
Borland Together 2008
Borland Together UML 2.1 Guide

Borland Software Corporation
4 Hutton Centre Dr., Suite 900
Santa Ana, CA 92707

Copyright 2009-2010 Micro Focus (IP) Limited. All Rights Reserved.Together contains derivative
works of Borland Software Corporation, Copyright 2008-2010 Borland Software Corporation (a
Micro Focus company).

MICRO FOCUS and the Micro Focus logo, among others, are trademarks or registered trademarks
of Micro Focus (IP) Limited or its subsidiaries or affiliated companies in the United States, United
Kingdom and other countries.

BORLAND, the Borland logo and Together are trademarks or registered trademarks of Borland
Software Corporation or its subsidiaries or affiliated companies in the United States, United
Kingdom and other countries.

All other marks are the property of their respective owners.

ii

Contents

Concepts...5
UML 2.1 Overview..5

UML 2.1 Implementation in Together ...6

Provided and Required Interface Links of a Port..6

Required Interface...7

Provided Interface...8

UML 2.1 Diagrams...8

UML 2.1 Common Diagram Elements and Preferences..9

UML 2.1 Activity Diagram..10

UML 2.1 Class Diagram..18

UML 2.1 Component Diagram Definition...26

UML 2.1 Composite Structure Diagram...30

UML 2.1 Deployment Diagram..36

UML 2.1 Profile Diagram...40

UML 2.1 State Machine Diagram..43

UML 2.1 Use Case Diagram..47

Procedures..53
Exporting a Model to UML 2.1..53

Converting a UML 2.0 Model to a UML 2.1 Model...54

Creating a Required Interface..54

Managing the Visibility of Provided and Required Interface Links..55

Working with Associations..56

Creating an Association...56

Creating an Association from Existing Properties...56

Change the Aggregation Type of an Association...57

Editing the Properties of AssociationEnds..57

Running a UML2Tools Report on a UML 2.1 Diagram File..57

Working with UML 2.1 Profiles...58

A Typical Scenario of Creating a Profile..58

Creating a Project..59

Creating a Profile...60

Populating Profile Diagrams..61

Defining Profiles ...62

Contents | 3

Registering Profiles ..63

Applying Profiles ...63

Applying Stereotypes ..64

Reference..65
UML 2 Tools Wizard...65

UML 2.1 Export Audits...66

4 | Contents

Concepts

This section contains information about UML 2.1 concepts, capabilities, and best practices.

Related Topics

UML 2.1 Overview on page 5

UML 2.1 Implementation in Together on page 6

Provided and Required Interface Links of a Port on page 6

UML 2.1 Diagrams on page 8

UML 2.1 Overview
The Unified Modeling Language (UML) is a tool maintained by the Object Management Group (OMG) that lets
you visually specify the design of software systems using standardized diagrams.With its most recent version,
UML 2.1, the UML standard for defining software systems has been functionally extended to address toolsmith
issues, including the implementation of redefinition and bidirectional associations in the metamodel.

UML 2.1 provides a set of Graphical Modeling Framework (GMF) editors based on the MDT UML2 metamodel.
Currently, UML 2.1 supports eight of the thirteen basic diagram types. With the following diagram editors,
divided into two functional sets, you can view and edit models:

• Behavior – These diagrams depict the interaction of model elements and the different states of the model
as its design is applied.

• Activity – Similar to a flowchart, these show the flow of activities used to accomplish a single task.
• State Machine – Depict the possible states of a model element and the transitions that cause a change

in the state.
• Use Case – Describe scenarios that a system does, from the point of view of an external observer, in

order to accomplish a single task or goal. These diagrams emphasize what a system does rather than
how.

• Structures – These diagrams depict the static architecture of models, which include the elements that
comprise the model and their relationships.

• Class – Depict an overview of a system by showing the relationships among its classes rather than what
happens when they do interact.

• Component – Show the high-level physical analogs of a system and their structural relationships and
interfaces. These diagrams are typically used to model the logical components of a system rather than
its physical attributes, which are best handled by deployment diagrams.

• Composite Structure – Show the configuration of interconnected parts that collaborate to perform the
behavior and achieve the purpose of the containing classifier.

• Deployment – Depict the hardware functionality of a software system and how it gets executed.
• Profile Definition – Let you define all the domain model's non-UML properties and provide a way for

metaclasses from existing metamodels to be extended so they can be adapted for different purposes.

Concepts | 5

The following resources offer information and assistance:

• Eclipse Model Development Tools (MDT) – UML2Tools
• Eclipsepedia MDT-UML2Tools FAQ
• OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2
• Mailing list: mdt-uml2tools.dev

Note: Since Together 2008 Release 3, the feature set Together UML 2.1 Diagrams is not required to be
installed.When not present, the corresponding parts of the user interface and functionality are not available.
Refer to the installation instructions in the Release Notes document for additional info about the product
installation process.

Related Topics

Concepts on page 5

UML 2.1 Implementation in Together
Even in its latest version of UML, the OMG faces usability issues because of its patchwork contributions from
varying groups of vendors and distinct legacy notations. These issues include language complexity, notational
inconsistency, semantical ambiguity, and a handicapped interchange format that limits model portability between
modeling tools.

The Together architecture streamlines some of these challenges. Because of Together's compatibility with
XML Metadata Interchange (XMI), you can import projects or sections of projects that were created in other
modeling tools. Diagrams of such projects can benefit from Together's sophisticated layout capabilities, which
other modeling tools lack. In addition to its support of UML 2.x and XMI format import and export, Together
modeling offers Object Constraint Language (OCL) support to describe expressions that cannot be otherwise
expressed by diagrammatic notation on UML models.

Another way Together meets the challenges posed by UML is its Quality Assurance feature, which provides
a wide variety of audits and metrics for measuring how well your model adheres to the UML constraints you
have configured.

Related Topics

Concepts on page 5

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

Provided and Required Interface Links of a Port
The provided and required interfaces define behavior of a component.You can optionally organize them
through ports. As demonstrated in the following image, a provided interface is displayed using the lollipop
notation, and a required interface is shown using the socket notation.

6 | Concepts

http://wiki.eclipse.org/MDT-UML2Tools
http://wiki.eclipse.org/MDT-UML2Tools_FAQ
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
https://dev.eclipse.org/mailman/listinfo/mdt-uml2tools.dev
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

In the preceding image, the Order component provides interfaces ItemAllocation and Tracking and requires
interface OrderableItem. The interfaces are exposed through ports p1, p2 and p3.

Related Topics

Concepts on page 5

Required Interface on page 7

Provided Interface on page 8

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2
Creating a Required Interface on page 54

Managing the Visibility of Provided and Required Interface Links on page 55

Required Interface
Required interfaces are the interfaces that a component requires from other components in its environment
so that it can offer a full set of provided functionality. The required interface link is a derived link. For a port
element, the value of a Required Interface is derived from the interfaces realized by the type of the port, or by
the type of the port itself if the port was typed by an interface. In the following image of the Order component,
the p3 port requires the OrderableItem interface.

In the domain editor, no link from port p3 to the interface OrderableItem exists. However, you can provide a
Usage link from the CostCalculator class to the OrderableItem interface, as demonstrated in the following
image.

Concepts | 7

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

CostCalculator is a type of p3 port, and that port requires all interfaces that CostCalculator uses. In the case
of this component, this includes an OrderableItem.

Related Topics

Provided and Required Interface Links of a Port on page 6

Creating a Required Interface on page 54

Provided Interface
Provided Interfaces are the interfaces that a component exposes to its environment. Like the Required Interface,
the provided interface link is also a link whose association is derived from the interfaces realized by the type
of the port, or by the type of the port itself if the port was typed by an interface. As seen in the following image
of the original Order, port p1 provides an ItemAllocation interface because the interface is a type of the port.
Port p2 provides interface Tracking, because there is an InterfaceRealization link that goes from the type of
the port (TrackingImpl) to interface Tracking.

Related Topics

Provided and Required Interface Links of a Port on page 6

UML 2.1 Diagrams
Together provides support for the most frequently needed diagrams and notations defined by UML 2.1. For a
thorough understanding of these diagrams, users should be familiar with the latest UML specification, available
from the Catalog of OMG Modeling and Metadata Specifications.

Because several of the features that UML 2.0 provides (such as documentation functionality and metrics) are
not yet implemented in UML 2.1, the UML 2.1 capabilities are disabled by default. To turn them on, select
Window ➤ Preferences... ➤ General ➤ Capabilities. Click Advanced... and select the UML2 Diagramming
node under the UML Modeling feature.

8 | Concepts

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML

Related Topics

Concepts on page 5

UML 2.1 Common Diagram Elements and Preferences on page 9

UML 2.1 Activity Diagram on page 10

UML 2.1 Class Diagram on page 18

UML 2.1 Component Diagram Definition on page 26

UML 2.1 Composite Structure Diagram on page 30

UML 2.1 Deployment Diagram on page 36

UML 2.1 Profile Diagram on page 40

UML 2.1 State Machine Diagram on page 43

UML 2.1 Use Case Diagram on page 47

UML 2.1 Common Diagram Elements and Preferences
The different UML 2.1 diagrams each contain palette elements in Together that are diagram-specific. However,
the palette elements described in the following table are common to all the UML 2.1 diagrams.

Note: To add any palette element to your diagram several times at once, press the Control key when
selecting the palette element and continue to hold it down while pasting the element into the diagram.

Common Diagram Elements

DescriptionPalette Element

Use the Select node (the default) to select individual
elements on the diagram.

 Select

Click the Zoom In node and then apply it to any element on
the diagram to magnify the entire diagram. Apply the Zoom
Out node to make the diagram smaller.

 Zoom In

 Zoom Out

Use one of these nodes to optionally show relationship
conditions between diagram elements. Note: These
elements are not UML elements.

 Note

Text

 Note Attachment

Common Diagram Preferences

All of the UML diagrams have a set of common preferences that you can set using Window ➤ Preferences
➤ UML <diagramtype> Diagram.

Specifies whether connector handles and popup bars are displayed, and whether
animated layout, animated zoom, and anti-aliasing features are enabled.

Global settings

Concepts | 9

Adjusts diagram colors and fonts, and the color settings of lines, fills, and
highlighting.The highlighting feature alerts you to invalid elements in your diagram
and is set to red by default.

Appearance

Toggles diagram line styles between rectilinear and oblique.
Connections

Specifies whether diagram labels are displayed in the Classic Eclipse Style or in
the Together Cheerful Style.

Icon Style

Selects path variables to use in modeling artifacts. Paths that you select are a
subset of the path variables set in your workspace's Linked Resources preferences
page.

Pathmaps

Specifies general printing settings.
Printing

Sets ruler options (default measurement is in inches) and the display, snap, and
spacing options for grids.

Rulers And Grid

Manages required interface links by letting you specify whether Genuine links (the
original links going out of a classifier) and Derived links (links going out of the port)
are hidden. Diagrams are updated when this option is changed.

View Filters

Related Topics

UML 2.1 Diagrams on page 8

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Activity Diagram
Activity diagrams are object-oriented flowcharts that let you model the process of an activity. To demonstrate
this type of modeling, this topic uses the flow of activity involved in the purchase of an item in an E-Store
system.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

An activity diagram represents one specific aspect of a system's dynamic behavior. At a basic level, activities
are made up of individual actions, which are fundamental units of executable functionality. There is control
sequencing and data flow between actions, which means that the execution of one action node affects and is
affected by the execution of other action nodes. Flows can have several sources and several targets.

Activities can be attached to any model element in order to model the element's behavior. Activity diagrams
are often used to examine complex use cases in order to capture different perspectives of them.This is possible
because activity diagrams visually communicate basic and alternative flows, algorithms, extension points,
loops and parallelism.

Activity diagrams focus on the sequence and conditions of system behaviors.These behaviors can be prompted
by other behaviors, by objects and data becoming available, or by events occurring outside of the flow.

10 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Sample Diagrams

The following activity diagrams show the basic purchasing activity through an E-Store system. These figures
show a view of logical paths, which include both basic and alternative flows. Refactoring the purchasing activity
could yield more flows (for example, specifying shipping address and rates, giftwrapping options, and discounts).
Furthermore, a less in-depth perspective for this activity could also be depicted without alternative flows.

Concepts | 11

12 | Concepts

The key graphical elements of an activity diagram include control flows, actions, merge/decision nodes and
the activity itself. Descriptions for these and other elements used for activity diagrams can be found in the table
that follows.

DescriptionCanvas ElementPalette Element

A major task that must occur so that an
operational contract can be fulfilled.

Purchase Items

Process Order

 Activity

Activities represent user-defined
behaviors that specify how subordinate
behaviors are executed via control and
data flow models.

Activities can be the start of an
operation, a step in a business process,
or an entire business process.They can
originate from both inside and outside
of the system.

Activity parameters are objects at the
beginning and end of flows. Each

Shopping List

Order Request

 Activity Parameter

parameter must have nodes to provide
inputs to the activity and outputs from
the activity.

Activity partitions, previously called
swimlanes in UML 1.4, group actions

Order Processor

Accounting Clerk
 Activity Partition

that have some characteristics in
common often corresponding to

Concepts | 13

DescriptionCanvas ElementPalette Element

organizational units in a business
model. For example, they can group
activities performed by the same actor
or that are contained in the same flow.
Although they do not affect the flow of
a model, they constrain and provide a
view on the behaviors of activities.

Note: Add activity partitions to the
canvas before you add individual flow
elements that the partition will contain.

An action that waits for the occurrence
of an event that meets a specified
condition.

Request to Remove Product Accept Event Action

 Accept Time Event Action

An accept event action is displayed as
a concave pentagon. When the
specified condition is not yet met, an
accept time event action (displayed as
an hour glass) waits until the condition
is met before the action can accept it.

When there are no incoming edges, the
action's immediate container (either the
containing activity or structured node)
starts after a signal is accepted.

Lets you add values to a feature.N/A Add Feature Value Action

A call that starts a behavior directly
instead of starting a behavior feature
that subsequently starts the behavior.

Action called to invoke the Submit
Order for Purchase user-defined
behavior

 Call Behavior Action

For asynchronous calls, the action
completes immediately without a result.
For synchronous calls, the call behavior
action waits to execute until the invoked
behavior completes, and a result is
returned on its output pin.

An action that requests an operation
call from the target object, leading to
the start of the associated behavior.

Select Product Attributes Call Operation Action

Synchronous actions wait until the
invoked behavior completes before
executing, and then send a reply to the
caller. For asynchronous actions, the
invoked operation proceeds
concurrently with the execution of the
calling behavior.

14 | Concepts

DescriptionCanvas ElementPalette Element

When the call operation action receives
reply transmissions on its output pins,
the action is complete.

Creates a new object whose classifier
conforms to a static classifier. The new

Action called to instantiate the static
classifier Order

 Create Object Action

object resides on the output pin at
runtime and is returned as the value of
the action.

An action whose semantics are
determined by an implementation.

Verify Shopping Cart Exists

Restore Shopping Cart

 Opaque Action

Create Empty Shopping Cart

Display Shopping Cart Contents &
Order Totals

Select a Product from Catalog

Specify Color

Specify Quantity

Select a Product from Cart

Modify Product Quantity

Add Product to Cart

Remove Product from Cart

Calculate and Display Order Totals

Submit Order for Purchase

Receive Order

Log Product Purchase

Fill Order Request

Ship Order

Create Invoice

Receive Payment

Credit Account

Close Order

Creates a signal instance that is
transmitted to the target object so that
an activity can execute.

Create Invoice

Send Invoice

 Send Signal Action

A behavior whose semantics are
determined by an implementation.

N/A OpaqueBehavior

Concepts | 15

DescriptionCanvas ElementPalette Element

The control node that starts all flows
when an activity is invoked. If an activity

The starting point before the Verify
Shopping Cart Exists action

 Activity Initial Node

has more than one initial node, then
The starting point before the Receive
Order action

invoking the activity starts flows at each
initial node. Note: Activities can also be
started by an Activity Parameter node
and an Accept Event Action node.

The final control node that stops all
flows in an activity. If an activity has

The end point after the Submit Order
for Purchase action

 Activity Final Node

more than one final node, the node that
is first reached stops the activity.

The end point after the Close Order
action

The final control node that stops a
specific flow in an activity. It does not
affect the other flows in the activity.

Element that ends the flow of product
attribute selections after the Specify
Quantity and Log Product Purchase
actions

 Flow Final Node

The merge node unites multiple
alternate incoming flows. Rather than

The diamond-shaped element between
the Create Empty Shopping

 Merge Node

 Decision Node synchronizing concurrent flows, it
selects one flow among the alternate

Cart/Display Shopping Cart Contents
& Order Totals actions, the Specify

flows. Similarly, a decision node selects
between multiple outgoing flows.

Quantity and Add Product to
Cart/Modify Product
Quantity/Remove Product from Cart,
and the Ship Order/Credit
Account/Close Order actions is a
merge node.

The other diamond-shaped elements
are decision nodes.

A fork node splits one incoming flow into
multiple outgoing concurrent flows.

The vertical line between Fill Order
Request and Ship Order is a Fork
Node

 Fork Node

 Join Node Similarly, the join node synchronizes
multiple incoming flows into one

The vertical line between Ship
Order/Credit Account actions and the
Merge Node is a Join Node

outgoing flow. These nodes enable
parallelism in activities.

This structured activity node makes an
exclusive choice between alternatives.

N/A
 Conditional Node

These nodes are made up of clauses
with a test section and body section.
The test sections execute at the same
time the conditional node does. No
matter how many test sections yield a
true value, only one body section will
be executed. If no test section yields a

16 | Concepts

DescriptionCanvas ElementPalette Element

true value, no body sections are
executed.

A structured, nested region of an activity
that executes once for every element in

N/A Expansion Region

the input collection. It has
ExpansionNodes as its inputs and
outputs. An expansion region begins
executing after it accepts a token from
an activity. Expansion regions let you
apply behaviors to elements of a set
without constraining the order of
application.

Expansion regions are displayed as
dashed, rounded rectangles that
enclose either the parallel,
iterative, or streaming
keyword. Vertically divided rectangles
on its border represent its expansion
nodes.

A structured, nested subregion of an
activity that acts as a loop and provides

N/A Loop Node

structured iteration. Each loop node has
a setup, test and body section. The
setup section is executed upon entry to
the loop, and the test and body sections
execute (unordered) continually until
the test returns False.

An activity node that can expand into
an Activity Group via subordinate,

Product Attributes node where color and
quantity are specified

 Structured Activity Node

well-nested nodes. Although nesting is
allowed, none of the subnodes and
edges can be contained by another
structured node.

Structured activity nodes are displayed
as dashed, rounded rectangles that
enclose nodes and edges and the
keyword <<structured>>.

An object node that manages flows from
multiple sources and destinations.

Invoice Central Buffer

Unlike other buffers, central buffers are
not attached to actions or activities.
They help manage queuing and
competing object flows.

Concepts | 17

DescriptionCanvas ElementPalette Element

A central buffer node that stores all
incoming tokens and distributes select
copies for movement downstream.

Product Inventory Datastore

An object node that permits inputs to
and outputs from actions. When the

The source output pin from the
CreateObjectAction

 Pin

 Input Pin
output pin of one action is connected to

The target input pin to the
CallBehaviorAction

 Output Pin the input pin of the same name in
another action, the joint flow can be
represented in a standalone pin.

Creates a selection link between
elements.

N/A Selection

An edge at which one activity node
starts after the previous activity node

All arrows between Opaque Actions Control Flow

finishes. Control flows model behavior
sequencing that does not involve object
flow.

An edge that passes objects and data
between object nodes in an activity.

All arrows between objects and actions Object Flow

Specifies which body to execute after a
protected node executes with an
exception.

N/A Exception Handler Link

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Class Diagram
Class diagrams provide an overview of a target system according to the objects and classes specified in the
system and the relationships between them.To demonstrate this type of diagram, this topic models subsystem
interfaces of an E-Store system.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

18 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Definition

Every high-level architecture identifies key subsystems and their interfaces. A subsystem design model specifies
how interfaces of a given subsystem are to be implemented. The key element of a subsystem design model
is one or more class diagrams that show how classes constitute the subsystem. In addition, class diagrams
show the relationships between classes and interfaces, and the relationships among classes.

Class diagrams are static diagrams in that they display what interacts but not what happens during an interaction.
Nor do they have to incorporate advanced elements or be extensively elaborate in order to be useful. Initially
at least, the focus of every class diagram should be its classes and their relationships. High-level class diagrams
are created in an analysis phase and attempt to depict the basics of a system.When an increased understanding
of the system prompts an attempt to diagram solutions, attributes and operations can be added to classifiers.

Object diagrams are class diagrams that show specific instances of classes and their relationships. Relationships
describe the different types of logical connections in class and object diagrams. They include general
relationships (dependency, multiplicity), relationships between instances (link, composition, association,
aggregation), and relationships between classes (generalization, inheritance, realization).

Using Together, you can create language-neutral class diagrams in design projects, or language-specific class
diagrams in implementation projects. For implementation projects, all diagram elements are immediately
synchronized with the source code.

Sample Diagrams

The following diagram specifies the operations and attributes of an E-Store's subsystem interfaces. The first
diagram elaborates on a customer database subsystem interface.

Concepts | 19

The fundamental elements of most class diagrams consist of classifiers with attributes and operations, and
connectors that specify relationships between classes. Descriptions for these and other elements used for
class diagrams can be found in the table that follows.

DescriptionCanvas ElementPalette Element

A classifier whose behavior is described
through the interaction of its parts.

Customer

Address
 Class

Within a class you can specify
CustomerDataManagerImpl attributes, operations, and other

classes.RuntimeException

20 | Concepts

DescriptionCanvas ElementPalette Element

In the Class diagram editor, classes can
only be displayed as classifier
rectangles.

ArrayList

CustomerCollection

A package groups elements of the
diagram and provides a namespace for
those grouped elements.

N/A Package

The Package node can be used to
represent a Classifier, and can import
individual members or all members of
other packages.

Packages can also be displayed as
frames.

A data type with values enumerated in
the model as user-defined literals.

AddressType Enumeration

A classifier that is very similar to a class
except that its instances are identified
only by their value.

N/A DataType

Defines a predefined data type with
substructure parts defined outside of

N/A PrimitiveType

UML. Instances of primitive types are
data values without identities. They
include Boolean, Integer,
UnlimitedNatural, and String.
PrimitiveTypes have a many-to-one
ratio to mathematical elements (such
as integers) defined outside of UML.

A constraint is a Boolean expression
that restricts the extension of an

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Constraint

element. It restricts by imposing a value
that specifies additional semantics
beyond what is imposed by other
language constructs applied to that
element. The element that owns the
constraint must have access to
Constrained Elements. By default, the
value of a constraint is an Opaque
Expression element.

An element with both association and
class properties that connects a set of

Account Association Class

classifiers. It has its own set of features
that do not belong to any of the
connected classifiers.

Concepts | 21

DescriptionCanvas ElementPalette Element

Association classes are displayed as
classes attached to association paths
by a dashed line.

Creates a new object whose classifier
conforms to a static classifier. The new

CustomerDataManager
 Interface

object resides on the output pin at
runtime and is returned as the value of
the action. An interface must have at
least one class to implement it.

An entity that defines a model element's
properties with specific values. For

dst : Customer

dst : AddressType

 Attribute

example, attributes of a Nation class
dst : CustomerReplicationException are represented by property instances

owned by the class, such as geography,
population, and government.

dst : CustomerInvalidIDException

Specifies the behavioral characteristics
of a classifier, including the behavior's

findCustomersbyLastName()

updateCustomer:void()
 Operation

name, type, parameters, and constraints
for invoking the behavior.removeCustomer:void()

A user-defined data type value for an
enumeration.

Home

Billing

 Enum Literal

Office

Each of the small squares attached to
classes that connect the behavior of

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Port

classes with their internal parts and with
the other parts of the system. Ports can
specify which service a class provides
to its environment and which service a
class expects from its environment.

Ports are labeled by their different types
and are either public (visible to the
environment, straddling class
boundary), private (only visible to the
namespace that owns it, within class
boundary), or protected (only visible to
elements that have a generalization
relationship to the namespace that owns
it). If a port's isBehavior property is true,
a small state symbol is displayed beside
it.

Bundles the set of formal template
parameters for a template element.The

N/ATemplate Signature

22 | Concepts

DescriptionCanvas ElementPalette Element

signature is owned by the template
element and has parameters that define
the signature for binding this template.

Identifies an element in another
package that can be referenced using
its name without a qualifier.

N/A Element Import

The ElementImport compartment is
collapsed by default.

The interaction between model
elements, represented by a solid line

The blue arrows between classifiers. Association

between them. These interaction links
can be either unidirectional (indicating
that an actor initiates the interaction) or
bidirectional (indicating that an actor
can participate in the interaction without
initiating it).

A nonbinary aggregation that represents
a shared relationship between a part

N/A Shared Aggregation

 Composite Aggregation and its composites. Shared
aggregations have a hollow diamond

 Navigable Association notation at the end of its aggregation
line.

A binary aggregation that represents a
whole/part relationship between a part
and its composites. This form of
aggregation requires that a part
instance be included in no more than
one composite at a time. Composite
aggregations have a filled-in diamond
notation at the aggregate end of its
association line.

An association is navigable in the
direction of its arrow. The marked
association end is owned by the
classifier, and the unmarked end is
owned by the association. If there are
no arrows, the association is navigable
in both directions, and each association
end is owned by the classifier at the
opposite end.

Elements whose semantics depend on
the definition of a supplier element are

N/A Dependency

 Abstraction in a dependency relationship with the
supplier element. Dependency links are

 Usage shown as dashed arrows between the

Concepts | 23

DescriptionCanvas ElementPalette Element

two model elements with the arrowhead
pointing to the supplier element.

 Substitution

An abstraction relationship relates two
classifiers by the same concept but at
different viewpoints or levels of
abstraction.

A usage relationship involves one
classifier that depends on another
classifier for its operation and
implementation.

A substitution relationship implies that
the instances of the substituting
classifier can substitute instances of the
contract classifier at runtime.

If one classifier inherits all the behavior
of another classifier and furthermore

The hollow arrows between classifiers. Generalization

extends it with additional behavior, a
generalization link results. The arrow
points to the more general of the two.

A provided interface represents services
that are offered by instances of a
classifier to fulfill contractual obligations.

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Provided Interface

A required interface specifies a usage
dependency (which include the services

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Required Interface

needed to perform a required function)
between instances of a classifier and
their interfaces.

Those elements of the diagram that are
required to evaluate the conditions

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Constrained Element

specified in a constraint. These
references are displayed as links on the
diagram.

A N-ary association is used for
representing two or more aggregations
to the same aggregate.

N/A NAry Dependency Target

A N-ary association is used for
representing two or more aggregations
to the same aggregate.

N/A NAry Dependency Source

Connects the line depicting an
Association Class and the icon depicting

N/A Association End

the connected classifier. The

24 | Concepts

DescriptionCanvas ElementPalette Element

Association End defines the ends of the
Association Class. Names of
Association Ends are optional and can
be suppressed.

An abstraction relationship between a
supplier set of elements (specification)

N/A Realization

and a client set of elements
(implementation). The client element
realizes the behavior that the supplier
element specifies. Realizations model
relationships such as transformations,
optimizations, and stepwise refinement.

A relationship between an element and
a template that specifies the substitution

N/ATemplate Binding

of actual parameters for the formal
parameters of the template.

Specifies the existence of an entity in a
modeled system. The entity can be a

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Instance Specification

class, in which case the instance
specification describes an object of that
class. For example, an instance
specification of the class Nation might
be Brazil. An entity can also be an
association, in which case the instance
specification describes the link of the
association.

Instance specifications can optionally
have names, displayed in the format
instancename:classifiername.

Specifies the value of a classifier's
defining structural feature owned by the

See the “UML 2.1 Composite Structure
Diagram on page 30” topic.

 Slot

slot's instance specification. It
represents how an entity modeled by
the slot's instance specification has a
structural feature with specific values.

A Literal String is a sequence of
characters within double quotes that
contain a string-valued attribute.

N/ALiteral String

Literal Integer

Expression
A Literal Integer is a sequence of digits
that signify an Integer-valued attribute.

An Expression, such as else or plus,
represents a node in an expression tree
and defines a symbol.

Concepts | 25

DescriptionCanvas ElementPalette Element

Note: These three elements are
supported for expanded Instance
Specifications only.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

UML 2.1 Composite Structure Diagram on page 30

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Component Diagram Definition
Component diagrams depict the high-level components of a system and their structural relationships and
interfaces.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

Component diagrams depict the high-level components of a system and their structural relationships and
interfaces. A component diagram provides a high-level architectural view of a system.

There is no InstanceSpecification element in the UML 2.1 Component diagram editor. Sometimes the UML
specification references Parts of a Component as Instances.

Component diagrams are usually used to model the logical components of a system. Physical architecture
issues are better addressed in a Deployment diagram.

Sample Diagram

The following figure is an example of a component diagram.This diagram illustrates a customer administration
subsystem.

26 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Component diagrams consist of components, their parts, ports, provided interfaces, required interfaces, and
other elements. These elements are described in the table that follows.

DescriptionCanvas ElementPalette Element

A component is a specialized version
of a class. A component element uses

Customer Administration Subsystem

Security
Component

the same notation rules as a class
element.Customer

Physical artifacts of a system are
usually described in Deployment

Artifact

Diagrams. However, if a component is
closely connected with its physical
store, you can add and link an artifact
in a Component Diagram.

A type of contract that declares a set of
coherent features and conditions. Any

 Interface

classifier that interacts with the interface
must fulfill this contract.

The type of dependency a classifier has
with its interface is distinguished by a
circle at the end of a solid line
(indicating a provided interface) or a
half-circle at the end of a solid line
(indicating a required interface).

A classifier whose behavior is described
through the interaction of its parts.

 Class

Within a class you can specify

Concepts | 27

DescriptionCanvas ElementPalette Element

attributes, operations, and other
classes.

A part represents a set of one or more
instances which are owned by a

CustomerData, SecurityPart

containing classifier instance. If an
instance owns a set of graphical
elements, then the graphical elements
could be represented as parts in order
to model a relationship between the
instance and the graphical elements.
You can remove a part from its parent
before deleting the parent so that the
part is not deleted when the parent is
deleted.

A UML construct that allows you to
organize model elements into groups.

Package

A package element in a diagram
displays the package contents.
Packages are depicted as file folders
and can be used in any UML diagram.

A provided interface represents services
that are offered by instances of a
classifier to fulfill contractual obligations.

 Provided Interface

A Provided Interface link can be created
between a Classifier and an Interface
('genuine' link) or between a Component
or Port to an Interface ('derived' link).
Visibility of the link is managed in the
View Filters preferences page
(Window ➤ Preferences ➤ Modeling
➤ View Management ➤ Show/Hide
Elements).

A required interface specifies a usage
dependency (which include the services

 Required Interface

needed to perform a required function)
between instances of a classifier and
their interfaces.

Ports often have Required Interface
links. A Required Interface can be
created for a Port only if the Port”s type
reference property is not null.

A link that lets two or more instances
communicate with each other.

Delegation Connector

Delegation connectors link the external

28 | Concepts

DescriptionCanvas ElementPalette Element

contracts of components (specified by
their ports) to the internal realization of
that behavior by the component's parts.

Elements whose semantics depend on
the definition of a supplier element are

Dependency

in a dependency relationship with the
supplier element. Dependency links are
shown as dashed arrows between the
two model elements with the arrowhead
pointing to the supplier element.

A link that lets two or more instances
communicate with each other. Assembly

Assembly Connector

connectors link required interfaces or
ports to provided interfaces or ports and
specify that one component provides
the required services of another
component.

Identifies an element in another
package that can be referenced using
its name without a qualifier.

 Element Import

A secondary package node located in
the upper-left corner of the above
diagram contains element imports. The
ElementImport compartment is
collapsed by default.

An entity that defines a model element's
properties with specific values. For

 Attribute

example, attributes of a Nation class
are represented by property instances
owned by the class, such as geography,
population, and government.

Specifies the behavioral characteristics
of a classifier, including the behavior's

 Operation

name, type, parameters, and constraints
for invoking the behavior.

You can edit operation parameters by
selecting the Manage Parameters
context menu action within the
operation.

Each of the small squares attached to
classes that connect the behavior of

DataEncryption
 Port

classes with their internal parts and with
the other parts of the system. Ports can

Concepts | 29

DescriptionCanvas ElementPalette Element

specify which service a class provides
to its environment and which service a
class expects from its environment.

Ports are labeled by their different types
and are either public (visible to the
environment, straddling class
boundary), private (only visible to the
namespace that owns it, within class
boundary), or protected (only visible to
elements that have a generalization
relationship to the namespace that owns
it). If a port's isBehavior property is true,
a small state symbol is displayed beside
it.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Composite Structure Diagram
Composite structure diagrams depict a composition of interconnected elements (including parts and connectors)
within a class and any potential collaborations the structure allows. When a composite structure is executed,
its interconnected elements collaborate to achieve a purpose.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

Composite structure diagrams depict the internal structure of a classifier, including its interaction points to the
other parts of the system. These diagrams show the configuration of parts that jointly perform the behavior of
the containing classifier.

Some of the contained parts can be included by reference. Referenced parts are represented by dotted
rectangles. Classifiers can be isolated from and interact with their environments through ports. Different
interactions are distinguished by different ports.

Sample Diagram

The following figures contain examples of composite structure diagrams.The first one illustrates a collaboration
that shows how merchandise is moved in an E-Store system. The next diagram shows a John Smith instance
specification of the Customer class and various slots that define the instance specifications. The last diagram,

30 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

courtesy of the Unified Modeling Language (OMG UML): Superstructure, Version 2.1.2 November 2007, p.
183, shows how an Engine class is used differently by both a Car class and a Boat class.

Concepts | 31

Composite structures are made up of several subpackages including ports, collaborations, and classes.These
subpackages and other elements included in composite structure diagrams are described in the table that
follows.

DescriptionCanvas ElementPalette Element

Collaborating elements that perform
specialized tasks and are structured

Business Transaction Collaboration

collectively to accomplish a function.
Collaborations show how a collection
of cooperating classes achieve
something.

A classifier whose behavior is described
through the interaction of its parts.

Customer

Order
 Class

Within a class you can specify
Card attributes, operations, and other

classes.Wheel
Classes can be changed into an
expanded notation when its attributes
are displayed as rectangles.

Propeller

Car

Boat

Engine

A type of contract that declares a set of
coherent features and conditions. Any

Powertrain

Power
 Interface

classifier that interacts with the interface
must fulfill this contract.

The type of dependency a classifier has
with its interface is distinguished by a
circle at the end of a solid line

32 | Concepts

DescriptionCanvas ElementPalette Element

(indicating a provided interface) or a
half-circle at the end of a solid line
(indicating a required interface).

Specifies the existence of an entity in a
modeled system. The entity can be a

John Smith:Customer Instance Specification

class, in which case the instance
specification describes an object of that
class. For example, an instance
specification of the class Nation might
be Brazil. An entity can also be an
association, in which case the instance
specification describes the link of the
association.

Instance specifications can optionally
have names, displayed in the format
instancename:classifiername.

A constraint is a Boolean expression
that restricts the extension of an

Customer.age >=21 Constraint

element. It restricts by imposing a value
that specifies additional semantics
beyond what is imposed by other
language constructs applied to that
element. The element that owns the
constraint must have access to
Constrained Elements. By default, the
value of a constraint is an Opaque
Expression element.

Identifies an element in another
package that can be referenced using
its name without a qualifier.

N/A Element Import

A secondary package node located in
the upper-left corner of the above
diagram contains element imports. The
ElementImport compartment is
collapsed by default.

An entity that defines a model element's
properties with specific values. For

id = integer, address = string of
Customer class

 Attribute

example, attributes of a Nation class
are represented by property instances
owned by the class, such as geography,
population, and government.

Specifies the behavioral characteristics
of a classifier, including the behavior's

See the “UML 2.1 Class Diagram on
page 18” topic.

 Operation

Concepts | 33

DescriptionCanvas ElementPalette Element

name, type, parameters, and constraints
for invoking the behavior.

You can edit operation parameters by
selecting the Manage Parameters
context menu action within the
operation.

Each of the small squares attached to
classes that connect the behavior of

p:powertrain

pp
 Port

classes with their internal parts and with
the other parts of the system. Ports can
specify which service a class provides
to its environment and which service a
class expects from its environment.

Ports are labeled by their different types
and are either public (visible to the
environment, straddling class
boundary), private (only visible to the
namespace that owns it, within class
boundary), or protected (only visible to
elements that have a generalization
relationship to the namespace that owns
it). If a port's isBehavior property is true,
a small state symbol is displayed beside
it.

Describes how a collaboration pattern
is applied according to its context. It

wholesale:Business Transaction

retail:Business Transaction

 Collaboration Use

depicts a specific use of a collaboration
that explains relationships between
classifier properties.

Specifies the value of a classifier's
defining structural feature owned by the

id = 2334455

address = London Street
 Slot

slot's instance specification. It
represents how an entity modeled by
the slot's instance specification has a
structural feature with specific values.

A link that lets two or more instances
communicate with each other.

axle

shaft
 Connector

A connector can either be a delegation
connector or an assembly connector.
Delegation connectors link the external
contracts of components (specified by
their ports) to the internal realization of
that behavior by the component's parts.
Assembly connectors link required
interfaces or ports to provided interfaces

34 | Concepts

DescriptionCanvas ElementPalette Element

or ports and specify that one component
provides the required services of
another component.

A dependency that maps between
features of collaboration types and

The links in the Collaboration diagram Role Binding

features of a classifier or operation.The
mapping determines which connectable
element of the classifier or operation
plays which role in the collaboration.

A provided interface represents services
that are offered by instances of a
classifier to fulfill contractual obligations.

Dependency to Powertrain interface
 Provided Interface

A required interface specifies a usage
dependency (which include the services

Dependency to Power interface Required Interface

needed to perform a required function)
between instances of a classifier and
their interfaces.

The interaction between model
elements, represented by a solid line

The blue link between the Customer
and Order classes.

 Association

between them. These interaction links
can be either unidirectional (indicating
that an actor initiates the interaction) or
bidirectional (indicating that an actor
can participate in the interaction without
initiating it).

A nonbinary association that represents
a shared relationship between a part

N/A Shared Association

and its composites. Shared associations
have a hollow diamond notation at the
end of its association line.

A binary association that represents a
whole/part relationship between a part

N/A Composite Association

and its composites. This form of
aggregation requires that a part
instance be included in no more than
one composite at a time. Composite
associations have a filled-in diamond
notation at the aggregate end of its
association line.

An association is navigable in the
direction of its arrow. The marked

N/A Navigable Association

association end is owned by the

Concepts | 35

DescriptionCanvas ElementPalette Element

classifier, and the unmarked end is
owned by the association. If there are
no arrows, the association is navigable
in both directions, and each association
end is owned by the classifier at the
opposite end.

Those elements of the diagram that are
required to evaluate the conditions

Link between Customer.age >=21 and
John Smith:Customer

 Constrained Element

specified in a constraint. These
references are displayed as links on the
diagram.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Deployment Diagram
Deployment diagrams model hardware functionality in systems, including the components deployed on the
hardware and the associations between those components. To demonstrate this type of modeling, this topic
uses an E-Store deployment model.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

Through deployment diagrams, a set of constructs specifies the physical architecture of a software system
and how it gets executed. These diagrams also define how the software is mapped to physical nodes. Nodes
are computational resources upon which software artifacts can be deployed for execution. In such a system,
software artifacts are assigned to nodes instead of components, and these artifacts implement collections of
components. Artifacts can include source files, executable files, documents, programs, libraries or data bases
that are constructed or modified in a project.

Deployment diagrams typically model hardware configurations in conjunction with their software components.
They show how artifacts are allocated to nodes by diagraming the deployments defined between them. By
modeling object-oriented systems through deployment diagrams, you can view runtime configurations in a
static view and visualize the distribution of components in an application.

36 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Sample Diagram

The following figure contains a diagram that shows an example of how the architecture of an E-Store system
is executed.

The key elements used in a deployment diagram are nodes, components, and associations. There are two
standard stereotypes for nodes: Devices represent physical devices such as a server machine or a workstation,
and Environments represent software execution engines such as an Apache Web server, a Tomcat Web
container or an Internet Explorer Web browser.

Nodes can be nested within nodes. For example, a node representing an execution environment can be nested
in a node representing a device. An association between nodes represents a communication channel over
which information is passed. Associations can be stereotyped to indicate a type of a communication protocol
or a connection between nodes.

Descriptions for these concepts and the other available items on the diagram palette can be found in the
following table.

Concepts | 37

DescriptionCanvas ElementPalette Element

Specifies a physical piece of information
(such as a script, file, or mail message)

Customer.j*

Order.j*
 Artifact

created by a software process or
deployment of a system.Product.j*

ShoppingCart.jar Artifacts are classifiers that can have a
list of identifying properties and
operations.They can have composition
associations to other artifacts nested
within them and can also be extended
to become the source of deployment to
a node.

A physical system resource where
artifacts are deployed for execution.

SunV440 4x 16GB 192.168.1.24

Sun V490 8x 32GB 192.168.1.23
 Device

Devices can be nested elements where
physical machines are decomposed into
their elements.

Represents a computational resource
upon which artifacts are deployed for

The devices in the diagram are types
of nodes.

 Node

execution. Nodes contain a set of
elements that are also deployed on
them.

Nodes are connected in a network
through communication paths, such as
servers and workstations.

Creates an execution environment that
lets nodes execute the components it

Solaris 2.9

Apache 4.0
 Environment

owns. Nodes represent the physical
Tomcat Servlet Engine hardware environment on which the

execution environment resides.JBoss 5.0
Composite associations assign
execution environments to their node
instances.

Subtypes of artifacts that define a set
of deployment properties to determine

WebServer WAR

EJB EAR
 Specification

how parameters of an artifact deployed
on a node are executed.

Represents the physical expression of
one or more model elements by the
artifact that owns the elements.

The association between the
WebServer WAR deployment
specification and the Tomcat Servlet
Engine execution environment.

 Manifestation

38 | Concepts

DescriptionCanvas ElementPalette Element

The association between the EJB EAR
deployment specification and the JBoss
5.0 execution environment.

Indicates that an artifact or artifact
instance, such as an executable or

N/A
 Deployment

configuration file, has been deployed to
a deployment target.

Links a deployment specification node
to a deployment edge. This moves the

N/A Specification Link

deployment specification to the selected
deployment and updates the
deployment property of the deployment
specification.

An association that lets two deployment
targets exchange signals and
messages.

TCP IP Communication Path

Elements whose semantics depend on
the definition of a supplier element are

Link between ShoppingCart.jar and
Order.jar

 Dependency

in a dependency relationship with the
supplier element. Dependency links are
shown as dashed arrows between the
two model elements with the arrowhead
pointing to the supplier element.

Identifies an element in another
package that can be referenced using
its name without a qualifier.

N/A
 Element Import

A secondary package node located in
the upper-left corner of diagram views
(not shown above) contains element
imports. The ElementImport
compartment is collapsed by default.

Extends a deployment target so that the
deployment can be modeled to

N/A Property

hierarchical nodes that have properties
functioning as parts in the internal
structure of an encompassing node.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Concepts | 39

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Profile Diagram
A domain metamodel sometimes contains some elements that cannot be expressed directly using UML
constructs. To completely express them, you can create a profile definition that lets you define all the domain
model's non-UML properties. Profiles provide mechanisms, such as stereotypes and constraints, that allow
metaclasses from existing metamodels to be extended so they can be adapted for different purposes. A profile
is a collection of such extensions that collectively customize UML for a particular domain.

A UML 2.1 profile diagram is a tool-specific diagram used for creating UML Profiles. This type of diagram is
typically used by a toolsmith rather than a practitioner.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

A profile must always be used in conjunction with its reference metamodel.

Stereotypes enable the use of platform- or domain-specific terminology or notation to extend the metaclass
beyond its usual avenues of extension. Unlike other metaclasses, stereotypes must always be used in
conjunction with another metaclass that it extends. Extensions associate stereotypes to metaclasses, which
allows the stereotype to be applied to any selected element. Stereotypes can be used to add Keywords,
Constraints, Images, and Properties.

Constraints restrict profiles based on the metaclasses defined in the package.

Sample Diagram

The following figure contains a diagram that shows how a profile can be extended using various diagram
palette elements.

40 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

The key elements used in a profile diagram are profiles, extensions, metaclasses, and stereotypes. Descriptions
for these concepts and the other available items on the diagram palette can be found in the following table.

DescriptionCanvas ElementPalette Element

A type of Package that defines how a
reference metamodel can be extended

<<profile>> Profile

for the purposes of adapting the
metamodel to a specific platform or
domain.

A class element that specifies how an
existing metaclass gets extended.

EStructuralFeature

EAttribute
 Stereotype

A class that has instances that are
classes. A metaclass defines the

Property Metaclass

behavior of other classes and their
instances. A metaclass that has no
imported element appears in red
highlighting.

Creates an execution environment that
lets nodes execute the components it

Solid arrow between EAttribute
enumeration and Property metaclass.

 Extension

owns. Nodes represent the physical
hardware environment on which the
execution environment resides.

A data type with values enumerated in
the model as user-defined literals.

VisibilityKind

FeatureKind

 Enumeration

Concepts | 41

DescriptionCanvas ElementPalette Element

If one classifier inherits all the behavior
of another classifier and furthermore

The hollow arrow between stereotypes. Generalization

extends it with additional behavior, a
generalization link results. The arrow
points to the more general of the two.

Extends a deployment target so that the
deployment can be modeled to

N/A Property

hierarchical nodes that have properties
functioning as parts in the internal
structure of an encompassing node.

A constraint is a Boolean expression
that restricts the extension of an

self.attributeName <> " of the
EAttribute stereotype

 Constraint

element. It restricts by imposing a value
that specifies additional semantics
beyond what is imposed by other
language constructs applied to that
element. The element that owns the
constraint must have access to
Constrained Elements. By default, the
value of a constraint is an Opaque
Expression element.

A user-defined data type value for an
enumeration.

See the “UML 2.1 Class Diagram on
page 18” topic.

 Literal

Identifies an element in another
package that can be referenced using
its name without a qualifier.

N/A
 Element Import

A secondary package node located in
the upper-left corner of diagram views
(not shown above) contains element
imports. The ElementImport
compartment is collapsed by default.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

42 | Concepts

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2
A Typical Scenario of Creating a Profile on page 58

UML 2.1 State Machine Diagram
State machine diagrams describe the dynamic aspects of a system or of part of a system. By graphically
depicting the lifecycle of a model element, state machine diagrams show the different states that the model
element can be in and how it responds to events.

To demonstrate this type of modeling, this topic diagrams the order processing in an E-Store system.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

An important way to model the dynamic behavior of model entities is to use a state machine diagram. There
are two kinds of state machine diagrams: one that describes the logical behavior of the system (or a part of
the system) and one that describes the usage protocol of it.

A behavioral state machine diagram specifies the behavior of a model's elements, such as a class.

A protocol state machine diagram expresses a model's usage protocols, such as legal transitions, sequences,
and lifecycles.

Sample Diagram

The following state machine diagram shows the order fulfillment process of an E-Store system. Execution of
the diagram begins with the Initial node and finishes with Final state node.

Concepts | 43

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

The key graphical elements of a state machine diagram include states, events, and transitions. States represent
a condition or situation during the life of an object in which it satisfies a certain condition, performs an activity,
or waits for an event. Events specify a noteworthy time-space occurrence that alters a state. Transitions track
the movement from one state to another in response to an event.

Many of a state machine diagram's palette elements represent pseudostates. Pseudostates are abstract
groupings of the 10 different transient vertices in the state machine: initials, entry points, exit points, deep
histories, shallow histories, forks, joins, junctions, terminates, and choices. Descriptions for pseudostates and
other elements used for state machine diagrams can be found in the following table.

DescriptionCanvas ElementPalette Element

A state machine describes the behavior
of a part of a system.

Order Fulfillment Process State Machine

State machine nodes are
interconnected by transitions that get
triggered by events. Once triggered,
state machines execute a series of
activities associated with elements of
the state machine. A state machine
owns one or more regions.

44 | Concepts

DescriptionCanvas ElementPalette Element

A Simple State has no regions or
submachine state machines.

Assembling, Checking Shipper
Availability, Assigning Shipper,

 Simple State

 Composite State
A Composite State has either one
region or several regions with mutually

Preparing Shipping Instructions,
Auditing Shipper's Performance,
Items Stored in Pick-Up Shelf,

 Submachine State

exclusive disjoint subvertices and a set
Invoices Moved to Front Desk,
Received

of transitions. Substates within the
regions are either contained by another

In Delivery, Waiting for Customer
Pick-Up

state (indirect substates) or not (direct
substates).

N/A A Submachine State specifies the
insertion of the specification of a
submachine state machine.You can
use the Submachine to open the
Submachine State by double-clicking
the state. The state machine that
contains the submachine state is called
the containing state machine.The same
state machine can be a submachine
more than once in the context of a
single containing state machine.

Within a state, regions are used to
group substates. When a state is

Area containing substates in the In
Delivery and Waiting for Customer
Pick-Up composite states

 Region

created, it automatically comes with its
own region, which can be deleted.

Signifies that the enclosing region is
complete.

Closed Final State

When the region of a final state is
directly contained in a state machine
that has all its other regions complete,
the entire state machine is complete.

The default vertex that provides the
source for a transition to the default
state of a composite state.

Point before the Assembling state Initial

A region cannot have more than one
initial vertex.

A pseudostate that restores the most
recent active substate of the containing

N/A Shallow History

state (that is, the configuration state that
was active when the enclosing
composite state last exited).

A composite state cannot have more
than one shallow history vertex.

Concepts | 45

DescriptionCanvas ElementPalette Element

A pseudostate that restores the most
recent active configuration state that

History point within the In Delivery
composite state

 Deep History

was active when the enclosing
composite state last exited.

A composite state cannot have more
than one deep history vertex.

A pseudostate that splits an incoming
transition into two or more transitions

The vertical line following the [delivery
by shipping] and [delivery by
customer pick-up] transitions

 Fork

that terminate on orthogonal target
states (vertices in different regions of a
composite state). Transition segments
in a fork vertex have no guards or
triggers.

A pseudostate that merges several
transitions from source states in

The vertical line preceding the At
Destination [customer signed] and
Customer Arrives transitions

 Join

different orthogonal regions.Transitions
in a join vertex have no guards or
triggers.

A pseudostate that connects transition
segments into a single transition.

The central point between the At
Destination [customer signed] and
Customer Arrives transitions

 Junction

A pseudostate that performs a dynamic
branch within a single transition.

The central point between the Ship
[assembly complete], [delivery by
shipping] and [delivery by customer
pick-up] transitions

 Choice

A pseudostate that, when activated,
terminates the execution of the object
that owns the state machine.

Out of StockTerminate

The point at which execution of the state
machine or composite state starts.This

Order Submitted Entry Point

pseudostate receives an external signal
that identifies an internal state as a
target.

The point at which execution of the state
machine or composite state completes.

Order Fulfilled Exit Point

This pseudostate identifies an internal
state as a source.

Represents a direct relationship
between the exit point of a source state

All arrows
Transition

and the entry point of a target state. In

46 | Concepts

DescriptionCanvas ElementPalette Element

response to an event, a transition
moves a state from one state
configuration to another.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

UML 2.1 Use Case Diagram
Use case modeling is used to visually depict the functional requirements of a system based on how it behaves.
To demonstrate this type of modeling, this topic uses the common Automated Teller Machine (ATM) system.

Note: Only those elements found on the Diagram Elements table below can be placed onto this type of
diagram. For a list of elements available to all diagrams, refer to “UML 2.1 Common Diagram Elements
and Preferences on page 9.”

Definition

A use case diagram describes the required usages of a system, or what a system is supposed to do. By
diagraming functional requirements through use cases, you can avoid stating a functional requirement that is
not directly tied to specific user tasks needed to accomplish a business goal.

The diagrams can either depict a comprehensive system-wide view or a design-level view that further refines
more general use cases. Use case diagrams can also be divided into flows and scenarios. A scenario depicts
the use case instance from start to finish. A flow is a portion of a use case instance. It is important to remember
that use case diagrams do not show the sequential flow of data between actors and the system (data can go
in both directions). Use activity diagrams to depict sequential flow.

Sample Diagram

The following figure contains a diagram that shows an example of actors and use cases for an ATM system.

Refactoring the ATM system could yield many more use cases (for example, specifying accounts to withdraw
from, performing card reader repairs, and so on). Furthermore, depicting a complete ATM use case model
would probably be most useful using more than one diagram. For this topic, only a few basic behaviors of an
ATM system are covered to highlight different roles and relationships, and which nodes on the palette are used
for these.

The basic behaviors for the ATM system shown in the following diagram include a customer attempting a
financial transaction with a bank, an ATM technician performing a repair, and a bank representative collecting
materials.

Concepts | 47

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

The key concepts that take part in a use case diagram are actors, use cases, and subjects. Different types of
relationships can exist between use cases, including include, extend, and generalization relationships.
Descriptions for these concepts and the other available items on the diagram palette can be found in the table
that follows.

DescriptionCanvas ElementPalette Element

The use case node is the action or
sequence of actions that actors engage

All oval-shaped elements on the
diagram.The label above the horizontal

 Use Case

in to yield an observable goal. It can beline specifies the name of the use case.
any element that displays behavior,Any label below the horizontal line

indicates an extension point. including a component, subsystem, or
class. A use case is defined according
to the needs of the actor.

Relationships between use cases can
be either extend, include, or
generalization. Besides the use case's
name and brief description, elements
that describe use cases include flow or
scenarios, special requirements, pre-

48 | Concepts

DescriptionCanvas ElementPalette Element

and post-conditions, and extension
points.

Use the Show as ➤

Classifier/UseCase context menu to
optionally display a use case as a
Classifier rectangle.

An actor node is a role (usually a person
or thing, depicted by a stick figure)

Customer, ATM Technician, Bank, Bank
Rep

 Actor

outside of the system that interacts with
the system through a use case to
achieve an observable goal.

Use the Show as context menu to
optionally change the actor notation to
display as a rectangle instead of a stick
figure.

Between actors, only a generalization
relationship can exist.

A subject node represents a system
under consideration with which the

ATM System Subject

actors and other subjects interact. The
required behavior of the subject is
described by the use cases.

When a subject is created on a Use
Case Diagram, a component is created
in the namespace for the diagram
canvas. Then after a use case is
created on the subject, a new use case
element is added to the subject's
namespace and a relationship is formed
between the use case and the subject.

A package groups elements of the
diagram and provides a namespace for
those grouped elements.

N/A Package

The Package node can be used to
represent a Classifier, which is
something (usually representing the
Subject) that owns a use case.

A constraint is a Boolean expression
that restricts the extension of an

N/A Constraint

element. It restricts by imposing a value
that specifies additional semantics
beyond what is imposed by other
language constructs applied to that
element. The element that owns the

Concepts | 49

DescriptionCanvas ElementPalette Element

constraint must have access to
Constrained Elements. By default, the
value of a constraint is an Opaque
Expression element.

The point in a use case at which
behaviors of other use cases can be

Mechanics Verification (within the
Repair use case)

 Extension Point

added. At an extension point, one use
case's behavior replaces the behavior
of or adds behavior to another use case.

Identifies an element in another
package that can be referenced using
its name without a qualifier.

N/A Element Import

A secondary package node located in
the upper-left corner of diagram views
(not shown above) contains element
imports. The ElementImport
compartment is collapsed by default.

The interaction between an actor and a
use case, represented by a solid line

The blue lines between Actors and Use
Cases

 Association

between them. These interaction links
can be either unidirectional (indicating
that an actor initiates the interaction) or
bidirectional (indicating that an actor
can participate in the interaction without
initiating it).

Association links can further be refined
into multiplicities (how often the use
case and actor interact), labels (roles
specified at each end of the
association), and direction (who initiates
communication, although not
necessarily a sequential flow of events).

If a certain condition is met at a specific
extension point, a use case can be

Repair Dispenser
 Extend

extended to another use case. This
results in an extend relationship
between the use cases. For example,
whenever the Repair use case in the
diagram above reaches the value
specified by the Mechanics Verification
extension point, it is extended by the
Repair Dispenser use case. An
extended use case does not have a
dependency on the use case it extends
to.

50 | Concepts

DescriptionCanvas ElementPalette Element

Extend links are indicated by a dashed
arrow pointing from the use case
providing the extension to the base use
case.

If one use case includes a basic
behavior that other use cases show,

Authenticate Use Case
 Include

you can separate the common behavior
out into another use case and establish
an include relationship. Include use
cases are required in order for the
original use case to execute
successfully. For example, in order for
the Initiate Transaction use case in the
diagram above to complete, the actor
must be verified through the
Authenticate use case.

Include links are indicated by a dashed
arrow pointing from the base use case
to the included use case.

If one use case or actor inherits all the
behavior of another use case or actor

Withdraw, Transfer, and Deposit Use
Cases; Bank Rep Actor

 Generalization

and furthermore extends it with
additional behavior, a generalization link
results. The arrow points to the more
general of the two.

Those elements of the diagram that are
required to evaluate the conditions

N/A Constrained Element

specified in a constraint. These
references are displayed as links on the
diagram.

Elements whose semantics depend on
the definition of a supplier element are

N/A Dependency

in a dependency relationship with the
supplier element. Dependency links are
shown as dashed arrows between the
two model elements with the arrowhead
pointing to the supplier element.

Note: Depending on where the cursor is placed on the canvas, a hover context menu is displayed briefly
with different Palette elements available for quick access.

Concepts | 51

Related Topics

UML 2.1 Diagrams on page 8

UML 2.1 Common Diagram Elements and Preferences on page 9

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

52 | Concepts

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Procedures

This section provides how-to information on using Together UML 2.1 diagrams. For a thorough understanding
of these procedures, users should be familiar with the latest UML specification, available from the Catalog of
OMG Modeling and Metadata Specifications.

Related Topics

Exporting a Model to UML 2.1 on page 53

Converting a UML 2.0 Model to a UML 2.1 Model on page 54

Creating a Required Interface on page 54

Managing the Visibility of Provided and Required Interface Links on page 55

Working with Associations on page 56

Running a UML2Tools Report on a UML 2.1 Diagram File on page 57

Working with UML 2.1 Profiles on page 58

Exporting a Model to UML 2.1

1. From the main menu, choose File ➤ Export. The Export wizard opens.

2. In the Select page of the wizard, choose Modeling ➤ UML 2 Tools, and click Next.

3. In the Source Model Selection page, specify the model from your workspace that you want to convert to
UML 2.1. If you want the export to ignore synchronized package diagrams, check the Ignore synchronized
package diagrams check box.

Click Next.

4. In the Target Project Selection page of the wizard, specify the target project from your workspace that
you want to convert to UML 2.1.

Specify the conversion destination by adjusting the Domain Model, Diagram Models Folder, and Trace
Models Folder fields as necessary. Click Next.

5. Select any available audits to expose conversion problems with the source model.
The results are displayed in the Audits Result List pane.

6. Click Fix All to fix all problems found. Click Next.

7. In the Hyperlinks and Requirement Traces page, add or select any previously exported hyperlinks and
requirement traces that you would like to retain.

8. Click Finish.

Procedures | 53

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML

Related Topics

Procedures on page 53

Converting a UML 2.0 Model to a UML 2.1 Model

1. From the main menu, choose File ➤ Export ➤ Modeling ➤ UML 2 Tools.

2. On the Source Model Selection page, select the source model, or select any imported (referenced) models
listed in the Referenced Models List pane.

3. Click Next.

4. On the Target Project Selection page, select a target project among those listed in the project tree in the
top panel. In the bottom pane, specify a file for your domain model and a directory for your diagram model.

5. Click Next.

6. On the Run Audits on Source Model page, optionally select a set of audits to run to verify whether your
source model contains any conversion mismatches. Results are displayed in the Audits Result List pane.
Click Fix All to fix all problems found.

Click Next.

7. In the Hyperlinks and Requirement Traces page, add or select any previously exported hyperlinks and
requirement traces that you would like to retain.

8. Click Finish.

Related Topics

Procedures on page 53

UML 2.1 Diagrams on page 8

Creating a Required Interface
Required interfaces are what a component requires from other components in its environment in order to offer
a full set of provided functionality.

1. On your diagram canvass, create a component and an interface node using the appropriate icons on the
palette.

2. Create a Port on the boundary of the component using the Port icon on the palette.

3. In order for the derived link to be calculated, set the property type of the Port by first creating a TypingClass
class and then setting the property type of Port to TypingClass in the Properties View.

4. Click the Required Interface icon on the diagram palette.

5. Click the client port and drag the mouse to the interface node.

UML 2.1 lets you reroute the source and target of the required interface links. If you reorient the target of the
link, the target of the genuine link is changed. If you reorient the source of the link, the original usage link is
changed.

54 | Procedures

Related Topics

Procedures on page 53

Provided and Required Interface Links of a Port on page 6

Required Interface on page 7

Managing the Visibility of Provided and Required Interface
Links

Because they are derived links, provided and required interface links usually represent another occurrence of
an already existing link. For example, in the following image, a single Required Interface link is a link from both
a typing classifier of a port, and from a port to an interface.

1. To manage these links on the diagram, from the main menu choose Window ➤ Preferences.

2. Expand the UML2 Diagrams feature, and select View Filters under the UML Component Diagram node.
The Hide Derived Links option lets you hide links that either do not exist or that are calculated, such as
links from ports. With this option turned on, the preceding component diagram would have its derived link
hidden, as seen in the following image.

The Hide Genuine Links option lets you hide original links, such as Usage or InterfaceRealization links.
With this option turned on, the component diagram would have its original link hidden, as seen in the
following image.

Procedures | 55

Related Topics

Procedures on page 53

Provided and Required Interface Links of a Port on page 6

Working with Associations
An association defines a relationship between two or more TypedElements, such as properties of a class.

Related Topics

Procedures on page 53

Creating an Association on page 56

Creating an Association from Existing Properties on page 56

Change the Aggregation Type of an Association on page 57

Editing the Properties of AssociationEnds on page 57

UML 2.1 Diagrams on page 8

Creating an Association
An association is a relationship between TypedElements, such as properties of a class.

1. On your diagram canvass, create two classes using the Class icons on the palette.

2. On the diagram palette, click the Association icon under the Links group.

3. On your diagram, click the client class and drag the mouse to the target class node.

Related Topics

Working with Associations on page 56

Creating an Association from Existing Properties
1. On your diagram canvass, create classes A and B using the Class icons on the palette.

2. Create a Property in Class A. In the Properties View, set the type of this property as B.

3. Select the Class A Property. Using the context menu of the element, choose Create Association to ➤ B.

A new Association from a previously existing property is created.

56 | Procedures

Related Topics

Working with Associations on page 56

Change the Aggregation Type of an Association
An aggregation is a type of association in which the child class might or might not continue to exist if the parent
class is deleted. If the child class is not owned by the parent and continues to exist when the parent is removed,
the aggregation is shared. Such a relationship is distinguished from a composite association, in which the child
class is owned by the parent class and ceases to exist when the parent class is removed.

1. Select the appropriate Association Link on the diagram.

2. Using the context menu, choose Association Type and choose either None, Shared, or Composite.

Related Topics

Working with Associations on page 56

Editing the Properties of AssociationEnds
An aggregation is a type of association in which the child class might or might not continue to exist if the parent
class is deleted. If the child class is not owned by the parent and continues to exist when the parent is removed,
the aggregation is shared. Such a relationship is distinguished from a composite association, in which the child
class is owned by the parent class and ceases to exist when the parent class is removed.

1. Select the appropriate Association Link on the diagram.

2. Using the context menu, choose Association Type and choose either None, Shared, or Composite.

Related Topics

Working with Associations on page 56

Running a UML2Tools Report on a UML 2.1 Diagram File

1. Right click on the UML 2.1 diagram file in the Navigator view and select Run UML 2 Tool report.

2. Select the report format (html or pdf) from the Format drop down list.

3. Specify the output path in the Output Path field.

4. Click OK. The report displays when complete.

Procedures | 57

Related Topics

Procedures on page 53

UML 2.1 Diagrams on page 8

Working with UML 2.1 Profiles

Related Topics

Procedures on page 53

A Typical Scenario of Creating a Profile on page 58

Creating a Project on page 59

Creating a Profile on page 60

Populating Profile Diagrams on page 61

Defining Profiles on page 62

Registering Profiles on page 63

Applying Profiles on page 63

Applying Stereotypes on page 64

A Typical Scenario of Creating a Profile
UML is a standard modeling language for specifying, visualizing, constructing, and documenting the artifacts
of software systems, as well as for business modeling and other nonsoftware systems. Although the general
modeling concepts of UML are sufficient for the majority of modelers, some elements cannot be expressed
directly using UML constructs. In these situations, users can use an extension mechanism, known as a UML
Profile, to collectively customize UML for a particular domain using domain-specific concepts and techniques.
Profiles provide refinement mechanisms, such as stereotypes and constraints, that allow metaclasses from
existing UML domain metamodels to be extended so they can be adapted for different purposes without
changing the metamodel. Consequently, you can interpret the semantics of a profile in the context of the UML
specification.

There are several advantages to customizing UML with a Profile. Profiles provide a syntax to constructs without
notations, and they contribute additional constraints that restrict how a metamodel and its constructs are used.
They also provide alternate notations for UML symbols and add semantics that are otherwise nonexistent or
unspecified in the domain metamodel. In addition, you can use profiles to configure transformation rules
between models.

A graphical depiction of a basic profile definition workflow follows. First you create a Profile using the Profile
Definition Diagram Editor.Then to apply the profile, you create a class diagram with an element of the extended
metaclass.You then apply the defined stereotypes to this element. Ultimately, there will be two different
diagrams and models, each dependent on the other.

58 | Procedures

Use the following steps to create a profile:

1. Creating a Project on page 59.

2. Creating a Profile on page 60.

3. Populating Profile Diagrams on page 61.

4. Defining Profiles on page 62.

5. Registering Profiles on page 63.

6. Applying Profiles on page 63.

7. Applying Stereotypes on page 64.

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Creating a Project
1. On the main menu, choose Window ➤ Open Perspective ➤ Other.

2. Choose the Resource perspective and click OK.

3. On the main menu, choose File ➤ New ➤ Project.

4. Under the General node, choose Project from the list of wizards and click Next.

5. Supply a project name, such as Introduction to UML2.1 Profiles, and click Finish.

Procedures | 59

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Creating a Profile
The profile element is at the root of a UML profile and adapts a metamodel to a particular domain or platform
by extending the metamodel.

1. In the Project Explorer view, select your project. On the main menu, choose File ➤ New ➤ Other.

2. Under the UML 2.1 Diagrams node, choose Profile Definition Diagram from the list of wizards and click
Next.

3. Select Introduction to UML2.1 Profiles as the parent folder for the diagram model and supply a
name for your profile diagram.

Tip: Profile diagrams always end with a .umlprofile extension.

4. If you would like your domain and diagram models to have the same name, click Finish. To supply a
different name for you domain model, click Next.

5. Select Introduction to UML2.1 Profiles as the parent folder for the domain model and supply a
name for your profile diagram.

Tip: Resources that contain a profile always end with a .profile.uml extension.

Click Finish.

6. If the Properties view is not yet displayed, from the main menu choose Window ➤ Show View ➤ Properties.
The new diagram also created a new model. This default model has a single specialized package with a
default name of profile. The package has the profile profile applied to it. In this way, the profile mechanism
is used self-referentially for the creation of new profiles. To change the name of the profile, select the
element in the upper-left corner of the new diagram and supply a value for its Name property, such as EJB
for Enterprise JavaBeans. Because this name serves as an ID of the profile, the Name property should
never be empty.

The EJB profile element appears on the created diagram and is the root of your UML 2.1 profile.

Note: In UML 2.1, a profile is created with some standard primitive types already predefined, including
Boolean, String, and Integer.You can have your profile reference other primitive types from libraries
by importing those primitive types (UML Editor ➤ Package ➤ Import Type...). To import additional
elements, click the ElementImport node from the palette and then click the <<profile>> polygon
at the upper left part of the diagram. Because the ElementImport compartment is collapsed by default,
you must expand it.

60 | Procedures

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Populating Profile Diagrams
Note: Using the Profile Definition Diagram Editor provided by Together, you can add all diagram elements
graphically in the Modeling Perspective. To add elements on the diagram canvas, click the appropriate
icon on the palette and then click your diagram canvas to add the element.

1. From the profile diagram palette, click the Metaclass element and click within your diagram to add the
element. Name the metaclass Component.

Note: Because it is the name of a referenced metaclass, you can use the code assist feature
(Ctrl+space) to bring up the list of available metaclass names.

2. From the profile diagram palette, click the Stereotype element and click within your diagram to the right of
the Component metaclass so that the element is added. Name the stereotype Bean.

3. Connect the stereotype with your metaclass by clicking the Extension element from the palette and dragging
the cursor from the stereotype to the metaclass.

4. From the profile diagram palette, click the Stereotype element again and click within your diagram to the
right of the first stereotype you created so that the element is added. Name the stereotype Session.

5. Connect the Session stereotype with your Bean stereotype by clicking the Generalization element from
the palette and dragging the cursor from the Session stereotype to the Bean stereotype.

6. From the profile diagram palette, click the Enumeration element and click within your diagram to add the
element. Name the enumeration StateKind.

An enumeration contains constant values for a new data type.

7. From the profile diagram palette, click the Literal element and click within the Enumeration you added in
the last step to add the Literal. Name the enumeration literal stateless. Add another enumeration literal
named stateful. Enumeration literals specify the user-defined data value for the enumeration.

8. Click the OCL Constraint element from the palette and click within Bean stereotype to add the OCL
Constraint. Supply an opaque expression that specifies how the stereotype is constrained. For example,
A Bean must realize exactly one Home Interface restricts not only the extension of the Bean
stereotype but also gets extended to the Component metaclass.

The language of the constraint is indicated above the constraint text, such as {OCL}.You can edit the OCL
Constraint directly in the diagram or in the Properties view. The Constraint editor in the Properties view
highlights errors in the OCL code and provides code-assist.

To disable constraints, click Window ➤ Preferences ➤ Model Validation ➤ Constraints, select the UML2
Tools Constraints category, and specify which constraints to disable by unchecking its check box.

9. Continue to populate the profile diagram and extend its elements with metaclasses and stereotypes as
follows:

Procedures | 61

The Session stereotype extends the Bean stereotype, which extends the Component metaclass.Through
these extensions, the state property of the Session stereotype is appended to the Component metaclass.
In addition, the Artifact and Interface metaclasses define other elements to be extended.

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Defining Profiles
After your profile diagram has been created, you must define your profile so that it will be saved in the UML
model and allow subsequent use of profile content. By defining profiles at the metamodel level, all created
extensions can appear as part of that metamodel.This is possible when the contents of the profile are converted
to an equivalent representation of the metamodel that then get stored as an annotation on the profile.

1. Right-click within your profile diagram.

2. From the context menu of the profile diagram, choose Profile ➤ Define.

Note: A profile gets defined once by the person who first checks the profile in to the repository. Subsequent
users of the profile do not have to define it again. However, this procedure must be repeated whenever
the profile changes.

62 | Procedures

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Registering Profiles
Adding your profile to the registry makes later applications of the profile more simplified. In order for your profile
to display in the Apply Profile context menu, it is important to register the profile.

1. Open the profile's plug-in descriptor plugin.xml file in your workspace.

2. Register the profile using the org.eclipse.uml2.uml.dynamic_package extension point.

The profile will be deployed in the platform later. For example, to register the UML Standard profile, edit
the plugin.xml file as follows:

<extension point="org.eclipse.uml2.uml.dynamic_package">
<profile uri="http://www.eclipse.org/uml2/schemas/Ecore/5" location=
"platform:/plugin/org.eclipse.uml2.uml.resources/profiles/Ecore.profile.uml#_0"/>
</extension>

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Applying Profiles
All profiles are restricted forms of a metamodel. Because the two are related, profiles must always be used in
conjunction with their referenced metamodels. An import relationship between a profile and the metamodel's
metaclass is what allows stereotypes to be used as extensions. In order for these stereotypes to extend the
elements in a package, the profile must be applied.

1. If the profile has not yet been added to the registry in the plugin.xml file, the corresponding
*.profile.uml resource must be loaded so that the profile appears in the Apply Profile context menu
list. To load the profile, create a class diagram in your project and add a class element. Right-click in the
diagram and choose Load resource... from the menu.

2. When the wizard appears, click Browse Workspace... and select the required resource in your project
(the *.profile.uml file) that contains the profile. Click OK.

3. Right-click in the diagram and choose Apply Profile ➤ <profile name>.

Procedures | 63

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

Applying Stereotypes
After a profile has been applied to a package, you can apply the profile's defined stereotypes to instances of
the metaclass. Stereotypes applied to elements extend those elements as defined in the stereotype properties.
Stereotypes can be applied to both nodes and links.

1. In the class diagram that you created, select one of the nodes or links with which you want to extend the
metaclass.

2. In the context menu of the selected diagram element, right-click and choose Apply Stereotype ➤
<stereotype name>.

3. Alternatively, click within the stereotype label of your class diagram element to select it and type a
comma-separated list of stereotypes in the label.

Note: Currently, UML 2.1 permits stereotypes to be applied only to classifiers.

Stereotypes added to the list will be applied, and stereotypes removed will be unapplied. In the following
example, the Realization stereotype gets applied as it replaces the Remote stereotype, which gets
unapplied.

The name of the final applied stereotype appears between guillermets.

4. Edit the properties of the applied stereotype as necessary using the Tagged Value tab of the Properties
View.

Related Topics

Working with UML 2.1 Profiles on page 58

UML 2.1 Profile Diagram on page 40

64 | Procedures

Reference

Related Topics

UML 2 Tools Wizard on page 65

UML 2.1 Export Audits on page 66

UML 2 Tools Wizard
File ➤ Export ➤ Modeling ➤ UML 2 Tools

The UML 2 Tools Wizard is used to convert Together UML 2.0 models to Eclipse UML 2.1 (UML2Tools) models.

Wizard Pages

The UML 2 Tools wizard contains the following pages:

Displays Together projects that are available to convert.
Select the source model, or select any imported (referenced)

Source Model Selection

models listed in the Referenced Models List pane.
Checking the Ignore synchronized package diagram check
box prevents the diagram with the package contents from
being converted.

Select a target project among those listed in the project tree
in the top panel. In the bottom pane, specify a file for your
domain model and a directory for your diagram model.

Target Project Selection

If you want to verify whether your source model contains
any conversion mismatches before running the conversion,

Run Audits on Source Model

select a set of audits to run. The results are displayed in the
Audits Result List pane.

Add or select any previously exported hyperlinks and
requirement traces that you would like to retain.

Hyperlinks and Requirement Traces

Reference | 65

Related Topics

Reference on page 65

UML 2.1 Diagrams on page 8

UML 2.1 Export Audits on page 66

UML 2.1 Export Audits
To the largest extent possible, the automated model conversion from Together UML 2.0 to UML 2.1 preserves
both diagram and model semantics. This includes element layout, formatting, and properties. However, some
modeling concepts might change or might not be supported by Together in the same way.The UML 2.1 Export
Audits provide advance warning about which model elements might not be converted as expected.

The following audits are available for exporting to UML 2.1.

DescriptionAudit

Identifies incorrectly converted port elements from previous
versions of Together and provides automatic repairing of
the elements so that the ports are correctly converted.

Part-Port Audit

Searches for OCL constraints that have been added to the
model. Because of differences between the OCL and

OCL Constraint Audit

metamodel implementations, OCL Constraints in the model
might be converted with syntax changes or incorrect OCL
expressions.

Identifies elements on which a UML Profile has been applied
and alerts the user that custom viewmaps for the elements

Applied Profile Audit

are lost when the profile gets extracted to a separate model
during conversion.

Identifies elements on which custom properties have been
applied and alerts the user that these elements will not be
converted.

Custom Properties Audit

Identifies diagrams that represent the StateMachine using
a full canvas and alerts the user that UML 2.1 converts these

Full-Screen Diagram Audit

diagrams to show the StateMachine as an explicit element
added to the canvas.

Identifies models that contain imported elements and alerts
the user that additional steps are required, including

Imported Model Audit

converting the referred model first and supplying models in
the workspace that will convert the model with imported
elements.

Identifies models that contain elements with hyperlink traces
and alerts the user that these elements will be preserved by
a generated trace model.

Element with Hyperlink Trace Audit

66 | Reference

DescriptionAudit

Identifies models that contain elements with requirement
traces and alerts the user that these elements will be
preserved by a generated trace model.

Element with Requirement Trace Audit

Related Topics

Reference on page 65

UML 2 Tools Wizard on page 65

Reference | 67

	Contents
	Concepts
	UML 2.1 Overview
	UML 2.1 Implementation in Together
	Provided and Required Interface Links of a Port
	Required Interface
	Provided Interface

	UML 2.1 Diagrams
	UML 2.1 Common Diagram Elements and Preferences
	UML 2.1 Activity Diagram
	UML 2.1 Class Diagram
	UML 2.1 Component Diagram Definition
	UML 2.1 Composite Structure Diagram
	UML 2.1 Deployment Diagram
	UML 2.1 Profile Diagram
	UML 2.1 State Machine Diagram
	UML 2.1 Use Case Diagram

	Procedures
	Exporting a Model to UML 2.1
	Converting a UML 2.0 Model to a UML 2.1 Model
	Creating a Required Interface
	Managing the Visibility of Provided and Required Interface Links
	Working with Associations
	Creating an Association
	Creating an Association from Existing Properties
	Change the Aggregation Type of an Association
	Editing the Properties of AssociationEnds

	Running a UML2Tools Report on a UML 2.1 Diagram File
	Working with UML 2.1 Profiles
	A Typical Scenario of Creating a Profile
	Creating a Project
	Creating a Profile
	Populating Profile Diagrams
	Defining Profiles
	Registering Profiles
	Applying Profiles
	Applying Stereotypes

	Reference
	UML 2 Tools Wizard
	UML 2.1 Export Audits

