIv2 Authentication page 164

Providing an Authentication Service page 167

Providing a Username and Password page 168

Sample Configuration page 172
157

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
CSIv2 Authentication Scenario

Overview This section describes a typical CSIv2 authentication scenario, where the
client is authenticated over the transport by providing a username and a
password.

Authentication over transport The CSIv2 authentication over transport mechanism is a simple client
authentication mechanism based on a username and a password. In a
system with a large number of clients, it is significantly easier to administer
CSIv2 client authentication than it is to administer SSL/TLS client
authentication.

CSIv2 authentication is said to be over transport, because the
authentication step is performed at the General Inter-ORB Protocol (GIOP)
layer. Specifically, authentication data is inserted into the service context of
a GIOP request message. CSIv2 authentication, therefore, occurs after a
connection has been established (in contrast to SSL/TLS authentication).

GSSUP mechanism The Generic Security Service Username/Password (GSSUP) mechanism is
the basic authentication mechanism supported by CSIv2 at Level 0
conformance. Currently, this is the only authentication mechanism
supported by Orbix’s implementation of CSIv2.

Dependency on SSL/TLS Note, that CSIv2 authentication over transport cannot provide adequate
security on its own. The authentication over transport mechanism relies on
the transport layer security, that is SSL/TLS, to provide the following
additional security features:

• Server authentication.

• Privacy of communication.

• Message integrity.
 158

CSIv2 Authentication Scenario
CSIv2 scenario Figure 17 shows a typical scenario for CSIv2 authentication over transport:

How CSIv2 authentication over
transport proceeds

As shown in Figure 17 on page 159, the authentication over transport
mechanism proceeds as follows:

Figure 17: CSIv2 Authentication Over Transport Scenario

Stage Description

1 When a client initiates an operation invocation on the target,
the client’s CSI plug-in inserts a client authentication token
(containing username/password/domain) into the GIOP request
message.
159

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
SSL/TLS connection The client and server should both be configured to use a secure SSL/TLS
connection. In this scenario, the SSL/TLS connection is configured for target
authentication only.

See “SSL/TLS Prerequisites” on page 162 for details of the SSL/TLS
configuration for this scenario.

Client authentication token A client authentication token contains the data that a client uses to
authenticate itself to a server through the CSIv2 authentication over
transport mechanism, as follows:

• Username—a UTF-8 character string, which is guaranteed not to
undergo conversion when it is sent over the wire.

• Password—a UTF-8 character string, which is guaranteed not to
undergo conversion when it is sent over the wire.

• Domain—a string that identifies the CSIv2 authentication domain
within which the user is authenticated.

2 The request, together with the client authentication token, is
sent over the SSL/TLS connection. The SSL/TLS connection
provides privacy and message integrity, ensuring that the
username and password cannot be read by eavesdroppers.

3 Before permitting the request to reach the target object, the CSI
server interceptor calls an application-supplied object (the
authentication service) to check the username/password
combination.

4 If the username/password combination are authenticated
successfully, the request is allowed to reach the target object;
otherwise the request is blocked and an error returned to the
client.

Stage Description

Note: The client’s domain should match the target domain, which is
specified by the
policies:csi:auth_over_transport:server_domain_name
configuration variable on the server side.
 160

CSIv2 Authentication Scenario
The client authentication token is usually initialized by the CSIv2 principal
sponsor (which prompts the user to enter the username/password and
domain). See “Providing a Username and Password” on page 168.

Authentication service The authentication service is an external service that checks the username
and password received from the client. If the authentication succeeds, the
request is allowed to proceed and an invocation is made on the target
object; if the authentication fails, the request is automatically blocked and a
CORBA::NO_PERMISSION system exception is returned to the client.

See “Providing an Authentication Service” on page 167.
161

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
SSL/TLS Prerequisites

Overview The SSL/TLS protocol is an essential complement to CSIv2 security. The
CSIv2 authentication over transport mechanism relies on SSL/TLS to provide
the following additional security features:

• Server authentication.

• Privacy of communication.

• Message integrity.

SSL/TLS target authentication
only

For the scenario depicted in Figure 17 on page 159, the SSL/TLS
connection is configured for target authentication only. The SSL/TLS
configuration can be summarized as follows:

• Client-side SSL/TLS configuration—the client requires confidentiality,
message integrity, and the EstablishTrustInTarget SSL/TLS
association option. No X.509 certificate is provided on the client side,
because the client is not authenticated at the transport layer.

• Server-side SSL/TLS configuration—the server requires confidentiality
and message integrity, but the EstablishTrustInClient SSL/TLS
association option is not required. An X.509 certificate is provided on
the server side to enable the client to authenticate the server.

Configuration samples The SSL/TLS configuration of this CSIv2 scenario is based on the following
TLS demonstration configurations in your Orbix configuration
(DomainName.cfg file or CFR service):

• demos.tls.secure_client_with_no_cert
• demos.tls.secure_server_no_client_auth

WARNING: If you do not enable SSL/TLS for the client-server connection,
the GSSUP username and password would be sent over the wire
unencrypted and, therefore, could be read by eavesdroppers.
 162

SSL/TLS Prerequisites
SSL/TLS principal sponsor
configuration

In this scenario, the SSL/TLS principal sponsor needs to be enabled only on
the server side, because it is only the server that has an associated X.509
certificate.

References See “Sample Configuration” on page 172 for a detailed example of the client
and server SSL/TLS configuration.

See “SSL/TLS Administration” on page 97 for complete details of
configuring and administering SSL/TLS.

Note: The SSL/TLS principal sponsor is completely independent of the
CSIv2 principal sponsor (see “CSIv2 principal sponsor” on page 168). It is
possible, therefore, to enable both of the principal sponsors within the
same application.
163

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
Requiring CSIv2 Authentication

Overview This section describes the minimal configuration needed to enable CSIv2
authentication over transport. In a typical system, however, you also need to
configure SSL/TLS (see “SSL/TLS Prerequisites” on page 162) and the
CSIv2 principal sponsor (see “Providing a Username and Password” on
page 168).

Loading the CSI plug-in To enable CSIv2 for a C++ or Java application, you must include the csi
plug-in in the orb_plugins list in your Orbix configuration. The
binding:client_binding_list and binding:server_binding_list must
also be initialized with the proper list of interceptor combinations.

Sample settings for these configuration variables can be found in the
demos.tls.csiv2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Client configuration A client can be configured to support CSIv2 authentication over transport, as
follows:

Orbix configuration file
csiv2 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 ...
};

Orbix configuration file
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
 164

Requiring CSIv2 Authentication
Client CSIv2 association options The EstablishTrustInClient option is a CSIv2 association option.
Including this option in the
policies:csi:auth_over_transport:client_supports list indicates that
the client supports the CSIv2 authentication over transport mechanism.

Server configuration A server can be configured to support CSIv2 authentication over transport,
as follows:

Server CSIv2 association options Including the EstablishTrustInClient CSIv2 association option in the
policies:csi:auth_over_transport:target_supports list indicates that
the server supports the CSIv2 authentication over transport mechanism.

Including the EstablishTrustInClient CSIv2 association option in the
policies:csi:auth_over_transport:target_requires list indicates that
the server requires clients to authenticate themselves using the CSIv2
authentication over transport mechanism. If the client fails to authenticate
itself to the server when the server requires it, the server throws a
CORBA::NO_PERMISSION system exception back to the client.

Server domain name The server domain name is the name of a valid CSIv2 authentication
domain. A CSIv2 authentication domain is an administrative unit within
which a username/password combination is authenticated.

A CSIv2 client will check that the domain name in its CSIv2 credentials is
the same as the domain name set on the server side by the
policies:csi:auth_over_transport:server_domain_name configuration
variable. If the domain in the client credentials is an empty string, however,
the domain always matches (the empty string is treated as a wildcard).

Orbix configuration file
policies:csi:auth_over_transport:target_supports =

["EstablishTrustInClient"];
policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];
policies:csi:auth_over_transport:server_domain_name =

"AuthDomain";
policies:csi:auth_over_transport:authentication_service =

"csiv2.AuthenticationServiceObject";
165

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
Authentication service The authentication_service variable specifies a Java class that provides
an implementation of the authentication service. This enables you to provide
a custom implementation of the CSIv2 authentication service in Java.

When using CSIv2 in the context of the Orbix Security Framework, however,
this configuration variable should be omitted. In the Orbix Security
Framework, the GSP plug-in specifies the CSIv2 authentication service
programmatically.

See “Providing an Authentication Service” on page 167 for more details.
 166

Providing an Authentication Service
Providing an Authentication Service

Overview An implementation of the CSIv2 authentication service can be specified in
one of the following ways:

• By configuration (Java only).

• By programming a policy (Java only).

• By registering an initial reference.

By configuration (Java only) In Java, the authentication service is provided by a customizable class
which can be loaded by setting the
policies:csi:auth_over_transport:authentication_service
configuration variable to the fully-scoped name of the Java class.

By programming a policy (Java
only)

In Java, you can specify a CSIv2 authentication service object
programmatically by setting the IT_CSI::CSI_SERVER_AS_POLICY policy with
an IT_CSI::AuthenticationService struct as its policy value.

See the CORBA Programmer’s Reference, Java for more details.

By registering an initial reference You can specify a CSIv2 authentication service object (in C++ and Java) by
registering an instance as the IT_CSIAuthenticationObject initial
reference. This approach is mainly intended for use by Orbix plug-ins.

Default authentication service If no authentication service is specified, a default implementation is used
that always returns false in response to authenticate() calls.

Orbix Security Framework In the context of the Orbix Security Framework, the GSP plug-in provides a
proprietary implementation of the CSIv2 authentication service that
delegates authentication to the Orbix security service.

Sample implementation A sample implementation of a CSIv2 authentication service can be found in
the following demonstration directory:

ASPInstallDir/asp/Version/demos/corba/tls/csiv2/java/src/csiv2
167

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
Providing a Username and Password

Overview This section explains how a user can provide a username and a password
for CSIv2 authentication (logging on) as an application starts up. CSIv2
mandates the use of the GSSUP standard for transmitting a
username/password pair between a client and a server.

CSIv2 principal sponsor The CSIv2 principal sponsor is a piece of code embedded in the CSI plug-in
that obtains authentication information for an application. It is configured by
setting variables in the Orbix configuration. The great advantage of the
CSIv2 principal sponsor is that it enables you to provide authentication data
for security unaware applications, just by modifying the configuration.

The following configuration file extract shows you how to enable the CSIv2
principal sponsor for GSSUP-style authentication (assuming the application
is already configured to load the CSI plug-in):

Credentials sharing Normally, when you specify an own credential using the CSI principal
sponsor, the credential is available only to the ORB that created it. By
setting the plugins:security:share_credentials_across_orbs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

Orbix configuration file
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";
 168

Providing a Username and Password
Logging in The GSSUP username and password can be provided in one of the following
ways:

• From a dialog prompt.

• Directly in configuration.

• By programming.

From a dialog prompt If the login data are not specified in configuration, the CSIv2 principal
sponsor will prompt the user for the username, password, and domain as
the application starts up. The dialog prompt is displayed if the client
supports the EstablishTrustInClient CSIv2 association option and one or
more of the principal_sponsor:csi:auth_method_data fields are missing
(username, password, or domain).

C++ Applications

When a C++ application starts up, the user is prompted for the username
and password at the command line as follows:

Please enter username :
Enter password :
Java Applications

The following dialog window pops up to prompt the user for the username,
password, and domain name:

Figure 18: Java Dialog Window for GSSUP Username and Password
169

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
Directly in configuration The username, password, and domain can be specified directly in the
principal_sponsor:csi:auth_method_data configuration variable. For
example, the CSIv2 principal sponsor can be configured as follows:

In this example, the auth_method_data variable specifies a User username,
Pass password, and AuthDomain domain.

By programming A CORBA application developer can optionally specify the GSSUP
username, password and domain name by programming—see “Creating
CSIv2 Credentials” on page 217.

In this case, an administrator should ensure that the CSIv2 principal
sponsor is disabled for the application. Either the
principal_sponsor:csi:use_principal_sponsor variable can to be set to
false, or the CSIv2 principal sponsor variables can be removed from the
application’s configuration.

Note: The password is not checked until the client communicates with a
server secured by CSIv2. Hence, the dialog is unable to provide immediate
confirmation of a user’s password and a mis-typed password will not be
detected until the client begins communicating with the server.

Orbix configuration file
principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:use_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method_data = ["username=User",

"password=Pass", "domain=AuthDomain"];

WARNING: Storing the password directly in configuration is not
recommended for deployed systems. The password is in plain text and
could be read by anyone.
 170

Providing a Username and Password
The best approach is to set the
principal_sponsor:csi:use_principal_sponsor variable to false in the
application’s configuration scope. For example:

This ensures that the principal sponsor cannot be enabled accidentally by
picking up configuration variables from the outer configuration scope.

Orbix configuration file
outer_config_scope {
 ...
 my_app_config_scope {
 principal_sponsor:csi:use_principal_sponsor = "false";
 ...
 };
 ...
};
171

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
Sample Configuration

Overview This section provides complete sample configurations, on both the client
side and the server side, for the scenario described in “CSIv2 Authentication
Scenario” on page 158.

In this section This section contains the following subsections:

Sample Client Configuration page 173

Sample Server Configuration page 175
 172

Sample Configuration
Sample Client Configuration

Overview This section describes a sample client configuration for CSIv2 authentication
over transport which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• The client supports the SSL/TLS EstablishTrustInTarget association
option.

• The client supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

• The username and password are specified using the CSIv2 principal
sponsor.

Configuration sample The following sample shows the configuration of a client application that
uses CSIv2 authentication over transport to authenticate a user, Paul (using
the csiv2.client.paul ORB name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 client
 {
 policies:iiop_tls:client_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];
173

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
 paul
 {
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
 policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Paul", "password=password", domain="DEFAULT"];
 };
 };
};
 174

Sample Configuration
Sample Server Configuration

Overview This section describes a sample server configuration for CSIv2
authentication over transport which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• The server supports the SSL/TLS EstablishTrustInTarget and
EstablishTrustInClient association options.

• The server’s X.509 certificate is specified using the SSL/TLS principal
sponsor.

• The server supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

Configuration sample The following sample shows the configuration of a server application that
supports CSIv2 authentication over transport (using the csiv2.server ORB
name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 server
 {
 policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];
175

CHAPTER 10 | Configuring CSIv2 Authentication over Transport
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\asp\6.3\etc\tls\x509\certs\demos\b
ank_server.p12", "password=bankserverpass"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:authentication_service =
"csiv2.AuthenticationServiceObject";

 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

 };
};
 176

CHAPTER 11

Configuring CSIv2
Identity Assertion
This chapter explains the concepts underlying the CSIv2
identity assertion (or delegation) mechanism and provides
details of how to configure your applications to use this
mechanism.

In this chapter This chapter discusses the following topics:

CSIv2 Identity Assertion Scenario page 178

SSL/TLS Prerequisites page 182

Enabling CSIv2 Identity Assertion page 184

Sample Configuration page 186
177

CHAPTER 11 | Configuring CSIv2 Identity Assertion
CSIv2 Identity Assertion Scenario

Overview This section describes a typical CSIv2 identity assertion scenario, involving a
client, an intermediate server, and a target server. Once the client has
authenticated itself to the intermediate server, the intermediate server can
impersonate the client by including an identity token in the requests that it
sends to the target server. The intermediate server thus acts as a proxy (or
delegate) server.

Identity assertion The CSIv2 identity assertion mechanism provides the basis for a
general-purpose delegation or impersonation mechanism. Identity assertion
is used in the context of a system where a client invokes an operation on an
intermediate server which then invokes an operation on a target server (see
Figure 19). When making a call on the target, the client identity (which is
authenticated by the intermediate server) can be forwarded by the
intermediate to the target. This enables the intermediate to impersonate the
client.

Dependency on SSL/TLS The CSIv2 identity assertion mechanism relies on SSL/TLS to provide the
the following security features at the transport layer (between the
intermediate server and the target server):

• Authentication of the target server to the intermediate server.

• Authentication of the intermediate server to the target server.

• Privacy of communication.

• Message integrity.
 178

CSIv2 Identity Assertion Scenario
CSIv2 scenario Figure 19 shows a typical scenario for CSIv2 identity assertion:

How CSIv2 identity assertion
proceeds

As shown in Figure 19 on page 179, the identity assertion mechanism
proceeds as follows:

Figure 19: CSIv2 Identity Assertion Scenario

Stage Description

1 When a client initiates an operation invocation on the
intermediate, the client’s CSI plug-in inserts a client
authentication token (containing username/password/domain)
into the GIOP request message.
179

CHAPTER 11 | Configuring CSIv2 Identity Assertion
SSL/TLS connection The intermediate server and target server should both be configured to use a
secure SSL/TLS connection. In this scenario, the intermediate-to-target
SSL/TLS connection is configured for mutual authentication.

See “SSL/TLS Prerequisites” on page 182 for details of the SSL/TLS
configuration for this scenario.

2 The request, together with the client authentication token, is
sent over the SSL/TLS connection. The SSL/TLS connection
provides privacy and message integrity, ensuring that the
username and password cannot be read by eavesdroppers.

3 Before permitting the request to reach the target object in the
intermediate, the intermediate’s CSI plug-in calls the
authentication service to check the username/password
combination.

4 If the username/password combination are authenticated
successfully, the request is allowed to reach the object;
otherwise the request is blocked and an error is returned to the
client.

5 Within the context of the current invocation, the intermediate
server invokes an operation on the target server.

Because identity assertion has been enabled on the
intermediate server, the intermediate’s CSI plug-in extracts the
client username from the received GSSUP credentials, creates
an identity token containing this username, and then inserts
the identity token into the GIOP request message.

6 The request, together with the identity token, is sent over the
SSL/TLS connection. The SSL/TLS connection provides privacy
message integrity, and mutual authentication between the
intermediate and the target.

7 When the request arrives at the target server, the asserted
identity is extracted and made available to the target through
the CORBA received credentials object—see “Retrieving
Received Credentials” on page 230.

Stage Description
 180

CSIv2 Identity Assertion Scenario
Identity token An identity token can contain one of the following types of identity token:

• ITTAbsent—if no identity token is included in the GIOP message sent
by the intermediate server (for example, if CSIv2 identity assertion is
disabled in the intermediate server).

• ITTAnonymous—if the intermediate server is acting on behalf of an
anonymous, unauthenticated client.

• ITTPrincipalName—if the intermediate server is acting on behalf of an
authenticated client. In this case, the client identity contains the
following data:

♦ GSSUP username—automatically extracted from the GSSUP
client authentication token received from the client.

♦ Subject DN—if the intermediate server authenticates the client
using an X.509 certificate, but not using a username and
password, the intermediate would forward on an identity token
containing the subject DN from the client certificate.

Received credentials The received credentials is an object, of
SecurityLevel2::ReceivedCredentials type, defined by the OMG CORBA
Security Service that encapsulates the security credentials received from a
client. In this scenario, the target server is programmed to access the
asserted identity using the received credentials.

For details of how to access the asserted identity through the received
credentials object, see “Retrieving Received Credentials from the Current
Object” on page 231.
181

CHAPTER 11 | Configuring CSIv2 Identity Assertion
SSL/TLS Prerequisites

Overview The CSIv2 identity assertion mechanism relies on SSL/TLS to provide the
the following security features at the transport layer (between the
intermediate server and the target server):

• Authentication of the target server to the intermediate server.

• Authentication of the intermediate server to the target server.

• Privacy of communication.

• Message integrity.

SSL/TLS mutual authentication For the scenario depicted in Figure 19 on page 179, the SSL/TLS
connection between the intermediate and the target server is configured for
mutual authentication. The SSL/TLS configuration can be summarized as
follows:

• Intermediate server SSL/TLS configuration—the intermediate server
requires confidentiality, message integrity, and the
EstablishTrustInTarget SSL/TLS association option. An X.509
certificate is provided, which enables the intermediate server to be
authenticated both by the client and by the target server.

• Target server SSL/TLS configuration—the server requires
confidentiality, message integrity, and the EstablishTrustInClient
SSL/TLS association option. An X.509 certificate is provided, which
enables the target server to be authenticated by the intermediate
server.

See “Sample Intermediate Server Configuration” on page 189 for a detailed
example of the SSL/TLS configuration in this scenario.

See “SSL/TLS Administration” on page 97 for complete details of
configuring and administering SSL/TLS.
 182

SSL/TLS Prerequisites
Setting certificate constraints In the scenario depicted in Figure 19 on page 179, the target server grants
a special type of privilege (backward trust) to the intermediate server—that
is, the target accepts identities asserted by the intermediate without getting
the chance to authenticate these identities itself. It is, therefore,
recommended to set the certificate constraints policy on the target server to
restrict the range of applications that can connect to it.

The certificate constraints policy prevents connections being established to
the target server, unless the ASN.1 Distinguished Name from the subject
line of the incoming X.509 certificate conforms to a certain pattern.

See “Applying Constraints to Certificates” on page 144 for further details.

Principal sponsor configuration In this scenario, the SSL/TLS principal sponsor needs to be enabled in the
intermediate server and in the target server.

See “Specifying an Application’s Own Certificate” on page 139 and for
further details.

Note: The SSL/TLS principal sponsor is completely independent of the
CSIv2 principal sponsor (see “Providing a Username and Password” on
page 168). It is possible, therefore, to enable both of the principal
sponsors within the same application.
183

CHAPTER 11 | Configuring CSIv2 Identity Assertion
Enabling CSIv2 Identity Assertion

Overview Based on the sample scenario depicted in Figure 19 on page 179, this
section describes the basic configuration variables that enable CSIv2
identity assertion. These variables on their own, however, are by no means
sufficient to configure a system to use CSIv2 identity assertion. For a
complete example of configuring CSIv2 identity assertion, see “Sample
Configuration” on page 186.

Loading the CSI plug-in To enable CSIv2, you must include the csi plug-in in the orb_plugins list in
your Orbix configuration. The binding:client_binding_list and
binding:server_binding_list must also be initialized with the proper list
of interceptor combinations.

Sample settings for these configuration variables can be found in the
demos.tls.csiv2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Intermediate server configuration The intermediate server can be configured to support CSIv2 identity
assertion, as follows:

Orbix configuration file
csiv2 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
 ...
};

Orbix configuration file
policies:csi:attribute_service:client_supports =

["IdentityAssertion"];
 184

Enabling CSIv2 Identity Assertion
Intermediate server CSIv2
association options

Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:client_supports list indicates that the
application supports CSIv2 identity assertion when acting as a client.

Target server configuration The target server can be configured to support CSIv2 identity assertion, as
follows:

Target server CSIv2 association
options

Including the IdentityAssertion CSIv2 association option in the
policies:csi:attribute_service:target_supports list indicates that the
application supports CSIv2 identity assertion when acting as a server.

Orbix configuration file
policies:csi:attribute_service:target_supports =

["IdentityAssertion"];
185

CHAPTER 11 | Configuring CSIv2 Identity Assertion
Sample Configuration

Overview This section provides complete sample configurations, covering the client,
the intermediate server, and the target server, for the scenario described in
“CSIv2 Identity Assertion Scenario” on page 178.

In this section This section contains the following subsections:

Sample Client Configuration page 187

Sample Intermediate Server Configuration page 189

Sample Target Server Configuration page 191
 186

Sample Configuration
Sample Client Configuration

Overview This section describes a sample client configuration for the CSIv2 identity
assertion scenario. In this part of the scenario, the client is configured to use
CSIv2 authentication over transport, as follows:

• The iiop_tls and csi plug-ins are loaded into the application.

• The client supports the SSL/TLS EstablishTrustInTarget association
option.

• The client supports the CSIv2 authentication over transport
EstablishTrustInClient association option.

• The username and password are specified using the CSIv2 principal
sponsor.

Configuration sample The following sample shows the configuration of a client application that
uses CSIv2 authentication over transport to authenticate a user, Paul (using
the csiv2.client.paul ORB name):

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 client
 {
 policies:iiop_tls:client_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];
187

CHAPTER 11 | Configuring CSIv2 Identity Assertion
 paul
 {
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=Paul", "password=password", "domain=DEFAULT"];
 };
 };
};
 188

Sample Configuration
Sample Intermediate Server Configuration

Overview This section describes a sample intermediate server configuration for CSIv2
identity assertion which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• In the role of server, the intermediate server supports the SSL/TLS
EstablishTrustInTarget and EstablishTrustInClient association
options.

• In the role of client, the intermediate server supports the SSL/TLS
EstablishTrustInTarget and EstablishTrustInClient association
options.

• The intermediate server’s X.509 certificate is specified using the
SSL/TLS principal sponsor.

• In the role of server, the intermediate server supports the CSIv2
authentication over transport EstablishTrustInClient association
option.

• In the role of client, the intermediate server supports the CSIv2
IdentityAssertion association option.

Configuration sample The following sample shows the configuration of an intermediate server
application that supports CSIv2 authentication over transport (when acting
as a server) and identity assertion (when acting as a client). In this example,
the server executable should use the csiv2.intermed_server ORB name:

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];
189

CHAPTER 11 | Configuring CSIv2 Identity Assertion
 intermed_server
 {
 policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 policies:iiop_tls:client_secure_invocation_policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\art\6.3\etc\tls\x509\certs\demos\b
ank_server.p12", "password=bankserverpass"];

 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:authentication_service =
"csiv2.AuthenticationServiceObject";

 policies:csi:auth_over_transport:server_domain_name =
"DEFAULT";

 };
};
 190

Sample Configuration
Sample Target Server Configuration

Overview This section describes a sample target server configuration for CSIv2 identity
assertion which has the following features:

• The iiop_tls and csi plug-ins are loaded into the application.

• The server supports the SSL/TLS EstablishTrustInTarget and
EstablishTrustInClient association options.

• The server requires the SSL/TLS EstablishTrustInClient association
option.

• The server’s X.509 certificate is specified using the SSL/TLS principal
sponsor.

• The intermediate server supports the CSIv2 IdentityAssertion
association option.

Configuration sample The following sample shows the configuration of a target server application
that supports identity assertion (using the csiv2.target_server ORB
name).

Orbix configuration file
csiv2
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "csi"];
 event_log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IIOP_TLS=*",

"IT_ATLI_TLS=*"];
 binding:client_binding_list = ["GIOP+EGMIOP",

"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS"];

 binding:server_binding_list = ["CSI"];

 target_server
 {
 policies:iiop_tls:target_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
191

CHAPTER 11 | Configuring CSIv2 Identity Assertion
 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\ASPInstallDir\art\6.3\etc\tls\x509\certs\demos\b
ank_server.p12", "password=bankserverpass"];

 policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

 };
};
 192

Part 5
CORBA Security

Programming

In this part This part contains the following chapters:

Programming Policies page 195

Authentication page 209

Validating Certificates page 233

CHAPTER 12

Programming
Policies
You can customize the behavior of secure CORBA applications
by setting policies programmatically.

In this chapter This chapter discusses the following topics:

Setting Policies page 196

Programmable SSL/TLS Policies page 199

Programmable CSIv2 Policies page 206
195

CHAPTER 12 | Programming Policies
Setting Policies

Overview This section provides a brief overview of how to set CORBA policies by
programming. An example, in C++ and Java, is provided that shows how
to set a CORBA policy at the ORB level.

How to program CORBA policies is described in more detail in the CORBA
Programmer’s Guide.

Client-side policy levels You can set client-side policies at any of the following levels:

• ORB

• Thread

• Object (for client-side proxies).

Server-side policy levels You can set server-side policies at any of the following levels:

• ORB

• POA

Policy management As described in the CORBA Programmer’s Guide, you can set a policy at
each level using the appropriate policy management object as listed in
Table 8.

Table 8: Policy Management Objects

Policy Level Policy Management Object

ORB CORBA::PolicyManager

Thread CORBA::PolicyCurrent

POA PortableServer::POA::create_POA()

Client-side proxy (ObjectRef)._set_policy_overrides()
 196

Setting Policies
C++ Example The following C++ example shows how to set an SSL/TLS certificate
constraints policy at the ORB level:

Setting a Policy at ORB Level The programming steps in the preceding examples, “C++ Example” on
page 197, can be explained as follows:

1. Retrieve the ORB policy manager.

2. Create an instance of the policy that you are to adjust, based on the
Orbix IDL (see the CORBA Programmer’s Reference).

3. Set your new values on this policy.

4. Create an ORB policy object using the CORBA::ORB:create_policy()
operation and provide your new policy as a parameter.

5. Add the policy to a PolicyList object.

Example 11:C++ Example of Setting ORB-Level Policies

//C++
...
 CORBA::Any any;
 CORBA::PolicyList orb_policies;
 orb_policies.length(1);

1 CORBA::Object_var object =
 global_orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_mgr =
 CORBA::PolicyManager::_narrow(object);

2 IT_TLS_API::CertConstraints cert_constraints;
 cert_constraints.length(1);

3 cert_constraints[0] = CORBA::string_dup(
 "C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"
);

 any <<= cert_constraints;

4,5 orb_policies[0] = global_orb->create_policy(
 IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY, any
);

6 policy_mgr->set_policy_overrides(
 orb_policies, CORBA::ADD_OVERRIDE
);
197

CHAPTER 12 | Programming Policies
6. Use the PolicyManager::set_policy_overrides() operation to set
the new PolicyList on the ORB.
 198

Programmable SSL/TLS Policies
Programmable SSL/TLS Policies

Overview This section gives a brief overview of the different kinds of programmable
SSL/TLS policy and discusses how these policies interact with each other
and with policies set in configuration.

For more details of these SSL/TLS policies, consult the relevant sections of
the CORBA Programmer’s Reference.

In this section This section contains the following subsections:

Introduction to SSL/TLS Policies page 200

The QOPPolicy page 202

The EstablishTrustPolicy page 203

The InvocationCredentialsPolicy page 204

Interaction between Policies page 205
199

CHAPTER 12 | Programming Policies
Introduction to SSL/TLS Policies

Configuring or programming
policies

You can use policies to govern security behavior in Orbix and most of these
policies can be set through the Orbix configuration file (see “policies” on
page 272).

However, policies set with the configuration file only apply at the ORB level.
If you develop security-aware applications, you can add a finer level of
security to objects by programming policies in your application code.

Augmenting minimum levels of
security

You can use the CORBA policy IDL and the TLS policy IDL to refine the
security features that your objects require. Follow these steps:

1. Consider what are the minimum security levels set for objects in your
system.

2. Add to these minimum levels, by adding the available programmable
policies to your application code.

What are the minimum security
levels for objects?

You can set the minimum levels of security that objects require with secure
invocation policies. There are two types of secure invocation policy:

• Security::SecClientSecureInvocation
• Security::SecTargetSecureInvocation
You can apply values for these in the Orbix configuration file, as discussed in
“Setting Association Options” on page 106, or by programming policies.

It is important to remember that by programming policies you can only add
more security to the minimum required in the configuration; you cannot
reduce the minimum required security by programming.

Note: Examples of configuring policies programmatically can be found in
the TLS policy demo, in the ASPInstallDir/asp/6.3/demos/tls/policy
directory.
 200

Programmable SSL/TLS Policies
Required and supported security
features

Any object, can have the following dispositions to a security feature:

• If the object requires a certain type of security, that requirement must
be complied with before a call to the object succeeds.

• If the object supports a certain type of security, that security feature
can be used, but does not have to be used.
201

CHAPTER 12 | Programming Policies
The QOPPolicy

IDL definition The SecurityLevel2::QOPPolicy policy provides a way to override the
client and target secure invocation policies. You can apply four levels of
protection defined by the enumerated type, Security::QOP, defined as
follows:

Purpose The SecurityLevel2::QOPPolicy is used by security aware applications for
two purposes:

• Restricting the types of cipher suites available for consideration.

• Overriding the way in which a specific object is contacted.

Restricting cipher suites The values allowed for QOP policies are not specific enough to identify
particular cipher suites (the mechanism policy can be used for this).
However the QOPPolicy value can render certain cipher suites
inapplicable—see “Constraints Imposed on Cipher Suites” on page 124.

If you set a QOP policy to override an existing QOP policy, the applicable list
of cipher suites can be extended as a result.

Over-riding how an object is
contacted

When you set a QOP policy override for an object, this results in a new
object reference that contains the applicable policies. This means that the
QOP policy can conveniently be used to create an insecure object reference
(where allowed by the administration policies) that you can use for
operations where you wish insecure invocations to take place. The original
object reference that contains a higher quality of protection can be used for
the more sensitive operations.

//IDL
module Security {
...
 enum QOP {
 SecQOPNoProtection,
 SecQOPIntegrity,
 SecQOPConfidentiality,
 SecQOPIntegrityAndConfidentiality
 };
};
 202

Programmable SSL/TLS Policies
The EstablishTrustPolicy

Purpose You can use the SecurityLevel2::EstablishTrustPolicy to control
whether server or client authentication is to be enforced.

Both a client and target object can support this policy, meaning that, for a
client, the client is prepared to authenticate its privileges to the target, and
the target supports this.

However, you can also set this policy as required for a target policy. This
means that a client must authenticate its privileges to the target, before the
target will accept the connection.

IDL Definition The SecurityLevel2::EstablishTrustPolicy policy contains an attribute,
trust, of Security::EstablishTrust type that specifies whether trust in
client and trust in target is enabled. The Security::EstablishTrust type is
defined as follows:

Structure members This structure contains the following members:

• The trust_in_client element stipulates whether the invocation must
select credentials and mechanism that allow the client to be
authenticated to the target.

• The trust_in_target element stipulates whether the invocation must
first establish trust in the target.

//IDL
module Security {
...
 struct EstablishTrust {
 boolean trust_in_client;
 boolean trust_in_target;
 };
...
};

Note: Normally, all SSL/TLS cipher suites need to authenticate the target.
203

CHAPTER 12 | Programming Policies
The InvocationCredentialsPolicy

Purpose The SecurityLevel2::InvocationCredentialsPolicy policy forces a POA
to use specific credentials or to use specific credentials on a particular
object. When this object is returned by the get_policy() operation, it
contains the active credentials that will be used for invocations using this
target object reference.

Attribute The SecurityLevel2::InvocationCredentialsPolicy policy has a single
attribute, creds, that returns a list of Credentials objects that are used as
invocation credentials for invocations through this object reference.

Setting the policy at object level An InvocationCredentialsPolicy object can be passed to the
set_policy_overrides() operation to specify one or more Credentials
objects to be used when calling this target object, using the object reference
returned by set_policy_overrides().
 204

Programmable SSL/TLS Policies
Interaction between Policies

Upgrading security To upgrade an insecure Orbix application to be fully secure using the QOP
and EstablishTrust policies, the application must initially be configured to
support the DetectReply and the DetectMisordering association options.
This is because it is not possible to specify the DetectReplay and
DetectMisordering association options programatically, but these
association options are needed for all the SSL/TLS cipher suites. See
“Constraints Imposed on Cipher Suites” on page 124.

No downgrading of security When you specify the client secure invocation policy and the target secure
invocation policy, you are providing your application with its minimum
security requirements. These minimum requirements must be met by any
other specified policies and cannot be weakened. This means that the
following policies cannot be specified, if their values would conflict with the
corresponding SecureInvocationPolicy value:

• QOPPolicy
• MechanismPolicy
• EstablishTrustPolicy

Compatibility with the mechanism
policy value

You cannot specify values for the QOPPolicy, SecureInvocationPolicy
(client and target), or EstablishTrustPolicy, if the underlying mechanism
policy does not support it. For example, you cannot specify that
Confidentiality is required, if only NULL cipher suites are enabled in the
MechanismPolicy.
205

CHAPTER 12 | Programming Policies
Programmable CSIv2 Policies

Overview This section gives a brief overview of the programmable CSIv2 policies.
These programmable policies provide functionality equivalent to the CSIv2
configuration variables.

For complete details of the CSIv2 policies, see the description of the IT_CSI
module in the CORBA Programmer’s Reference.

CSIv2 policies The following CSIv2 policies can be set programmatically:

• Client-side CSIv2 authentication policy.

• Server-side CSIv2 authentication policy.

• Client-side CSIv2 identity assertion policy.

• Server-side CSIv2 identity assertion policy.

Client-side CSIv2 authentication
policy

You can set the client-side CSIv2 authentication policy to enable an
application to send GSSUP username/password credentials over the wire in
a GIOP service context. The programmable client-side CSIv2 authentication
policy provides functionality equivalent to setting the following configuration
variable:

policies:csi:auth_over_transport:client_supports
To create a client-side CSIv2 authentication policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_CLIENT_AS_POLICY.
• Policy data is IT_CSI::AuthenticationService.

Server-side CSIv2 authentication
policy

You can set the server-side CSIv2 authentication policy to enable an
application to receive and authenticate GSSUP username/password
credentials. The programmable server-side CSIv2 authentication policy
provides functionality equivalent to setting the following configuration
variables:

policies:csi:auth_over_transport:target_supports
policies:csi:auth_over_transport:target_requires
policies:csi:auth_over_transport:server_domain_name
policies:csi:auth_over_transport:authentication_service
 206

Programmable CSIv2 Policies
To create a server-side CSIv2 authentication policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_SERVER_AS_POLICY.
• Policy data is IT_CSI::AuthenticationService.

Client-side CSIv2 identity
assertion policy

You can set the client-side CSIv2 identity assertion policy to enable an
application to send a CSIv2 asserted identity over the wire in a GIOP service
context. The programmable client-side CSIv2 identity assertion policy
provides functionality equivalent to setting the following configuration
variable:

policies:csi:attribute_service:client_supports
To create a client-side CSIv2 identity assertion policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_CLIENT_SAS_POLICY.
• Policy data is IT_CSI::AttributeService.

Server-side CSIv2 identity
assertion policy

You can set the server-side CSIv2 identity assertion policy to enable an
application to receive a CSIv2 asserted identity. The programmable
server-side CSIv2 identity assertion policy provides functionality equivalent
to setting the following configuration variable:

policies:csi:attribute_service:target_supports
To create a server-side CSIv2 identity assertion policy, use the following IDL
data types from the IT_CSI module:

• Policy type constant is IT_CSI::CSI_SERVER_SAS_POLICY.
• Policy data is IT_CSI::AttributeService.
207

CHAPTER 12 | Programming Policies
 208

CHAPTER 13

Authentication
The Orbix Security Framework protects your applications by
preventing principals from making calls to the system unless
they authenticate themselves.

In this chapter This chapter discusses the following topics:

Using the Principal Authenticator page 210

Using a Credentials Object page 221

Retrieving Own Credentials page 223

Retrieving Target Credentials page 226

Retrieving Received Credentials page 230
209

CHAPTER 13 | Authentication
Using the Principal Authenticator

Overview The principal authenticator is an object that associates secure identities
with a CORBA application. This section explains how to use the principal
authenticator to create various kinds of credentials.

In this section This section contains the following subsections:

Introduction to the Principal Authenticator page 211

Creating SSL/TLS Credentials page 214

Creating CSIv2 Credentials page 217
 210

Using the Principal Authenticator
Introduction to the Principal Authenticator

Overview This section describes the role of the principal authenticator object in
creating and authenticating an application’s own credentials.

Creating own credentials There are two alternative ways to create an application’s own credentials:

• By configuration—that is, by setting the principal sponsor
configuration variables. See “Specifying an Application’s Own
Certificate” on page 139.

• By programming—that is, by calling the
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation directly. This alternative is described here.

Principal A principal can be any person or code that wants to use your secure system.
The principal must be identified, for example by a user name and password,
and authenticated. Once authenticated, your system assigns credentials to
that principal, that assert the authenticated identity.

Own credentials An own credentials object, of SecurityLevel2::Credentials type,
represents a secure identity under whose authority the context is executing.
When an application invokes an operation on a remote server, it sends one
or more of its own credentials to the server in order to identify itself to the
server.

Principal authenticator The principal authenticator is a factory object that creates own credentials
and associates them with the current ORB instance. By calling the principal
authenticator’s authenticate() operation multiple times, you can associate
a list of own credentials objects with the current ORB.

Note: In terms of the CORBA Security Specification, an ORB object is
identified with a security capsule. The list of own credentials created by a
principal authenticator is implicitly associated with the enclosing security
capsule.
211

CHAPTER 13 | Authentication
Credentials sharing Normally, when you specify an own credential using the principal
authenticator, the credential is available only to the ORB that created it. By
setting the plugins:security:share_credentials_across_orbs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

Creating own credentials To create own credentials and make them available to your application,
follow these steps:

Types of credentials Using the PrincipalAuthenticator, you can create the following types of
credentials:

• SSL/TLS own credentials.

• CSIv2 own credentials.

SSL/TLS own credentials An SSL/TLS own credentials contains an X.509 certificate chain and is
represented by an object of IT_TLS_API::TLSCredentials type.

CSIv2 own credentials The contents of a CSIv2 own credentials depends on the particular
mechanism that is used, as follows:

• Username and password—if the CSIv2 authentication over transport
mechanism is used.

Step Action

1 Obtain an initial reference to the
SecurityLevel2::SecurityManager object.

2 Acquire a SecurityLevel2::PrincipleAuthenticator object
from the security manager.

3 Call the PrincipleAuthenticator::authenticate() operation
to authenticate the client principal and create a
SecurityLevel2::Credentials own credentials object.

4 If more than one type of own credentials object is needed, call
the PrincipleAuthenticator::authenticate() operation
again with the appropriate arguments.
 212

Using the Principal Authenticator
• Username only—if the CSIv2 identity assertion mechanism is used.

In both cases, the CSIv2 own credentials is represented by an object of
IT_CSI::CSICredentials type.
213

CHAPTER 13 | Authentication
Creating SSL/TLS Credentials

Overview The following authentication methods are supported for SSL/TLS:

• IT_TLS_API::IT_TLS_AUTH_METH_LABEL—enables you to specify the
name of a label in a key ring (z/OS only).

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_DER—enables you to specify
an X.509 certificate chain in DER-encoded PKCS#12 format. The
PKCS#12 data is provided in the form of an
IT_Certificate::DERData object. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_CERT_CHAIN—enables you to specify
the private key and certificate chain directly as
IT_Certificate::DERData and IT_Certificate::X509CertChain
objects, respectively. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_CERT_CHAIN_FILE—enables you to
specify the path name of a file containing a PEM-encoded X.509
certificate chain. Not supported by Schannel.

• IT_TLS_API::IT_TLS_AUTH_METH_PKCS11—enables you to specify the
provider, slot number and PIN for a PKCS#11 smart card. Not
supported by Schannel.

C++ example In the following C++ example, a client principal passes its identity to the
principal authenticator in the form of a PKCS#12 file:

Example 12:C++ Example of SSL/TLS Authentication

//C++
int pkcs12_login(
 CORBA::ORB_ptr orb,
 const char *pkcs12_filename,
 const char *password
)
{
 CORBA::Any auth_data;
 CORBA::Any* continuation_data_ign;
 CORBA::Any* auth_specific_data_ign;
 Security::AttributeList privileges; // Empty

1 SecurityLevel2::Credentials_var creds;
 Security::AuthenticationStatus status;
 214

Using the Principal Authenticator
C++ notes The preceding C++ example can be explained as follows:

1. Declare an empty credentials object reference to hold the security
attributes of this client if login is successful.

2. Obtain an initial reference to the SecurityManager object.

3. Acquire a PrincipleAuthenticator object from the security manager.

 IT_TLS_API::PKCS12FileAuthData p12_auth_data;
 CORBA::Object_var obj;
 SecurityLevel2::SecurityManager_var security_manager_obj;
 SecurityLevel2::PrincipalAuthenticator_var
 principal_authenticator_obj;

2 obj = orb->resolve_initial_references("SecurityManager");
 security_manager_obj = SecurityLevel2::SecurityManager::
 _narrow(obj);

3 principal_authenticator_obj =
 security_manager_obj->principal_authenticator();

 p12_auth_data.filename =
 CORBA::string_dup(pkcs12_filename);
 p12_auth_data.password =
 CORBA::string_dup(password);
 auth_data <<= p12_auth_data;

4 status = principal_authenticator_obj->authenticate(
 IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE,
 "", // The mechanism name.
 NULL, // SecurityName (not used for this method).
 auth_data, // The authentication data for this method of
 // authentication.
 privileges, // Empty list, no privileges are supported
 // by SSL.
 creds,
 continuation_data_ign, // These last two paramaters are
 auth_specific_data_ign // not used by this
 // mechanism/method combination.
);
...

Example 12:C++ Example of SSL/TLS Authentication
215

CHAPTER 13 | Authentication
4. Use the PrincipleAuthenticator to authenticate the client principal.
If this operation returns a value of Security::SecAuthSuccess, the
security attributes of the authenticated object are stored in the
credentials object, creds.
 216

Using the Principal Authenticator
Creating CSIv2 Credentials

Overview The following authentication method is supported for CSIv2:

• IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD—enables you to
specify a GSSUP username, password, and domain. The GSSUP
authentication data is provided in the form of an
IT_CSI::GSSUPAuthData object.

C++ example Example 13 shows how to create CSIv2 credentials in C++, by supplying a
username, <user_name>, password, <password>, and authentication
domain, <domain>, to the principal authenticator’s authenticate()
operation.

Example 13:C++ Example of CSIv2 Authentication

// C++
int
set_csiv2_credential(CORBA::ORB_var orb)
{
 IT_CSI::GSSUPAuthData csi_gssup_auth_data;
 CORBA::Any auth_data;
 CORBA::Any* continuation_data_ign;
 CORBA::Any* auth_specific_data_ign;
 Security::AttributeList privileges;
 SecurityLevel2::Credentials_var creds;
 CORBA::String_var username;
 Security::AuthenticationStatus status;
 SecurityLevel2::PrincipalAuthenticator_var authenticator;

 try {
 // Get initial reference of SecurityManager
 SecurityLevel2::SecurityManager_var security_manager_obj;

 try
 {
 CORBA::Object_var obj;

1 obj = orb->resolve_initial_references(
 "SecurityManager"
);
 security_manager_obj =
 SecurityLevel2::SecurityManager::_narrow(obj);
217

CHAPTER 13 | Authentication
 if (CORBA::is_nil(security_manager_obj))
 {
 cerr << "Unexpected Error. Failed to initialize "
 "SecurityManager initial reference." << endl;
 }

2 authenticator =
 security_manager_obj->principal_authenticator();
 if (CORBA::is_nil(authenticator))
 {
 // Log error message (not shown) ...
 return -1;
 }
 }
 catch (const CORBA::ORB::InvalidName&)
 {
 // Log error message (not shown) ...
 return -1;
 }

 username = CORBA::string_dup("<user_name>");
3 csi_gssup_auth_data.password =

 CORBA::string_dup("<password>");
 csi_gssup_auth_data.domain =
 CORBA::string_dup("<domain>");

4 auth_data <<= csi_gssup_auth_data;
 ...

5 status = authenticator->authenticate(
 IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD,
 "", // NOT USED
 username, // GSSUP user name
 auth_data, // GSSUP auth data in an any
 privileges, // NOT USED
 creds, // returned credentials
 continuation_data_ign, // NOT USED
 auth_specific_data_ign // NOT USED
);

 if (status != Security::SecAuthSuccess)
 {
 // Log error message (not shown) ...
 return -1;
 }
 }

Example 13:C++ Example of CSIv2 Authentication
 218

Using the Principal Authenticator
 if (CORBA::is_nil(security_manager_obj))
 {
 cerr << "Unexpected Error. Failed to initialize "
 "SecurityManager initial reference." << endl;
 }

2 authenticator =
 security_manager_obj->principal_authenticator();
 if (CORBA::is_nil(authenticator))
 {
 // Log error message (not shown) ...
 return -1;
 }
 }
 catch (const CORBA::ORB::InvalidName&)
 {
 // Log error message (not shown) ...
 return -1;
 }

 username = CORBA::string_dup("<user_name>");
3 csi_gssup_auth_data.password =

 CORBA::string_dup("<password>");
 csi_gssup_auth_data.domain =
 CORBA::string_dup("<domain>");

4 auth_data <<= csi_gssup_auth_data;
 ...

5 status = authenticator->authenticate(
 IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD,
 "", // NOT USED
 username, // GSSUP user name
 auth_data, // GSSUP auth data in an any
 privileges, // NOT USED
 creds, // returned credentials
 continuation_data_ign, // NOT USED
 auth_specific_data_ign // NOT USED
);

 if (status != Security::SecAuthSuccess)
 {
 // Log error message (not shown) ...
 return -1;
 }
 }

Example 13:C++ Example of CSIv2 Authentication
219

CHAPTER 13 | Authentication
C++ notes The preceding C++ example can be explained as follows:

1. Obtain an initial reference to the SecurityManager object.

2. Acquire a PrincipleAuthenticator object from the security manager.

3. Create a GSSUPAuthData struct containing the GSSUP password,
<password>, and domain, <domain>.

4. Insert the GSSUPAuthData struct, auth_data, into the any,
auth_data_any.

5. Call authenticate() on the PrincipleAuthenticator object to
authenticate the client principal. If the authenticate() operation
returns a value of Security::SecAuthSuccess, the security attributes
of the authenticated object are stored in creds.

 catch(const CORBA::Exception& ex)
 {
 cerr << "Could not set csi credentials, " << ex << endl;
 return -1;
 }
 return 0;
}

Example 13:C++ Example of CSIv2 Authentication
 220

Using a Credentials Object
Using a Credentials Object

What is a credentials object? A SecurityLevel2::Credentials object is a locality-constrained object that
represents a particular principal’s credential information, specific to the
execution context. A Credentials object stores security attributes, including
authenticated (or unauthenticated) identities, and provides operations to
obtain and set the security attributes of the principal it represents.

Credentials types There are three types of credentials:

• Own credentials—identifies the principal under whose authority the
context is executing. An own credential is represented by an object of
SecurityLevel2::Credentials type.

• Target credentials—identifies a remote target object. A target
credential is represented by an object of
SecurityLevel2::TargetCredentials type.

• Received credentials—identifies the principal that last sent a message
to the current execution context (for example, the principal that called
a currently executing operation). A received credential is represented
by an object of SecurityLevel2::ReceivedCredentials type.

How credentials are obtained Credentials objects are created or obtained as the result of:

• Authentication.

• Asking for a Credentials object from a SecurityLevel2::Current
object or from a SecurityLevel2::SecurityManager object.

Accessing the credentials
attributes

The security attributes associated with a Credentials object can be
obtained by calling the SecurityLevel2::Credentials::get_attributes()
operation, which returns a list of security attributes (of
Security::AttributeList type).

Standard credentials attributes Two security attribute types are supported by Orbix (of
Security::SecurityAttributeType type), as follows:
221

CHAPTER 13 | Authentication
• Security::_Public—present in every Credentials object. The value
of this attribute is always empty.

• Security::AccessId—present only if the Credentials object
represents a valid credential (containing an X.509 certificate chain). In
SSL/TLS, the value of this attribute is the string form of the subject DN
of the first certificate in the certificate chain.

Orbix-specific credentials
attributes

Orbix also enables you to access the X.509 certificate chain associated with
a Credentials object by narrowing the Credentials object to one of the
following interface types: IT_TLS_API::Credentials,
IT_TLS_API::ReceivedCredentials, or IT_TLS_API::TargetCredentials.

Retrieval method summary The different credentials types can be retrieved in the following ways:

• Retrieving own credentials—a client’s own credentials can be retrieved
from the SecurityLevel2::SecurityManager object.

• Retrieving target credentials—a client can retrieve target credentials
(if they are available) by passing the target’s object reference to the
SecurityLevel2::SecurityManager::get_target_credentials()
operation.

• Retrieving received credentials—a server can retrieve an
authenticated client’s credentials from the SecurityLevel2::Current
object.

Note: The _ (underscore) prefix in _Public is needed to avoid a
clash with the IDL keyword, public. The underscore prefix is,
however, omitted from the corresponding C++ and Java identifiers.
 222

Retrieving Own Credentials
Retrieving Own Credentials

Overview This section describes how to retrieve own credentials from the security
manager object and how to access the information contained in the own
credentials.

In this section This section contains the following subsections:

Retrieving Own Credentials from the Security Manager page 224

Parsing SSL/TLS Own Credentials page 225
223

CHAPTER 13 | Authentication
Retrieving Own Credentials from the Security Manager

Overview This section describes how to retrieve an application’s list of own credentials
from the security manager object.

The security manager object The SecurityLevel2::SecurityManager object provides access to
ORB-specific security information. The attributes and operations of the
SecurityManager object apply to the current security capsule (that is, ORB
or group of credentials-sharing ORBs) regardless of the thread of execution.

Security manager operations and
attributes

The attributes and operations on the SecurityLevel2::SecurityManager
object are described in the CORBA Programmer’s Reference.

C++ example In C++, you can retrieve an application’s own credentials list as shown in
Example 14.

The preceding code example can be described, as follows:

1. The standard string, SecurityManager, is used to obtain an initial
reference to the SecurityLevel2::SecurityManager object.

2. The list of own credentials is obtained from the own_credentials
attribute of the security manager object.

Example 14:Retrieving a C++ Application’s Own Credentials List

// C++
...

1 CORBA::Object_var obj =
 my_orb->resolve_initial_references("SecurityManager");
SecurityLevel2::SecurityManager_var security_manager_obj =

SecurityLevel2::SecurityManager::_narrow(obj);
if (CORBA::is_nil(security_manager_obj))
{
 // Error! Deal with failed narrow...
}

2 SecurityLevel2::CredentialsList_var creds_list =
 security_manager_obj->own_credentials();
...
 224

Retrieving Own Credentials
Parsing SSL/TLS Own Credentials

Overview This subsection explains how to access the information stored in an
SSL/TLS credentials object. If a credentials object obtained from the security
manager is of SSL/TLS type, you can narrow the credentials to the
IT_TLS_API::TLSCredentials type to gain access to its X.509 certificate
chain.

C++ example In C++, if the own credentials list contains a list of SSL/TLS credentials,
you can access the credentials as follows:

// C++
for (CORBA::ULong i=0; i < creds_list->length(); i++)
{
 // Access the i’th own credentials in the list
 IT_TLS_API::TLSCredentials_var tls_creds =
 IT_TLS_API::TLSCredentials::_narrow(creds_list[i]);
 if (CORBA::is_nil(tls_creds))
 {
 // Error! Deal with failed narrow...
 }

 // Get the first X.509 certificate in the chain
 IT_Certificate::X509Cert_var cert =
 tls_creds->get_x509_cert();

 // Examine the X.509 certificate, etc.
 ...
}

225

CHAPTER 13 | Authentication
Retrieving Target Credentials

Overview This section describes how to retrieve the target credentials from a particular
target object and how to access the information contained in the target
credentials.

In this section This section contains the following subsections:

Retrieving Target Credentials from an Object Reference page 227

Parsing SSL/TLS Target Credentials page 229
 226

Retrieving Target Credentials
Retrieving Target Credentials from an Object Reference

Availability of target credentials Target credentials are available on the client side only if the client is
configured to authenticate the remote target object. For almost all SSL/TLS
cipher suites and for all SSL/TLS cipher suites currently supported by Orbix
ASP this is the case.

When target credentials are available to the client, they are implicitly
associated with an object reference.

The TargetCredentials interface The SecurityLevel2::TargetCredentials interface is the standard type
used to represent a target credentials object. It is described in the CORBA
Programmer’s Reference.

Interaction with rebind policy If you are going to retrieve target credentials, you should be aware of the
possible interactions with the rebind policy.

WARNING: If you want to check the target credentials, you should ensure
that transparent rebinding is disabled by setting the
policies:rebind_policy configuration variable to NO_REBIND. Otherwise,
a secure association could close (for example, if automatic connection
management is enabled) and rebind to a different server without the client
being aware of this.
227

CHAPTER 13 | Authentication
C++ example In C++, you can retrieve the target credentials associated with a particular
object reference, target_ref, as shown in Example 15.

Example 15:C++ Obtaining Target Credentials

// C++
...
// Given the following prerequisites:
// my_orb - a reference to an ORB instance.
// target_ref - an object reference to a remote, secured object.

CORBA::Object_var obj =
 my_orb->resolve_initial_references("SecurityManager");
SecurityLevel2::SecurityManager_var security_manager_obj =

SecurityLevel2::SecurityManager::_narrow(obj);
if (CORBA::is_nil(security_manager_obj))
{
 // Error! Deal with failed narrow...
}

SecurityLevel2::TargetCredentials_var target_creds =
 security_manager_obj->get_target_credentials(target_ref);
...
 228

Retrieving Target Credentials
Parsing SSL/TLS Target Credentials

Overview If you want to access the added value Orbix functionality for SSL/TLS target
credentials, perform this additional step after obtaining the target
credentials (otherwise, you can use the standard
SecurityLevel2::Credentials interface).

Narrow the SecurityLevel2::TargetCredentials object to the
IT_TLS_API::TLSTargetCredentials type to gain access to its X.509
certificate.

C++ example In C++, after obtaining a target credentials object, target_creds, as shown
in Example 15 on page 228, you can access the SSL/TLS specific data as
follows:

// C++
...
IT_TLS_API::TLSTargetCredentials_var tls_target_creds =
 IT_TLS_API::TLSTargetCredentials::_narrow(target_creds);
if (CORBA::is_nil(tls_target_creds))
{
 // Error! Deal with failed narrow...
}

// Get the first X.509 certificate in the chain
IT_Certificate::X509Cert_var cert =
 tls_target_creds->get_x509_cert();

// Examine the X.509 certificate, etc.
...
229

CHAPTER 13 | Authentication
Retrieving Received Credentials

Overview This section describes how to retrieve received credentials from the current
object and how to access the information contained in the received
credentials.

In this section This section contains the following subsections:

Retrieving Received Credentials from the Current Object page 231

Parsing SSL/TLS Received Credentials page 232
 230

Retrieving Received Credentials
Retrieving Received Credentials from the Current Object

Role of the
SecurityLevel2::Current object

A security-aware server application can obtain information about the
attributes of the calling principal through the SecurityLevel2::Current
object. The SecurityLevel2::Current object contains information about
the execution context.

The SecurityLevel2::Current
interface

The SecurityLevel2::Current interface is described in detail in the CORBA
Programmer’s Reference.

C++ example In C++, to obtain received credentials, perform the steps shown in
Example 16.

Example 16:C++ Retrieving Received Credentials

// C++
...
// In the context of an operation/attribute implementation

CORBA::Object_var obj =
my_orb->resolve_initial_references("SecurityCurrent");

SecurityLevel2::Current_var current_obj =
SecurityLevel2::Current::_narrow(obj);

if (CORBA::is_nil(current_obj))
{
 // Error! Deal with failed narrow...
}

SecurityLevel2::ReceivedCredentials_var recvd_creds =
 current_obj->received_credentials();
...
231

CHAPTER 13 | Authentication
Parsing SSL/TLS Received Credentials

Overview If you want to access the added value Orbix functionality for SSL/TLS
received credentials, perform this additional step (otherwise, you can use
the standard SecurityLevel2::Credentials interface).

Narrow the SecurityLevel2::ReceivedCredentials object to the
IT_TLS_API::TLSReceivedCredentials type to gain access to its X.509
certificate (this step is specific to Orbix).

C++ example In C++, after obtaining a received credentials object, recvd_creds, (see
Example 16 on page 231) you can access the SSL/TLS specific data as
follows:

// C++
...
IT_TLS_API::TLSReceivedCredentials_var tls_recvd_creds =
 IT_TLS_API::TLSReceivedCredentials::_narrow(recvd_creds);
if (CORBA::is_nil(tls_recvd_creds))
{
 // Error! Deal with failed narrow...
}

// Get the first X.509 certificate in the chain
IT_Certificate::X509Cert_var cert =
 tls_recvd_creds->get_x509_cert();

// Examine the X.509 certificate, etc.
...
 232

CHAPTER 14

Validating
Certificates
During secure authentication, Orbix TLS checks the validity of
an application’s certificate. This chapter describes how Orbix
validates a certificate and how you can use the Orbix API to
introduce additional validation to your applications.

In this chapter This chapter discusses the following topics:

Overview of Certificate Validation page 234

The Contents of an X.509 Certificate page 237

Parsing an X.509 Certificate page 238

Controlling Certificate Validation page 239

Obtaining an X.509 Certificate page 247
233

CHAPTER 14 | Validating Certificates
Overview of Certificate Validation

Certificate validation The Orbix API allows you to define a certificate validation policy that
implements custom validation of certificates. During authentication, Orbix
validates a certificate and then passes it to a certificate validation object, if
you have specified a certificate validation policy. This functionality is useful
in systems that have application-specific requirements for the contents of
each certificate.

Validation process A server sends its certificate to a client during a TLS handshake, as follows:

1. The server obtains its certificate (for example, by reading it from a local
file) and transmits it as part of the handshake.

2. The client reads the certificate from the network, checks the validity of
its contents, and either accepts or rejects the certificate.

Figure 20: Validating a Certificate
 234

Overview of Certificate Validation
Default validation The default certificate validation in Orbix checks the following:

• The certificate is a validly constructed X.509 certificate.

• The signature is correct for the certificate.

• The certificate has not expired and is currently valid.

• The certificate chain is validly constructed, consisting of the peer
certificate plus valid issuer certificates up to the maximum allowed
chain depth.

• If the CertConstraintsPolicy has been set, the DN of the received
peer certificate is checked to see if it passes any of the constraints in
the policy conditions. This applies only to the application certificate,
not the CA certificates in the chain.

Custom validation For some applications, it is necessary to introduce additional validation. For
example, your client programs might check that each server uses a specific,
expected certificate (that is, the distinguished name matches an expected
value). Using Orbix, you can perform custom validation on certificates by
registering an IT_TLS_API::CertValidatorPolicy and implementing an
associated IT_TLS::CertValidator object.

Example of custom validation For example, Figure 21 shows the steps followed by Orbix to validate a
certificate when a CertValidatorPolicy has been registered on the client
side:

1. The standard validation checks are applied by Orbix.

2. The certificate is then passed to an IT_TLS::CertValidator callback
object that performs user-specified validation on the certificate.

3. The user-specified CertValidator callback object can decide whether
to accept or reject the certificate.

4. Orbix accepts or rejects the certificate.
235

CHAPTER 14 | Validating Certificates
Figure 21: Using a CertValidator Callback
 236

The Contents of an X.509 Certificate
The Contents of an X.509 Certificate

Purpose of a certificate An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate).

Certificate syntax A certificate is encoded in Abstract Syntax Notation One (ASN.1), a
standard syntax for describing messages that can be sent or received on a
network.

Certificate contents The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

• A common name that identifies the subject.

• The public key associated with the common name.

• The name of the user who created the certificate, which is known as
the subject name.

• Information about the certificate issuer.

• The signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.
237

CHAPTER 14 | Validating Certificates
Parsing an X.509 Certificate

C++ parsing Orbix ASP provides a high-level set of C++ classes that provide the ability
to parse X.509 v3 certificates, including X.509 v3 extensions. When writing
your certificate validation functions, you use these classes to examine the
certificate contents.

The C++ parsing classes are mapped from the interfaces appearing in the
IT_Certificate IDL module—see the CORBA Programmer’s Reference.

Working with distinguished
names in C++

An X.509 certificate uses ASN.1 distinguished name structures to store
information about the certificate issuer and subject. A distinguished name
consists of a series of attribute value assertions (AVAs). Each AVA
associates a value with a field from the distinguished name.

For example, the distinguished name for a certificate issuer could be
represented in string format as follows:

/C=IE/ST=Co. Dublin/L=Dublin/O=Orbix Services/OU=PD/CN=Orbix
Services

In this example, AVAs are separated by the / character. The first field in the
distinguished name is C, representing the country of the issuer, and the
corresponding value is the country code IE. This example distinguished
name contains six AVAs.

Extracting distinguished names
from certificates in C++

Once you have acquired a certificate, the IT_Certificate::Certificate
interface permits you to retrieve distinguished names using the
get_issuer_dn_string() and get_subject_dn_string() operations. These
operations return an object derived from the IT_Certificate::AVAList
interface. The AVAList interface gives you access to the AVA objects
contained in the distinguished name. For more information on these
interfaces, see the CORBA Programmer’s Reference.

Working with X.509 extensions in
C++

Some X.509 v3 certificates include extensions. These extensions can
contain several different types of information. You can use the
IT_Certificate::ExtensionList and IT_Certificate::Extension
interfaces described in the CORBA Programmer’s Reference to retrieve this
information.
 238

Controlling Certificate Validation
Controlling Certificate Validation

Policies used for certificate
validation

You can control how your applications handle certificate validation using the
following Orbix policies:

In this section This section contains the following subsections:

CertConstraintsPolicy Use this policy to apply conditions that peer
X.509 certificates must meet to be
accepted.

CertificateValidatorPolicy Use this policy to create customized
validations of peer certificate chains.

Certificate Constraints Policy page 240

Certificate Validation Policy page 243
239

CHAPTER 14 | Validating Certificates
Certificate Constraints Policy

Constraints applied to
distinguished names

You can impose rules about which peer certificates to accept using
certificate constraints. These are conditions imposed on a received
certificate subject's distinguished name (DN). Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN). Constraints are not
applied to all certificates in a received certificate chain, but only to the first
in the list, the peer application certificate.

Alternatives ways to set the
constraints policy

Use the certificate constraints policy to apply these conditions. You can set
this policy in two ways:

Setting the CertConstraintsPolicy
by configuration

You can set the CertConstraintsPolicy in the configuration file. For
example:

"C=US,ST=Massachusetts,O=ABigBank*,OU=Administration"
In this case, the same constraints string applies to all POAs. If you need
different constraints for different POAs then you must supply the policy at
POA creation time. For more details, see “Applying Constraints to
Certificates” on page 144.

Setting the CertConstraintsPolicy
by programming

When you specify a CertConstraintsPolicy object on an ORB
programatically, objects created by that ORB apply the certificate
constraints to all applications that connect to it.

By configuration This allows you to set constraints at the granularity
of an ORB. The same constraints are applied to both
client and server peer certificates.

By programming This allows you to set constraints by ORB, thread,
POA, or object reference. You can also differentiate
between client and server certificates when
specifying constraints.
 240

Controlling Certificate Validation
In the following example, the certificate constraints string specified only
allows clients from the Administration Organization unit to connect. The
administration user is the only client that has a certificate that satisfies this
constraint.

C++ example The following C++ example shows how to set the CertConstraintsPolicy
programmatically:

C++ example description The preceding C++ example can be explained as follows:

1. Create a PolicyList object.

2. Retrieve the PolicyManager object.

3. Instantiate a CertConstraints data instance (string array).

Note: This certificate constraints policy is only relevant if the target object
supports client authentication.

Example 17:C++ Example of Setting the CertConstraintsPolicy

//C++
...
 CORBA::Any any;

1 CORBA::PolicyList orb_policies;
 orb_policies.length(1);

2 CORBA::Object_var object =

global_orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_mgr = CORBA::PolicyManager::
 _narrow(object);

3 IT_TLS_API::CertConstraints cert_constraints;
 cert_constraints.length(1);

 cert_constraints[0] =

CORBA::string_dup("C=US,ST=Massachusetts,
 O=ABigBank*,OU=Administration");
 any <<= cert_constraints;

4 orb_policies[0] = global_orb->create_policy(IT_TLS_API::
 TLS_CERT_CONSTRAINTS_POLICY, any);

5 policy_mgr->set_policy_overrides(orb_policies, CORBA::
 ADD_OVERRIDE);
241

CHAPTER 14 | Validating Certificates
4. Create a policy using the CORBA::ORB::create_policy() operation.
The first parameter to this operation sets the policy type to
TLS_CERT_CONSTRAINTS_POLICY, and the second is an Any
containing the custom policy.

5. Use the PolicyManager to add the new policy override to the Orb
scope
 242

Controlling Certificate Validation
Certificate Validation Policy

Certificate validation Your applications can perform customized validation of peer certificate
chains. This enables them, for example, to perform special validation on
x.509 v3 extensions or do automatic database lookups to validate subject
DNs.

Restrictions on custom certificate
validation

The customized certificate validation policy cannot make Orbix accept a
certificate that the system has already decided is invalid. It can only reject a
certificate that would otherwise have been accepted.

Customizing your applications To customize your applications, perform the following steps:

Your customized policy is used in addition to the default
CertValidatorPolicy.

Derive a class from the
CertValidator signature class

In the following example, an implementation class is derived from the
IT_TLS::CertValidator interface:

Step Action

1 Derive a class from the CertValidator signature class.

2 Override the validate_cert_chain() operation.

3 Specify the CertValidatorPolicy on the ORB.

//C++
class CustomCertValidatorImpl :
 public virtual IT_TLS::CertValidator,
 public virtual CORBA::LocalObject

{
 public:

 CORBA::Boolean
 validate_cert_chain(
 CORBA::Boolean chain_is_valid,
 const IT_Certificate::X509CertChain& cert_chain,
243

CHAPTER 14 | Validating Certificates
The class contains your custom version of the validate_cert_chain()
function.

Override the validate_cert_chain()
operation

The following an example custom validation function simply retrieves a
name from a certificate:

 const IT_TLS::CertChainErrorInfo& error_info
);
};

Example 18:C++ Example of Overriding validate_cert_chain()

//C++
CORBA::Boolean
CustomCertValidatorImpl::validate_cert_chain(
 CORBA::Boolean chain_is_valid,
 const IT_Certificate::X509CertChain& cert_chain,
 const IT_TLS::CertChainErrorInfo& error_info
)
{
 if (chain_is_valid)
 {
 CORBA::String_var CN;

1 IT_Certificate::X509Cert_var cert = cert_chain[0];

2 IT_Certificate::AVAList_var subject =
 cert->get_subject_avalist();

 IT_Certificate::Bytes* subject_string_name;
3 subject_string_name = subject->convert(IT_Certificate::

 IT_FMT_STRING);

 int len = subject_string_name->length();
 char *str_name = new char[len];
 for (int i = 0; i < len; i++){
 str_name[i] = (char)((*subject_string_name)[i]);
 }
 }
 return chain_is_valid;
}

 244

Controlling Certificate Validation
The preceding C++ example can be explained as follows:

1. The certificate is retrieved from the certificate chain.

2. An AVAList (see “Working with distinguished names in C++” on
page 238) containing the distinguished name is retrieved from the
certificate.

3. The distinguished name is converted to string format.

Specify the CertValidatorPolicy on
the ORB

Once you have devised your custom validation class, create an instance of it
and apply it as a policy to the Orb with the policy manager, as shown in the
following example:

Example 19:C++ Example of Setting the CertValidatorPolicy

//C++
int main(int argc, char* argv[])
{
 CORBA::PolicyTypeSeq types;
 CORBA::PolicyList policies(1);
 CORBA::Any policy_any;
 CORBA::Object_var object;
 CORBA::PolicyManager_var policy_mgr;
 IT_TLS::CertValidator_ptr custom_cert_val_obj;

1 policies.length(1);
 types.length(1);

2 types[0] = IT_TLS_API::TLS_CERT_VALIDATOR_POLICY;

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 object = orb->resolve_initial_references("ORBPolicyManager");
3 policy_mgr = CORBA::PolicyManager::_narrow(object);

 // set cert validator policy at ORB scope
4 custom_cert_val_obj = new CustomCertValidatorImpl;

 policy_any <<= custom_cert_val_obj;
5 policies[0] =

orb->create_policy(IT_TLS_API::TLS_CERT_VALIDATOR_POLICY,
policy_any);

6 policy_mgr->set_policy_overrides(
 policies,
 CORBA::ADD_OVERRIDE
);
245

CHAPTER 14 | Validating Certificates
As can be seen from the above example, you can apply the new
CertValidator policy to the Orb in the same manner as any other Orbix
policy:

1. Create a CORBA::PolicyList object.

2. Set the type of the appropriate policy slot in the PolicyList to
TLS_CERT_VALIDATOR_POLICY. In this example, the first slot is
chosen.

3. Retrieve the CORBA::PolicyManager object.

4. Instantiate the custom IT_TLS::CertValidator policy object.

5. Create a policy using the CORBA::ORB::create_policy() operation.
The first parameter to this operation sets the policy type to
TLS_CERT_VALIDATOR_POLICY, and the second is a CORBA::Any
containing the custom policy.

6. Use the PolicyManager to add the new policy override to the ORB
scope.

 ...
}

Example 19:C++ Example of Setting the CertValidatorPolicy
 246

Obtaining an X.509 Certificate
Obtaining an X.509 Certificate

Alternative ways of obtaining
certificates

You can obtain a certificate in the following ways:

• Using the IT_TLS_API::TLSCredentials interface, which enables you
to retrieve X.509 certificates from a credentials object—see “Retrieving
Own Credentials” on page 223.

• The IT_Certificate::X509CertChain object that Orbix passes to the
IT_TLS::CertValidator::validate_cert_chain() operation.

• Using the IT_Certificate::X509CertificateFactory interface, which
creates an IT_Certificate::X509Cert object from DER data.

The certificate can be accessed through the IT_Certificate::X509Cert
interface. For more For more information on this interface, see the CORBA
Programmer’s Reference.
247

CHAPTER 14 | Validating Certificates
 248

Part 6
Appendices

In this part This part contains the following appendices:

Security Configuration page 251

ASN.1 and Distinguished Names page 307

Association Options page 313

SSL/TLS Sample Configurations page 317

Security Recommendations page 323

Action-Role Mapping DTD page 327

APPENDIX A

Security
Configuration
This appendix describes configuration variables used by the
Orbix Security Framework. The security infrastructure is highly
configurable.

In this appendix This appendix discusses the following topics:

Applying Constraints to Certificates page 253

initial_references page 255

plugins:atli2_tls page 256

plugins:csi page 257

plugins:gsp page 258

plugins:iiop_tls page 264

plugins:security page 269

plugins:systemssl_toolkit page 270

policies page 272

policies:csi page 279

policies:https page 282
251

APPENDIX A | Security Configuration
policies:iiop_tls page 289

principal_sponsor page 300

principal_sponsor:csi page 304
 252

Applying Constraints to Certificates
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate_constraints_policy configuration variables.
For example:

policies:iiop_tls:certificate_constraints_policy =
 ["CN=Johnny*,OU=[unit1|IT_SSL],O=Orbix
 Services,C=Ireland,ST=Dublin,L=Earth","CN=Paul*,OU=SSLTEAM,O=
 Orbix Services,C=Ireland,ST=Dublin,L=Earth",
"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:

an* matches ant and anger, but not aunt
[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
253

APPENDIX A | Security Configuration
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.
The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see Appendix B on
page 307.
 254

initial_references
initial_references
The initial_references namespace contains the following configuration
variables:

• IT_TLS_Toolkit:plugin

IT_TLS_Toolkit:plugin

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by . It is used in conjunction with the
plugins:baltimore_toolkit:shlib_name,
plugins:schannel_toolkit:shlib_name (Windows only) and
plugins:systemssl_toolkit:shlib_name (z/OS only) configuration
variables to implement SSL/TLS toolkit replaceability.

The only toolkit supported by Orbix Mainframe is the System SSL toolkit.

For example, to specify that an application should use the System SSL
toolkit, you would set configuration variables as follows:

initial_references:IT_TLS_Toolkit:plugin = "systemssl_toolkit";
plugins:systemssl_toolkit:shlib_name = "ORXSSSL";
255

APPENDIX A | Security Configuration
plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:

• use_jsse_tk

use_jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with .
If true, uses the JSSE/JCE architecture to implement SSL/TLS security; if
false, uses the Baltimore SSL/TLS toolkit.

The default is false.
 256

plugins:csi
plugins:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• shlib_name
• use_legacy_policies

shlib_name

shlib_name identifies the DLL that contains the csi plug-in implementation:

plugins:csi:shlib_name = "ORXCSIP";
The csi plug-in becomes associated with the ORXCSIP DLL, where ORXCSIP
is the unversioned or similar word base name of the library.

use_legacy_policies

use_legacy_policies is a boolean variable that specifies whether the
application can be programmed using the new CSIv2 policy types or the
older (legacy) CSIv2 policy types.

If plugins:csi:use_legacy_policies is set to true, you can program CSIv2
using the following policies:

• IT_CSI::AuthenticationServicePolicy
• IT_CSI::AttributeServicePolicy
If plugins:csi:use_legacy_policies is set to false, you can program
CSIv2 using the following policies:

• IT_CSI::AttributeServiceProtocolClient
• IT_CSI::AttributeServiceProtocolServer
Default is false.
257

APPENDIX A | Security Configuration
plugins:gsp
The plugins:gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user’s roles against the permissions stored in an action-role mapping file. It
includes the following:

• accept_asserted_authorization_info
• action_role_mapping_file
• assert_authorization_info
• authentication_cache_size
• authentication_cache_timeout
• authorization_realm
• enable_authorization
• enable_gssup_sso
• enable_user_id_logging
• enable_x509_sso
• enforce_secure_comms_to_sso_server
• enable_security_service_cert_authentication
• retrieve_isf_auth_principal_info_for_all_realms
• sso_server_certificate_constraints
• use_client_load_balancing

accept_asserted_authorization_info

If false, SAML data is not read from incoming connections. Default is true.

action_role_mapping_file

Specifies the action-role mapping file URL. For example:

plugins:gsp:action_role_mapping_file =
"file:///my/action/role/mapping";
 258

plugins:gsp
assert_authorization_info

If false, SAML data is not sent on outgoing connections. Default is true.

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the security service on the next call from that user. The cache timeout
should be configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).
A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:gsp:authorization_realm to
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).
259

APPENDIX A | Security Configuration
enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is true.

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when set to
true.

enable_user_id_logging

A boolean variable that enables logging of user IDs on the server side.
Default is false.
Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages
containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]
(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDs in
the Orbix log. From Orbix 6.2 onward, the default behavior of the GSP
plug-in is changed, so that user IDs are not logged by default. To restore the
pre-Orbix 6.2 behavior and log user IDs, set this variable to true.

enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.
 260

plugins:gsp
Default is true.
261

APPENDIX A | Security Configuration
enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
on the server side using the security service.

Default is false.

retrieve_isf_auth_principal_info_for_all_realms

A boolean setting that determines whether the GSP plug-in retrieves role
and realm data for all realms, when authenticating user credentials. If true,
the GSP plug-in retrieves the user’s role and realm data for all realms; if
false, the GSP plug-in retrieves the user’s role and realm data only for the
realm specified by plugins:gsp:authorization_realm.
Setting this variable to false can provide a useful performance optimization
in some applications. But you must take special care to configure the
application correctly for making operation invocations between different
realms.

Default is true.

sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see “Applying Constraints to Certificates” on
page 253.

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the security service). See also
policies:iiop_tls:load_balancing_mechanism.
Default is true.
 262

plugins:https
plugins:https
The plugins:https namespace contains the following variable:

• ClassName

ClassName

(Java only) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";
263

APPENDIX A | Security Configuration
plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:

• buffer_pool:recycle_segments

• buffer_pool:segment_preallocation

• buffer_pools:max_incoming_buffers_in_pool

• buffer_pools:max_outgoing_buffers_in_pool

• cert_expiration_warning_days

• delay_credential_gathering_until_handshake

• enable_iiop_1_0_client_support

• enable_warning_for_approaching_cert_expiration

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• own_credentials_warning_cert_constraints

• tcp_listener:reincarnate_attempts

• tcp_listener:reincarnation_retry_backoff_ratio

• tcp_listener:reincarnation_retry_delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable’s value.
 264

plugins:iiop_tls
buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable’s
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable’s
value.

cert_expiration_warning_days

(Since Orbix 6.2 SP1) Specifies the threshold for the number of days left to
certificate expiration, before Orbix issues a warning. If the application’s own
certificate is due to expire in less than the specified number of days, Orbix
issues a warning message to the log.

Default is 31 days.

See also the following related configuration variables:

plugins:iiop_tls:enable_warning_for_approaching_cert_expiration
plugins:iiop_tls:own_credentials_warning_cert_constraints

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the principal_sponsor variables to specify an
application’s own certificate. When this variable is set to true and
principal_sponsor:use_principal_sponsor is set to false, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.
265

APPENDIX A | Security Configuration
This configuration variable can be used in conjunction with the
plugins:schannel:prompt_with_credential_choice configuration variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of SSL/TLS applications
with legacy IIOP 1.0 SSL/TLS servers, which do not support IIOP 1.1.

The default value is false. When set to true, SSL/TLS searches secure
target IIOP 1.0 object references for legacy IIOP 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

enable_warning_for_approaching_cert_expiration

(Since Orbix 6.2 SP1) Enables warnings to be sent to the log, if an
application’s own certificate is imminently about to expire. The boolean
value can have the following values: true, enables the warning feature;
false, disables the warning feature.

Default is true.
See also the following related configuration variables:

plugins:iiop_tls:cert_expiration_warning_days
plugins:iiop_tls:own_credentials_warning_cert_constraints

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:hard_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

Note: This variable will not be necessary for most users.
 266

plugins:iiop_tls
incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:soft_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:hard_limit variable’s
value.

outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable’s
value.

own_credentials_warning_cert_constraints

(Since Orbix 6.2 SP1) Set this certificate constraints variable, if you would
like to avoid deploying certain certificates as an own certificate. A warning is
issued, if the own certificate’s subject DN matches the constraints specified
by this variable (see “Applying Constraints to Certificates” on page 253 for
details of the constraint language). For example, you might want to generate
a warning in case you accidentally deployed a Micro Focus demonstration
certificate.

Default is an empty list, [].

Note: This warning is not related to certificate expiration and works
independently of the certificate expiration warning.
267

APPENDIX A | Security Configuration
tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation, which enables new connections to be established. This
variable only affects Java and C++ applications on Windows. Defaults to 0
(no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_delay specifies a
delay between reincarnation attempts. Data type is long. Defaults to 0 (no
delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_backoff_ratiosp
ecifies the degree to which delays between retries increase from one retry to
the next. Datatype is long. Defaults to 1.
 268

plugins:security
plugins:security
The plugins:security namespace contains the following variable:

• share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also principal_sponsor:csi:use_existing_credentials for details of
how to enable sharing of CSI credentials.

Default is false.
269

APPENDIX A | Security Configuration
plugins:systemssl_toolkit
The plugins:systemssl_toolkit namespace contains the following
variables:

• hfs_keyring_file_password

• hfs_keyring_file_stashfile

• hfs_keyring_filename

• saf_keyring

• session_cache_size

• session_cache_validity_period

hfs_keyring_file_password

hfs_keyring_file_password specifies the password that accesses the key
database specified by plugins:systemssl_toolkit:hfs_keyring_filename.

hfs_keyring_file_stashfile

hfs_keyring_file_stashfile specifies the name of a stash file containing
the password that accesses the key database specified by
plugins:systemssl_toolkit:hfs_keyring_filename. The stash file stores
the password in encrypted form.

hfs_keyring_filename

hfs_keyring_filename specifies the name of a key ring file (database of
keys) within a hierarchical file system. For example, to specify the
/keyring/key.kdb key ring file:

Note: Either hfs_keyring_file_password or
hfs_keyring_file_stashfile can be used to specify the password, but
not both.

plugins:systemssl_toolkit:hfs_keyring_filename =
"/keyring/key.kdb";
 270

plugins:systemssl_toolkit
saf_keyring

saf_keyring specifies the name of an SAF key ring (for example, an RACF
key ring) from which an application retrieves authentication data. For
example, to use the SAF key ring named TESTRING:

session_cache_size

session_cache_size specifies the size of the System SSL session identifier
cache. The oldest entry will be removed when the cache is full, in order to
make space for a new entry. The range is 0–64000 and defaults to 512.
Session identifiers will not be remembered if a value of 0 is specified.

session_cache_validity_period

session_cache_validity_period specifies the number of seconds until an
SSL session identifier expires. The range is 0–86400 and defaults to 86400
(one day). System SSL will remember session identifiers for this amount of
time. This reduces the amount of data exchanged during the SSL handshake
when a complete initial handshake has already been performed. Session
identifiers will not be remembered if a value of 0 is specified.

plugins:systemssl_toolkit:saf_keyring = "TESTRING";
271

APPENDIX A | Security Configuration
policies
The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the policies namespace include:

• allow_unauthenticated_clients_policy
• certificate_constraints_policy
• client_secure_invocation_policy:requires
• client_secure_invocation_policy:supports
• max_chain_length_policy
• mechanism_policy:accept_v2_hellos
• mechanism_policy:ciphersuites
• mechanism_policy:protocol_version

• target_secure_invocation_policy:requires
• target_secure_invocation_policy:supports
• trusted_ca_list_policy

allow_unauthenticated_clients_policy

(Deprecated in favor of
policies:iiop_tls:allow_unauthenticated_clients_policy and
policies:https:allow_unauthenticated_clients_policy.)
A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.
 272

policies
certificate_constraints_policy

(Deprecated in favor of
policies:iiop_tls:certificate_constraints_policy and
policies:https:certificate_constraints_policy.)
A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:requires and
policies:https:client_secure_invocation_policy:requires.)
A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:supports and
policies:https:client_secure_invocation_policy:supports.)
A generic variable that sets this policy both for iiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.
273

APPENDIX A | Security Configuration
max_chain_length_policy

(Deprecated in favor of policies:iiop_tls:max_chain_length_policy and
policies:https:max_chain_length_policy.)
max_chain_length_policy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

(See also policies:iiop_tls:mechanism_policy:accept_v2_hellos and
policies:https:mechanism_policy:accept_v2_hellos.)
The accept_v2_hellos policy is a special setting that facilitates
interoperability with older deployments of Orbix on z/OS. When true, the
application accepts V2 client hellos, but continues the handshake using
either the SSL_V3 or TLS_V1 protocol. When false, the application throws
an error, if it receives a V2 client hello. The default is false. For example:

policies:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:ciphersuites and
policies:https:mechanism_policy:ciphersuites.)
mechanism_policy:ciphersuites specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites listed below can
be specified in this list:

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.

TLS_RSA_WITH_NULL_MD5

TLS_RSA_WITH_NULL_SHA

TLS_RSA_EXPORT_WITH_RC4_40_MD5
 274

policies
TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_RC4_128_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
275

APPENDIX A | Security Configuration
mechanism_policy:protocol_version

(Deprecated in favor of
policies:iiop_tls:mechanism_policy:protocol_version and
policies:https:mechanism_policy:protocol_version.)
mechanism_policy:protocol_version specifies the list of protocol versions
used by a security capsule (ORB instance). The list can include one or more
of the following values:

• SSL_V3
• TLS_V1
• TLS_V1_1
• TLS_V1_2
• TLS_V1_3
For example:

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_AES_256_GCM_SHA384

TLS_AES_128_GCM_SHA256

TLS_CHACHA20_POLY1305_SHA256

policies:mechanism_policy:protocol_version=["TLS_V1", "SSL_V3"];
 276

policies
target_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:requires and
policies:https:target_secure_invocation_policy:requires.)
target_secure_invocation_policy:requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

target_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:supports and
policies:https:target_secure_invocation_policy:supports.)
supports specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.
277

APPENDIX A | Security Configuration
trusted_ca_list_policy

(Deprecated in favor of policies:iiop_tls:trusted_ca_list_policy and
policies:https:trusted_ca_list_policy.)
trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];

Note: The trusted_ca_list_policy configuration variable is not used
with System SSL on the z/OS platform. The System SSL toolkit obtains its
CA list from the underlying SSL repository (the SAF key ring or the HFS key
database).
 278

policies:csi
policies:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• attribute_service:backward_trust:enabled
• attribute_service:client_supports
• attribute_service:target_supports
• auth_over_transport:authentication_service
• auth_over_transport:client_supports
• auth_over_transport:server_domain_name
• auth_over_transport:target_requires
• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];
279

APPENDIX A | Security Configuration
attribute_service:target_supports

attribute_service:target_supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns false when the
authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSIv2 authorization over transport.
The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
 280

policies:csi
auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
281

APPENDIX A | Security Configuration
policies:https
The policies:https namespace contains variables used to configure the
https plugin. It contains the following variables:

• allow_unauthenticated_clients_policy
• browser_navigation:enabled
• certificate_constraints_policy
• client_secure_invocation_policy:requires
• client_secure_invocation_policy:supports
• max_chain_length_policy
• mechanism_policy:accept_v2_hellos
• mechanism_policy:ciphersuites
• mechanism_policy:protocol_version

• send_timeout
• session_caching_policy
• target_secure_invocation_policy:requires
• target_secure_invocation_policy:supports
• trace_requests:enabled
• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.
This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).
 282

policies:https
browser_navigation:enabled

Specifies whether you can use the browser interface to drill down to the list
of available Web service endpoints. The default value is true, which means
you can enter a high-level URL (for example, https://host:port), and click
through subsequent screens to view to the list of available services and the
associated WSDL.

certificate_constraints_policy

A list of constraints applied to peer certificates—see “Applying Constraints
to Certificates” on page 253 for the syntax of the pattern constraint
language. If a peer certificate fails to match any of the constraints, the
certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for details on how to set SSL/TLS association options.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for details on how to set SSL/TLS association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

Note: This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.
283

APPENDIX A | Security Configuration
max_chain_length_policy

The maximum certificate chain length that an ORB will accept (see the
discussion of certificate chaining in the Orbix Security Guide).

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This HTTPS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

The accept_v2_hellos policy is a special setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL
V2 client hellos, because they do not know what SSL version the server
supports.

When true, the server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
server throws an error, if it receives a V2 client hello. The default is true.

For example:

policies:https:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.

Note: This default value is deliberately different from the
policies:iiop_tls:mechanism_policy:accept_v2_hellos default value.

TLS_RSA_WITH_NULL_MD5

TLS_RSA_WITH_NULL_SHA
 284

policies:https
TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_RC4_128_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
285

APPENDIX A | Security Configuration
mechanism_policy:protocol_version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). The list can include one or more of:

• SSL_V3
• TLS_V1
• TLS_V1_1
• TLS_V1_2
• TLS_V1_3
The default setting is TLS_V1 and TLS_V1_3.
For example:

policies:https:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_AES_256_GCM_SHA384

TLS_AES_128_GCM_SHA256

TLS_CHACHA20_POLY1305_SHA256
 286

policies:https
send_timeout

Enables you to abort an HTTPS send reply attempt to the target Web service
consumer if this expiry setting times out. The value is expressed in
milliseconds. This setting relates to the time taken to send the entire HTTP
message to the remote Web service peer.

session_caching_policy

When this policy is set, the https plug-in reads this policy’s value instead of
the policies:session_caching policy’s value (C++) or
policies:session_caching_policy policy’s value (Java).

target_secure_invocation_policy:requires

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

policies:https:send_timeout = "5000";
287

APPENDIX A | Security Configuration
trace_requests:enabled

Specifies whether the contents of each HTTPS message should be sent to
the event-log stream as INFO messages. If no value is specified for this
variable, it defaults to false, and no INFO messages are sent to the event
log stream.

trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.3/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.3/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

Note: The trusted_ca_list_policy configuration variable is not used
with System SSL on the z/OS platform. The System SSL toolkit obtains its
CA list from the underlying SSL repository (the SAF key ring or the HFS key
database).
 288

policies:iiop_tls
policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting affect the
iiop_tls plugin. It contains the following variables:

• buffer_sizes_policy:default_buffer_size
• buffer_sizes_policy:max_buffer_size
• certificate_constraints_policy
• client_secure_invocation_policy:requires
• client_secure_invocation_policy:supports
• client_version_policy
• connection_attempts
• connection_retry_delay
• load_balancing_mechanism
• max_chain_length_policy
• mechanism_policy:accept_v2_hellos
• mechanism_policy:ciphersuites
• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain
• server_address_mode_policy:local_hostname
• server_address_mode_policy:port_range
• server_address_mode_policy:publish_hostname
• server_version_policy
• target_secure_invocation_policy:requires
• target_secure_invocation_policy:supports
• tcp_options_policy:no_delay
• tcp_options_policy:recv_buffer_size
• tcp_options_policy:send_buffer_size
• trusted_ca_list_policy
289

APPENDIX A | Security Configuration
buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:default_buffer_size
policy’s value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:max_buffer_size
policy’s value.

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion of
certificate constraints in the security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Security
Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.
 290

policies:iiop_tls
client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by clients. A
client uses the version of IIOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1.2.
For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
291

APPENDIX A | Security Configuration
load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security service
cluster (see also plugins:gsp:use_client_load_balancing). In this
context, a client can also be an server. This policy only affects connections
made using IORs that contain multiple addresses. The iiop_tls plug-in
load balances over the addresses embedded in the IOR.

The following mechanisms are supported:

• random—choose one of the addresses embedded in the IOR at random
(this is the default).

• sequential—choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the iiop_tls
plugin.

The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

The accept_v2_hellos policy is a special setting that facilitates
interoperability with older deployments of Orbix on z/OS.

 security on the z/OS platform is based on IBM’s System/SSL toolkit, which
implements SSL version 3, but does so by using SSL version 2 hellos as part
of the handshake. This form of handshake causes interoperability problems,
because applications on other platforms identify the handshake as an SSL

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
 292

policies:iiop_tls
version 2 handshake. The misidentification of the SSL protocol version can
be avoided by setting the accept_v2_hellos policy to true in the non-z/OS
application (this bug also affects some old versions of Microsoft Internet
Explorer).

When true, the application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
application throws an error, if it receives a V2 client hello. The default is
false.

For example:

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for the
iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Note: This default value is deliberately different from the
policies:https:mechanism_policy:accept_v2_hellos default value.

TLS_RSA_WITH_NULL_MD5

TLS_RSA_WITH_NULL_SHA

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA256
293

APPENDIX A | Security Configuration
TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_RC4_128_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 294

policies:iiop_tls
mechanism_policy:protocol_version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). The list can include one or more of:

• SSL_V3
• TLS_V1
• TLS_V1_1
• TLS_V1_2
• TLS_V1_3
The default setting is TLS_V1 and TLS_V1_3.
For example:

policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

The SSL_V2V3 value is now deprecated. It was previously used to facilitate
interoperability with applications deployed on the z/OS platform. If you
have any legacy configuration that uses SSL_V2V3, you should replace it with
the following combination of settings:

policies:iiop_tls:mechanism_policy:protocol_version = ["SSL_V3",
"TLS_V1"];

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_domain policy’s value.

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_AES_256_GCM_SHA384

TLS_AES_128_GCM_SHA256

TLS_CHACHA20_POLY1305_SHA256
295

APPENDIX A | Security Configuration
server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.

server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon, and listened on by server-side IIOP.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The local_hostname
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:port_range policy’s value.

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
 296

policies:iiop_tls
server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the
policies:iiop:server_address_mode_policy:publish_hostname policy’s
value.

server_address_mode-policy:publish_hostname specifes whether IIOP
exports hostnames or IP addresses in published profiles. Defaults to false
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:server_version_policy policy’s value.

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Orbix servers do not
publish IIOP 1.0 profiles. The default value is 1.2.

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the iiop_tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Security
Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
297

APPENDIX A | Security Configuration
target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the iiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Security
Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:no_delay policy’s
value.

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option
should be set on connections. Defaults to false.

tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.
 298

policies:iiop_tls
tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:send_buffer_size
policy’s value.

tcp_options_policy:send_buffer_size specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.3/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.3/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

Note: The trusted_ca_list_policy configuration variable is not used
with System SSL on the z/OS platform. The System SSL toolkit obtains its
CA list from the underlying SSL repository (the SAF key ring or the HFS key
database).
299

APPENDIX A | Security Configuration
principal_sponsor
The principal_sponsor namespace stores configuration information to be
used when obtaining credentials. provides an implementation of a principal
sponsor that creates credentials for applications automatically.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

• use_principal_sponsor
• auth_method_id
• auth_method_data
• callback_handler:ClassName

• login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor variables must contain data in order for anything to
actually happen.
 300

principal_sponsor
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.
For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

For the security_label authentication method on z/OS, the following
authentication data can be provided in auth_method_data:

pkcs12_file The authentication method uses a PKCS#12 file.
Not supported in z/OS.

security_label z/OS only. The authentication data is specified by
supplying the name of a label in a key ring.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.

label The name of a label in a key ring.
301

APPENDIX A | Security Configuration
For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

The following points apply to Java implementations:

• If the file specified by filename= is not found, it is searched for on the
classpath.

• The file specified by filename= can be supplied with a URL instead of
an absolute file location.

• The mechanism for prompting for the password if the password is
supplied through password= can be replaced with a custom
mechanism, as demonstrated by the login demo.

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
 302

principal_sponsor
• There are two extra configuration variables available as part of the
principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

• These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an interface that
implements the interface com.iona.corba.tls.auth.CallbackHandler. This
variable is only used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom CallbackHandlers; if a CallbackHandler is supplied, it is invoked
upon up to login_attempts times as long as the PrincipalAuthenticator
returns SecAuthFailure. This variable is only used by Java clients.
303

APPENDIX A | Security Configuration
principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

• use_existing_credentials
• use_principal_sponsor
• auth_method_data
• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if false, CSI credentials are not shared.

This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also true.
Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to true, the CSI principal sponsor is enabled; if false, the CSI
principal sponsor is disabled and the remaining principal_sponsor:csi
variables are ignored. Defaults to false.
 304

principal_sponsor:csi
auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.
For the GSSUPMech authentication method, the following authentication
data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in
the US-SantaClara domain:

principal_sponsor:csi:auth_method_data =
["username=administrator", "domain=US-SantaClara"];

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see
auth_over_transport:authentication_service.

password The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.

Note: If domain is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.
305

APPENDIX A | Security Configuration
When the application is started, the user is prompted for the administrator
password.

auth_method_id

auth_method_id specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

For example, you can select the GSSUPMech authentication method as
follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.
 306

APPENDIX B

ASN.1 and
Distinguished
Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 308

Distinguished Names page 309
307

APPENDIX B | ASN.1 and Distinguished Names
ASN.1

Overview The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

BER The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

DER The OSI’s Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

References You can read more about ASN.1 in the following standards documents:

• ASN.1 is defined in X.208.

• BER is defined in X.209.
 308

Distinguished Names
Distinguished Names

Overview Historically, distinguished names (DN) were defined as the primary keys in
an X.500 directory structure. In the meantime, however, DNs have come to
be used in many other contexts as general purpose identifiers. In the Orbix
Security Framework, DNs occur in the following contexts:

• X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

• LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

DN string example The following string is a typical example of a DN:

C=US,O=Micro Focus,OU=Engineering,CN=A. N. Other

Structure of a DN string A DN string is built up from the following basic elements:

• OID.

• Attribute types.

• AVA.

• RDN.

OID An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.
309

APPENDIX B | ASN.1 and Distinguished Names
Attribute types The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 9 shows a selection of the attribute types that you are most likely to
encounter:

AVA An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>
For example:

CN=A. N. Other
Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table 9). For example:

2.5.4.3=A. N. Other

Table 9: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid
 310

Distinguished Names
RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]
Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3
Here is an example of a single-value RDN:

OU=Engineering
311

APPENDIX B | ASN.1 and Distinguished Names
 312

APPENDIX C

Association
Options
This appendix describes the semantics of all the association
options that are supported by Orbix.

In this appendix This appendix contains the following section:

Association Option Semantics page 314
313

APPENDIX C | Association Options
Association Option Semantics

Overview This appendix defines how AssociationOptions are used with
SecClientInvocation and SecTargetInvocation policies.

IDL Definitions AssociationOptions are enumerated in the CORBA security specification as
follows:

//IDL
typedef unsigned short AssociationOptions;
const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
// Unsupported option: NoDelegation
// Unsupported option: SimpleDelegation
// Unsupported option: CompositeDelegation

Table of association options Table 10 shows how the options affect client and target policies:

Table 10: AssociationOptions for Client and Target

Association

Options

client_supports client_requires target_supports target_requires

NoProtection Client supports
unprotected
messages.

The client’s
minimal
protection
requirement is
unprotected
messages.

Target supports
unprotected
messages.

The target’s
minimal protection
requirement is
unprotected
messages.

Integrity The client
supports integrity
protected
messages.

The client
requires
messages to be
integrity
protected.

The target supports
integrity protected
messages.

The target requires
messages to be
integrity protected.
 314

Association Option Semantics
Confidentiali
ty

The client
supports
confidentiality
protected
messages.

The client
requires
messages to be
confidentiality
protected.

The target supports
confidentiality
protected
messages.

The target requires
messages to be
confidentiality
protected.

DetectReplay The client can
detect replay of
requests (and
request
fragments).

The client
requires detection
of message
replay.

The target can
detect replay of
requests (and
request fragments).

The target requires
detection of
message replay.

DetectMisorde
ring

The client can
detect sequence
errors of requests
(and request
fragments).

The client
requires detection
of message
mis-sequencing.

The target can
detect sequence
errors of requests
(and request
fragments).

The target requires
detection of
message
mis-sequencing.

EstablishTrus
tInTarget

The client is
capable of
authenticating
the target.

The client
requires
establishment of
trust in the
target’s identity.

The target is
prepared to
authenticate its
identity to the
client.

(This option is
invalid).

EstablishTrus
tInClient

The client is
prepared to
authenticate its
identity to the
target.

(This option is
invalid).

The target is
capable of
authenticating the
client.

The target requires
establishment of
trust in the client’s
identity.

Table 10: AssociationOptions for Client and Target

Association

Options

client_supports client_requires target_supports target_requires
315

APPENDIX C | Association Options
 316

APPENDIX D

SSL/TLS Sample
Configurations
This appendix provides some SSL/TLS sample configurations
that you can use as a template for configuring your own
applications.

In this appendix This appendix contains the following section:

SSL/TLS Sample Configurations on z/OS page 318
317

APPENDIX D | SSL/TLS Sample Configurations
SSL/TLS Sample Configurations on z/OS

Overview This section lists a variety of SSL/TLS sample configurations suitable for
applications running on the z/OS platform. You can use these samples as a
starting point for configuring your own applications.

For more details on SSL/TLS configuration, see “Securing Communications
with SSL/TLS” on page 36.

Client configurations The following client configurations are included in Example 20:

• demos.tls.secure_client_with_cert
• demos.tls.semi_secure_client_with_cert

Server configurations The following server configurations are included in Example 20:

• demos.tls.secure_server_no_client_auth
• demos.tls.secure_server_enforce_client_auth
• demos.tls.semi_secure_server_no_client_auth
• demos.tls.semi_secure_server_enforce_client_auth

Sample configurations Example 20 shows a variety of sample SSL/TLS configurations that you can
copy or adapt for use in your own applications.

Example 20:SSL/TLS Configurations on the z/OS Platform

Orbix Configuration File
demos
{
 ...
 tls
 {
 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*", "IT_GenericSecurityToolkit=*"];

 policies:target_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInClient"];
 policies:target_secure_invocation_policy:supports =
 318

SSL/TLS Sample Configurations on z/OS
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls"];

 # tls demos use security labels to identify certificates
 # within keyrings
 # each keyring will be defined in subsequent scope
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "security_label";

 secure_client_with_cert
 {
 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_data =

["label=bank_server"];

 plugins:systemssl_toolkit:saf_keyring = "ORBXRING";
 };

 semi_secure_client_with_cert
 {
 orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop", "iiop_tls"];

 policies:client_secure_invocation_policy:requires =
["NoProtection"];

Example 20:SSL/TLS Configurations on the z/OS Platform
319

APPENDIX D | SSL/TLS Sample Configurations
 policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",

"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_data =

["label=bank_server"];

 plugins:systemssl_toolkit:saf_keyring = "ORBXRING";
 };

 secure_server_no_client_auth
 {
 policies:target_secure_invocation_policy:requires =
["Confidentiality"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_data =

["label=bank_server"];

 plugins:systemssl_toolkit:saf_keyring = "ORBXRING";
 };

 secure_server_enforce_client_auth
 {
 policies:target_secure_invocation_policy:requires =
["EstablishTrustInClient", "Confidentiality"];
 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",

"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_data =

["label=bank_server"];

 plugins:systemssl_toolkit:saf_keyring = "ORBXRING";
 };

Example 20:SSL/TLS Configurations on the z/OS Platform
 320

SSL/TLS Sample Configurations on z/OS
 semi_secure_server_no_client_auth
 {
 orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop", "iiop_tls"];

 policies:target_secure_invocation_policy:requires =
["NoProtection"];

 policies:target_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_data =

["label=bank_server"];

 plugins:systemssl_toolkit:saf_keyring = "ORBXRING";
 };

 semi_secure_server_enforce_client_auth
 {
 orb_plugins = ["iiop_profile", "giop", "iiop",

"iiop_tls", "local_log_stream"];

 policies:target_secure_invocation_policy:requires =
["NoProtection"];

 policies:target_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",

"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_data =

["label=bank_server"];

 plugins:systemssl_toolkit:saf_keyring = "ORBXRING";
 };
 };
 ...
};

Example 20:SSL/TLS Configurations on the z/OS Platform
321

APPENDIX D | SSL/TLS Sample Configurations
 322

APPENDIX E

Security
Recommendations
This appendix lists some general recommendations for
ensuring the effectiveness of Orbix security.

In this appendix This appendix contains the following sections:

General Recommendations page 324

Orbix Services page 325
323

APPENDIX E | Security Recommendations
General Recommendations

List of recommendations The following general recommendations can help you secure your system
using Orbix applications

1. Use SSL security for every application wherever possible.

2. Use the strongest cipher suites available. There is little extra overhead
if you use 128 bit instead of 40 bit encryption for a typical connection.

3. If your application must connect to insecure applications, limit the
aspects of your system that use insecure communications to the
minimum necessary using policies and security aware code.

4. Treat any IOR received from an insecure endpoint as untrustworthy.
Set your policies so that you cannot use insecure IORs accidentally. Set
all communications in your ORBs to be secure by default and use the
appropriate policies to override these where necessary.

5. It is important to remember that the certificates supplied with Orbix are
for demonstration purposes only and must be replaced with a securely
generated set of real certificates before applications can run in a
production environment.

6. The contents of your trusted CA list files must only include CA
certificates that you trust.

7. Do not use passwords in the configuration file. This feature is only a
developer aid.

8. The security of all SSL/TLS programs is only as strong as the weakest
cipher suite that they support. Consider making stronger cipher suites
available as an optional service which may be availed of by
applications with stronger minimum security requirements.

The bad guys will of course choose to use the weakest cipher suites.

9. Depending on the sensitivity of your system an RSA key size greater
than 512 bits might be appropriate. 1024 bit keys are significantly
slower than 512 bit keys but are much more secure.
 324

Orbix Services
Orbix Services

No authorization support for Orbix
services

The Orbix services—that is, the locator, the node daemon, the naming
service, and the interface repository (IFR)—are not to be considered as fully
secured in this release. While they can be configured to use SSL they do not
apply any authorization to operations that clients perform. This still applies,
to a lesser extent, even if the services are configured to only allow secure
connections and to enforce client authentication, because all clients with
trusted client certificates can modify the services at will. That is, the Orbix
services provide no way to distinguish between ordinary users and users
requiring administrative privileges (authorization is not supported by the
services).
325

APPENDIX E | Security Recommendations
 326

APPENDIX F

Action-Role
Mapping DTD
This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

DTD file The action-role mapping DTD is shown in Example 21.

Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:

<!ELEMENT action-name (#PCDATA)>
Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

Example 21:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT action-role (action-name, role-name+)>
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,

action-role-mapping+)>
327

CHAPTER F | Action-Role Mapping DTD
♦ CORBA server—for IDL operations, the action name corresponds
to the GIOP on-the-wire format of the operation name (usually the
same as it appears in IDL).

For IDL attributes, the accessor or modifier action name
corresponds to the GIOP on-the-wire format of the attribute
accessor or modifier. For example, an IDL attribute, foo, would
have an accessor, _get_foo, and a modifier, _set_foo.

♦ Artix server—for WSDL operations, the action name is equivalent
to a WSDL operation name; that is, the OperationName from a
tag, <operation name="OperationName">.

<!ELEMENT action-role (action-name, role-name+)>
Groups together a particular action and all of the roles permitted to
perform that action.

<!ELEMENT action-role-mapping (server-name, interface+)>
Contains all of the permissions that apply to a particular server
application.

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents
can have the following values:

♦ true—for any interfaces not listed, access to all of the interfaces’
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

♦ false—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is false.

Note: However, if <allow-unlisted-interfaces> is true and a
particular interface is listed, then only the actions explicitly listed
within that interface’s interface element are accessible. Unlisted
actions from the listed interface are not accessible.
 328

<!ELEMENT interface (name, action-role+)>
In the case of a CORBA server, the interface element contains all of
the access permissions for one particular IDL interface.

In the case of an Artix server, the interface element contains all of the
access permissions for one particular WSDL port type.

<!ELEMENT name (#PCDATA)>
Within the scope of an interface element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being
associated. The format of the interface name depends on the type of
application, as follows:

♦ CORBA server—the name element identifies the IDL interface
using the interface’s OMG repository ID. The repository ID
normally consists of the characters IDL: followed by the fully
scoped name of the interface (using / instead of :: as the scoping
character), followed by the characters :1.0. Hence, the
Simple::SimpleObject IDL interface is identified by the
IDL:Simple/SimpleObject:1.0 repository ID.

♦ Artix server—the name element contains a WSDL port type name,
specified in the following format:

NamespaceURI:PortTypeName
The PortTypeName comes from a tag, <portType
name="PortTypeName">, defined in the NamespaceURI namespace.
The NamespaceURI is usually defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL
contract.

<!ELEMENT role-name (#PCDATA)>
Specifies a role to which permission is granted. The role name can be
any role that belongs to the server’s Artix authorization realm (for
CORBA bindings, the realm name is specified by the

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.
For example, the CosNaming::NamingContext interface in the naming
service module, which uses the omg.org prefix, has the following
repository ID: IDL:omg.org/CosNaming/NamingContext:1.0
329

CHAPTER F | Action-Role Mapping DTD
plugins:gsp:authorization_realm configuration variable; for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to the
IONAGlobalRealm realm. The roles themselves are defined in the
security server backend; for example, in a file adapter file or in an
LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups together a
collection of action-role-mapping elements.

<!ELEMENT server-name (#PCDATA)>
The server-name element specifies the configuration scope (that is, the
ORB name) used by the server in question. This is normally the value
of the -ORBname parameter passed to the server executable on the
command line.
 330

Index

Symbols
#pragma prefix 66
<action-role-mapping> tag 66, 74
<allow-unlisted-interfaces> tag 65
<interface> tag 66
<name> tag 66
<server-name> tag 66, 72

A
AccessId credentials attribute 222
AccessId security attribute 222
ACL

<action-role-mapping> tag 66
<allow-unlisted-interfaces> tag 65
<interface> tag 66
<name> tag 66
<server-name> tag 66
action_role_mapping configuration variable 64
action-role mapping file 64
action-role mapping file, example 65
centralized 68, 71
ClientAccessDecision interface 70, 72, 77
com.iona.isp.authz.adapters property 73
localized 69
plugins:gsp:acl_policy_data_id variable 75, 76
plugins:gsp:action_role_mapping_file variable 69
plugins:gsp:authorization_policy_enforcement_poi

nt variable 73
plugins:gsp:authorization_policy_store_type

variable 73
action_role_mapping configuration variable 64
action-role mapping file

<action-role-mapping> tag 66
<allow-unlisted-interfaces> tag 65
<interface> tag 66
<name> tag 66
<server-name> tag 66
CORBA

configuring 64
example 65

application-level security 150
ASN.1 80
association options
and mechanism policy 114
client secure invocation policy, default 110
DetectMisordering 205
DetectReply 205
EstablishTrustInClient 42, 57, 137
EstablishTrustInClient, CSIv2 164, 165
EstablishTrustInTarget 134, 137
IdentityAssertion, CSIv2 185
NoProtection 45
rules of thumb 114
SSL/TLS

Confidentiality 108
DetectMisordering 108
DetectReplay 108
EstablishTrustInClient 109
EstablishTrustInTarget 109
Integrity 108
NoProtection 108
setting 106

target secure invocation policy, default 112
Asymmetric cryptography 25
AttributeList type 221
attribute service policy 184
AttributeService policy data 207
Attribute value assertions, See AVA
authenticate() operation 211, 212
Authentication 22, 24
authentication

and mechanism policy 137
caching of credentials 60
CSIv2, client configuration 173
CSIv2, requiring 164
CSIv2, sample configuration 172
CSIv2, server configuration 175
CSIv2 client-side policy 206
CSIv2 server-side policy 206
EstablishTrustPolicy 203
GSSUP mechanism
invocation credentials 204
iSF

process of 49
IT_CSI_AUTH_METH_USERNAME_PASSWORD

authentication method 217
331

INDEX
IT_TLS_AUTH_METH_CERT_CHAIN
authentication method 214

IT_TLS_AUTH_METH_CERT_CHAIN_FILE
authentication method 214

IT_TLS_AUTH_METH_LABEL authentication
method 214

IT_TLS_AUTH_METH_PKCS11 authentication
method 214

IT_TLS_AUTH_METH_PKCS12_DER
authentication method 214

methods for SSL/TLS 214
multiple own certificates 140
over transport, in CSIv2 158
own certificate, specifying 139
principal authenticator 210
security capsule 211
SSL/TLS

principal sponsor 140
requiring 132
target and client 136
target only 133

authentication_cache_size configuration variable 60
authentication_cache_timeout configuration

variable 60
authentication over transport

client authentication token 160
client support, enabling 164
dependency on SSL/TLS 158
description 150, 158
own credentials 212
scenario 153
server configuration 165
SSL/TLS prerequisites 162
target requirements 165
target support, enabling 165

authentication service
sample implementation 167

authentication service class
specifying 166

authentication service object
and CSI_SERVER_AS_POLICY policy 167
default implementation 167
iSF implementation 167
registering as an initial reference 167

AuthenticationService policy data 206, 207
AuthenticationService policy value 167
authorization

caching of credentials 60
automatic connection management
 332
interaction with rebind policy 227
AVA

in distinguished names 238
AVAList interface 238

B
backward trust 57, 183
Baltimore toolkit

selecting for C++ applications 255

C
CA 27, 80

adding to a user key ring 92
choosing a host 84
commercial CAs 83
importing into RACF 91
in PKCS#12 file 139
list of trusted 86
multiple CAs 86
private CAs 84
security precautions 84
See Alsocertificate authority

caching
authentication_cache_size configuration

variable 60
authentication_cache_timeout configuration

variable 60
of credentials 60

centralized ACL 73
<action-role-mapping> tag 74
<server-name> tag 72
ClientAccessDecision interface 72
com.iona.isp.authz.adapters property 73
file list 74
is2.properties file 73
overview 68, 71
plugins:gsp:acl_policy_data_id variable 75, 76
plugins:gsp:authorization_policy_enforcement_poi

nt variable 73
plugins:gsp:authorization_policy_store_type

variable 73
selecting an ACL file 74
selection by ACL key 76
selection by ORB name 74
selection by override value 75

CERTAUTH 91
CertConstraintsPolicy 144, 253
CertConstraintsPolicy policy 144, 235, 239, 253

INDEX
CertConstraints string array 241
certificate authority

and certificate signing 80
certificate constraints policy 235

C++ example 241
configuration, setting by 240
identity assertion and 183
Java example 243
programming, setting by 240
setting 240
three-tier target server 57

certificate_constraints_policy variable 144, 253
Certificates 25, 27

chain length 143
constraints 144, 253
contents of 237
validating 233–237
validation process 234

certificates
adding to a user key ring 92
C++ parsing

get_issuer_dn_string() operation 238
get_subject_dn_string() operation 238

CertConstraintsPolicy policy 144, 253
chaining 85
common names 237
constraint language 144, 253
constraint policy, C++ example 241
constraint policy, Java example 243
constraints, applying 240
constraints policy 57
contents 237
contents of 80
creating using RACF 94
default validation 235
DER format 247
FTP transfer to OS/390 90
importing into RACF 89, 91
importing the CA into RACF 91
issuer 237
length limit 86
MaxChainLengthPolicy 143
multiple own certificates 140
obtaining 247
on OS/390 88
own, specifying 139
parsing

AVAList interface 238
peer 85
PKCS#12 file 87, 139
public key 81, 237
public key encryption 121
security handshake 133, 137
self-signed 85
serial number 81, 237
signing 80
specifying a source in OS/390 95
subject name 237
syntax 237
validation

validate_cert_chain() operation 244
validation, implementing 243
viewing in RACF 92
X.509 80
X.509 extensions 238
X509CertificateFactory interface 247

certificate validation
CertValidator interface 235
custom 235
default validation 235

certificate validation policy 234
implementing 243

CertificateValidatorPolicy policy 239
certification authority

on OS/390 89
Certification Authority. See CA
CertValidator interface 235

implementing 243
CertValidatorPolicy policy 235
chaining of certificates 85
Ciphersuites

choosing 324
cipher suites

ciphersuites configuration variable 127
default list 129
definitions 122
encryption algorithm 121
exportable 122
key exchange algorithm 121
mechanism policy 126
order of 128
secure hash algorithm 121
secure hash algorithms 122
security algorithms 121
specifying 119

ciphersuites configuration variable 127
ClientAccessDecision interface 70, 72, 77
client authentication token
333

INDEX
CSIv2 authentication over transport 160
client_binding_list configuration variable 184

and CSIv2 authentication 164
iSF, client configuration 50
secure client 41

client secure invocation policy
HTTPS 110
IIOP/TLS 110

ClientSecureInvocationPolicy policy 107
client-side policies 196
client_version_policy

IIOP 291
clustering, and fixed ports 47
colocated invocations

and secure associations 104
com.iona.isp.authz.adapters property 73
common names 237
common secure interoperability, see CSIv2
Confidentiality association option 108

hints 116
Confidentiality option 108
connection_attempts 291
constraint language 144, 253
Constraints

for certificates 144, 253
Contents of certificates 237
CORBA

ACLs 62
action-role mapping file 64
action-role mapping file, example 65
intermediate server configuration 54
iSF, three-tier system 53
security, overview 34
SSL/TLS

client configuration 40
securing communications 36
server configuration 42

three-tier target server configuration 56
two-tier systems 48

CORBA policies
how to set 196

CORBA security
CSIv2 plug-in 35
IIOP/TLS plug-in 35

CORBA Security RTF 1.7 22
create_POA() operation

and policies 196
create_policy() operation 242
Credentials
 334
retrieving 222
credentials

AccessId attribute 222
AttributeList type 221
attributes, Orbix-specific 222
creating CSIv2 credentials 217
creating own 211
definition 221
get_target_credentials() operation 222
invocation credentials 204
obtaining 221
own

C++ example 225
parsing 225

own, creating multiple 212
own, CSIv2 212
own, SSL/TLS 212
_Public attribute 222
received 222

C++ example 231
received, SSL/TLS

parsing 232
retrieving 222
retrieving own 223

C++ example 224
retrieving received 230
retrieving target 226
SecurityAttributeType type 221
sharing 141, 168, 212
target, interaction with rebind policy 227
target, retrieving

C++ example 228
target, SSL/TLS

C++ example 229
parsing 229

Credentials interface 211, 221
get_attributes() operation 221
Orbix-specific 222

Cryptography
asymmetric 25
RSA. See RSA cryptography
symmetric 25, 28

CSI_CLIENT_AS_POLICY policy type 206
CSI_CLIENT_SAS_POLICY policy type 207
CSICredentials interface 213
CSI interceptor 50
CSI plug-in

and CSIv2 principal sponsor 168
loading for Java applications 164

INDEX
csi plug-in 184
CSI_SERVER_AS_POLICY policy 167
CSI_SERVER_AS_POLICY policy type 207
CSI_SERVER_SAS_POLICY policy type 207
CSIv2

applicability 151
application-level security 150
association options 165

IdentityAssertion 185
attribute service policy 184
authentication, client configuration 173
authentication, Java example 217
authentication, requiring 164
authentication, sample configuration 172
authentication, server configuration 175
authentication over transport 150
authentication over transport, description 158
authentication over transport, own

credentials 212
authentication over transport scenario 153
authentication policy, client-side 206
authentication policy, server-side 206
authentication scenario 158
authentication service 166
authentication service object 161
backward trust 183
certificate constraints policy 57, 183
client authentication token 160
client_binding_list configuration variable 184
csi plug-in for Java applications 184
features 150
GSSUPAuthData interface 217
GSSUP mechanism 158
identity assertion 151

own credentials 213
identity assertion, description 178
identity assertion, enabling 184
identity assertion, scenario description 179
identity assertion scenario 154
identity token types 181
intermediate server 154
ITTAbsent identity token type 181
ITTAnonymous identity token type 181
ITTPrincipalName identity token type 181
level 0 158
login 153
login, by configuration 170
login, by programming 170
login, dialog prompt 169
login options 169
policies 206
principal sponsor

client configuration 51
principal sponsor, description 168
principal sponsor, disabling 170
principal sponsor, enabling 168
principal_sponsor:csi:auth_method_data

configuration variable 170
principal sponsor and client authentication

token 161
received credentials 181
sample configurations 186
scenarios 152
server_binding_list configuration variable 184
SSL/TLS mutual authentication 182
SSL/TLS prerequisites 162, 182
SSL/TLS principal sponsor 183
transmitting security data 150
username and password, providing 168

CSIv2 authentication domain
and server domain name 165

CSIv2 plug-in
CORBA security 35

CSv2
CSICredentials interface 213

Current interface
and credentials 222
retrieving received credentials 231

custom validation 235

D
data encryption standard

see DES
datasets

on OS/390 89
delegation

and identity assertion 178
DER format 247
DES

symmetric encryption 121
DetectMisordering association option 108, 205

hints 116
DetectMisordering option 108
DetectReplay association option 108

hints 116
DetectReplay option 108
DetectReply association option 205
DIRECT_PERSISTENCE policy value 46
335

INDEX
distinguished names 238
domain name

and CSIv2 authentication over transport 150
ignored by iSF 49

domain names
server domain name 165

E
Encryption 22
encryption algorithm

RC4 121
encryption algorithms 121

DES 121
symmetric 121
triple DES 121

EstablishTrustInClient
CSIv2 association option 164, 165, 169

EstablishTrustInClient association option 42, 109,
137

hints 115
three-tier target server 57

EstablishTrustInClient option 109
EstablishTrustInTarget association option 109, 134,

137
hints 115

EstablishTrustInTarget option 109
EstablishTrustPolicy policy 203

and interaction between policies 205
EstablishTrust type 203
exportable cipher suites 122
Extension interface 238
ExtensionList interface 238

F
fixed ports 46

DIRECT_PERSISTENCE policy value 46
host 47
IIOP/TLS addr_list 47
IIOP/TLS listen_addr 47
IIOP/TLS port 47
INDIRECT_PERSISTENCE policy value 46

G
generic security service username/password

mechanism
get_attributes() operation

in Credentials interface 221
get_issuer_dn_string() operation 238
 336
get_subject_dn_string() operation 238
get_target_credentials() operation 222
GIOP

and CSIv2 150
GSP plug-in

and ClientAccessDecision 70
authentication_cache_size configuration

variable 60
authentication_cache_timeout configuration

variable 60
caching of credentials 60

GSSUPAuthData interface 217
GSSUPAuthData struct 220
GSSUP mechanism 158

and CSIv2 principal sponsor 168
GSSUP username 181

H
Handshake, TLS 25
HFS key database

and Orbix configuration 95
setting up 95

HFS key databases 88
hfs_keyring_filename configuration variable 95
hfs_keyring_file_password configuration variable 95
hfs_keyring_file_stashfile configuration variable 95
HTTPS

ciphersuites configuration variable 127

I
identity assertion

backward trust 183
certificate constraints policy 183
csi plug-in for Java applications 184
description 151, 178
enabling 184
intermediate server configuration 184
own credentials 213
policy, client-side 207
policy, server-side 207
received credentials and 181
sample client configuration 187
sample configurations 186
sample intermediate server configuration 189
sample target server configuration 191
scenarioCSIv2

identity assertion scenario 178
scenario description 179

INDEX
SSL/TLS dependency 178
SSL/TLS mutual authentication 182
SSL/TLS prerequisites 182
SSL/TLS principal sponsor 183

IdentityAssertion CSIv2 association option 185
identity assertion scenario 154
identity tokens

GSSUP username 181
subject DN in 181
types of 181

IIOP
and CSIv2 150

IIOP/TLS
ciphersuites configuration variable 127
host 47

IIOP/TLS addr_list 47
IIOP/TLS listen_addr 47
IIOP/TLS plug-in

CORBA security 35
IIOP/TLS port 47
IIOP plug-in

and semi-secure clients 41
IIOP policies 282, 289

client version 291
connection attempts 291
export hostnames 297
export IP addresses 297
GIOP version in profiles 297
server hostname 296
TCP options

delay connections 298
receive buffer size 298

IIOP policy
ports 296

IIOP_TLS interceptor 41
impersonation

and identity assertion 178
INDIRECT_PERSISTENCE policy value 46
initial references

IT_CSIAuthenticationObject 167
insecure object references

and QOP policy 202
Integrity 24, 29
Integrity association option 108

hints 116
Integrity option 108
intermediate server

and CSIv2 identity assertion 154
SSL/TLS connection from 180
intermediate server configuration 184
International Telecommunications Union 27
interoperability

z/OS, SSL/TLS 126
InvocationCredentialsPolicy policy 204
invocation policies

interaction with mechanism policy 114
is2.properties file 73
iSF

authentication service implementation 167
client configuration

CSI interceptor 50
CORBA

three-tier system 53
three-tier target server configuration 56
two-tier scenario description 49

CORBA security 34
domain name, ignoring 49
intermediate server configuration 54
server configuration

server_binding_list 50
server domain name, ignored 165
server_domain_name configuration variable 52
three-tier scenario description 54
two-tier CORBA systems 48

IT_CSIAuthenticationObject initial object ID 167
IT_CSI_AUTH_METH_USERNAME_PASSWORD

authentication method 217
ITTAbsent identity token type 181
ITTAnonymous identity token type 181
IT_TLS_AUTH_METH_CERT_CHAIN authentication

method 214
IT_TLS_AUTH_METH_CERT_CHAIN_FILE

authentication method 214
IT_TLS_AUTH_METH_LABEL authentication

method 214
IT_TLS_AUTH_METH_PKCS11 authentication

method 214
IT_TLS_AUTH_METH_PKCS12_DER authentication

method 214
ITTPrincipalName identity token type 181
ITU 27

J
JCE architecture

enabling 256
337

INDEX
K
key database

on OS/390 88
key exchange algorithms 121

L
LifespanPolicy policy 46
local ACL 69
local_hostname 296
localized ACL

ClientAccessDecision interface 77
logging

in secure client 41
login

CSIv2 153
CSIv2, by configuration 170
CSIv2, by programming 170
CSIv2 dialog prompt 169
CSIv2 options 169

M
MAC 29
max_chain_length_policy configuration variable 143
MaxChainLengthPolicy policy 143
MD5 122
MechanismPolicy 108
mechanism policy 126

and authentication 137
and interaction between policies 205
interaction with invocation policies 114

MechanismPolicy policy
and interaction between policies 205

message authentication code 29
message digest 5

see MD5
message digests 108
message fragments 108
Message integrity 22
minimum security levels 200
mixed configurations, SSL/TLS 44
multi-homed hosts, configure support for 296
multiple CAs 86
multiple own certificates 140
mutual authentication

identity assertion scenario 182

N
names, distinguished 238
 338
namespace
plugins:csi 257
plugins:gsp 258
policies 272
policies:csi 279
policies:https 282
policies:iiop_tls 288
principal_sponsor:csi 304
principle_sponsor 300

no_delay 298
NoProtection association option 45, 108

hints 117
rules of thumb 114
semi-secure applications 117

NoProtection option 108

O
object-level policies

invocation credentials policy 204
object references

and target credentials 227
making insecure 202

ORB
security capsule 211

orb_plugins configuration variable 41
client configuration 50

orb_plugins list
CSI plug-in, including the 164

orb_plugins variable
and the NoProtection association option 117
semi-secure configuration 118

OS/390
FTP transfer of certificates 90

OS/390 certificate management 88
own credentials

creating 211
creating multiple 212
CSICredentials interface 213
CSIv2 212
definition 221
principal authenticator 211
retrieving 223

C++ example 224
SSL/TLS 212

C++ example 225
parsing 225

TLSCredentials interface 212

INDEX
P
passwords

for RACF certificates 92
hfs_keyring_file_password 95
hfs_keyring_file_stashfile 95

PDK
and custom SSL/TLS toolkit 100

peer certificate 85
performance

caching of credentials 60
PersistenceModePolicy policy 46
PKCS#12 certificates

viewing in RACF 92
PKCS#12 files 139

definition 87
private key 139

plug-in development kit 100
plug-ins

csi 184
CSI, and CSIv2 principal sponsor 168
CSIv2, in CORBA security 35
IIOP 41
IIOP/TLS, in CORBA security 35

plugins:csi:shlib_name 257
plugins:csi:use_legacy_policies 257
plugins:gsp:acl_policy_data_id variable 75, 76
plugins:gsp:action_role_mapping_file variable 69,

73
plugins:gsp:authorization_policy_enforcement_point

variable 73
plugins:gsp:authorization_policy_store_type

variable 73
plugins:gsp:authorization_realm 259
plugins:iiop:tcp_listener:reincarnate_attempts 268
plugins:iiop:tcp_listener:reincarnation_retry_backoff_

ratio 268
plugins:iiop:tcp_listener:reincarnation_retry_delay 2

68
plugins:iiop_tls:hfs_keyring_filename 270
plugins:iiop_tls:hfs_keyring_file_password 292
plugins:iiop_tls:hfs_keyring_file_stashfile 270
plugins:iiop_tls:racf_keyring 271
plugins:iiop_tls:tcp_listener:reincarnation_retry_back

off_ratio 268
plugins:iiop_tls:tcp_listener:reincarnation_retry_dela

y 268
polices:max_chain_length_policy 274
policies

and create_POA() operation 196
and _set_policy_overrides() operation 196
C++ example 197
CertConstraintsPolicy 144, 239, 253
certificate constraints 235, 240
certificate validation 234
CertificateValidatorPolicy 239
ClientSecureInvocationPolicy 107
client-side 196
CSI_SERVER_AS_POLICY 167
CSIv2, programmable 206
EstablishTrustPolicy 203
how to set 196
HTTPS

client secure invocation 110
target secure invocation 112

identity assertion, client-side 207
identity assertion, server-side 207
IIOP/TLS

client secure invocation 110
target secure invocation 112

insecure object references 202
interaction between 205
InvocationCredentialsPolicy policy 204
MaxChainLengthPolicy 143
minimum security levels 200
PolicyCurrent type 196
PolicyManager type 196
QOPPolicy policy 202
rebind policy 227
restricting cipher suites 202
SecClientSecureInvocation 110
SecClientSecureInvocation policy 200
SecQOPConfidentiality enumeration value 202
SecQOPIntegrityAndConfidentiality enumeration

value 202
SecQOPIntegrity enumeration value 202
SecQOPNoProtection enumeration value 202
SecTargetSecureInvocation 112
SecTargetSecureInvocation policy 200
server-side 196
SSL/TLS 199
TargetSecureInvocationPolicy 107
TLS_CERT_CONSTRAINTS_POLICY 242

policies:allow_unauthenticated_clients_policy 272
policies:certificate_constraints_policy 273
policies:csi:attribute_service:client_supports 279
policies:csi:attribute_service:target_supports 280
policies:csi:auth_over_transpor:target_supports 281
policies:csi:auth_over_transport:authentication_servi
339

INDEX
ce configuration variable 166, 167
policies:csi:auth_over_transport:client_supports 28

0
policies:csi:auth_over_transport:client_supports

configuration variable 164
policies:csi:auth_over_transport:target_requires 281
policies:csi:auth_over_transport:target_requires

configuration variable 165
policies:csi:auth_over_transport:target_supports

configuration variable 165
policies:https:allow_unauthenticated_clients_policy

282
policies:https:certificate_constraints_policy 283
policies:https:client_secure_invocation_policy:requir

es 283
policies:https:client_secure_invocation_policy:suppo

rts 283
policies:https:max_chain_length_policy 284
policies:https:mechanism_policy:ciphersuites 284
policies:https:mechanism_policy:protocol_version 2

86
policies:https:session_caching_policy 287
policies:https:target_secure_invocation_policy:requir

es 287
policies:https:target_secure_invocation_policy:suppo

rts 287
policies:https:trusted_ca_list_policy 288
policies:iiop_tls:allow_unauthenticated_clients_polic

y 290
policies:iiop_tls:certificate_constraints_policy 290
policies:iiop_tls:client_secure_invocation_policy:requ

ires 290
policies:iiop_tls:client_secure_invocation_policy:sup

ports 291
policies:iiop_tls:client_version_policy 291
policies:iiop_tls:connection_attempts 291
policies:iiop_tls:connection_retry_delay 291
policies:iiop_tls:max_chain_length_policy 292
policies:iiop_tls:mechanism_policy:ciphersuites 293
policies:iiop_tls:mechanism_policy:protocol_version

295
policies:iiop_tls:server_address_mode_policy:local_h

ostname 296
policies:iiop_tls:server_address_mode_policy:port_ra

nge 296
policies:iiop_tls:server_address_mode_policy:publish

_hostname 297
policies:iiop_tls:server_version_policy 297
policies:iiop_tls:target_secure_invocation_policy:req
 340
uires 297
policies:iiop_tls:target_secure_invocation_policy:sup

ports 298
policies:iiop_tls:tcp_options:send_buffer_size 299
policies:iiop_tls:tcp_options_policy:no_delay 298
policies:iiop_tls:tcp_options_policy:recv_buffer_size

298
policies:iiop_tls:trusted_ca_list_policy 299
policies:mechanism_policy:ciphersuites 274
policies:mechanism_policy:protocol_version 276
policies:target_secure_invocation_policy:requires 27

7
policies:target_secure_invocation_policy:supports 2

77
policies:trusted_ca_list_policy 278
PolicyCurrent type 196
policy data

AttributeService 207
AuthenticationService 206, 207

PolicyList interface 241
PolicyList object 197
PolicyManager interface 241
PolicyManager object 197
PolicyManager type 196
policy types

CSI_CLIENT_AS_POLICY 206
CSI_CLIENT_SAS_POLICY 207
CSI_SERVER_AS_POLICY 207
CSI_SERVER_SAS_POLICY 207

policy values
AuthenticationService 167

principal
definition 211

principal authenticator
authenticate() operation 211, 212
CSIv2

Java example 217
definition 211
security capsule 211
SSL/TLS

C++ example 214
using 210

principal sponsor
CSIv2

client configuration 51
CSIv2, description 168
CSIv2 and client authentication token 161
SSL/TLS

definition 140

INDEX
enabling 43
SSL/TLS, disabling 41

principal_sponsor:csi:auth_method_data 305
principal_sponsor:csi:auth_method_data

configuration variable 169, 170
principal_sponsor:csi:use_method_id configuration

variable 168
principal_sponsor:csi:use_principal_sponsor 304
principal_sponsor:csi:use_principal_sponsor

configuration variable 168, 170
principal_sponsor Namespace Variables 300
principal sponsors

CSIv2, disabling 170
CSIv2, enabling 168
SSL/TLS, and CSIv2 163

PrincipleAuthenticator interface 212, 215, 220
principle_sponsor:auth_method_data 301
principle_sponsor:auth_method_id 301
principle_sponsor:callback_handler:ClassName 303
principle_sponsor:login_attempts 303
principle_sponsor:use_principle_sponsor 300
Privacy 24
private key

in PKCS#12 file 139
Protocol, TLS handshake 25
protocol version

interoperability with z/OS 126
protocol_version configuration variable 126
_Public credentials attribute 222
public key 237
Public key cryptography 25
public key encryption 121
public keys 81
_Public security attribute 222
publish_hostname 297

Q
QOP enumerated type 202
QOP policy

restricting cipher suites 202
QOPPolicy policy 202

and interaction between policies 205
quality of protection 202

R
RACDCERT command 89, 91
RACF 88

allocating datasets 89
creating certificates 94
importing certificates 89, 91

RACF certificates
password 92

RACF key ring
and Orbix configuration 95

racf_keyring configuration variable 95
RC4 encryption 121
rebind policy

interaction with target credentials 227
received credentials

Current object 231
definition 221
identity assertion and 181
retrieving 230

C++ example 231
SSL/TLS

parsing 232
ReceivedCredentials interface 155, 221

Orbix-specific 222
parsing received credentials 232

recv_buffer_size 298
remote method invocation, see RMI
Replay detection 108
repository ID

#pragma prefix 66
in action-role mapping file 66

required security features 201
Rivest Shamir Adleman

see RSA
Rivest Shamir Adleman cryptography. See RSA

cryptography
RMI/IIOP

and CSIv2 150
root certificate directory 86
RSA 121

key size 324
symmetric encryption algorithm 121

RSA cryptography 25

S
scenarios

authentication in CSIv2 158
authentication over transport 153
CSIv2 152
identity assertion 154

Schannel toolkit
selecting for C++ applications 255

SecClientSecureInvocation policy 110, 200
341

INDEX
SecQOPConfidentiality enumeration value 202
SecQOPIntegrityAndConfidentiality enumeration

value 202
SecQOPIntegrity enumeration value 202
SecQOPNoProtection enumeration value 202
SecTargetSecureInvocation policy 112, 200
secure associations

client behavior 110
definition 104
TLS_Coloc interceptor 104

secure_client_with_no_cert configuration
sample 162

secure hash algorithms 121, 122
secure invocation policy 107, 200
secure_server_no_client_auth configuration 39
secure_server_no_client_auth configuration

sample 162
Secure Sockets Layer, See SSL
Security 323
security algorithms

and cipher suites 121
security attribute service context 150, 154
SecurityAttributeType type 221
security capsule

and principal authenticator 211
credentials sharing 141, 168, 212

security handshake
cipher suites 119
SSL/TLS 133, 137

security_label authorization method ID 141
SecurityManager interface 212, 215, 220

and credentials 222
retrieving own credentials 224

Security recommendations 323
self-signed certificate 85
semi-secure applications

and NoProtection 117
SEMI_SECURE servers 108
serial number 81, 237
server_binding_list configuration variable 50, 184

and CSIv2 authentication 164
server domain name

and CSIv2 authentication over transport 165
server_domain_name configuration variable

iSF, ignored by 52
server-side policies 196
server_version_policy

IIOP 297
service contexts
 342
security attribute 150, 154
_set_policy_overrides() operation 196
set_policy_overrides() operation 198, 241

and invocation credentials 204
SHA 122
SHA1 108
SHA256 108
shared credentials 141, 168, 212
signing certificates 80
Specifying ciphersuites 119
SSL/TLS

association options
setting 106

cipher suites 119
client configuration 40
colocated invocations 104
encryption algorithm 121
fixed ports 46
IIOP_TLS interceptor 41
key exchange algorithm 121
logging 41
mechanism policy 126
mixed configurations 44
orb_plugins list 41
principal sponsor

disabling 41
enabling 43

protocol_version configuration variable 126
secure associations 104
secure client, definition 36
secure hash algorithm 121
secure hash algorithms 122
secure invocation policy 107
secure server, definition 38
securing communications 36
security handshake 133, 137
selecting a toolkit, C++ 255
semi-secure client

IIOP plug-in 41
semi-secure client, definition 37
semi-secure server, definition 38
server configuration 42
terminology 36
TLS session 104

SSL/TLS policies 199
SSL/TLS principal sponsor

and CSIv2 authentication over transport 163
SSL/TLS toolkits 100
stash file 95

INDEX
subject DN
and identity tokens 181

subject name 237
supported security features 201
Symmetric cryptography 28
symmetric encryption algorithms 121

T
Target

choosing behavior 112
target and client authentication 136

example configuration 138
target authentication 133
target authentication only

example 135
target credentials

availability of 227
definition 221
interaction with rebind policy 227
retrieving 226

C++ example 228
SSL/TLS

C++ example 229
parsing 229

TargetCredentials interface 221, 227
Orbix-specific 222

target secure invocation policy
HTTPS 112
IIOP/TLS 112

TargetSecureInvocationPolicy policy 107
TCP policies

delay connections 298
receive buffer size 298

terminology
SSL/TLS

secure client, definition 36
secure server, definition 38
semi-secure client, definition 37
semi-secure server, definition 38

SSL/TLS samples 36
three-tier scenario description 54
TLS

authentication 24
handshake 25
how provides security 24
integrity 29

TLS_CERT_CONSTRAINTS_POLICY policy type 242
TLS_Coloc interceptor 104
TLSCredentials interface 212, 225, 247
TLSReceivedCredentials interface 232
TLS session

definition 104
TLSTargetCredentials interface

parsing target credentials 229
tokens

client authentication 160
toolkit replaceability 100

enabling JCE architecture 256
selecting the toolkit, C++ 255

Transport Layer Security, See TLS
triple DES 121
trusted CAs 86
trust in client

by programming, SSL/TLS 203
trust in target

by programming, SSL/TLS 203

U
use_jsse_tk configuration variable 256
user key ring

adding certificates 92
creating 92
listing contents 92

username and password
CSIv2 168

V
validate_cert_chain() operation 244

W
well-known addressing policy 47
WellKnownAddressingPolicy policy 46

X
X.509

and PKCS#12 file 139
certificates. See certificates
Extension interface 238
ExtensionList interface 238
extensions 238
public key encryption 121
v3 extensions 237, 238

X.509 certificate
contents 237
definition 80

X.509 certificates 79
343

INDEX
X509CertChain interface 247
X509CertificateFactory interface 247
X509Cert interface 247

Z
z/OS

interoperability with 126
 344

	List of Tables
	List of Figures
	Preface
	Introducing Security
	Orbix Security Framework
	Introduction to the iSF
	iSF Features
	Example of an iSF System
	Security Standards

	Orbix Security Service
	Orbix Security Service Architecture
	iSF Server Development Kit

	Secure Applications
	ART Security Plug-Ins
	Secure CORBA Applications

	Administering the iSF
	Overview of iSF Administration
	Secure ASP Services

	Orbix Security Framework Administration
	Transport Layer Security
	What does Orbix Provide?
	How TLS Provides Security
	Authentication in TLS
	Certificates in TLS Authentication
	Privacy of TLS Communications
	Integrity of TLS Communications

	Securing Applications and Services
	Connecting to an Off-Host iS2 Server
	Securing CORBA Applications
	Overview of CORBA Security
	Securing Communications with SSL/TLS
	Specifying Fixed Ports for SSL/TLS Connections
	Securing Two-Tier CORBA Systems with iSF
	Securing Three-Tier CORBA Systems with iSF

	Securing Orbix Services
	Caching of Credentials

	Managing Access Control Lists
	CORBA ACLs
	Overview of CORBA ACL Files
	CORBA Action-Role Mapping ACL

	Centralized ACL
	Local ACL Scenario
	Centralized ACL Scenario
	Customizing Access Control Locally

	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Managing Certificates on z/OS
	Importing Certificates from Another Platform into RACF
	Creating Certificates for an Application Using RACF
	Specifying the Source of Certificates for an z/OS Application

	SSL/TLS Administration
	Choosing an SSL/TLS Toolkit
	Toolkit Replaceability
	System SSL Toolkit on z/OS

	Configuring SSL/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy

	Configuring SSL/TLS Authentication
	Requiring Authentication
	Target Authentication Only
	Target and Client Authentication

	Specifying an Application’s Own Certificate
	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	CSIv2 Administration
	Introduction to CSIv2
	CSIv2 Features
	Basic CSIv2 Scenarios
	CSIv2 Authentication over Transport Scenario
	CSIv2 Identity Assertion Scenario

	Configuring CSIv2 Authentication over Transport
	CSIv2 Authentication Scenario
	SSL/TLS Prerequisites
	Requiring CSIv2 Authentication
	Providing an Authentication Service
	Providing a Username and Password
	Sample Configuration
	Sample Client Configuration
	Sample Server Configuration

	Configuring CSIv2 Identity Assertion
	CSIv2 Identity Assertion Scenario
	SSL/TLS Prerequisites
	Enabling CSIv2 Identity Assertion
	Sample Configuration
	Sample Client Configuration
	Sample Intermediate Server Configuration
	Sample Target Server Configuration

	CORBA Security Programming
	Programming Policies
	Setting Policies
	Programmable SSL/TLS Policies
	Introduction to SSL/TLS Policies
	The QOPPolicy
	The EstablishTrustPolicy
	The InvocationCredentialsPolicy
	Interaction between Policies

	Programmable CSIv2 Policies

	Authentication
	Using the Principal Authenticator
	Introduction to the Principal Authenticator
	Creating SSL/TLS Credentials
	Creating CSIv2 Credentials

	Using a Credentials Object
	Retrieving Own Credentials
	Retrieving Own Credentials from the Security Manager
	Parsing SSL/TLS Own Credentials

	Retrieving Target Credentials
	Retrieving Target Credentials from an Object Reference
	Parsing SSL/TLS Target Credentials

	Retrieving Received Credentials
	Retrieving Received Credentials from the Current Object
	Parsing SSL/TLS Received Credentials

	Validating Certificates
	Overview of Certificate Validation
	The Contents of an X.509 Certificate
	Parsing an X.509 Certificate
	Controlling Certificate Validation
	Certificate Constraints Policy
	Certificate Validation Policy

	Obtaining an X.509 Certificate

	Appendices
	Security Configuration
	Applying Constraints to Certificates
	initial_references
	IT_TLS_Toolkit:plugin
	plugins:atli2_tls
	use_jsse_tk
	plugins:csi
	shlib_name
	use_legacy_policies
	plugins:gsp
	accept_asserted_authorization_info
	action_role_mapping_file
	assert_authorization_info
	authentication_cache_size
	authentication_cache_timeout
	authorization_realm
	enable_authorization
	enable_gssup_sso
	enable_user_id_logging
	enable_x509_sso
	enforce_secure_comms_to_sso_server
	enable_security_service_cert_authentication
	retrieve_isf_auth_principal_info_for_all_realms
	sso_server_certificate_constraints
	use_client_load_balancing
	plugins:https
	ClassName
	plugins:iiop_tls
	buffer_pool:recycle_segments
	buffer_pool:segment_preallocation
	buffer_pools:max_incoming_buffers_in_pool
	buffer_pools:max_outgoing_buffers_in_pool
	cert_expiration_warning_days
	delay_credential_gathering_until_handshake
	enable_iiop_1_0_client_support
	enable_warning_for_approaching_cert_expiration
	incoming_connections:hard_limit
	incoming_connections:soft_limit
	outgoing_connections:hard_limit
	outgoing_connections:soft_limit
	own_credentials_warning_cert_constraints
	tcp_listener:reincarnate_attempts
	tcp_listener:reincarnation_retry_backoff_ratio
	tcp_listener:reincarnation_retry_delay
	plugins:security
	share_credentials_across_orbs
	plugins:systemssl_toolkit
	hfs_keyring_file_password
	hfs_keyring_file_stashfile
	hfs_keyring_filename
	saf_keyring
	session_cache_size
	session_cache_validity_period
	policies
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:csi
	attribute_service:backward_trust:enabled
	attribute_service:client_supports
	attribute_service:target_supports
	auth_over_transport:authentication_service
	auth_over_transport:client_supports
	auth_over_transport:server_domain_name
	auth_over_transport:target_requires
	auth_over_transport:target_supports
	policies:https
	allow_unauthenticated_clients_policy
	browser_navigation:enabled
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	send_timeout
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trace_requests:enabled
	trusted_ca_list_policy
	policies:iiop_tls
	buffer_sizes_policy:default_buffer_size
	buffer_sizes_policy:max_buffer_size
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	client_version_policy
	connection_attempts
	connection_retry_delay
	load_balancing_mechanism
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	server_address_mode_policy:local_domain
	server_address_mode_policy:local_hostname
	server_address_mode_policy:port_range
	server_address_mode_policy:publish_hostname
	server_version_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	tcp_options_policy:no_delay
	tcp_options_policy:recv_buffer_size
	tcp_options_policy:send_buffer_size
	trusted_ca_list_policy
	principal_sponsor
	use_principal_sponsor
	auth_method_id
	auth_method_data
	callback_handler:ClassName
	login_attempts
	principal_sponsor:csi
	use_existing_credentials
	use_principal_sponsor
	auth_method_data
	auth_method_id

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Association Options
	Association Option Semantics

	SSL/TLS Sample Configurations
	SSL/TLS Sample Configurations on z/OS

	Security Recommendations
	General Recommendations
	Orbix Services

	Action-Role Mapping DTD

	Index

